

About This eBook

ePUB is an open, industry-standard format for eBooks. However, support of
ePUB and its many features varies across reading devices and applications.
Use your device or app settings to customize the presentation to your liking.
Settings that you can customize often include font, font size, single or
double column, landscape or portrait mode, and figures that you can click
or tap to enlarge. For additional information about the settings and features
on your reading device or app, visit the device manufacturer’s Web site.
Many titles include programming code or configuration examples. To
optimize the presentation of these elements, view the eBook in single-
column, landscape mode and adjust the font size to the smallest setting. In
addition to presenting code and configurations in the reflowable text format,
we have included images of the code that mimic the presentation found in
the print book; therefore, where the reflowable format may compromise the
presentation of the code listing, you will see a “Click here to view code
image” link. Click the link to view the print-fidelity code image. To return
to the previous page viewed, click the Back button on your device or app.

Pandas for Everyone

Pandas for Everyone

Python Data Analysis

Second Edition

Daniel Y. Chen

Boston • Columbus • Indianapolis • New York • San Francisco •
Amsterdam • Cape Town

Dubai • London • Madrid • Milan • Munich • Paris • Montreal •
Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Cover image: SkillUp / Shutterstock
Figure 3.7: The Matplotlib development team
Figure B1 (Appendix): GitHub, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,
training goals, marketing focus, or branding interests), please contact our corporate sales department
at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2022948110

Copyright © 2023 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be obtained from
the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in
any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, request forms and the appropriate contacts within the Pearson
Education Global Rights & Permissions Department, please visit www.pearson.com/permissions.

ISBN-13: 978-0-13-789115-3
ISBN-10: 0-13-789115-6

ScoutAutomatedPrintCode

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearson.com/permissions

Pearson’s Commitment to Diversity, Equity, and Inclusion
Pearson is dedicated to creating bias-free content that reflects the diversity
of all learners. We embrace the many dimensions of diversity, including but
not limited to race, ethnicity, gender, socioeconomic status, ability, age,
sexual orientation, and religious or political beliefs.

Education is a powerful force for equity and change in our world. It has
the potential to deliver opportunities that improve lives and enable
economic mobility. As we work with authors to create content for every
product and service, we acknowledge our responsibility to demonstrate
inclusivity and incorporate diverse scholarship so that everyone can achieve
their potential through learning. As the world’s leading learning company,
we have a duty to help drive change and live up to our purpose to help more
people create a better life for themselves and to create a better world.

Our ambition is to purposefully contribute to a world where:

Everyone has an equitable and lifelong opportunity to succeed through
learning.
Our educational products and services are inclusive and represent the
rich diversity of learners.
Our educational content accurately reflects the histories and
experiences of the learners we serve.
Our educational content prompts deeper discussions with learners and
motivates them to expand their own learning (and worldview).

While we work hard to present unbiased content, we want to hear from
you about any concerns or needs with this Pearson product so that we can
investigate and address them.

Please contact us with concerns about any potential bias at
https://www.pearson.com/report-bias.html.

https://www.pearson.com/report-bias.html

To all the teachers, advisors, and mentors I’ve had over the years.
And to my family: Mom, Dad, Eric, and Julia

Contents

Foreword to Second Edition

Foreword to First Edition

Preface

Breakdown of the Book

Part I

Part II

Part III

Part IV

Part V

Appendices

How to Read This Book

Newcomers

Fluent Python Programmers

Instructors

Setup

Get the Data

Setup Python

Feedback, Please!

Acknowledgments

About the Author

Changes in the Second Edition

I Introduction

1 Pandas DataFrame Basics

1.1 Introduction

Learning Objectives

1.2 Load Your First Data Set

1.3 Look at Columns, Rows, and Cells

1.3.1 Select and Subset Columns by Name

1.3.2 Subset Rows

1.3.3 Subset Rows by Row Number: .iloc[]

1.3.4 Mix It Up

1.3.5 Subsetting Rows and Columns

1.4 Grouped and Aggregated Calculations

1.4.1 Grouped Means

1.4.2 Grouped Frequency Counts

1.5 Basic Plot

Conclusion

2 Pandas Data Structures Basics

Learning Objectives

2.1 Create Your Own Data

2.1.1 Create a Series

2.1.2 Create a DataFrame

2.2 The Series

2.2.1 The Series Is ndarray-like

2.2.2 Boolean Subsetting: Series

2.2.3 Operations Are Automatically Aligned and
Vectorized (Broadcasting)

2.3 The DataFrame

2.3.1 Parts of a DataFrame

2.3.2 Boolean Subsetting: DataFrames

2.3.3 Operations Are Automatically Aligned and
Vectorized (Broadcasting)

2.4 Making Changes to Series and DataFrames

2.4.1 Add Additional Columns

2.4.2 Directly Change a Column

2.4.3 Modifying Columns with .assign()

2.4.4 Dropping Values

2.5 Exporting and Importing Data

2.5.1 Pickle

2.5.2 Comma-Separated Values (CSV)

2.5.3 Excel

2.5.4 Feather

2.5.5 Arrow

2.5.6 Dictionary

2.5.7 JSON (JavaScript Objectd Notation)

2.5.8 Other Data Output Types

Conclusion

3 Plotting Basics

Learning Objectives

3.1 Why Visualize Data?

3.2 Matplotlib Basics

3.2.1 Figure Objects and Axes Subplots

3.2.2 Anatomy of a Figure

3.3 Statistical Graphics Using matplotlib

3.3.1 Univariate (Single Variable)

3.3.2 Bivariate (Two Variables)

3.3.3 Multivariate Data

3.4 Seaborn

3.4.1 Univariate

3.4.2 Bivariate Data

3.4.3 Multivariate Data

3.4.4 Facets

3.4.5 Seaborn Styles and Themes

3.4.6 How to Go Through Seaborn Documentation

3.4.7 Next-Generation Seaborn Interface

3.5 Pandas Plotting Method

3.5.1 Histogram

3.5.2 Density Plot

3.5.3 Scatter Plot

3.5.4 Hexbin Plot

3.5.5 Box Plot

Conclusion

4 Tidy Data

Learning Objectives

Note About This Chapter

4.1 Columns Contain Values, Not Variables

4.1.1 Keep One Column Fixed

4.1.2 Keep Multiple Columns Fixed

4.2 Columns Contain Multiple Variables

4.2.1 Split and Add Columns Individually

4.2.2 Split and Combine in a Single Step

4.3 Variables in Both Rows and Columns

Conclusion

5 Apply Functions

Learning Objectives

Note About This Chapter

5.1 Primer on Functions

5.2 Apply (Basics)

5.2.1 Apply Over a Series

5.2.2 Apply Over a DataFrame

5.3 Vectorized Functions

5.3.1 Vectorize with NumPy

5.3.2 Vectorize with Numba

5.4 Lambda Functions (Anonymous Functions)

Conclusion

II Data Processing

6 Data Assembly

Learning Objectives

6.1 Combine Data Sets

6.2 Concatenation

6.2.1 Review Parts of a DataFrame

6.2.2 Add Rows

6.2.3 Add Columns

6.2.4 Concatenate with Different Indices

6.3 Observational Units Across Multiple Tables

6.3.1 Load Multiple Files Using a Loop

6.3.2 Load Multiple Files Using a List
Comprehension

6.4 Merge Multiple Data Sets

6.4.1 One-to-One Merge

6.4.2 Many-to-One Merge

6.4.3 Many-to-Many Merge

6.4.4 Check Your Work with Assert

Conclusion

7 Data Normalization

Learning Objectives

7.1 Multiple Observational Units in a Table
(Normalization)

Conclusion

8 Groupby Operations: Split-Apply-Combine

Learning Objectives

8.1 Aggregate

8.1.1 Basic One-Variable Grouped Aggregation

8.1.2 Built-In Aggregation Methods

8.1.3 Aggregation Functions

8.1.4 Multiple Functions Simultaneously

8.1.5 Use a dict in .agg() / .aggregate()

8.2 Transform

8.2.1 Z-Score Example

8.2.2 Missing Value Example

8.3 Filter

8.4 The pandas.core.groupby.
DataFrameGroupBy object

8.4.1 Groups

8.4.2 Group Calculations Involving Multiple
Variables

8.4.3 Selecting a Group

8.4.4 Iterating Through Groups

8.4.5 Multiple Groups

8.4.6 Flattening the Results (.reset_index())

8.5 Working With a MultiIndex

Conclusion

III Data Types

9 Missing Data

Learning Objectives

9.1 What Is a NaN Value?

9.2 Where Do Missing Values Come From?

9.2.1 Load Data

9.2.2 Merged Data

9.2.3 User Input Values

9.2.4 Reindexing

9.3 Working With Missing Data

9.3.1 Find and Count Missing Data

9.3.2 Clean Missing Data

9.3.3 Calculations With Missing Data

9.4 Pandas Built-In NA Missing

Conclusion

10 Data Types

Learning Objectives

10.1 Data Types

10.2 Converting Types

10.2.1 Converting to String Objects

10.2.2 Converting to Numeric Values

10.3 Categorical Data

10.3.1 Convert to Category

10.3.2 Manipulating Categorical Data

Conclusion

11 Strings and Text Data

Introduction

Learning Objectives

11.1 Strings

11.1.1 Subset and Slice Strings

11.1.2 Get the Last Character in a String

11.2 String Methods

11.3 More String Methods

11.3.1 Join

11.3.2 Splitlines

11.4 String Formatting (F-Strings)

11.4.1 Formatting Numbers

11.5 Regular Expressions (RegEx)

11.5.1 Match a Pattern

11.5.2 Remember What Your RegEx Patterns Are

11.5.3 Find a Pattern

11.5.4 Substitute a Pattern

11.5.5 Compile a Pattern

11.6 The regex Library

Conclusion

12 Dates and Times

Learning Objectives

12.1 Python’s datetime Object

12.2 Converting to datetime

12.3 Loading Data That Include Dates

12.4 Extracting Date Components

12.5 Date Calculations and Timedeltas

12.6 Datetime Methods

12.7 Getting Stock Data

12.8 Subsetting Data Based on Dates

12.8.1 The DatetimeIndex Object

12.8.2 The TimedeltaIndex Object

12.9 Date Ranges

12.9.1 Frequencies

12.9.2 Offsets

12.10 Shifting Values

12.11 Resampling

12.12 Time Zones

12.13 Arrow for Better Dates and Times

Conclusion

IV Data Modeling

13 Linear Regression (Continuous Outcome Variable)

13.1 Simple Linear Regression

13.1.1 With statsmodels

13.1.2 With scikit-learn

13.2 Multiple Regression

13.2.1 With statsmodels

13.2.2 With scikit-learn

13.3 Models with Categorical Variables

13.3.1 Categorical Variables in statsmodels

13.3.2 Categorical Variables in scikit-learn

13.4 One-Hot Encoding in scikit-learn with Transformer
Pipelines

Conclusion

14 Generalized Linear Models

About This Chapter

14.1 Logistic Regression (Binary Outcome Variable)

14.1.1 With statsmodels

14.1.2 With sklearn

14.1.3 Be Careful of scikit-learn Defaults

14.2 Poisson Regression (Count Outcome Variable)

14.2.1 With statsmodels

14.2.2 Negative Binomial Regression for
Overdispersion

14.3 More Generalized Linear Models

Conclusion

15 Survival Analysis

15.1 Survival Data

15.2 Kaplan Meier Curves

15.3 Cox Proportional Hazard Model

15.3.1 Testing the Cox Model Assumptions

Conclusion

16 Model Diagnostics

16.1 Residuals

16.1.1 Q-Q Plots

16.2 Comparing Multiple Models

16.2.1 Working with Linear Models

16.2.2 Working with GLM Models

16.3 k-Fold Cross-Validation

Conclusion

17 Regularization

17.1 Why Regularize?

17.2 LASSO Regression

17.3 Ridge Regression

17.4 Elastic Net

17.5 Cross-Validation

Conclusion

18 Clustering

18.1 k-Means

18.1.1 Dimension Reduction with PCA

18.2 Hierarchical Clustering

18.2.1 Complete Clustering

18.2.2 Single Clustering

18.2.3 Average Clustering

18.2.4 Centroid Clustering

18.2.5 Ward Clustering

18.2.6 Manually Setting the Threshold

Conclusion

V Conclusion

19 Life Outside of Pandas

19.1 The (Scientific) Computing Stack

19.2 Performance

19.2.1 Timing Your Code

19.2.2 Profiling Your Code

19.2.3 Concurrent Futures

19.3 Dask

19.4 Siuba

19.5 Ibis

19.6 Polars

19.7 PyJanitor

19.8 Pandera

19.9 Machine Learning

19.10 Publishing

19.11 Dashboards

Conclusion

20 It’s Dangerous To Go Alone!

20.1 Local Meetups

20.2 Conferences

20.3 The Carpentries

20.4 Podcasts

20.5 Other Resources

Conclusion

VI Appendices

A Concept Maps

B Installation and Setup

B.1 Install Python

B.1.1 Anaconda

B.1.2 Miniconda

B.1.3 Uninstall Anaconda or Miniconda

B.1.4 Pyenv

B.2 Install Python Packages

B.3 Download Book Data

C Command Line

C.1 Installation

C.1.1 Windows

C.1.2 Mac

C.1.3 Linux

C.2 Basics

D Project Templates

E Using Python

E.1 Command Line and Text Editor

E.2 Python and IPython

E.3 Jupyter

E.4 Integrated Development Environments (IDEs)

F Working Directories

G Environments

G.1 Conda Environments

G.2 Pyenv + Pipenv

H Install Packages

H.1 Updating Packages

I Importing Libraries

J Code Style

J.1 Line Breaks in Code

K Containers: Lists, Tuples, and Dictionaries

K.1 Lists

K.2 Tuples

K.3 Dictionaries

L Slice Values

M Loops

N Comprehensions

O Functions

O.1 Default Parameters

O.2 Arbitrary Parameters

O.2.1 *args

O.2.2 **kwargs

P Ranges and Generators

Q Multiple Assignment

R Numpy ndarray

S Classes

T SettingWithCopyWarning

T.1 Modifying a Subset of Data

T.2 Replacing a Value

T.3 More Resources

U Method Chaining

V Timing Code

W String Formatting

W.1 C-Style

W.2 String Formatting: .format() Method

W.3 Formatting Numbers

X Conditionals (if-elif-else)

Y New York ACS Logistic Regression Example

Y.0.1 With sklearn

Z Replicating Results in R

Z.1 Linear Regression

Z.2 Logistic Regression

Z.3 Poisson Regression

Z.3.1 Negative Binomial Regression for
Overdispersion

Index

Foreword to Second Edition

As the data science domain and educational landscape continues to evolve,
there is an increasing need to train individuals to critically consider data
both holistically and logically. Each year, given the advancement in
computational power, magnitude of data, and data-informed decisions to
make, more and more individuals are dipping their toes in the water of data
science—and most are not aware of how messy their data sets are. Working
with messy data is challenging, confusing, and not necessarily exciting,
especially for newcomers. To continue to use data for informed decision-
making, it is important to introduce concepts in data logic, planning, and
purpose early in the stages of training best practices. The how, why, and
lessons learned of teaching data science represent huge areas of exploration
given the exponential increase in learners. There are numerous resources,
MOOCs, Twitter threads, packages, cheat-sheets, and more out there for
individuals to learn data science, either on their own or in a class. However,
what is effective and what pathways are best for certain learner personas?
Moreover, how does someone new to the field choose which educational
resources mesh with their needs and background familiarity?

While spending many years as an educator for RStudio and The
Carpentries, Dr. Daniel Chen recognized this need, and it has become his
passion to introduce learners to core concepts to work with their data in
more effective, reproducible, and reliable methods in an environment
matching their comfort level with the field. I met Dan by semi-random
chance and after a few conversations, we were well on our way with a
dissertation topic stemming from these interests. With a shared passion in
educating others in foundational data science methods and looking into
those “hows” and “whys” of the ways in which we were teaching, we
sought to understand our learners first and then create materials. It was a
pleasure to work with Dan on his dissertation—and to see those insights
incorporated here in Pandas for Everyone, Second Edition.

In the second edition, Dan takes learners step-by-step through practical
scratch code examples for using Pandas. Using Pandas helps demystify
Python data analysis, create organized manageable data sets, and, most
importantly, have tidy data sets! It takes a special educator to get
individuals (myself included!) excited about cleaning data, but that is what
Dan does for his learners in Pandas for Everyone. Visualizing and
modeling data are taught in easy-to-interpret style once learners become
comfortable with manipulating and transforming their data sets, all of
which is covered in sequential order. It is this mindset and presentation of
materials that really makes this book for everyone—and aids the learner in
best practices while working with example data sets that mimic data sets
they might use in real life. Pandas for Everyone, Second Edition, is a quick
but detailed foray for new data scientists, instructors, and more to
experience best practices and the massive potential of Pandas in a clear-cut
format.

–Anne M. Brown, PhD (she/her)
Assistant Professor

Data Services—University Libraries
Department of Biochemistry

Virginia Tech, Blacksburg, VA 24061

Foreword to First Edition

With each passing year data becomes more important to the world, as does
the ability to compute on this growing abundance of data. When deciding
how to interact with data, most people make a decision between R and
Python. This does not reflect a language war, but rather a luxury of choice
where data scientists and engineers can work in the language with which
they feel most comfortable. These tools make it possible for everyone to
work with data for machine learning and statistical analysis. That is why I
am happy to see what I started with R for Everyone extended to Python with
Pandas for Everyone.

I first met Dan Chen when he stumbled into the “Introduction to Data
Science” course while working toward a master’s in public health at
Columbia University’s Mailman School of Public Health. He was part of a
cohort of MPH students who cross-registered into the graduate school
course and quickly developed a knack for data science, embracing
statistical learning and reproducibility. By the end of the semester he was
devoted to, and evangelizing, the merits of data science.

This coincided with the rise of Pandas, improving Python’s use as a tool
for data science and enabling engineers already familiar with the language
to use it for data science as well. This fortuitous timing meant Dan
developed into a true multilingual data scientist, mastering both R and
Pandas. This puts him in a great position to reach different audiences, as
shown by his frequent and popular talks at both R and Python conferences
and meetups. His enthusiasm and knowledge shine through and resonate in
everything he does, from educating new users to building Python libraries.
Along the way he fully embraces the ethos of the open-source movement.

As the name implies, this book is meant for everyone who wants to use
Python for data science, whether they are veteran Python users, experienced
programmers, statisticians, or entirely new to the field. For people brand
new to Python the book contains a collection of appendixes for getting

started with the language and for installing both Python and Pandas, and it
covers the whole analysis pipeline, including reading data, visualization,
data manipulation, modeling, and machine learning.

Pandas for Everyone is a tour of data science through the lens of Python,
and Dan Chen is perfectly suited to guide that tour. His mixture of
academic and industry experience lends valuable insights into the analytics
process and how Pandas should be used to greatest effect. All this combines
to make for an enjoyable and informative read for everyone.

–Jared Lander, series editor

Preface

My foray into teaching was in 2013 when I attended my first Software-
Carpentry workshop, and I’ve been involved in teaching ever since. In
2019, I was lucky enough to be one of the RStudio (now Posit, PBC)
interns with the education group. By then, data science education has
already gained a tremendous amount of momentum. When I finished my
internship, I needed a dissertation topic for my degree, and wanted to
combine teaching with medicine. Luckily, I knew a librarian at the
university, Andi Ogier, who connected me with Anne Brown, who was also
interested in teaching data literacy skills in the health sciences. The rest is
history. Anne became my PhD chair, and with the rest of my committee,
Dave Higdon, Alex Hanlon, and Nikki Lewis, I got to do research on data
science education in the medical and biomedical sciences.1 The first edition
of the book became a foundation for what data science topics were taught
for the workshop component of the dissertation. The second edition of
Pandas for Everyone incorporates many of the things I’ve learned while
studying education and pedagogy.
1. You can learn more about my dissertation around data science education here:
https://github.com/chendaniely/dissertation

Long story short, befriend a librarian. Their profession revolves around
data.

In 2013, I didn’t even know the term “data science” existed. I was a
master’s of public health (MPH) student in epidemiology at the time and
was already captivated with the statistical methods beyond the t-test,
ANOVA, and linear regression from my psychology and neuroscience
undergraduate background. It was also in the fall of 2013 that I attended my
first Software-Carpentry workshop and that I taught my first recitation
section as a teaching assistant for my MPH program’s Quantitative

https://github.com/chendaniely/dissertation

Methods course (essentially a combination of a first-semester epidemiology
and biostatistics course). I’ve been learning and teaching ever since.

I’ve come a long way since taking my first Introduction to Data Science
course, which was taught by Rachel Schutt, PhD; Kayur Patel, PhD; and
Jared Lander. They opened my eyes to what was possible. Things that were
inconceivable (to me) were actually common practices, and anything I
could think of was possible (although I now know that “possible” doesn’t
mean “performs well”). The technical details of data science—the coding
aspects—were taught by Jared in R. Jared’s friends and colleagues know
how much of an aficionado he is of the R language.

At the time, I had been meaning to learn R, but the Python/R language
war never breached my consciousness. On the one hand, I saw Python as
just a programming language; on the other hand, I had no idea Python had
an analytics stack (I’ve come a long way since then). When I learned about
the SciPy stack and Pandas, I saw it as a bridge between what I knew how
to do in Python from my undergraduate and high school days and what I
had learned in my epidemiology studies and through my newly acquired
data science knowledge. As I became more proficient in R, I saw the
similarities to Python. I also realized that a lot of the data cleaning tasks
(and programming in general) involve thinking about how to get what you
need—the rest is more or less syntax. It’s important to try to imagine what
the steps are and not get bogged down by the programming details. I’ve
always been comfortable bouncing around the languages and never gave
too much thought to which language was “better.” Having said that, this
book is geared toward a newcomer to the Python data analytics world.

This book encapsulates all the people I’ve met, events I’ve attended, and
skills I’ve learned over the past few years. One of the more important
things I’ve learned (outside of knowing what things are called so Google
can take me to the relevant StackOverflow page) is that reading the
documentation is essential. As someone who has worked on collaborative
lessons and written Python and R libraries, I can assure you that a lot of
time and effort go into writing documentation. That’s why I constantly refer
to the relevant documentation page throughout this book. Some functions
have so many parameters used for varying use cases that it’s impractical to
go through each of them. If that were the focus of this book, it might as
well be titled Loading Data Into Python. But, as you practice working with
data and become more comfortable with the various data structures, you’ll

eventually be able to make educated guesses about what the output of
something will be, even though you’ve never written that particular line of
code before. I hope this book gives you a solid foundation to explore on
your own and be a self-guided learner.

I met a lot of people and learned a lot from them during the time I was
putting this book together. A lot of the things I learned dealt with best
practices, writing vectorized statements instead of loops, formally testing
code, organizing project folder structures, and so on. I also learned lot
about teaching from actually teaching. Teaching really is the best way to
learn material. Many of the things I’ve learned in the past few years have
come to me when I was trying to figure them out to teach others. Once you
have a basic foundation of knowledge, learning the next bit of information
is relatively easy. Repeat the process enough times, and you’ll be surprised
how much you actually know. That includes knowing the terms to use for
Google and interpreting the StackOverflow answers. The very best of us all
search for our questions. Whether this is your first language or your fourth,
I hope this book gives you a solid foundation to build upon and learn as
well as a bridge to other analytics languages.

Breakdown of the Book
This book is organized into multiple parts plus a set of appendices.

Part I
Part I aims to be an introduction to Pandas using a realistic data set.

Chapter 1: Starts by using Pandas to load a data set and begin looking
at various rows and columns of the data. Here you will get a general
sense of the syntax of Python and Pandas. The chapter ends with a
series of motivating examples that illustrate what Pandas can do.
Chapter 2: Dives deeper into what the Pandas 'DataFrame' and
'Series' objects are. This chapter also covers boolean subsetting,
dropping values, and different ways to import and export data.
Chapter 3: Covers plotting methods using 'matplotlib',
'seaborn', and 'pandas' to create plots for exploratory data

analysis.
Chapter 4: Discusses Hadley Wickham’s “Tidy Data” paper, which
deals with reshaping and cleaning common data problems.
Chapter 5: Focuses on applying functions over data, an important skill
that encompasses many programming topics. Understanding how
'.apply()' works will pave the way for more parallel and
distributed coding when your data manipulations need to scale.

Part II
Part II focuses on what happens after you load data and need to further
process your data.

Chapter 6: Focuses on combining data sets, either by concatenating
them together or by merging disparate data.
Chapter 7: Normalizes data for more robust data storage.
Chapter 8: Describes '.groupby()' operations (i.e., split-apply-
combine). These powerful concepts, like '.apply()', are often
needed to scale data. They are also great ways to efficiently aggregate,
transform, or filter your data.

Part III
Part III covers the types of data stored in columns.

Chapter 9: Covers what happens when there is missing data, how data
are created to fill in missing data, and how to work with missing data,
especially what happens when certain calculations are performed on
them.
Chapter 10: Deals with data types and how to convert from different
types within 'DataFrame' columns.
Chapter 11: Introduces string manipulation, which is frequently needed
as part of the data cleaning task because data are often encoded as text.
Chapter 12: Explores Pandas’s powerful date and time capabilities.

Part IV
With the data all cleaned and ready, the next step is to fit some models.
Models can be used for exploratory purposes, not just for prediction,
clustering, and inference. The goal of Part IV is not to teach statistics (there
are plenty of books in that realm), but rather to show you how these models
are fit and how they interface with Pandas. Part IV can be used as a bridge
to fitting models in other languages.

Chapter 13: Linear models are the simpler models to fit. This chapter
covers fitting these models using the 'statsmodels' and
'sklean' libraries.
Chapter 14: Generalized linear models, as the name suggests, are linear
models specified in a more general sense. They allow us to fit models
with different response variables, such as binary data or count data.
Chapter 15: Covers survival models, which is what you use when you
have data censoring.
Chapter 16: Since we have a core set of models that we can fit, the next
step is to perform some model diagnostics to compare multiple models
and pick the “best” one.
Chapter 17: Regularization is a technique used when the models we are
fitting are too complex or overfit our data.
Chapter 18: Clustering is a technique we use when we don’t know the
actual answer within our data, but we need a method to cluster or
group “similar” data points together.

Part V
The book concludes with a few points about the larger Python ecosystem,
and additional references.

Chapter 19: Quickly summarizes the computation stack in Python, and
starts down the path to code performance and scaling.
Chapter 20: Provides some links and references on learning beyond the
book.

Appendices
The appendices can be thought as a primer to Python programming. While
they are not a complete introduction to Python, the various appendixes do
supplement some of the topics throughout the book.

Appendix A: Provides concept maps for the introductory chapters to
help breakdown and relate concepts to one another.
Appendixes B–J: These appendices cover all the tasks related to
running Python code—from installing Python, to using the command
line to execute your scripts, and to organizing your code. They also
cover creating Python environments and installing libraries.
Appendixes K–Y: These appendices cover general programming
concepts that are relevant to Python and Pandas. They are
supplemental references to the main part of the book.
Appendix Z: Replicates some of the modeling code in R as a reference
to compare similar results.

How to Read This Book
Whether you are a newcomer to Python or a fluent Python programmer, this
book is meant to be read from the beginning. Educators, or people who plan
to use the book for teaching, may also find the order of the chapters to be
suitable for a workshop or class.

Newcomers
Absolute newcomers are encouraged to first look through Appendix A -
Appendix J as they explain how to install Python and get it working. After
taking these steps, readers will be ready to jump into the main body of the
book. The earlier chapters make references to the relevant appendixes as
needed. The concept maps and learning objectives found at the beginning of
the earlier chapters help organize and prepare the reader for what will be
covered in the chapter, as well as point to the relevant appendixes to be read
before continuing.

Fluent Python Programmers
Fluent Python programmers may find the first two chapters to be sufficient
to get started and grasp the syntax of Pandas; they can then use the rest of
the book as a reference. The objectives at the beginning of the earlier
chapters point out which topics are covered in the chapter. The chapter on
“tidy data” in Part I, and the chapters in Part III, will be particularly helpful
in data manipulation.

Instructors
Instructors who want to use the book as a teaching reference may teach
each chapter in the order presented. It should take approximately 45
minutes to 1 hour to teach each chapter. I have sought to structure the book
so that chapters do not reference future chapters, so as to minimize the
cognitive overload for students—but feel free to shuffle the chapters as
needed.

The concept maps in Appendix A and the learning objectives provided
in the earlier chapters should help contextualize how concepts are related to
one another.

Setup
Everyone will have a different setup, so the best way to get the most
updated set of instructions on setting up an environment to code through the
book would be on the accompanying GitHub repository:

Click here to view code image

https://github.com/chendaniely/pandas_for_every
one

Otherwise, see Appendix B for information on how to install Python on
your computer.

Get the Data

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/pref04_images.xhtml#xxxipro01

The easiest way to get all the data to code along the book is to download the
ZIP file of the book’s repository here:

Click here to view code image

https://github.com/chendaniely/pandas_for_every
one

The book’s repository will have the latest instructors on how to
download the book’s data, and more detailed instructors for how to get the
book can be found in Appendix B.3.

Setup Python
Appendix G and Appendix H cover environments and installing packages,
respectively. There you will find the URLs and commands on how to setup
Python to code along the book. Again, the book’s repository will always
contain the latest set of instructions.

Feedback, Please!
Thank you for taking the time to go through this book. If you find any
problems, issues, or mistakes within the book, please send me feedback!
GitHub issues may be the best place to provide this information, but you
can also email me at chendaniely@gmail.com. Just be sure to use the
PFE or P4E tag in the beginning of the subject line so I can make sure your
emails do not get flooded by various listserv emails. If there are topics that
you feel should be covered in the book, please let me know. I will try my
best to put up a notebook in the GitHub repository and to get it incorporated
in a later printing or edition of the book.

Words of encouragement are appreciated.

Register your copy of Pandas for Everyone, Second Edition, on
the InformIT site for convenient access to updates and/or
corrections as they become available. To start the registration
process, go to informit.com/register and log in or create an

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/pref04_images.xhtml#xxxipro02
mailto:chendaniely@gmail.com
http://informit.com/register

account. Enter the product ISBN (9780137891153) and click
Submit. Look on the Registered Products tab for an Access
Bonus Content link next to this product, and follow that link to
access any available bonus materials. If you would like to be
notified of exclusive offers on new editions and updates, please
check the box to receive email from us.

Acknowledgments

So many people have made this book happen, in addition to the folks from
the first edition (see additional acknowledgments below).

The people who helped with the book logistics: Mary Roth and Debra
Williams Cauley with the book production, Cody Huddleston and Gloria W
with copy editing.

My PhD committee: Anne Brown, Dave Higdoen, Alex Hanlon, and
Nikki Lewis, for getting me to think about teaching and pedagogy over the
years and improving the book to make it better suited for teaching and
learning.

All my students who gave me an opportunity to teach you and hone how
to present materials.

Everyone who has sent me corrections over the years. In particular, Sam
Johnson, who gave me a cover-to-cover set of improvements.

The creators, maintainers, and contributors to the Quarto scientific and
technical publishing system for creating a tool to make the book much
more maintainable.2

2. Quarto: https://quarto.org/docs/books

Finally, my friends and family who have helped me get through graduate
school and provided feedback during the book writing.

Acknowledgments from the First Edition
Introduction to Data Science: The three people who paved the way for
this book were my instructors in the “Introduction to Data Science” course
at Columbia—Rachel Schutt, Kayur Patel, and Jared Lander. Without them,
I wouldn’t even know what the term “data science” means. I learned so

https://quarto.org/docs/books

much about the field through their lectures and labs; everything I know and
do today can be traced back to this class. The instructors were only part of
the learning process. The people in my study group, where we fumbled
through our homework assignments and applied our skills to the final
project of summarizing scientific articles, made learning the material and
passing the class possible. They were Niels Bantilan, Thomas Vo, Vivian
Peng, and Sabrina Cheng (depicted in the figure here). Perhaps
unsurprisingly, they also got me through my master’s program (more on
that later).

One of the midnight doodles by Vivian Peng for our project group. We
have Niels, our project leader, at the top; Thomas, me, and Sabrina in
the middle row; and Vivian at the bottom.

Software-Carpentry: As part of the “Introduction to Data Science” course,
I attended a Software-Carpentry workshop, where I was first introduced to
Pandas. My first instructors were Justin Ely and David Warde-Farley. Since
then I’ve been involved in the community, thanks to Greg Wilson, and still
remember the first class I helped teach, led by Aron Ahmadia and Randal S.

Olson. The many workshops that I’ve taught since then, and the fellow
instructors whom I’ve met, gave me the opportunity to master the
knowledge and skills I know and practice today, and to disseminate them to
new learners, which has cumulated into this book.

Software-Carpentry also introduced me to the NumFOCUS, PyData, and
the Scientific Python communities, where all my (Python) heroes can be
found. There are too many to list here. My connection to the R world is all
thanks to Jared Lander.
Columbia University Mailman School of Public Health: My
undergraduate study group evolved into a set of lifelong friends during my
master’s program. The members of this group got me through the first
semester of the program in which epidemiology and biostatistics were first
taught. The knowledge I learned in this program later transferred into my
knowledge of machine learning. Thanks go to Karen Lin, Sally Cheung,
Grace Lee, Wai Yee (Krystal) Khine, Ashley Harper, and Jacquie Cheung.
A second set of thanks to go to my old study group alumni: Niels Bantilan,
Thomas Vo, and Sabrina Cheng.

To my instructors, Katherine Keyes and Martina Pavlicova, thanks for
being exemplary teachers in epidemiology, and biostatistics, respectively.
Thanks also to Dana March Palmer, for whom I was a TA and who gave me
my first teaching experience. Mark Orr served as my thesis advisor while I
was at Mailman. The department of epidemiology had a subset of faculty
who did computational and simulation modeling, under the leadership of
Sandro Galea, the department chair at the time. After graduation, I got my
first job as a data analyst with Jacqueline Merrill at the Columbia
University School of Nursing.

Getting to Mailman was a life-altering event. I never would have
considered entering an MPH program if it weren’t for Ting Ting Guo. As
an advisor, Charlotte Glasser was a tremendous help to me in planning out
my frequent undergraduate major changes and postgraduate plans.
Virginia Tech: The people with whom I work at the Social and Decision
Analytics Laboratory (SDAL) have made Virginia Tech one of the most
enjoyable places where I’ve worked. A second thanks to Mark Orr, who got
me here. The administrators of the lab, Kim Lyman and Lori Conerly, make
our daily lives that much easier. Sallie Keller and Stephanie Shipp, the
director and the deputy lab director, respectively, create a collaborative

work environment. The rest of the lab members, past and present (in no
particular order)—David Higdon, Gizem Korkmaz, Vicki Lancaster, Mark
Orr, Bianca Pires, Aaron Schroeder, Ian Crandell, Joshua Goldstein,
Kathryn Ziemer, Emily Molfino, and Ana Aizcorbe—also work hard at
making my graduate experience fun. It’s also been a pleasure to train and
work with the summer undergraduate and graduate students in the lab
through the Data Science for the Public Good program. I’ve learned a lot
about teaching and implementing good programming practices. Finally,
Brian Goode adds to my experience progressing though the program by
always being available to talk about various topics.

The people down in Blacksburg, Virginia, where most of the book was
written, have kept me grounded during my coursework. My PhD cohort—
Alex Song Qi, Amogh Jalihal, Brittany Boribong, Bronson Weston, Jeff
Law, and Long Tian—have always found time for me, and for one another,
and offered opportunities to disconnect from the PhD grind. I appreciate
their willingness to work to maintain our connections, despite being in an
interdisciplinary program where we don’t share many classes together, let
alone labs.

Brian Lewis and Caitlin Rivers helped me initially get settled in
Blacksburg and gave me a physical space to work in the Network
Dynamics and Simulation Science Laboratory. Here, I met Gloria Kang,
Pyrros (Alex) Telionis, and James Schlitt, who have given me creative and
emotional outlets the past few years. NDSSL has also provided and/or been
involved with putting together some of the data sets used in the book.

Last but not least, Dennie Munson, my program liaison, can never be
thanked enough for putting up with all my shenanigans.
Book Publication Process: Debra Williams Cauley, thank you so much for
giving me this opportunity to contribute to the Python and data science
community. I’ve grown tremendously as an educator during this process,
and this adventure has opened more doors for me than the number of times
I’ve missed deadlines. A second thanks to Jared Lander for recommending
me and putting me up for the task.

Even more thanks go to Gloria Kang, Jacquie Cheung, and Jared Lander
for their feedback during the writing process. I also want to thank Chris
Zahn for all the work in reviewing the book from cover to cover, and Kaz
Sakamoto and Madison Arnsbarger for providing feedback and reviews.

Through their many conversations with me, M Pacer, Sebastian Raschka,
Andreas Müller, and Tom Augspurger helped me make sure I covered my
bases, and did things “properly.”

Thanks to all the people involved in the post-manuscript process: Julie
Nahil (production editor), Jill Hobbs (copy editor), Rachel Paul (project
manager and proofreader), Jack Lewis (indexer), and SPi Global
(compositor). Y’all have been a pleasure to work with. More importantly,
you polished my writing when it needed a little help and made sure the
book was formatted consistently.
Family: My immediate and extended family have always been close. It is
always a pleasure when we are together for holidays or random cookouts.
It’s always surprising how the majority of the 50-plus of us manage to
regularly get together throughout the year. I am extremely lucky to have the
love and support from this wonderful group of people.

To my younger siblings, Eric and Julia: It’s hard being an older sibling!
The two of you have always pushed me to be a better person and role
model, and you bring humor, joy, and youth into my life.

A second thanks to my sister for providing the drawings in the preface
and the appendix.

Last but not least, thank you, Mom and Dad, for all your support over
the years. I’ve had a few last-minute career changes, and you have always
been there to support my decisions, financially, emotionally, and physically
—including helping me relocate between cities. Thanks to the two of you,
I’ve always been able to pursue my ambitions while knowing full well I can
count on your help along the way. This book is dedicated to you.

About the Author

Daniel Y. Chen, PhD, MPH, completed his PhD at Virginia Tech in
Genetics, Bioinformatics, and Computational Biology (GBCB). His
dissertation was on data science education in the medical and biomedical
sciences. He completed a Master’s of Public Health in Epidemiology at
Columbia University Mailman School of Public Health, where he studied
how attitudes toward behaviors diffuse and spread in social networks. In a
past life, he studied psychology and neuroscience at the Macaulay Honors
College at CUNY Hunter College and worked in a bench laboratory doing
microscopy work looking at proteins in the brain associated with learning
and memory.

Daniel currently works as a Postdoctoral Research and Teaching Fellow
at the University of British Columbia and as a Data Science Educator at
Posit, PBC (formerly, RStudio, PBC). He has been involved with The
Carpentries as an instructor, instructor trainer, and community maintainer
lead.

Changes in the Second Edition

The second edition mainly updates all the code and libraries to the latest
versions at the time of writing. Most of the code form the first edition was
unaffected. Bits of the plotting code and machine learning data modeling
code ended up changing over the years and were updated.

From a pedagogical perspective, the main Pandas chapters have also
been updated with proper learning objectives, and the introductory chapters
have accompanying concept maps to help educators plan a learning path,
and for learners to visualize how concepts are related to one another. These
were all topics I’ve learned about while doing my dissertation, and I hope
they become useful for learners and educators. The book also includes
access to online bonus chapters on geopandas, Dask, and creating
interactive graphics with Altair.

I’ve also rearranged the chapters in the second edition based on my
experiences when I teach workshops. Part I of the book contains the most
important bits of information that I aim to cover in my workshops. The rest
of the book can be thought of as data processing details after the more
fundamental topics are covered. The chapters that have big changes from
the first edition have a section in the chapter’s introduction on the details of
what has changed.

Many of the libraries and tools mentioned in the conclusion chapters of
the book will also have freely available chapters to accompany this book to
help you extend your learning.

Part I

Introduction

Chapter 1 Pandas DataFrame Basics

Chapter 2 Pandas Data Structures Basics

Chapter 3 Plotting Basics

Chapter 4 Tidy Data

Chapter 5 Apply Functions

This book begins with an introduction to the Pandas Python library for data
analytics. It first covers the very basics of using the pandas library,
loading your first data set and doing basic filtering and subsetting
commands with your data (Chapter 1). It then goes into more detail about
the DataFrame and Series objects, where we cover more of the
attributes and methods these objects can do, including how to save data sets
for storage (Chapter 2). It then pivots into data visualization with
matplotlib and seaborn plotting libraries as well as the built-in
pandas plotting methods (Chapter 3). Next, this part covers one of the
fundamental concepts in data literacy, tidy data principles. Where it
discusses what a “clean” and “tidy” data set looks like so you can process
data with a goal and target in mind (Chapter 4). Finally, this part covers
writing functions and applying them to your data, and lays down the
foundation for any custom data processing steps in the future (Chapter 5).
Think of this part of the book as the core data literacy knowledge on how to
work and think about your data. It also aims to teach you the relevant bits of
the Python programming language by using the Pandas library as the
motivational use case.

1

Pandas DataFrame Basics

1.1 Introduction
Pandas is an open-source Python library for data analysis. It gives Python
the ability to work with spreadsheet-like data for fast data loading,
manipulating, aligning, merging, etc. To give Python these enhanced
features, Pandas introduces two new data types to Python: Series and
DataFrame. The DataFrame will represent your entire spreadsheet or
rectangular data, whereas the Series is a single column of the DataFrame.
A Pandas DataFrame can also be thought of as a dictionary or collection
of Series.

Why should you use a programming language like Python and a tool like
Pandas to work with data? It boils down to automation and reproducibility.
If there is a particular set of analyses that needs to be performed on multiple
data sets, a programming language can automate the analysis on the data
sets. Although many spreadsheet programs have their own macro
programming languages, many users do not use them. Furthermore, not all
spreadsheet programs are available on all operating systems. Performing
data tasks using a programming language forces the user to have a running
record of all steps performed on the data. I, like many people, have
accidentally hit a key while viewing data in a spreadsheet program, only to
find out that my results do not make any sense anymore due to bad data.
This is not to say spreadsheet programs are bad or do not have their place in
the data workflow. They do, but there are better and more reliable tools out
there. These better tools can work in tandem with spreadsheet programs
while providing more reliable data manipulation, and introduce the
possibility of incorporating data from other data sets and databases.

Learning Objectives

The concept map for this chapter can be found in Figure A.1.

Use Pandas functions to load a simple delimited data file
Calculate how many rows and columns were loaded
Identify the type of data that were loaded
Name differences between functions, methods, and attributes
Use methods and attributes to subset rows and columns
Calculate basic grouped and aggregated statistics from data
Use methods and attributes to create a simple figure from data

1.2 Load Your First Data Set
When given a data set, we first load it and begin looking at its structure and
contents. The simplest way of looking at a data set is to look at and subset
specific rows and columns. We can see what type of information is stored in
each column, and can start looking for patterns by aggregating descriptive
statistics.

Since Pandas is not part of the Python standard library, we have to first
tell Python to load (i.e., import) the library. If you have not installed data
and packages needed to go through the book please see Appendix B.

import pandas

With the library loaded we can use the read_csv() function to load a
CSV data file. In order to access the read_csv() function from pandas,
we use something called “dot notation.” More on dot notations can be
found in Appendix L, Appendix P, and Appendix E. We write
pandas.read_csv() to say: within the pandas library we just loaded,
look inside for the read_csv() function.

About the Gapminder Data Set
The Gapminder data set originally comes from
https://www.gapminder.org/. This particular version of the
book is using Gapminder data prepared by Jennifer Bryan from the
University of British Columbia (now at Posit, PBC, formerly RStudio,

https://www.gapminder.org/

PBC). The repository can be found at
https://github.com/jennybc/gapminder/.

Click here to view code image

by default read_csv() will read a comma
separated file,
our gapminder data set is separated by a tab
we can use the sep parameter and indicate a
tab with \t
df = pandas.read_csv('./data/gapminder.tsv',
sep='\t')
print out the data
print(df)

 country continent year lifeExp
pop gdpPercap
0 Afghanistan Asia 1952 28.801
8425333 779.445314
1 Afghanistan Asia 1957 30.332
9240934 820.853030
2 Afghanistan Asia 1962 31.997
10267083 853.100710
3 Afghanistan Asia 1967 34.020
11537966 836.197138
4 Afghanistan Asia 1972 36.088
13079460 739.981106
...
... ...
1699 Zimbabwe Africa 1987 62.351
9216418 706.157306
1700 Zimbabwe Africa 1992 60.377
10704340 693.420786

https://github.com/jennybc/gapminder/
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0004-01

1701 Zimbabwe Africa 1997 46.809
11404948 792.449960
1702 Zimbabwe Africa 2002 39.989
11926563 672.038623
1703 Zimbabwe Africa 2007 43.487
12311143 469.709298

[1704 rows x 6 columns]

Since we will be using Pandas functions many times throughout the
book as well as in your own programming. It is common to give pandas
the alias pd. The above code will be the same as below:

Click here to view code image

import pandas as pd
df = pd.read_csv('./data/gapminder.tsv',
sep='\t')

We can check to see if we are working with a Pandas Dataframe by
using the built-in type() function (i.e., it comes directly from Python, not
a separate library such as Pandas).

Click here to view code image

print(type(df))

<class 'pandas.core.frame.DataFrame'>

The type() function is handy when you begin working with many
different types of Python objects and need to know what object you are
currently working on.

The data set we loaded is currently saved as a Pandas DataFrame
object (pandas.core.frame.DataFrame) and is relatively small.
Every DataFrame object has a .shape attribute that will give us the
number of rows and columns of the DataFrame.

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0005-01
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0005-02

Click here to view code image

get the number of rows and columns
print(df.shape)

(1704, 6)

The shape attribute returns a tuple (Appendix G) where the first value is
the number of rows and the second value is the number of columns.

From the results above, we see our gapminder data set has 1704 rows
and 6 columns.

Since .shape is an attribute of the DataFrame object, and not a
function or method of the DataFrame object, it does not have round
parentheses after the period (i.e., it’s written as df.shape and not
df.shape()). If you made the mistake of putting parentheses after the
.shape attribute, it would return an error.

Click here to view code image

shape is an attribute, not a method
this will cause an error
print(df.shape())

TypeError: 'tuple' object is not callable

Typically, when first looking at a data set, we want to know how many
rows and columns there are (we just did that). To get a gist of what
information the data set contains, we look at the column names. The
column names, like .shape, are given using the .column attribute of the
DataFrame object.

Click here to view code image

get column names
print(df.columns)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0005-03
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0005-04
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0005-05

Index(['country', 'continent', 'year', 'lifeExp',
'pop',
 'gdpPercap'],
 dtype='object')

Question
What is the type of the column names?

The Pandas DataFrame object is similar to other languages that have
DataFrame-like objects (e.g., Julia and R). Each column (i.e., Series) has
to be the same type, whereas each row can contain mixed types. In our
current example, we can expect the country column to be all strings, and
the year to be integers. However, it’s best to make sure that is the case by
using the .dtypes attribute or the .info() method. Table 1.1 shows
what the type in Pandas is relative to native Python.

Click here to view code image

get the dtype of each column
print(df.dtypes)

country object
continent object
year int64
lifeExp float64
pop int64
gdpPercap float64
dtype: object

Click here to view code image

get more information about our data
print(df.info())

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0006-01
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0006-02

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1704 entries, 0 to 1703
Data columns (total 6 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 country 1704 non-null object
 1 continent 1704 non-null object
 2 year 1704 non-null int64
 3 lifeExp 1704 non-null float64
 4 pop 1704 non-null int64
 5 gdpPercap 1704 non-null float64
dtypes: float64(2), int64(2), object(2)
memory usage: 80.0+ KB
None

1.3 Look at Columns, Rows, and Cells
Now that we’re able to load up a simple data file, we want to be able to
inspect its contents. We could print() out the contents of the
DataFrame, but with today’s data, there are too many cells to make sense
of all the printed information. Instead, the best way to look at our data is to
inspect it by looking at various subsets of the data. We can use the
.head() method of a DataFrame to look at the first 5 rows of our data.

Table 1.1 Table of Pandas dtypes and Python Types

Pand
as

Pyth
on Description

object strin
g

most common data type

int64 int whole numbers

float6
4

float numbers with decimals

Pand
as

Pyth
on Description

dateti
me64

datet
ime

datetime is found in the Python standard library (i.e., it is not
loaded by default and needs to be imported)

Click here to view code image

show the first 5 observations
print(df.head())

 country continent year lifeExp pop
gdpPercap
0 Afghanistan Asia 1952 28.801 8425333
779.445314
1 Afghanistan Asia 1957 30.332 9240934
820.853030
2 Afghanistan Asia 1962 31.997 10267083
853.100710
3 Afghanistan Asia 1967 34.020 11537966
836.197138
4 Afghanistan Asia 1972 36.088 13079460
739.981106

This is useful to see if our data loaded properly, and to get a better sense
of the columns and contents. However, there are going to be times when we
only want particular rows, columns, or values from our data.

Before continuing, make sure you are familiar with Python containers
(Appendix F, Appendix H).

1.3.1 Select and Subset Columns by Name
If we want only a specific column from our data, we can access the data
using square brackets, [].

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0007-01

Click here to view code image

just get the country column and save it to its
own variable
country_df = df['country']

Click here to view code image

show the first 5 observations
print(country_df.head())

0 Afghanistan
1 Afghanistan
2 Afghanistan
3 Afghanistan
4 Afghanistan
Name: country, dtype: object

Click here to view code image

show the last 5 observations
print(country_df.tail())

1699 Zimbabwe
1700 Zimbabwe
1701 Zimbabwe
1702 Zimbabwe
1703 Zimbabwe
Name: country, dtype: object

In order to specify multiple columns by the column name, we need to
pass in a Python list between the square brackets. This may look a bit
strange since there will be 2 sets of square brackets, [[]].

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0007-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0007-03
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0007-04

The outer set of square brackets tells us that we are subsetting our
DataFrame by columns. The inner set of square brackets tells us the list
of columns we want to use. That is, Python also uses square brackets, [],
to “list” multiple things as a single object.

Click here to view code image

Looking at country, continent, and year
subset = df[['country', 'continent', 'year']]

Click here to view code image

print(subset)

 country continent year
0 Afghanistan Asia 1952
1 Afghanistan Asia 1957
2 Afghanistan Asia 1962
3 Afghanistan Asia 1967
4 Afghanistan Asia 1972
...
1699 Zimbabwe Africa 1987
1700 Zimbabwe Africa 1992
1701 Zimbabwe Africa 1997
1702 Zimbabwe Africa 2002
1703 Zimbabwe Africa 2007

[1704 rows x 3 columns]

Using the square bracket notation, [], you cannot pass an index
position to subset a DataFrame based on the position of the columns. If
you want to do this, look down for the .iloc[] notation.

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0008-01
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0008-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0008-03

subset the first column based on its position.
df[0]

KeyError: 0

1.3.1.1 Single Value Returns DataFrame or Series

When we first selected a single column we were given a Series object
back.

Click here to view code image

country_df = df['country']
print(type(country_df))

<class 'pandas.core.series.Series'>

We can also tell it’s a Series because it prints out slightly differently
from the DataFrame.

Click here to view code image

print(country_df)

0 Afghanistan
1 Afghanistan
2 Afghanistan
3 Afghanistan
4 Afghanistan
 ...
1699 Zimbabwe
1700 Zimbabwe
1701 Zimbabwe
1702 Zimbabwe

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0008-04
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0009-02

1703 Zimbabwe
Name: country, Length: 1704, dtype: object

Compare those results to passing in a single element list (note the double
square bracket, [[]]):

Click here to view code image

country_df_list = df[['country']] # note the
double square bracket
print(type(country_df_list))

<class 'pandas.core.frame.DataFrame'>

If we use a list to subset, we will always get a DataFrame object back.

Click here to view code image

print(country_df_list)

 country
0 Afghanistan
1 Afghanistan
2 Afghanistan
3 Afghanistan
4 Afghanistan
... ...
1699 Zimbabwe
1700 Zimbabwe
1701 Zimbabwe
1702 Zimbabwe
1703 Zimbabwe

[1704 rows x 1 columns]

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0009-03
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0009-04

Depending on what you need, sometimes you only need a single
Series (sometimes called a vector), other times for consistency, you will
want a DataFrame object.

1.3.1.2 Using Dot Notation to Pull a Column of Values

When all you need is a single column (i.e., Series or vector) of values
and typing df['column'] will be very tedious. There is a shorthand
notation where you can pull the column vector by treating it as a
DataFrame attribute.

For example, below are two ways of returning the same single column
Series.

Click here to view code image

using square bracket notation
print(df['country'])

0 Afghanistan
1 Afghanistan
2 Afghanistan
3 Afghanistan
4 Afghanistan
 ...
1699 Zimbabwe
1700 Zimbabwe
1701 Zimbabwe
1702 Zimbabwe
1703 Zimbabwe
Name: country, Length: 1704, dtype: object

using dot notation
print(df.country)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0010-01

0 Afghanistan
1 Afghanistan
2 Afghanistan
3 Afghanistan
4 Afghanistan
 ...
1699 Zimbabwe
1700 Zimbabwe
1701 Zimbabwe
1702 Zimbabwe
1703 Zimbabwe
Name: country, Length: 1704, dtype: object

There are subtle differences if you want to do other operations (e.g.,
deleting a column), but for now, you can treat those 2 ways of getting a
single column of values as the same. You do have to be mindful of what
your columns are named if you want to use the dot notation. That is, if there
is a column named shape, the df.shape will return the number of rows
and columns from the .shape attribute, not the intended shape column.
Also, if your column name has spaces or special characters, you will not be
able to use the dot notation to select that column of values, and will have to
use the square bracket notation.

1.3.2 Subset Rows
Rows can be subset in multiple ways, by row name or row index. Table 1.2
gives a quick overview of the various methods.

Table 1.2 Different Methods of Indexing Rows (and/or Columns)a

Subset attribute Description

.loc[] Subset based on index label (row
name)

Subset attribute Description

.iloc[] Subset based on row index (row
number)

.ix[] (no longer works in Pandas
v0.20)

Subset based on index label or row
index

a Subsetting data with .ix[] is no longer supported in Pandas. The reason why .ix[] was
removed is because it would first match on the index label, and if the value was not found, it would
match on the index position. This dual subsetting behavior was not explicit and could be problematic
since you did not always know how it was subsetting your rows.

1.3.2.1 Subset Rows by index Label - .loc[]

If we take a look at our gapminder data:

Click here to view code image

print(df)

 country continent year lifeExp
pop gdpPercap
0 Afghanistan Asia 1952 28.801
8425333 779.445314
1 Afghanistan Asia 1957 30.332
9240934 820.853030
2 Afghanistan Asia 1962 31.997
10267083 853.100710
3 Afghanistan Asia 1967 34.020
11537966 836.197138
4 Afghanistan Asia 1972 36.088
13079460 739.981106
...
... ...
1699 Zimbabwe Africa 1987 62.351
9216418 706.157306

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0011-01

1700 Zimbabwe Africa 1992 60.377
10704340 693.420786
1701 Zimbabwe Africa 1997 46.809
11404948 792.449960
1702 Zimbabwe Africa 2002 39.989
11926563 672.038623
1703 Zimbabwe Africa 2007 43.487
12311143 469.709298

[1704 rows x 6 columns]

We can see on the left side of the printed DataFrame, what appear to
be row numbers. This column-less row of values is the “index” label of the
DataFrame. Think of it like column names, but, for rows. By default,
Pandas will fill in the index labels with the row numbers (note that it starts
counting from 0). A common example where the row index labels are not
the row number is when we work with time series data. In that case, the
index label will be a timestamp, but for now, we will keep the default row
number values.

We can use the .loc[] accessor attribute on the DataFrame to subset
rows based on the index label.

Click here to view code image

get the first row
python counts from 0
print(df.loc[0])

country Afghanistan
continent Asia
year 1952
lifeExp 28.801
pop 8425333

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0011-02

gdpPercap 779.445314
Name: 0, dtype: object

Click here to view code image

get the 100th row
python counts from 0
print(df.loc[99])

country Bangladesh
continent Asia
year 1967
lifeExp 43.453
pop 62821884
gdpPercap 721.186086
Name: 99, dtype: object

get the last row
this will cause an error
print(df.loc[-1])

KeyError: -1

Note that passing -1 as the .loc[] will cause an error because it is
actually looking for the row index label (i.e., row number) -1, which does
not exist in our example DataFrame. Instead, we can use a bit of Python
to calculate the total number of rows, and then pass that value into
.loc[].

Click here to view code image

get the last row (correctly)

use the first value given from shape to get

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0012-01
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0012-02

the number of rows
number_of_rows = df.shape[0]

subtract 1 from the value since we want the
last index value
last_row_index = number_of_rows - 1

finally do the subset using the index of the
last row
print(df.loc[last_row_index])

country Zimbabwe
continent Africa
year 2007
lifeExp 43.487
pop 12311143
gdpPercap 469.709298
Name: 1703, dtype: object

Or use the .tail() method to return the last n=1 row, instead of the
default 5.

Click here to view code image

there are many ways of doing what you want
print(df.tail(n=1))

 country continent year lifeExp pop
gdpPercap
1703 Zimbabwe Africa 2007 43.487 12311143
469.709298

Notice that using .tail() and .loc[] printed out the results
differently. Let’s look at what type is returned when we use these methods.

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0013-01

Click here to view code image

get the last row of data in different ways
subset_loc = df.loc[0]
subset_head = df.head(n=1)

type using loc of 1 row
print(type(subset_loc))

<class 'pandas.core.series.Series'>

type of using head of 1 row
print(type(subset_head))

<class 'pandas.core.frame.DataFrame'>

At the beginning of this chapter, we mentioned that Pandas introduces
two new data types into Python: Series and DataFrame. Depending on
which method we use and how many rows we return, Pandas will return a
different object. The way an object gets printed to the screen can be an
indicator of the type, but it’s always best to use the type() function to be
sure. We go into more detail about these objects in Chapter 2.

1.3.2.2 Subsetting Multiple Rows

As with columns, we can filter multiple rows.

Click here to view code image

print(df.loc[[0, 99, 999]])

 country continent year lifeExp
pop gdpPercap
0 Afghanistan Asia 1952 28.801
8425333 779.445314

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0013-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0013-03

99 Bangladesh Asia 1967 43.453
62821884 721.186086
999 Mongolia Asia 1967 51.253
1149500 1226.041130

1.3.3 Subset Rows by Row Number: .iloc[]
.iloc[] does the same thing as .loc[], but is used to subset by the row
index number. In our current example, .iloc[] and .locp[] will
behave exactly the same way since the index labels are the row numbers.
However, keep in mind that the index labels do not necessarily have to be
row numbers.

Click here to view code image

get the 2nd row
print(df.iloc[1])

country Afghanistan
continent Asia
year 1957
lifeExp 30.332
pop 9240934
gdpPercap 820.85303
Name: 1, dtype: object

get the 100th row
print(df.iloc[99])

country Bangladesh
continent Asia
year 1967
lifeExp 43.453

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0014-01

pop 62821884
gdpPercap 721.186086
Name: 99, dtype: object

Note that when we subset on 1, we actually get the second row, rather
than the first row. This follows Python’s zero-indexed behavior, meaning
that the first item of a container is index 0 (i.e., 0th item of the container).
More details about this kind of behavior are found in Appendix F,
Appendix I, and Appendix M.

With .iloc[], we can pass in the -1 to get the last row — something
we couldn’t do with .loc[].

Click here to view code image

using -1 to get the last row
print(df.iloc[-1])

country Zimbabwe
continent Africa
year 2007
lifeExp 43.487
pop 12311143
gdpPercap 469.709298
Name: 1703, dtype: object

Just as before, we can pass in a list of integers to get multiple rows.

Click here to view code image

get the first, 100th, and 1000th row
print(df.iloc[[0, 99, 999]])

 country continent year lifeExp
pop gdpPercap
0 Afghanistan Asia 1952 28.801

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0014-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0014-03

8425333 779.445314
99 Bangladesh Asia 1967 43.453
62821884 721.186086
999 Mongolia Asia 1967 51.253
1149500 1226.041130

1.3.4 Mix It Up
We can use .loc[] and .iloc[] to obtain subsets rows, columns, or
both. The general syntax for .loc[] and .iloc[] uses square brackets
with a comma. The part to the left of the comma is the row values to subset;
the part to the right of the comma is the column values to subset. That is,
df.loc[[rows], [columns]] or df.iloc[[rows],
[columns]].

1.3.4.1 Selecting Columns

If we want to use these techniques to just subset columns, we must use
Python’s slicing syntax (Appendix I). We need to do this because if we are
subsetting columns, we are getting all the rows for the specified column.
So, we need a method to capture all the rows.

The Python slicing syntax uses a colon, :. If we have just a colon, it
“slices” (i.e., gets) all the values in that axis. So, if we just want to get the
first column using the .loc[] or .iloc[] syntax, we can write
df.loc[:, [columns]] to subset the column(s).

Click here to view code image

subset columns with loc
note the position of the colon
it is used to select all rows
subset = df.loc[:, ['year', 'pop']]
print(subset)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0015-01

 year pop
0 1952 8425333
1 1957 9240934
2 1962 10267083
3 1967 11537966
4 1972 13079460
...
1699 1987 9216418
1700 1992 10704340
1701 1997 11404948
1702 2002 11926563
1703 2007 12311143

[1704 rows x 2 columns]

subset columns with iloc
iloc will allow us to use integers
-1 will select the last column
subset = df.iloc[:, [2, 4, -1]]
print(subset)

 year pop gdpPercap
0 1952 8425333 779.445314
1 1957 9240934 820.853030
2 1962 10267083 853.100710
3 1967 11537966 836.197138
4 1972 13079460 739.981106
...

1699 1987 9216418 706.157306
1700 1992 10704340 693.420786
1701 1997 11404948 792.449960
1702 2002 11926563 672.038623

1703 2007 12311143 469.709298

[1704 rows x 3 columns]

We will get an error if we don’t specify .loc[] or iloc[] correctly.

Click here to view code image

subset columns with loc
but pass in integer values
this will cause an error
subset = df.loc[:, [2, 4, -1]]
print(subset)

KeyError: "None of [Int64Index([2, 4, -1],
dtype='int64')]
are in the [columns]"

subset columns with iloc
but pass in index names
this will cause an error
subset = df.iloc[:, ['year', 'pop']]
print(subset)

IndexError: .iloc requires numeric indexers, got
['year' 'pop']

1.3.4.2 Subsetting with range()

You can use the built-in range() function to create a range of values in
Python. This way you can specify beginning and end values, and Python
will automatically create a range of values in between. By default, every
value between the beginning and the end (inclusive left, exclusive right; see
Appendix I) will be created, unless you specify a step (Appendix I and

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0016-02

Appendix M). In Python 3, the range() function returns a generator. A
generator is like a single-use list; it disappears after you use it once. This is
mainly to save system resources. See Appendix M for more information
about generators.

We just saw in Section 1.3.4.1 how we can select columns using a list of
integers. Since range() returns a generator, we have to first convert the
generator to a list.

Click here to view code image

create a range of integers from 0 - 4
inclusive
small_range = list(range(5))
print(small_range)

[0, 1, 2, 3, 4]

subset the dataframe with the range
subset = df.iloc[:, small_range]
print(subset)

 country continent year lifeExp
pop
0 Afghanistan Asia 1952 28.801
8425333
1 Afghanistan Asia 1957 30.332
9240934
2 Afghanistan Asia 1962 31.997
10267083
3 Afghanistan Asia 1967 34.020
11537966
4 Afghanistan Asia 1972 36.088
13079460

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0016-03

...

...
1699 Zimbabwe Africa 1987 62.351
9216418
1700 Zimbabwe Africa 1992 60.377
10704340
1701 Zimbabwe Africa 1997 46.809
11404948
1702 Zimbabwe Africa 2002 39.989
11926563
1703 Zimbabwe Africa 2007 43.487
12311143

[1704 rows x 5 columns]

Note that when list(range(5)) is called, five integers are returned:
0 – 4.

Click here to view code image

create a range from 3 - 5 inclusive
small_range = list(range(3, 6))
print(small_range)

[3, 4, 5]

subset = df.iloc[:, small_range]
print(subset)

 lifeExp pop gdpPercap
0 28.801 8425333 779.445314
1 30.332 9240934 820.853030
2 31.997 10267083 853.100710

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0017-02

3 34.020 11537966 836.197138
4 36.088 13079460 739.981106
...
1699 62.351 9216418 706.157306
1700 60.377 10704340 693.420786
1701 46.809 11404948 792.449960
1702 39.989 11926563 672.038623
1703 43.487 12311143 469.709298

[1704 rows x 3 columns]

Question
What happens when you specify a range() that’s beyond the number
of columns you have?

Again, note that the values are specified in a way such that the range is
inclusive on the left, and exclusive on the right.

We can also pass in a 3rd parameter into range, step, that allows us to
change how to increment between the start and stop values (defaults to
step=1).

Click here to view code image

create a range from 0 - 5 inclusive, every
other integer
small_range = list(range(0, 6, 2))
subset = df.iloc[:, small_range]
print(subset)

 country year pop
0 Afghanistan 1952 8425333
1 Afghanistan 1957 9240934

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0018-01

2 Afghanistan 1962 10267083
3 Afghanistan 1967 11537966
4 Afghanistan 1972 13079460
...
1699 Zimbabwe 1987 9216418
1700 Zimbabwe 1992 10704340
1701 Zimbabwe 1997 11404948
1702 Zimbabwe 2002 11926563
1703 Zimbabwe 2007 12311143

[1704 rows x 3 columns]

Converting a generator to a list is a bit awkward; we can use the Python
slicing syntax to fix this.

1.3.4.3 Subsetting with Slicing :

Python’s slicing syntax, :, is similar to the range() function. Instead of a
function that specifies start, stop, and step values delimited by a
comma, we separate the values with the colon, :.

If you understand what was going on with the range() function
earlier, then slicing can be seen as a shorthand for the same thing.

The range() function can be used to create a generator that can also
be converted to a list of values. The colon syntax, :, only has meaning
within the square bracket, [] slicing and subsetting context; it has no
inherent meaning on its own.

Here are the columns of our data set.

Click here to view code image

print(df.columns)

Index(['country', 'continent', 'year', 'lifeExp',
'pop',

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0018-02

 'gdpPercap'],
 dtype='object')

See how range() and : are used to slice our data.

Click here to view code image

small_range = list(range(3))
subset = df.iloc[:, small_range]
print(subset)

 country continent year
0 Afghanistan Asia 1952
1 Afghanistan Asia 1957
2 Afghanistan Asia 1962
3 Afghanistan Asia 1967
4 Afghanistan Asia 1972
...
1699 Zimbabwe Africa 1987
1700 Zimbabwe Africa 1992
1701 Zimbabwe Africa 1997
1702 Zimbabwe Africa 2002
1703 Zimbabwe Africa 2007

[1704 rows x 3 columns]

slice the first 3 columns
subset = df.iloc[:, :3]
print(subset)

 country continent year
0 Afghanistan Asia 1952

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0018-03

1 Afghanistan Asia 1957
2 Afghanistan Asia 1962
3 Afghanistan Asia 1967
4 Afghanistan Asia 1972
...
1699 Zimbabwe Africa 1987
1700 Zimbabwe Africa 1992
1701 Zimbabwe Africa 1997
1702 Zimbabwe Africa 2002
1703 Zimbabwe Africa 2007

[1704 rows x 3 columns]

small_range = list(range(3, 6))
subset = df.iloc[:, small_range]
print(subset)

 lifeExp pop gdpPercap
0 28.801 8425333 779.445314
1 30.332 9240934 820.853030
2 31.997 10267083 853.100710
3 34.020 11537966 836.197138
4 36.088 13079460 739.981106
...
1699 62.351 9216418 706.157306
1700 60.377 10704340 693.420786
1701 46.809 11404948 792.449960
1702 39.989 11926563 672.038623

1703 43.487 12311143 469.709298

[1704 rows x 3 columns]

slice columns 3 to 5 inclusive
subset = df.iloc[:, 3:6]
print(subset)

 lifeExp pop gdpPercap
0 28.801 8425333 779.445314
1 30.332 9240934 820.853030
2 31.997 10267083 853.100710
3 34.020 11537966 836.197138
4 36.088 13079460 739.981106
...
1699 62.351 9216418 706.157306
1700 60.377 10704340 693.420786
1701 46.809 11404948 792.449960
1702 39.989 11926563 672.038623
1703 43.487 12311143 469.709298

[1704 rows x 3 columns]

small_range = list(range(0, 6, 2))
subset = df.iloc[:, small_range]
print(subset)

 country year pop
0 Afghanistan 1952 8425333
1 Afghanistan 1957 9240934
2 Afghanistan 1962 10267083
3 Afghanistan 1967 11537966
4 Afghanistan 1972 13079460
...
1699 Zimbabwe 1987 9216418
1700 Zimbabwe 1992 10704340

1701 Zimbabwe 1997 11404948
1702 Zimbabwe 2002 11926563
1703 Zimbabwe 2007 12311143

[1704 rows x 3 columns]

slice every other columns
subset = df.iloc[:, 0:6:2]
print(subset)

 country year pop
0 Afghanistan 1952 8425333
1 Afghanistan 1957 9240934
2 Afghanistan 1962 10267083
3 Afghanistan 1967 11537966
4 Afghanistan 1972 13079460
...
1699 Zimbabwe 1987 9216418
1700 Zimbabwe 1992 10704340
1701 Zimbabwe 1997 11404948
1702 Zimbabwe 2002 11926563
1703 Zimbabwe 2007 12311143

[1704 rows x 3 columns]

Question
What happens if you use the slicing method with 2 colons, but leave a
value out? For example:

df.iloc[:, 0:6:]
df.iloc[:, 0::2]

df.iloc[:, :6:2]
df.iloc[:, ::2]
df.iloc[:, ::]

1.3.5 Subsetting Rows and Columns
When only using the colon, :, in .loc[] and .iloc[] to the left of the
comma, we select all the rows in our dataframe (i.e., we slice all the values
in the first axis of our DataFrame). However, we can choose to put values
to the left of the comma if we want to select specific rows along with
specific columns.

using loc
print(df.loc[42, 'country'])

Angola

using iloc
print(df.iloc[42, 0])

Angola

Just make sure you don’t confuse the differences between .loc[] and
.iloc[].

will cause an error
print(df.loc[42, 0])

KeyError: 0

1.3.5.1 Subsetting Multiple Rows and Columns

We can combine the row and column subsetting syntax with the multiple-
row and multiple-column subsetting syntax to get various slices of our data.

Click here to view code image

get the 1st, 100th, and 1000th rows
from the 1st, 4th, and 6th column
note the columns we are hoping to get are:
country, lifeExp, and gdpPercap
print(df.iloc[[0, 99, 999], [0, 3, 5]])

 country lifeExp gdpPercap
0 Afghanistan 28.801 779.445314
99 Bangladesh 43.453 721.186086
999 Mongolia 51.253 1226.041130

In my own work, I try to pass in the actual column names when
subsetting data whenever possible (i.e., I try to use .loc[] as much as I
can). That approach makes the code more readable since you do not need to
look at the column name vector to know which index is being called.
Additionally, using absolute indexes can lead to problems if the column
order gets changed. This is just a general rule of thumb, as there will be
exceptions where using the index position is a better option (e.g.,
concatenating data in Chapter 6).

Click here to view code image

if we use the column names directly,
it makes the code a bit easier to read
note now we have to use loc, instead of iloc
print(df.loc[[0, 99, 999], ['country',
'lifeExp', 'gdpPercap']])

 country lifeExp gdpPercap
0 Afghanistan 28.801 779.445314

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0022-01
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0022-02

99 Bangladesh 43.453 721.186086
999 Mongolia 51.253 1226.041130

Important
Remember, you can use the slicing syntax on the row portion of the
.loc[] and .iloc[] attributes. Pay attention to the differences in
how those two attributes select values: .loc[] matches on the named
value, and .iloc[] slices by position.

The results below are slightly different for the very reason.

Click here to view code image

print(df.loc[10:13, :])

 country continent year lifeExp
pop gdpPercap
10 Afghanistan Asia 2002 42.129
25268405 726.734055
11 Afghanistan Asia 2007 43.828
31889923 974.580338
12 Albania Europe 1952 55.230
1282697 1601.056136
13 Albania Europe 1957 59.280
1476505 1942.284244

print(df.iloc[10:13, :])

 country continent year lifeExp
pop gdpPercap
10 Afghanistan Asia 2002 42.129
25268405 726.734055
11 Afghanistan Asia 2007 43.828
31889923 974.580338

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0022-03

12 Albania Europe 1952 55.230
1282697 1601.056136

More detail about how slicing works in Python is described in
Appendix I.

1.4 Grouped and Aggregated Calculations
If you’ve worked with other Python libraries or programming languages,
you know that many basic statistical calculations either come with the
library or are built into the language. Let’s look at our Gapminder data
again.

Click here to view code image

print(df)

 country continent year lifeExp
pop gdpPercap
0 Afghanistan Asia 1952 28.801
8425333 779.445314
1 Afghanistan Asia 1957 30.332
9240934 820.853030
2 Afghanistan Asia 1962 31.997
10267083 853.100710
3 Afghanistan Asia 1967 34.020
11537966 836.197138
4 Afghanistan Asia 1972 36.088
13079460 739.981106
...
... ...
1699 Zimbabwe Africa 1987 62.351
9216418 706.157306
1700 Zimbabwe Africa 1992 60.377

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0023-02

10704340 693.420786
1701 Zimbabwe Africa 1997 46.809
11404948 792.449960
1702 Zimbabwe Africa 2002 39.989
11926563 672.038623
1703 Zimbabwe Africa 2007 43.487
12311143 469.709298

[1704 rows x 6 columns]

There are several initial questions that we can ask ourselves:

For each year in our data, what was the average life expectancy? What
is the average life expectancy, population, and GDP?
What if we stratify the data by continent and perform the same
calculations?
How many countries are listed in each continent?

1.4.1 Grouped Means
To answer the questions just posed, we need to perform a grouped (i.e.,
aggregate) calculation. In other words, we need to perform a calculation, be
it an average or a frequency count, but apply it to each subset of a variable.
Another way to think about grouped calculations is as a split–apply–
combine process. We first split our data into various parts, then apply a
function (or calculation) of our choosing to each of the split parts, and
finally combine all the individual split calculations into a single dataframe.
We accomplish grouped (i.e., aggregate) computations by using the
.groupby() method on DataFrames. Grouped calculations are further
discussed in Chapter 8.

Click here to view code image

For each year in our data, what was the
average life expectancy?

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0024-01

To answer this question, we need to:
1. split our data into parts by year
2. get the 'lifeExp' column
3. calculate the mean
print(df.groupby('year')['lifeExp'].mean())

year
1952 49.057620
1957 51.507401
1962 53.609249
1967 55.678290
1972 57.647386
 ...
1987 63.212613
1992 64.160338
1997 65.014676
2002 65.694923
2007 67.007423
Name: lifeExp, Length: 12, dtype: float64

Let’s unpack the statement we used in this example. We first create a
grouped object.

Click here to view code image

create grouped object by year
grouped_year_df = df.groupby('year')
print(type(grouped_year_df))

<class
'pandas.core.groupby.generic.DataFrameGroupBy'>

If we printed the grouped DataFrame Pandas would return only the
memory location.

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0024-02

Click here to view code image

print(grouped_year_df)

<pandas.core.groupby.generic.DataFrameGroupBy
object at 0x15fdb7df0>

From the grouped data, we can subset the columns of interest on which
we want to perform our calculations. To our question, lifeExp column.
We can use the subsetting methods described in Section 1.3.1.

Click here to view code image

grouped_year_df_lifeExp =
grouped_year_df['lifeExp']
print(type(grouped_year_df_lifeExp))

<class
'pandas.core.groupby.generic.SeriesGroupBy'>

print(grouped_year_df_lifeExp)

<pandas.core.groupby.generic.SeriesGroupBy object
at 0x106c55ae0>

Notice that we now are given a series (because we asked for only one
column) and the contents of the series are grouped (in our example by
year).

Finally, we know the lifeExp column is of type float64. An
operation we can perform on a vector of numbers is to calculate the mean to
get our final desired result.

Click here to view code image

mean_lifeExp_by_year =
grouped_year_df_lifeExp.mean()

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0024-03
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0024-04
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0025-01

print(mean_lifeExp_by_year)

year
1952 49.057620
1957 51.507401
1962 53.609249
1967 55.678290
1972 57.647386
 ...
1987 63.212613
1992 64.160338
1997 65.014676
2002 65.694923
2007 67.007423
Name: lifeExp, Length: 12, dtype: float64

We can perform a similar set of calculations for the population and GDP
since they are of types int64 and float64, respectively. But what if we
want to group and stratify the data by more than one variable? And what if
we want to perform the same calculation on multiple columns? We can
build on the material earlier in this chapter by using a list!

Click here to view code image

the backslash allows us to break up 1 long
line of python code
into multiple lines
df.groupby(['year', 'continent'])[['lifeExp',
'gdpPercap']].mean()
is the same as
multi_group_var = df\
 .groupby(['year', 'continent'])\
 [['lifeExp', 'gdpPercap']]\
 .mean()

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0025-02

look at the first 10 rows
print(multi_group_var)

 lifeExp gdpPercap
year continent
1952 Africa 39.135500 1252.572466
 Americas 53.279840 4079.062552
 Asia 46.314394 5195.484004
 Europe 64.408500 5661.057435
 Oceania 69.255000 10298.085650
...
2007 Africa 54.806038 3089.032605

 Americas 73.608120 11003.031625
 Asia 70.728485 12473.026870
 Europe 77.648600 25054.481636
 Oceania 80.719500 29810.188275

[60 rows x 2 columns]

We can also use round parentheses, () for “method chaining” (more
about this notation in Appendix D.1).

Click here to view code image

we can also wrap the entire statement
around round parentheses
with each .method() on a new line
this is the preferred style for writing
"method chaining"
multi_group_var = (
 df
 .groupby(['year', 'continent'])

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0026-02

 [['lifeExp', 'gdpPercap']]
 .mean()
)

The output data is grouped by year and continent. For each year–
continent pair, we calculated the average life expectancy and average GDP.
The data is also printed out a little differently. Notice the year and continent
column names are not on the same line as the life expectancy and GPD
column names. There is some hierarchal structure between the year and
continent row indices. We’ll discuss working with these types of data in
more detail in Section 8.5.

If you need to “flatten” the DataFrame, you can use the
.reset_index() method.

Click here to view code image

flat = multi_group_var.reset_index()
print(flat)

 year continent lifeExp gdpPercap
0 1952 Africa 39.135500 1252.572466
1 1952 Americas 53.279840 4079.062552
2 1952 Asia 46.314394 5195.484004
3 1952 Europe 64.408500 5661.057435
4 1952 Oceania 69.255000 10298.085650
..
55 2007 Africa 54.806038 3089.032605
56 2007 Americas 73.608120 11003.031625
57 2007 Asia 70.728485 12473.026870
58 2007 Europe 77.648600 25054.481636
59 2007 Oceania 80.719500 29810.188275

[60 rows x 4 columns]

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0026-03

Question
Does the order of the list we used to group the data matter?

1.4.2 Grouped Frequency Counts
Another common data-related task is to calculate frequencies. We can use
the .nunique() and .value_counts() methods, respectively, to get
counts of unique values and frequency counts on a Pandas Series.

Click here to view code image

use the nunique (number unique)
to calculate the number of unique values in a
series
print(df.groupby('continent')
['country'].nunique())

continent
Africa 52
Americas 25
Asia 33
Europe 30
Oceania 2
Name: country, dtype: int64

Question
What do you get if you use .value_counts() instead of
.nunique()?

1.5 Basic Plot

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0027-01

Visualizations are extremely important in almost every step of the data
process. They help us identify trends in data when we are trying to
understand and clean the data, and they help us convey our final findings.
More information about visualization and plotting is described in Chapter 3.

Let’s look at the yearly life expectancies for the world population again.

Click here to view code image

global_yearly_life_expectancy =
df.groupby('year')['lifeExp'].mean()
print(global_yearly_life_expectancy)

year
1952 49.057620
1957 51.507401
1962 53.609249
1967 55.678290
1972 57.647386
 ...
1987 63.212613
1992 64.160338

1997 65.014676
2002 65.694923
2007 67.007423
Name: lifeExp, Length: 12, dtype: float64

We can use Pandas to create some basic plots as shown in Figure 1.1.
More about plotting is covered in Chapter 3.

Click here to view code image

matplotlib is the default plotting library
we need to import first
import matplotlib.pyplot as plt

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0027-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0028-02

use the .plot() DataFrame method
global_yearly_life_expectancy.plot()

show the plot
plt.show()

Figure 1.1 Basic plot in Pandas showing average life expectancy over
time

Conclusion
This chapter explained how to load up a simple data set and start looking at
specific observations. It may seem tedious at first to look at observations
this way, especially if you are already familiar with the use of a spreadsheet

program. Keep in mind that when doing data analytics, the goal is to
produce reproducible results, not repeat repetitive tasks, and be able to
combine multiple data sources as needed. Scripting languages give you that
ability and flexibility.

Along the way, you learned about some of the fundamental
programming abilities and data structures that Python has to offer. You also
encountered a quick way to obtain aggregated statistics and plots. The next
chapter goes into more detail about the Pandas DataFrame and Series
objects, as well as other ways you can subset and visualize your data.

As you work your way through this book, if there is a concept or data
structure that is foreign to you, check the various appendices for more
information. Many fundamental programming features of Python are
covered in the appendices.

2

Pandas Data Structures Basics

Chapter 1 introduced the Pandas DataFrame and Series objects. These
data structures resemble the primitive Python data containers (lists and
dictionaries) for indexing and labeling, but have additional features that
make working with data easier.

Learning Objectives
The concept map for this chapter can be found in Figure A.2.

Use functions to create and load manual data
Describe the Series object
Describe the DataFrame object
Identify basic operations on Series objects
Identify basic operations on DataFrame objects
Perform conditional subsetting, fancy slicing, and indexing
Use methods to save data

2.1 Create Your Own Data
Whether you are manually inputting data or creating a small test example,
knowing how to create DataFrames without loading data from a file is a
useful skill. It is especially helpful when you are asking a question about a
StackOverflow error.

2.1.1 Create a Series

The Pandas Series is a one-dimensional container (i.e., Python
Iterable), similar to the built-in Python list. It is the data type that
represents each column of the DataFrame. Table 1.1 lists the possible
dtypes for Pandas DataFrame columns. Each value in a DataFrame
column must be stored as the same dtype. For example, if a column
contains the number 1 and the sequence of letters (i.e., string) "pizza",
the entire dtype of the column will be a string (Pandas will call this an
object dtype).

Since a DataFrame can be thought of as a dictionary of Series
objects, where each key is the column name and the value is the
Series, we can conclude that a Series is very similar to a Python
list, except that each element must be the same dtype. Those who have
used the numpy library will realize this is the same behavior as
demonstrated by the ndarray.

The easiest way to create a Series is to pass in a Python list. If we
pass in a list of mixed types, the most common representation of both will
be used. Typically the dtype will be object.

Click here to view code image

import pandas as pd

s = pd.Series(['banana', 42])
print(s)

0 banana
1 42
dtype: object

Notice that the “row number” is shown on the left of the Series. This
is actually the index for the series. It is similar to the row name and row
index we saw in Section 1.3.2 for DataFrames. It implies that we can
actually assign a “name” to values in our series.

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch02_images.xhtml#f0032-01
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch02_images.xhtml#f0032-02

manually assign index values to a series
by passing a Python list
s = pd.Series(
data=["Wes McKinney", "Creator of Pandas"],
index=["Person", "Who"],
)

print(s)

Person Wes McKinney
Who Creator of Pandas
dtype: object

Question
What happens if you use other Python containers such as list,
tuple, dict, or even the ndarray from the numpy library?
What happens if you pass an index along with the containers?
Does passing in an index when you use a dict overwrite the
index? Or does it sort the values?

2.1.2 Create a DataFrame
As mentioned in Chapter 1, a DataFrame can be thought of as a
dictionary of Series objects. This is why dictionaries are the most
common way of creating a DataFrame. The key represents the column
name, and the values are the contents of the column.

Click here to view code image

scientists = pd.DataFrame(
 {
 "Name": ["Rosaline Franklin", "William

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch02_images.xhtml#f0033-01

Gosset"],
 "Occupation": ["Chemist", "Statistician"],
 "Born": ["1920-07-25", "1876-06-13"],
 "Died": ["1958-04-16", "1937-10-16"],
 "Age": [37, 61],
 }
)

print(scientists)

 Name Occupation Born
Died Age
0 Rosaline Franklin Chemist 1920-07-25
1958-04-16 37
1 William Gosset Statistician 1876-06-13
1937-10-16 61

If we look at the documentation for DataFrame1, we see that we can
use the columns parameter or specify the column order. If we want to use
the name column for the row index, we can use the index parameter.
1. DataFrame documentation:
https://pandas.pydata.org/docs/reference/api/panda
s.DataFrame.html

Click here to view code image

scientists = pd.DataFrame(
 data={
 "Occupation": ["Chemist", "Statistician"],
 "Born": ["1920-07-25", "1876-06-13"],
 "Died": ["1958-04-16", "1937-10-16"],
 "Age": [37, 61],
 },
 index=["Rosaline Franklin", "William Gosset"],

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch02_images.xhtml#f0033-02

 columns=["Occupation", "Born", "Died", "Age"],
)
print(scientists)

 Occupation Born
Died Age
Rosaline Franklin Chemist 1920-07-25 1958-
04-16 37
William Gosset Statistician 1876-06-13 1937-
10-16 61

2.2 The Series
In Section 1.3.2.1, we saw how the slicing method affects the type of the
result. If we use .loc[] to subset the first row of our scientists
DataFrame, we will get a Series object back.

First, let’s re-create our example DataFrame.

Click here to view code image

create our example dataframe
with a row index label
scientists = pd.DataFrame(

 data={
 "Occupation": ["Chemist", "Statistician"],
 "Born": ["1920-07-25", "1876-06-13"],
 "Died": ["1958-04-16", "1937-10-16"],
 "Age": [37, 61],
 },
 index=["Rosaline Franklin", "William Gosset"],
 columns=["Occupation", "Born", "Died", "Age"],
)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch02_images.xhtml#f0033-03

print(scientists)

 Occupation Born
Died Age
Rosaline Franklin Chemist 1920-07-25 1958-
04-16 37
William Gosset Statistician 1876-06-13 1937-
10-16 61

Select a scientist by the row index label.

Click here to view code image

select by row index label
first_row = scientists.loc['William Gosset']
print(type(first_row))

<class 'pandas.core.series.Series'>

print(first_row)

Occupation Statistician
Born 1876-06-13
Died 1937-10-16
Age 61
Name: William Gosset, dtype: object

When a series is printed (i.e., the string representation), the index is
printed as the first “column,” and the values are printed as the second
“column.” There are many attributes and methods associated with a
Series object.2 Two examples of attributes are .index and .values.
2. Series documentation: https://pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.Series.html

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch02_images.xhtml#f0034-02
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html

Click here to view code image

print(first_row.index)

Index(['Occupation', 'Born', 'Died', 'Age'],
dtype='object')

print(first_row.values)

['Statistician' '1876-06-13' '1937-10-16' 61]

Table 2.1 Some of the Attributes Within a Series

Series attributes Description

.loc Subset using index value

.iloc Subset using index position

.dtype or dtypes The type of the Series contents

.T Transpose of the series

.shape Dimensions of the data

.size Number of elements in the Series

.values ndarray or ndarray-like of the Series

An example of a Series method is .keys(), which is an alias for the
.index attribute.

Click here to view code image

print(first_row.keys())

Index(['Occupation', 'Born', 'Died', 'Age'],
dtype='object')

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch02_images.xhtml#f0034-03
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch02_images.xhtml#f0035-01

By now, you might have questions about the syntax for .index,
.values, and .keys(). More information about attributes and methods
is found in Appendix P on classes. Attributes can be thought of as features
of an object (in this example, our object is a Series). Methods can be
thought of as some calculation or operation that is performed on an object.
The subsetting syntax for .loc[] and .iloc[] (from Section 1.3.2)
consists of all attributes. This is why the syntax does not rely on a set of
round parentheses, (), but rather a set of square brackets, [], for
subsetting. Since .keys() is a method, if we wanted to get the first key
(which is also the first index), we would use the square brackets after the
method call. Some attributes for the series are listed in Table 2.1.

Click here to view code image

get the first index using an attribute
print(first_row.index[0])

Occupation

get the first index using a method
print(first_row.keys()[0])

Occupation

2.2.1 The Series Is ndarray-like
The Pandas data structure known as Series is very similar to the
numpy.ndarray (Appendix O). In turn, many methods and functions
that operate on a ndarray will also operate on a Series. A Series
may sometimes be referred to as a “vector.”

2.2.1.1 Series Methods

Let’s first get a series of the Age column from our scientists
dataframe.

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch02_images.xhtml#f0035-02

get the 'Age' column
ages = scientists['Age']
print(ages)

Rosaline Franklin 37
William Gosset 61
Name: Age, dtype: int64

NumPy is a scientific computing library that typically deals with
numeric vectors. Since a Series can be thought of as an extension to the
numpy.ndarray, there is an overlap of attributes and methods. When we
have a vector of numbers, there are common calculations we can perform.3

3. Descriptive statistics: https://pandas.pydata.org/pandas-
docs/stable/user_guide/basics.html#descriptive-
statistics

Click here to view code image

calculate the mean
print(ages.mean())

49.0

calculate the minimum
print(ages.min())

37

calculate the maximum
print(ages.max())

61

https://pandas.pydata.org/pandas-docs/stable/user_guide/basics.html#descriptive-statistics
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch02_images.xhtml#f0036-02

calculate the standard deviation
print(ages.std())

16.97056274847714

The .mean(), .min(), .max(), and .std() are also methods in
the numpy.ndarray.4 Some Series methods are listed in Table 2.2.
4. NumPy ndarrary documentation:
https://numpy.org/doc/stable/reference/arrays.ndar
ray.html

2.2.2 Boolean Subsetting: Series
Chapter 1 showed how we can use specific indices to subset our data. Only
rarely, however, will we know the exact row or column index to subset the
data. Typically you are looking for values that meet (or don’t meet) a
particular calculation or observation.

To explore this process, let’s use a larger data set.

Click here to view code image

scientists = pd.read_csv('data/scientists.csv')

We just saw how we can calculate basic descriptive metrics of vectors.
The .describe() method will calculate multiple descriptive statistics in
a single method call.

Click here to view code image

 ages = scientists['Age']
 print(ages)

Table 2.2 Some of the Methods That Can Be Performed on a Series

Series Methods Description

https://numpy.org/doc/stable/reference/arrays.ndarray.html
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch02_images.xhtml#f0036-03
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch02_images.xhtml#f0036-04

Series Methods Description

.append() Concatenates two or more Series

.corr() Calculate a correlation with another Series5

.cov() Calculate a covariance with another Series6

.describe() Calculate summary statistics7

.drop_duplicate
s()

Returns a Series without duplicates

.equals() Determines whether a Series has the same
elements

.get_values() Get values of the Series; same as the values
attribute

.hist() Draw a histogram

.isin() Checks whether values are contained in a Series

.min() Returns the minimum value

.max() Returns the maximum value

.mean() Returns the arithmetic mean

.median() Returns the median

.mode() Returns the mode(s)

.quantile() Returns the value at a given quantile

.replace() Replaces values in the Series with a specified
value

.sample() Returns a random sample of values from the
Series

.sort_values() Sorts values

.to_frame() Converts a Series to a DataFrame

.transpose() Returns the transpose

Series Methods Description

.unique() Returns a numpy.ndarray of unique values

5. Missing values will be automatically dropped.

6. Missing values will be automatically dropped.
7. Missing values will be automatically dropped.

0 37
1 61
2 90
3 66
4 56
5 45
6 41
7 77
Name: Age, dtype: int64

get basic stats
print(ages.describe())

count 8.000000
mean 59.125000
std 18.325918

min 37.000000
25% 44.000000
50% 58.500000
75% 68.750000
max 90.000000
Name: Age, dtype: float64

mean of all ages
print(ages.mean())

59.125

What if we wanted to subset our ages by identifying those above the
mean?

Click here to view code image

print(ages[ages > ages.mean()])

1 61
2 90
3 66
7 77
Name: Age, dtype: int64

Let’s tease out this statement and look at what ages >
ages.mean() returns.

Click here to view code image

print(ages > ages.mean())

0 False
1 True
2 True
3 True
4 False
5 False
6 False
7 True
Name: Age, dtype: bool

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch02_images.xhtml#f0038-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch02_images.xhtml#f0038-03

print(type(ages > ages.mean()))

<class 'pandas.core.series.Series'>

This statement returns a Series with a .dtype of bool. In other
words, we can not only subset values using labels and indices, but also
supply a vector of boolean values. Python has many functions and methods.
Depending on how they are implemented, they may return labels, indices,
or booleans. Keep this point in mind as you learn new methods and seek to
piece together various parts for your work.

If we liked, we could manually supply a vector of bools to subset our
data.

Click here to view code image

get index 0, 1, 4, 5, and 7
manual_bool_values = [

 True, # 0
 True, # 1
 False, # 2
 False, # 3
 True, # 4
 True, # 5
 False, # 6
 True, # 7
]
print(ages[manual_bool_values])

0 37
1 61
4 56
5 45

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch02_images.xhtml#f0038-04

7 77
Name: Age, dtype: int64

2.2.3 Operations Are Automatically Aligned and
Vectorized (Broadcasting)
If you’re familiar with programming, you would find it strange that ages
> ages.mean() returns a vector without any for loops (Appendix J).
Many of the methods that work on Series (and also DataFrames) are
“vectorized,” meaning that they work on the entire vector simultaneously.
This approach makes the code easier to read, and typically, optimizations
are available to make calculations faster.

2.2.3.1 Vectors of the Same Length

If you perform an operation between two vectors of the same length, the
resulting vector will be an element-by-element calculation of the vectors.

print(ages + ages)

0 74
1 122
2 180
3 132
4 112
5 90
6 82
7 154
Name: Age, dtype: int64

print(ages * ages)

0 1369
1 3721

2 8100
3 4356

4 3136
5 2025
6 1681
7 5929
Name: Age, dtype: int64

2.2.3.2 Vectors With Integers (Scalars)

When you perform an operation on a vector using a scalar, the scalar will be
recycled across all the elements in the vector.

print(ages + 100)

0 137
1 161
2 190
3 166
4 156
5 145
6 141
7 177
Name: Age, dtype: int64

print(ages * 2)

0 74
1 122
2 180
3 132
4 112

5 90
6 82
7 154
Name: Age, dtype: int64

2.2.3.3 Vectors With Different Lengths

When you are working with vectors of different lengths, the behavior will
depend on the type() of the vectors. With a Series, the vectors will
perform an operation matched by the index. The rest of the resulting vector
will be filled with a “missing” value, denoted with NaN, signifying “not a
number” (Chapter 9).

This type of behavior, which is called broadcasting, differs between
languages. Broadcasting in Pandas refers to how operations are calculated
between arrays with different shapes.

Click here to view code image

print(ages + pd.Series([1, 100]))

0 38.0
1 161.0
2 NaN
3 NaN

4 NaN
5 NaN
6 NaN
7 NaN
dtype: float64

With other types(), the shapes must match.

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch02_images.xhtml#f0040-03
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch02_images.xhtml#f0041-02

import numpy as np

this will cause an error
print(ages + np.array([1, 100]))

ValueError: operands could not be broadcast
together with shapes (8,) (2,)

2.2.3.4 Vectors With Common Index Labels (Automatic
Alignment)

What’s convenient in Pandas is how data alignment is almost always
automatic. If possible, things will always align themselves with the index
label when actions are performed.

Click here to view code image

ages as they appear in the data
print(ages)

0 37
1 61
2 90
3 66
4 56
5 45
6 41
7 77
Name: Age, dtype: int64

rev_ages = ages.sort_index(ascending=False)
print(rev_ages)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch02_images.xhtml#f0041-03

7 77
6 41
5 45
4 56
3 66
2 90
1 61
0 37
Name: Age, dtype: int64

If we perform an operation using ages and rev_ages, it will still be
conducted on an element-by-element basis, but the vectors will be aligned
first before the operation is carried out.

Click here to view code image

reference output to show index label alignment
print(ages * 2)

0 74
1 122
2 180
3 132
4 112
5 90
6 82
7 154
Name: Age, dtype: int64

note how we get the same values
even though the vector is reversed
print(ages + rev_ages)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch02_images.xhtml#f0042-01

0 74
1 122
2 180
3 132
4 112
5 90
6 82
7 154
Name: Age, dtype: int64

2.3 The DataFrame
The DataFrame is the most common Pandas object. It can be thought of
as Python’s way of storing spreadsheet-like data. Many of the features of
the Series data structure carry over into the DataFrame.

2.3.1 Parts of a DataFrame
There are 3 main parts to a Pandas DataFrame object the .index,
.columns, and .values. These refer to the row name, column names,
and data values, respectively.

Click here to view code image

scientists.index

RangeIndex(start=0, stop=8, step=1)

scientists.columns

Index(['Name', 'Born', 'Died', 'Age',
'Occupation'], dtype='object')

scientists.values

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch02_images.xhtml#f0042-02

array([['Rosaline Franklin', '1920-07-25', '1958-
04-16', 37, 'Chemist'],
 ['William Gosset', '1876-06-13', '1937-10-
16', 61, 'Statistician'],
 ['Florence Nightingale', '1820-05-12',
'1910-08-13', 90, 'Nurse'],
 ['Marie Curie', '1867-11-07', '1934-07-04',
66, 'Chemist'],
 ['Rachel Carson', '1907-05-27', '1964-04-
14', 56, 'Biologist'],
 ['John Snow', '1813-03-15', '1858-06-16',
45, 'Physician'],
 ['Alan Turing', '1912-06-23', '1954-06-07',
41,
 'Computer Scientist'],
 ['Johann Gauss', '1777-04-30', '1855-02-
23', 77, 'Mathematician']],
 dtype=object)

The .values comes in handy when you don’t want all the row index
label information, and really just want the base numpy representation of
the data.

2.3.2 Boolean Subsetting: DataFrames
Just as we were able to subset a Series with a boolean vector, so can we
subset a DataFrame with a bool.

Click here to view code image

boolean vectors will subset rows
print(scientists.loc[scientists['Age'] >
scientists['Age'].mean()])

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch02_images.xhtml#f0043-02

 Name Born Died
Age Occupation
1 William Gosset 1876-06-13 1937-10-16
61 Statistician
2 Florence Nightingale 1820-05-12 1910-08-13
90 Nurse
3 Marie Curie 1867-11-07 1934-07-04
66 Chemist
7 Johann Gauss 1777-04-30 1855-02-23
77 Mathematician

Table 2.3 summarizes the various subsetting methods.

Table 2.3 Table of DataFrame Subsetting Methods

Syntax Selection Result

df[column_name] Series

df[[column1, column2, ...
]]

DataFrame

df.loc[row_label] Row by row index label (row
name)

df.loc[[label1, label2,
...]]

Multiple rows by index label

df.iloc[row_number] Row by row number

df.iloc[[row1, row2, ...]] Multiple rows by row number

df[bool] Row based on bool

df[[bool1, bool2, ...]] Multiple rows based on bool

df[start:stop:step] Rows based on slicing notation

2.3.3 Operations Are Automatically Aligned and
Vectorized (Broadcasting)
Pandas supports broadcasting because the Series and DataFrame
objects are built on top of the numpy library.8 Broadcasting describes what
happens when performing operations between array-like objects. These
behaviors depend on the type of object, its length, and any labels associated
with the object.
8. NumPy Library: http://www.numpy.org/

First, let’s create a subset of our dataframes.

Click here to view code image

first_half = scientists[:4]
second_half = scientists[4:]

print(first_half)

 Name Born Died
Age Occupation
0 Rosaline Franklin 1920-07-25 1958-04-16
37 Chemist
1 William Gosset 1876-06-13 1937-10-16
61 Statistician
2 Florence Nightingale 1820-05-12 1910-08-13
90 Nurse
3 Marie Curie 1867-11-07 1934-07-04
66 Chemist

print(second_half)

 Name Born Died Age
Occupation

http://www.numpy.org/
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch02_images.xhtml#f0044-01

4 Rachel Carson 1907-05-27 1964-04-14 56
Biologist
5 John Snow 1813-03-15 1858-06-16 45
Physician
6 Alan Turing 1912-06-23 1954-06-07 41
Computer Scientist
7 Johann Gauss 1777-04-30 1855-02-23 77
Mathematician

When we perform an action on a dataframe with a scalar, it will try to
apply the operation on each cell of the dataframe. In this example, numbers
will be multiplied by 2, and strings will be doubled (this is Python’s normal
behavior with strings).

Click here to view code image

multiply by a scalar
print(scientists * 2)

 Name
Born \
0 Rosaline FranklinRosaline Franklin 1920-
07-251920-07-25
1 William GossetWilliam Gosset 1876-
06-131876-06-13
2 Florence NightingaleFlorence Nightingale 1820-
05-121820-05-12
3 Marie CurieMarie Curie 1867-
11-071867-11-07
4 Rachel CarsonRachel Carson 1907-
05-271907-05-27
5 John SnowJohn Snow 1813-
03-151813-03-15
6 Alan TuringAlan Turing 1912-

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch02_images.xhtml#f0044-02

06-231912-06-23
7 Johann GaussJohann Gauss 1777-
04-301777-04-30

 Died Age
Occupation
0 1958-04-161958-04-16 74
ChemistChemist
1 1937-10-161937-10-16 122
StatisticianStatistician
2 1910-08-131910-08-13 180
NurseNurse
3 1934-07-041934-07-04 132
ChemistChemist
4 1964-04-141964-04-14 112
BiologistBiologist
5 1858-06-161858-06-16 90
PhysicianPhysician
6 1954-06-071954-06-07 82 Computer
ScientistComputer Scientist
7 1855-02-231855-02-23 154
MathematicianMathematician

If your dataframes are all numeric values and you want to “add” the
values on a cell-by-cell basis, you can use the .add() method. The
automatic alignment can be better seen in Chapter 6, when we concatenate
dataframes together.

2.4 Making Changes to Series and DataFrames
Now that we know various ways of subsetting and slicing our data (see
Table 2.3), we should be able to alter our data objects.

2.4.1 Add Additional Columns
The type of the Born and Died columns is object, meaning they are
strings or a sequence of characters.

print(scientists.dtypes)

Name object
Born object
Died object
Age int64
Occupation object
dtype: object

We can convert the strings to a proper datetime type so we can
perform common date and time operations (e.g., take differences between
dates or calculate a person’s age). You can provide your own format if
you have a date that has a specific format. A list of format variables can
be found in the Python datetime module documentation.9 More
examples with datetimes can be found in Chapter 12. The format of our
date looks like “YYYY-MM-DD,” so we can use the %Y-%m-%d format.
9. datetime module documentation:
https://docs.python.org/3.10/library/datetime.html
#strftime-and-strptime-behavior

Click here to view code image

format the 'Born' column as a datetime
born_datetime =
pd.to_datetime(scientists['Born'], format='%Y-
%m-%d')
print(born_datetime)

0 1920-07-25

https://docs.python.org/3.10/library/datetime.html#strftime-and-strptime-behavior
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch02_images.xhtml#f0045-03

1 1876-06-13
2 1820-05-12
3 1867-11-07
4 1907-05-27
5 1813-03-15
6 1912-06-23
7 1777-04-30
Name: Born, dtype: datetime64[ns]

format the 'Died' column as a datetime
died_datetime =
pd.to_datetime(scientists['Died'], format='%Y-
%m-%d')

If we wanted, we could create a new set of columns that contain the
datetime representations of the object (string) dates. The below
example uses python’s multiple assignment syntax (Appendix N).

Click here to view code image

scientists['born_dt'], scientists['died_dt'] = (
 born_datetime,
 died_datetime
)

print(scientists.head())

 Name Born Died
Age Occupation \
0 Rosaline Franklin 1920-07-25 1958-04-16
37 Chemist
1 William Gosset 1876-06-13 1937-10-16
61 Statistician
2 Florence Nightingale 1820-05-12 1910-08-13

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch02_images.xhtml#f0046-02

90 Nurse
3 Marie Curie 1867-11-07 1934-07-04
66 Chemist
4 Rachel Carson 1907-05-27 1964-04-14
56 Biologist

 born_dt died_dt
0 1920-07-25 1958-04-16
1 1876-06-13 1937-10-16
2 1820-05-12 1910-08-13
3 1867-11-07 1934-07-04
4 1907-05-27 1964-04-14

print(scientists.shape)

(8, 7)

print(scientists.dtypes)

Name object
Born object
Died object
Age int64

Occupation object
born_dt datetime64[ns]
died_dt datetime64[ns]
dtype: object

2.4.2 Directly Change a Column

We can also assign a new value directly to the existing column. The
example in this section shows how to randomize the contents of a column.
More complex calculations that involve multiple columns can be seen in
Chapter 5, in the discussion of the .apply() method.

First, let’s look at the original Age values.

print(scientists['Age'])

0 37
1 61
2 90
3 66
4 56
5 45
6 41
7 77
Name: Age, dtype: int64

Now let’s shuffle the values.

Click here to view code image

the frac=1 tells pandas to randomly select
100% of the values
the random_state makes the randomization the
same each time
scientists["Age"] =
scientists["Age"].sample(frac=1,
random_state=42)

Note
We set a random_state as a way to make sure it randomly picks
the same values on each run of the code. This way the code stats
consistent when the code from the book is generated. But this

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch02_images.xhtml#f0047-03

technique is also useful when you are programming to make sure your
values are not constantly fluctuating when you are trying to do
something randomly. You can always remove it to make it completely
random every time the code runs.

For long bits of code we can wrap the code around round parentheses (
) to break up the code into multiple lines. We will be using this convention
for longer bits of code in this book (Appendix D.1).

Click here to view code image

the previous line of code is equivalent to
scientists['Age'] = (
 scientists['Age']
 .sample(frac=1, random_state=42)
)

print(scientists['Age'])

0 37
1 61
2 90
3 66
4 56
5 45
6 41
7 77
Name: Age, dtype: int64

If you notice, that we tried to randomly shuffle the column, but when we
assigned the values back into the dataframe, it reverted back to the original
order. That’s because Pandas will try to automatically join on the .index
values on many operations, for this example to get around this problem we
need to remove that .index information. One way of doing that, is to

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch02_images.xhtml#f0047-04

assign just the .values of the shuffled values that does not have any
.index value associated with it.

Click here to view code image

scientists['Age'] = (
scientists['Age']
 .sample(frac=1, random_state=42)
 .values # remove the index so it doesn't auto
align the values
)

print(scientists['Age'])

0 61
1 45
2 37
3 77
4 90
5 56
6 66
7 41
Name: Age, dtype: int64

We can recalculate the “real” age using datetime arithmetic. More
information about datetime can be found in Chapter 12.

Click here to view code image

subtracting dates will give us number of days
scientists['age_days'] = (
 scientists['died_dt'] - scientists['born_dt']
)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch02_images.xhtml#f0048-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch02_images.xhtml#f0048-03

print(scientists)

 Name Born Died
Age \
0 Rosaline Franklin 1920-07-25 1958-04-16
61
1 William Gosset 1876-06-13 1937-10-16
45
2 Florence Nightingale 1820-05-12 1910-08-13
37

3 Marie Curie 1867-11-07 1934-07-04
77
4 Rachel Carson 1907-05-27 1964-04-14
90
5 John Snow 1813-03-15 1858-06-16
56
6 Alan Turing 1912-06-23 1954-06-07
66
7 Johann Gauss 1777-04-30 1855-02-23
41

 Occupation born_dt died_dt
age_days
0 Chemist 1920-07-25 1958-04-16 13779
days
1 Statistician 1876-06-13 1937-10-16 22404
days
2 Nurse 1820-05-12 1910-08-13 32964
days
3 Chemist 1867-11-07 1934-07-04 24345
days

4 Biologist 1907-05-27 1964-04-14 20777
days
5 Physician 1813-03-15 1858-06-16 16529
days
6 Computer Scientist 1912-06-23 1954-06-07 15324
days
7 Mathematician 1777-04-30 1855-02-23 28422
days

we can convert the value to just the year
using the astype method
scientists['age_years'] = (
 scientists['age_days']
 .astype('timedelta64[Y]')
)
print(scientists)

 Name Born Died
Age \
0 Rosaline Franklin 1920-07-25 1958-04-16
61
1 William Gosset 1876-06-13 1937-10-16
45
2 Florence Nightingale 1820-05-12 1910-08-13
37
3 Marie Curie 1867-11-07 1934-07-04
77
4 Rachel Carson 1907-05-27 1964-04-14
90
5 John Snow 1813-03-15 1858-06-16
56
6 Alan Turing 1912-06-23 1954-06-07
66

7 Johann Gauss 1777-04-30 1855-02-23
41

 Occupation born_dt died_dt
age_days age_years
0 Chemist 1920-07-25 1958-04-16 13779
days 37.0
1 Statistician 1876-06-13 1937-10-16 22404
days 61.0
2 Nurse 1820-05-12 1910-08-13 32964
days 90.0
3 Chemist 1867-11-07 1934-07-04 24345
days 66.0
4 Biologist 1907-05-27 1964-04-14 20777
days 56.0
5 Physician 1813-03-15 1858-06-16 16529
days 45.0
6 Computer Scientist 1912-06-23 1954-06-07 15324
days 41.0
7 Mathematician 1777-04-30 1855-02-23 28422
days 77.0

Important
Many functions and methods in the pandas library will have an
inplace parameter that you can set to the value True. When this is
set, the function or method will return None instead of the modified
dataframe. Generally, you do not want to use this parameter.

Contrary to popular belief, this does not make things go faster, and
the parameter may be deprecated in the future:
https://github.com/pandas-
dev/pandas/issues/16529

https://github.com/pandas-dev/pandas/issues/16529

2.4.3 Modifying Columns with .assign()
Another way you can assign and modify columns is with the .assign()
method. This has the benefit of using method chaining (Appendix R). Let’s
redo the age_years column creation, but this time using '.assign().

Click here to view code image

scientists = scientists.assign(
 # new columns on the left of the equal sign
 # how to calculate values on the right of the
equal sign
 # separate new columns with a comma
 age_days_assign=scientists['died_dt'] -
scientists['born_dt'],

age_year_assign=scientists['age_days'].astype('t
imedelta64[Y]')
)

print(scientists)

 Name Born Died
Age \
0 Rosaline Franklin 1920-07-25 1958-04-16
61
1 William Gosset 1876-06-13 1937-10-16
45
2 Florence Nightingale 1820-05-12 1910-08-13
37
3 Marie Curie 1867-11-07 1934-07-04
77
4 Rachel Carson 1907-05-27 1964-04-14
90

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch02_images.xhtml#f0050-01

5 John Snow 1813-03-15 1858-06-16
56
6 Alan Turing 1912-06-23 1954-06-07
66
7 Johann Gauss 1777-04-30 1855-02-23
41

 Occupation born_dt died_dt
age_days age_years \
0 Chemist 1920-07-25 1958-04-16 13779
days 37.0
1 Statistician 1876-06-13 1937-10-16 22404
days 61.0
2 Nurse 1820-05-12 1910-08-13 32964
days 90.0
3 Chemist 1867-11-07 1934-07-04 24345
days 66.0
4 Biologist 1907-05-27 1964-04-14 20777
days 56.0
5 Physician 1813-03-15 1858-06-16 16529
days 45.0
6 Computer Scientist 1912-06-23 1954-06-07 15324
days 41.0
7 Mathematician 1777-04-30 1855-02-23 28422
days 77.0

 age_days_assign age_year_assign
0 13779 days 37.0
1 22404 days 61.0
2 32964 days 90.0
3 24345 days 66.0
4 20777 days 56.0

5 16529 days 45.0
6 15324 days 41.0
7 28422 days 77.0

You can look into the .assign() documentation for more examples.10

Since this is only showing a simple example of how to use the method to
assign new values. Effectively using .assign() will require you to know
about lambda functions, which we will cover in Chapter 5.
10. .assign() documentation:
https://pandas.pydata.org/docs/reference/api/panda
s.DataFrame.assign.html

Note
In the example we just did with .assign(), we did not use the first
new value, age_days_assign, in the calculation for the second
new value, age_year_assign. We would have to know how to
write a lambda functions to know how the following code works.

Click here to view code image

scientists = scientists.assign(
 age_days_assign=scientists["died_dt"] -
scientists["born_dt"],
 age_year_assign=lambda df_:
df_["age_days_assign"].astype(
 "timedelta64[Y]"
),
)
print(scientists)

 Name Born Died
Age \
0 Rosaline Franklin 1920-07-25 1958-04-16
61

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.assign.html
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch02_images.xhtml#f0051-01

1 William Gosset 1876-06-13 1937-10-16
45
2 Florence Nightingale 1820-05-12 1910-08-13
37
3 Marie Curie 1867-11-07 1934-07-04
77
4 Rachel Carson 1907-05-27 1964-04-14
90
5 John Snow 1813-03-15 1858-06-16
56
6 Alan Turing 1912-06-23 1954-06-07
66
7 Johann Gauss 1777-04-30 1855-02-23
41

 Occupation born_dt died_dt
age_days age_years \
0 Chemist 1920-07-25 1958-04-16
13779 days 37.0
1 Statistician 1876-06-13 1937-10-16
22404 days 61.0
2 Nurse 1820-05-12 1910-08-13
32964 days 90.0
3 Chemist 1867-11-07 1934-07-04
24345 days 66.0
4 Biologist 1907-05-27 1964-04-14
20777 days 56.0
5 Physician 1813-03-15 1858-06-16
16529 days 45.0
6 Computer Scientist 1912-06-23 1954-06-07
15324 days 41.0
7 Mathematician 1777-04-30 1855-02-23
28422 days 77.0

 age_days_assign age_year_assign
0 13779 days 37.0
1 22404 days 61.0
2 32964 days 90.0
3 24345 days 66.0

4 20777 days 56.0
5 16529 days 45.0
6 15324 days 41.0
7 28422 days 77.0

2.4.4 Dropping Values
To drop a column, we can either select all the columns we want to by using
the column subsetting techniques (Section 1.3.1), or select columns to drop
with the .drop() method on our dataframe.11

11. DataFrame .drop() method:
https://pandas.pydata.org/docs/reference/api/panda
s.DataFrame.drop.html

Click here to view code image

all the current columns in our data
print(scientists.columns)

Index(['Name', 'Born', 'Died', 'Age',
'Occupation', 'born_dt',
 'died_dt', 'age_days', 'age_years',
'age_days_assign',
 'age_year_assign'], dtype='object')

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.drop.html
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch02_images.xhtml#f0052-02

drop the shuffled age column
you provide the axis=1 argument to drop
column-wise
scientists_dropped = scientists.drop(['Age'],
axis="columns")

columns after dropping our column
print(scientists_dropped.columns)

Index(['Name', 'Born', 'Died', 'Occupation',
'born_dt', 'died_dt',
 'age_days', 'age_years', 'age_days_assign',
 'age_year_assign'],
 dtype='object')

2.5 Exporting and Importing Data
In our examples so far, we have been importing data. It is also common
practice to export or save data sets while processing them. Data sets are
either saved out as final cleaned versions of data or in intermediate steps.
Both of these outputs can be used for analysis or as input to another part of
the data processing pipeline.

Tip
It’s okay to save intermediate data set files as you work. You do not
need to process all your data and analysis in one giant code script.

Saving the data output from one script that gets imported from
another is the basis of creating data pipelines.

2.5.1 Pickle

Python has a way to pickle data. This is Python’s way of serializing and
saving data in a binary format. Reading pickle data is also backwards
compatible. pickle files are usually saved with an extension of .p,
.pkl, or .pickle. We will see how to save and load pickle data
below.

2.5.1.1 Series

Many of the export methods for a Series are also available for a
DataFrame. Those readers who have experience with numpy will know
that a .save() method is available for ndarrays. This method has been
deprecated, and the replacement is to use the .to_pickle method.

Click here to view code image

names = scientists['Name']
print(names)

0 Rosaline Franklin
1 William Gosset
2 Florence Nightingale
3 Marie Curie
4 Rachel Carson
5 John Snow
6 Alan Turing
7 Johann Gauss
Name: Name, dtype: object

pass in a string to the path you want to save
names.to_pickle('output/scientists_names_series.
pickle')

The pickle output is in a binary format. If you try to open it in a text
editor, you will see a bunch of garbled characters.

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch02_images.xhtml#f0053-01

If the object you are saving is an intermediate step in a set of
calculations that you want to save, or if you know that your data will stay in
the Python world, saving objects to a pickle will be optimized for Python
and disk storage space. However, this approach means that people who do
not use Python will not be able to read the data.

2.5.1.2 DataFrame

The same method can be used on DataFrame objects.

Click here to view code image

scientists.to_pickle('output/scientists_df.pickl
e')

2.5.1.3 Read pickle data

To read pickle data, we can use the pd.read_pickle() function.

Click here to view code image

for a Series
series_pickle = pd.read_pickle(
 "output/scientists_names_series.pickle"
)
print(series_pickle)

0 Rosaline Franklin
1 William Gosset
2 Florence Nightingale
3 Marie Curie
4 Rachel Carson
5 John Snow
6 Alan Turing

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch02_images.xhtml#f0053-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch02_images.xhtml#f0054-01

7 Johann Gauss
Name: Name, dtype: object

for a DataFrame
dataframe_pickle =
pd.read_pickle('output/scientists_df.pickle')
print(dataframe_pickle)

 Name Born Died
Age \
0 Rosaline Franklin 1920-07-25 1958-04-16
61
1 William Gosset 1876-06-13 1937-10-16
45
2 Florence Nightingale 1820-05-12 1910-08-13
37
3 Marie Curie 1867-11-07 1934-07-04
77
4 Rachel Carson 1907-05-27 1964-04-14
90
5 John Snow 1813-03-15 1858-06-16
56
6 Alan Turing 1912-06-23 1954-06-07
66
7 Johann Gauss 1777-04-30 1855-02-23
41

 Occupation born_dt died_dt
age_days age_years \
0 Chemist 1920-07-25 1958-04-16 13779
days 37.0
1 Statistician 1876-06-13 1937-10-16 22404
days 61.0

2 Nurse 1820-05-12 1910-08-13 32964
days 90.0
3 Chemist 1867-11-07 1934-07-04 24345
days 66.0
4 Biologist 1907-05-27 1964-04-14 20777
days 56.0
5 Physician 1813-03-15 1858-06-16 16529
days 45.0
6 Computer Scientist 1912-06-23 1954-06-07 15324
days 41.0
7 Mathematician 1777-04-30 1855-02-23 28422
days 77.0

 age_days_assign age_year_assign
0 13779 days 37.0
1 22404 days 61.0
2 32964 days 90.0
3 24345 days 66.0
4 20777 days 56.0
5 16529 days 45.0
6 15324 days 41.0
7 28422 days 77.0

Again, the pickle files are saved with an extension of .p, .pkl, or
.pickle.

2.5.2 Comma-Separated Values (CSV)
Comma-separated values (CSV) are the most flexible data storage type. For
each row, the column information is separated with a comma. The comma
is not the only type of delimiter, however. Some files are delimited by a tab
(TSV) or even a semicolon. The main reason why CSVs are a preferred
data format when collaborating and sharing data is because any program

can open this kind of data structure. It can even be opened in a text editor.
However, the universal storage format does come at a price. CSV files are
usually slower and take up more disk space when compared to other binary
formats.

The Series and DataFrame have a .to_csv() method to write a
CSV file. The documentation for Series12 and DataFrame13 identifies
many different ways you can modify the resulting CSV file. For example, if
you wanted to save a TSV file because there are commas in your data, you
can change the sep parameter (Appendix O).
12. Saving a Series to CSV:
https://pandas.pydata.org/docs/reference/api/panda
s.Series.to_csv.html

13. Saving a DataFrame to CSV:
https://pandas.pydata.org/docs/reference/api/panda
s.DataFrame.to_csv.html

By default, the .index of a DataFrame gets written to the CSV file.
This creates a file where the first column does not have a name, and only
holds the row numbers of the dataframe being saved. This extraneous
column in the CSV becomes problematic when you try to read the CSV
back into Pandas. So we typically put in the index=False parameter
when saving CSV files to avoid this problem.

Click here to view code image

do not write the row names in the CSV output
scientists.to_csv('output/scientists_df_no_index
.csv', index=False)

2.5.2.1 Import CSV Data

Importing CSV files was illustrated in Section 1.2. This operation uses the
pd.read_csv() function. In the documentation, you can see there are
various ways to read in a CSV.14 Look at Appendix O if you need more
information on using function parameters.

https://pandas.pydata.org/docs/reference/api/pandas.Series.to_csv.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_csv.html
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch02_images.xhtml#f0055-01

14. pd.read_csv() documentation:
https://pandas.pydata.org/docs/reference/api/panda
s.read_csv.html

2.5.3 Excel
Excel, which is probably the most commonly used data type (or the second
most commonly used, after CSVs), has a bad reputation within the data
science community, mainly because colors and other superfluous
information can easily find its way into the data set, not to mention one-off
calculations that ruin the rectangular structure of a data set. Some other
reasons are listed at the very beginning of this chapter. The goal of this
book isn’t to bash Excel, but to teach you about a reasonable alternative tool
for data analytics. In short, the more of your work you can do in a scripting
language, the easier it will be to scale up to larger projects, catch and fix
mistakes, and collaborate. However, Excel’s popularity and market share
are unrivaled. Excel has its own scripting language if you absolutely have to
work in it. This will allow you to work with data in a more predictable and
reproducible manner.

2.5.3.1 Series

The Series data structure does not have an explicit .to_excel()
method. If you have a Series that needs to be exported to an Excel file,
one option is to convert the Series into a one-column DataFrame.

Before saving and reading Excel files, make sure you have the
openpyxl library installed (using pip install openpyxl See
Appendix B).

Click here to view code image

print(names)

0 Rosaline Franklin
1 William Gosset
2 Florence Nightingale

https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch02_images.xhtml#f0056-01

3 Marie Curie
4 Rachel Carson
5 John Snow
6 Alan Turing
7 Johann Gauss
Name: Name, dtype: object

convert the Series into a DataFrame
before saving it to an Excel file
names_df = names.to_frame()

save to an excel file
names_df.to_excel(
 'output/scientists_names_series_df.xls',
engine='openpyxl'
)

2.5.3.2 DataFrames

From the preceding example, you can see how to export a DataFrame to
an Excel file. The documentation shows several ways to further fine-tune
the output.15 For example, you can output data to a specific “sheet” using
the sheet_name parameter.
15. .to_excel() documentation:
https://pandas.pydata.org/docs/reference/api/panda
s.DataFrame.to_excel.html

Click here to view code image

saving a DataFrame into Excel format
scientists.to_excel(
 "output/scientists_df.xlsx",
 sheet_name="scientists",

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_excel.html
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch02_images.xhtml#f0056-02

 index=False
)

2.5.4 Feather
The format called “feather” is used to save DataFrames into a binary
object that can also be loaded into other languages (e.g., R). The main
benefit of this approach is that it is faster than writing and reading a CSV
file between the languages. See the Pandas .to_feather()16 and
feather file format documentation17 for more information on storing for
backwards compatibility.
16. Pandas to_feather() documentation:
https://pandas.pydata.org/docs/reference/api/panda
s.DataFrame.to_feather.html
17. Feather file format documentation:
https://arrow.apache.org/docs/python/feather.html

The feather formatter is installed via conda install -c
conda-forge pyarrow or pip install pyarrow. More on
installing packages are described in Appendix B.

You can use the .to_feather() method on a dataframe to save the
feather objects.

Click here to view code image

save to feather file
scientists.to_feather('output/scientists.feather
')

read feather file
sci_feather =
pd.read_feather('output/scientists.feather')

print(sci_feather)

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_feather.html
https://arrow.apache.org/docs/python/feather.html
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch02_images.xhtml#f0057-01

 Name Born Died
Age \
0 Rosaline Franklin 1920-07-25 1958-04-16
61
1 William Gosset 1876-06-13 1937-10-16
45
2 Florence Nightingale 1820-05-12 1910-08-13
37
3 Marie Curie 1867-11-07 1934-07-04
77
4 Rachel Carson 1907-05-27 1964-04-14
90
5 John Snow 1813-03-15 1858-06-16
56
6 Alan Turing 1912-06-23 1954-06-07
66
7 Johann Gauss 1777-04-30 1855-02-23
41

 Occupation born_dt died_dt
age_days age_years \
0 Chemist 1920-07-25 1958-04-16 13779
days 37.0
1 Statistician 1876-06-13 1937-10-16 22404
days 61.0
2 Nurse 1820-05-12 1910-08-13 32964
days 90.0
3 Chemist 1867-11-07 1934-07-04 24345
days 66.0
4 Biologist 1907-05-27 1964-04-14 20777
days 56.0
5 Physician 1813-03-15 1858-06-16 16529
days 45.0

6 Computer Scientist 1912-06-23 1954-06-07 15324
days 41.0
7 Mathematician 1777-04-30 1855-02-23 28422
days 77.0

 age_days_assign age_year_assign
0 13779 days 37.0
1 22404 days 61.0
2 32964 days 90.0
3 24345 days 66.0
4 20777 days 56.0
5 16529 days 45.0
6 15324 days 41.0
7 28422 days 77.0

2.5.5 Arrow
Feather files are part of the Apache Arrow project.18 One of the main goals
of Arrow is to have a memory storage format for dataframe objects that
work across multiple programming languages without having to convert
types for each of them.
18. Apache Arrow: https://arrow.apache.org/docs/index.html]

Note
The Apache Arrow project is separate from the Python Arrow library,
which is used for Dates and Times:
https://arrow.readthedocs.io/en/latest/

Arrow has its own Pandas integration19 to convert Pandas DataFrame
objects to Arrow objects (from_pandas()20) and from Arrow objects to
Pandas DataFrame objects (to_pandas()21). Once the data is in an

https://arrow.apache.org/docs/index.html
https://arrow.readthedocs.io/en/latest/

Arrow format, it can much more efficiently be used in other programming
languages.
19. Arrow Pandas integration:
https://arrow.apache.org/docs/python/pandas.html

20. Arrow from_pandas():
https://arrow.apache.org/docs/python/generated/pya
rrow.Table.html#pyarrow.Table.from_pandas

21. Arrow to_pandas():
https://arrow.apache.org/docs/python/generated/pya
rrow.Table.html#pyarrow.Table.to_pandas

2.5.6 Dictionary
The Pandas Series and DataFrame objects also have a .to_dict()
method. This converts the object into a Python dictionary object. This
format is particularly useful if you have a DataFrame or Series and
you want to use the data from outside Pandas.

Let’s create a smaller subset of the scientist data so all the
dictionary data will display properly

Click here to view code image

first 2 rows of data
sci_sub_dict = scientists.head(2)

convert the dataframe into a dictionary
sci_dict = sci_sub_dict.to_dict()

using the pretty print library to print the
dictionary
import pprint
pprint.pprint(sci_dict)

https://arrow.apache.org/docs/python/pandas.html
https://arrow.apache.org/docs/python/generated/pyarrow.Table.html#pyarrow.Table.from_pandas
https://arrow.apache.org/docs/python/generated/pyarrow.Table.html#pyarrow.Table.to_pandas
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch02_images.xhtml#f0058-01

{'Age': {0: 61, 1: 45},
 'Born': {0: '1920-07-25', 1: '1876-06-13'},
 'Died': {0: '1958-04-16', 1: '1937-10-16'},
 'Name': {0: 'Rosaline Franklin', 1: 'William
Gosset'},
 'Occupation': {0: 'Chemist', 1: 'Statistician'},
 'age_days': {0: Timedelta('13779 days 00:00:00'),
 1: Timedelta('22404 days
00:00:00')},
 'age_days_assign': {0: Timedelta('13779 days
00:00:00'),
 1: Timedelta('22404 days
00:00:00')},

 'age_year_assign': {0: 37.0, 1: 61.0},
 'age_years': {0: 37.0, 1: 61.0},
 'born_dt': {0: Timestamp('1920-07-25 00:00:00'),
 1: Timestamp('1876-06-13 00:00:00')},
 'died_dt': {0: Timestamp('1958-04-16 00:00:00'),
 1: Timestamp('1937-10-16 00:00:00')}}

Once the dictionary output is created, we can read it back into Pandas.

Click here to view code image

read in the dictionary object back into a
dataframe
sci_dict_df = pd.DataFrame.from_dict(sci_dict)
print(sci_dict_df)

 Name Born Died Age
Occupation \
0 Rosaline Franklin 1920-07-25 1958-04-16 61
Chemist

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch02_images.xhtml#f0059-02

1 William Gosset 1876-06-13 1937-10-16 45
Statistician

 born_dt died_dt age_days age_years
age_days_assign \
0 1920-07-25 1958-04-16 13779 days 37.0
13779 days
1 1876-06-13 1937-10-16 22404 days 61.0
22404 days

 age_year_assign
0 37.0
1 61.0

Danger
Because the scientists data set we are working with includes
dates and times, we cannot simply copy and paste the dictionary as a
string into the pd.DataFrame.from_dict() function. You will
get a NameError: name 'Timedelta' is not defined
error.

Dates and times are stored in a different format from what gets
printed to the screen. Depending on the dtype stored in the columns,
your ability to simply copy and paste the .to_dict() output may or
may not return the same exact dataframe back.

If you need a way to work with dates, you will actually need to
convert it into a more general format and convert the value back into a
date.

2.5.7 JSON (JavaScript Objectd Notation)
JSON data is another common plain text file format. The benefit of using
the .to_jsion() is that it can convert dates and times for you to read

back into Pandas. By using orient='records' we can either pass in
the variable or copy and paste from the output to load it back into Pandas.
The indent=2 allows the output to print a bit nicer to the screen (and
book).

Click here to view code image

convert the dataframe into a dictionary
sci_json = sci_sub_dict.to_json(
 orient='records', indent=2, date_format="iso"
)

Click here to view code image

pprint.pprint(sci_json)

('[\n'
 ' {\n'
 ' "Name":"Rosaline Franklin",\n'
 ' "Born":"1920-07-25",\n'
 ' "Died":"1958-04-16",\n'
 ' "Age":61,\n'
 ' "Occupation":"Chemist",\n'
 ' "born_dt":"1920-07-25T00:00:00.000Z",\n'
 ' "died_dt":"1958-04-16T00:00:00.000Z",\n'
 ' "age_days":"P13779DT0H0M0S",\n'
 ' "age_years":37.0,\n'
 ' "age_days_assign":"P13779DT0H0M0S",\n'
 ' "age_year_assign":37.0\n'
 ' },\n'
 ' {\n'
 ' "Name":"William Gosset",\n'
 ' "Born":"1876-06-13",\n'
 ' "Died":"1937-10-16",\n'

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch02_images.xhtml#f0059-03
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch02_images.xhtml#f0060-01

 ' "Age":45,\n'
 ' "Occupation":"Statistician",\n'
 ' "born_dt":"1876-06-13T00:00:00.000Z",\n'
 ' "died_dt":"1937-10-16T00:00:00.000Z",\n'
 ' "age_days":"P22404DT0H0M0S",\n'
 ' "age_years":61.0,\n'
 ' "age_days_assign":"P22404DT0H0M0S",\n'
 ' "age_year_assign":61.0\n'
 ' }\n'
 ']')

copy the string to re-create the dataframe
sci_json_df = pd.read_json(
 ('[\n'
 ' {\n'
 ' "Name":"Rosaline Franklin",\n'
 ' "Born":"1920-07-25",\n'
 ' "Died":"1958-04-16",\n'
 ' "Age":61,\n'
 ' "Occupation":"Chemist",\n'
 ' "born_dt":"1920-07-25T00:00:00.000Z",\n'
 ' "died_dt":"1958-04-16T00:00:00.000Z",\n'
 ' "age_days":"P13779DT0H0M0S",\n'
 ' "age_years":37.0,\n'
 ' "age_days_assign":"P13779DT0H0M0S",\n'
 ' "age_year_assign":37.0\n'
 ' },\n'
 ' {\n'

 ' "Name":"William Gosset",\n'
 ' "Born":"1876-06-13",\n'
 ' "Died":"1937-10-16",\n'
 ' "Age":45,\n'

 ' "Occupation":"Statistician",\n'
 ' "born_dt":"1876-06-13T00:00:00.000Z",\n'
 ' "died_dt":"1937-10-16T00:00:00.000Z",\n'
 ' "age_days":"P22404DT0H0M0S",\n'
 ' "age_years":61.0,\n'
 ' "age_days_assign":"P22404DT0H0M0S",\n'
 ' "age_year_assign":61.0\n'
 ' }\n'
 ']'),
 orient="records"
)
print(sci_json_df)

 Name Born Died Age
Occupation \
0 Rosaline Franklin 1920-07-25 1958-04-16 61
Chemist
1 William Gosset 1876-06-13 1937-10-16 45
Statistician

 born_dt
died_dt \
0 1920-07-25T00:00:00.000Z 1958-04-
16T00:00:00.000Z
1 1876-06-13T00:00:00.000Z 1937-10-
16T00:00:00.000Z

 age_days age_years age_days_assign
age_year_assign
0 P13779DT0H0M0S 37 P13779DT0H0M0S
37

1 P22404DT0H0M0S 61 P22404DT0H0M0S
61

Notice how the dates are all different from the original values? That’s
because we choose to convert the dates into ISO 8601 string format.

print(sci_json_df.dtypes)

Name object
Born object
Died object
Age int64
Occupation object
born_dt object
died_dt object
age_days object
age_years int64
age_days_assign object
age_year_assign int64
dtype: object

If we want the original datetime object back, we need to convert that
representation back into a date.

Click here to view code image

sci_json_df["died_dt_json"] =
pd.to_datetime(sci_json_df["died_dt"])

print(sci_json_df)

 Name Born Died Age
Occupation \
0 Rosaline Franklin 1920-07-25 1958-04-16 61

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch02_images.xhtml#f0062-01

Chemist
1 William Gosset 1876-06-13 1937-10-16 45
Statistician

 born_dt
died_dt \
0 1920-07-25T00:00:00.000Z 1958-04-
16T00:00:00.000Z
1 1876-06-13T00:00:00.000Z 1937-10-
16T00:00:00.000Z

 age_days age_years age_days_assign
age_year_assign \
0 P13779DT0H0M0S 37 P13779DT0H0M0S
37
1 P22404DT0H0M0S 61 P22404DT0H0M0S
61

 died_dt_json
0 1958-04-16 00:00:00+00:00
1 1937-10-16 00:00:00+00:00

print(sci_json_df.dtypes)

Name object
Born object
Died object
Age int64
Occupation object
born_dt object
died_dt object
age_days object
age_years int64

age_days_assign object
age_year_assign int64
died_dt_json datetime64[ns, UTC]
dtype: object

Working with dates and times is always tricky. We talk more about them
in Chapter 12.

2.5.8 Other Data Output Types
There are many ways Pandas can export and import data. Indeed,
.to_pickle(), .to_csv(), .to_excel(), .to_feather(),
.to_dict() are only some of the data formats that can make their way
into Pandas DataFrames. Table 2.4 lists some of these other output
formats.

Table 2.4 DataFrame Export Methods

Export Method Description

.to_clipboard() Save data into the system clipboard for pasting

.to_dense() Convert data into a regular “dense” DataFrame

.to_dict() Convert data into a Python dict

.to_gbq() Convert data into a Google BigQuery table

.to_hdf() Save data into a hierarchal data format (HDF)

.to_msgpack() Save data into a portable JSON-like binary

.to_html() Convert data into a HTML table

.to_json() Convert data into a JSON string

.to_latex() Convert data into a LATEX tabular environment

.to_records() Convert data into a record array

.to_string() Show DataFrame as a string for stdout

Export Method Description

.to_sparse() Convert data into a SparceDataFrame

.to_sql() Save data into a SQL database

.to_stata() Convert data into a Stata dta file

Conclusion
This chapter went into a little more detail about how the Pandas Series
and DataFrame objects work in Python. There were some simpler
examples of data cleaning shown, along with a few common ways to export
data to share with others. Chapter 1 and Chapter 2 should give you a good
basis on how Pandas works as a library.

The next chapter covers the basics of plotting in Python and Pandas.
Data visualization is not only used at the end of an analysis to plot results,
but also is heavily utilized throughout the entire data pipeline.

3

Plotting Basics

Data visualization is as much a part of the data processing step as the data
presentation step. It is much easier to compare plotted values than to
compare numerical values. By visualizing data we can get a better intuitive
sense of the data than would be possible by looking at tables of values
alone. Additionally, visualizations can bring to light hidden patterns in data,
that you, the analyst, can use for model selection.

Learning Objectives
The concept map for this chapter can be found in Figure A.3.

Explain why visualizing data is important
Create various statistical plots for exploratory data analysis
Use plotting functions from the matplotlib, seaborn, and
pandas libraries
Identify when to use univariate, bivariate, and multivariate plots
Use different color palettes to make plots more accessible

3.1 Why Visualize Data?
The quintessential example for creating visualizations of data is
Anscombe’s quartet. This data set was created by English statistician Frank
Anscombe to show the importance of statistical graphs.

The Anscombe data set contains four sets of data, each of which
contains two continuous variables. Each set has the same mean, variance,
correlation, and regression line. However, only when the data are visualized
does it become obvious that each set does not follow the same pattern. This

goes to show the benefits of visualizations and the pitfalls of looking at
only summary statistics.

Click here to view code image

the anscombe data set can be found in the
seaborn library
import seaborn as sns
anscombe = sns.load_data set("anscombe")
print(anscombe)

 data set x y
0 I 10.0 8.04
1 I 8.0 6.95
2 I 13.0 7.58
3 I 9.0 8.81
4 I 11.0 8.33
..
39 IV 8.0 5.25
40 IV 19.0 12.50
41 IV 8.0 5.56
42 IV 8.0 7.91
43 IV 8.0 6.89

[44 rows x 3 columns]

3.2 Matplotlib Basics
matplotlib is Python’s fundamental plotting library. It is extremely
flexible and gives the user full control over all elements of the plot.

Importing the matplotlib plotting features is a little different from
our previous package imports. You can think of it as importing the package
matplotlib, with all of the plotting utilities stored under a subfolder (or

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0065-01

subpackage) called pyplot. Just as we imported a package and gave it an
abbreviated name, we can do the same with matplotlib.pyplot.

Click here to view code image

import matplotlib.pyplot as plt

The names of most of the basic plots will start with plt.plot(). In
our example, the plotting feature takes one vector for the x-values, and a
corresponding vector for the y-values (Figure 3.1).

Figure 3.1 Anscombe data set I

Click here to view code image

create a subset of the data
contains only data set 1 from anscombe
data set_1 = anscombe[anscombe['data set'] ==

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0066-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0066-03

'I']

plt.plot(data set_1['x'], data set_1['y'])
plt.show() # will need this to show explicitly
show the plot

By default, plt.plot() will draw lines. If we want it to draw points
instead, we can pass an 'o' parameter to tell plt.plot() to use points
(Figure 3.2).

Figure 3.2 Anscombe data set I using points

Click here to view code image

plt.plot(data set_1['x'], data set_1['y'], 'o')
plt.show()

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0066-04

We can repeat this process for the rest of the data sets in our
anscombe data.

Click here to view code image

create subsets of the anscombe data
data set_2 = anscombe[anscombe['data set'] ==
'II']
data set_3 = anscombe[anscombe['data set'] ==
'III']
data set_4 = anscombe[anscombe['data set'] ==
'IV']

3.2.1 Figure Objects and Axes Subplots
At this point, we could make these plots individually, but matplotlib
offers a much handier way to create subplots. You can specify the
dimensions of your final figure, and put in smaller plots to fit the specified
dimensions. This way, you can present your results in a single figure.

The subplot syntax takes three parameters:

Number of rows in the figure for subplots
Number of columns in the figure for subplots
Subplot location

The subplot location is sequentially numbered, and plots are placed first
in a left-to-right direction, then from top to bottom. If we try to plot this
now (by running the following code), we will get an empty figure (Figure
3.3). All we have done so far is create a figure and split it into a 2 x 2 grid
where plots can be placed. Since no plots were created and inserted,
nothing will show up.

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0066-05

Figure 3.3 Matplotlib figure with four empty axes in a 2x2 grid

Click here to view code image

create the entire figure where our subplots
will go
fig = plt.figure()

tell the figure how the subplots should be
laid out
in the example, we will have
2 row of plots, and each row will have 2 plots

subplot has 2 rows and 2 columns, plot
location 1
axes1 = fig.add_subplot(2, 2, 1)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0068-02

subplot has 2 rows and 2 columns, plot
location 2
axes2 = fig.add_subplot(2, 2, 2)

subplot has 2 rows and 2 columns, plot
location 3
axes3 = fig.add_subplot(2, 2, 3)

Click here to view code image

subplot has 2 rows and 2 columns, plot
location 4
axes4 = fig.add_subplot(2, 2, 4)

plt.show()

We can use the .plot() method on each axis to create our plot (Figure
3.4).

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0069-02

Figure 3.4 Matplotlib figure with four scatter plots

Important
With a lot of plotting code, you need to run all the code together.
Usually, running parts of it as you attempt to build on a figure will not
return anything.

Click here to view code image

you need to run all the plotting code
together, same as above
fig = plt.figure()
axes1 = fig.add_subplot(2, 2, 1)
axes2 = fig.add_subplot(2, 2, 2)
axes3 = fig.add_subplot(2, 2, 3)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0069-03

axes4 = fig.add_subplot(2, 2, 4)

add a plot to each of the axes created above
axes1.plot(data set_1['x'], data set_1['y'],
'o')
axes2.plot(data set_2['x'], data set_2['y'],
'o')
axes3.plot(data set_3['x'], data set_3['y'],
'o')
axes4.plot(data set_4['x'], data set_4['y'],
'o')

plt.show()

Finally, we can add a label to our subplots, and improve the subplot
spacing with fig.tight_layout(), but
fig.set_tight_layout() is preferred (Figure 3.5).

Figure 3.5 Anscombe data visualization

Click here to view code image

you need to run all the plotting code
together, same as above
fig = plt.figure()
axes1 = fig.add_subplot(2, 2, 1)
axes2 = fig.add_subplot(2, 2, 2)
axes3 = fig.add_subplot(2, 2, 3)
axes4 = fig.add_subplot(2, 2, 4)
axes1.plot(data set_1['x'], data set_1['y'],
'o')
axes2.plot(data set_2['x'], data set_2['y'],

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0070-02

'o')
axes3.plot(data set_3['x'], data set_3['y'],
'o')
axes4.plot(data set_4['x'], data set_4['y'],
'o')

add a small title to each subplot
axes1.set_title("data set_1")
axes2.set_title("data set_2")
axes3.set_title("data set_3")
axes4.set_title("data set_4")

add a title for the entire figure (title above
the title)
fig.suptitle("Anscombe Data") # note spelling of
"suptitle"

use a tight layout so the plots and titles
don't overlap
fig.set_tight_layout(True)

show the figure
plt.show()

The Anscombe data visualizations illustrate why just looking at
summary statistical values can be misleading. The moment the points are
visualized, it becomes clearer that even though each data set has the same
summary statistical values, the relationships between points vastly differ
across the data sets.

To finish off the Anscombe example, we can add .set_xlabel()
and .set_ylabel() to each of the subplots to add x- and y-axis labels,
just as we added a title to the figure.

3.2.2 Anatomy of a Figure
Before we move on and learn how to create more statistical plots, you
should become familiar with the matplotlib documentation on
“Anatomy of a Figure.”1 I have reproduced its older figure in Figure 3.6,
and the newer figure in Figure 3.7.

Figure 3.6 Matplotlib anatomy of a figure (old version)

Figure 3.7 Matplotlib anatomy of a figure (new version)

1. Anatomy of a matplotlib figure:
https://matplotlib.org/stable/gallery/showcase/ana
tomy.html

One of the most confusing parts of plotting in Python is the use of the
terms “axis” and “axes” especially when trying to verbally describe the

https://matplotlib.org/stable/gallery/showcase/anatomy.html

different parts (since they are pronounced similarly). In the Anscombe
example, each individual subplot plot has axes. The axes contain both an x-
axis and a y-axis. All four subplots together make the figure.

The remainder of the chapter shows you how to create statistical plots,
first with matplotlib and later using a higher-level plotting library that
is based on matplotlib and specifically made for statistical graphics,
seaborn.

Important
Knowing whether or not a plotting function returns one or more axes
or a figure will be important to know when plotting. For example,
you can’t put a figure inside another figure as you can with one
or more axes.

3.3 Statistical Graphics Using matplotlib
The tips data we will be using for the next series of visualizations come
from the seaborn library. This data set contains the amount of the tips
that people leave for various variables. For example, the total cost of the
bill, the size of the party, the day of the week, and the time of day.

We can load this data set just as we did the Anscombe data set.

Click here to view code image

tips = sns.load_data set("tips")
print(tips)

 total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4
..

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0073-01

239 29.03 5.92 Male No Sat Dinner 3
240 27.18 2.00 Female Yes Sat Dinner 2
241 22.67 2.00 Male Yes Sat Dinner 2
242 17.82 1.75 Male No Sat Dinner 2
243 18.78 3.00 Female No Thur Dinner 2

[244 rows x 7 columns]

3.3.1 Univariate (Single Variable)
In statistics jargon, the term “univariate” refers to a single variable.

3.3.1.1 Histograms

Histograms are the most common means of looking at a single variable. The
values are “binned”, meaning they are grouped together and plotted to show
the distribution of the variable (Figure 3.8).

Figure 3.8 Histogram using matplotlib

Click here to view code image

create the figure object
fig = plt.figure()

subplot has 1 row, 1 column, plot location 1
axes1 = fig.add_subplot(1, 1, 1)

make the actual histogram
axes1.hist(data=tips, x='total_bill', bins=10)

add labels
axes1.set_title('Histogram of Total Bill')
axes1.set_xlabel('Frequency')

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0074-01

axes1.set_ylabel('Total Bill')

plt.show()

3.3.2 Bivariate (Two Variables)
In statistics jargon, the term “bivariate” refers to two variables.

3.3.2.1 Scatter Plot

Scatter plots are used when a continuous variable is plotted against another
continuous variable (Figure 3.9).

Figure 3.9 Scatter plot using matplotlib

Click here to view code image

create the figure object
scatter_plot = plt.figure()
axes1 = scatter_plot.add_subplot(1, 1, 1)

make the actual scatter plot
axes1.scatter(data=tips, x='total_bill',
y='tip')

add labels
axes1.set_title('Scatterplot of Total Bill vs
Tip')
axes1.set_xlabel('Total Bill')
axes1.set_ylabel('Tip')

plt.show()

3.3.2.2 Box Plot

Box plots are used when a discrete variable is plotted against a continuous
variable (Figure 3.10).

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0075-01

Figure 3.10 Box plot using matplotlib

Note
A discrete variable is usually something that is countable (using whole
numbers). A continuous variable is usually a something that is
measured and can have a decimal or fractional value.

Click here to view code image

create the figure object
boxplot = plt.figure()
axes1 = boxplot.add_subplot(1, 1, 1)

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0075-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0076-01

make the actual box plot
axes1.boxplot(
 # first argument of box plot is the data
 # since we are plotting multiple pieces of
data
 # we have to put each piece of data into a
list
 x=[
 tips.loc[tips["sex"] == "Female", "tip"],
 tips.loc[tips["sex"] == "Male", "tip"],
],
 # we can then pass in an optional labels
parameter
 # to label the data we passed
 labels=["Female", "Male"],
)

add labels
axes1.set_xlabel('Sex')
axes1.set_ylabel('Tip')
axes1.set_title('Boxplot of Tips by Gender')

plt.show()

3.3.3 Multivariate Data
Plotting multivariate data is tricky because there is not a panacea or
template that can be used for every case. To illustrate the process of plotting
multivariate data, let’s build on our earlier scatter plot.

If we wanted to add another variable, say sex, one option would be to
color the points based on the value of the third variable. If we wanted to
add a fourth variable, we could add size to the dots. The only caveat with

using size as a variable is that humans are not very good at visually
differentiating areas. Sure, if there’s an enormous dot next to a tiny one, the
relationship will be conveyed. But smaller differences are difficult to
distinguish and may add clutter to your visualization. One way to reduce
clutter is to add some value of transparency to the individual points, such
that many overlapping points will show a darker region of a plot than less
crowded areas.

A general convention is that different colors are much easier to
distinguish than changes in size. If you have to use areas to convey
differences in values, be sure that you are actually plotting relative areas. A
common pitfall is to map a value to the radius of a circle for plots, but since
the formula for a circle is πr2, your areas are actually based on a squared
scale. That is not only misleading but wrong.

Colors are also difficult to pick. Humans do not perceive hues on a
linear scale, so you need to think carefully when picking color palettes.
Luckily matplotlib2 and seaborn3 come with their own set of color
palettes. Tools like colorbrewer4 can help you pick good color palettes.
2. matplotlib colormaps:
https://matplotlib.org/stable/tutorials/colors/col
ormaps.html

3. seaborn color palettes:
https://seaborn.pydata.org/tutorial/color_palettes
.html

4. colorbrewer color palettes: http://colorbrewer2.org/

Figure 3.11 uses color to add a third variable, sex, to our scatter plot.
Since our values for sex only contain 2 values: Male and Female, we
need to “map” the values to a color.

https://matplotlib.org/stable/tutorials/colors/colormaps.html
https://seaborn.pydata.org/tutorial/color_palettes.html
http://colorbrewer2.org/

Figure 3.11 Matplotlib scatter plot with sex for the point color and size
as point size

Click here to view code image

assign color values
colors = {
 "Female": "#f1a340", # orange
 "Male": "#998ec3", # purple
}

scatter_plot = plt.figure()
axes1 = scatter_plot.add_subplot(1, 1, 1)

axes1.scatter(

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0077-02

 data=tips,
 x='total_bill',
 y='tip',

 # set the size of the dots based on party size
 # we multiply the values by 10 to make the
points bigger
 # and also to emphasize the difference
 s=tips["size"] ** 2 * 10,

 # set the color for the sex using our color
values above
 c=tips['sex'].map(colors),

 # set the alpha so points are more transparent
 # this helps with overlapping points
 alpha=0.5
)

label the axes
axes1.set_title('Colored by Sex and Sized by
Size')
axes1.set_xlabel('Total Bill')
axes1.set_ylabel('Tip')

figure title on top
scatter_plot.suptitle("Total Bill vs Tip")

plt.show()

matplotlib is an imperative plotting library. We’ll see how other
declarative plotting libraries allow us to make exploratory plots.

3.4 Seaborn
matplotlib is a core plotting tool in Python. seaborn builds on
matplotlib by providing a higher-level declarative interface for
statistical graphics. It gives us the ability to create more complex
visualizations with fewer lines of code. The seaborn library is tightly
integrated with the pandas library and the rest of the PyData stack
(numpy, scipy, statsmodels, etc.), making visualizations from any
part of the data analysis easier. Since seaborn is built on top of
matplotlib, the user can still fine-tune the visualizations.

We’ve already loaded the seaborn library to access its data sets.

Click here to view code image

load seaborn if you have not done so already
import seaborn as sns

tips = sns.load_data set("tips")

You will be able to look up all the seaborn plotting function
documentation from the official seaborn site and then going to the API
reference.5

5. seaborn website: https://seaborn.pydata.org/

For print, we are also going to set the "paper" context, to change
some of the default font size, line width, axis tics, etc.

Click here to view code image

set the default seaborn context optimized for
paper print
the default is "notebook"
sns.set_context("paper")

3.4.1 Univariate

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0078-02
https://seaborn.pydata.org/
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0078-03

Just like we did with the matplotlib examples, we will make a series of
univariate plots.

3.4.1.1 Histogram

Histograms are created using sns.histplot() (Figure 3.12).

Figure 3.12 Seaborn histplot

Instead of two separate steps of creating an empty figure, and then
specifying the individual axes subplots, We can create the figure with all
the axes in a single step with the subplots() function. By default it will
return two things back. The first thing will be the figure object, the second
will be all the axes objects. We can then use the Python multiple
assignment syntax to assign the parts to variables in a single step
(Appendix Q).

From there we can use the Figure and axes objects just like before.

Click here to view code image

the subplots function is a shortcut for
creating separate figure objects and
adding individual subplots (axes) to the
figure
hist, ax = plt.subplots()

use seaborn to draw a histogram into the axes
sns.histplot(data=tips, x="total_bill", ax=ax)

use matplotlib notation to set a title
ax.set_title('Total Bill Histogram')

use matplotlib to show the figure
plt.show()

3.4.1.2 Density Plot (Kernel Density Estimation)

Density plots are another way to visualize a univariate distribution (Figure
3.13). In essence, they are created by drawing a normal distribution
centered at each data point, then smoothing out the overlapping plots so that
the area under the curve is 1.

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0079-02

Figure 3.13 Seaborn kde plot

Click here to view code image

den, ax = plt.subplots()

sns.kdeplot(data=tips, x="total_bill", ax=ax)

ax.set_title('Total Bill Density')
ax.set_xlabel('Total Bill')
ax.set_ylabel('Unit Probability')

plt.show()

3.4.1.3 Rug Plot

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0080-02

Rug plots are a one-dimensional representation of a variable’s distribution.
They are typically used with other plots to enhance a visualization. Figure
3.14 shows a histogram overlaid with a density plot and a rug plot on the
bottom.

Figure 3.14 Seaborn rug plot with histogram

Click here to view code image

rug, ax = plt.subplots()

plot 2 things into the axes we created
sns.rugplot(data=tips, x="total_bill", ax=ax)
sns.histplot(data=tips, x="total_bill", ax=ax)

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0080-03
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0081-01

ax.set_title("Rug Plot and Histogram of Total
Bill")
ax.set_title("Total Bill")

plt.show()

3.4.1.4 Distribution Plots

The newer sns.displot() function allows us to put together many of
the univariate plots together into a single plot. This is the successor to the
older sns.distplot() function (note the very subtle difference in
spelling).

The sns.displot() function returns a FacetGrid object, not an
axes, so the way we have been creating a figure and plotting the axes does
not apply to this particular function. The benefit of it returning a more
complex object is how it can plot multiple things at the same time. Figure
3.15 shows how we can combine many of the distribution figures into a
single figure.

Figure 3.15 Seaborn distribution plot showing histogram, kde, and rug
plots

Click here to view code image

the FacetGrid object creates the figure and
axes for us
fig = sns.displot(data=tips, x="total_bill",
kde=True, rug=True)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0081-02

fig.set_axis_labels(x_var="Total Bill",
y_var="Count")
fig.figure.suptitle('Distribution of Total
Bill')

plt.show()

3.4.1.5 Count Plot (Bar Plot)

Bar plots are very similar to histograms, but instead of binning values to
produce a distribution, bar plots can be used to count discrete variables.
Seaborn calls this a count plot (Figure 3.16).

Figure 3.16 Seaborn count plot (i.e., bar plot) using the viridis color
palette

Click here to view code image

count, ax = plt.subplots()

we can use the viridis palette to help
distinguish the colors
sns.countplot(data=tips, x='day',
palette="viridis", ax=ax)

ax.set_title('Count of days')
ax.set_xlabel('Day of the Week')
ax.set_ylabel('Frequency')

plt.show()

Note
The viridis color palette was designed by Stéfan van der Walt and
Nathaniel Smith to be colorblind friendly, and also be distinguishable
in greyscale. They presented this color palette at the SciPy 2015
Conference, “A Better Default Colormap for Matplotlib”
https://www.youtube.com/watch?v=xAoljeRJ3lU

3.4.2 Bivariate Data
We will now use the seaborn library to plot two variables.

3.4.2.1 Scatter Plot

There are a few ways to create a scatter plot in seaborn. The main
difference is the type of object that gets created, an Axes or FacetGrid

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0083-01
https://www.youtube.com/watch?v=xAoljeRJ3lU

(i.e., type of Figure). sns.scatterplot() returns an Axes object
(Figure 3.17).

Figure 3.17 Seaborn scatter plot using sns.scatterplot()

Click here to view code image

scatter, ax = plt.subplots()

use fit_reg=False if you do not want the
regression line
sns.scatterplot(data=tips, x='total_bill',
y='tip', ax=ax)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0084-02

ax.set_title('Scatter Plot of Total Bill and
Tip')
ax.set_xlabel('Total Bill')
ax.set_ylabel('Tip')

plt.show()

We can also use sns.regplot() to create a scatter plot and also
draw a regression line (Figure 3.18).

Figure 3.18 Seaborn scatter plot using sns.regplot()

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0084-03

reg, ax = plt.subplots()

use fit_reg=False if you do not want the
regression line
sns.regplot(data=tips, x='total_bill', y='tip',
ax=ax)

ax.set_title('Regression Plot of Total Bill and
Tip')
ax.set_xlabel('Total Bill')
ax.set_ylabel('Tip')

plt.show()

A similar function, sns.lmplot(), can also create scatter plots.
Internally, sns.lmplot() calls sns.regplot(), so
sns.regplot() is a more general plotting function. The main
difference is that sns.regplot() creates an axes object whereas
sns.lmplot() creates a figure object (See Section 3.2.2 for the parts
of a figure). Figure 3.19 creates a scatter plot with a regression line, but
creates the figure object directly, similar to the FacetGrid from
sns.displot() in Section 3.4.1.4.

Figure 3.19 Seaborn scatter plot using sns.lmplot()

Click here to view code image

use if you do not want the regression line
fig = sns.lmplot(data=tips, x='total_bill',
y='tip')

plt.show()

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0085-02

3.4.2.2 Joint Plot

We can also create a scatter plot that includes a univariate plot on each axis
using sns.jointplot() (Figure 3.20). One major difference is that
sns.jointplot() does not return axes, so we do not need to create a
figure with axes on which to place our plot. Instead, this function creates a
JointGrid object. If we need access to the base matplotlib
Figure object, we use the .figure attribute.

Figure 3.20 Seaborn scatter plot using sns.jointplot()

Click here to view code image

jointplot creates the figure and axes for us
joint = sns.jointplot(data=tips, x='total_bill',
y='tip')

joint.set_axis_labels(xlabel='Total Bill',
ylabel='Tip')

add a title and move the text up so it doesn't
clash with histogram
joint.figure.suptitle('Joint Plot of Total Bill
and Tip', y=1.03)

plt.show()

3.4.2.3 Hexbin Plot

Scatter plots are great for comparing two variables. However, sometimes
there are too many points for a scatter plot to be meaningful. One way to
get around this issue is to bin and aggregate nearby points on the plot
together. Just as histograms can bin a variable to create a bar, hexbin plots
can bin two variables (Figure 3.21). A hexagon is used for this purpose
because it is the most efficient shape to cover an arbitrary 2D surface. This
is an example of seaborn building on top of matplotlib, as
hexbin() is a matplotlib function.

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0086-02

Figure 3.21 Seaborn hexbin plot using sns.jointplot()

Click here to view code image

we can use jointplot with kind="hex" for a
hexbin plot
hexbin = sns.jointplot(
 data=tips, x="total_bill", y="tip", kind="hex"
)

hexbin.set_axis_labels(xlabel='Total Bill',
ylabel='Tip')
hexbin.figure.suptitle('Hexbin Plot of Total
Bill and Tip', y=1.03)

plt.show()

3.4.2.4 2D Density Plot

You can also create a 2D kernel density plot. This kind of process is similar
to how sns.kdeplot() works, except it creates a density plot across
two variables. The bivariate plot can be shown on its own (Figure 3.22).

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0088-02

Figure 3.22 Seaborn KDE plot using sns.kdeplot()

Click here to view code image

kde, ax = plt.subplots()

shade will fill in the contours
sns.kdeplot(data=tips, x="total_bill", y="tip",
shade=True, ax=ax)

ax.set_title('Kernel Density Plot of Total Bill
and Tip')
ax.set_xlabel('Total Bill')
ax.set_ylabel('Tip')

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0088-03

plt.show()

sns.jointplot() will also allow us to create KDE plots (Figure
3.23).

Figure 3.23 Seaborn KDE plot using sns.jointplot()

Click here to view code image

kde2d = sns.jointplot(data=tips, x="total_bill",
y="tip", kind="kde")

kde2d.set_axis_labels(xlabel='Total Bill',
ylabel='Tip')
kde2d.fig.suptitle('2D KDE Plot of Total Bill
and Tip', y=1.03)

plt.show()

3.4.2.5 Bar Plot

Bar plots can also be used to show multiple variables. By default,
sns.barplot() will calculate a mean (Figure 3.24), but you can pass
any function into the estimator parameter. For example, you could pass
in the np.mean() function to calculate the mean using the version from
the numpy library.

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0089-02

Figure 3.24 Seaborn bar plot using the np.mean() function

Click here to view code image

import numpy as np

bar, ax = plt.subplots()

plot the average total bill for each value of
time
mean is calculated using numpy
sns.barplot(
 data=tips, x="time", y="total_bill",
estimator=np.mean, ax=ax
)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0090-02

ax.set_title('Bar Plot of Average Total Bill for
Time of Day')
ax.set_xlabel('Time of Day')
ax.set_ylabel('Average Total Bill')

plt.show()

3.4.2.6 Box Plot

Unlike the previously mentioned plots, a box plot (Figure 3.25) shows
multiple statistics: the minimum, first quartile, median, third quartile,
maximum, and, if applicable, outliers based on the interquartile range.

Figure 3.25 Seaborn box plot of total bill by time of day

The y parameter in sns.boxplot() is optional. If it is omitted, the
plotting function will create a single box in the plot.

Click here to view code image

box, ax = plt.subplots()

the y is optional, but x would have to be a
numeric variable
sns.boxplot(data=tips, x='time', y='total_bill',
ax=ax)

ax.set_title('Box Plot of Total Bill by Time of
Day')
ax.set_xlabel('Time of Day')
ax.set_ylabel('Total Bill')

plt.show()

3.4.2.7 Violin Plot

Box plots are a classical statistical visualization, but they can obscure the
underlying distribution of the data. Violin plots (Figure 3.26) can show the
same values as a box plot, but plot the “boxes” as a kernel density
estimation. This can help retain more visual information about your data
since only plotting summary statistics can be misleading, as seen by the
Anscombe quartet (Section 3.2.1).

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0091-02

Figure 3.26 Seaborn violin plot of total bill by time of day

Click here to view code image

violin, ax = plt.subplots()

sns.violinplot(data=tips, x='time',
y='total_bill', ax=ax)

ax.set_title('Violin plot of total bill by time
of day')
ax.set_xlabel('Time of day')
ax.set_ylabel('Total Bill')

plt.show()

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0091-03

We can now see how the violin plot is related to the box plot. In Figure
3.27, we will create a single figure with 2 axes (i.e., subplots).

Figure 3.27 Comparing box plots with violin plots

Click here to view code image

create the figure with 2 subplots
box_violin, (ax1, ax2) = plt.subplots(nrows=1,
ncols=2)

sns.boxplot(data=tips, x='time', y='total_bill',
ax=ax1)
sns.violinplot(data=tips, x='time',
y='total_bill', ax=ax2)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0092-02

set the titles
ax1.set_title('Box Plot')
ax1.set_xlabel('Time of day')
ax1.set_ylabel('Total Bill')

ax2.set_title('Violin Plot')
ax2.set_xlabel('Time of day')
ax2.set_ylabel('Total Bill')

box_violin.suptitle("Comparison of Box Plot with
Violin Plot")

space out the figure so labels do not overlap
box_violin.set_tight_layout(True)

plt.show()

3.4.2.8 Pairwise Relationships

When you have mostly numeric data, visualizing all of the pairwise
relationships can be performed using sns.pairplot(). This function
will plot a scatter plot between each pair of variables, and a histogram for
the univariate data (Figure 3.28).

Figure 3.28 Seaborn pair plot

Click here to view code image

fig = sns.pairplot(data=tips)

fig.figure.suptitle(
 'Pairwise Relationships of the Tips Data',
y=1.03
)

plt.show()

One drawback when using sns.pairplot() is that there is
redundant information; that is, the top half of the visualization is the same
as the bottom half. We can use sns.PairGrid() to manually assign the
plots for the top half and bottom half. This plot is shown in Figure 3.29.

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0093-02

Figure 3.29 Seaborn pair plot with different plots on the upper and
lower halves

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0093-03

create a PairGrid, make the diagonal plots on
a different scale
pair_grid = sns.PairGrid(tips,
diag_sharey=False)

set a separate function to plot the upper,
bottom, and diagonal
functions need to return an axes, not a figure

we can use plt.scatter instead of sns.regplot
pair_grid = pair_grid.map_upper(sns.regplot)
pair_grid = pair_grid.map_lower(sns.kdeplot)
pair_grid = pair_grid.map_diag(sns.histplot)

plt.show()

3.4.3 Multivariate Data
As mentioned in Section 3.3.3, there is no de facto template for plotting
multivariate data. Possible ways to include more information are to use
color, size, or shape to distinguish data within the plot.

3.4.3.1 Colors

When we are using sns.violinplot(), we can pass the hue
parameter to color the plot by sex. We can reduce the redundant
information by having each half of the violins represent a different sex, as
shown in Figure 3.30. Try the following code with and without the split
parameter.

Figure 3.30 Seaborn violin plot with hue parameter

Click here to view code image

violin, ax = plt.subplots()

sns.violinplot(
 data=tips,
 x="time",
 y="total_bill",
 hue="smoker", # set color based on smoker
variable
 split=True,
 palette="viridis", # palette specifies the
colors for hue

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0095-02

 ax=ax,
)

plt.show()

The hue parameter can be passed into various other plotting functions
as well. Figure 3.31 shows its use in a sns.lmplot().

Figure 3.31 Seaborn lmplot plot with hue parameter

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0096-03

note the use of lmplot instead of regplot to
return a figure
scatter = sns.lmplot(
 data=tips,
 x="total_bill",
 y="tip",
 hue="smoker",
 fit_reg=False,
 palette="viridis",
)

plt.show()

We can make our pairwise plots a little more meaningful by passing one
of the categorical variables as the hue parameter. Figure 3.32 shows this
approach in our sns.pairplot().

Figure 3.32 Seaborn pair plot with hue parameter

Click here to view code image

fig = sns.pairplot(
 tips,
 hue="time",

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0096-04

 palette="viridis",

 height=2, # facet height to make the entire
figure smaller
)

plt.show()

3.4.3.2 Size and Shape

Working with point sizes can be another means of adding more information
to a plot. However, this option should be used sparingly, since the human
eye is not very good at comparing areas. Figure 3.33 shows using the hue
for color and size for point sizes in the sns.scatterplot() function.

Figure 3.33 Scatter plot of tip vs total bill, colored by time of day, and
sized by table size

Click here to view code image

fig, ax = plt.subplots()

sns.scatterplot(
 data=tips,
 x="total_bill",
 y="tip",
 hue="time",
 size="size",
 palette="viridis",
 ax=ax,
)

plt.show()

3.4.4 Facets
What if we want to show more variables? Or if we know which plot we
want for our visualization, but we want to make multiple plots over a
categorical variable? Facets are designed to meet these needs. Instead of
individually subsetting data and lay out the axes in a figure (as we did in
Figure 3.5), facets in seaborn can handle this work for you.

To use facets, your data needs to be what Hadley Wickham6 calls “Tidy
Data,”7 where each row represents an observation in the data, and each
column is a variable. More about tidy data is discussed in Chapter 4.
6. Hadley Wickham, PhD: http://hadley.nz

7. Tidy Data paper: http://vita.had.co.nz/papers/tidy-
data.pdf

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0097-03
http://hadley.nz/
http://vita.had.co.nz/papers/tidy-data.pdf

3.4.4.1 One Facet Variable

Figure 3.34 shows a re-creation of the Anscombe quartet data from Figure
3.5 in seaborn. The trick to faceted plots in seaborn is to look for the
col or row parameter in the plotting function. Here, we use
sns.relplot() to make our faceted scatter plot (the sns.
scatterplot() documentation also points to use sns.relplot()
for facets).

Figure 3.34 Seaborn Anscombe plot with facets

Figure 3.35 Seaborn tips scatter plot with hue, style, and facets

Click here to view code image

anscombe_plot = sns.relplot(
 data=anscombe,
 x="x",
 y="y",
 kind="scatter",
 col="data set",

 col_wrap=2,
 height=2,
 aspect=1.6, # aspect ratio of each facet
)

anscombe_plot.figure.set_tight_layout(True)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0099-02

plt.show()

The col parameter is the variable that the plot will facet by, and the
col_wrap parameter creates a figure that has two columns. If we do not
use the col_wrap parameter, all four plots will be plotted in the same
row.

3.4.4.2 Two Facet Variables

We can build on this to incorporate two categorical variables into our
faceted plot. Additional categorical variables can be passed into the hue,
style, etc. parameters.

Click here to view code image

'''python
colors = {
 "Yes": "#f1a340", # orange
 "No" : "#998ec3", # purple
}
make the faceted scatter plot
this is the only part that is needed to draw
the figure
facet2 = sns.relplot(
 data=tips,
 x="total_bill",
 y="tip",
 hue="smoker",
 style="sex",

 kind="scatter",
 col="day",
 row="time",
 palette=colors,

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0100-03

 height=1.7, # adjusted to fit figure on page
)

below is to make the plot pretty
adjust facet titles
facet2.set_titles(
 row_template="{row_name}",
 col_template="{col_name}"
)

adjust the legend to not have it overlap the
figure
sns.move_legend(
 facet2,
 loc="lower center",
 bbox_to_anchor=(0.5, 1),
 ncol=2, #number legend columns
 title=None, #legend title
 frameon=False, #remove frame (i.e., border
box) around legend
)

facet2.figure.set_tight_layout(True)

plt.show()'''

3.4.4.3 Manually Create Facets

Many of the plots we created in seaborn are axes-level functions. What
this means is that not every plotting function will have col and
col_wrap parameters for faceting. Instead, we must create a
FacetGrid that knows which variable to facet on, and then supply the
individual plot code for each facet. Figure 3.36 shows our manually created
facet plot.

Figure 3.36 Seaborn plot with manually created facets

Danger
If you can, use one of the seaborn plotting functions that returns a
figure object with row and col parameters to facet (e.g.,
sns.relplot() or sns.catplot()). You should opt to use
those functions instead of manually creating a FacetGrid object.
Many of the seaborn plotting functions will point to a different
seaborn function if you want to facet.

Click here to view code image

create the FacetGrid
facet = sns.FacetGrid(tips, col='time')

for each value in time, plot a histogram of
total bill
you pass in parameters as if you were passing
them directly
into sns.histplot()

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0102-01

facet.map(sns.histplot, 'total_bill')
plt.show()

The individual facets need not be univariate plots, as seen in Figure
3.37.

Figure 3.37 Seaborn plot with manually created facets that contain
multiple variables

Click here to view code image

facet = sns.FacetGrid(
 tips, col='day', hue='sex', palette="viridis"
)
facet.map(plt.scatter, 'total_bill', 'tip')
facet.add_legend()
plt.show()

Another thing you can do with facets is to have one variable be faceted
on the x-axis, and another variable faceted on the y-axis. We accomplish
this by passing a row parameter. The result is shown in Figure 3.38.

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0103-01

Figure 3.38 Seaborn plot with manually created facets with two
variables

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0103-02

facet = sns.FacetGrid(
 tips, col='time', row='smoker', hue='sex',
palette="viridis"
)
facet.map(plt.scatter, 'total_bill', 'tip')
plt.show()

If you do not want all of the hue elements to overlap (i.e., you want this
behavior in scatter plots, but not violin plots), you can use the
sns.catplot() function. The result is shown in Figure 3.39.

Figure 3.39 Seaborn plot with manually created facets with two non-
overlapping variables

facet = sns.catplot(
 x="day",

 y="total_bill",
 hue="sex",
 data=tips,
 row="smoker",
 col="time",
 kind="violin",
)
plt.show()

3.4.5 Seaborn Styles and Themes
The seaborn plots shown in this chapter have all used the default plot
styles. We can change the plot style with the sns.set_style function.
Typically, this function is run just once at the top of your code; all
subsequent plots will use the same style set.

3.4.5.1 Styles

The styles that come with seaborn are darkgrid, whitegrid, dark,
white, and ticks. Figure 3.40 shows a base plot, and Figure 3.41 shows
a plot with the whitegrid style.

Figure 3.40 Baseline violin plot with default seaborn style

Figure 3.41 Violin plot with "darkgrid" seaborn style

The with block allow us to temporarily use a style without setting it as
a default for all subsequent plots. If you want to set the style as a default
you would use sns.set_style("whitegrid") instead of the with
block.

Click here to view code image

initial plot for comparison
fig, ax = plt.subplots()
sns.violinplot(
 data=tips, x="time", y="total_bill",
hue="sex", split=True, ax=ax
)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0105-02

plt.show()

Use this to set a global default style
sns.set_style("whitegrid")

temporarily set style and plot
remove the with line + indentation if using
sns.set_style()
with sns.axes_style("darkgrid"):

 fig, ax = plt.subplots()
 sns.violinplot(
 data=tips, x="time", y="total_bill",
hue="sex", split=True, ax=ax
)

plt.show()

The following code shows what all the styles look like (Figure 3.42).

Figure 3.42 All seaborn styles

Click here to view code image

seaborn_styles = ["darkgrid", "whitegrid",
"dark", "white", "ticks"]

fig = plt.figure()
for idx, style in enumerate(seaborn_styles):
 plot_position = idx + 1
 with sns.axes_style(style):
 ax = fig.add_subplot(2, 3, plot_position)
 violin = sns.violinplot(
 data=tips, x="time", y="total_bill", ax=ax

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0106-03

)
 violin.set_title(style)
fig.set_tight_layout(True)
plt.show()

3.4.5.2 Plotting Contexts

The seaborn library comes with a set of contexts that quickly tweak
various parts of the figure (text size, line width, axis tick size, etc.) for
different “contexts.” This chapter uses the "paper" context since it is
made for printed text, but the default context is "notebook". Below you
will see the various parameters set for each context, and Figure 3.43 shows
a quick preview of each context.

Figure 3.43 Example of seaborn figure contexts

Click here to view code image

contexts = pd.DataFrame(
 {
 "paper": sns.plotting_context("paper"),
 "notebook":
sns.plotting_context("notebook"),
 "talk": sns.plotting_context("talk"),
 "poster": sns.plotting_context("poster"),
 }
)
print(contexts)

 paper notebook talk poster
axes.linewidth 1.0 1.25 1.875 2.5
grid.linewidth 0.8 1.00 1.500 2.0
lines.linewidth 1.2 1.50 2.250 3.0
lines.markersize 4.8 6.00 9.000 12.0
patch.linewidth 0.8 1.00 1.500 2.0
xtick.major.width 1.0 1.25 1.875 2.5
ytick.major.width 1.0 1.25 1.875 2.5
xtick.minor.width 0.8 1.00 1.500 2.0
ytick.minor.width 0.8 1.00 1.500 2.0

xtick.major.size 4.8 6.00 9.000 12.0
ytick.major.size 4.8 6.00 9.000 12.0
xtick.minor.size 3.2 4.00 6.000 8.0
ytick.minor.size 3.2 4.00 6.000 8.0
font.size 9.6 12.00 18.000 24.0
axes.labelsize 9.6 12.00 18.000 24.0
axes.titlesize 9.6 12.00 18.000 24.0
xtick.labelsize 8.8 11.00 16.500 22.0
ytick.labelsize 8.8 11.00 16.500 22.0

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0107-02

legend.fontsize 8.8 11.00 16.500 22.0
legend.title_fontsize 9.6 12.00 18.000 24.0

context_styles = contexts.columns

fig = plt.figure()
for idx, context in enumerate(context_styles):
 plot_position = idx + 1
 with sns.plotting_context(context):
 ax = fig.add_subplot(2, 2, plot_position)
 violin = sns.violinplot(
 data=tips, x="time", y="total_bill", ax=ax
)
 violin.set_title(context)
fig.set_tight_layout(True)
plt.show()

3.4.6 How to Go Through Seaborn Documentation
Throughout this chapter discussing seaborn plotting, we’ve talked about
different plotting objects that come out of the matplotlib library, mainly
the Axes and Figure objects. For all plotting libraries that build on top of
matplotlib, it’s important to know how to read aspects of the
documentation, so you can customize your plots to your liking.

Let’s use the violin plot (Figure 3.27) and pair plot (Figure 3.28) in
Section 3.4.2.7 and Section 3.4.2.8 as examples of how to walk through
object documentation.

3.4.6.1 Matplotlib Axes Objects

A snippet of the code for Figure 3.27 is below:

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0109-01

box_violin, (ax1, ax2) = plt.subplots(nrows=1,
ncols=2)

sns.boxplot(data=tips, x='time', y='total_bill',
ax=ax1)
sns.violinplot(data=tips, x='time',
y='total_bill', ax=ax2)

ax1.set_title('Box Plot')
ax1.set_xlabel('Time of day')
ax1.set_ylabel('Total Bill')

ax2.set_title('Violin Plot')
ax2.set_xlabel('Time of day')
ax2.set_ylabel('Total Bill')

box_violin.suptitle("Comparison of Box Plot with
Violin Plot")

box_violin.set_tight_layout(True)
plt.show()

In this particular example, if we look up the documentation for the
sns.violinplot(), we will see that the function returns a
matplotlib Axes object.

Returns ax : matplotlib Axes

Click here to view code image

Returns the Axes object with the plot drawn onto
it.

We can also confirm that the ax2 object we created is an Axes object:

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0109-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0109-03

print(type(ax2))

<class 'matplotlib.axes._subplots.AxesSubplot'>

Since the Axes object is from matplotlib, if we want to make
additional tweaks to the figure outside of the sns.violinplot()
function, we would need to look into the matplotlib.axes
documentation.8 This is where you would find the documentation for the
.set_title() method that was used to create the figure title.
8. Axes API docs:
https://matplotlib.org/stable/api/axes_api.html#mo
dule-matplotlib.axes

3.4.6.2 Matplotlib Figure Objects

Using the same reproduced code for Figure 3.27 above, we can see the
type() of the box_violin object we created and go to the Figure
documentation.9

9. Figure API docs:
https://matplotlib.org/stable/api/figure_api.html#
module-matplotlib.figure

Click here to view code image

print(type(box_violin))

<class 'matplotlib.figure.Figure'>

This is where we can find the .suptitle() method used to add the
overall title to the figure.

3.4.6.3 Custom Seaborn Objects

The code for Figure 3.28 is reproduced below:

Click here to view code image

https://matplotlib.org/stable/api/axes_api.html#module-matplotlib.axes
https://matplotlib.org/stable/api/figure_api.html#module-matplotlib.figure
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0110-01
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0110-02

fig = sns.pairplot(data=tips)
fig.figure.suptitle(
 'Pairwise Relationships of the Tips Data',
y=1.03
)
plt.show()

This is an example of an object specific to seaborn, the PairGrid
object.10

10. seaborn.PairGrid docs:
https://seaborn.pydata.org/generated/seaborn.PairG
rid.html

Click here to view code image

print(type(fig))

<class 'seaborn.axisgrid.PairGrid'>

If we scroll down to the bottom of the documentation page, we can see
all the attributes and methods for the PairGrid object. However, we
know that .suptitle() is a matplotlib.Figure method. From the
API documentation at the bottom of the page, we can see how we can
access the underlying Figure object by using the .figure attribute.
This is why we needed to write .figure.suptitle() to take the
sns.FacetGrid object, access the matplotlib.Figure object, then
the .subtitle() method.

3.4.7 Next-Generation Seaborn Interface

There is a new seaborn interface in the works.11 However, at the time of
writing, the next-gen interface is not official yet. When the official change
occurs and the API is stable, the book’s website will provide the updated
code for the seaborn section.12

https://seaborn.pydata.org/generated/seaborn.PairGrid.html
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0110-03

11. Next-generation seaborn interface:
https://seaborn.pydata.org/nextgen/
12. Pandas for Everyone GitHub Page:
https://github.com/chendaniely/pandas_for_everyone
/

3.5 Pandas Plotting Method
Pandas objects also come equipped with their own plotting functions. Just
as in seaborn, the plotting functions built into Pandas are just wrappers
around matplotlib with preset values. In general, plotting using Pandas
follows the DataFrame.plot.<PLOT_TYPE> or Series.plot.
<PLOT_TYPE> methods.

3.5.1 Histogram
Histograms can be created using the Series.plot.hist() (Figure
3.44) or DataFrame.plot.hist() (Figure 3.45) function.

https://seaborn.pydata.org/nextgen/
https://github.com/chendaniely/pandas_for_everyone/

Figure 3.44 Histogram of a Pandas Series

Figure 3.45 Histogram of a Pandas DataFrame

Click here to view code image

on a series
fig, ax = plt.subplots()
tips['total_bill'].plot.hist(ax=ax)
plt.show()

on a dataframe
set alpha channel transparency to see through
the overlapping bars
fig, ax = plt.subplots()
tips[['total_bill', 'tip']].plot.hist(alpha=0.5,
bins=20, ax=ax)
plt.show()

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0111-02

3.5.2 Density Plot
The kernel density estimation (density) plot can be created with the
DataFrame.plot. kde() function (Figure 3.46).

Figure 3.46 Pandas KDE plot

fig, ax = plt.subplots()
tips['tip'].plot.kde(ax=ax)
plt.show()

3.5.3 Scatter Plot
Scatter plots are created by using the DataFrame.plot.scatter()
function (Figure 3.47).

Figure 3.47 Pandas scatter plot

Click here to view code image

fig, ax = plt.subplots()
tips.plot.scatter(x='total_bill', y='tip',
ax=ax)
plt.show()

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0113-02

3.5.4 Hexbin Plot
Hexbin plots are created using the Dataframe.plt.hexbin()
function (Figure 3.48).

Figure 3.48 Pandas hexbin plot

Click here to view code image

fig, ax = plt.subplots()
tips.plot.hexbin(x='total_bill', y='tip', ax=ax)
plt.show()

Grid size can be adjusted with the gridsize parameter (Figure 3.49).

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0113-03

Figure 3.49 Pandas hexbin plot with modified grid size

Click here to view code image

fig, ax = plt.subplots()
tips.plot.hexbin(x='total_bill', y='tip',
gridsize=10, ax=ax)
plt.show()

3.5.5 Box Plot
Box plots are created with the DataFrame.plot.box() function
(Figure 3.50).

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0113-04

Figure 3.50 Pandas box plot

fig, ax = plt.subplots()
ax = tips.plot.box(ax=ax)
plt.show()

Conclusion
Data visualization is an integral part of exploratory data analysis and data
presentation. This chapter provided an introduction to the various ways to
explore and present your data. As we continue through the book, we will
learn about more complex visualizations.

There are myriad plotting and visualization resources available on the
Internet. The seaborn documentation, Pandas visualization
documentation, and matplotlib documentation all provide ways to
further tweak your plots (e.g., colors, line thickness, legend placement,
figure annotations). Other resources include colorbrewer to help pick

good color schemes. The plotting libraries mentioned in this chapter also
have various color schemes that can be used to highlight the content of your
visualizations.

4

Tidy Data

Hadley Wickham, PhD,1 one of the more prominent members of the R
community, introduced the concept of tidy data in a Journal of Statistical
Software paper.2 Tidy data is a framework to structure data sets so they can
be easily analyzed and visualized. It can be thought of as a goal one should
aim for when cleaning data. Once you understand what tidy data is, that
knowledge will make your data analysis, visualization, and collection much
easier.
1. Hadley Wickham, PhD: http://hadley.nz

2. Tidy Data paper: http://vita.had.co.nz/papers/tidy-
data.pdf

What is tidy data? Hadley Wickham’s paper defines it as meeting the
following criteria: (1) Each row is an observation, (2) Each column is a
variable, and (3) Each type of observational unit forms a table.

The newer definition from the R4DS book3 focuses on an individual
data set (i.e., table):
3. R For Data Science Book: https://r4ds.had.co.nz/tidy-
data.html

1. Each variable must have its own column.
2. Each observation must have its own row.
3. Each value must have its own cell.

This chapter goes through the various ways to tidy data using examples
from Wickham’s paper.

Learning Objectives

http://hadley.nz/
http://vita.had.co.nz/papers/tidy-data.pdf
https://r4ds.had.co.nz/tidy-data.html

The concept map for this chapter can be found in Figure A.4.

Identify the components of tidy data
Identify common data errors
Use functions and methods to process and tidy data

Note About This Chapter
Data used in this chapter will have NaN missing values when they are
loaded into Pandas (Chapter 9). In the raw CSV files, they will appear as
empty values. I typically try to avoid forward referencing in the book, but I
felt that the concept of tidy data warranted a much earlier place in the book
because it is so fundamental to how we should be thinking about data
technically (as opposed to ethically), that the chapter was moved toward the
front of the book without having to cover more detailed data processing
steps first. I could have changed the data sets such that there were no
missing values, but opted not to do so because (1) it would no longer follow
the data used in Wickam’s “Tidy Data” paper, and (2) it would be a less
realistic data set.

4.1 Columns Contain Values, Not Variables
Data can have columns that contain values instead of variables. This is
usually a convenient format for data collection and presentation.

4.1.1 Keep One Column Fixed
We’ll use data on income and religion in the United States from the Pew
Research Center to illustrate how to work with columns that contain values,
rather than variables.

Click here to view code image

import pandas as pd
pew = pd.read_csv('data/pew.csv')

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch04_images.xhtml#f0118-01

When we look at this data set, we can see that not every column is a
variable. The values that relate to income are spread across multiple
columns. The format shown is a great choice when presenting data in a
table, but for data analytics, the table should be reshaped so that we have
religion, income, and count variables.

Click here to view code image

show only the first few columns
print(pew.iloc[:, 0:5])

 religion <$10k $10-20k $20-30k
$30-40k
0 Agnostic 27 34 60
81
1 Atheist 12 27 37
52
2 Buddhist 27 21 30
34
3 Catholic 418 617 732
670
4 Don’t know/refused 15 14 15
11
..
...
13 Orthodox 13 17 23
32
14 Other Christian 9 7 11
13
15 Other Faiths 20 33 40
46
16 Other World Religions 5 2 3
4
17 Unaffiliated 217 299 374

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch04_images.xhtml#f0118-02

365

[18 rows x 5 columns]

This view of the data is also known as “wide” data. To turn it into the
“long” tidy data format, we will have to unpivot/melt/gather (depending on
which statistical programming language we use) our dataframe.

Note
I usually use the terminology from the R world of using “pivot” to
refer to going from wide data to long data and vice versa. I usually will
specify the direction with “pivot longer” to go from wide data to long
data, and “pivot wider” to go from long data to wide data.

In this chapter “pivot longer” will refer to the dataframe .melt()
method, and “pivot wider” will refer to the dataframe .pivot()
method.

Pandas DataFrames have a method called .melt() that will reshape
the dataframe into a tidy format and it takes a few parameters:

id_vars is a container (list, tuple, ndarray) that represents the
variables that will remain as is.
value_vars identifies the columns you want to melt down (or
unpivot). By default, it will melt all the columns not specified in the
id_vars parameter.
var_name is a string for the new column name when the
value_vars is melted down. By default, it will be called
variable.
value_name is a string for the new column name that represents the
values for the var_name. By default, it will be called value.

Click here to view code image

we do not need to specify a value_vars since
we want to pivot

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch04_images.xhtml#f0119-01

all the columns except for the 'religion'
column
pew_long = pew.melt(id_vars='religion')

print(pew_long)

 religion variable
value
0 Agnostic <$10k
27
1 Atheist <$10k
12
2 Buddhist <$10k
27
3 Catholic <$10k
418
4 Don't know/refused <$10k
15
..
...
175 Orthodox Don't know/refused
73
176 Other Christian Don't know/refused
18
177 Other Faiths Don't know/refused
71
178 Other World Religions Don't know/refused
8
179 Unaffiliated Don't know/refused
597

[180 rows x 3 columns]

Note
The .melt() method also exists as a pandas function, pd.melt()

The below two lines of code are equivalent:

Click here to view code image

melt method
pew_long = pew.melt(id_vars='religion')

melt function
pew_long = pd.melt(pew, id_vars='religion')

Internally, the .melt() method redirects the function call to the
Pandas pd.melt() function. The .melt() method notation is
there to make the Pandas API more consistent, and also allows us to
method-chain (Appendix U).

We can change the defaults so that the melted/unpivoted columns are
named.

Click here to view code image

pew_long = pew.melt(
 id_vars="religion", var_name="income",
value_name="count"
)

print(pew_long)

 religion income
count
0 Agnostic <$10k
27
1 Atheist <$10k

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch04_images.xhtml#f0120-01
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch04_images.xhtml#f0120-02

12
2 Buddhist <$10k
27
3 Catholic <$10k
418
4 Don't know/refused <$10k
15
..
...
175 Orthodox Don't know/refused
73
176 Other Christian Don't know/refused
18
177 Other Faiths Don't know/refused
71
178 Other World Religions Don't know/refused
8
179 Unaffiliated Don't know/refused
597

[180 rows x 3 columns]

4.1.2 Keep Multiple Columns Fixed
Not every data set will have one column to hold still while you unpivot the
rest of the columns. As an example, consider the Billboard data set.

Click here to view code image

billboard = pd.read_csv('data/billboard.csv')

look at the first few rows and columns
print(billboard.iloc[0:5, 0:16])

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch04_images.xhtml#f0120-03

 year artist track
time date.entered \
0 2000 2 Pac Baby Don't Cry (Keep...
4:22 2000-02-26
1 2000 2Ge+her The Hardest Part Of ...
3:15 2000-09-02
2 2000 3 Doors Down Kryptonite
3:53 2000-04-08

3 2000 3 Doors Down Loser
4:24 2000-10-21
4 2000 504 Boyz Wobble Wobble
3:35 2000-04-15

 wk1 wk2 wk3 wk4 wk5 wk6 wk7 wk8
wk9 wk10 wk11
0 87 82.0 72.0 77.0 87.0 94.0 99.0 NaN
NaN NaN NaN
1 91 87.0 92.0 NaN NaN NaN NaN NaN
NaN NaN NaN
2 81 70.0 68.0 67.0 66.0 57.0 54.0 53.0
51.0 51.0 51.0
3 76 76.0 72.0 69.0 67.0 65.0 55.0 59.0
62.0 61.0 61.0
4 57 34.0 25.0 17.0 17.0 31.0 36.0 49.0
53.0 57.0 64.0

You can see here that each week has its own column. Again, there is
nothing wrong with this form of data. It may be easy to enter the data in this
form, and it is much quicker to understand what it means when the data is
presented in a table. However, there may be a time when you will need to
melt the data. For example, if you wanted to create a faceted plot of the
weekly ratings, the facet variable would need to be a column in the
dataframe.

Click here to view code image

use a list to reference more than 1 variable
billboard_long = billboard.melt(
 id_vars=["year", "artist", "track", "time",
"date.entered"],
 var_name="week",
 value_name="rating",
)

print(billboard_long)

 year artist
track time \
0 2000 2 Pac Baby Don't Cry
(Keep... 4:22
1 2000 2Ge+her The Hardest Part Of
... 3:15
2 2000 3 Doors Down
Kryptonite 3:53
3 2000 3 Doors Down
Loser 4:24
4 2000 504 Boyz Wobble
Wobble 3:35
...
... ...
24087 2000 Yankee Grey Another Nine
Minutes 3:10
24088 2000 Yearwood, Trisha Real Live
Woman 3:55
24089 2000 Ying Yang Twins Whistle While You
Tw... 4:19
24090 2000 Zombie Nation Kernkraft

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch04_images.xhtml#f0121-02

400 3:30
24091 2000 matchbox twenty
Bent 4:12

 date.entered week rating
0 2000-02-26 wk1 87.0
1 2000-09-02 wk1 91.0
2 2000-04-08 wk1 81.0
3 2000-10-21 wk1 76.0
4 2000-04-15 wk1 57.0
...
24087 2000-04-29 wk76 NaN
24088 2000-04-01 wk76 NaN

24089 2000-03-18 wk76 NaN
24090 2000-09-02 wk76 NaN
24091 2000-04-29 wk76 NaN

[24092 rows x 7 columns]

4.2 Columns Contain Multiple Variables
Sometimes columns in a data set may represent multiple variables. This
format is commonly seen when working with health data, for example. To
illustrate this situation, let’s look at the Ebola data set.

Click here to view code image

ebola =
pd.read_csv('data/country_timeseries.csv')
print(ebola.columns)

Index(['Date', 'Day', 'Cases_Guinea',
'Cases_Liberia',

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch04_images.xhtml#f0122-02

 'Cases_SierraLeone', 'Cases_Nigeria',
'Cases_Senegal',
 'Cases_UnitedStates', 'Cases_Spain',
'Cases_Mali',
 'Deaths_Guinea', 'Deaths_Liberia',
'Deaths_SierraLeone',
 'Deaths_Nigeria', 'Deaths_Senegal',
'Deaths_UnitedStates',
 'Deaths_Spain', 'Deaths_Mali'],
 dtype='object')

print select rows and columns
print(ebola.iloc[:5, [0, 1, 2,10]])

 Date Day Cases_Guinea Deaths_Guinea
0 1/5/2015 289 2776.0 1786.0
1 1/4/2015 288 2775.0 1781.0
2 1/3/2015 287 2769.0 1767.0
3 1/2/2015 286 NaN NaN
4 12/31/2014 284 2730.0 1739.0

The column names Cases_Guinea and Deaths_Guinea actually
contain two variables. The individual status (cases and deaths, respectively)
as well as the country name, Guinea. The data is also arranged in a wide
format that needs to be reshaped (with the .melt() method).

First, let’s fix the problem we know how to fix, by melting the data into
long format.

Click here to view code image

ebola_long = ebola.melt(id_vars=['Date', 'Day'])

print(ebola_long)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch04_images.xhtml#f0122-03

 Date Day variable value
0 1/5/2015 289 Cases_Guinea 2776.0
1 1/4/2015 288 Cases_Guinea 2775.0
2 1/3/2015 287 Cases_Guinea 2769.0
3 1/2/2015 286 Cases_Guinea NaN
4 12/31/2014 284 Cases_Guinea 2730.0
...

1947 3/27/2014 5 Deaths_Mali NaN
1948 3/26/2014 4 Deaths_Mali NaN
1949 3/25/2014 3 Deaths_Mali NaN
1950 3/24/2014 2 Deaths_Mali NaN
1951 3/22/2014 0 Deaths_Mali NaN

[1952 rows x 4 columns]

Conceptually, the column of interest can be split based on the underscore
in the column name, _. The first part will be the new status column, and the
second part will be the new country column. This will require some string
parsing and splitting in Python (more on this in Chapter 11). In Python, a
string is an object, similar to how Pandas has Series and DataFrame
objects. Chapter 2 showed how Series can have methods such as
.mean(), and DataFrames can have methods such as .to_csv().
Strings have methods as well. In this case, we will use the .split()
method that takes a string and “splits” it up based on a given delimiter. By
default, .split() will split the string based on a space, but we can pass
in the underscore, _, in our example. To get access to the string methods,
we need to use the .str. attribute. .str. is a special type of attribute
that Pandas calls an “accessor” because it can “access” string methods (see
Chapter 11 for more on strings). Access to the Python string methods and
allow us to work across the entire column. This will be the key to parting
out the multiple bits of information stored in each value.

4.2.1 Split and Add Columns Individually
We can use the .str accessor to make a call to the .split() method
and pass in the _ understore.

Click here to view code image

get the variable column
access the string methods
and split the column based on a delimiter
variable_split =
ebola_long.variable.str.split('_')

print(variable_split[:5])

0 [Cases, Guinea]
1 [Cases, Guinea]
2 [Cases, Guinea]
3 [Cases, Guinea]
4 [Cases, Guinea]
Name: variable, dtype: object

After we split on the underscore, the values are returned in a list. We can
tell it’s a list by:

1. Knowing about the .split() method on base Python string
objects4

2. Visually seeing the square brackets in the output, []
3. Getting the type() of one of the items in the Series

4. String .split() documentation:
https://docs.python.org/3/library/stdtypes.html#st
r.split

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch04_images.xhtml#f0123-02
https://docs.python.org/3/library/stdtypes.html#str.split
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch04_images.xhtml#f0124-01

the entire container
print(type(variable_split))

<class 'pandas.core.series.Series'>

the first element in the container
print(type(variable_split[0]))

<class 'list'>

Now that the column has been split into various pieces, the next step is
to assign those pieces to a new column. First, however, we need to extract
all the 0-index elements for the status column and the 1-index elements
for the country column. To do so, we need to access the string methods
again, and then use the .get() method to “get” the index we want for
each row.

Click here to view code image

status_values = variable_split.str.get(0)
country_values = variable_split.str.get(1)

print(status_values)

0 Cases
1 Cases
2 Cases
3 Cases
4 Cases
 ...
1947 Deaths
1948 Deaths
1949 Deaths
1950 Deaths

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch04_images.xhtml#f0124-02

1951 Deaths
Name: variable, Length: 1952, dtype: object

Now that we have the vectors we want, we can add them to our
dataframe.

Click here to view code image

ebola_long['status'] = status_values
ebola_long['country'] = country_values

print(ebola_long)

 Date Day variable value
status country
0 1/5/2015 289 Cases_Guinea 2776.0
Cases Guinea
1 1/4/2015 288 Cases_Guinea 2775.0
Cases Guinea
2 1/3/2015 287 Cases_Guinea 2769.0
Cases Guinea
3 1/2/2015 286 Cases_Guinea NaN
Cases Guinea
4 12/31/2014 284 Cases_Guinea 2730.0
Cases Guinea

...
... ...
1947 3/27/2014 5 Deaths_Mali NaN
Deaths Mali
1948 3/26/2014 4 Deaths_Mali NaN
Deaths Mali
1949 3/25/2014 3 Deaths_Mali NaN
Deaths Mali

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch04_images.xhtml#f0124-03

1950 3/24/2014 2 Deaths_Mali NaN
Deaths Mali
1951 3/22/2014 0 Deaths_Mali NaN
Deaths Mali

[1952 rows x 6 columns]

4.2.2 Split and Combine in a Single Step
We can actually do the above steps in a single step. If we look at the
.str.split() method documentation (you can find this by looking by
going to the Pandas API documentation > Series > String Handling
(.str.) > .split() method5), there is a parameter named expand that
defaults to False, but when we set it to True, it will return a
DataFrame where each result of the split is in a separate column, instead
of a Series of list containers.
5. Series.str.split() method documentation:
https://pandas.pydata.org/docs/reference/api/panda
s.Series.str.split.html#pandas.Series.str.split

Click here to view code image

reset our ebola_long data
ebola_long = ebola.melt(id_vars=['Date', 'Day'])

split the column by _ into a dataframe using
expand
variable_split =
ebola_long.variable.str.split('_', expand=True)

print(variable_split)

https://pandas.pydata.org/docs/reference/api/pandas.Series.str.split.html#pandas.Series.str.split
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch04_images.xhtml#f0125-02

 0 1
0 Cases Guinea
1 Cases Guinea
2 Cases Guinea
3 Cases Guinea
4 Cases Guinea
...
1947 Deaths Mali
1948 Deaths Mali
1949 Deaths Mali
1950 Deaths Mali
1951 Deaths Mali

[1952 rows x 2 columns]

From here, we can actually use the Python and Pandas multiple
assignment feature (Appendix Q), to directly assign the newly split
columns into the original DataFrame. Since our output
variable_split returned a DataFrame with two columns, we can
assign two new columns to our ebola_long DataFrame.

Click here to view code image

ebola_long[['status', 'country']] =
variable_split

print(ebola_long)

 Date Day variable value
status country
0 1/5/2015 289 Cases_Guinea 2776.0
Cases Guinea
1 1/4/2015 288 Cases_Guinea 2775.0
Cases Guinea

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch04_images.xhtml#f0126-01

2 1/3/2015 287 Cases_Guinea 2769.0
Cases Guinea
3 1/2/2015 286 Cases_Guinea NaN
Cases Guinea
4 12/31/2014 284 Cases_Guinea 2730.0
Cases Guinea
...
... ...
1947 3/27/2014 5 Deaths_Mali NaN
Deaths Mali
1948 3/26/2014 4 Deaths_Mali NaN
Deaths Mali
1949 3/25/2014 3 Deaths_Mali NaN
Deaths Mali
1950 3/24/2014 2 Deaths_Mali NaN
Deaths Mali
1951 3/22/2014 0 Deaths_Mali NaN
Deaths Mali

[1952 rows x 6 columns]

You can also opt to do this as a concatenation (pd.concat())
function call as well (Chapter 6).

4.3 Variables in Both Rows and Columns
At times, data will be formatted so that variables are in both rows and
columns – that is, in some combination of the formats described in previous
sections of this chapter. Most of the methods needed to tidy up such data
have already been presented (.melt() and some string parsing with the
.str. accessor attribute). What is left to show is what happens if a
column of data actually holds two variables instead of one variable. In this
case, we will have to “pivot” the variable into separate columns, i.e., go
from long data to wide data.

Click here to view code image

weather = pd.read_csv('data/weather.csv')
print(weather.iloc[:5, :11])

 id year month element d1 d2 d3
d4 d5 d6 d7
0 MX17004 2010 1 tmax NaN NaN NaN
NaN NaN NaN NaN
1 MX17004 2010 1 tmin NaN NaN NaN
NaN NaN NaN NaN
2 MX17004 2010 2 tmax NaN 27.3 24.1
NaN NaN NaN NaN
3 MX17004 2010 2 tmin NaN 14.4 14.4
NaN NaN NaN NaN
4 MX17004 2010 3 tmax NaN NaN NaN
NaN 32.1 NaN NaN

The weather data include minimum (tmin) and maximum (tmax)
temperatures recorded for each day (d1, d2, …, d31) of the month
(month). The element column contains variables that need to be pivoted
wider to become new columns, and the day variables need to be melted into
row values.

Again, there is nothing wrong with the data in the current format. It is
simply not in a shape amenable to analysis, although this kind of formatting
can be helpful when presenting data in reports. Let’s first fix the day
values.

Click here to view code image

weather_melt = weather.melt(
 id_vars=["id", "year", "month", "element"],
 var_name="day",
 value_name="temp",
)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch04_images.xhtml#f0126-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch04_images.xhtml#f0127-01

print(weather_melt)

 id year month element day temp
0 MX17004 2010 1 tmax d1 NaN
1 MX17004 2010 1 tmin d1 NaN
2 MX17004 2010 2 tmax d1 NaN
3 MX17004 2010 2 tmin d1 NaN
4 MX17004 2010 3 tmax d1 NaN
..
677 MX17004 2010 10 tmin d31 NaN
678 MX17004 2010 11 tmax d31 NaN
679 MX17004 2010 11 tmin d31 NaN
680 MX17004 2010 12 tmax d31 NaN
681 MX17004 2010 12 tmin d31 NaN

[682 rows x 6 columns]

Next, we need to pivot up the variables stored in the element column.

Click here to view code image

weather_tidy = weather_melt.pivot_table(
 index=['id', 'year', 'month', 'day'],
 columns='element',
 values='temp'
)

print(weather_tidy)

element tmax tmin
id year month day
MX17004 2010 1 d30 27.8 14.5
 2 d11 29.7 13.4
 d2 27.3 14.4

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch04_images.xhtml#f0127-02

 d23 29.9 10.7
 d3 24.1 14.4
...

 11 d27 27.7 14.2
 d26 28.1 12.1
 d4 27.2 12.0
 12 d1 29.9 13.8
 d6 27.8 10.5

[33 rows x 2 columns]

Looking at the pivoted table, we notice that each value in the element
column is now a separate column. We can leave this table in its current
state, but we can also flatten the hierarchical columns.

Click here to view code image

weather_tidy_flat = weather_tidy.reset_index()
print(weather_tidy_flat)

element id year month day tmax tmin
0 MX17004 2010 1 d30 27.8 14.5
1 MX17004 2010 2 d11 29.7 13.4
2 MX17004 2010 2 d2 27.3 14.4
3 MX17004 2010 2 d23 29.9 10.7
4 MX17004 2010 2 d3 24.1 14.4
..
28 MX17004 2010 11 d27 27.7 14.2
29 MX17004 2010 11 d26 28.1 12.1
30 MX17004 2010 11 d4 27.2 12.0
31 MX17004 2010 12 d1 29.9 13.8
32 MX17004 2010 12 d6 27.8 10.5

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch04_images.xhtml#f0128-02

[33 rows x 6 columns]

Likewise, we can apply these methods without the intermediate
dataframe:

Click here to view code image

weather_tidy = (
 weather_melt
 .pivot_table(
 index=['id', 'year', 'month', 'day'],
 columns='element',
 values='temp')
 .reset_index()
)

print(weather_tidy)

element id year month day tmax tmin
0 MX17004 2010 1 d30 27.8 14.5
1 MX17004 2010 2 d11 29.7 13.4
2 MX17004 2010 2 d2 27.3 14.4
3 MX17004 2010 2 d23 29.9 10.7
4 MX17004 2010 2 d3 24.1 14.4

..
28 MX17004 2010 11 d27 27.7 14.2
29 MX17004 2010 11 d26 28.1 12.1
30 MX17004 2010 11 d4 27.2 12.0
31 MX17004 2010 12 d1 29.9 13.8
32 MX17004 2010 12 d6 27.8 10.5

[33 rows x 6 columns]

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch04_images.xhtml#f0128-03

Conclusion
This chapter explored how we can reshape data into a format that is
conducive to data analysis, visualization, and collection. We applied the
concepts in Hadley Wickham’s “Tidy Data” paper to show the various
functions and methods to reshape our data. This is an important skill
because some functions need data to be organized into a certain shape, tidy
or not, to work. Knowing how to reshape your data is an important skill for
both the data scientist and the analyst.

5

Apply Functions

Learning about .apply() is fundamental in the data cleaning process. It
also encapsulates key concepts in programming, mainly writing functions.
The .apply() method takes a function and applies it (i.e., runs it) across
each row or column of a DataFrame without having you write the code
for each element separately.

If you’ve programmed before, then the concept of an apply should be
familiar. It is similar to writing a for loop across each row or column and
calling the function, or making a map() call to a function. In general, this
is the preferred way to apply functions across dataframes, because it
typically is much faster than writing a for loop in Python.

If you haven’t programmed before, then prepare to see how we can
easily incorporate custom calculations that can be easily repeated across our
data.

Learning Objectives
The concept map for this chapter can be found in Figure A.1.

Create and use functions
Use the .apply() method to iteratively perform a calculation across
Series and DataFrames
Identify what parts of a Series and DataFrame are passed into
.apply()
Create vectorized functions using Python decorators

Note About This Chapter

This chapter was also moved up from a later chapter for the second edition.
This is one of the few parts of the book that relies on a completely toy
example to simplify what is going on. Later on, we will be able to build on
the skills taught in this chapter.

5.1 Primer on Functions
Functions are core elements of using the .apply() method. There’s a lot
more information about functions in Appendix O, but here’s a quick
introduction.

Functions are a way to group and reuse Python code. If you are ever in a
situation where you are copying/pasting code and changing a few parts of
the code, then chances are, the copied code can be written into a function.
To create a function, we need to define it (with the def keyword). The
body of a function is indented.

The PEP8 Style Guide for Python Code says to use four spaces for an
indentation. This book uses two spaces for an indentation because of
horizontal space limitations, but I am a new convert to using tabs for
indentation because it creates more accessible code and is friendlier for
people using Braille readers.1
1. Tabs for accessibility:
https://alexandersandberg.com/articles/default-to-
tabs-instead-of-spaces-for-an-accessible-first-
environment/

The basic function skeleton looks like this:

Click here to view code image

def my_function(): # define a new function
called my_function
 # indentation for
 # function code
 pass # this statement is here to make a valid
empty function

https://alexandersandberg.com/articles/default-to-tabs-instead-of-spaces-for-an-accessible-first-environment/
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch05_images.xhtml#f0132-01

Since Pandas is used for data analysis, let’s write some more “useful”
functions:

squares a given value
takes two numbers and calculates their average

Click here to view code image

def my_sq(x):
 """Squares a given value
 """
 return x ** 2

def avg_2(x, y):
 """Calculates the average of 2 numbers
 """
 return (x + y) / 2

The text within the triple quotes """ is a “docstring.” It is the text that
appears when you look up the help documentation about a function. You
can such docstrings to create your own documentation for functions you
write as well.

We’ve been using functions (and methods) throughout this book. If we
want to use functions that we’ve created ourselves, we can call them just
like functions we’ve loaded from a library.

my_calc_1 = my_sq(4)
print(my_calc_1)

16

my_calc_2 = avg_2(10, 20)
print(my_calc_2)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch05_images.xhtml#f0132-02

15.0

5.2 Apply (Basics)
Now that we know how to write functions, how do we use them in Pandas?
When working with DataFrames, it’s more likely that you want to use a
function across rows or columns of your data.

Here’s a mock dataframe of two columns.

Click here to view code image

import pandas as pd

df = pd.DataFrame({"a": [10, 20, 30], "b": [20,
30, 40]})
print(df)

 a b
0 10 20
1 20 30
2 30 40

We can .apply() our functions over a Series (i.e., an individual
column or row).

For didactic purposes, let’s use the function we wrote to square the 'a'
column. In this overly-simplified example, we could have directly squared
the column.

print(df['a'] ** 2)

0 100
1 400
2 900
Name: a, dtype: int64

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch05_images.xhtml#f0133-01

Of course, that would not allow us to use a function we wrote ourselves.

5.2.1 Apply Over a Series
In our example, if we subset a single column or row using a single pair of
square brackets, [], the type() of the object we get back is a Pandas
Series.

Click here to view code image

get the first column
print(type(df['a']))

<class 'pandas.core.series.Series'>

get the first row
print(type(df.iloc[0]))

<class 'pandas.core.series.Series'>

The Series has a method called .apply().2 To use the .apply()
method, we give it the function we want to use across each element in the
Series.
2. Series apply documentation:
https://pandas.pydata.org/docs/reference/api/panda
s.Series.apply.html

For example, if we want to square each value in column a, we can do
the following:

Click here to view code image

apply our square function on the 'a' column
sq = df['a'].apply(my_sq)
print(sq)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch05_images.xhtml#f0133-03
https://pandas.pydata.org/docs/reference/api/pandas.Series.apply.html
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch05_images.xhtml#f0134-01

0 100
1 400
2 900
Name: a, dtype: int64

Note
We do not need the round parentheses, (), when we pass the
function into .apply(), we pass in my_sq instead of my_sq().

In more technical terms, this is called a “function factory,” where
we are giving .apply() a reference to the function we want to use,
but we are not invoking the function at this moment.

Let’s build on this example by writing a function that takes two
parameters. The first parameter will be a value, and the second parameter
will be the exponent to which we’ll raise the value. So far in our my_sq()
function, we’ve “hard-coded” the exponent, 2, to raise our value.

def my_exp(x, e):
 return x ** e

Now, if we want to use our function, we have to provide two parameters
to it.

Click here to view code image

pass in the exponent, 3
cubed = my_exp(2, 3)
print(cubed)

8

if we don't pass in all the parameters
my_exp(2)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch05_images.xhtml#f0134-03

TypeError: my_exp() missing 1 required positional
argument: 'e'

However, if we want to apply the function on our series, we will need to
pass in the second parameter. To do this, we pass the second argument as a
keyword argument into .apply().

Click here to view code image

the exponent, e, to 2
ex = df['a'].apply(my_exp, e=2)
print(ex)

0 100
1 400
2 900
Name: a, dtype: int64

exponent, e, to 3
ex = df['a'].apply(my_exp, e=3)
print(ex)

0 1000
1 8000
2 27000
Name: a, dtype: int64

5.2.2 Apply Over a DataFrame
Now that we’ve seen how to apply functions over a one-dimensional
Series, let’s see how the syntax changes when we are working with
DataFrames. Here is the example DataFrame from earlier:

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch05_images.xhtml#f0135-01
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch05_images.xhtml#f0135-02

df = pd.DataFrame({"a": [10, 20, 30], "b": [20,
30, 40]})
print(df)

 a b
0 10 20
1 20 30
2 30 40

DataFrames typically have at least two dimensions. Thus, when we
apply a function over a dataframe, we first need to specify which axis to
apply the function over–for example, column-by-column or row-by-row.

Let’s first write a function that takes a single value and prints out the
given value. The function below does not have a return statement, All it
is doing is displaying on the screen whatever we pass it.

def print_me(x):
 print(x)

Let’s .apply() this function on our dataframe, The syntax is similar
to using the .apply() method on a Series, but this time we need to
specify whether we want the function to be applied column-wise or row-
wise.

If we want the function to work column-wise, we can pass the axis=0
or axis="index" parameter into .apply(). If we want the function to
work row-wise, we can pass the axis=1 or axis="columns"
parameter into .apply().3

3. I find the “index” and “column” text specification for the axis parameter counter-intuitive, so I
will typically specify using the 0/1 notation with a comment. In practice, you will almost never set
axis=1 or axis="columns" for performance reasons.

5.2.2.1 Column-Wise Operations

Use the axis=0 parameter (the default value) in .apply() when
working with functions in a column-wise manner (i.e., for each column).

df.apply(print_me, axis=0)

0 10
1 20
2 30
Name: a, dtype: int64
0 20
1 30
2 40
Name: b, dtype: int64

 0

 a None
 b None

Compare this output to the following:

print(df['a'])

0 10
1 20
2 30
Name: a, dtype: int64

print(df['b'])

0 20
1 30
2 40
Name: b, dtype: int64

You can see that the outputs are exactly the same. When you apply a
function across a DataFrame (in this case, column-wise with axis=0),
the entire axis (e.g., column) is passed into the first argument of the
function. To illustrate this further, let’s write a function that calculates the
mean (average) of three numbers (each column in our data set contains
values).

def avg_3(x, y, z):
 return (x + y + z) / 3

If we try to apply this function across our columns, we get an error.

Click here to view code image

will cause an error
print(df.apply(avg_3))

TypeError: avg_3() missing 2 required positional
arguments: 'y' and 'z'

From the (last line of the) error message, you can see that the function
takes three arguments (x, y, and z), but we failed to pass in the y and z
(i.e., the second and third) arguments. Again, when we use .apply(), the
entire column is passed into the first argument. For this function to work
with the .apply() method, we will have to rewrite parts of it.

Click here to view code image

def avg_3_apply(col):
 """The avg_3 function but apply compatible
 by taking in all the values as the first
argument
 and parsing out the values within the function
 """
 x = col[0]
 y = col[1]

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch05_images.xhtml#f0137-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch05_images.xhtml#f0137-03

 z = col[2]
 return (x + y + z) / 3

print(df.apply(avg_3_apply))

a 20.0
b 30.0
dtype: float64

Now that we’ve rewritten our function to take in all the column values,
we get two values back after we apply (one for each column of our
DataFrame) and each value represents the average of the three values.

5.2.2.2 Row-Wise Operations

Row-wise operations work just like column-wise operations. The part that
differs is the axis we use. We will now use axis=1 in the .apply()
method. Instead of the entire column being passed into the first argument of
the function, the entire row is used as the first argument.

Since our example dataframe has two columns and three rows, the
avg_3\apply() function we just wrote will not work for row-wise
operations.

Click here to view code image

will cause an error
print(df.apply(avg_3_apply, axis=1))

IndexError: index 2 is out of bounds for axis 0
with size 2

The main issue here is the 'index out of bounds'. We passed
the row of data in as the first argument, but in our function we begin
indexing out of range (i.e., we have only two values in each row, but we
tried to get index 2, which means the third element, and it does not exist). If

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch05_images.xhtml#f0138-01

we wanted to calculate our averages row-wise, we would have to write a
new function to work with two values.

Click here to view code image

def avg_2_apply(row):
 """Taking the average of row value.
 Assuming that there are only 2 values in a
row.
 """
 x = row[0]
 y = row[1]
 return (x + y) / 2

print(df.apply(avg_2_apply, axis=0))

a 15.0
b 25.0
dtype: float64

5.3 Vectorized Functions
When we use .apply(), we are able to make a function work on a
column-by-column or row-by-row basis. In the previous section, Section
5.2, we had to rewrite our function when we wanted to apply it because the
entire column or row was passed into the first parameter of the function.
However, there might be times when it is not feasible to rewrite a function
in this way. We can leverage the .vectorize() function and decorator
to vectorize any function. Vectorizing your code can also lead to
performance gains (Appendix V).

Here’s our toy dataframe:

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch05_images.xhtml#f0138-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch05_images.xhtml#f0138-03

df = pd.DataFrame({"a": [10, 20, 30], "b": [20,
30, 40]})
print(df)

 a b
0 10 20
1 20 30
2 30 40

And here’s our average function, which we can apply on a row-by-row
basis:

def avg_2(x, y):
 return (x + y) / 2

For a vectorized function, we’d like to be able to pass in a vector of
values for x and a vector of values for y, and the results should be the
average of the given x and y values in the same order. In other words, we
want to be able to write avg_2(df['a'], df['y']) and get [15,
25, 35] as a result.

Click here to view code image

print(avg_2(df['a'], df['b']))

0 15.0
1 25.0
2 35.0
dtype: float64

This approach works because the actual calculations within our function
are inherently vectorized. That is, if we add two numeric columns together,
Pandas (and the NumPy library) will automatically perform element-wise
addition. Likewise, when we divide by a scalar, it will “broadcast” the
scalar, and divide each element by the scalar.

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch05_images.xhtml#f0139-02

Let’s change our function and perform a non-vectorizable calculation.

Click here to view code image

import numpy as np

def avg_2_mod(x, y):
 """Calculate the average, unless x is 20
 If the value is 20, return a missing value
 """
 if (x == 20):
 return(np.NaN)
 else:
 return (x + y) / 2

If we run this function, it will cause an error.

Click here to view code image

will cause an error
print(avg_2_mod(df['a'], df['b']))

ValueError: The truth value of a Series is
ambiguous. Use a.empty,
a.bool(), a.item(), a.any() or a.all().

However, if we give it individual numbers instead of a vector, it will
work as expected.

print(avg_2_mod(10, 20))

15.0

print(avg_2_mod(20, 30))

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch05_images.xhtml#f0139-03
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch05_images.xhtml#f0139-04

nan

5.3.1 Vectorize with NumPy
We want to change our function so that when it is given a vector of values,
it will perform the calculations in an element-wise manner. We can do this
by using the vectorize() function from numpy. We pass
np.vectorize() to the function we want to vectorize, to create a new
function.

Click here to view code image

import numpy as np

np.vectorize actually creates a new function
avg_2_mod_vec = np.vectorize(avg_2_mod)

use the newly vectorized function
print(avg_2_mod_vec(df['a'], df['b']))

[15. nan 35.]

This method works well if you do not have the source code for an
existing function. However, if you are writing your own function, you can
use a Python decorator to automatically vectorize the function without
having to create a new function. A decorator is a function that takes another
function as input, and modifies how that function’s output behaves.

Click here to view code image

to use the vectorize decorator
we use the @ symbol before our function
definition
@np.vectorize
def v_avg_2_mod(x, y):

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch05_images.xhtml#f0140-01
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch05_images.xhtml#f0140-02

 """Calculate the average, unless x is 20
 Same as before, but we are using the vectorize
decorator
 """
 if (x == 20):
 return(np.NaN)
 else:
 return (x + y) / 2

we can then directly use the vectorized
function
without having to create a new function
print(v_avg_2_mod(df['a'], df['b']))

[15. nan 35.]

5.3.2 Vectorize with Numba

The numba library4 is designed to optimize Python code, especially
calculations on arrays performing mathematical calculations. Just like
numpy, it also has a vectorize decorator.
4. numba: https://numba.pydata.org/

Click here to view code image

import numba

@numba.vectorize
def v_avg_2_numba(x, y):
 """Calculate the average, unless x is 20
 Using the numba decorator.
 """
 # we now have to add type information to our

https://numba.pydata.org/
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch05_images.xhtml#f0141-01

function
 if (int(x) == 20):
 return(np.NaN)
 else:
 return (x + y) / 2

The numba library is so optimized that it does not understand Pandas
objects.

Click here to view code image

print(v_avg_2_numba(df['a'], df['b']))

ValueError: Cannot determine Numba type of
<class 'pandas.core.series.Series'>

We actually have to pass in the numpy array representation of our data
using the .values attribute of our Series objects (Chapter R).

Click here to view code image

passing in the numpy array
print(v_avg_2_numba(df['a'].values,
df['b'].values))

[15. nan 35.]

5.4 Lambda Functions (Anonymous Functions)
Sometimes the function used in the .apply() method is simple enough
that there is no need to create a separate function.

Let’s look at our simple DataFrame example and our squaring
function again.

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch05_images.xhtml#f0141-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch05_images.xhtml#f0141-03
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch05_images.xhtml#f0141-04

df = pd.DataFrame({'a': [10, 20, 30],
 'b': [20, 30, 40]})
print(df)

 a b
0 10 20
1 20 30
2 30 40

def my_sq(x):
 return x ** 2

df['a_sq'] = df['a'].apply(my_sq)
print(df)

 a b a_sq
0 10 20 100
1 20 30 400
2 30 40 900

You can see that the actual function is a simple one-liner. Usually when
this happens, people will opt to write the one-liner directly in the apply
method. This method is called using lambda functions. We can perform
the same operation as shown earlier in the following manner.

Click here to view code image

df['a_sq_lamb'] = df['a'].apply(lambda x: x **
2)
print(df)

 a b a_sq a_sq_lamb
0 10 20 100 100

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch05_images.xhtml#f0142-02

1 20 30 400 400
2 30 40 900 900

To write the lambda function, we use the lambda keyword. Since apply
functions will pass the entire axis as the first argument, our lambda
function example takes only one parameter, x. The x in lambda x is
analogous to the x in def my_sq(x), each value in the 'a' column will
be individually passed into our lambda function. We can then write our
function directly, without having to define it. The calculated result is
automatically returned.

Although you can write complex multiple-line lambda functions,
typically people will use the lambda function approach when small one-
liner calculations are needed. The code can become hard to read if the
lambda function tries to do too much at once.

Conclusion
This chapter covered an important concept – namely, creating functions that
can be used on our data. Not all data cleaning steps or manipulations can be
done using built-in functions. There will be many times when you will have
to write your own custom functions to process and analyze data.

This chapter uses oversimplified examples to create and use functions,
but that means we can go into more complex examples as we learn more
about the pandas library.

Part II

Data Processing

Chapter 6 Data Assembly

Chapter 7 Data Normalization

Chapter 8 Groupby Operations: Split-Apply-Combine

Now that we know the basics of working with our data, we can go into
more detail on how to process it. Data does not always come in one part.
We begin with combining multiple data sets, by either concatenating it
together or joining them by values (Chapter 6). Combining data is usually
something we do in the tidying process (Chapter 4), but normalizing data is
the process of splitting it up into separate parts. It seems counterintuitive to
split data up, but this is something that is typically done for data storage,
especially for databases (Chapter 7). Finally, we go into more detail into
grouped operations (Chapter 8) that were first introduced in Chapter 1.

6

Data Assembly

By now, you should be able to load data into pandas and do some basic
visualizations. This part of the book focuses on various data cleaning tasks.
We begin with assembling a data set for analysis by combining various data
sets together.

Learning Objectives
Identify when needs to be combined
Identify whether data needs to be concatenated or joined together
Use the appropriate function or methods to combine multiple data sets
Produce a single data set from multiple files
Assess whether data was joined properly

6.1 Combine Data Sets
We first talked about tidy data principles in Chapter 4. This chapter will
cover the third criterion in the original “Tidy Data” paper1: “each type of
observational unit forms a table.”
1. Tidy Data paper: http://vita.had.co.nz/papers/tidy-
data.pdf

When data is tidy, you need to combine various tables together to answer
a question. For example, there may be a separate table holding company
information and another table holding stock prices. If we want to look at all
the stock prices within the tech industry, we may first have to find all the
tech companies from the company information table, and then combine that
data with the stock price data to get the data we need for our question. The
data may have been split up into separate tables to reduce the amount of

http://vita.had.co.nz/papers/tidy-data.pdf

redundant information (we don’t need to store the company information
with each stock price entry), but this arrangement means we as data
analysts must combine the relevant data ourselves to answer our question.

Other times, a single data set may be split into multiple parts. For
example, with timeseries data, each date may be in a separate file. In
another case, a file may have been split into parts to make the individual
files smaller. You may also need to combine data from multiple sources to
answer a question (e.g., combine latitudes and longitudes with zip codes).
In both cases, you will need to combine data into a single dataframe for
analysis.

6.2 Concatenation
One of the (conceptually) easier ways to combine data is with
concatenation. Concatenation can be thought of as appending a row or
column to your data. This approach is possible if your data was split into
parts or if you performed a calculation that you want to append to your
existing data set.

Let’s begin with some example data sets so you can see what is actually
happening.

Click here to view code image

import pandas as pd

df1 = pd.read_csv('data/concat_1.csv')
df2 = pd.read_csv('data/concat_2.csv')
df3 = pd.read_csv('data/concat_3.csv')

print(df1)

 A B C D
0 a0 b0 c0 d0
1 a1 b1 c1 d1
2 a2 b2 c2 d2
3 a3 b3 c3 d3

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch06_images.xhtml#f0146-01

print(df2)

 A B C D
0 a4 b4 c4 d4
1 a5 b5 c5 d5
2 a6 b6 c6 d6
3 a7 b7 c7 d7

print(df3)

 A B C D
0 a8 b8 c8 d8
1 a9 b9 c9 d9
2 a10 b10 c10 d10
3 a11 b11 c11 d11

Concatenation is accomplished by using the concat() function from
Pandas.

6.2.1 Review Parts of a DataFrame
Section 2.3.1 talked about the three parts of a dataframe: .index,
.columns, and .values. We will be working with .index and
.columns a lot in this chapter.

The .index refers to the labels on the left of the dataframe, by default
they will be numbered starting from 0.

Click here to view code image

print(df1.index)

RangeIndex(start=0, stop=4, step=1)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch06_images.xhtml#f0147-01

The “index” is an “axis” of a dataframe. These terms are important
because pandas will try to automatically align by axis. The other axis is the
“columns,” which we can get with .columns.

Click here to view code image

print(df1.columns)

Index(['A', 'B', 'C', 'D'], dtype='object')

This refers to the column names of the dataframe.
Finally, just to be complete, the body of the dataframe can be

represented as an numpy array with .values.

print(df1.values)

[['a0' 'b0' 'c0' 'd0']
 ['a1' 'b1' 'c1' 'd1']
 ['a2' 'b2' 'c2' 'd2']
 ['a3' 'b3' 'c3' 'd3']]

6.2.2 Add Rows
Stacking (i.e., concatenating) the dataframes on top of each other uses the
concat() function in pandas. All of the dataframes to be concatenated
are passed in a list.

Click here to view code image

row_concat = pd.concat([df1, df2, df3])
print(row_concat)

 A B C D
0 a0 b0 c0 d0
1 a1 b1 c1 d1

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch06_images.xhtml#f0147-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch06_images.xhtml#f0147-04

2 a2 b2 c2 d2
3 a3 b3 c3 d3
0 a4 b4 c4 d4
..
3 a7 b7 c7 d7
0 a8 b8 c8 d8
1 a9 b9 c9 d9
2 a10 b10 c10 d10
3 a11 b11 c11 d11

[12 rows x 4 columns]

As you can see, concat() blindly stacks the dataframes together. If
you look at the row names (i.e., the row indices), they are also simply a
stacked version of the original row indices. If we apply the various
subsetting methods (Table 2.3), the table will be subsetted as expected.

Click here to view code image

subset the fourth row of the concatenated
dataframe
print(row_concat.iloc[3, :])

A a3
B b3
C c3
D d3
Name: 3, dtype: object

Question
What happens when you use .loc[] to subset the new dataframe?

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch06_images.xhtml#f0148-01

Section 2.1.1 showed the process for creating a Series. However, if
we create a new series to append to a dataframe, it does not append
correctly.

Click here to view code image

create a new row of data
new_row_series = pd.Series(['n1', 'n2', 'n3',
'n4'])
print(new_row_series)

0 n1
1 n2
2 n3
3 n4
dtype: object

attempt to add the new row to a dataframe
print(pd.concat([df1, new_row_series]))

 A B C D 0
0 a0 b0 c0 d0 NaN
1 a1 b1 c1 d1 NaN
2 a2 b2 c2 d2 NaN
3 a3 b3 c3 d3 NaN
0 NaN NaN NaN NaN n1
1 NaN NaN NaN NaN n2
2 NaN NaN NaN NaN n3
3 NaN NaN NaN NaN n4

The first things you may notice are the NaN missing values. This is
simply Python’s way of representing a “missing value” (more about
missing values in Chapter 9). We were hoping to append our new values as
a row, but that didn’t happen. In fact, not only did our code not append the

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch06_images.xhtml#f0148-02

values as a row, but it also created a new column completely misaligned
with everything else.

Let’s think about what is happening here. First, our series did not have a
matching column, so our new_row was added to a new column. The rest
of the values were concatenated to the bottom of the dataframe, and the
original index values were retained.

To fix this problem, we need turn our series into a dataframe. This data
frame contains one row of data, and the column names are the ones the data
will bind to.

Click here to view code image

new_row_df = pd.DataFrame(
 # note the double brackets to create a "row"
of data
 data=[["n1", "n2", "n3", "n4"]],
 columns=["A", "B", "C", "D"],
)

print(new_row_df)

 A B C D
0 n1 n2 n3 n4

concatenate the row of data
print(pd.concat([df1, new_row_df]))

 A B C D
0 a0 b0 c0 d0
1 a1 b1 c1 d1
2 a2 b2 c2 d2
3 a3 b3 c3 d3
0 n1 n2 n3 n4

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch06_images.xhtml#f0149-01

concat() is a general function that can concatenate multiple things at
once.

6.2.2.1 Ignore the Index

In the last example, when we added a dict to a dataframe, we had to use
the ignore_index parameter. If we look closer, you can see that the row
index was also incremented by 1, and did not repeat a previous index value.

If we simply want to concatenate or append data together, we can use the
ignore_index parameter to reset the row index after the concatenation.

Click here to view code image

row_concat_i = pd.concat([df1, df2, df3],
ignore_index=True)
print(row_concat_i)

 A B C D
0 a0 b0 c0 d0
1 a1 b1 c1 d1
2 a2 b2 c2 d2
3 a3 b3 c3 d3
4 a4 b4 c4 d4
..
7 a7 b7 c7 d7
8 a8 b8 c8 d8
9 a9 b9 c9 d9
10 a10 b10 c10 d10
11 a11 b11 c11 d11

[12 rows x 4 columns]

6.2.3 Add Columns

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch06_images.xhtml#f0149-02

Concatenating columns is very similar to concatenating rows. The main
difference is the axis parameter in the concat function. The default
value of axis is 0 (or "index"), so it will concatenate data in a row-wise
fashion. However, if we pass axis=1 (or axis="columns") to the
function, it will concatenate data in a column-wise manner.

Click here to view code image

col_concat = pd.concat([df1, df2, df3],
axis="columns")
print(col_concat)

 A B C D A B C D A B C
D
0 a0 b0 c0 d0 a4 b4 c4 d4 a8 b8 c8
d8
1 a1 b1 c1 d1 a5 b5 c5 d5 a9 b9 c9
d9
2 a2 b2 c2 d2 a6 b6 c6 d6 a10 b10 c10
d10
3 a3 b3 c3 d3 a7 b7 c7 d7 a11 b11 c11
d11

If we try to subset data based on column names, we will get a similar
result when we concatenated row-wise and subset by row index.

print(col_concat['A'])

 A A A
0 a0 a4 a8
1 a1 a5 a9
2 a2 a6 a10
3 a3 a7 a11

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch06_images.xhtml#f0150-02

Adding a single column to a dataframe can be done directly without
using any specific Pandas function (We saw this in Section 2.4.1). Simply
pass a new column name for the vector you want assigned to the new
column.

Click here to view code image

col_concat['new_col_list'] = ['n1', 'n2', 'n3',
'n4']
print(col_concat)

 A B C D A B C D A B C
D new_col_list
0 a0 b0 c0 d0 a4 b4 c4 d4 a8 b8 c8
d8 n1
1 a1 b1 c1 d1 a5 b5 c5 d5 a9 b9 c9
d9 n2
2 a2 b2 c2 d2 a6 b6 c6 d6 a10 b10 c10
d10 n3
3 a3 b3 c3 d3 a7 b7 c7 d7 a11 b11 c11
d11 n4

Click here to view code image

col_concat['new_col_series'] = pd.Series(['n1',
'n2', 'n3', 'n4'])
print(col_concat)

 A B C D A B C D A B C
D new_col_list \
0 a0 b0 c0 d0 a4 b4 c4 d4 a8 b8 c8
d8 n1
1 a1 b1 c1 d1 a5 b5 c5 d5 a9 b9 c9
d9 n2

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch06_images.xhtml#f0150-04
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch06_images.xhtml#f0150-04b

2 a2 b2 c2 d2 a6 b6 c6 d6 a10 b10 c10
d10 n3
3 a3 b3 c3 d3 a7 b7 c7 d7 a11 b11 c11
d11 n4

 new_col_series
0 n1
1 n2
2 n3
3 n4

Using the concat() function still works, as long as you give it a
dataframe. However this approach requires more code.

Finally, we can reset the column indices so we do not have duplicated
column names.

Click here to view code image

print(pd.concat([df1, df2, df3], axis="columns",
ignore_index=True))

 0 1 2 3 4 5 6 7 8 9 10
11
0 a0 b0 c0 d0 a4 b4 c4 d4 a8 b8 c8
d8
1 a1 b1 c1 d1 a5 b5 c5 d5 a9 b9 c9
d9
2 a2 b2 c2 d2 a6 b6 c6 d6 a10 b10 c10
d10
3 a3 b3 c3 d3 a7 b7 c7 d7 a11 b11 c11
d11

6.2.4 Concatenate with Different Indices

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch06_images.xhtml#f0151-02

The examples shown so far have assumed we are performing a row or
column concatenation. They also assume that the new row(s) had the same
column names or the column(s) had the same row indices.

This section addresses what happens when the row and column indices
are not aligned.

6.2.4.1 Concatenate Rows with Different Columns

Let’s modify our dataframes for the next few examples.

Click here to view code image

rename the columns of our dataframes
df1.columns = ['A', 'B', 'C', 'D']
df2.columns = ['E', 'F', 'G', 'H']
df3.columns = ['A', 'C', 'F', 'H']

print(df1)

 A B C D
0 a0 b0 c0 d0
1 a1 b1 c1 d1
2 a2 b2 c2 d2
3 a3 b3 c3 d3

print(df2)

 E F G H
0 a4 b4 c4 d4
1 a5 b5 c5 d5
2 a6 b6 c6 d6
3 a7 b7 c7 d7

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch06_images.xhtml#f0151-03

print(df3)

 A C F H
0 a8 b8 c8 d8
1 a9 b9 c9 d9
2 a10 b10 c10 d10
3 a11 b11 c11 d11

If we try to concatenate these dataframes as we did in Section 6.2.2, the
dataframes now do much more than simply stack one on top of the other.
The columns align themselves, and NaN fills in any missing areas.

Click here to view code image

row_concat = pd.concat([df1, df2, df3])
print(row_concat)

 A B C D E F G H
0 a0 b0 c0 d0 NaN NaN NaN NaN
1 a1 b1 c1 d1 NaN NaN NaN NaN
2 a2 b2 c2 d2 NaN NaN NaN NaN
3 a3 b3 c3 d3 NaN NaN NaN NaN
0 NaN NaN NaN NaN a4 b4 c4 d4
..
3 NaN NaN NaN NaN a7 b7 c7 d7
0 a8 NaN b8 NaN NaN c8 NaN d8
1 a9 NaN b9 NaN NaN c9 NaN d9
2 a10 NaN b10 NaN NaN c10 NaN d10
3 a11 NaN b11 NaN NaN c11 NaN d11

[12 rows x 8 columns]

One way to avoid the inclusion of NaN values is to keep only those
columns that are shared in common by the list of objects to be

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch06_images.xhtml#f0152-02

concatenated. A parameter named join accomplishes this. By default, it
has a value of 'outer', meaning it will keep all the columns. However,
we can set join='inner' to keep only the columns that are shared
among the data sets.

If we try to keep only the columns from all three dataframes, we will get
an empty dataframe, since there are no columns in common.

Click here to view code image

print(pd.concat([df1, df2, df3], join='inner'))

Empty DataFrame
Columns: []
Index: [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]

[12 rows x 0 columns]

If we use the dataframes that have columns in common, only the
columns that all of them share will be returned.

Click here to view code image

print(pd.concat([df1,df3], ignore_index=False,
join='inner'))

 A C
0 a0 c0
1 a1 c1
2 a2 c2
3 a3 c3
0 a8 b8
1 a9 b9
2 a10 b10
3 a11 b11

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch06_images.xhtml#f0152-03
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch06_images.xhtml#f0153-02

6.2.4.2 Concatenate Columns with Different Rows

Let’s take our dataframes and modify them again so that they have different
row indices. Here, we are building on the same dataframe modifications
from Section 6.2.4.1.

df1.index = [0, 1, 2, 3]
df2.index = [4, 5, 6, 7]
df3.index = [0, 2, 5, 7]

print(df1)

 A B C D
0 a0 b0 c0 d0
1 a1 b1 c1 d1
2 a2 b2 c2 d2
3 a3 b3 c3 d3

print(df2)

 E F G H
4 a4 b4 c4 d4
5 a5 b5 c5 d5
6 a6 b6 c6 d6
7 a7 b7 c7 d7

print(df3)

 A C F H
0 a8 b8 c8 d8
2 a9 b9 c9 d9
5 a10 b10 c10 d10
7 a11 b11 c11 d11

When we concatenate along axis="columns" (axis=1), the new
dataframes will be added in a column-wise fashion and matched against
their respective row indices. Missing values indicators appear in the areas
where the indices did not align.

Click here to view code image

col_concat = pd.concat([df1, df2, df3],
axis="columns")
print(col_concat)

 A B C D E F G H A C
F H
0 a0 b0 c0 d0 NaN NaN NaN NaN a8
b8 c8 d8
1 a1 b1 c1 d1 NaN NaN NaN NaN NaN
NaN NaN NaN
2 a2 b2 c2 d2 NaN NaN NaN NaN a9
b9 c9 d9
3 a3 b3 c3 d3 NaN NaN NaN NaN NaN
NaN NaN NaN
4 NaN NaN NaN NaN a4 b4 c4 d4 NaN
NaN NaN NaN
5 NaN NaN NaN NaN a5 b5 c5 d5 a10
b10 c10 d10
6 NaN NaN NaN NaN a6 b6 c6 d6 NaN
NaN NaN NaN
7 NaN NaN NaN NaN a7 b7 c7 d7 a11
b11 c11 d11

Just as we did when we concatenated in a row-wise manner, we can
choose to keep the results only when there are matching indices by using
join="inner".

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch06_images.xhtml#f0154-01
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch06_images.xhtml#f0154-02

print(pd.concat([df1, df3], axis="columns",
join='inner'))

 A B C D A C F H
0 a0 b0 c0 d0 a8 b8 c8 d8
2 a2 b2 c2 d2 a9 b9 c9 d9

6.3 Observational Units Across Multiple Tables
One reason why data might be split across multiple files would be the size
of the files. By splitting up data into various parts, each part would be
smaller. This may be good when we need to share data on the Internet or via
email, since many services limit the size of a file that can be opened or
shared. Another reason why a data set might be split into multiple parts
would be to account for the data collection process. For example, a separate
data set containing stock information could be created for each day.

Since merging and concatenation have already been covered, this section
will focus on techniques for quickly loading multiple data sources and
assembling them together.

In this example, all of the billboard ratings data have a pattern.

Click here to view code image

data/billboard-by_week/billboard-XX.csv

Where XX represents the week (e.g., 03). We can use the a pattern
matching function from the built-in pathlib module in Python to get a
list of all the filenames that match a particular pattern.

Click here to view code image

from pathlib import Path

from my current directory fine (glob) the this
pattern

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch06_images.xhtml#f0154-03
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch06_images.xhtml#f0154-04

billboard_data_files = (
 Path(".")
 .glob("data/billboard-by_week/billboard-
*.csv")
)

this line is optional if you want to see the
full list of files
billboard_data_files =
sorted(list(billboard_data_files))

print(billboard_data_files)

[PosixPath('data/billboard-by_week/billboard-
01.csv'),
PosixPath('data/billboard-by_week/billboard-
02.csv'),
PosixPath('data/billboard-by_week/billboard-
03.csv'),
PosixPath('data/billboard-by_week/billboard-
04.csv'),
PosixPath('data/billboard-by_week/billboard-
05.csv'),
..
...
PosixPath('data/billboard-by_week/billboard-
72.csv'),
PosixPath('data/billboard-by_week/billboard-
73.csv'),
PosixPath('data/billboard-by_week/billboard-
74.csv'),
PosixPath('data/billboard-by_week/billboard-

75.csv'),
PosixPath('data/billboard-by_week/billboard-
76.csv')]

The type() of billboard_data_files is a generator object, so
if you “use it” you will lose its contents. If you want to see the full list, you
would need to run:

Click here to view code image

billboard_data_files = list(billboard_data_files)

Now that we have a list of filenames we want to load, we can load each
file into a dataframe. We can choose to load each file individually, as we
have been doing so far.

Click here to view code image

billboard01 =
pd.read_csv(billboard_data_files[0])
billboard02 =
pd.read_csv(billboard_data_files[1])
billboard03 =
pd.read_csv(billboard_data_files[2])

just look at one of the data sets we loaded
print(billboard01)

 year artist
track time \
0 2000 2 Pac Baby Don't Cry
(Keep... 4:22
1 2000 2Ge+her The Hardest Part Of
... 3:15
2 2000 3 Doors Down

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch06_images.xhtml#f0155-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch06_images.xhtml#f0155-03

Kryptonite 3:53
3 2000 3 Doors Down
Loser 4:24
4 2000 504 Boyz Wobble
Wobble 3:35
..
... ...
312 2000 Yankee Grey Another Nine
Minutes 3:10
313 2000 Yearwood, Trisha Real Live
Woman 3:55
314 2000 Ying Yang Twins Whistle While You
Tw... 4:19
315 2000 Zombie Nation Kernkraft
400 3:30
316 2000 matchbox twenty
Bent 4:12

 date.entered week rating
0 2000-02-26 wk1 87.0
1 2000-09-02 wk1 91.0
2 2000-04-08 wk1 81.0
3 2000-10-21 wk1 76.0
4 2000-04-15 wk1 57.0
..
312 2000-04-29 wk1 86.0
313 2000-04-01 wk1 85.0
314 2000-03-18 wk1 95.0
315 2000-09-02 wk1 99.0
316 2000-04-29 wk1 60.0

[317 rows x 7 columns]

We can concatenate them just as we did in Chapter 6.

Click here to view code image

shape of each dataframe
print(billboard01.shape)
print(billboard02.shape)
print(billboard03.shape)

(317, 7)
(317, 7)
(317, 7)

concatenate the dataframes together
billboard = pd.concat([billboard01, billboard02,
billboard03])

shape of final concatenated taxi data
print(billboard.shape)

(951, 7)

Let’s write a check to make sure the number of rows were concatenated
correctly

assert (
 billboard01.shape[0]
 + billboard02.shape[0]
 + billboard03.shape[0]
 == billboard.shape[0]
)

However, manually saving each dataframe will get tedious when the
data is split into many parts. As an alternative approach, we can automate
the process using loops and list comprehensions.

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch06_images.xhtml#f0156-02

6.3.1 Load Multiple Files Using a Loop
An easier way to load multiple files is to first create an empty list, use a
loop to iterate though each of the CSV files, load the CSV files into a
Pandas dataframe, and finally append the dataframe to the list. The final
type of data we want is a list of dataframes because the concat()
function takes a list of dataframes to concatenate.

Click here to view code image

this part was the same as earlier
from pathlib import Path
billboard_data_files = (
 Path(".")
 .glob("data/billboard-by_week/billboard-
*.csv")
)

create an empty list to append to
list_billboard_df = []

loop though each CSV filename
for csv_filename in billboard_data_files:
 # you can choose to print the filename for
debugging
 # print(csv_filename)

 # load the CSV file into a dataframe
 df = pd.read_csv(csv_filename)

 # append the dataframe to the list that will
hold the dataframes
 list_billboard_df.append(df)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch06_images.xhtml#f0157-01

print the length of the dataframe
print(len(list_billboard_df))

76

Important
The Path.glob() method returns a generator (Appendix P). This
means that when we go through each element of the “list,” the item
gets “used up,” so it won’t exist again. This saves a lot of compute
resources since Python does not need to store everything in memory all
at once. The downside is you will need to re-create the generator if you
plan on using it multiple times. You can opt to turn the generator into a
regular python list so all the elements are stored perpetually by using
the list() function, e.g., list(billboard_data_files).

Click here to view code image

type of the first element
print(type(list_billboard_df[0]))

<class 'pandas.core.frame.DataFrame'>

Click here to view code image

look at the first dataframe
print(list_billboard_df[0])

 year artist
track time \
0 2000 2 Pac Baby Don't Cry
(Keep... 4:22
1 2000 2Ge+her The Hardest Part Of
... 3:15

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch06_images.xhtml#f0157-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch06_images.xhtml#f0158-01

2 2000 3 Doors Down
Kryptonite 3:53
3 2000 3 Doors Down
Loser 4:24
4 2000 504 Boyz Wobble
Wobble 3:35

..
... ...
312 2000 Yankee Grey Another Nine
Minutes 3:10
313 2000 Yearwood, Trisha Real Live
Woman 3:55
314 2000 Ying Yang Twins Whistle While You
Tw... 4:19
315 2000 Zombie Nation Kernkraft
400 3:30
316 2000 matchbox twenty
Bent 4:12

 date.entered week rating
0 2000-02-26 wk15 NaN
1 2000-09-02 wk15 NaN
2 2000-04-08 wk15 38.0
3 2000-10-21 wk15 72.0
4 2000-04-15 wk15 78.0
..
312 2000-04-29 wk15 NaN
313 2000-04-01 wk15 NaN
314 2000-03-18 wk15 NaN
315 2000-09-02 wk15 NaN
316 2000-04-29 wk15 3.0

[317 rows x 7 columns]

Now that we have a list of dataframes, we can concatenate them.

Click here to view code image

billboard_loop_concat =
pd.concat(list_billboard_df)
print(billboard_loop_concat.shape)

(24092, 7)

6.3.2 Load Multiple Files Using a List
Comprehension
Python has an idiom for looping though something and adding it to a list,
called a list comprehension. The loop given previously, which is shown
here again without the comments, can be written in a list comprehension
(Appendix K).

Click here to view code image

we have to re-create the generator because we
"used it up" in the previous example
billboard_data_files = (
 Path(".")
 .glob("data/billboard-by_week/billboard-
*.csv")
)
the loop code without comments
list_billboard_df = []
for csv_filename in billboard_data_files:
 df = pd.read_csv(csv_filename)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch06_images.xhtml#f0158-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch06_images.xhtml#f0158-03

 list_billboard_df.append(df)

billboard_data_files = (
 Path(".")
 .glob("data/billboard-by_week/billboard-
*.csv")
)

same code in a list comprehension
billboard_dfs = [pd.read_csv(data) for data in
billboard_data_files]

Warning
If you get a ValueError: No objects to concatenate
message, it means you did not re-create the
billboard_data_files generator.

The result from our list comprehension is a list, just as the earlier loop
example.

print(type(billboard_dfs))

<class 'list'>

print(len(billboard_dfs))

76

Finally, we can concatenate the results just as we did earlier.

Click here to view code image

billboard_concat_comp = pd.concat(billboard_dfs)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch06_images.xhtml#f0159-03

print(billboard_concat_comp)

 year artist
track time \
0 2000 2 Pac Baby Don't Cry
(Keep... 4:22
1 2000 2Ge+her The Hardest Part Of
... 3:15
2 2000 3 Doors Down
Kryptonite 3:53
3 2000 3 Doors Down
Loser 4:24
4 2000 504 Boyz Wobble
Wobble 3:35
..
... ...
312 2000 Yankee Grey Another Nine
Minutes 3:10
313 2000 Yearwood, Trisha Real Live
Woman 3:55
314 2000 Ying Yang Twins Whistle While You
Tw... 4:19
315 2000 Zombie Nation Kernkraft
400 3:30
316 2000 matchbox twenty
Bent 4:12

 date.entered week rating
0 2000-02-26 wk15 NaN
1 2000-09-02 wk15 NaN
2 2000-04-08 wk15 38.0
3 2000-10-21 wk15 72.0
4 2000-04-15 wk15 78.0

..
312 2000-04-29 wk18 NaN
313 2000-04-01 wk18 NaN
314 2000-03-18 wk18 NaN
315 2000-09-02 wk18 NaN
316 2000-04-29 wk18 3.0

[24092 rows x 7 columns]

6.4 Merge Multiple Data Sets
The previous section alluded to a few database concepts. The
join="inner" and the default join="outer" parameters come from
working with databases when we want to merge tables.

Instead of simply having a row or column index that you want to use to
concatenate values, sometimes you may have two or more dataframes that
you want to combine based on common data values. This task is known in
the database world as performing a “join.”

Pandas has a .join() method that uses .merge() under the hood.
.join() will merge dataframe objects based on an index, but the
.merge() function is much more explicit and flexible.

If you are planning to merge dataframes by the row index, for example,
you might want to look into the .join() method.2

2. Pandas DataFrame.join() method:
https://pandas.pydata.org/docs/reference/api/panda
s.DataFrame.join.html

We will be using the set of survey data in the following examples.

Click here to view code image

person = pd.read_csv('data/survey_person.csv')
site = pd.read_csv('data/survey_site.csv')
survey = pd.read_csv('data/survey_survey.csv')
visited = pd.read_csv('data/survey_visited.csv')

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.join.html
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch06_images.xhtml#f0160-02

print(person)

 ident personal family
0 dyer William Dyer
1 pb Frank Pabodie
2 lake Anderson Lake
3 roe Valentina Roerich
4 danforth Frank Danforth

print(site)

 name lat long
0 DR-1 -49.85 -128.57
1 DR-3 -47.15 -126.72
2 MSK-4 -48.87 -123.40

print(visited)

 ident site dated
0 619 DR-1 1927-02-08
1 622 DR-1 1927-02-10
2 734 DR-3 1939-01-07
3 735 DR-3 1930-01-12
4 751 DR-3 1930-02-26
5 752 DR-3 NaN
6 837 MSK-4 1932-01-14
7 844 DR-1 1932-03-22

print(survey)

 taken person quant reading
0 619 dyer rad 9.82
1 619 dyer sal 0.13
2 622 dyer rad 7.80
3 622 dyer sal 0.09
4 734 pb rad 8.41
..
16 752 roe sal 41.60
17 837 lake rad 1.46
18 837 lake sal 0.21
19 837 roe sal 22.50
20 844 roe rad 11.25

[21 rows x 4 columns]

Currently, our data is split into multiple parts, where each part is an
observational unit. If we wanted to look at the dates at each site along with
the latitude and longitude information for that site, we would have to
combine (and merge) multiple dataframes. We can do this with the
.merge() method in Pandas.

When we call this method, the dataframe that is called will be referred to
as the one on the “left.” Within the .merge() method, the first parameter
is the “right” dataframe (i.e., left.merge(right)). The next
parameter is how the final merged result looks.

Table 6.1 provides more details. Next, we set the on parameter. This
specifies which columns to match on. If the left and right columns do not
have the same name, we can use the left_on and right_on parameters
instead.

Table 6.1 How the Pandas how Parameter Relates to SQL

Pandas SQL Description

left left outer Keep all the keys from the left

right right outer Keep all the keys from the right

Pandas SQL Description

outer full outer Keep all the keys from both left and right

inner inner Keep only the keys that exist in both left and right

6.4.1 One-to-One Merge
In the simplest type of merge, we have two dataframes where we want to
join one column to another column, and where the columns we want to join
do not contain any duplicate values.

For this example, we will modify the visited dataframe so there are
no duplicated site values.

Click here to view code image

visited_subset = visited.loc[[0, 2, 6], :]
print(visited_subset)

 ident site dated
0 619 DR-1 1927-02-08
2 734 DR-3 1939-01-07
6 837 MSK-4 1932-01-14

get a count of the values in the site column
print(
 visited_subset["site"].value_counts()
)

DR-1 1
DR-3 1
MSK-4 1
Name: site, dtype: int64

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch06_images.xhtml#f0162-01

We can perform our one-to-one merge as follows:

Click here to view code image

the default value for 'how' is 'inner'
so it doesn't need to be specified
o2o_merge = site.merge(
 visited_subset, left_on="name",
right_on="site"
)
print(o2o_merge)

 name lat long ident site dated
0 DR-1 -49.85 -128.57 619 DR-1 1927-02-08
1 DR-3 -47.15 -126.72 734 DR-3 1939-01-07
2 MSK-4 -48.87 -123.40 837 MSK-4 1932-01-14

As you can see, we have now created a new dataframe from two
separate dataframes where the rows were matched based on a particular set
of columns. In SQL-speak, the columns used to match are called “keys.”

6.4.2 Many-to-One Merge
If we choose to do the same merge, but this time without using the
subsetted visited dataframe, we would perform a many-to-one merge. In
this kind of merge, one of the dataframes has key values that repeat.

Click here to view code image

get a count of the values in the site column
print(
 visited["site"].value_counts()
)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch06_images.xhtml#f0162-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch06_images.xhtml#f0163-02

DR-3 4
DR-1 3
MSK-4 1
Name: site, dtype: int64

The dataframes that contain the single observations will then be
duplicated in the merge.

Click here to view code image

m2o_merge = site.merge(visited, left_on='name',
right_on='site')
print(m2o_merge)

 name lat long ident site dated
0 DR-1 -49.85 -128.57 619 DR-1 1927-02-08
1 DR-1 -49.85 -128.57 622 DR-1 1927-02-10
2 DR-1 -49.85 -128.57 844 DR-1 1932-03-22
3 DR-3 -47.15 -126.72 734 DR-3 1939-01-07
4 DR-3 -47.15 -126.72 735 DR-3 1930-01-12
5 DR-3 -47.15 -126.72 751 DR-3 1930-02-26
6 DR-3 -47.15 -126.72 752 DR-3 NaN
7 MSK-4 -48.87 -123.40 837 MSK-4 1932-01-14

The site information (name, lat, and long) were duplicated and
matched to the visited data.

6.4.3 Many-to-Many Merge
Lastly, there will be times when we want to perform a match based on
multiple columns. As an example, suppose we have two dataframes that
come from person merged with survey, and another dataframe that
comes from visited merged with survey.

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch06_images.xhtml#f0163-03

Danger
All the code for performing a merge uses the same method,
.merge(). The only thing that makes the results differ is whether or
not the left and/or right dataframe has duplicate keys.

In practice, you usually do not want a many-to-many merge. Since
that means a cartesian product of the keys were joined together. That
is, every combination of duplicated values were combined.

Click here to view code image

ps = person.merge(survey, left_on='ident',
right_on='person')
vs = visited.merge(survey, left_on='ident',
right_on='taken')

print(ps)

 ident personal family taken person quant
reading
0 dyer William Dyer 619 dyer rad
9.82
1 dyer William Dyer 619 dyer sal
0.13
2 dyer William Dyer 622 dyer rad
7.80
3 dyer William Dyer 622 dyer sal
0.09
4 pb Frank Pabodie 734 pb rad
8.41
..
...
14 lake Anderson Lake 837 lake rad
1.46

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch06_images.xhtml#f0164-01

15 lake Anderson Lake 837 lake sal
0.21
16 roe Valentina Roerich 752 roe sal
41.60
17 roe Valentina Roerich 837 roe sal
22.50
18 roe Valentina Roerich 844 roe rad
11.25

[19 rows x 7 columns]

print(vs)

 ident site dated taken person quant
reading
0 619 DR-1 1927-02-08 619 dyer rad
9.82
1 619 DR-1 1927-02-08 619 dyer sal
0.13
2 622 DR-1 1927-02-10 622 dyer rad
7.80
3 622 DR-1 1927-02-10 622 dyer sal
0.09
4 734 DR-3 1939-01-07 734 pb rad
8.41
..
...
16 752 DR-3 NaN 752 roe sal
41.60
17 837 MSK-4 1932-01-14 837 lake rad
1.46
18 837 MSK-4 1932-01-14 837 lake sal
0.21

19 837 MSK-4 1932-01-14 837 roe sal
22.50
20 844 DR-1 1932-03-22 844 roe rad
11.25

[21 rows x 7 columns]

We know there is a many-to-many merge happening because there are
duplicate values in the keys for both the left and right dataframe.

Click here to view code image

print(
 ps["quant"].value_counts()
)

rad 8
sal 8
temp 3
Name: quant, dtype: int64

print(
 vs["quant"].value_counts()
)

sal 9
rad 8
temp 4
Name: quant, dtype: int64

We can perform a many-to-many merge by passing the multiple columns
to match on in a Python list.

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch06_images.xhtml#f0165-01

ps_vs = ps.merge(
 vs,
 left_on=["quant"],
 right_on=["quant"],
)

Let’s look at just the first row of data.

Click here to view code image

print(ps_vs.loc[0, :])

ident_x dyer
personal William
family Dyer
taken_x 619
person_x dyer
 ...
site DR-1
dated 1927-02-08
taken_y 619
person_y dyer
reading_y 9.82
Name: 0, Length: 13, dtype: object

Pandas will automatically add a suffix to a column name if there are
collisions in the name. In the output, the _x refers to values from the left
dataframe, and the _y suffix comes from values in the right dataframe.

6.4.4 Check Your Work with Assert
A simple way to check your work before and after a merge is by looking at
the number of rows of our data before and after the merge. If you end up
with more rows than either of the dataframes you are merging together, that

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch06_images.xhtml#f0165-03

means a many-to-many merge occurred, and that is usually situation you do
not want.

Click here to view code image

print(ps.shape) # left dataframe

(19, 7)

print(vs.shape) # right dataframe

(21, 7)

print(ps_vs.shape) # after merge

(148, 13)

One way you can check your work is by having your code fail when you
know a bad condition exists. You can achieve this by using the Python
assert statement. When an expression evaluates to True, assert will
not return anything, and your code will continue on to the next expression.

expect this to be true
note there is no output
assert vs.shape[0] == 21

However, if the expression to assert evaluates to False, it will
throw an AssertionError, and your code will stop.

Click here to view code image

assert ps_vs.shape[0] <= vs.shape[0]

AssertionError:

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch06_images.xhtml#f0166-01
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch06_images.xhtml#f0166-03

Using assert is a good technique to build in checks into your code
without having to run it and visually inspecting the result. This is also the
basis for creating “unit tests” for functions.

Conclusion
Sometimes, you may need to combine various parts or data or multiple data
sets depending on the question you are trying to answer. Keep in mind,
however, that the data you need for analysis does not necessarily equate to
the best shape of data for storage.

The survey data used in the last example came in four separate parts that
needed to be merged together. After we merged the tables, a lot of
redundant information appeared across the rows. From a data storage and
data entry point of view, each of these duplications can lead to errors and
data inconsistency. This is what Hadley meant by saying that in tidy data,
“each type of observational unit forms a table.”

7

Data Normalization

The final point in the original “Tidy Data” paper stated that for data to be
tidy “… each type of observational unit forms a table.” However, usually
we need to combine multiple data sets together so we can do an analysis
(Chapter 6). But when we think about how to store and manage data in a
way where we reduce the amount of duplication and potential for errors, we
should try to normalize our data into separate tables so a single fix can
propagate when we combine the data together again.

Learning Objectives
Identify the differences between tidy data and data normalization
Apply data subsetting to split data into normalized parts

7.1 Multiple Observational Units in a Table
(Normalization)
One of the simplest ways of knowing whether multiple observational units
are represented in a table is by looking at each of the rows and taking note
of any cells or values that are being repeated from row to row. This is very
common in government education administration data, where student
demographics are reported for each student for each year the student is
enrolled, and in other data sets that track a value over time.

Let’s look again at the Billboard data we cleaned in Section 4.1.2.

Click here to view code image

import pandas as pd

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch07_images.xhtml#f0169-01

billboard = pd.read_csv('data/billboard.csv')

billboard_long = billboard.melt(
 id_vars=["year", "artist", "track", "time",
"date.entered"],
 var_name="week",
 value_name="rating",
)

print(billboard_long)

 year artist
track time \
0 2000 2 Pac Baby Don't Cry
(Keep... 4:22
1 2000 2Ge+her The Hardest Part Of
... 3:15
2 2000 3 Doors Down
Kryptonite 3:53
3 2000 3 Doors Down
Loser 4:24
4 2000 504 Boyz Wobble
Wobble 3:35
...
... ...
24087 2000 Yankee Grey Another Nine
Minutes 3:10
24088 2000 Yearwood, Trisha Real Live
Woman 3:55
24089 2000 Ying Yang Twins Whistle While You
Tw... 4:19
24090 2000 Zombie Nation Kernkraft

400 3:30
24091 2000 matchbox twenty
Bent 4:12

 date.entered week rating
0 2000-02-26 wk1 87.0
1 2000-09-02 wk1 91.0
2 2000-04-08 wk1 81.0
3 2000-10-21 wk1 76.0
4 2000-04-15 wk1 57.0
...
24087 2000-04-29 wk76 NaN
24088 2000-04-01 wk76 NaN
24089 2000-03-18 wk76 NaN
24090 2000-09-02 wk76 NaN
24091 2000-04-29 wk76 NaN

[24092 rows x 7 columns]

Suppose we subset the data based on a particular track:

Click here to view code image

print(billboard_long.loc[billboard_long.track ==
'Loser'])

 year artist track time
date.entered week rating
3 2000 3 Doors Down Loser 4:24 2000-10-
21 wk1 76.0
320 2000 3 Doors Down Loser 4:24 2000-10-
21 wk2 76.0
637 2000 3 Doors Down Loser 4:24 2000-10-
21 wk3 72.0

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch07_images.xhtml#f0170-02

954 2000 3 Doors Down Loser 4:24 2000-10-
21 wk4 69.0
1271 2000 3 Doors Down Loser 4:24 2000-10-
21 wk5 67.0
...
...
22510 2000 3 Doors Down Loser 4:24 2000-10-
21 wk72 NaN
22827 2000 3 Doors Down Loser 4:24 2000-10-
21 wk73 NaN
23144 2000 3 Doors Down Loser 4:24 2000-10-
21 wk74 NaN
23461 2000 3 Doors Down Loser 4:24 2000-10-
21 wk75 NaN
23778 2000 3 Doors Down Loser 4:24 2000-10-
21 wk76 NaN

[76 rows x 7 columns]

We can see that this table actually holds two types of data: the track
information and the weekly ranking. It would be better to store the track
information in a separate table. This way, the information stored in the
year, artist, track, and time columns would not be repeated in the
data set. This consideration is particularly important if the data is manually
entered. Repeating the same values over and over during data entry
increases the risk of inconsistent data.

We can place the year, artist, track, and time in a new
dataframe, with each unique set of values being assigned a unique ID. We
can then use this unique ID in a second dataframe that represents a date
entered, song, date, week number, and ranking. This entire process can be
thought of as reversing the steps in concatenating and merging data
described in Chapter 6.

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch07_images.xhtml#f0171-01

billboard_songs = billboard_long[
 ["year", "artist", "track", "time"]
]
print(billboard_songs.shape)

(24092, 4)

We know there are duplicate entries in this dataframe, so we need to
drop the duplicate rows.

Click here to view code image

billboard_songs =
billboard_songs.drop_duplicates()
print(billboard_songs.shape)

(317, 4)

We can then assign a unique value to each row of data. There are many
ways you could do this, there we take the index value and add 1 so it
doesn’t start with 0.

Click here to view code image

billboard_songs['id'] = billboard_songs.index +
1
print(billboard_songs)

 year artist
track time id
0 2000 2 Pac Baby Don't Cry
(Keep... 4:22 1
1 2000 2Ge+her The Hardest Part Of
... 3:15 2
2 2000 3 Doors Down

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch07_images.xhtml#f0171-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch07_images.xhtml#f0171-03

Kryptonite 3:53 3
3 2000 3 Doors Down
Loser 4:24 4
4 2000 504 Boyz Wobble
Wobble 3:35 5
..
...
312 2000 Yankee Grey Another Nine
Minutes 3:10 313
313 2000 Yearwood, Trisha Real Live
Woman 3:55 314
314 2000 Ying Yang Twins Whistle While You
Tw... 4:19 315
315 2000 Zombie Nation Kernkraft
400 3:30 316
316 2000 matchbox twenty
Bent 4:12 317

[317 rows x 5 columns]

Now that we have a separate dataframe about songs, we can use the
newly created id column to match a song to its weekly ranking.

Click here to view code image

Merge the song dataframe to the original data
set
billboard_ratings = billboard_long.merge(
 billboard_songs, on=["year", "artist",
"track", "time"]
)
print(billboard_ratings.shape)

(24092, 8)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch07_images.xhtml#f0172-01

print(billboard_ratings)

 year artist
track time \
0 2000 2 Pac Baby Don't Cry
(Keep... 4:22
1 2000 2 Pac Baby Don't Cry
(Keep... 4:22
2 2000 2 Pac Baby Don't Cry
(Keep... 4:22
3 2000 2 Pac Baby Don't Cry
(Keep... 4:22
4 2000 2 Pac Baby Don't Cry
(Keep... 4:22
...
... ...
24087 2000 matchbox twenty
Bent 4:12
24088 2000 matchbox twenty
Bent 4:12
24089 2000 matchbox twenty
Bent 4:12
24090 2000 matchbox twenty
Bent 4:12
24091 2000 matchbox twenty
Bent 4:12

 date.entered week rating id
0 2000-02-26 wk1 87.0 1
1 2000-02-26 wk2 82.0 1
2 2000-02-26 wk3 72.0 1
3 2000-02-26 wk4 77.0 1

4 2000-02-26 wk5 87.0 1
...
24087 2000-04-29 wk72 NaN 317
24088 2000-04-29 wk73 NaN 317
24089 2000-04-29 wk74 NaN 317
24090 2000-04-29 wk75 NaN 317
24091 2000-04-29 wk76 NaN 317

[24092 rows x 8 columns]

Finally, we subset the columns to the ones we want in our ratings
dataframe.

Click here to view code image

billboard_ratings = billboard_ratings[
 ["id", "date.entered", "week", "rating"]
]
print(billboard_ratings)

 id date.entered week rating
0 1 2000-02-26 wk1 87.0
1 1 2000-02-26 wk2 82.0
2 1 2000-02-26 wk3 72.0
3 1 2000-02-26 wk4 77.0
4 1 2000-02-26 wk5 87.0
...
24087 317 2000-04-29 wk72 NaN
24088 317 2000-04-29 wk73 NaN
24089 317 2000-04-29 wk74 NaN
24090 317 2000-04-29 wk75 NaN
24091 317 2000-04-29 wk76 NaN

[24092 rows x 4 columns]

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch07_images.xhtml#f0172-02

Conclusion
This chapter explored how we can reduce the amount of duplicate
information in data for efficient data storage. Data normalization can be
thought of as the opposite process of preparing data for analysis,
visualization, and model fitting. But typically you will need to combine
multiple normalized data sets together into a tidy data set.

8

Groupby Operations: Split-Apply-
Combine

Grouped operations are a powerful way to aggregate, transform, and filter
data. They rely on the mantra of “split–apply–combine”:

1. Data is split into separate parts based on key(s).
2. A function is applied to each part of the data.
3. The results from each part are combined to create a new data set.

This is a powerful concept because parts of your original data can be
split up into independent parts to perform a calculation. If you worked with
databases in the past, then you should recognize that the Pandas
.groupby() works just like the SQL GROUP BY. The split–apply–
combine concept is also heavily used in “big data” systems that use
distributed computing, with the data being split into independent parts and
dispatched to a separate server where a function is applied, and the results
are then combined.

The techniques shown in this chapter can all be done without using the
.groupby() method. For example:

Aggregation can be done by using conditional subsetting on a
dataframe
Transformation can be done by passing a column into a separate
function
Filtering can be done with conditional subsetting

However, when you work with your data using .groupby()
statements, your code can be faster, you have greater flexibility when you

want to create multiple groups, and you can more readily work with larger
data sets on distributed or parallel systems.

Learning Objectives
Understand what grouped data is
Calculate summaries of data using .groupby() operations
Perform aggregation, transformation, and filtering operations on
grouped data
Separate data by groups for separate calculations

8.1 Aggregate
Aggregation is the process of taking multiple values and returning a single
value. Calculating an arithmetic mean is an example, as multiple values are
averaged to produce a single value.

8.1.1 Basic One-Variable Grouped Aggregation
Section 1.4.1 showed how to calculate grouped means using the
gapminder data set. We calculated the average life expectancy for each
year of the data and plotted it. This is an example of using group-by
operations for data aggregation; that is, we used the .groupby() method
to calculate a summary statistic, the mean, for all the values in each year.

Aggregation may sometimes be referred to as summarization. Both
terms mean that some form of data reduction is involved. For example,
when you calculate a summary statistic, such as the mean, you are taking
multiple values and replacing them with a single value. The amount of data
is now smaller.

Click here to view code image

import pandas as pd
df = pd.read_csv('data/gapminder.tsv', sep='\t')

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0176-01

calculate the average life expectancy for each
year
avg_life_exp_by_year = df.groupby('year')
["lifeExp"].mean()

print(avg_life_exp_by_year)

year
1952 49.057620
1957 51.507401
1962 53.609249
1967 55.678290
1972 57.647386
 ...
1987 63.212613
1992 64.160338
1997 65.014676
2002 65.694923
2007 67.007423
Name: lifeExp, Length: 12, dtype: float64

Groupby statements can be thought of as creating a subset of each
unique value of a column (or unique pairs from columns). For example, we
could get a list of unique values in the column.

Click here to view code image

get a list of unique years in the data
years = df.year.unique()
print(years)

[1952 1957 1962 1967 1972 1977 1982 1987 1992 1997
2002 2007]

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0176-02

We can go through each of the years and subset the data.

Click here to view code image

subset the data for the year 1952
y1952 = df.loc[df.year == 1952, :]
print(y1952)

 country continent year lifeExp
pop \
0 Afghanistan Asia 1952 28.801
8425333
12 Albania Europe 1952 55.230
1282697
24 Algeria Africa 1952 43.077
9279525
36 Angola Africa 1952 30.015
4232095
48 Argentina Americas 1952 62.485
17876956
...
...
1644 Vietnam Asia 1952 40.412
26246839
1656 West Bank and Gaza Asia 1952 43.160
1030585
1668 Yemen, Rep. Asia 1952 32.548
4963829
1680 Zambia Africa 1952 42.038
2672000
1692 Zimbabwe Africa 1952 48.451
3080907

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0177-01

 gdpPercap
0 779.445314
12 1601.056136
24 2449.008185
36 3520.610273
48 5911.315053
... ...
1644 605.066492
1656 1515.592329
1668 781.717576
1680 1147.388831
1692 406.884115

[142 rows x 6 columns]

Finally, we can perform a function on the subset data. Here we take the
mean of the lifeExp values.

Click here to view code image

y1952_mean = y1952["lifeExp"].mean()
print(y1952_mean)

49.057619718309866

The .groupby() method essentially repeats this process for every
year column (i.e., splits the data), calculates the mean value (i.e., applies a
function), and conveniently returns all the results in a single dataframe (i.e.,
combines the values together).

Of course, mean is not the only type of aggregation function you can
use. There are many built-in methods in Pandas you can use with the
.groupby() method.

8.1.2 Built-In Aggregation Methods

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0177-02

Table 8.1 provides a non-exclusive list of built-in Pandas methods you can
use to aggregate your data.

Table 8.1 Methods and Functions That Can Be Used With
.groupby()

Pandas
Method

Numpy/Scipy
Function Description

.count() np.count_non
zero()

Frequency count not including

NaN values

.size() Frequency count with NaN values

.mean() np.mean() Mean of the values

.std() np.std() Sample standard deviation

.min() np.min() Minimum values

.quantile
(q=0.25)

np.percentil
e(q=0.25)

25th percentile of the values

.quantile
(q=0.50)

np.percentil
e(q=0.50)

50th percentile of the values

.quantile
(q=0.75)

np.percentil
e(q=0.75)

75th percentile of the values

.max() np.max() Maximum value

.sum() np.sum() Sum of the values

.var() np.var() Unbiased variance

.sem() scipy.stats.
sem()

Unbiased standard error of the mean

.describe
()

scipy.stats.
describe()

Count, mean, standard deviation,
minimum, 25%, 50%, 75%, and maximum

.first() Returns the first row

Pandas
Method

Numpy/Scipy
Function Description

.last() Returns the last row

.nth() Returns the nth row (Python starts
counting from 0)

For example, we can calculate multiple summary statistics
simultaneously with .describe().

Click here to view code image

group by continent and describe each group
continent_describe = df.groupby('continent')
["lifeExp"].describe()
print(continent_describe)

 count mean std min
25% 50% \
continent
Africa 624.0 48.865330 9.150210 23.599
42.37250 47.7920
Americas 300.0 64.658737 9.345088 37.579
58.41000 67.0480
Asia 396.0 60.064903 11.864532 28.801
51.42625 61.7915
Europe 360.0 71.903686 5.433178 43.585
69.57000 72.2410
Oceania 24.0 74.326208 3.795611 69.120
71.20500 73.6650

 75% max
continent

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0178-01

Africa 54.41150 76.442
Americas 71.69950 80.653
Asia 69.50525 82.603
Europe 75.45050 81.757
Oceania 77.55250 81.235

8.1.3 Aggregation Functions
You can also use an aggregation function that is not listed in the “Pandas
Method” column in Table 8.1. Instead of directly calling the aggregation
method, you can call the .agg() or .aggregate() method, and pass
the aggregation function you want in there. When using .agg() or
.aggregate(), you will use the functions listed in the “Numpy/Scipy
Function” column in Table 8.1.

Note
The .agg() method is an alias for .aggregate(). The
Pandas documentation suggests you use the alias, .agg(), over
the fully spelled out method.

8.1.3.1 Functions From Other Libraries

We can use the mean() function from the numpy library by passing the
function into the .agg() method.

Click here to view code image

import numpy as np

calculate the average life expectancy by
continent
but use the np.mean function
cont_le_agg = df.groupby('continent')

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0179-02

["lifeExp"].agg(np.mean)

print(cont_le_agg)

continent
Africa 48.865330
Americas 64.658737
Asia 60.064903
Europe 71.903686
Oceania 74.326208
Name: lifeExp, dtype: float64

Note
When we pass in the function into .agg(), we only need the
actual function object, we do not need to “call” the function.
That’s why we write np.mean and not np.mean(). This is
similar to when we called .apply() in Chapter 5.

8.1.3.2 Custom User Functions

Sometimes we may want to perform a calculation that is not provided by
Pandas or another library. We can write our own function that performs the
calculation we want and use it in .agg() as well.

Let’s create our own mean function. Recall the mean function:

mean = x̄ =
n

Σ
i=1

xi (8.1)

Click here to view code image

def my_mean(values):
 """My version of calculating a mean"""
 # get the total number of numbers for the

1
n

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0180-02

denominator
 n = len(values)

 # start the sum at 0
 sum = 0
 for value in values:
 # add each value to the running sum
 sum += value

 # return the summed values divided by the
number of values
 return sum / n

Note that the function we wrote takes only one parameter, values.
What gets passed into the function, however, is the entire series of values.
This is why we need to iterate through the values to take the sum.

Also, we could have calculated the sum in the function by using
values.sum(), which can actually handle missing values better than the
way the for loop is currently written. See Chapter 5 for a review of these
concepts.

We can pass our custom function straight into the .agg() or
.aggregate() method with my_mean.

Click here to view code image

use our custom function into agg
agg_my_mean = df.groupby('year')
["lifeExp"].agg(my_mean)

print(agg_my_mean)

year
1952 49.057620
1957 51.507401

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0180-03

1962 53.609249
1967 55.678290
1972 57.647386
 ...
1987 63.212613
1992 64.160338
1997 65.014676
2002 65.694923
2007 67.007423
Name: lifeExp, Length: 12, dtype: float64

Finally, we can write functions that take multiple parameters. As long as
the first parameter takes the series of values from the dataframe, you can
pass the other arguments as keywords into .agg() or .aggregate().

In the following example, we will calculate the global average life
expectancy, diff_value, and subtract it from each grouped value.

Click here to view code image

def my_mean_diff(values, diff_value):
 """Difference between the mean and
diff_value
 """
 n = len(values)
 sum = 0
 for value in values:
 sum += value
 mean = sum / n
 return(mean - diff_value)

calculate the global average life expectancy
mean
global_mean = df["lifeExp"].mean()
print(global_mean)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0181-02

59.474439366197174

custom aggregation function with multiple
parameters
agg_mean_diff = (
 df
 .groupby("year")
 ["lifeExp"]
 .agg(my_mean_diff, diff_value=global_mean)
)

print(agg_mean_diff)

year
1952 -10.416820
1957 -7.967038
1962 -5.865190
1967 -3.796150
1972 -1.827053
 ...
1987 3.738173
1992 4.685899
1997 5.540237
2002 6.220483
2007 7.532983
Name: lifeExp, Length: 12, dtype: float64

8.1.4 Multiple Functions Simultaneously
When we want to calculate multiple aggregation functions, we can pass the
individual functions into .agg() or .aggregate() as a Python list.
Examples of functions you can use here are listed in the “Numpy/Scipy
Function” column in Table 8.1.

Click here to view code image

calculate the count, mean, std of the lifeExp
by continent
gdf = (
 df
 .groupby("year")
 ["lifeExp"]
 .agg([np.count_nonzero, np.mean, np.std])
)

print(gdf)

 count_nonzero mean std
year
1952 142 49.057620 12.225956
1957 142 51.507401 12.231286
1962 142 53.609249 12.097245
1967 142 55.678290 11.718858
1972 142 57.647386 11.381953
...
1987 142 63.212613 10.556285
1992 142 64.160338 11.227380
1997 142 65.014676 11.559439
2002 142 65.694923 12.279823
2007 142 67.007423 12.073021

[12 rows x 3 columns]

8.1.5 Use a dict in .agg() / .aggregate()
There are some other ways you can apply functions in the .agg() and
.aggregate() methods. For example, you can pass .agg() a Python

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0182-01

dictionary. However, the results will differ depending on whether you are
aggregating directly on a DataFrame or on a Series object.

8.1.5.1 On a DataFrame

When specifying a dict on a grouped DataFrame, the keys are the
columns of the DataFrame, and the values are the functions used in the
aggregated calculation. This approach allows you to group one or more
variables and use a different aggregation function on different columns
simultaneously.

Click here to view code image

use a dictionary on a dataframe to agg
different columns
for each year, calculate the
average lifeExp, median pop, and median
gdpPercap
gdf_dict = df.groupby("year").agg(

 {
 "lifeExp": "mean",
 "pop": "median",
 "gdpPercap": "median"
 }
)

print(gdf_dict)

 lifeExp pop gdpPercap
year
1952 49.057620 3943953.0 1968.528344
1957 51.507401 4282942.0 2173.220291
1962 53.609249 4686039.5 2335.439533

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0182-02

1967 55.678290 5170175.5 2678.334740
1972 57.647386 5877996.5 3339.129407
...
1987 63.212613 7774861.5 4280.300366
1992 64.160338 8688686.5 4386.085502
1997 65.014676 9735063.5 4781.825478
2002 65.694923 10372918.5 5319.804524
2007 67.007423 10517531.0 6124.371108

[12 rows x 3 columns]

8.1.5.2 On a Series

In the past, passing a dict into a Series after a .groupby() allowed
you to directly calculate aggregate statistics as the returned value, with the
key of the dict being the new column name. However, this notation is not
consistent with the behavior when dicts are passed into grouped
DataFrames, as shown in the example in Section 8.1.5.1. To have user-
defined column names in the output of a grouped series calculation, you
need to rename those columns after the fact.

Click here to view code image

gdf = (
 df
 .groupby("year")
 ["lifeExp"]
 .agg(
 [
 np.count_nonzero,
 np.mean,
 np.std,
]
)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0183-02

 .rename(
 columns={
 "count_nonzero": "count",
 "mean": "avg",
 "std": "std_dev",
 }
)
 .reset_index() # return a flat dataframe
)

print(gdf)

 year count avg std_dev
0 1952 142 49.057620 12.225956
1 1957 142 51.507401 12.231286
2 1962 142 53.609249 12.097245
3 1967 142 55.678290 11.718858
4 1972 142 57.647386 11.381953
..
7 1987 142 63.212613 10.556285
8 1992 142 64.160338 11.227380
9 1997 142 65.014676 11.559439
10 2002 142 65.694923 12.279823
11 2007 142 67.007423 12.073021

[12 rows x 4 columns]

8.2 Transform
When we transform data, we pass values from our dataframe into a
function. The function then “transforms” the data. Unlike .agg(), which
can take multiple values and return a single (aggregated) value,

.transform() takes multiple values and returns a one-to-one
transformation of the values. That is, it does not reduce the amount of data.

8.2.1 Z-Score Example
Let’s calculate the z-score of our life expectancy data by year. The z-score
identifies the number of standard deviations from the mean of our data. It
centers our data around 0, with a standard deviation of 1. This technique
standardizes our data and makes it easier to compare different variables
with different units to each other.

Here’s the formula for calculating z-score:

z = (8.2)

x is a data point in our data set
µ is the average of our data set, as calculated by Equation 8.1
σ is the standard deviation, as calculated by Equation 8.3

σ = √
n

Σ
i=1

(xi − μ)
2

(8.3)

Let’s write a Python function that calculates a z-score.

Click here to view code image

def my_zscore(x):
 '''Calculates the z-score of provided data
 'x' is a vector or series of values
 '''
 return((x - x.mean()) / x.std())

Now we can use this function to .transform() our data by group.

Click here to view code image

x−μ

σ

1
n

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0185-01
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0185-02

transform_z = df.groupby('year')
["lifeExp"].transform(my_zscore)

print(transform_z)

0 -1.656854
1 -1.731249
2 -1.786543
3 -1.848157
4 -1.894173
 ...
1699 -0.081621
1700 -0.336974
1701 -1.574962
1702 -2.093346
1703 -1.948180
Name: lifeExp, Length: 1704, dtype: float64

Note the shape of our original dataframe, and that of the
transform_z value. Both have the same number of rows and data.

Click here to view code image

note the number of rows in our data
print(df.shape)

(1704, 6)

note the number of values in our
transformation
print(transform_z.shape)

(1704,)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0185-03

The scipy library has its own zscore() function. Let’s use its
zscore() function in a .groupby() .transform() and compare it
to what happens when we do not use .groupby().

Click here to view code image

from scipy.stats import zscore

calculate a grouped zscore

sp_z_grouped = df.groupby('year')
["lifeExp"].transform(zscore)

calculate a nongrouped zscore
sp_z_nogroup = zscore(df["lifeExp"])

Notice that not all of the zscore() values are the same.

grouped z-score
print(transform_z.head())

0 -1.656854
1 -1.731249
2 -1.786543
3 -1.848157
4 -1.894173
Name: lifeExp, dtype: float64

grouped z-score using scipy
print(sp_z_grouped.head())

0 -1.662719
1 -1.737377
2 -1.792867

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0185-04

3 -1.854699
4 -1.900878
Name: lifeExp, dtype: float64

nongrouped z-score
print(sp_z_nogroup[:5])

0 -2.375334
1 -2.256774
2 -2.127837
3 -1.971178
4 -1.811033
Name: lifeExp, dtype: float64

Our grouped results are similar. However, when we calculate the z-score
outside the .groupby(), we get the z-score calculated on the entire data
set, not broken out by group.

8.2.2 Missing Value Example
Chapter 9 covers missing values and explored how we can fill in missing
values. In the Ebola data set example in that chapter, it made more sense to
fill in the missing data using the .interpolate() method, or
forward/backward filling our data.

In certain data sets, filling the missing values with the mean of the
column could also make sense. At other times, however, it may make more
sense to fill in missing data based on a particular group. Let’s work with the
tips data set that comes from the seaborn library.

Click here to view code image

import seaborn as sns
import numpy as np

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0187-01

set the seed so results are deterministic
np.random.seed(42)

sample 10 rows from tips
tips_10 = sns.load_dataset("tips").sample(10)

randomly pick 4 'total_bill' values and turn
them into missing
tips_10.loc[
 np.random.permutation(tips_10.index)[:4],
 "total_bill"
] = np.NaN

print(tips_10)

 total_bill tip sex smoker day time
size
24 19.82 3.18 Male No Sat Dinner
2
6 8.77 2.00 Male No Sun Dinner
2
153 NaN 2.00 Male No Sun Dinner
4
211 NaN 5.16 Male Yes Sat Dinner
4
198 NaN 2.00 Female Yes Thur Lunch
2
176 NaN 2.00 Male Yes Sun Dinner
2
192 28.44 2.56 Male Yes Thur Lunch
2
124 12.48 2.52 Female No Thur Lunch
2

9 14.78 3.23 Male No Sun Dinner
2
101 15.38 3.00 Female Yes Fri Dinner
2

Chapter 9 also shows how you can use the .fillna() method to fill
in the missing values. However, we may not want to simply fill the missing
values with the mean of total_bill. Perhaps the Male and Female
values in the sex column have different spending habits, or perhaps the
total_bill values differ between time of day (time), or and size of
the table. These are all valid concerns when processing our data.

We can use the .groupby() method to calculate a statistic to fill in
missing values. Instead of using .agg(), we use the .transform()
method. First, let’s count the non-missing values by sex.

Click here to view code image

count_sex = tips_10.groupby('sex').count()
print(count_sex)

 total_bill tip smoker day time size
sex
Male 4 7 7 7 7 7
Female 2 3 3 3 3 3

This result gives us the number of non-missing values for each value of
sex in each column. We have three missing values for Male, and one
missing value for Female. Now let’s calculate a grouped average, and use
the grouped average to fill in the missing values.

Click here to view code image

def fill_na_mean(x):
 """Returns the average of a given vector"""
 avg = x.mean()

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0187-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0188-01

 return x.fillna(avg)

calculate a mean 'total_bill' by 'sex'
total_bill_group_mean = (
 tips_10
 .groupby("sex")
 .total_bill
 .transform(fill_na_mean)
)

assign to a new column in the original data
you can also replace the original column by
using 'total_bill'
tips_10["fill_total_bill"] =
total_bill_group_mean

If we just look at the two total_bill columns, we see that different
values were filled in for the NaN missing values.

Click here to view code image

print(tips_10[['sex', 'total_bill',
'fill_total_bill']])

 sex total_bill fill_total_bill
24 Male 19.82 19.8200
6 Male 8.77 8.7700
153 Male NaN 17.9525
211 Male NaN 17.9525
198 Female NaN 13.9300
176 Male NaN 17.9525
192 Male 28.44 28.4400
124 Female 12.48 12.4800

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0188-02

9 Male 14.78 14.7800
101 Female 15.38 15.3800

8.3 Filter
The last type of action you can perform with the .groupby() method is
.filter(). This allows you to split your data by keys, and then perform
some kind of boolean subsetting on the data. As with all the examples for
.groupby(), you can accomplish the same thing by using regular
subsetting, as described in Section 1.3 and Section 2.4.1. Let’s use the full
tips data set and look at the number of observations for the various size
values.

Click here to view code image

load the tips data set
tips = sns.load_dataset('tips')

note the number of rows in the original data
print(tips.shape)

(244, 7)

look at the frequency counts for the table
size
print(tips['size'].value_counts())

2 156
3 38
4 37
5 5
1 4
6 4
Name: size, dtype: int64

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0189-01

The output shows that table sizes of 1, 5, and 6 are infrequent.
Depending on your needs, you may want to filter those data points out. In
this example, we want each group to consist of 30 or more observations.

To accomplish this goal, we can use the .filter() method on a
grouped operation.

Click here to view code image

filter the data such that each group has more
than 30 observations
tips_filtered = (
 tips
 .groupby("size")
 .filter(lambda x: x["size"].count() >= 30)
)

The output shows that our data set was filtered down.

Click here to view code image

print(tips_filtered.shape)

(231, 7)

print(tips_filtered['size'].value_counts())

2 156
3 38
4 37
Name: size, dtype: int64

8.4 The pandas.core.groupby. DataFrameGroupBy
object

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0189-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0189-03

The .aggregate(), .transform(), and .filter() methods are
commonly used ways of working with grouped objects in Pandas. In this
section, we will investigate some of the inner workings of grouped objects.
The .groupby() documentation is an excellent resource for some of the
more nuanced features of .groupby().1

1. groupby() documentation:
https://pandas.pydata.org/pandas-
docs/stable/user_guide/groupby.html

8.4.1 Groups
Throughout this chapter, we’ve directly chained .agg(),
.transform(), or .filter() after the .groupby(). However, we
can actually save the results of .groupby() before we perform those
other methods. We will start with the subsetted tips data set.

Click here to view code image

tips_10 = sns.load_dataset('tips').sample(10,
random_state=42)
print(tips_10)

 total_bill tip sex smoker day time
size
24 19.82 3.18 Male No Sat Dinner
2
6 8.77 2.00 Male No Sun Dinner
2
153 24.55 2.00 Male No Sun Dinner
4
211 25.89 5.16 Male Yes Sat Dinner
4
198 13.00 2.00 Female Yes Thur Lunch
2

https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0190-01

176 17.89 2.00 Male Yes Sun Dinner
2
192 28.44 2.56 Male Yes Thur Lunch
2
124 12.48 2.52 Female No Thur Lunch
2
9 14.78 3.23 Male No Sun Dinner
2
101 15.38 3.00 Female Yes Fri Dinner
2

We can choose to save just the groupby object without running any
other .agg(), .transform(), or .filter() method on it.

Click here to view code image

save just the grouped object
grouped = tips_10.groupby('sex')

note that we just get back the object and its
memory location
print(grouped)

<pandas.core.groupby.generic.DataFrameGroupBy
object at 0x15ed37880>

When we try to print out the grouped result, we get a memory
reference back and the data type is a Pandas DataFrameGroupBy object.
Under the hood, nothing has been actually calculated yet, because we never
performed an action that requires a calculation. If we want to actually see
the calculated groups, we can call the groups attribute.

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0190-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0191-01

see the actual groups of the groupby
it returns only the index
print(grouped.groups)

{'Male': [24, 6, 153, 211, 176, 192, 9], 'Female':
[198, 124, 101]}

Even when we ask for the groups from our grouped object, we get
only the index of the dataframe back. Think of this index as indicating the
row numbers. It is intended mainly to optimize performance. Again, we
haven’t calculated anything yet.

This approach does allow you to save just the grouped result. You could
then perform multiple .agg(), .transform(), or .filter()
operations without having to process the .groupby() statement again.

8.4.2 Group Calculations Involving Multiple
Variables
One of the nice things about Python is that it follows the EAFP mantra: It is
“easier to ask for forgiveness than for permission.” Throughout the chapter,
we have been performing .groupby() calculations on a single column. If
we specify the calculation we want right after the .groupby(), however,
Python will perform the calculation on all the columns it can and silently
drop the rest.

Here’s an example of a grouped mean on all the columns by sex.

Click here to view code image

calculate the mean on relevant columns
avgs = grouped.mean()
print(avgs)

 total_bill tip size
sex

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0191-02

Male 20.02 2.875714 2.571429
Female 13.62 2.506667 2.000000

As you can see, not all the columns reported a mean.

Click here to view code image

list all the columns
print(tips_10.columns)

Index(['total_bill', 'tip', 'sex', 'smoker',
'day', 'time', 'size'],
 dtype='object')

The smoker, day, and time columns were not returned in the results
those columns do not contain numeric values, rather, they contain
categorical values. To use the time column as an example, there is no
arithmetic mean for the terms Dinner and Lunch.

8.4.3 Selecting a Group
If we want to extract a particular group, we can use the .get_group()
method, and pass in the group that we want. For example, if we wanted the
Female values:

Click here to view code image

get the 'Female' group
female = grouped.get_group('Female')
print(female)

 total_bill tip sex smoker day time
size
198 13.00 2.00 Female Yes Thur Lunch
2

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0191-03
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0192-01

124 12.48 2.52 Female No Thur Lunch
2
101 15.38 3.00 Female Yes Fri Dinner
2

8.4.4 Iterating Through Groups
Another benefit of saving just the groupby object is that you can then
iterate through the groups individually. There might be times when it’s
easier to conceptualize a question using a for loop, rather than trying to
formulate an .agg(), .transform(), or .filter() method.
Sometimes this might be the only way to do the task. Other times, it might
be the way to get the task done for now, and you can work on optimizing
the solution later.

We can iterate through our grouped values just like any other
container in Python using a for loop.

Click here to view code image

for sex_group in grouped:
 print(sex_group)

('Male', total_bill tip sex smoker day
time size
24 19.82 3.18 Male No Sat
Dinner 2
6 8.77 2.00 Male No Sun
Dinner 2
153 24.55 2.00 Male No Sun
Dinner 4
211 25.89 5.16 Male Yes Sat
Dinner 4
176 17.89 2.00 Male Yes Sun
Dinner 2

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0192-02

192 28.44 2.56 Male Yes Thur Lunch
2
9 14.78 3.23 Male No Sun
Dinner 2)
('Female', total_bill tip sex smoker
day time size
198 13.00 2.00 Female Yes Thur Lunch
2
124 12.48 2.52 Female No Thur Lunch
2
101 15.38 3.00 Female Yes Fri
Dinner 2)

If you try to get just the first index from the grouped object, you will
get an error message. This object is still a
pandas.core.groupby.DataFrameGroupBy object, rather than a
real Pandas container.

Click here to view code image

you can't really get the 0 element from the
grouped object
print(grouped[0])

KeyError: 'Column not found: 0'

For now, let’s modify the for loop to just show the first element, along
with some of the things we get when we loop over the grouped object.

Click here to view code image

for sex_group in grouped:
 # get the type of the object (tuple)
 print(f'the type is: {type(sex_group)}\n')

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0192-03
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0193-01

 # get the length of the object (2 elements)
 print(f'the length is: {len(sex_group)}\n')

 # get the first element
 first_element = sex_group[0]
 print(f'the first element is:
{first_element}\n')

 # the type of the first element (string)
 print(f'it has a type of:
{type(sex_group[0])}\n')

 # get the second element
 second_element = sex_group[1]
 print(f'the second element
is:\n{second_element}\n')

 # get the type of the second element
(dataframe)
 print(f'it has a type of:
{type(second_element)}\n')

 # print what we have
 print(f'what we have:')
 print(sex_group)

 # stop after first iteration
 break

the type is: <class 'tuple'>

the length is: 2

the first element is: Male

it has a type of: <class 'str'>

the second element is:
 total_bill tip sex smoker day time
size
24 19.82 3.18 Male No Sat Dinner
2
6 8.77 2.00 Male No Sun Dinner
2
153 24.55 2.00 Male No Sun Dinner
4
211 25.89 5.16 Male Yes Sat Dinner
4
176 17.89 2.00 Male Yes Sun Dinner
2
192 28.44 2.56 Male Yes Thur Lunch
2
9 14.78 3.23 Male No Sun Dinner
2

it has a type of: <class
'pandas.core.frame.DataFrame'>

what we have:
('Male', total_bill tip sex smoker day
time size
24 19.82 3.18 Male No Sat
Dinner 2
6 8.77 2.00 Male No Sun
Dinner 2

153 24.55 2.00 Male No Sun
Dinner 4
211 25.89 5.16 Male Yes Sat
Dinner 4
176 17.89 2.00 Male Yes Sun
Dinner 2
192 28.44 2.56 Male Yes Thur Lunch
2
9 14.78 3.23 Male No Sun
Dinner 2)

We have a two-element tuple in which the first element is a str
(string) that represents the Male key, and the second element is a
DataFrame of the Male data.

If you prefer, you can forgo all the techniques introduced in this chapter
and iterate through your grouped values in this manner to perform your
calculations. Again, there may be times when this is the only way to get
something done. Perhaps you have a complicated condition you want to
check for each group, or you want to write out each group into separate
files. This option is available to you if you need to iterate through the
groups one at a time.

8.4.5 Multiple Groups
So far in this chapter, we have included one variable in the .groupby()
method. In fact, we can add multiple variables during the .groupby()
process. Section 1.4.1 briefly showed such a case.

Let’s say we want to calculate the mean of our tips data by sex, time
of day (time), and day of week (day). We can pass in ['sex',
'time'] as a Python list instead of the single string we have been
using.

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0194-02

mean by sex and time
bill_sex_time = tips_10.groupby(['sex', 'time'])

group_avg = bill_sex_time.mean()

8.4.6 Flattening the Results (.reset_index())
The final topic that will be covered in this section is the results from the
.groupby() statement. Let’s look at the type of the group_avg we just
calculated.

Click here to view code image

type of the group_avg
print(type(group_avg))

<class 'pandas.core.frame.DataFrame'>

We have a DataFrame, but the results look a little strange: We have
what appear to be empty cells in the dataframe.

If we look at the columns, we get what we expect.

Click here to view code image

print(group_avg.columns)

Index(['total_bill', 'tip', 'size'],
dtype='object')

However, more interesting things happen when we look at the index.

Click here to view code image

print(group_avg.index)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0194-03
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0195-01
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0195-02

MultiIndex([('Male', 'Lunch'),
 ('Male', 'Dinner'),
 ('Female', 'Lunch'),
 ('Female', 'Dinner')],
 names=['sex', 'time'])

If we like, we can use a MultiIndex. If we want to get a regular flat
dataframe back, we can call the .reset_index() method on the results.

Click here to view code image

group_method = tips_10.groupby(['sex',
'time']).mean().reset_index()
print(group_method)

 sex time total_bill tip size
0 Male Lunch 28.440000 2.560000 2.000000
1 Male Dinner 18.616667 2.928333 2.666667
2 Female Lunch 12.740000 2.260000 2.000000
3 Female Dinner 15.380000 3.000000 2.000000

Alternatively, we can use the as_index=False parameter in the
.groupby() method (it is True by default).

Click here to view code image

group_param = tips_10.groupby(['sex', 'time'],
as_index=False).mean()
print(group_param)

 sex time total_bill tip size
0 Male Lunch 28.440000 2.560000 2.000000
1 Male Dinner 18.616667 2.928333 2.666667
2 Female Lunch 12.740000 2.260000 2.000000
3 Female Dinner 15.380000 3.000000 2.000000

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0195-03
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0195-04

8.5 Working With a MultiIndex
Sometimes, you may want to chain calculations after a .groupby()
method. You can always “flatten” the results and then execute another
.groupby() statement, but that may not always be the most efficient way
of performing the calculation.

We begin with epidemiological simulation data on influenza cases in
Chicago (this is a fairly large data set).

Click here to view code image

notice that we can even read a compressed zip
file of a csv
intv_df = pd.read_csv('data/epi_sim.zip')

print(intv_df)

 ig_type intervened pid rep sid
tr
0 3 40 294524448 1 201
0.000135
1 3 40 294571037 1 201
0.000135
2 3 40 290699504 1 201
0.000135
3 3 40 288354895 1 201
0.000135
4 3 40 292271290 1 201
0.000135
...
...
9434648 2 87 345636694 2 201
0.000166

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0196-01

9434649 3 87 295125214 2 201
0.000166
9434650 2 89 292571119 2 201
0.000166
9434651 3 89 292528142 2 201
0.000166
9434652 2 95 291956763 2 201
0.000166

[9434653 rows x 6 columns]

About the Epidemiological Simulation Data Set
This data set comes from a simulation which was run using a program
called Indemics. It was developed by the Network Dynamics and
Simulation Science Laboratory at Virginia Tech.

The references for the program are:

Bisset KR, Chen J, Deodhar S, Feng X, Ma Y, Marathe MV.
Indemics: An interactive high-performance computing framework
for data intensive epidemic modeling. ACM Transactions on
Modeling and Computer Simulation. 2014; 24(1):10.
1145/2501602. doi:10.1145/2501602.
Deodhar S, Bisset K, Chen J, Ma Y, Marathe MV. Enhancing
software capability through integration of distinct software in
epidemiological systems. 2nd ACM SIGHIT International Health
Informatics Symposium, 2012.
Bisset KR, Chen J, Feng X, Ma Y, Marathe MV. Indemics: An
interactive data intensive framework for high performance
epidemic simulation. In Proceedings the 24rd International
Conference on Conference on Supercomputing. 2010; 233-242.

The data set includes six columns:

ig_type: edge type (type of relationship between two nodes in the
network, such as “school” and “work”)
intervened: time in the simulation at which an intervention
occurred for a given person (pid)
pid: simulated person’s ID number
rep: replication run (each set of simulation parameters was run
multiple times)
sid: simulation ID
tr: transmissibility value of the influenza virus

Let’s count the number of interventions for each replicate, intervention
time, and treatment value. Here, we are counting the ig_type arbitrarily.
We just need a value to get a count of observations for the groups.

Click here to view code image

count_only = (
 intv_df
 .groupby(["rep", "intervened", "tr"])
 ["ig_type"]
 .count()
)

print(count_only)

rep intervened tr
0 8 0.000166 1
 9 0.000152 3
 0.000166 1
 10 0.000152 1
 0.000166 1
 ..
2 193 0.000135 1
 0.000152 1

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0197-01

 195 0.000135 1
 198 0.000166 1
 199 0.000135 1
Name: ig_type, Length: 1196, dtype: int64

Now that we’ve done a .groupby() .count(), we can perform an
additional .groupby() that calculates the average value. However, our
initial .groupby() method does not return a regular flat dataframe.

Click here to view code image

print(type(count_only))

<class 'pandas.core.series.Series'>

Instead, the results take the form of a multi-index series. If we want to
do another .groupby() operation, we have to pass in the levels
parameter to refer to the multi-index levels. Here we pass in [0, 1, 2]
for the first, second, and third index levels, respectively.

Click here to view code image

count_mean = count_only.groupby(level=[0, 1,
2]).mean()
print(count_mean.head())

rep intervened tr
0 8 0.000166 1.0
 9 0.000152 3.0
 0.000166 1.0
 10 0.000152 1.0
 0.000166 1.0
Name: ig_type, dtype: float64

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0197-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0197-03

We can combine all of these operations in a single command.

Click here to view code image

count_mean = (
 intv_df
 .groupby(["rep", "intervened", "tr"])
["ig_type"]
 .count()
 .groupby(level=[0, 1, 2])
 .mean()
)

Figure 8.1 shows our results.

Click here to view code image

import seaborn as sns
import matplotlib.pyplot as plt

fig = sns.lmplot(
 data=count_mean.reset_index(),
 x="intervened",
 y="ig_type",
 hue="rep",
 col="tr",
 fit_reg=False,
 palette="viridis"
)

plt.show()

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0198-03
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0198-02

Figure 8.1 Grouped counts and mean

Figure 8.2 Grouped cumulative counts. The plot shows that one of the
replicates did not run in our simulation.

The previous example showed how we can pass in a level to perform
an additional .groupby() calculation. It used integer positions, but we
can also pass in the string of the level to make our code a bit more readable.

Here, instead of looking at the .mean(), we will be using
.cumsum() for the cumulative sum.

Figure 8.2 shows our results.

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0199-02

cumulative_count = (
 intv_df
 .groupby(["rep", "intervened", "tr"])
 ["ig_type"]
 .count()
 .groupby(level=["rep"])
 .cumsum()
 .reset_index()
)

fig = sns.lmplot(
 data=cumulative_count,
 x="intervened",
 y="ig_type",
 hue="rep",
 col="tr",
 fit_reg=False,
 palette="viridis"
)
plt.show()

Conclusion
The .groupby() statement follows the pattern of “split–apply–
combine.”” It is a powerful concept that is not necessarily new to data
analytics, but can help you think about your data and pipelines in a different
way that will scale more readily to “big data” and “distributed” systems.

I urge you to check out the documentation for the .groupby()
method and the general documentation for .groupby(), as there are
many more complex things you can do with groupby statements. The
material covered in this chapter should suffice for the vast majority of
needs and use cases.

Part III

Data Types

Chapter 9 Missing Data

Chapter 10 Data Types

Chapter 11 Strings and Text Data

Chapter 12 Dates and Times

After we have all the data we want, we can go into processing different
parts of it. Working with missing data (Chapter 9), changing the data type
stored in columns (Chapter 10), and working with string (Chapter 11) and
date-time (Chapter 12) data are all common data types we need to be able to
work with while cleaning and munging our data.

9

Missing Data

Rarely will you be given a data set without any missing values. There are
many representations of missing data. In databases, they are NULL values;
certain programming languages use NA; and depending on where you get
your data, missing values can be an empty string, ", or even numeric values
such as 88 or 99. Pandas displays missing values as NaN.

Learning Objectives
Identify how missing values are represented in pandas
Recognize potential ways data can go missing in data processing
Use different functions to fill in missing values

9.1 What Is a NaN Value?
The NaN value in Pandas comes from numpy. Missing values may be used
or displayed in a few ways in Pandas — NaN, NAN, or nan— they are all
the same in terms of how you specify a missing (floating point) number, but
they are not the same in terms of equality. Appendix I describes how these
missing values are imported.

Click here to view code image

Just import the numpy missing values
from numpy import NaN, NAN, nan

Missing values are different than other types of data in that they don’t
really equal anything, not even to themselves. The data is missing, so there

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch09_images.xhtml#f0203-01

is no concept of equality. NaN is not equivalent to 0 or an empty string, ".
This is known as “three-valued logic.”

print(NaN == True)

False

print(NaN == 0)

False

print(NaN == ")

False

print(NaN == NaN)

False

print(NaN == NAN)

False

print(NaN == nan)

False

print(nan == NAN)

False

Pandas has functions to test for missing values, isnull().

import pandas as pd

print(pd.isnull(NaN))

True

print(pd.isnull(nan))

True

print(pd.isnull(NAN))

True

Pandas also has functions for testing non-missing values, notnull().

print(pd.notnull(NaN))

False

print(pd.notnull(42))

True

print(pd.notnull('missing'))

True

9.2 Where Do Missing Values Come From?
We can get missing values when we load in a data set with missing values,
or from the data munging process.

9.2.1 Load Data

The survey data we used in Chapter 6 included a data set, visited, that
contained missing data. When we loaded the data, Pandas automatically
found the missing data cell and gave us a dataframe with the NaN value in
the appropriate cell. In the read_csv() function, three parameters relate
to reading missing values: na_values, keep_default_na, and
na_filter.

The na_values parameter allows you to specify additional missing or
NaN values. You can pass in either a Python str (i.e., string) or a list-like
object to be automatically coded as missing values when the file is read. Of
course, default missing values, such as NA, NaN, or nan, are already
available, which is why this parameter is not always used. Some health data
may code 99 as a missing value; to specify the use of this value, you would
set na_values=[99].

The keep_default_na parameter is a bool (i.e., True or False
boolean) that allows you to specify whether any additional values need to
be considered as missing. This parameter is True by default, meaning any
additional missing values specified with the na_values parameter will be
appended to the list of missing values. However, keep_default_na can
also be set to keep_default_na=False, which will only use the
missing values specified in na_values.

Lastly, na_filter is a bool that will specify whether any values will
be read as missing. The default value of na_filter=True means that
missing values will be coded as NaN. If we assign na_filter=False,
then nothing will be recoded as missing. This parameter can be thought of
as a means to turn off all the parameters set for na_values and
keep_default_na, but it is more likely to be used when you want to
achieve a performance boost by loading in data without missing values.

Click here to view code image

set the location for data
visited_file = 'data/survey_visited.csv'

print(pd.read_csv(visited_file))

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch09_images.xhtml#f0205-01

 ident site dated
0 619 DR-1 1927-02-08
1 622 DR-1 1927-02-10
2 734 DR-3 1939-01-07
3 735 DR-3 1930-01-12
4 751 DR-3 1930-02-26
5 752 DR-3 NaN
6 837 MSK-4 1932-01-14
7 844 DR-1 1932-03-22

print(pd.read_csv(visited_file,
keep_default_na=False))

 ident site dated
0 619 DR-1 1927-02-08
1 622 DR-1 1927-02-10
2 734 DR-3 1939-01-07
3 735 DR-3 1930-01-12
4 751 DR-3 1930-02-26
5 752 DR-3
6 837 MSK-4 1932-01-14
7 844 DR-1 1932-03-22

print(
 pd.read_csv(visited_file, na_values=[""],
keep_default_na=False)
)

 ident site dated
0 619 DR-1 1927-02-08
1 622 DR-1 1927-02-10
2 734 DR-3 1939-01-07

3 735 DR-3 1930-01-12
4 751 DR-3 1930-02-26
5 752 DR-3 NaN
6 837 MSK-4 1932-01-14
7 844 DR-1 1932-03-22

9.2.2 Merged Data
Chapter 6 showed you how to combine data sets. Some of the examples in
that chapter included missing values in the output. If we recreate the
merged table from Section 6.4.3, we will see missing values in the merged
output.

Click here to view code image

visited = pd.read_csv('data/survey_visited.csv')
survey = pd.read_csv('data/survey_survey.csv')

print(visited)

 ident site dated
0 619 DR-1 1927-02-08
1 622 DR-1 1927-02-10
2 734 DR-3 1939-01-07
3 735 DR-3 1930-01-12
4 751 DR-3 1930-02-26
5 752 DR-3 NaN
6 837 MSK-4 1932-01-14
7 844 DR-1 1932-03-22

print(survey)

 taken person quant reading
0 619 dyer rad 9.82

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch09_images.xhtml#f0206-02

1 619 dyer sal 0.13
2 622 dyer rad 7.80
3 622 dyer sal 0.09
4 734 pb rad 8.41
..
16 752 roe sal 41.60
17 837 lake rad 1.46
18 837 lake sal 0.21
19 837 roe sal 22.50
20 844 roe rad 11.25

[21 rows x 4 columns]

vs = visited.merge(survey, left_on='ident',
right_on='taken')
print(vs)

 ident site dated taken person quant
reading
0 619 DR-1 1927-02-08 619 dyer rad
9.82
1 619 DR-1 1927-02-08 619 dyer sal
0.13
2 622 DR-1 1927-02-10 622 dyer rad
7.80
3 622 DR-1 1927-02-10 622 dyer sal
0.09
4 734 DR-3 1939-01-07 734 pb rad
8.41
..
...
16 752 DR-3 NaN 752 roe sal
41.60

17 837 MSK-4 1932-01-14 837 lake rad
1.46
18 837 MSK-4 1932-01-14 837 lake sal
0.21
19 837 MSK-4 1932-01-14 837 roe sal
22.50
20 844 DR-1 1932-03-22 844 roe rad
11.25

[21 rows x 7 columns]

9.2.3 User Input Values
The user can also create missing values—for example, by creating a vector
of values from a calculation or a manually curated vector. To build on the
examples from Section 2.1, we will create our own data with missing
values. NaN values are valid for both Series and DataFrame objects.

Click here to view code image

missing value in a series
num_legs = pd.Series({'goat': 4, 'amoeba': nan})
print(num_legs)

goat 4.0
amoeba NaN
dtype: float64

missing value in a dataframe
scientists = pd.DataFrame(
 {
 "Name": ["Rosaline Franklin", "William
Gosset"],

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch09_images.xhtml#f0207-02

 "Occupation": ["Chemist", "Statistician"],
 "Born": ["1920-07-25", "1876-06-13"],
 "Died": ["1958-04-16", "1937-10-16"],
 "missing": [NaN, nan],
 }
)
print(scientists)

 Name Occupation Born
Died missing
0 Rosaline Franklin Chemist 1920-07-25
1958-04-16 NaN
1 William Gosset Statistician 1876-06-13
1937-10-16 NaN

You will notice the dtype of the missing column will be a
float64. This is because the NaN missing value from numpy is a
floating point value.

print(scientists.dtypes)

Name object
Occupation object
Born object
Died object
missing float64
dtype: object

You can also assign a column of missing values to a dataframe directly.

Click here to view code image

create a new dataframe
scientists = pd.DataFrame(

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch09_images.xhtml#f0208-03

 {
 "Name": ["Rosaline Franklin", "William
Gosset"],
 "Occupation": ["Chemist", "Statistician"],
 "Born": ["1920-07-25", "1876-06-13"],
 "Died": ["1958-04-16", "1937-10-16"],
 }
)

assign a column of missing values
scientists["missing"] = nan

print(scientists)

 Name Occupation Born
Died missing
0 Rosaline Franklin Chemist 1920-07-25
1958-04-16 NaN
1 William Gosset Statistician 1876-06-13
1937-10-16 NaN

9.2.4 Reindexing
Another way to introduce missing values into your data is to reindex your
dataframe. This is useful when you want to add new indices to your
dataframe, but still want to retain its original values. A common usage is
when the index represents some time interval, and you want to add more
dates.

If we wanted to look at only the years from 2000 to 2010 from the
Gapminder data plot in Section 1.5, we could perform the same grouped
operations, subset the data, and then reindex it.

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch09_images.xhtml#f0209-01

gapminder = pd.read_csv('data/gapminder.tsv',
sep='\t')

life_exp = gapminder.groupby(['year'])
['lifeExp'].mean()
print(life_exp)

year
1952 49.057620
1957 51.507401
1962 53.609249
1967 55.678290
1972 57.647386
 ...
1987 63.212613
1992 64.160338
1997 65.014676
2002 65.694923
2007 67.007423
Name: lifeExp, Length: 12, dtype: float64

We can reindex by subsetting the data and use the .reindex()
method.

Click here to view code image

subset
y2000 = life_exp[life_exp.index > 2000]
print(y2000)

year
2002 65.694923

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch09_images.xhtml#f0209-02

2007 67.007423
Name: lifeExp, dtype: float64

reindex
print(y2000.reindex(range(2000, 2010)))

year
2000 NaN
2001 NaN
2002 65.694923
2003 NaN
2004 NaN
2005 NaN
2006 NaN
2007 67.007423
2008 NaN
2009 NaN
Name: lifeExp, dtype: float64

9.3 Working With Missing Data
Now that we know how missing values can be created, let’s see how they
behave when we are working with data.

9.3.1 Find and Count Missing Data
One way to look at the number of missing values is to count() them.

Click here to view code image

ebola =
pd.read_csv('data/country_timeseries.csv')

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch09_images.xhtml#f0210-02

count the number of non-missing values
print(ebola.count())

Date 122
Day 122
Cases_Guinea 93
Cases_Liberia 83
Cases_SierraLeone 87
 ...
Deaths_Nigeria 38
Deaths_Senegal 22
Deaths_UnitedStates 18
Deaths_Spain 16
Deaths_Mali 12
Length: 18, dtype: int64

You can also subtract the number of non-missing rows from the total
number of rows.

Click here to view code image

num_rows = ebola.shape[0]
num_missing = num_rows - ebola.count()
print(num_missing)

Date 0
Day 0
Cases_Guinea 29
Cases_Liberia 39
Cases_SierraLeone 35
 ...
Deaths_Nigeria 84
Deaths_Senegal 100
Deaths_UnitedStates 104

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch09_images.xhtml#f0210-03

Deaths_Spain 106
Deaths_Mali 110
Length: 18, dtype: int64

If you want to count the total number of missing values in your data, or
count the number of missing values for a particular column, you can use the
count_nonzero() function from numpy in conjunction with the
.isnull() method.

Click here to view code image

import numpy as np

print(np.count_nonzero(ebola.isnull()))

1214

print(np.count_nonzero(ebola['Cases_Guinea'].isn
ull()))

29

Another way to get missing data counts is to use the
.value_counts() method on a series. This will print a frequency table
of values. If you use the dropna parameter, you can also get a missing
value count.

Click here to view code image

value counts from the Cases_Guinea column
cnts =
ebola.Cases_Guinea.value_counts(dropna=False)
print(cnts)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch09_images.xhtml#f0211-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch09_images.xhtml#f0211-03

NaN 29
86.0 3
495.0 2
112.0 2
390.0 2
 ..
1199.0 1
1298.0 1
1350.0 1
1472.0 1
49.0 1
Name: Cases_Guinea, Length: 89, dtype: int64

The results are sorted so you can subset the count vector to just look at
the missing values.

Click here to view code image

select the values in the Series where the
index is a NaN value
print(cnts.loc[pd.isnull(cnts.index)])

NaN 29
Name: Cases_Guinea, dtype: int64

In Python, True values equate to the integer value 1, and False
values equate to the integer value 0. We can use this behavior to get the
number of missing values by summing up a boolean vector with the
.sum() method.

Click here to view code image

check if the value is missing, and sum up the
results
print(ebola.Cases_Guinea.isnull().sum())

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch09_images.xhtml#f0211-04
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch09_images.xhtml#f0212-01

29

9.3.2 Clean Missing Data
There are many different ways we can deal with missing data. For example,
we can replace the missing data with another value, fill in the missing data
using existing data, or drop the data from our data set.

9.3.2.1 Recode or Replace

We can use the .fillna() method to recode the missing values to
another value. For example, suppose we wanted the missing values to be
recoded as a 0. When we use .fillna(), we can recode the values to a
specific value.

Click here to view code image

fill the missing values to 0 and only look at
the first 5 columns
print(ebola.fillna(0).iloc[:, 0:5])

 Date Day Cases_Guinea Cases_Liberia
Cases_SierraLeone
0 1/5/2015 289 2776.0 0.0
10030.0
1 1/4/2015 288 2775.0 0.0
9780.0
2 1/3/2015 287 2769.0 8166.0
9722.0
3 1/2/2015 286 0.0 8157.0
0.0
4 12/31/2014 284 2730.0 8115.0
9633.0
..

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch09_images.xhtml#f0212-02

...
117 3/27/2014 5 103.0 8.0
6.0
118 3/26/2014 4 86.0 0.0
0.0
119 3/25/2014 3 86.0 0.0
0.0
120 3/24/2014 2 86.0 0.0
0.0
121 3/22/2014 0 49.0 0.0
0.0

[122 rows x 5 columns]

9.3.2.2 Forward Fill

We can use built-in methods to fill forward or backward. When we fill data
forward, the last known value (from top to bottom) is used for the next
missing value. In this way, missing values are replaced with the last known
and recorded value.

Click here to view code image

print(ebola.fillna(method='ffill').iloc[:, 0:5])

 Date Day Cases_Guinea Cases_Liberia
Cases_SierraLeone
0 1/5/2015 289 2776.0 NaN
10030.0
1 1/4/2015 288 2775.0 NaN
9780.0
2 1/3/2015 287 2769.0 8166.0
9722.0
3 1/2/2015 286 2769.0 8157.0

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch09_images.xhtml#f0212-03

9722.0
4 12/31/2014 284 2730.0 8115.0
9633.0
..
...
117 3/27/2014 5 103.0 8.0
6.0
118 3/26/2014 4 86.0 8.0
6.0
119 3/25/2014 3 86.0 8.0
6.0
120 3/24/2014 2 86.0 8.0
6.0
121 3/22/2014 0 49.0 8.0
6.0

[122 rows x 5 columns]

If a column begins with a missing value, then that data will remain
missing because there is no previous value to fill in.

9.3.2.3 Backward Fill

We can also have Pandas fill data backward. When we fill data backward,
the newest value (from top to bottom) is used to replace the missing data. In
this way, missing values are replaced with the newest value.

Click here to view code image

print(ebola.fillna(method='bfill').iloc[:, 0:5])

 Date Day Cases_Guinea Cases_Liberia
Cases_SierraLeone
0 1/5/2015 289 2776.0 8166.0
10030.0

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch09_images.xhtml#f0213-02

1 1/4/2015 288 2775.0 8166.0
9780.0
2 1/3/2015 287 2769.0 8166.0
9722.0
3 1/2/2015 286 2730.0 8157.0
9633.0
4 12/31/2014 284 2730.0 8115.0
9633.0
..
...
117 3/27/2014 5 103.0 8.0
6.0
118 3/26/2014 4 86.0 NaN
NaN
119 3/25/2014 3 86.0 NaN
NaN
120 3/24/2014 2 86.0 NaN
NaN
121 3/22/2014 0 49.0 NaN
NaN

[122 rows x 5 columns]

If a column ends with a missing value, then it will remain missing
because there is no new value to fill in.

9.3.2.4 Interpolate

Interpolation uses existing values to fill in missing values. There are many
ways to fill in missing values, the interpolation in Pandas fills in missing
values linearly. Specifically, it treats the missing values as if they should be
equally spaced apart.

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch09_images.xhtml#f0213-03

print(ebola.interpolate().iloc[:, 0:5])

 Date Day Cases_Guinea Cases_Liberia
Cases_SierraLeone
0 1/5/2015 289 2776.0 NaN
10030.0
1 1/4/2015 288 2775.0 NaN
9780.0
2 1/3/2015 287 2769.0 8166.0
9722.0
3 1/2/2015 286 2749.5 8157.0
9677.5
4 12/31/2014 284 2730.0 8115.0
9633.0
..
...
117 3/27/2014 5 103.0 8.0
6.0
118 3/26/2014 4 86.0 8.0
6.0
119 3/25/2014 3 86.0 8.0
6.0
120 3/24/2014 2 86.0 8.0
6.0
121 3/22/2014 0 49.0 8.0
6.0

[122 rows x 5 columns]

Notice how it behaves kind of in a forward fill fashion, but instead of
passing on the last known value, it will fill in the differences between
values.

The .interpolate() method has a method parameter that can
change the interpolation method.1 Possible values at the time of writing
have been reproduced in Table 9.1.
1. Series.interpolate() documentation:
https://pandas.pydata.org/docs/reference/api/panda
s.Series.interpolate.html

Table 9.1 Possible Values (at the Time of Writing) to Pass Into the
method Parameter in the .interpolate() Method

Technique Description

1linear Ignore the index and treat the values as
equally spaced. This is the only method
supported on Multi-Indexes

2time Works on daily and higher resolution data to
interpolate given length of interval

3index, values Use the actual numerical values of the index

4pad Fill in NaNs using existing values

5nearest, zero, slinear,
quadratic, cubic, spline,
barycentric, polynomial

Passed to scipy.interpolate.
interp1d; these methods use the
numerical values of the index

6krogh,
piecewise_polynomial,
spline, pchip, akima,
cubicspline

Wrappers around the SciPy interpolation
methods of similar names

7from_derivatives Refers to scipy.interpolate.BPoly

9.3.2.5 Drop Missing Values

The last way to work with missing data is to drop observations or variables
with missing data. Depending on how much data is missing, keeping only
complete case data can leave you with a useless data set. Perhaps the
missing data is not random, so that dropping missing values will leave you

https://pandas.pydata.org/docs/reference/api/pandas.Series.interpolate.html

with a biased data set, or perhaps keeping only complete data will leave you
with insufficient data to run your analysis.

We can use the.dropna() method to drop missing data, and specify
parameters to this method that control how data are dropped. For instance,
the how parameter lets you specify whether a row (or column) is dropped
when 'any' or 'all' of the data is missing. The thresh parameter lets
you specify how many non-NaN values you have before dropping the row
or column.

print(ebola.shape)

(122, 18)

If we keep only complete cases in our Ebola data set, we are left with
just one row of data.

Click here to view code image

ebola_dropna = ebola.dropna()
print(ebola_dropna.shape)

(1, 18)

print(ebola_dropna)

 Date Day Cases_Guinea Cases_Liberia
Cases_SierraLeone \
19 11/18/2014 241 2047.0 7082.0
6190.0

 Cases_Nigeria Cases_Senegal
Cases_UnitedStates Cases_Spain \
19 20.0 1.0
4.0 1.0

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch09_images.xhtml#f0215-02

 Cases_Mali Deaths_Guinea Deaths_Liberia
Deaths_SierraLeone \
19 6.0 1214.0 2963.0
1267.0

 Deaths_Nigeria Deaths_Senegal
Deaths_UnitedStates \
19 8.0 0.0
1.0

 Deaths_Spain Deaths_Mali
19 0.0 6.0

9.3.3 Calculations With Missing Data
Suppose we wanted to look at the case counts for multiple regions. We can
add multiple regions together to get a new column holding the case counts.

ebola["Cases_multiple"] = (
 ebola["Cases_Guinea"]
 + ebola["Cases_Liberia"]
 + ebola["Cases_SierraLeone"]
)

Let’s look at the first 10 lines of the calculation.

Click here to view code image

ebola_subset = ebola.loc[
 :,
 [
 "Cases_Guinea",
 "Cases_Liberia",
 "Cases_SierraLeone",

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch09_images.xhtml#f0216-01

 "Cases_multiple",
],
]
print(ebola_subset.head(n=10))

 Cases_Guinea Cases_Liberia Cases_SierraLeone
Cases_multiple
0 2776.0 NaN 10030.0
NaN
1 2775.0 NaN 9780.0
NaN
2 2769.0 8166.0 9722.0
20657.0
3 NaN 8157.0 NaN
NaN
4 2730.0 8115.0 9633.0
20478.0
5 2706.0 8018.0 9446.0
20170.0
6 2695.0 NaN 9409.0
NaN
7 2630.0 7977.0 9203.0
19810.0
8 2597.0 NaN 9004.0 NaN
9 2571.0 7862.0 8939.0
19372.0

You can see that a value for Cases_multiple was calculated only
when there was no missing value for Cases_Guinea,
Cases_Liberia, and Cases_SierraLeone. Calculations with
missing values will typically return a missing value, unless the function or
method called has a means to ignore missing values in its calculations.

Examples of built-in methods that can ignore missing values include
.mean() and .sum(). These functions will typically have a skipna
parameter that will still calculate a value by skipping over the missing
values.

Click here to view code image

skipping missing values is True by default
print(ebola.Cases_Guinea.sum(skipna = True))

84729.0

print(ebola.Cases_Guinea.sum(skipna = False))

nan

9.4 Pandas Built-In NA Missing
Pandas 1.0 introduced a built-in NA value (pd.NA). At the time of writing
this feature is still “experimental.”2 The main goal of this feature is to
provide a missing value that works across different data types.
2. Pandas experimental NA:
https://pandas.pydata.org/docs/user_guide/missing_
data.html#experimental-na-scalar-to-denote-
missing-values

Let’s use our previous scientists data set from earlier and look at
the .dtypes.

Click here to view code image

scientists = pd.DataFrame(
 {
 "Name": ["Rosaline Franklin", "William
Gosset"],
 "Occupation": ["Chemist", "Statistician"],

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch09_images.xhtml#f0216-02
https://pandas.pydata.org/docs/user_guide/missing_data.html#experimental-na-scalar-to-denote-missing-values
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch09_images.xhtml#f0217-01

 "Born": ["1920-07-25", "1876-06-13"],
 "Died": ["1958-04-16", "1937-10-16"],
 "Age": [37, 61]
 }
)

print(scientists)

 Name Occupation Born
Died Age
0 Rosaline Franklin Chemist 1920-07-25
1958-04-16 37
1 William Gosset Statistician 1876-06-13
1937-10-16 61

print(scientists.dtypes)

Name object
Occupation object
Born object
Died object
Age int64
dtype: object

scientists.loc[1, "Name"] = pd.NA
scientists.loc[1, "Age"] = pd.NA

print(scientists)

 Name Occupation Born
Died Age
0 Rosaline Franklin Chemist 1920-07-25
1958-04-16 37

1 <NA> Statistician 1876-06-13
1937-10-16 <NA>

print(scientists.dtypes)

Name object
Occupation object
Born object
Died object
Age object
dtype: object

Compare the .dtypes from pd.NA and np.NaN from earlier in this
chapter.

Click here to view code image

scientists = pd.DataFrame(
 {
 "Name": ["Rosaline Franklin", "William
Gosset"],
 "Occupation": ["Chemist", "Statistician"],
 "Born": ["1920-07-25", "1876-06-13"],
 "Died": ["1958-04-16", "1937-10-16"],
 "Age": [37, 61]
 }
)

scientists.loc[1, "Name"] = np.NaN
scientists.loc[1, "Age"] = np.NaN

print(scientists.dtypes)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch09_images.xhtml#f0218-01

Name object
Occupation object
Born object
Died object
Age float64
dtype: object

Since pd.NA is still experimental, best follow up with its behavior in
the official documentation.

Conclusion
It is rare to have a data set without any missing values. It is important to
know how to work with missing values because, even when you are
working with data that is complete, missing values can still arise from your
own data munging. In this chapter, we examined some of the basic methods
used in the data analysis process that pertain to data validity. By looking at
your data and tabulating missing values, you can start the process of
assessing whether the data is of sufficiently high quality for making
decisions and drawing inferences.

10

Data Types

Data types determine what can and cannot be done to a variable (i.e.,
column). For example, when numeric data types are added together, the
result will be a sum of the values; in contrast, if strings (in Pandas they are
object or string types) are added, the strings will be concatenated
together.

This chapter presents a quick overview of the various data types you
may encounter in Pandas, and means to convert from one data type to
another.

Learning Objectives
Recognize columns in data store the same data type
Identify what kind of data type is stored in a column
Use functions to change the type of a column
Modify categorical columns

10.1 Data Types
In this chapter, we’ll use the built-in tips data set from the seaborn
library.

Click here to view code image

import pandas as pd
import seaborn as sns

tips = sns.load_data set("tips")

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch10_images.xhtml#f0219-01

To get a list of the data types stored in each column of our dataframe, we
call the dtypes attribute (Section 1.2).

print(tips.dtypes)

total_bill float64
tip float64
sex category
smoker category
day category
time category
size int64
dtype: object

Table 1.1 listed the various types of data that can be stored in a Pandas
column. Our data set includes data of types int64, float64, and
category. The int64 and float64 types represent numeric values
without and with decimal points, respectively. The number following the
numeric data type represents the number of bits of information that will be
stored for that particular number.

The category data type represents categorical variables. It differs
from the generic object data type that stores arbitrary Python objects
(usually strings). We will explore these differences later in this chapter.
Since the tips data set is a fully prepared and cleaned data set, variables
that store strings were saved as a category.

10.2 Converting Types
The data type that is stored in a column will govern which kinds of
functions and calculations you can perform on the data found in that
column. Clearly, then, it’s important to know how to convert between data
types.

This section focuses on how to convert from one data type to another.
Keep in mind that you need not do all your data type conversions at once,
when you first get your data. Data analytics is not a linear process, and you

can choose to convert types on the fly as needed. We saw an example of
this in Section 2.4.2, when we converted a date value into just the number
of years.

10.2.1 Converting to String Objects
In our tips data, the sex, smoker, day, and time variables are stored
as a category. In general, it’s much easier to work with string object
types when the variable is not a numeric number. There are performance
benefits from using a category data type, however.

Some data sets may have an id column in which the id is stored as a
number, but has no meaning if you perform a calculation on it (e.g., if you
try to find the mean). Unique identifiers or id numbers are typically coded
this way, and you may want to convert them to string object types
depending on what you need.

To convert values into strings, we use the .astype() method on the
column (i.e., Series).1 The .astype() method takes a parameter,
dtype, which will be the new data type the column will take on. In this
case, we want to convert the sex variable to a string object, str.
1. Series.astype() method documentation:
https://pandas.pydata.org/pandas-
docs/version/0.23/generated/pandas.Series.astype.h
tml

Click here to view code image

convert the category sex column into a string
dtype
tips['sex_str'] = tips['sex'].astype(str)

Python has built-in str, float, int, complex, and bool types.
However, you can also specify any dtype from the numpy library. If we
look at the dtypes now, you will see the sex_str now has a dtype of
object.

print(tips.dtypes)

https://pandas.pydata.org/pandas-docs/version/0.23/generated/pandas.Series.astype.html
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch10_images.xhtml#f0220-02

total_bill float64
tip float64
sex category
smoker category
day category
time category
size int64
sex_str object
dtype: object

10.2.2 Converting to Numeric Values
The .astype() method is a generic function that can be used to convert
any column in a dataframe to another dtype.

Recall that each column in a DataFrame is a Pandas Series object.
That’s why the .astype() documentation is listed under
pandas.Series.astype. The example here shows how to change the
type of a DataFrame column, but if you are working with a Series
object, you can use the same .astype() method to convert the Series
as well.

We can provide any built-in or numpy type to the .astype() method
to convert the dtype of the column. For example, if we wanted to convert
the total_bill column first to a string object and then back to its
original float64, we can pass in str and float into astype,
respectively.

Click here to view code image

convert total_bill into a string
tips['total_bill'] =
tips['total_bill'].astype(str)
print(tips.dtypes)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch10_images.xhtml#f0221-02

total_bill object
tip float64
sex category
smoker category
day category
time category
size int64
sex_str object
dtype: object

convert it back to a float
tips['total_bill'] =
tips['total_bill'].astype(float)
print(tips.dtypes)

total_bill float64
tip float64
sex category
smoker category
day category
time category
size int64
sex_str object
dtype: object

10.2.2.1 The .to_numeric() Method

When converting variables into numeric values (e.g., int, float), you
can also use the Pandas to_numeric() function, which handles non-
numeric values better.

Since each column in a dataframe has to have the same dtype, there
will be times when a numeric column contains strings as some of its values.

For example, instead of the NaN value that represents a missing value in
Pandas, a numeric column might use the string 'missing' or 'null'
for this purpose instead. This would make the entire column a string
object type instead of a numeric type.

Let’s subset our tips dataframe and also put in a 'missing' value in
the total_bill column to illustrate how the to_numeric() function
works.

Note
We use the .copy() method here to avoid the
SettingWithCopyWarning message when we modify the
subsetted data set (Appendix T).

Click here to view code image

subset the tips data
tips_sub_miss = tips.head(10).copy()

assign some 'missing' values
tips_sub_miss.loc[[1, 3, 5, 7], 'total_bill'] =
'missing'

print(tips_sub_miss)

 total_bill tip sex smoker day time size
sex_str
0 16.99 1.01 Female No Sun Dinner 2
Female
1 missing 1.66 Male No Sun Dinner 3
Male
2 21.01 3.50 Male No Sun Dinner 3
Male
3 missing 3.31 Male No Sun Dinner 2

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch10_images.xhtml#f0222-02

Male
4 24.59 3.61 Female No Sun Dinner 4
Female
5 missing 4.71 Male No Sun Dinner 4
Male
6 8.77 2.00 Male No Sun Dinner 2
Male
7 missing 3.12 Male No Sun Dinner 4
Male
8 15.04 1.96 Male No Sun Dinner 2
Male
9 14.78 3.23 Male No Sun Dinner 2
Male

Looking at the dtypes, you will see that the total_bill column is
now a string object.

print(tips_sub_miss.dtypes)

total_bill object
tip float64
sex category
smoker category
day category
time category
size int64
sex_str object
dtype: object

If we now try to use the .astype() method to convert the column
back to a float, we will get an error: Pandas does not know how to
convert 'missing' into a float.

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch10_images.xhtml#f0223-02

this will cause an error
tips_sub_miss['total_bill'].astype(float)

ValueError: could not convert string to float:
'missing'

If we use the to_numeric() function from the pandas library, we
get a similar error.

Click here to view code image

this will cause an error
pd.to_numeric(tips_sub_miss['total_bill'])

ValueError: Unable to parse string "missing" at
position 1

The to_numeric() function has a parameter called errors that
governs what happens when the function encounters a value that it is unable
to convert to a numeric value. By default, this value is set to 'raise';
that is, if it does encounter a value it is unable to convert to a numeric
value, it will 'raise' an error.

Based on the documentation:2

2. to_numeric() function documentation:
https://pandas.pydata.org/docs/reference/api/panda
s.to_numeric.html

‘raise’, then invalid parsing will raise an exception
‘coerce’, then invalid parsing will be set as NaN
‘ignore’, then invalid parsing will return the input

Going out of order from the documentation, if we pass errors the
'ignore' value, nothing will change in our column. But we also do not
get an error message, which may not always be the behavior we want.

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch10_images.xhtml#f0223-03
https://pandas.pydata.org/docs/reference/api/pandas.to_numeric.html
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch10_images.xhtml#f0223-04

tips_sub_miss["total_bill"] = pd.to_numeric(
 tips_sub_miss["total_bill"], errors="ignore"
)

print(tips_sub_miss)

 total_bill tip sex smoker day time size
sex_str
0 16.99 1.01 Female No Sun Dinner 2
Female
1 missing 1.66 Male No Sun Dinner 3
Male
2 21.01 3.50 Male No Sun Dinner 3
Male
3 missing 3.31 Male No Sun Dinner 2
Male
4 24.59 3.61 Female No Sun Dinner 4
Female
5 missing 4.71 Male No Sun Dinner 4
Male
6 8.77 2.00 Male No Sun Dinner 2
Male
7 missing 3.12 Male No Sun Dinner 4
Male
8 15.04 1.96 Male No Sun Dinner 2
Male
9 14.78 3.23 Male No Sun Dinner 2
Male

print(tips_sub_miss.dtypes)

total_bill object
tip float64
sex category
smoker category
day category
time category
size int64
sex_str object
dtype: object

In contrast, if we pass in the 'coerce' value, we will get NaN values
for the 'missing' string.

Click here to view code image

tips_sub_miss["total_bill"] = pd.to_numeric(
 tips_sub_miss["total_bill"], errors="coerce"
)

print(tips_sub_miss)

 total_bill tip sex smoker day time size
sex_str
0 16.99 1.01 Female No Sun Dinner 2
Female
1 NaN 1.66 Male No Sun Dinner 3
Male
2 21.01 3.50 Male No Sun Dinner 3
Male
3 NaN 3.31 Male No Sun Dinner 2
Male
4 24.59 3.61 Female No Sun Dinner 4
Female
5 NaN 4.71 Male No Sun Dinner 4

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch10_images.xhtml#f0224-02

Male
6 8.77 2.00 Male No Sun Dinner 2
Male
7 NaN 3.12 Male No Sun Dinner 4
Male
8 15.04 1.96 Male No Sun Dinner 2
Male
9 14.78 3.23 Male No Sun Dinner 2
Male

print(tips_sub_miss.dtypes)

total_bill float64
tip float64
sex category
smoker category
day category
time category
size int64
sex_str object
dtype: object

This is a useful trick when you know a column must contain numeric
values, but for some reason the data include non-numeric values.

10.3 Categorical Data
Not all data values are numeric. Pandas has a category dtype that can
encode categorical values.3 Here are a few use cases for categorical data:
3. Categorical data:
https://pandas.pydata.org/docs/user_guide/categori
cal.html

It can be memory and speed efficient to store data in this manner,
especially if the data set includes many repeated string values

https://pandas.pydata.org/docs/user_guide/categorical.html

Categorical data may be appropriate when a column of values has an
order (e.g., a Likert scale)
Some Python libraries understand how to deal with categorical data
(e.g., when fitting statistical models)

10.3.1 Convert to Category
To convert a column into a categorical type, we pass category into the
.astype() method.

Click here to view code image

convert the sex column into a string object
first
tips['sex'] = tips['sex'].astype('str')
print(tips.info())

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 244 entries, 0 to 243
Data columns (total 8 columns):

 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 total_bill 244 non-null float64
 1 tip 244 non-null float64
 2 sex 244 non-null object
 3 smoker 244 non-null category
 4 day 244 non-null category
 5 time 244 non-null category
 6 size 244 non-null int64
 7 sex_str 244 non-null object
dtypes: category(3), float64(2), int64(1),
object(2)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch10_images.xhtml#f0225-02

memory usage: 10.8+ KB
None

Click here to view code image

convert the sex column back into categorical
data
tips['sex'] = tips['sex'].astype('category')
print(tips.info())

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 244 entries, 0 to 243
Data columns (total 8 columns):

 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 total_bill 244 non-null float64
 1 tip 244 non-null float64
 2 sex 244 non-null category
 3 smoker 244 non-null category
 4 day 244 non-null category
 5 time 244 non-null category
 6 size 244 non-null int64
 7 sex_str 244 non-null object
dtypes: category(4), float64(2), int64(1),
object(1)
memory usage: 9.3+ KB
None

You can also see the difference in memory usage from the string and
category storage.

10.3.2 Manipulating Categorical Data

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch10_images.xhtml#f0226-01

The API reference has a list of which operations can be performed on a
categorical Series.4 The .cat. accessor is an attribute that allows you
to access the category information in the Series. This list has been
reproduced in Table 10.1.
4. The .cat. accessor:
https://pandas.pydata.org/docs/reference/series.ht
ml#categorical-accessor

Table 10.1 Categorical Accessor Attributes and Methods

Attribute or Method Description

Series.cat.categories The categories

Series.cat.ordered Whether the categories are
ordered

Series.cat.codes Return the integer code of the
category

Series.cat.rename_categories(
)

Rename categories

Series.cat.reorder_categories
()

Reorder categories

Series.cat.add_categories() Add new categories

Series.cat.remove_categories(
)

Remove categories

Series.cat.remove_unused_cate
gories()

Remove unused categories

Series.cat.set_categories()) Set new categories

Series.cat.as_ordered() Make the category ordered

Series.cat.as_unordered() Make the category unordered

Conclusion

https://pandas.pydata.org/docs/reference/series.html#categorical-accessor

This chapter covered how to convert from one data type to another.
dtypes govern which operations can and cannot be performed on a
column. While this chapter is relatively short, converting types is an
important skill when you are working with data and when you are using
other Pandas methods.

11

Strings and Text Data

Introduction
Most data in the world can be stored as text and strings. Even values that
may eventually be numeric data may initially come in the form of text. It’s
important to be able to work with text data. This chapter won’t be specific
to Pandas. That is, we will mainly explore how you manipulate strings
within Python without Pandas. The following chapters will cover some
more Pandas materials. Then we will come back to strings and see how it
all ties back with Pandas. As an aside, some of the string examples in this
chapter come from Monty Python and the Holy Grail.

Learning Objectives
Recall how to subset containers and sequences
Recognize strings are a type of container object
Modify strings based on use case
Create regular expression patterns to match strings
Combine pose text with code output into a single sentence

11.1 Strings
In Python, a string is simply a series of characters. They are created by a
set of opening and matching single or double quotes. Below are two strings,
grail and a scratch. These strings are assigned to the variables word
and sent, respectively.

word = 'grail'
sent = 'a scratch'

So far in this book, we have seen strings in a column represented as the
object dtype.

11.1.1 Subset and Slice Strings
A string can be thought of as a container of characters. You can subset a
string like any other Python container (e.g., list or Series).

Table 11.1 and Table 11.2 show the strings with their associated index.
This information will help you understand the examples in which we slice
values using the index.

Table 11.1 Index Positions for the String "grail"

index 0 1 2 3 4

string g r a i l

neg index –5 –4 –3 –2 –1

Table 11.2 Index Positions for the String "a scratch"

index 0 1 2 3 4 5 6 7 8

string a s c r a t c h

neg index –9 –8 –7 –6 –5 –4 –3 –2 –1

11.1.1.1 Single Letter

To get the first letter of our strings, we can use the square bracket notation,
[]. This notation is the same method we used in Section 1.3 when we
looked at various slices of data.

print(word[0])

g

print(sent[3])

c

11.1.1.2 Slice Multiple Letters

Alternatively, we can use slicing notation (Appendix L) to get ranges from
our strings.

Click here to view code image

get the first 3 characters
note index 3 is really the 4th character
print(word[0:3])

gra

Recall that when using slicing notation in Python, it is left-side
inclusive, right-side exclusive. In other words, it will include the index
value specified first, but it will not include the index value specified
second.

For example, the notation [0:3] will include the characters from 0 to
3, but not index 3. Another way to say this is to state that [0:3] will
include the indices from 0 to 2, inclusive.

11.1.1.3 Negative Numbers

Recall that in Python, passing in a negative index actually starts the count
from the end of a container.

Click here to view code image

get the last letter from "a scratch"
print(sent[-1])

h

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch11_images.xhtml#f0230-01
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch11_images.xhtml#f0231-01

The negative index refers to the index position as well, so you can also
use it to slice values.

get 'a' from "a scratch"
print(sent[-9: -8])

a

You can combine non-negative numbers with negative numbers.

get 'a'
print(sent[0: -8])

a

Note that you can’t actually get the last letter when using a negative
index for the second value.

scratch
print(sent[2: -1])

scratc

scratch
print(sent[-7: -1])

scratc

11.1.2 Get the Last Character in a String
Just getting the last element in a string (or any container) can be done with
the negative index, -1. However, it becomes problematic when we want to
use slicing notation and also include the last character. For example, if we

tried to use slicing notation to get the word “scratch” from the sent
variable, the result returned would be one letter short.

Since Python is right-side exclusive, we need to specify an index
position that is one greater than the last index. To do this, we can get the
len (length) of the string and then pass that value into the slicing notation.

Click here to view code image

note that the last index is one position is
smaller than
the number returned for len
s_len = len(sent)
print(s_len)

9

print(sent[2:s_len])

scratch

11.1.2.1 Slice from the Beginning or to the End

A very common task is to slice a value from the beginning to a certain point
in the string (or container). The first element will always be 0, so we can
always write something like word[0:3] to get the first three elements, or
word[-3:len(word)] to get the last three elements.

Another shortcut for this task is to leave out the data on the left or right
side of the :. If the left side of the : is empty, then the slice will start from
the beginning and end at the index on the right (non-inclusive). If the right
side of the : is empty, then the slice will start from the index on the left,
and end at the end of the string. For example, these slices are equivalent:

print(word[0:3])

gra

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch11_images.xhtml#f0231-05

left the left side empty
print(word[:3])

gra

print(sent[2:len(sent)])

scratch

leave the right side empty
print(sent[2:])

scratch

Another way to specify the entire string is to leave both values empty.

print(sent[:])

a scratch

11.1.2.2 Slice Increments (Steps)

The final notation while slicing allows you to slice in increments. To do
this, you use a second colon, :, to provide a third number. The third number
allows you to specify the increment to pull values out.

For example, you can get every other string by passing in 2 for every
second character.

Click here to view code image

step by 2, to get every other character
print(sent[::2])

asrth

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch11_images.xhtml#f0233-01

Any integer can be passed here, so if you wanted every third character
(or value in a container), you could pass in 3.

get every third character
print(sent[::3])

act

11.2 String Methods
Many methods are also used when processing data in Python. A list of all
the string methods can be found on the “String Methods” documentation
page.1 Table 11.3 and Table 11.4 summarize some string methods that are
commonly used in Python.
1. String methods:
https://docs.python.org/3/library/stdtypes.html#st
ring-methods

Table 11.3 Python String Methods

Method Description

.capit
alize(
)

Capitalizes the first character

.count
()

Counts the number of occurrences of a string

.start
swith(
)

True if the string begins with specified value

.endsw
ith()

True if the string ends with specified value

.find(
)

Smallest index of where the string matched, -1 if no match

https://docs.python.org/3/library/stdtypes.html#string-methods

Method Description

.index
()

Same as find but returns ValueError if no match

.isalp
ha()

True if all characters are alphabetic

.isdec
imal()

True if all characters are decimal numbers (see documentation
as well as .isdigit(), .isnumeric(), and .isalnum())

.isaln
um()

True if all characters are alphanumeric (alphabetic or numeric)

.lower
()

Copy of a string with all lowercase letters

.upper
()

Copy of string with all uppercase letters

.repla
ce()

Copy of a string with the old values replaced with new

.strip
()

Removes leading and trailing whitespace; also see lstrip and
rstrip

.split
()

Returns a list of values split by the delimiter (separator)

.parti
tion()

Similar to split(maxsplit=1) but also returns the separator

.cente
r()

Centers the string to a given width

.zfill
()

Copy of string left filled with '0'

Table 11.4 Examples of Using Python String Methods

Code Results

Code Results

"black Knight".capitalize() 'Black knight'

"It's just a flesh
wound!".count('u')

2

"Halt! Who goes
there?".startswith('Halt')

True

"coconut".endswith('nut') True

"It's just a flesh
wound!".find('u')

7

"It's just a flesh
wound!".index('scratch')

ValueError

"old woman".isalpha() False (there is a
whitespace)

"37".isdecimal() True

"I'm 37".isalnum() False (apostrophe and
space)

"Black Knight".lower() 'black knight'

"Black Knight".upper() 'BLACK KNIGHT'

"flesh wound!".replace('flesh
wound', 'scratch')

'scratch!'

" I'm not dead. ".strip() "I'm not dead."

"NI! NI! NI! NI!".split(sep='
')

['NI!', 'NI!',
'NI!', 'NI!']

"3,4.partition(',') ('3', ',', '4')

"nine".center(width=10) ' nine '

"9".zfill(with=5) '00009'

11.3 More String Methods
There are a few more string methods that are useful, but hard to convey in a
table.

11.3.1 Join
The .join() method takes a container (e.g., a list) and returns a new
string that combines each element in the list. For example, suppose we
wanted to combine coordinates in the degrees, minutes, seconds (DMS)
notation.

d1 = '40°'
m1 = "46'"
s1 = '52.837"'
u1 = 'N'

d2 = '73°'
m2 = "58'"
s2 = '26.302"'
u2 = 'W'

We can join all the values with a space, ' ', by using the .join()
method on the space string.

Click here to view code image

coords = ' '.join([d1, m1, s1, u1, d2, m2, s2,
u2])
print(coords)

40° 46' 52.837" N 73° 58' 26.302" W

This method is also useful if you have a list of strings that you want to
separate using your own delimiter (e.g., tabs with \t and commas with ,).

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch11_images.xhtml#f0235-01

If we wanted, we could now .split() on a space, " ", and get the
individual parts from coords.

Click here to view code image

coords.split(" ")

['40°', "46'", '52.837"', 'N', '73°', "58'",
'26.302"', 'W']

11.3.2 Splitlines
The .splitlines() method is similar to the .split() method. It is
typically used on strings that are multiple lines long and will return a list in
which each element of the list is a line in the multiple-line string.

Note
You can create a multi-line string in Python by beginning and ending
the string with a triple-quote, ''' or """.

Click here to view code image

multi_str = """Guard: What? Ridden on a horse?
King Arthur: Yes!
Guard: You're using coconuts!
King Arthur: What?
Guard: You've got ... coconut[s] and you're
bangin' 'em together.
"""

print(multi_str)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch11_images.xhtml#f0235-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch11_images.xhtml#f0235-03

Guard: What? Ridden on a horse?
King Arthur: Yes!
Guard: You're using coconuts!
King Arthur: What?
Guard: You've got ... coconut[s] and you're
bangin' 'em together.

We can get every line as a separate element in a list using
.splitlines().

Click here to view code image

multi_str_split = multi_str.splitlines()

print(multi_str_split)

[
 "Guard: What? Ridden on a horse?",
 "King Arthur: Yes!",
 "Guard: You're using coconuts!",
 "King Arthur: What?",
 "Guard: You've got ... coconut[s] and you're
bangin' 'em together."
]

Finally, suppose we just wanted the text from the “Guard”. This is a two-
person conversation, so the “Guard” speaks every other line.

Click here to view code image

guard = multi_str_split[::2]

print(guard)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch11_images.xhtml#f0235-04
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch11_images.xhtml#f0236-02

[
 "Guard: What? Ridden on a horse?",
 "Guard: You're using coconuts!",
 "Guard: You've got ... coconut[s] and you're
bangin' 'em together."
]

There are a few ways to just get the lines from the “Guard”. One way
would be to use the .replace() method on the string and
.replace() the Guard: string with an empty string ''. We could then
use the .splitlines() method.

Click here to view code image

guard = multi_str.replace("Guard:
","").splitlines()[::2]

print(guard)

[
 "What? Ridden on a horse?",
 "You're using coconuts!",
 "You've got ... coconut[s] and you're bangin'
'em together."
]

11.4 String Formatting (F-Strings)
Formatting strings allows you to specify a generic template for a string, and
insert variables into the pattern. It can also handle various ways to visually
represent strings—for example, showing two decimal values in a float,
or showing a number as a percentage instead of a decimal value.

String formatting can even help when you want to print something to the
console. Instead of just printing out the variable, you can print a string that
provides hints about the value that is printed.

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch11_images.xhtml#f0236-03

This chapter will only talk about “formatted literal strings”, also known
as f-strings, which were introduced in Python 3.6. Older C-Style formatting
and the .format() method have been moved to Appendix W.1 and
Appendix W.2, respectively.

To create an f-string, we will write our strings as f"":

s = f"hello"
print(s)

hello

This tells the string that it is an f-string. This now allows us to use { }
within the string to put in Python variables or calculations.

Click here to view code image

num = 7
s = f"I only know {num} digits of pi."
print(s)

I only know 7 digits of pi.

This allows us to create readable strings using Python variables. You can
put in different types of objects within a f-string.

Click here to view code image

const = "e"
value = 2.718
s = f"Some digits of {const}: {value}"
print(s)

Some digits of e: 2.718

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch11_images.xhtml#f0237-01
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch11_images.xhtml#f0237-02

lat = "40.7815° N"
lon = "73.9733° W"
s = f"Hayden Planetarium Coordinates: {lat},
{lon}"
print(s)

Hayden Planetarium Coordinates: 40.7815° N,
73.9733° W

Variables can be reused within a f-string.

Click here to view code image

word = "scratch"

s = f"""Black Knight: 'Tis but a {word}.
King Arthur: A {word}? Your arm's off!
"""
print(s)

Black Knight: 'Tis but a scratch.
King Arthur: A scratch? Your arm's off!

11.4.1 Formatting Numbers
Numbers can also be formatted.

Click here to view code image

p = 3.14159265359
print(f"Some digits of pi: {p}")

Some digits of pi: 3.14159265359

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch11_images.xhtml#f0237-03
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch11_images.xhtml#f0238-01

You can specify how to format a placeholder by using the optional colon
character, :, and use the format specification mini-language2 to change how
it outputs in the string. Here is an example of formatting numbers and use
thousands-place comma separators.
2. String formatting mini-language:
https://docs.python.org/3.4/library/string.html#fo
rmat-string-syntax

Click here to view code image

digits = 67890
s = f"In 2005, Lu Chao of China recited
{67890:,} digits of pi."
print(s)

In 2005, Lu Chao of China recited 67,890 digits of
pi.

The formatting mini-language also supports how many decimal values
are displayed.

Click here to view code image

prop = 7 / 67890
s = f"I remember {prop:.4} or {prop:.4%} of what
Lu Chao recited."
print(s)

I remember 0.0001031 or 0.0103% of what Lu Chao
recited.

We can also use the formatting mini-language to left pad a digit with 0.

Click here to view code image

https://docs.python.org/3.4/library/string.html#format-string-syntax
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch11_images.xhtml#f0238-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch11_images.xhtml#f0238-03
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch11_images.xhtml#f0238-04

id = 42
print(f"My ID number is {id:05d}")

My ID number is 00042

In the :05d, the colon tells us we are going to provide a formatting
pattern, the 0 is the character we will use to pad, and the 5d tells us to pad
with 5 digits.

Sometimes we can use the formatting mini-language, but we can also
use a lot of the built-in string methods as well.

Click here to view code image

id_zfill = "42".zfill(5)
print(f"My ID number is {id_zfill}")

My ID number is 00042

Or we can put in a python expression directly in the f-string.

Click here to view code image

print(f"My ID number is {'42'.zfill(5)}")

My ID number is 00042

It is usually better to do all the function calls before creating the f-string,
so all you are passing into the f-string is a variable. This just makes the
code easier to read.

11.5 Regular Expressions (RegEx)
When the base Python string methods that search for patterns aren’t enough,
you can throw the kitchen sink at the problem by using regular expressions
(regex). The extremely powerful regular expressions provide a (nontrivial)
way to find and match patterns in strings. The downside is that after you

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch11_images.xhtml#f0238-05
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch11_images.xhtml#f0238-06

finish writing a complex regular expression, it becomes difficult to figure
out what the pattern does by looking at it. That is, the syntax is difficult to
read.

For many data tasks, such as matching a telephone number or address
field validation, it’s almost easier to Google which type of pattern you are
trying to match, and paste what someone has already written into your own
code (don’t forget to document where you got the pattern from).

Before continuing, you might want to visit regex101.3 It’s a great place
and reference for regular expressions and testing patterns on test strings. It
even has a Python mode, so you can directly copy/paste a pattern from the
site into your own Python code.

Regular expressions in Python use the re module.4 This module also
has a great How To5 that can be used as an additional resource.
3. Regex101 website: https://regex101.com/

4. re module documentation:
https://docs.python.org/3/library/re.html
5. Regular Expression HOWTO:
https://docs.python.org/3/howto/regex.html#regex-
howto

Table 11.5 and Table 11.6 show some RegEx syntax and special
characters that will be used in this section.

Table 11.5 Basic RegEx Syntax

Syntax Description

. Matches any one character

^ Matches from the beginning of a string

$ Matches from the end of a string

* Matches zero or more repetitions of the previous character

+ Matches one or more repetitions of the previous character

? Matches zero or one repetition of the previous character

{m} Matches m repetitions of the previous character

https://regex101.com/
https://docs.python.org/3/library/re.html
https://docs.python.org/3/howto/regex.html#regex-howto

Syntax Description

{m,n}Matches any number from m to n of the previous character

\ Escape character

[] A set of characters (e.g., [a-z] will match all letters from a to z)

| OR; A | B will match A or B

() Matches the pattern specified within the parentheses exactly

Table 11.6 RegEx Special Characters

Sequence Description

\d A digit

\D Any character NOT a digit (opposite of \d)

\s Any whitespace character

\S Any character NOT a whitespace (opposite of \s)

\w Word characters

\W Any character NOT a word character (opposite of \w)

To use regular expressions, we write a string that contains the RegEx
pattern, and provide a string for the pattern to match. Various functions
within re can be used to handle specific needs. Some common tasks are
provided in Table 11.7.

Table 11.7 Common RegEx Functions in re

Function Description

search() Find the first occurrence of a string

match() Match from the beginning of a string

fullmatch() Match the entire string

Function Description

split() Split string by the pattern

findall() Find all non-overlapping matches of a string

finditer() Similar to findall but returns a Python iterator

sub() Substitute the matched pattern with the provided string

11.5.1 Match a Pattern
We will be using the re module to write the regular expression pattern we
want to match in a string. Let’s write a pattern that will match 10 digits (the
digits for a U.S. telephone number).

import re

tele_num = '1234567890'

There are many ways we can match 10 consecutive digits. We can use
the match() function to see if the pattern matches a string. The output of
many re functions is a match object.

Click here to view code image

m = re.match(pattern='\d\d\d\d\d\d\d\d\d\d',
string=tele_num)
print(type(m))

<class 're.Match'>

print(m)

<re.Match object; span=(0, 10),
match='1234567890'>

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch11_images.xhtml#f0240-02

If we look at the printed match object, we see that, if there was a match,
the span identifies the index of the string where the matches occurred, and
the match identifies the exact string that got matched.

Many times when we are matching a pattern to a string, we simply want
a True or False value indicating whether there was a match. If you just
need a True/False value returned, you can run the built-in bool()
function to get the boolean value of the match object.

print(bool(m))

True

At other times, a regular expression match will be part of an if
statement (Appendix X), so this kind of bool() casting is unnecessary.

should print match
if m:
 print('match')
else:
 print('no match')

match

If we wanted to extract some of the match object values, such as the
index positions or the actual string that matched, we can use a few methods
on the match object.

Click here to view code image

get the first index of the string match
print(m.start())

0

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch11_images.xhtml#f0241-02

get the last index of the string match
print(m.end())

10

get the first and last index of the string
match
print(m.span())

(0, 10)

the string that matched the pattern
print(m.group())

1234567890

Telephone numbers can be a little more complex than a series of 10
consecutive digits. Here’s another common representation.

Click here to view code image

tele_num_spaces = '123 456 7890'

Suppose we use the previous pattern in this example.

Click here to view code image

we can simplify the previous pattern
m = re.match(pattern='\d{10}',
string=tele_num_spaces)
print(m)

None

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch11_images.xhtml#f0241-03
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch11_images.xhtml#f0242-01

You can tell the pattern did not match because the match object returned
None. If we run our if statement again, it will print 'no match'.

if m:
 print('match')
else:
 print('no match')

no match

Let’s modify our pattern this time, by assuming the new string has three
digits, a space, another three digits, and another space, followed by four
digits. If we want to make it general to the original example, the spaces can
be matched zero or one time. The new RegEx pattern will look like the
following code:

Click here to view code image

you may see the RegEx pattern as a separate
variable
because it can get long and
make the actual match function call hard to
read
p = '\d{3}\s?\d{3}\s?\d{4}'
m = re.match(pattern=p, string=tele_num_spaces)
print(m)

<re.Match object; span=(0, 12), match='123 456
7890'>

Area codes can also be surrounded by parentheses and a dash between
the seven main digits.

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch11_images.xhtml#f0242-03
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch11_images.xhtml#f0242-04

tele_num_space_paren_dash = '(123) 456-7890'
p = '\(?\d{3}\)?\s?\d{3}\s?-?\d{4}'
m = re.match(pattern=p,
string=tele_num_space_paren_dash)
print(m)

<re.Match object; span=(0, 14), match='(123) 456-
7890'>

Finally, there could be a country code before the number.

Click here to view code image

cnty_tele_num_space_paren_dash = '+1 (123) 456-
7890'
p = '\+?1\s?\(?\d{3}\)?\s?\d{3}\s?-?\d{4}'
m = re.match(pattern=p,
string=cnty_tele_num_space_paren_dash)
print(m)

<re.Match object; span=(0, 17), match='+1 (123)
456-7890'>

As these examples suggest, although powerful, regular expressions can
easily become unwieldy. Even something as simple as a telephone number
can lead to a daunting series of symbols and numbers. Even so, sometimes
regular expressions are the only way to get something done.

11.5.2 Remember What Your RegEx Patterns Are
The last regular expression of a phone number had many complex
components. Chances are you forget what most of the pattern means after
you write it, let alone trying to figure out what it means when you
eventually review back your code.

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch11_images.xhtml#f0242-05

Let’s see how we can re-write the last example in a more maintainable
way, by utilizing one of the quirks of the Python language.

In Python 2 strings next to each other will be concatenated and joined
together into a single string.

Click here to view code image

"multiple" "strings" "next" "to" "each" "other"

'multiplestringsnexttoeachother'

Note that no extra delimiter, space, or character is added between
subsequent strings, they are just concatenated together.

Tip
You can also use this trick with really long URLs that you want to split
across multiple lines.

That also means that we could break up our long pattern string across
multiple lines. We can tell python to treat all the separate strings as a single
value that we can assign to a variable by wrapping the statement around a
pair of round parentheses, ().

Click here to view code image

p = (
 '\+?'
 '1'
 '\s?'
 '\(?'
 '\d{3}'
 '\)?'
 '\s?'
 '\d{3}'

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch11_images.xhtml#f0243-01
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch11_images.xhtml#f0243-02

 '\s?'
 '-?'
 '\d{4}'
)
print(p)

\+?1\s?\(?\d{3}\)?\s?\d{3}\s?-?\d{4}

Now that we have our code across multiple lines, we can add comments
to our string, as if it was regular Python code.

Click here to view code image

p = (
 '\+?' # maybe starts with a +
 '1' # the number 1
 '\s?' # maybe there's a whitespace
 '\(?' # maybe there's an open round
parenthesis (
 '\d{3}' # 3 numbers
 '\)?' # maybe there's a closing round
parenthesis)
 '\s?' # maybe there's a whitespace
 '\d{3}' # 3 numbers
 '\s?' # maybe there's a whitespace
 '-?' # maybe there's a dash character
 '\d{4}' # 4 numbers
)
print(p)

\+?1\s?\(?\d{3}\)?\s?\d{3}\s?-?\d{4}

This technique allows you to write your regular expressions in a manner
that you can understand later on, and make it easier to debug the pattern if

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch11_images.xhtml#f0244-01

something is not matching as you expect.

Click here to view code image

cnty_tele_num_space_paren_dash = '+1 (123) 456-
7890'
m = re.match(pattern=p,
string=cnty_tele_num_space_paren_dash)
print(m)

<re.Match object; span=(0, 17), match='+1 (123)
456-7890'>

11.5.3 Find a Pattern
We can use the findall() function to find all matches within a pattern.
Let’s write a pattern that matches digits and uses it to find all the digits from
a string.

Click here to view code image

python will concatenate 2 strings next to each
other
s = (
 "14 Ncuti Gatwa, "
 "13 Jodie Whittaker, war John Hurt, 12 Peter
Capaldi, "
 "11 Matt Smith, 10 David Tennant, 9
Christopher Eccleston"
)

print(s)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch11_images.xhtml#f0244-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch11_images.xhtml#f0244-03

14 Ncuti Gatwa, 13 Jodie Whittaker, war John Hurt,
12 Peter Capaldi,
11 Matt Smith, 10 David Tennant, 9 Christopher
Eccleston

Click here to view code image

pattern to match 1 or more digits
p = "\d+"

m = re.findall(pattern=p, string=s)
print(m)

['14', '13', '12', '11', '10', '9']

11.5.4 Substitute a Pattern
In our str.replace() example (Section 11.3.2), we wanted to get all
the lines from the Guard, so we ended up doing a direct string replacement
on the script. However, using regular expressions, we can generalize the
pattern so we can get either the line from the Guard or the line from King
Arthur.

Click here to view code image

multi_str = """Guard: What? Ridden on a horse?
King Arthur: Yes!
Guard: You're using coconuts!
King Arthur: What?
Guard: You've got ... coconut[s] and you're
bangin' 'em together.
"""

p = '\w+\s?\w+:\s?'

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch11_images.xhtml#f0245-01
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch11_images.xhtml#f0245-02

s = re.sub(pattern=p, string=multi_str, repl='')
print(s)

What? Ridden on a horse?
Yes!
You're using coconuts!
What?
You've got ... coconut[s] and you're bangin' 'em
together.

Now we can get either party’s line by using string slicing with
increments.

Click here to view code image

guard = s.splitlines()[::2]
kinga = s.splitlines()[1::2] # skip the first
element

print(guard)

[
 "What? Ridden on a horse?",
 "You're using coconuts!",
 "You've got ... coconut[s] and you're bangin'
'em together."
]

print(kinga)

[
 "Yes!",

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch11_images.xhtml#f0245-03

 "What?"
]

Don’t be afraid to mix and match regular expressions with the simpler
pattern match and string methods.

11.5.5 Compile a Pattern
When we work with data, typically many operations will occur on a
column-by-column or row-by-row basis. Python’s re module allows you to
compile() a pattern so it can be reused. This can lead to performance
benefits, especially if your data set is large. Here we will see how to
compile a pattern and use it just as we did in the previous examples in this
section.

The syntax is almost the same. We write our regular expression pattern,
but this time, instead of saving it to a variable directly, we pass the string
into the compile() function and save that result. We can then use the
other re functions on the compiled pattern. Also, since the pattern is
already compiled, you no longer need to specify the pattern parameter in
the method.

Here is the match() example:

Click here to view code image

pattern to match 10 digits
p = re.compile('\d{10}')
s = '1234567890'

note: calling match on the compiled pattern
not using the re.match function
m = p.match(s)
print(m)

<re.Match object; span=(0, 10),
match='1234567890'>

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch11_images.xhtml#f0246-02

The findall() example:

Click here to view code image

p = re.compile('\d+')
s = (
 "14 Ncuti Gatwa, "
 "13 Jodie Whittaker, war John Hurt, 12 Peter
Capaldi, "
 "11 Matt Smith, 10 David Tennant, 9
Christopher Eccleston"
)

m = p.findall(s)
print(m)

['14', '13', '12', '11', '10', '9']

The sub() or substitution example:

Click here to view code image

p = re.compile('\w+\s?\w+:\s?')
s = "Guard: You're using coconuts!"

m = p.sub(string=s, repl='')
print(m)

You're using coconuts!

11.6 The regex Library
The re library is popular because it comes with the Python installation.
However, seasoned regular expression writers may find the regex library

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch11_images.xhtml#f0246-03
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch11_images.xhtml#f0247-01

to have more comprehensive features. It is backward compatible with the
re library, so all the code from the re RegEx section (Section 11.5) will
still work with the regex library. The documentation for this library can be
found on the PyPI page.6

6. regex documentation: https://pypi.python.org/pypi/regex

Click here to view code image

import regex

a re example using the regex library
p = regex.compile('\d+')
s = (
 "14 Ncuti Gatwa, "
 "13 Jodie Whittaker, war John Hurt, 12 Peter
Capaldi, "
 "11 Matt Smith, 10 David Tennant, 9
Christopher Eccleston"
)

m = p.findall(s)
print(m)

['14', '13', '12', '11', '10', '9']

I will defer to the examples and explanations on
http://www.rexegg.com/ for more details:

www.rexegg.com/regex-python.html
www.rexegg.com/regex-best-trick.html

Conclusion
The world is filled with data stored as text. Understanding how to
manipulate text strings is a fundamental skill for the data scientist. Python

https://pypi.python.org/pypi/regex
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch11_images.xhtml#f0247-02
http://www.rexegg.com/
http://www.rexegg.com/regex-python.html
http://www.rexegg.com/regex-best-trick.html

has many built-in string methods and libraries that can make string and text
manipulation easier. This chapter covered some of the fundamental methods
of string manipulations that we can build on when working with data.

12

Dates and Times

One of the bigger reasons for using Pandas is its ability to work with
timeseries data. We observed some of this capability earlier, when we
concatenated data in Chapter 6 and saw how the indices automatically
aligned themselves. This chapter focuses on the more common tasks
encountered when working with data that involve dates and times.

Learning Objectives
Create date objects with the datetime library
Use functions to convert strings into a date
Use functions to format dates
Perform date calculations
Use functions to resample dates
Use functions to work with and convert time zones

12.1 Python's datetime Object
Python has a built-in datetime object that is found in the datetime
library.

Click here to view code image

from datetime import datetime

We can use datetime to get the current date and time.

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0249-01
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0249-02

now = datetime.now()
print(f"Last time this chapter was rendered for
print: {now}")

Last time this chapter was rendered for print:
2022-09-01 01:55:41.496795

We can also create our own datetime manually.

t1 = datetime.now()
t2 = datetime(1970, 1,1)

And we can do datetime math.

diff = t1 - t2
print(diff)

19236 days, 1:55:41.499914

The data type of a date calculation is a timedelta.

print(type(diff))

<class 'datetime.timedelta'>

We can perform these types of actions when working within a Pandas
dataframe.

12.2 Converting to datetime
Converting an object type into a datetime type is done with the
to_datatime function. Let’s load up our Ebola data set and convert the
Date column into a proper datetime object.

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0250-03

import pandas as pd
ebola =
pd.read_csv('data/country_timeseries.csv')

top left corner of the data
print(ebola.iloc[:5, :5])

 Date Day Cases_Guinea Cases_Liberia
Cases_SierraLeone
0 1/5/2015 289 2776.0 NaN
10030.0
1 1/4/2015 288 2775.0 NaN
9780.0
2 1/3/2015 287 2769.0 8166.0
9722.0
3 1/2/2015 286 NaN 8157.0
NaN
4 12/31/2014 284 2730.0 8115.0
9633.0

The first Date column contains date information, but the .info()
attribute tells us it is actually encoded as a generic string object in
Pandas.

Click here to view code image

print(ebola.info())

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 122 entries, 0 to 121
Data columns (total 18 columns):

 # Column Non-Null Count Dtype
--- ------ -------------- -----

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0250-04

 0 Date 122 non-null object
 1 Day 122 non-null int64
 2 Cases_Guinea 93 non-null float64
 3 Cases_Liberia 83 non-null float64
 4 Cases_SierraLeone 87 non-null float64
 5 Cases_Nigeria 38 non-null float64
 6 Cases_Senegal 25 non-null float64
 7 Cases_UnitedStates 18 non-null float64
 8 Cases_Spain 16 non-null float64
 9 Cases_Mali 12 non-null float64
 10 Deaths_Guinea 92 non-null float64
 11 Deaths_Liberia 81 non-null float64
 12 Deaths_SierraLeone 87 non-null float64
 13 Deaths_Nigeria 38 non-null float64
 14 Deaths_Senegal 22 non-null float64
 15 Deaths_UnitedStates 18 non-null float64
 16 Deaths_Spain 16 non-null float64
 17 Deaths_Mali 12 non-null float64
dtypes: float64(16), int64(1), object(1)
memory usage: 17.3+ KB
None

We can create a new column, date_dt, that converts the Date column
into a datetime.

Click here to view code image

ebola['date_dt'] = pd.to_datetime(ebola['Date'])

We can also be a little more explicit with how we convert data into a
datetime object.

The to_datetime() function has a parameter called format that
allows you to manually specify the format of the date you are hoping to

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0251-02

parse. Since our date is in a month/day/year format, we can pass in the
string %m/%d/%Y.

Click here to view code image

ebola['date_dt'] = pd.to_datetime(ebola['Date'],
format='%m/%d/%Y')

In both cases, we end up with a new column with a datetime type.

Click here to view code image

print(ebola.info())

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 122 entries, 0 to 121
Data columns (total 21 columns):

 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 Date 122 non-null object
 1 Day 122 non-null int64
 2 Cases_Guinea 93 non-null float64
 3 Cases_Liberia 83 non-null float64
 4 Cases_SierraLeone 87 non-null float64
 5 Cases_Nigeria 38 non-null float64
 6 Cases_Senegal 25 non-null float64
 7 Cases_UnitedStates 18 non-null float64
 8 Cases_Spain 16 non-null float64
 9 Cases_Mali 12 non-null float64
 10 Deaths_Guinea 92 non-null float64
 11 Deaths_Liberia 81 non-null float64
 12 Deaths_SierraLeone 87 non-null float64
 13 Deaths_Nigeria 38 non-null float64
 14 Deaths_Senegal 22 non-null float64

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0251-03
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0251-04

 15 Deaths_UnitedStates 18 non-null float64
 16 Deaths_Spain 16 non-null float64
 17 Deaths_Mali 12 non-null float64
 18 date_dt 122 non-null
datetime64[ns]
 19 date_dt_a 122 non-null
datetime64[ns]
 20 date_dt_al 122 non-null
datetime64[ns]
dtypes: datetime64[ns](3), float64(16), int64(1),
object(1)
memory usage: 20.1+ KB
None

The to_datetime() function includes convenient built-in options.
For example, you can set the dayfirst or yearfirst options to True
if the date format begins with a day (e.g., 31-03-2014) or if the date
begins with a year (e.g., 2014-03-31), respectively.

For other date formats, you can manually specify how they are
represented using the syntax specified by python’s strptime.1 This
syntax is replicated in Table 12.1 from the official Python documentation.
1. strftime (string format time) and strptime (string parse time) behavior:
https://docs.python.org/3/library/datetime.html#st
rftime-and-strptime-behavior

Table 12.1 Python strftime and strptime Behavior (reproduced from
the official Python documentation2)

Direct
ive Meaning Example

%a Weekday abbreviated name Sun, Mon, …, Sat

%A Weekday full name Sunday, Monday, …,
Saturday

https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior

Direct
ive Meaning Example

%w Weekday as a number, where 0 is
Sunday

0, 1, …, 6

%d Day of the month as a two-digit number 01, 02, …, 31

%b Month abbreviated name Jan, Feb, …, Dec

%B Month full name January, February, …,
December

%m Month as a two-digit number 01, 02, …, 12

%y Year as a two-digit number 00, 01, …, 99

%Y Year as a four-digit number 0001, 0002, …, 2013,
2014, …, 9999

%H Hour (24-hour clock) as a two-digit
number

00, 01, …, 23

%I Hour (12-hour clock) as a two-digit
number

01, 02, …, 12

%p AM or PM AM, PM

%M Minute as a two-digit number 00, 01, …, 59

%S Second as a two-digit number 00, 01, …, 59

%f Microsecond as a number 000000, 000001, …,
999999

%z UTC offset in the form of +HHMM or
\hbox{--HHMM}

(empty), +0000, -0400,
+1030

%Z Time zone name (empty), UTC, EST, CST

%j Day of the year as a three-digit number 001, 002, …, 366

%U Week number of the year (Sunday first) 00, 01, …, 53

%W Week number of the year (Monday first) 00, 01, …, 53

Direct
ive Meaning Example

%c Date and time representation Tue Aug 16 21:30:00
1988

%x Date representation 08/16/88
(None);08/16/1988

%X Time representation 21:30:00

%% Literal % character %

%G ISO 8601 year 0001, 0002, …, 2013,
2014, …, 9999

%u ISO 8601 weekday 1, 2, …, 7

%V ISO 8601 week 01, 02, …, 53

2. strftime (string format time) and strptime (string parse time) behavior:
https://docs.python.org/3/library/datetime.html#st
rftime-and-strptime-behavior

12.3 Loading Data That Include Dates
Many of the data sets used in this book are in a CSV format, or else they
come from the seaborn library. The gapminder data set was an
exception: It was a tab-separated file (TSV). The read_csv() function
has a lot of parameters – for example, parse_dates,
inher_datetime_format, keep_date_col, date_parser,
dayfirst, and cache_dates. We can parse the Date column directly
by specifying the column we want in the parse_dates parameter.

Click here to view code image

ebola =
pd.read_csv('data/country_timeseries.csv',

https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0253-01

parse_dates=["Date"])
print(ebola.info())

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 122 entries, 0 to 121
Data columns (total 18 columns):

 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 Date 122 non-null
datetime64[ns]
 1 Day 122 non-null int64
 2 Cases_Guinea 93 non-null float64
 3 Cases_Liberia 83 non-null float64
 4 Cases_SierraLeone 87 non-null float64
 5 Cases_Nigeria 38 non-null float64
 6 Cases_Senegal 25 non-null float64
 7 Cases_UnitedStates 18 non-null float64
 8 Cases_Spain 16 non-null float64
 9 Cases_Mali 12 non-null float64
 10 Deaths_Guinea 92 non-null float64
 11 Deaths_Liberia 81 non-null float64
 12 Deaths_SierraLeone 87 non-null float64
 13 Deaths_Nigeria 38 non-null float64
 14 Deaths_Senegal 22 non-null float64
 15 Deaths_UnitedStates 18 non-null float64
 16 Deaths_Spain 16 non-null float64
 17 Deaths_Mali 12 non-null float64
dtypes: datetime64[ns](1), float64(16), int64(1)
memory usage: 17.3 KB
None

This example shows how we can automatically convert columns into
dates directly when the data are loaded.

12.4 Extracting Date Components
Now that we have a datetime object, we can extract various parts of the
date, such as year, month, or day. Here’s an example datetime object.

Click here to view code image

d = pd.to_datetime('2021-12-14')
print(d)

2021-12-14 00:00:00

If we pass in a single string, we get a Timestamp.

Click here to view code image

print(type(d))

<class 'pandas._libs.tslibs.timestamps.Timestamp'>

Now that we have a proper datetime, we can access various date
components as attributes.

print(d.year)

2021

print(d.month)

12

print(d.day)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0254-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0254-03

14

In Chapter 4, we tidied our data when we needed to parse a column that
stored multiple bits of information and used the .str. accessor to use
string methods like .split(). We can do something similar here with
datetime objects by accessing datetime methods using the .dt.
accessor.3 Let’s first re-create our date_dt column.
3. Datetime-like properties:
https://pandas.pydata.org/docs/reference/series.ht
ml#datetimelike-properties

Click here to view code image

ebola['date_dt'] = pd.to_datetime(ebola['Date'])

We know we can get date components such as the year, month, and day
by using the year, month, and day attributes, respectively, on a column
basis; we saw how this works when we parsed strings in a column using
.str.. Here’s the Date and date_dt columns we just created.

Click here to view code image

print(ebola[['Date', 'date_dt']])

 Date date_dt
0 2015-01-05 2015-01-05
1 2015-01-04 2015-01-04
2 2015-01-03 2015-01-03
3 2015-01-02 2015-01-02
4 2014-12-31 2014-12-31
..
117 2014-03-27 2014-03-27
118 2014-03-26 2014-03-26
119 2014-03-25 2014-03-25

https://pandas.pydata.org/docs/reference/series.html#datetimelike-properties
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0255-01
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0255-02

120 2014-03-24 2014-03-24
121 2014-03-22 2014-03-22

[122 rows x 2 columns]

We can create a new year column based on the Date column.

Click here to view code image

ebola['year'] = ebola['date_dt'].dt.year
print(ebola[['Date', 'date_dt', 'year']])

 Date date_dt year
0 2015-01-05 2015-01-05 2015
1 2015-01-04 2015-01-04 2015
2 2015-01-03 2015-01-03 2015
3 2015-01-02 2015-01-02 2015
4 2014-12-31 2014-12-31 2014
..
117 2014-03-27 2014-03-27 2014
118 2014-03-26 2014-03-26 2014
119 2014-03-25 2014-03-25 2014
120 2014-03-24 2014-03-24 2014
121 2014-03-22 2014-03-22 2014

[122 rows x 3 columns]

Let’s finish parsing our date.

Click here to view code image

ebola = ebola.assign(
 month=ebola["date_dt"].dt.month,

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0255-03
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0256-01

 day=ebola["date_dt"].dt.day
)

print(ebola[['Date', 'date_dt', 'year', 'month',
'day']])

 Date date_dt year month day
0 2015-01-05 2015-01-05 2015 1 5
1 2015-01-04 2015-01-04 2015 1 4
2 2015-01-03 2015-01-03 2015 1 3
3 2015-01-02 2015-01-02 2015 1 2
4 2014-12-31 2014-12-31 2014 12 31
..
117 2014-03-27 2014-03-27 2014 3 27
118 2014-03-26 2014-03-26 2014 3 26
119 2014-03-25 2014-03-25 2014 3 25
120 2014-03-24 2014-03-24 2014 3 24
121 2014-03-22 2014-03-22 2014 3 22

[122 rows x 5 columns]

When we parsed out our dates, the data type was not preserved.

Click here to view code image

print(ebola.info())

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 122 entries, 0 to 121
Data columns (total 22 columns):

 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 Date 122 non-null

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0256-02

datetime64[ns]
 1 Day 122 non-null int64
 2 Cases_Guinea 93 non-null float64
 3 Cases_Liberia 83 non-null float64
 4 Cases_SierraLeone 87 non-null float64
 5 Cases_Nigeria 38 non-null float64
 6 Cases_Senegal 25 non-null float64
 7 Cases_UnitedStates 18 non-null float64
 8 Cases_Spain 16 non-null float64
 9 Cases_Mali 12 non-null float64
 10 Deaths_Guinea 92 non-null float64
 11 Deaths_Liberia 81 non-null float64
 12 Deaths_SierraLeone 87 non-null float64
 13 Deaths_Nigeria 38 non-null float64
 14 Deaths_Senegal 22 non-null float64
 15 Deaths_UnitedStates 18 non-null float64
 16 Deaths_Spain 16 non-null float64
 17 Deaths_Mali 12 non-null float64
 18 date_dt 122 non-null
datetime64[ns]
 19 year 122 non-null int64
 20 month 122 non-null int64
 21 day 122 non-null int64
dtypes: datetime64[ns](2), float64(16), int64(4)
memory usage: 21.1 KB
None

12.5 Date Calculations and Timedeltas
One of the benefits of having date objects is being able to do date
calculations. Our Ebola data set includes a column named Day that
indicates how many days into an Ebola outbreak a country is. We can

recreate this column using date arithmetic. Here’s the bottom left corner of
our data.

Click here to view code image

print(ebola.iloc[-5:, :5])

 Date Day Cases_Guinea Cases_Liberia
Cases_SierraLeone
117 2014-03-27 5 103.0 8.0
6.0
118 2014-03-26 4 86.0 NaN
NaN
119 2014-03-25 3 86.0 NaN
NaN
120 2014-03-24 2 86.0 NaN
NaN
121 2014-03-22 0 49.0 NaN
NaN

The first day of the outbreak (the earliest date in this data set) is 2015-
03-22. So, if we want to calculate the number of days into the outbreak,
we can subtract this date from each date by using the .min() method of
the column.

print(ebola['date_dt'].min())

2014-03-22 00:00:00

We can use this date in our calculation.

Click here to view code image

ebola['outbreak_d'] = ebola['date_dt'] -
ebola['date_dt'].min()

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0257-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0257-04

print(ebola[['Date', 'Day', 'outbreak_d']])

 Date Day outbreak_d
0 2015-01-05 289 289 days
1 2015-01-04 288 288 days
2 2015-01-03 287 287 days
3 2015-01-02 286 286 days
4 2014-12-31 284 284 days
..
117 2014-03-27 5 5 days
118 2014-03-26 4 4 days
119 2014-03-25 3 3 days
120 2014-03-24 2 2 days
121 2014-03-22 0 0 days

[122 rows x 3 columns]

When we perform this kind of date calculation, we actually end up with
a timedelta object.

Click here to view code image

print(ebola.info())

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 122 entries, 0 to 121
Data columns (total 23 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 Date 122 non-null
datetime64[ns]
 1 Day 122 non-null int64
 2 Cases_Guinea 93 non-null float64

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0258-02

 3 Cases_Liberia 83 non-null float64
 4 Cases_SierraLeone 87 non-null float64
 5 Cases_Nigeria 38 non-null float64
 6 Cases_Senegal 25 non-null float64
 7 Cases_UnitedStates 18 non-null float64
 8 Cases_Spain 16 non-null float64
 9 Cases_Mali 12 non-null float64
 10 Deaths_Guinea 92 non-null float64
 11 Deaths_Liberia 81 non-null float64
 12 Deaths_SierraLeone 87 non-null float64
 13 Deaths_Nigeria 38 non-null float64
 14 Deaths_Senegal 22 non-null float64
 15 Deaths_UnitedStates 18 non-null float64
 16 Deaths_Spain 16 non-null float64
 17 Deaths_Mali 12 non-null float64
 18 date_dt 122 non-null
datetime64[ns]
 19 year 122 non-null int64
 20 month 122 non-null int64
 21 day 122 non-null int64
 22 outbreak_d 122 non-null
timedelta64[ns]
dtypes: datetime64[ns](2), float64(16), int64(4),
timedelta64[ns](1)
memory usage: 22.0 KB
None

We get timedelta objects as results when we perform calculations
with datetime objects.

12.6 Datetime Methods
Let’s look at another data set. This one deals with bank failures.

Click here to view code image

banks = pd.read_csv('data/banklist.csv')
print(banks.head())

 Bank
Name \
0 Fayette County
Bank
1 Guaranty Bank, (d/b/a BestBank in Georgia &
Mi...
2 First NBC
Bank
3 Proficio
Bank
4 Seaway Bank and Trust
Company

 City ST CERT \
0 Saint Elmo IL 1802
1 Milwaukee WI 30003
2 New Orleans LA 58302
3 Cottonwood Heights UT 35495
4 Chicago IL 19328

 Acquiring Institution
Closing Date Updated Date
0 United Fidelity Bank, fsb
26-May-17 26-Jul-17
1 First-Citizens Bank & Trust Company
5-May-17 26-Jul-17
2 Whitney Bank
28-Apr-17 26-Jul-17

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0259-01

3 Cache Valley Bank
3-Mar-17 18-May-17
4 State Bank of Texas
27-Jan-17 18-May-17

Again, we can import our data with the dates directly parsed.

Click here to view code image

banks = pd.read_csv(
 "data/banklist.csv", parse_dates=["Closing
Date", "Updated Date"]
)

print(banks.info())

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 553 entries, 0 to 552
Data columns (total 7 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 Bank Name 553 non-null object
 1 City 553 non-null object
 2 ST 553 non-null object
 3 CERT 553 non-null int64
 4 Acquiring Institution 553 non-null object
 5 Closing Date 553 non-null
datetime64[ns]
 6 Updated Date 553 non-null
datetime64[ns]
dtypes: datetime64[ns](2), int64(1), object(4)
memory usage: 30.4+ KB
None

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0259-02

We can parse out the date by obtaining the quarter and year in which the
bank closed.

Click here to view code image

banks = banks.assign(
 closing_quarter=banks['Closing
Date'].dt.quarter,
 closing_year=banks['Closing Date'].dt.year
)

closing_year =
banks.groupby(['closing_year']).size()

Alternatively, we can calculate how many banks closed in each quarter
of each year.

Click here to view code image

closing_year_q = (
 banks
 .groupby(['closing_year', 'closing_quarter'])
 .size()
)

We can then plot these results as shown in Figure 12.1 and Figure 12.2.

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0260-01
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0260-02

Figure 12.1 Number of banks closing each year

Figure 12.2 Number of banks closing each year by quarter

Click here to view code image

import matplotlib.pyplot as plt

fig, ax = plt.subplots()
ax = closing_year.plot()
plt.show()

fig, ax = plt.subplots()
ax = closing_year_q.plot()
plt.show()

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0260-03

12.7 Getting Stock Data
One commonly encountered type of data that contains dates is stock prices.
Luckily Python has a way of getting this type of data programmatically
with the pandas-datareader library.4

4. pandas-datareader library: https://pandas-
datareader.readthedocs.io/

Click here to view code image

we can install and use the pandas_datafreader
to get data from the Internet
import pandas_datareader.data as web

in this example we are getting stock
information about Tesla
tesla = web.DataReader('TSLA', 'yahoo')

print(tesla)

 Date High Low Open
Close \
2017-09-05 23.699333 23.059334 23.586666
23.306000
2017-09-06 23.398666 22.770666 23.299999
22.968666
2017-09-07 23.498667 22.896667 23.065332
23.374001
2017-09-08 23.318666 22.820000 23.266001
22.893333
2017-09-11 24.247334 23.333332 23.423332
24.246000
...
...

https://pandas-datareader.readthedocs.io/
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0261-02

2022-08-25 302.959991 291.600006 302.359985
296.070007
2022-08-26 302.000000 287.470001 297.429993
288.089996
2022-08-29 287.739990 280.700012 282.829987
284.820007
2022-08-30 288.480011 272.649994 287.869995
277.700012
2022-08-31 281.250000 271.809998 280.619995
275.609985

 Date Volume Adj Close
2017-09-05 57526500.0 23.306000
2017-09-06 61371000.0 22.968666
2017-09-07 63588000.0 23.374001
2017-09-08 48952500.0 22.893333
2017-09-11 115006500.0 24.246000

2022-08-25 53230000.0 296.070007
2022-08-26 56905800.0 288.089996
2022-08-29 41864700.0 284.820007
2022-08-30 50541800.0 277.700012
2022-08-31 51788900.0 275.609985

[1257 rows x 6 columns]

the stock data was saved
so we do not need to rely on the Internet
again
instead we can load the same data set as a
file
tesla = pd.read_csv(

 'data/tesla_stock_yahoo.csv', parse_dates=
["Date"]
)

print(tesla)

 Date Open High Low
Close \
0 2010-06-29 19.000000 25.000000 17.540001
23.889999
1 2010-06-30 25.790001 30.420000 23.299999
23.830000
2 2010-07-01 25.000000 25.920000 20.270000
21.959999
3 2010-07-02 23.000000 23.100000 18.709999
19.200001
4 2010-07-06 20.000000 20.000000 15.830000
16.110001
...
...
1786 2017-08-02 318.940002 327.119995 311.220001
325.890015
1787 2017-08-03 345.329987 350.000000 343.149994
347.089996
1788 2017-08-04 347.000000 357.269989 343.299988
356.910004
1789 2017-08-07 357.350006 359.480011 352.750000
355.170013
1790 2017-08-08 357.529999 368.579987 357.399994
365.220001

 Adj Close Volume
0 23.889999 18766300
1 23.830000 17187100
2 21.959999 8218800
3 19.200001 5139800
4 16.110001 6866900
...
1786 325.890015 13091500
1787 347.089996 13535000
1788 356.910004 9198400
1789 355.170013 6276900
1790 365.220001 7449837

[1791 rows x 7 columns]

12.8 Subsetting Data Based on Dates
Since we now know how to extract parts of a date out of a column (Section
12.4), we can incorporate these methods to subset our data without having
to parse out the individual components manually.

For example, if we want only data for June 2010 from our stock price
data set, we can use boolean subsetting.

Click here to view code image

print(
 tesla.loc[
 (tesla.Date.dt.year == 2010) &
(tesla.Date.dt.month == 6)
]
)

 Date Open High Low
Close Adj Close \

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0263-02

0 2010-06-29 19.000000 25.00 17.540001
23.889999 23.889999
1 2010-06-30 25.790001 30.42 23.299999
23.830000 23.830000

 Volume
0 18766300
1 17187100

12.8.1 The DatetimeIndex Object
When we are working with datetime data, we often need to set the
datetime object to be the dataframe’s index. To this point, we’ve mainly
left the dataframe row index to be the row number. We have also seen some
side effects that arise because the row index may not always be the row
number, such as when we were concatenating dataframes in Chapter 6.

First, let’s assign the Date column as the index.

Click here to view code image

tesla.index = tesla['Date']
print(tesla.index)

DatetimeIndex(['2010-06-29', '2010-06-30', '2010-
07-01',
 '2010-07-02', '2010-07-06', '2010-
07-07',
 '2010-07-08', '2010-07-09', '2010-
07-12',
 '2010-07-13',
 ...
 '2017-07-26', '2017-07-27', '2017-
07-28',

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0263-03

 '2017-07-31', '2017-08-01', '2017-
08-02',
 '2017-08-03', '2017-08-04', '2017-
08-07',
 '2017-08-08'],
 dtype='datetime64[ns]', name='Date',
length=1791, freq=None)

With the index set as a date object, we can now use the date directly to
subset rows. For example, we can subset our data based on the year.

Click here to view code image

print(tesla['2015'])

 Date Open High
Low \
Date
2015-01-02 2015-01-02 222.869995 223.250000
213.259995
2015-01-05 2015-01-05 214.550003 216.500000
207.160004
2015-01-06 2015-01-06 210.059998 214.199997
204.210007
2015-01-07 2015-01-07 213.350006 214.779999
209.779999
2015-01-08 2015-01-08 212.809998 213.800003
210.009995

...
2015-12-24 2015-12-24 230.559998 231.880005
228.279999
2015-12-28 2015-12-28 231.490005 231.979996
225.539993

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0264-02

2015-12-29 2015-12-29 230.059998 237.720001
229.550003
2015-12-30 2015-12-30 236.600006 243.630005
235.669998
2015-12-31 2015-12-31 238.509995 243.449997
238.369995

 Close Adj Close Volume
Date
2015-01-02 219.309998 219.309998 4764400
2015-01-05 210.089996 210.089996 5368500
2015-01-06 211.279999 211.279999 6261900
2015-01-07 210.949997 210.949997 2968400
2015-01-08 210.619995 210.619995 3442500
...
2015-12-24 230.570007 230.570007 708000
2015-12-28 228.949997 228.949997 1901300
2015-12-29 237.190002 237.190002 2406300
2015-12-30 238.089996 238.089996 3697900
2015-12-31 240.009995 240.009995 2683200

[252 rows x 7 columns]

 print(tesla.loc['2015'])

Alternatively, we can subset the data based on the year and month.

Click here to view code image

print(tesla['2010-06'])

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0265-01

 Date Open High Low
Close \
Date
2010-06-29 2010-06-29 19.000000 25.00 17.540001
23.889999
2010-06-30 2010-06-30 25.790001 30.42 23.299999
23.830000

 Adj Close Volume
Date
2010-06-29 23.889999 18766300
2010-06-30 23.830000 17187100

print(tesla.loc['2010-06'])

12.8.2 The TimedeltaIndex Object
Just as we set the index of a dataframe to a datetime to create a
DatetimeIndex, so we can do the same thing with a timedelta to
create a TimedeltaIndex.

Let’s create a timedelta.

Click here to view code image

tesla['ref_date'] = tesla['Date'] -
tesla['Date'].min()

Now we can assign the timedelta to the index.

Click here to view code image

tesla.index = tesla['ref_date']

print(tesla)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0265-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0265-03

 Date Open High
Low \
ref_date
0 days 2010-06-29 19.000000 25.000000
17.540001
1 days 2010-06-30 25.790001 30.420000
23.299999
2 days 2010-07-01 25.000000 25.920000
20.270000
3 days 2010-07-02 23.000000 23.100000
18.709999
7 days 2010-07-06 20.000000 20.000000
15.830000
...
...
2591 days 2017-08-02 318.940002 327.119995
311.220001
2592 days 2017-08-03 345.329987 350.000000
343.149994
2593 days 2017-08-04 347.000000 357.269989
343.299988
2596 days 2017-08-07 357.350006 359.480011
352.750000
2597 days 2017-08-08 357.529999 368.579987
357.399994

 Close Adj Close Volume ref_date
ref_date
0 days 23.889999 23.889999 18766300 0
days
1 days 23.830000 23.830000 17187100 1
days
2 days 21.959999 21.959999 8218800 2

days
3 days 19.200001 19.200001 5139800 3
days
7 days 16.110001 16.110001 6866900 7
days
...
2591 days 325.890015 325.890015 13091500 2591
days
2592 days 347.089996 347.089996 13535000 2592
days
2593 days 356.910004 356.910004 9198400 2593
days
2596 days 355.170013 355.170013 6276900 2596
days
2597 days 365.220001 365.220001 7449837 2597
days

[1791 rows x 8 columns]

We can now select our data based on these deltas.

Click here to view code image

print(tesla['0 day': '10 day'])

 Date Open High Low
Close \
ref_date
0 days 2010-06-29 19.000000 25.000000 17.540001
23.889999
1 days 2010-06-30 25.790001 30.420000 23.299999
23.830000
2 days 2010-07-01 25.000000 25.920000 20.270000

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0266-02

21.959999
3 days 2010-07-02 23.000000 23.100000 18.709999
19.200001
7 days 2010-07-06 20.000000 20.000000 15.830000
16.110001
8 days 2010-07-07 16.400000 16.629999 14.980000
15.800000
9 days 2010-07-08 16.139999 17.520000 15.570000
17.459999
10 days 2010-07-09 17.580000 17.900000 16.549999
17.400000

 Adj Close Volume ref_date
ref_date
0 days 23.889999 18766300 0 days
1 days 23.830000 17187100 1 days
2 days 21.959999 8218800 2 days
3 days 19.200001 5139800 3 days
7 days 16.110001 6866900 7 days
8 days 15.800000 6921700 8 days
9 days 17.459999 7711400 9 days
10 days 17.400000 4050600 10 days

12.9 Date Ranges
Not every data set will have a fixed frequency of values. For example, in
our Ebola data set, we do not have an observation for every day in the date
range.

Click here to view code image

ebola = pd.read_csv(
'data/country_timeseries.csv', parse_dates=

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0266-03

["Date"]
)

Here, 2015-01-01 is missing from the .head() of the data.

Click here to view code image

print(ebola.iloc[:, :5])

 Date Day Cases_Guinea Cases_Liberia
Cases_SierraLeone
0 2015-01-05 289 2776.0 NaN
10030.0
1 2015-01-04 288 2775.0 NaN
9780.0
2 2015-01-03 287 2769.0 8166.0
9722.0
3 2015-01-02 286 NaN 8157.0
NaN
4 2014-12-31 284 2730.0 8115.0
9633.0
..
...
117 2014-03-27 5 103.0 8.0
6.0
118 2014-03-26 4 86.0 NaN
NaN
119 2014-03-25 3 86.0 NaN
NaN
120 2014-03-24 2 86.0 NaN
NaN
121 2014-03-22 0 49.0 NaN
NaN

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0266-04

[122 rows x 5 columns]

It’s common practice to create a date range to .reindex() a data set.
We can use the date_range()

Click here to view code image

head_range = pd.date_range(start='2014-12-31',
end='2015-01-05')
print(head_range)

DatetimeIndex(['2014-12-31', '2015-01-01', '2015-
01-02',
 '2015-01-03', '2015-01-04', '2015-
01-05'],
 dtype='datetime64[ns]', freq='D')

We’ll just work with the first five rows in this example.

ebola_5 = ebola.head()

If we want to set this date range as the index, we need to first set the date
as the index.

Click here to view code image

ebola_5.index = ebola_5['Date']

Next we can .reindex() our data.

Click here to view code image

ebola_5 = ebola_5.reindex(head_range)

print(ebola_5.iloc[:, :5])

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0267-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0267-04
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0267-05

 Date Day Cases_Guinea
Cases_Liberia \
2014-12-31 2014-12-31 284.0 2730.0
8115.0
2015-01-01 NaT NaN NaN
NaN
2015-01-02 2015-01-02 286.0 NaN
8157.0
2015-01-03 2015-01-03 287.0 2769.0
8166.0
2015-01-04 2015-01-04 288.0 2775.0
NaN
2015-01-05 2015-01-05 289.0 2776.0
NaN

 Cases_SierraLeone
2014-12-31 9633.0
2015-01-01 NaN
2015-01-02 NaN
2015-01-03 9722.0
2015-01-04 9780.0
2015-01-05 10030.0

12.9.1 Frequencies
When we created our head_range, the print statement included a
parameter called freq. In that example, freq was 'D' for “day.” That is,
the values in our date range were stepped through using a day-by-day
increment. The possible frequencies are reproduced from the Pandas
timeseries documentation that is listed in Table 12.2.5

5. Frequency offset aliases:
https://pandas.pydata.org/docs/user_guide/timeseri

https://pandas.pydata.org/docs/user_guide/timeseries.html#offset-aliases

es.html#offset-aliases

Table 12.2 Possible Frequencies

Alias Description

B Business day frequency

C Custom business day frequency (experimental)

D Calendar day frequency

W Weekly frequency

M Month end frequency

SM Semi-month end frequency (15th and end of month)

BM Business month end frequency

CBM Custom business month end frequency

MS Month start frequency

SMS Semi-month start frequency (1st and 15th)

BMS Business month start frequency

CBMS Custom business month start frequency

Q Quarter end frequency

BQ Business quarter end frequency

QS Quarter start frequency

BQS Business quarter start frequency

A Year end frequency

BA Business year end frequency

AS Year start frequency

BAS Business year start frequency

BH Business hour frequency

H Hour frequency

https://pandas.pydata.org/docs/user_guide/timeseries.html#offset-aliases

Alias Description

T Minute frequency

S Second frequency

L Millisecond frequency

U Microsecond frequency

N Nanosecond frequency

These values can be passed into the freq parameter when calling
date_range. For example, January 2, 2022, was a Sunday, and we can
create a range consisting of the business days in that week.

Click here to view code image

business days during the week of Jan 1, 2022
print(pd.date_range('2022-01-01', '2022-01-07',
freq='B'))

DatetimeIndex(['2022-01-03', '2022-01-04', '2022-
01-05',
 '2022-01-06', '2022-01-07'],
 dtype='datetime64[ns]', freq='B')

12.9.2 Offsets
Offsets are variations on a base frequency. For example, we can take the
business days range that we just created and add an offset such that instead
of every business day, data are included for every other business day.

Click here to view code image

every other business day during the week of
Jan 1, 2022

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0268-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0268-03

print(pd.date_range('2022-01-01', '2017-01-07',
freq='2B'))

DatetimeIndex([], dtype='datetime64[ns]',
freq='2B')

We created this offset by putting a multiplying value before the base
frequency. This kind of offset can be combined with other base frequencies
as well. For example, we can specify the first Thursday of each month in
the year 2022.

Click here to view code image

print(pd.date_range('2022-01-01', '2022-12-31',
freq='WOM-1THU'))

DatetimeIndex(['2022-01-06', '2022-02-03', '2022-
03-03',
 '2022-04-07', '2022-05-05', '2022-
06-02',
 '2022-07-07', '2022-08-04', '2022-
09-01',
 '2022-10-06', '2022-11-03', '2022-
12-01'],
 dtype='datetime64[ns]', freq='WOM-
1THU')

We can also specify the third Friday of each month.

Click here to view code image

print(pd.date_range('2022-01-01', '2022-12-31',
freq='WOM-3FRI'))

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0268-04
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0269-01

DatetimeIndex(['2022-01-21', '2022-02-18', '2022-
03-18',
 '2022-04-15', '2022-05-20', '2022-
06-17',
 '2022-07-15', '2022-08-19', '2022-
09-16',
 '2022-10-21', '2022-11-18', '2022-
12-16'],
 dtype='datetime64[ns]', freq='WOM-
3FRI')

12.10 Shifting Values
There are a few reasons why you might want to shift your dates by a certain
value. For example, you might need to correct some kind of measurement
error in your data. Alternatively, you might want to standardize the start
dates for your data so you can compare trends.

Even though our Ebola data isn’t “tidy,” one of the benefits of the data in
its current format is that it allows us to plot the outbreak. This plot is shown
in Figure 12.3.

Figure 12.3 Ebola plot of cases and deaths (unshifted dates)

Click here to view code image

import matplotlib.pyplot as plt

ebola.index = ebola['Date']

fig, ax = plt.subplots()
ax = ebola.plot(ax=ax)
ax.legend(fontsize=7, loc=2, borderaxespad=0.0)
plt.show()

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0270-01

When we’re looking at an outbreak, one useful piece of information is
how fast an outbreak is spreading relative to other countries. Let’s look at
just a few columns from our Ebola data set.

Click here to view code image

ebola_sub = ebola[['Day', 'Cases_Guinea',
'Cases_Liberia']]
print(ebola_sub.tail(10))

 Day Cases_Guinea Cases_Liberia
Date
2014-04-04 13 143.0 18.0
2014-04-01 10 127.0 8.0
2014-03-31 9 122.0 8.0
2014-03-29 7 112.0 7.0
2014-03-28 6 112.0 3.0
2014-03-27 5 103.0 8.0
2014-03-26 4 86.0 NaN
2014-03-25 3 86.0 NaN
2014-03-24 2 86.0 NaN
2014-03-22 0 49.0 NaN

You can see that each country’s starting date is different, which makes it
difficult to compare the actual slopes between countries when a new
outbreak occurs later in time.

In this example, we want all our dates to start from a common 0 day.
There are multiple steps to this process.

Since not every date is listed, we need to create a date range of all the
dates in our data set.
We need to calculate the difference between the earliest date in our
data set, and the earliest valid (non NaN) date in each column.
We can then shift each of the columns by this calculated value.

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0271-01

Before we begin, let’s start with a fresh copy of the Ebola data set. We’ll
parse the Date column as a proper date object, and assign this date to the
.index. In this example, we are parsing the date and setting it as the index
directly.

Click here to view code image

ebola = pd.read_csv(
 "data/country_timeseries.csv",
 index_col="Date",
 parse_dates=["Date"],
)

print(ebola.iloc[:, :4])

 Day Cases_Guinea Cases_Liberia
Cases_SierraLeone
Date
2015-01-05 289 2776.0 NaN
10030.0
2015-01-04 288 2775.0 NaN
9780.0
2015-01-03 287 2769.0 8166.0
9722.0
2015-01-02 286 NaN 8157.0
NaN
2014-12-31 284 2730.0 8115.0
9633.0
...
...
2014-03-27 5 103.0 8.0
6.0
2014-03-26 4 86.0 NaN
NaN

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0271-02

2014-03-25 3 86.0 NaN
NaN
2014-03-24 2 86.0 NaN
NaN
2014-03-22 0 49.0 NaN
NaN

[122 rows x 4 columns]

First, we need to create the date range to fill in all the missing dates in
our data. Then, when we shift our date values downward, the number of
days that the data will shift will be the same as the number of rows that will
be shifted.

Click here to view code image

new_idx = pd.date_range(ebola.index.min(),
ebola.index.max())

print(new_idx)

DatetimeIndex(['2014-03-22', '2014-03-23', '2014-
03-24',
 '2014-03-25', '2014-03-26', '2014-
03-27',
 '2014-03-28', '2014-03-29', '2014-
03-30',
 '2014-03-31',

 ...
 '2014-12-27', '2014-12-28', '2014-
12-29',
 '2014-12-30', '2014-12-31', '2015-
01-01',

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0272-02

 '2015-01-02', '2015-01-03', '2015-
01-04',
 '2015-01-05'],
 dtype='datetime64[ns]', length=290,
freq='D')

Looking at our new_idx, we see that the dates are not in the order that
we want. To fix this, we can reverse the order of the index.

Click here to view code image

new_idx = reversed(new_idx)
print(new_idx)

<reversed object at 0x105aedfc0>

Now we can properly .reindex() our data. This will create rows of
NaN values if the index does not exist already in our data set.

Click here to view code image

ebola = ebola.reindex(new_idx)

If we look at the .head() and .tail() of the resulting data, we see
that dates that were originally not listed have been added into the data set,
along with a row of NaN missing values. Additionally, the Date column is
filled with the NaT value, which is an internal Pandas representation for
missing time value (similar to how NaN is used for numeric missing
values).

Click here to view code image

print(ebola.iloc[:, :4])

 Day Cases_Guinea Cases_Liberia

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0272-03
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0272-04
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0272-05

Cases_SierraLeone
Date
2015-01-05 289.0 2776.0 NaN
10030.0
2015-01-04 288.0 2775.0 NaN
9780.0
2015-01-03 287.0 2769.0 8166.0
9722.0
2015-01-02 286.0 NaN 8157.0
NaN
2015-01-01 NaN NaN NaN
NaN
...
...
2014-03-26 4.0 86.0 NaN
NaN
2014-03-25 3.0 86.0 NaN
NaN
2014-03-24 2.0 86.0 NaN
NaN
2014-03-23 NaN NaN NaN
NaN
2014-03-22 0.0 49.0 NaN
NaN

[290 rows x 4 columns]

Now that we’ve created our date range and assigned it to the index,
our next step is to calculate the difference between the earliest date in our
data set and the earliest valid (non-missing) date in each column. To
perform this calculation, we can use the Series method called
.last_valid_index(), which returns the label (index) of the last
non-missing or non-null value. An analogous method called

.first_valid_index() returns the first non-missing or non-null
value. Since we want to perform this calculation across all the columns, we
can use the .apply() method.

Click here to view code image

last_valid =
ebola.apply(pd.Series.last_valid_index)
print(last_valid)

Day 2014-03-22
Cases_Guinea 2014-03-22
Cases_Liberia 2014-03-27
Cases_SierraLeone 2014-03-27
Cases_Nigeria 2014-07-23
 ...
Deaths_Nigeria 2014-07-23
Deaths_Senegal 2014-09-07
Deaths_UnitedStates 2014-10-01
Deaths_Spain 2014-10-08
Deaths_Mali 2014-10-22
Length: 17, dtype: datetime64[ns]

Next, we want to get the earliest date in our data set.

Click here to view code image

earliest_date = ebola.index.min()
print(earliest_date)

2014-03-22 00:00:00

We then subtract this date from each of our last_valid dates.

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0273-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0273-03
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0274-01

shift_values = last_valid - earliest_date
print(shift_values)

Day 0 days
Cases_Guinea 0 days
Cases_Liberia 5 days
Cases_SierraLeone 5 days
Cases_Nigeria 123 days
 ...
Deaths_Nigeria 123 days
Deaths_Senegal 169 days
Deaths_UnitedStates 193 days
Deaths_Spain 200 days
Deaths_Mali 214 days
Length: 17, dtype: timedelta64[ns]

Finally, we can iterate through each column, using the .shift()
method to shift the columns down by the corresponding value in
shift_values. Note that the values in shift_values are all
positive. If they were negative (if we flipped the order of our subtraction),
this operation would shift the values up.

Click here to view code image

ebola_dict = {}

for idx, col in enumerate(ebola):
 d = shift_values[idx].days
 shifted = ebola[col].shift(d)
 ebola_dict[col] = shifted

#print(ebola_dict)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0274-02

Since we have a dict of values, we can convert it to a dataframe using
the Pandas DataFrame function.

Click here to view code image

ebola_shift = pd.DataFrame(ebola_dict)

The last row in each column now has a value; that is, the columns have
been shifted down appropriately.

Click here to view code image

print(ebola_shift.tail())

 Day Cases_Guinea Cases_Liberia
Cases_SierraLeone \
Date
2014-03-26 4.0 86.0 8.0
2.0
2014-03-25 3.0 86.0 NaN
NaN
2014-03-24 2.0 86.0 7.0
NaN
2014-03-23 NaN NaN 3.0
2.0
2014-03-22 0.0 49.0 8.0
6.0

 Cases_Nigeria Cases_Senegal
Cases_UnitedStates \
Date
2014-03-26 1.0 NaN
1.0

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0274-03
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0274-04

2014-03-25 NaN NaN
NaN
2014-03-24 NaN NaN
NaN
2014-03-23 NaN NaN
NaN
2014-03-22 0.0 1.0
1.0

 Cases_Spain Cases_Mali Deaths_Guinea
Deaths_Liberia \
Date
2014-03-26 1.0 NaN 62.0
4.0
2014-03-25 NaN NaN 60.0
NaN
2014-03-24 NaN NaN 59.0
2.0
2014-03-23 NaN NaN NaN
3.0
2014-03-22 1.0 1.0 29.0
6.0

 Deaths_SierraLeone Deaths_Nigeria
Deaths_Senegal \
Date
2014-03-26 2.0 1.0
NaN
2014-03-25 NaN NaN
NaN
2014-03-24 NaN NaN
NaN

2014-03-23 2.0 NaN
NaN
2014-03-22 5.0 0.0
0.0

 Deaths_UnitedStates Deaths_Spain
Deaths_Mali
Date
2014-03-26 0.0 1.0
NaN
2014-03-25 NaN NaN
NaN
2014-03-24 NaN NaN
NaN
2014-03-23 NaN NaN
NaN
2014-03-22 0.0 1.0
1.0

Finally, since the indices are no longer valid across each row, we can
remove them, and then assign the correct index, which is the Day. Note
that Day no longer represents the first day of the entire outbreak, but rather
the first day of an outbreak for the given country.

Click here to view code image

ebola_shift.index = ebola_shift['Day']
ebola_shift = ebola_shift.drop(['Day'],
axis="columns")

print(ebola_shift.tail())

 Cases_Guinea Cases_Liberia Cases_SierraLeone

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0275-02

Cases_Nigeria \
Day
4.0 86.0 8.0 2.0
1.0
3.0 86.0 NaN NaN
NaN
2.0 86.0 7.0 NaN
NaN
NaN NaN 3.0 2.0
NaN
0.0 49.0 8.0 6.0
0.0

 Cases_Senegal Cases_UnitedStates Cases_Spain
Cases_Mali \
Day
4.0 NaN 1.0 1.0
NaN
3.0 NaN NaN NaN
NaN
2.0 NaN NaN NaN
NaN
NaN NaN NaN NaN
NaN
0.0 1.0 1.0 1.0
1.0

 Deaths_Guinea Deaths_Liberia
Deaths_SierraLeone \
Day
4.0 62.0 4.0
2.0

3.0 60.0 NaN
NaN
2.0 59.0 2.0
NaN
NaN NaN 3.0
2.0
0.0 29.0 6.0
5.0

 Deaths_Nigeria Deaths_Senegal
Deaths_UnitedStates \
Day
4.0 1.0 NaN
0.0
3.0 NaN NaN
NaN
2.0 NaN NaN
NaN
NaN NaN NaN
NaN
0.0 0.0 0.0
0.0

 Deaths_Spain Deaths_Mali
Day
4.0 1.0 NaN
3.0 NaN NaN
2.0 NaN NaN
NaN NaN NaN
0.0 1.0 1.0

12.11 Resampling

Resampling converts a datetime from one frequency to another
frequency. Three types of resampling can occur:

Downsampling: from a higher frequency to a lower frequency (e.g.,
daily to monthly)
Upsampling: from a lower frequency to a higher frequency (e.g.,
monthly to daily)
No change: frequency does not change (e.g., every first Thursday of
the month to the last Friday of the month)

The values we can pass into .resample() are listed in Table 12.2.

Click here to view code image

downsample daily values to monthly values
since we have multiple values, we need to
aggregate the results
here we will use the mean
down = ebola.resample('M').mean()
print(down.iloc[:, :5])

 Day Cases_Guinea Cases_Liberia
\
Date
2014-03-31 4.500000 94.500000 6.500000
2014-04-30 24.333333 177.818182 24.555556
2014-05-31 51.888889 248.777778 12.555556
2014-06-30 84.636364 373.428571 35.500000
2014-07-31 115.700000 423.000000 212.300000
...
2014-09-30 177.500000 967.888889 2815.625000
2014-10-31 207.470588 1500.444444 4758.750000
2014-11-30 237.214286 1950.500000 7039.000000
2014-12-31 271.181818 2579.625000 7902.571429
2015-01-31 287.500000 2773.333333 8161.500000

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0276-02

 Cases_SierraLeone Cases_Nigeria
Date
2014-03-31 3.333333 NaN
2014-04-30 2.200000 NaN
2014-05-31 7.333333 NaN
2014-06-30 125.571429 NaN
2014-07-31 420.500000 1.333333
...
2014-09-30 1726.000000 20.714286
2014-10-31 3668.111111 20.000000
2014-11-30 5843.625000 20.000000
2014-12-31 8985.875000 20.000000
2015-01-31 9844.000000 NaN

[11 rows x 5 columns]

here we will upsample our downsampled value
notice how missing dates are populated,
but they are filled in with missing values
up = down.resample('D').mean()
print(up.iloc[:, :5])

 Day Cases_Guinea Cases_Liberia
Cases_SierraLeone \
Date
2014-03-31 4.5 94.500000 6.5
3.333333
2014-04-01 NaN NaN NaN
NaN
2014-04-02 NaN NaN NaN
NaN
2014-04-03 NaN NaN NaN
NaN

2014-04-04 NaN NaN NaN
NaN
...
...
2015-01-27 NaN NaN NaN
NaN
2015-01-28 NaN NaN NaN
NaN
2015-01-29 NaN NaN NaN
NaN
2015-01-30 NaN NaN NaN
NaN
2015-01-31 287.5 2773.333333 8161.5
9844.000000

 Cases_Nigeria
Date
2014-03-31 NaN
2014-04-01 NaN
2014-04-02 NaN
2014-04-03 NaN
2014-04-04 NaN
... ...
2015-01-27 NaN
2015-01-28 NaN
2015-01-29 NaN
2015-01-30 NaN
2015-01-31 NaN

[307 rows x 5 columns]

12.12 Time Zones

Don’t try to write your own time zone converter. As Tom Scott explains in a
“Computerphile” video, “That way lies madness.”6 There are many things
you probably did not even think to consider when working with different
time zones. For example, not every country implements daylight savings
time, and even those that do, may not necessarily change the clocks on the
same day of the year. And don’t forget about leap years and leap seconds!
Luckily Python has a library specifically designed to work with time
zones7, Pandas also wraps this library when working with time zones.
6. The problem with time and time zones: Computerphile:
www.youtube.com/watch?v=-5wpm-gesOY

7. Documentation for pytz:a https://pythonhosted.org/pytz/

import pytz

There are many time zones available in the library.

Click here to view code image

print(len(pytz.all_timezones))

594

Here are the U.S. time zones:

Click here to view code image

import re
regex = re.compile(r'^US')
selected_files = filter(regex.search,
pytz.common_timezones)
print(list(selected_files))

['US/Alaska', 'US/Arizona', 'US/Central',
'US/Eastern', 'US/Hawaii',
' US/Mountain', 'US/Pacific']

http://www.youtube.com/watch?v=-5wpm-gesOY
https://pythonhosted.org/pytz/
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0278-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0278-03

The easiest way to interact with time zones in Pandas is to use the string
names given in pytz.all_timezones().

One way to illustrate time zones is to create two timestamps using the
Pandas Timestamp function. For example, if there was a flight between
the JFK and LAX airports that departed at 7:00 AM from New York and
landed at 9:57 AM in Los Angeles. We can encode these times with the
proper time zone.

Click here to view code image

7AM Eastern
depart = pd.Timestamp('2017-08-29 07:00',
tz='US/Eastern')
print(depart)

2017-08-29 07:00:00-04:00

arrive = pd.Timestamp('2017-08-29 09:57')
print(arrive)

2017-08-29 09:57:00

Another way we can encode a time zone is by using the
.tz_localize() method on an “empty” timestamp.

Click here to view code image

arrive = arrive.tz_localize('US/Pacific')
print(arrive)

2017-08-29 09:57:00-07:00

We can convert the arrival time back to the Eastern time zone to see
what the time would be on the East Coast when the flight arrives.

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0279-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0279-03
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0279-04

print(arrive.tz_convert('US/Eastern'))

2017-08-29 12:57:00-04:00

We can also perform operations on time zones. Here we look at the
difference between the times to get the flight duration.

duration = arrive - depart
print(duration)

0 days 05:57:00

12.13 Arrow for Better Dates and Times
If you do end up working with date and time columns often, I would
suggest looking into the arrow library. You can find the documentation
page here: https://arrow.readthedocs.io/en/latest/ Do
not confuse this Arrow library with the Apache Arrow project for language-
independent dataframe formats.

Arrow is a separate library that needs to be installed, but works slightly
different from the methods shown in this chapter. However, it does do a
better job handling time zones. See this post by Paul Ganssle for more
information about the benefits of arrow over pytz:
https://blog.ganssle.io/articles/2018/03/pytz-
fastest-footgun.html

Conclusion
Pandas provides a series of convenient methods and functions when we are
working with dates and times because these types of data are used so often
with time-series data. A common example of time-series data is stock
prices, but other examples include observational and simulated data. These
convenient Pandas functions and methods allow you to easily work with
date objects without having to resort to string manipulation and parsing.

https://arrow.readthedocs.io/en/latest/
https://blog.ganssle.io/articles/2018/03/pytz-fastest-footgun.html

Part IV

Data Modeling

Chapter 13 Linear Regression (Continuous Outcome Variable)

Chapter 14 Generalized Linear Models

Chapter 15 Survival Analysis

Chapter 16 Model Diagnostics

Chapter 17 Regularization

Chapter 18 Clustering

This part of the book follows the methods described in Jared Lander’s R for
Everyone. The rationale is that since you have learned the methods of data
manipulation in Python using Pandas, you can save out the cleaned data set
if you need to use a method from another analytics language.

This part covers many of the basic modeling techniques and serves as an
introduction to data analytics and machine learning. Other great references
are:

Andreas Müller and Sarah Guido’s Introduction to Machine Learning
with Python
Sebastian Raschka and Vahid Mirjalili’s Python Machine Learning
Mark Fenner’s Machine Learning with Python for Everyone
Andrew Kelleher and Adam Kelleher’s Machine Learning in
Production: Developing and Optimizing Data Science Workflows and
Applications

Many of the techniques covered so far in the book apply to figuring out
what kind of information is stored in our columns, in particular, the variable
we are trying to model or predict. If our data has an outcome variable, we
can use supervised modeling techniques. If our variable of interest is
continuous, we would use a linear regression model (Chapter 13). If our
outcome variable is binary we would use a logistic regression model, if it is
count data, we would use a Poisson model (Chapter 14). Survival models
are used when we are looking for an outcome of interest, but also have
censoring (Chapter 15). When we are fitting models for prediction, we
sometimes need to find a way to pick the “best” model, this is when we
have to compare model diagnostics (Chapter 16).

If we are solely interested in prediction, and not inference, we can
employ regularization techniques to make our model more numerically
stable (Chapter 17). If we do not have an outcome variable we can test our
model against, we would use some kind of unsupervised modeling
technique, such as clustering (Chapter 18).

13

Linear Regression (Continuous
Outcome Variable)

13.1 Simple Linear Regression
The goal of linear regression is to draw a straight-line relationship between
a response variable (also known as an outcome or dependent variable) and a
predictor variable (also known as a feature, covariate, or independent
variable).

Let’s take another look at our tips data set.

Click here to view code image

import pandas as pd
import seaborn as sns

tips = sns.load_dataset('tips')
print(tips)

 total_bill tip sex smoker day time
size
0 16.99 1.01 Female No Sun Dinner
2
1 10.34 1.66 Male No Sun Dinner
3
2 21.01 3.50 Male No Sun Dinner
3
3 23.68 3.31 Male No Sun Dinner

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch13_images.xhtml#f0283-01

2
4 24.59 3.61 Female No Sun Dinner
4
..
...
239 29.03 5.92 Male No Sat Dinner
3
240 27.18 2.00 Female Yes Sat Dinner
2
241 22.67 2.00 Male Yes Sat Dinner
2
242 17.82 1.75 Male No Sat Dinner
2
243 18.78 3.00 Female No Thur Dinner
2

[244 rows x 7 columns]

In our simple linear regression, we’d like to see how the total_bill
relates to or predicts the tip.

13.1.1 With statsmodels
We can use the statsmodels library to perform our simple linear
regression. We will use the formula API (application programming
interface) from statsmodels. This is a new library we are working with.

Click here to view code image

import statsmodels.formula.api as smf

To perform this simple linear regression, we use the ols() function,
which computes the ordinary least squares value; it is one method to
estimate parameters in a linear regression. Recall that the formula for a line

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch13_images.xhtml#f0284-01

is y = mx + b, where y is our response variable, x is our predictor, b is the
intercept, and m is the slope, the parameter we are estimating.

The formula notation has two parts, separated by a tilde, ~. To the left of
the tilde is the response variable, and to the right of the tilde are the
predictor(s).

Click here to view code image

model = smf.ols(formula='tip ~ total_bill',
data=tips)

Once we have specified our model, we can fit the data to the model by
using the fit method.

Click here to view code image

results = model.fit()

To look at our results, we can call the .summary() method on the
results.

Click here to view code image

print(results.summary())

 OLS Regression Results
==
========================
Dep. Variable: tip R-squared:
0.457
Model: OLS Adj. R-
squared: 0.454
Method: Least Squares F-
statistic: 203.4
Date: Thu, 01 Sep 2022 Prob (F-
statistic): 6.69e-34

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch13_images.xhtml#f0284-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch13_images.xhtml#f0284-03
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch13_images.xhtml#f0284-04

Time: 01:55:45 Log-
Likelihood: -350.54
No. Observations: 244 AIC:
705.1
Df Residuals: 242 BIC:
712.1
Df Model: 1
Covariance Type: nonrobust
==
========================
 coef std err t
P>|t| [0.025 0.975]
--

Intercept 0.9203 0.160 5.761
0.000 0.606 1.235
total_bill 0.1050 0.007 14.260
0.000 0.091 0.120
==
========================
Omnibus: 20.185 Durbin-
Watson: 2.151
Prob(Omnibus): 0.000 Jarque-
Bera (JB): 37.750
Skew: 0.443 Prob(JB):
6.35e-09
Kurtosis: 4.711 Cond. No.
53.0
==
========================

Notes:

[1] Standard Errors assume that the covariance
matrix of the errors is correctly specified.

Here we can see the Intercept of the model and the total_bill.
We can use these parameters in our formula for the line, y = (0.105)x +
0.920. To interpret these numbers, we say: for every one unit increase in
total_bill (i.e., every time the bill increases by a dollar), the tip
increases by 0.105 (i.e., 10.5 cents).

If we just want the coefficients, we can call the .params attribute on
the results.

Click here to view code image

print(results.params)

Intercept 0.920270
total_bill 0.105025
dtype: float64

Depending on your field, you may also need to report a confidence
interval, which identifies the possible values the estimated value can take
on. The confidence interval includes the values less than [0.025
0.975]. We can also extract these values using the .conf_int()
method.

Click here to view code image

print(results.conf_int())

 0 1
Intercept 0.605622 1.234918
total_bill 0.090517 0.119532

13.1.2 With scikit-learn

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch13_images.xhtml#f0285-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch13_images.xhtml#f0285-03

We can also use the sklearn library to fit various machine learning
models. To perform the same analysis we just did, we need to import the
linear_model module from this library.

Click here to view code image

from sklearn import linear_model

We can then create our linear regression object.

Click here to view code image

create our LinearRegression object
lr = linear_model.LinearRegression()

Next, we need to specify the predictor, X, and the response, y. To do
this, we pass in the columns we want to use for the model.

Note
Note the parameters are upper-case letter X and lower-case letter y.

This comes from mathematical notation, where the predictors, X are
a matrix of values, and the response, y, is a vector of values.

Too simple of an example
If we simply pass in a single variable into the X parameter, we actually get
an error.

Click here to view code image

note it is an uppercase X
and a lowercase y
this will fail because our X has only 1
variable

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch13_images.xhtml#f0285-04
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch13_images.xhtml#f0285-05
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch13_images.xhtml#f0286-01

predicted = lr.fit(X=tips['total_bill'],
y=tips['tip'])

ValueError: Expected 2D array, got 1D array
instead:
array=[16.99 10.34 21.01 23.68 24.59 25.29 8.77
26.88 15.04 14.78 10.27 35.26
 15.42 18.43 14.83 21.58 10.33 16.29 16.97 20.65
17.92 20.29 15.77 39.42
 19.82 17.81 13.37 12.69 21.7 19.65 9.55 18.35
15.06 20.69 17.78 24.06
 16.31 16.93 18.69 31.27 16.04 17.46 13.94 9.68
30.4 18.29 22.23 32.4
 28.55 18.04 12.54 10.29 34.81 9.94 25.56 19.49
38.01 26.41 11.24 48.27
 20.29 13.81 11.02 18.29 17.59 20.08 16.45 3.07
20.23 15.01 12.02 17.07
 26.86 25.28 14.73 10.51 17.92 27.2 22.76 17.29
19.44 16.66 10.07 32.68
 15.98 34.83 13.03 18.28 24.71 21.16 28.97 22.49
5.75 16.32 22.75 40.17
 27.28 12.03 21.01 12.46 11.35 15.38 44.3 22.42
20.92 15.36 20.49 25.21
 18.24 14.31 14. 7.25 38.07 23.95 25.71 17.31
29.93 10.65 12.43 24.08
 11.69 13.42 14.26 15.95 12.48 29.8 8.52 14.52
11.38 22.82 19.08 20.27
 11.17 12.26 18.26 8.51 10.33 14.15 16. 13.16
17.47 34.3 41.19 27.05
 16.43 8.35 18.64 11.87 9.78 7.51 14.07 13.13
17.26 24.55 19.77 29.85
 48.17 25. 13.39 16.49 21.5 12.66 16.21 13.81
17.51 24.52 20.76 31.71

 10.59 10.63 50.81 15.81 7.25 31.85 16.82 32.9
17.89 14.48 9.6 34.63
 34.65 23.33 45.35 23.17 40.55 20.69 20.9 30.46
18.15 23.1 15.69 19.81
 28.44 15.48 16.58 7.56 10.34 43.11 13. 13.51
18.71 12.74 13. 16.4
 20.53 16.47 26.59 38.73 24.27 12.76 30.06 25.89
48.33 13.27 28.17 12.9
 28.15 11.59 7.74 30.14 12.16 13.42 8.58 15.98
13.42 16.27 10.09 20.45
 13.28 22.12 24.01 15.69 11.61 10.77 15.53 10.07
12.6 32.83 35.83 29.03
 27.18 22.67 17.82 18.78].
Reshape your data either using array.reshape(-1,
1) if your data has a
single feature or array.reshape(1, -1) if it
contains a single sample.

Since sklearn is built to take numpy arrays, there will be times when
you have to do some data manipulations to pass your dataframe into
sklearn. The error message in the preceding output essentially tells us
the matrix passed is not in the correct shape. We need to reshape our inputs.
Depending on whether we have a single feature (which is the case here) or
a single sample (i.e., multiple observations), we will specify
reshape(-1, 1) or reshape(1, -1), respectively.

Calling .reshape() directly on the column will raise either a
DeprecationWarning (Pandas 0.17), a ValueError (Pandas 0.19),
or an AttributeError depending on the version of Pandas being used.

Click here to view code image

this will fail
predicted = lr.fit(
 X=tips["total_bill"].reshape(-1, 1),

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch13_images.xhtml#f0286-02

y=tips["tip"]
)

AttributeError: 'Series' object has no attribute
'reshape'

To properly reshape our data, we must use the .values attribute
(otherwise you may get another error or warning). When we call .values
on a Pandas dataframe or series, we get the numpy ndarray
representation of the data.

Click here to view code image

we fix the data by putting it in the correct
shape for sklearn
predicted = lr.fit(
 X=tips["total_bill"].values.reshape(-1, 1),
y=tips["tip"]
)

Since sklearn works on numpy ndarrays, you may see code that
explicitly passes in the numpy vector into the X or y parameter:
y=tips['tip'].values.

Unfortunately, sklearn doesn’t provide us with the nice summary
tables that statsmodels does. This reflects differing schools of thought:
statistics and computer science in contrast to prediction and machine
learning. To obtain the coefficients in sklearn, we call the .coef_
attribute on the fitted model.

print(predicted.coef_)

[0.10502452]

To get the intercept, we call the .intercept_ attribute.

print(predicted.intercept_)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch13_images.xhtml#f0287-01

0.920269613554674

Notice that we get the same results as we did with statsmodels. That
is, people in our data set are tipping about 10% of their bill amount.

13.2 Multiple Regression
In simple linear regression, one predictor is regressed on a single response
variable. Alternatively, we can use multiple regression to put multiple
predictors in a model.

13.2.1 With statsmodels
Fitting a multiple regression model to a data set is very similar to fitting a
simple linear regression model. Using the formula interface, we add the
other covariates to the right-hand side.

Click here to view code image

note the .fit() method chain at the end
model = smf.ols(formula="tip ~ total_bill +
size", data=tips).fit()

Click here to view code image

print(model.summary())

Click here to view code image

 OLS Regression Results
==
========================
Dep. Variable: tip R-squared:
0.468

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch13_images.xhtml#f0287-03
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch13_images.xhtml#f0287-04
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch13_images.xhtml#f0288-01

Model: OLS Adj. R-
squared: 0.463
Method: Least Squares F-
statistic: 105.9
Date: Thu, 01 Sep 2022 Prob (F-
statistic): 9.67e-34
Time: 01:55:46 Log-
Likelihood: -347.99
No. Observations: 244 AIC:
702.0
Df Residuals: 241 BIC:
712.5
Df Model: 2
Covariance Type: nonrobust
==
========================
 coef std err t
P>|t| [0.025 0.975]
--

Intercept 0.6689 0.194 3.455
0.001 0.288 1.050
total_bill 0.0927 0.009 10.172
0.000 0.075 0.111
size 0.1926 0.085 2.258
0.025 0.025 0.361
==
========================
Omnibus: 24.753 Durbin-
Watson: 2.100
Prob(Omnibus): 0.000 Jarque-Bera
(JB): 46.169
Skew: 0.545 Prob(JB):

9.43e-11
Kurtosis: 4.831 Cond. No.
67.6
==
========================

Notes:
[1] Standard Errors assume that the covariance
matrix of the errors is correctly specified.

The interpretations are exactly the same as before, except each
parameter is interpreted “with all other variables held constant.” That is, for
every one unit increase (dollar) in total_bill, the tip increases by
0.09 (i.e., 9 cents) as long as the size of the group does not change.

13.2.2 With scikit-learn
The syntax for multiple regression in sklearn is very similar to the
syntax for simple linear regression with this library. To add more features to
the model, we pass in the columns we want to use.

Click here to view code image

lr = linear_model.LinearRegression()

since we are performing multiple regression
we no longer need to reshape our X values
predicted = lr.fit (X=tips[["total_bill",
"size"]], y=tips["tip"])

print(predicted.coef_)

[0.09271334 0.19259779]

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch13_images.xhtml#f0288-02

We can get the intercept from the model just as we did earlier.

Click here to view code image

print(predicted.intercept_)

0.6689447408125035

13.3 Models with Categorical Variables
So far, we have used only continuous predictors in our model. If we look at
the .info() method of our tips data set, however, we can see that our
data includes categorical variables (you can also use the .dtypes
attribute).

Click here to view code image

print(tips.info())

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 244 entries, 0 to 243
Data columns (total 7 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 total_bill 244 non-null float64
 1 tip 244 non-null float64
 2 sex 244 non-null category
 3 smoker 244 non-null category
 4 day 244 non-null category
 5 time 244 non-null category
 6 size 244 non-null int64
dtypes: category(4), float64(2), int64(1)
memory usage: 7.4 KB
None

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch13_images.xhtml#f0289-01
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch13_images.xhtml#f0289-02

When we want to model a categorical variable, we have to create
“dummy variables.” That is, each unique value in the category becomes a
new binary feature. These are also called “one-hot encoding,” depending on
the field you’re in. For example, sex in our data can hold one of two
values, Female or Male.

Click here to view code image

print(tips.sex.unique())

['Female', 'Male']
Categories (2, object): ['Male', 'Female']

13.3.1 Categorical Variables in statsmodels
statsmodels will automatically create dummy variables for us. To avoid
multicollinearity, we typically drop one of the dummy variables. That is, if
we have a column that indicates whether an individual is female, then we
know if the person is not female (in our data), that person must be male. In
such a case, we can effectively drop the dummy variable that codes for
males and still have the same information.

Here’s the model that uses all the variables in our data.

Click here to view code image

model = smf.ols(
 formula="tip ~ total_bill + size + sex +
smoker + day + time",
 data=tips,
).fit()

We can see from the summary that statsmodels automatically
creates dummy variables as well as drops the reference variable to avoid
multicollinearity.

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch13_images.xhtml#f0289-03
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch13_images.xhtml#f0290-01
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch13_images.xhtml#f0290-02

print(model.summary())

 OLS Regression Results
==
========================
Dep. Variable: tip R-squared:
0.470
Model: OLS Adj. R-
squared: 0.452
Method: Least Squares F-statistic:
26.06
Date: Thu, 01 Sep 2022 Prob (F-
statistic): 1.20e-28
Time: 01:55:46 Log-
Likelihood: -347.48
No. Observations: 244 AIC:
713.0
Df Residuals: 235 BIC:
744.4
Df Model: 8
Covariance Type: nonrobust
==
========================
 coef std err t P>|t|
[0.025 0.975]
--

Intercept 0.5908 0.256 2.310 0.022
0.087 1.095
sex[T.Female] 0.0324 0.142 0.229 0.819
-0.247 0.311
smoker[T.No] 0.0864 0.147 0.589 0.556
-0.202 0.375

day[T.Fri] 0.1623 0.393 0.412 0.680
-0.613 0.937
day[T.Sat] 0.0408 0.471 0.087 0.931
-0.886 0.968
day[T.Sun] 0.1368 0.472 0.290 0.772
-0.793 1.066
time[T.Dinner] -0.0681 0.445 -0.153 0.878
-0.944 0.808
total_bill 0.0945 0.010 9.841 0.000
0.076 0.113
size 0.1760 0.090 1.966 0.051
-0.000 0.352
==
=====================
Omnibus: 27.860 Durbin-Watson:
2.096
Prob(Omnibus): 0.000 Jarque-Bera
(JB): 52.555
Skew: 0.607 Prob(JB):
3.87e-12
Kurtosis: 4.923 Cond. No.
281.
==
========================

Notes:
[1] Standard Errors assume that the covariance
matrix of the errors is correctly specified.

The interpretation of the continuous (i.e., numeric) parameters is the
same as before. However, our interpretation of categorical variables must
be stated in relation to the reference variable (i.e., the dummy variable that
was dropped from the analysis). For example, the coefficient for

sex[T.Female] is 0.0324. We interpret this value in relation to the
reference value, Male; that is, we say that when the sex of the server
“changes” from Male to Female, the tip increases by 0.324. For the
day variable:

Click here to view code image

print(tips.day.unique())

['Sun', 'Sat', 'Thur', 'Fri']
Categories (4, object): ['Thur', 'Fri', 'Sat',
'Sun']

We see that our .summary() is missing Thur, so that is the reference
variable to use to interpret the coefficients.

13.3.2 Categorical Variables in scikit-learn
We have to manually create our dummy variables for sklearn. Luckily,
Pandas has a function, .get_dummies(), that will do this work for us.
This function converts all the categorical variables into dummy variables
automatically, so we do not need to pass in individual columns one at a
time. sklearn has a OneHotEncoder function that does something
similar.

13.3.2.1 Dummy Variables in Pandas

The get_dummies() function in Pandas can create dummy variable
encoding of a dataframe for us.

Click here to view code image

tips_dummy = pd.get_dummies(
 tips[["total_bill", "size", "sex", "smoker",
"day", "time"]]
)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch13_images.xhtml#f0291-01
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch13_images.xhtml#f0291-02

print(tips_dummy)

 total_bill size sex_Male sex_Female
smoker_Yes smoker_No \
0 16.99 2 0 1
0 1
1 10.34 3 1 0
0 1
2 21.01 3 1 0
0 1
3 23.68 2 1 0
0 1
4 24.59 4 0 1
0 1
..
... ...
239 29.03 3 1 0
0 1
240 27.18 2 0 1
1 0
241 22.67 2 1 0
1 0
242 17.82 2 1 0
0 1
243 18.78 2 0 1
0 1

 day_Thur day_Fri day_Sat day_Sun
time_Lunch time_Dinner
0 0 0 0 1
0 1

1 0 0 0 1
0 1
2 0 0 0 1
0 1
3 0 0 0 1
0 1
4 0 0 0 1
0 1
..
... ...
239 0 0 1 0
0 1
240 0 0 1 0
0 1
241 0 0 1 0
0 1
242 0 0 1 0
0 1
243 1 0 0 0
0 1

[244 rows x 12 columns]

To drop the reference variable, we can pass in drop_first=True.

Click here to view code image

x_tips_dummy_ref = pd.get_dummies(
 tips[["total_bill", "size", "sex", "smoker",
"day", "time"]],
 drop_first=True,
)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch13_images.xhtml#f0292-02

print(x_tips_dummy_ref)

 total_bill size sex_Female smoker_No
day_Fri day_Sat \
0 16.99 2 1 1
0 0
1 10.34 3 0 1
0 0
2 21.01 3 0 1
0 0
3 23.68 2 0 1
0 0
4 24.59 4 1 1
0 0
..
... ...
239 29.03 3 0 1
0 1
240 27.18 2 1 0
0 1
241 22.67 2 0 0
0 1
242 17.82 2 0 1
0 1
243 18.78 2 1 1
0 0

 day_Sun time_Dinner
0 1 1
1 1 1
2 1 1

3 1 1
4 1 1
..
239 0 1
240 0 1
241 0 1
242 0 1
243 0 1

[244 rows x 8 columns]

We fit the model just as we did earlier.

Click here to view code image

lr = linear_model.LinearRegression()
predicted = lr.fit(X=x_tips_dummy_ref,
y=tips["tip"])

We also obtain the coefficients in the same way.

Click here to view code image

print(predicted.intercept_)

0.5908374259513787

Click here to view code image

print(predicted.coef_)

[0.09448701 0.175992 0.03244094 0.08640832
0.1622592 0.04080082
 0.13677854 -0.0681286]

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch13_images.xhtml#f0292-03
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch13_images.xhtml#f0293-01
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch13_images.xhtml#f0293-01b

13.3.2.2 Keeping Index Labels from sklearn

One of the annoying things when trying to interpret a model from
sklearn is that the coefficients are not labeled. The labels are omitted
because the numpy ndarray is unable to store this type of metadata. If
we want our output to resemble something from statsmodels, we need
to manually store the labels and append the coefficients to them.

Click here to view code image

import numpy as np

create and fit the model
lr = linear_model.LinearRegression()
predicted = lr.fit (X=x_tips_dummy_ref,
y=tips["tip"])

get the intercept along with other
coefficients
values = np.append(predicted.intercept_,
predicted.coef_)

get the names of the values
names = np.append("intercept",
x_tips_dummy_ref.columns)

put everything in a labeled dataframe
results = pd.DataFrame({"variable": names,
"coef": values})

print(results)

 variable coef
0 intercept 0.590837

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch13_images.xhtml#f0293-02

1 total_bill 0.094487
2 size 0.175992
3 sex_Female 0.032441
4 smoker_No 0.086408
5 day_Fri 0.162259
6 day_Sat 0.040801
7 day_Sun 0.136779
8 time_Dinner -0.068129

13.4 One-Hot Encoding in scikit-learn with
Transformer Pipelines
Scikit-learn has its own way of processing data for analysis using
“pipelines.” We can use the one-hot encoding transformer in a pipeline to
process our data in scikit-learn, instead of pandas, before we fit our model.

Click here to view code image

from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder
from sklearn.pipeline import Pipeline

We first need to specify which columns we want to process, here we are
only looking to work with categorical variables.

Click here to view code image

categorical_features = ["sex", "smoker", "day",
"time"]
categorical_transformer =
OneHotEncoder(drop="first")

Once we have the columns and the processing step we want, we can then
pass the steps into ColumnTransformer(). Since we want to still have
the numeric variables in the final model, but didn’t specify a processing

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch13_images.xhtml#f0294-01
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch13_images.xhtml#f0294-02

step for them, we pass in remainder="passthrough" to make sure
those variables not specified in the transformers step still make it to
the final model.

Click here to view code image

preprocessor = ColumnTransformer(
 transformers=[
 ("cat", categorical_transformer,
categorical_features),
],
 remainder="passthrough", # keep the numeric
columns
)

Finally, we can create a Pipeline() with all the preprocessing steps,
and then to the model we want.

Click here to view code image

pipe = Pipeline(
 steps=[
 ("preprocessor", preprocessor),
 ("lr", linear_model.LinearRegression()),
]
)

Finally, we can fit our model just like before.

Click here to view code image

pipe.fit(
 X=tips[["total_bill", "size", "sex", "smoker",
"day", "time"]],
 y=tips["tip"],
)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch13_images.xhtml#f0294-03
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch13_images.xhtml#f0294-04
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch13_images.xhtml#f0294-05

Click here to view code image

Pipeline(steps=[('preprocessor',

ColumnTransformer(remainder='passthrough',
 transformers=
[('cat',

OneHotEncoder(drop='first'),

['sex', 'smoker', 'day',

'time'])])),
 ('lr', LinearRegression())])

We can’t get the .intercept_ and coef_ because the
Pipeline(), is not a LinearRegression() object.

Click here to view code image

print(type(pipe))

<class 'sklearn.pipeline.Pipeline'>

We need to access the coefficients in an additional step. This is because
not all models will have intercept_ and coef_ values, the
Pipeline() is a generic function that works with any model within the
sklearn library.

Click here to view code image

combine the intercept and coefficients into
single vector
coefficients = np.append(
 pipe.named_steps["lr"].intercept_,

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch13_images.xhtml#f0295-01
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch13_images.xhtml#f0295-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch13_images.xhtml#f0295-03

pipe.named_steps["lr"].coef_
)

combine the intercept text with the other
feature names
labels = np.append(
 ["intercept"], pipe[
:-1].get_feature_names_out()
)

create a dataframe of all the results
coefs = pd.DataFrame({"variable": labels,
"coef": coefficients})

print(coefs)

 variable coef
0 intercept 0.803817
1 cat__sex_Male -0.032441
2 cat__smoker_Yes -0.086408
3 cat__day_Sat -0.121458
4 cat__day_Sun -0.025481
5 cat__day_Thur -0.162259
6 cat__time_Lunch 0.068129
7 remainder__total_bill 0.094487
8 remainder__size 0.175992

Note that here the coefficients are not exactly the same as the
statsmodels values because the reference variable is different.

Conclusion
This chapter introduced the basics of fitting models using the
statsmodels and sklearn libraries. The concepts of adding features

to a model and creating dummy variables are constantly used when fitting
models. Thus far, we have focused on fitting linear models, where the
response variable is a continuous variable. In later chapters, we’ll fit
models where the response variable is not a continuous variable.

14

Generalized Linear Models

Not every response variable will be continuous, so a linear regression will
not be the correct model in every circumstance. Some outcomes may
contain binary data (e.g., sick and not sick), or even count data (e.g., how
many heads will I get when I flip a coin). A general class of models called
generalized linear models (GLM) can account for these types of data, yet
still use a linear combination of predictors.

About This Chapter
This chapter has been improved from its first edition version in a few ways.
First, the data set example was changed to use the titanic data set from
the seaborn library. The original code from the New York American
Community Survey (ACS) was replaced with a new data set to make the
model outputs more comparable across multiple libraries and programming
languages (Appendix Z).

Next, the first edition of this book did not emphasize the different
parameter options in functions from the scikit-learn library. This was
originally a bit misleading as it gave off the impression that the models
were doing exactly the same thing when they have different default
behaviors. This chapter now gives more code and examples to emphasize
the model differences between the modeling libraries. The original ACS
modeling code can still be found in Appendix Y.

14.1 Logistic Regression (Binary Outcome
Variable)
When you have a binary response variable (i.e., two possible outcomes),
logistic regression is often used to model the data. We will be using the

titanic data set that was exported from the seaborn library.

About the Titanic Data Set
The titanic data set is coming from the seaborn library. It was
exported directly from the library to be read in so the exact data set can
be reused in this chapter along with the example used in Appendix Z.2.

Below is the code used to create the data set.

Click here to view code image

import seaborn as sns

titanic = sns.load_data set("titanic")
titanic.to_csv("data/titanic.csv",
index=False)

With our data loaded, let’s first subset the dataframe using only the
columns we will be using for this model. We will also be dropping rows
with missing values in them since models usually ignore observations that
are not complete anyway, and we are not showing how to impute missing
data in this chapter. Notice that we are dropping the missing values after
we subsetted the columns we wanted, so we are not artificially dropping
observations.

Click here to view code image

titanic_sub = (
 titanic[["survived", "sex", "age",
"embarked"]].copy().dropna()
)

print(titanic_sub)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch14_images.xhtml#f0298-01
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch14_images.xhtml#f0298-02

 survived sex age embarked
0 0 male 22.0 S
1 1 female 38.0 C
2 1 female 26.0 S
3 1 female 35.0 S
4 0 male 35.0 S
..
885 0 female 39.0 Q
886 0 male 27.0 S
887 1 female 19.0 S
889 1 male 26.0 C
890 0 male 32.0 Q

[712 rows x 4 columns]

In this data set, our outcome of interest is the survived column, on
whether an individual survived (1) or died (0) during the sinking of the
Titanic. The other columns, sex, age, and embarked are going to be the
variable we use to see who survived.

Click here to view code image

count of values in the survived column
print(titanic_sub["survived"].value_counts())

0 424
1 288
Name: survived, dtype: int64

The embarked column describes where the individual boarded the ship
from. There are three values for embarked: Southampton (S), Cherbourg
(C), and Queenstown (Q).

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch14_images.xhtml#f0298-03
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch14_images.xhtml#f0299-01

count of values in the embarked column
print(titanic_sub["embarked"].value_counts())

S 554
C 130
Q 28
Name: embarked, dtype: int64

Interpreting results from a logistic regression model is not as
straightforward as interpreting a linear regression model. In a logistic
regression, as with all generalized linear models, there is a transformation
(i.e., link function), that that affects how to interpret the results.

The link function for logistic regression is usually the logit link
function.

log it (p) = log()

Where p is the probability of the event, and is the odds of the event.
This is why logistic regression output is typically interpreted as “odds”, and
we do that by undoing the log call by exponentiating our results. You can
think of the “odds” of something as how many “times likely” the outcome
will be. That phrasing should only be used as an analogy, however, as it is
not technically correct. The value of an odds can only be greater than zero,
and can never be negative. However, the “log odds” (i.e., logit), can be
negative.

14.1.1 With statsmodels
To perform a logistic regression in statsmodels we can use the
logit() function. The syntax for this function is the same as that used for
linear regression in Chapter 13.

Click here to view code image

p

1−p

p

1−p

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch14_images.xhtml#f0299-04

import statsmodels.formula.api as smf

formula for the model
form = 'survived ~ sex + age + embarked'

fitting the logistic regression model, note
the .fit() at the end
py_logistic_smf = smf.logit(formula=form,
data=titanic_sub).fit()

print(py_logistic_smf.summary())

Optimization terminated successfully.
 Current function value: 0.509889
 Iterations 6
 Logit Regression Results
==
==========================
Dep. Variable: survived No.
Observations: 712
Model: Logit Df
Residuals: 707
Method: MLE Df Model:
4
Date: Thu, 01 Sep 2022 Pseudo R-
squ.: 0.2444
Time: 01:55:49 Log-
Likelihood: -363.04

converged: True LL-Null:
-480.45
Covariance Type: nonrobust LLR p-
value: 1.209e-49

==
============================
 coef std err z
P>|z| [0.025 0.975]
--

Intercept 2.2046 0.322 6.851
0.000 1.574 2.835
sex[T.male] -2.4760 0.191 -12.976
0.000 -2.850 -2.102
embarked[T.Q] -1.8156 0.535 -3.393
0.001 -2.864 -0.767
embarked[T.S] -1.0069 0.237 -4.251
0.000 -1.471 -0.543
age -0.0081 0.007 -1.233
0.217 -0.021 0.005
==
============================

We can then get the coefficients of the model, and exponentiate it to
calculate the odds of each variable.

Click here to view code image

import numpy as np

get the coefficients into a dataframe
res_sm = pd.DataFrame(py_logistic_smf.params,
columns=["coefs_sm"])

calculate the odds
res_sm["odds_sm"] = np.exp(res_sm["coefs_sm"])

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch14_images.xhtml#f0300-01

round the decimals
print(res_sm.round(3))

 coefs_sm odds_sm
Intercept 2.205 9.066
sex[T.male] -2.476 0.084
embarked[T.Q] -1.816 0.163
embarked[T.S] -1.007 0.365
age -0.008 0.992

An example interpretation of these numbers would be that for every one
unit increase in age, the odds of the survived decreases by 0.992 times.
Since the value is close to 1, it seems that age wasn’t too much of a factor
in survival. You can also confirm that statement by looking at the p-value
for the variable in the summary table (under the P>|z| column).

A similar interpretation can be made with categorical variables. Recall
that categorical variables are always interpreted in relation to the reference
variable.

There are two potential values for sex in this data set, male and
female, but only a coefficient for male is given. So that means the value
is interpreted as “males compared to females”, where female is the
reference variable. The odds for the male variable are interpreted as: males
were 0.084 times more likely to survive compared to females (the odds
for not surviving the tragedy were high for males).

14.1.2 With sklearn
When using sklearn, remember that dummy variables need to be created
manually.

Click here to view code image

titanic_dummy = pd.get_dummies(
 titanic_sub[["survived", "sex", "age",
"embarked"]],

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch14_images.xhtml#f0300-02

 drop_first=True
)

Click here to view code image

note our outcome variable is the first column
(index 0)
print(titanic_dummy)

 survived age sex_male embarked_Q embarked_S
0 0 22.0 1 0 1
1 1 38.0 0 0 0
2 1 26.0 0 0 1
3 1 35.0 0 0 1
4 0 35.0 1 0 1
..
885 0 39.0 0 1 0
886 0 27.0 1 0 1
887 1 19.0 0 0 1
889 1 26.0 1 0 0
890 0 32.0 1 1 0

[712 rows x 5 columns]

We can then use the LogisticRegression() function from the
linear_model module to create a logistic regression output to fit our
model.

Click here to view code image

from sklearn import linear_model

this is the only part that fits the model
py_logistic_sklearn1 = (

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch14_images.xhtml#f0301-01
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch14_images.xhtml#f0301-02

 linear_model.LogisticRegression().fit(
 X=titanic_dummy.iloc[:, 1:], # all the
columns except first
 y=titanic_dummy.iloc[:, 0] # just the
first column
)
)

Danger
Please read Section 14.1.3, which emphasizes reading the
documentation and being aware of the ramifications of the default
scikit-learn LogisticRegression() values.

The code below will process the scikit-learn logistic regression fitted
model into a single dataframe so we can better compare results.

Click here to view code image

get the names of the dummy variable columns
dummy_names = titanic_dummy.columns.to_list()
get the intercept and coefficients into a
dataframe
sk1_res1 = pd.DataFrame(
 py_logistic_sklearn1.intercept_,
 index=["Intercept"],
 columns=["coef_sk1"],

)
sk1_res2 = pd.DataFrame(
 py_logistic_sklearn1.coef_.T,
 index=dummy_names[1:],
 columns=["coef_sk1"],

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch14_images.xhtml#f0301-03

)

put the results into a single dataframe to
show the results
res_sklearn_pd_1 = pd.concat([sk1_res1,
sk1_res2])

calculate the odds
res_sklearn_pd_1["odds_sk1"] =
np.exp(res_sklearn_pd_1["coef_sk1"])

print(res_sklearn_pd_1.round(3))

 coef_sk1 odds_sk1
Intercept 2.024 7.571
age -0.008 0.992
sex_male -2.372 0.093
embarked_Q -1.369 0.254
embarked_S -0.887 0.412

You will notice here that the coefficient values are different from the
ones calculated from the statsmodels section we just did. The
differences are more than a simple rounding error too!

14.1.3 Be Careful of scikit-learn Defaults
The main reason why the sklearn results differ from the statsmodels
results stems from the domain differences where the two packages come
from. Scikit-learn comes more from the machine learning world and is
focused on prediction so the model defaults are set for numeric stability,
and not for inference. However, statsmodels functions are implemented
in a manner more traditional for statistics.

The LogisticRegression() function has a penalty parameter
that defaults to 'l2', which adds an L2 penalty term (more about penalty

terms in Chapter 17). If we want LogisticRegression() to behave in
a manner more traditional for statistics, we need to set
penalty="none".

Click here to view code image

fit another logistic regression with no
penalty
py_logistic_sklearn2 =
linear_model.LogisticRegression(
 penalty="none" # this parameter is
important!
).fit(
 X=titanic_dummy.iloc[:, 1:], # all the
columns except first
 y=titanic_dummy.iloc[:, 0] # just the
first column
)

rest of the code is the same as before, except
variable names
sk2_res1 = pd.DataFrame(
 py_logistic_sklearn2.intercept_,
 index=["Intercept"],
 columns=["coef_sk2"],
)
sk2_res2 = pd.DataFrame(
 py_logistic_sklearn2.coef_.T,
 index=dummy_names[1:],
 columns=["coef_sk2"],
)

res_sklearn_pd_2 = pd.concat([sk2_res1,
sk2_res2])

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch14_images.xhtml#f0302-02

res_sklearn_pd_2["odds_sk2"] =
np.exp(res_sklearn_pd_2["coef_sk2"])

Note
In general, always check the documentation for the functions you are
using, and make sure you know what all the parameters are doing.

First, let’s look at the original statsmodels results

Click here to view code image

sm_results = res_sm.round(3)

sort values to make things easier to compare
sm_results = sm_results.sort_index()

print(sm_results)

 coefs_sm odds_sm
Intercept 2.205 9.066
age -0.008 0.992
embarked[T.Q] -1.816 0.163
embarked[T.S] -1.007 0.365
sex[T.male] -2.476 0.084

Now, let’s compare them with the two sklearn results

Click here to view code image

concatenate the 2 model results
sk_results = pd.concat(
 [res_sklearn_pd_1.round(3),
res_sklearn_pd_2.round(3)],

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch14_images.xhtml#f0303-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch14_images.xhtml#f0303-03

 axis="columns",
)

sort cols and rows to make things easy to
compare
sk_results =
sk_results[sk_results.columns.sort_values()]
sk_results = sk_results.sort_index()

print(sk_results)

Click here to view code image

 coef_sk1 coef_sk2 odds_sk1
odds_sk2
Intercept 2.024 2.205 7.571
9.066
age -0.008 -0.008 0.992
0.992
embarked_Q -1.369 -1.816 0.254
0.163
embarked_S -0.887 -1.007 0.412
0.365
sex_male -2.372 -2.476 0.093
0.084

The results here can also be compared to the same data and model from
the R programming language in Appendix Z.2. You can see how subtle
differences between the model parameters can cause differences in the
interpretations.

14.2 Poisson Regression (Count Outcome
Variable)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch14_images.xhtml#f0304-01

Poisson regression is performed when our response variable involves count
data.

Click here to view code image

acs = pd.read_csv('data/acs_ny.csv')
print(acs.columns)

Index(['Acres', 'FamilyIncome', 'FamilyType',
'NumBedrooms',
 'NumChildren', 'NumPeople', 'NumRooms',
'NumUnits',
 'NumVehicles', 'NumWorkers', 'OwnRent',
'YearBuilt',
 'HouseCosts', 'ElectricBill', 'FoodStamp',
'HeatingFuel',
 'Insurance', 'Language'],
 dtype='object')

For example, in the acs data, the NumChildren variable is an
example of count data.

About the ACS Data Set
The American Community Survey (ACS) data we are using contains
information about family and house size in New York.

14.2.1 With statsmodels
We can perform a Poisson regression using the poisson() function in
statsmodels. We will use the NumBedrooms variable (Figure 14.1).

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch14_images.xhtml#f0304-02

Figure 14.1 Bar plot using the statsmodels countplot()
function of the NumBedrooms variable

Click here to view code image

import matplotlib.pyplot as plt

fig, ax = plt.subplots()
sns.countplot(data = acs, x = "NumBedrooms",
ax=ax)

ax.set_title('Number of Bedrooms')
ax.set_xlabel('Number of Bedrooms in a House')
ax.set_ylabel('Count')

plt.show()

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch14_images.xhtml#f0304-03

Click here to view code image

model = smf.poisson(
 "NumBedrooms ~ HouseCosts + OwnRent", data=acs
)
results = model.fit()

print(results.summary())

Optimization terminated successfully.
 Current function value: 1.680998
 Iterations 10

 Poisson Regression Results
==
============================
Dep. Variable: NumBedrooms No.
Observations: 22745
Model: Poisson Df
Residuals: 22741
Method: MLE Df Model:
3
Date: Thu, 01 Sep 2022 Pseudo R-
squ.: 0.008309
Time: 01:55:49 Log-
Likelihood: -38234.
converged: True LL-Null:
-38555.
Covariance Type: nonrobust LLR p-
value: 1.512e-138
==
====================================

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch14_images.xhtml#f0305-02

 coef std err
z P>|z| [0.025 0.975]
--

Intercept 1.1387 0.006
184.928 0.000 1.127 1.151
OwnRent[T.Outright] -0.2659 0.051
-5.182 0.000 -0.367 -0.165
OwnRent[T.Rented] -0.1237 0.012
-9.996 0.000 -0.148 -0.099
HouseCosts 6.217e-05 2.96e-06
21.017 0.000 5.64e-05 6.8e-05
==
====================================

The benefit of using a generalized linear model is that the only things
that need to be changed are the family of the model that needs to be fit,
and the link function that transforms our data. We can also use the more
general glm() function to perform all the same calculations.

Click here to view code image

import statsmodels.api as sm
import statsmodels.formula.api as smf

model = smf.glm(
 "NumBedrooms ~ HouseCosts + OwnRent",
 data=acs,

family=sm.families.Poisson(sm.genmod.families.li
nks.log()),
).fit()

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch14_images.xhtml#f0306-01

In this example, we are using the Poisson family, which comes from
sm.families. Poisson, and we’re passing in the log link function via
sm.genmod.families.links.log(). We get the same values as we
did earlier when we use this method.

Click here to view code image

print(results.summary())

 Poisson Regression Results
==
============================
Dep. Variable: NumBedrooms No.
Observations: 22745
Model: Poisson Df
Residuals: 22741
Method: MLE Df Model:
3
Date: Thu, 01 Sep 2022 Pseudo R-
squ.: 0.008309
Time: 01:55:49 Log-
Likelihood: -38234.
converged: True LL-Null:
-38555.
Covariance Type: nonrobust LLR p-
value: 1.512e-138
==
===================================
 coef std err
z P>|z| [0.025 0.975]
--

Intercept 1.1387 0.006
184.928 0.000 1.127 1.151

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch14_images.xhtml#f0306-02

OwnRent[T.Outright] -0.2659 0.051
-5.182 0.000 -0.367 -0.165
OwnRent[T.Rented] -0.1237 0.012
-9.996 0.000 -0.148 -0.099
HouseCosts 6.217e-05 2.96e-06
21.017 0.000 5.64e-05 6.8e-05
==
===================================

14.2.2 Negative Binomial Regression for
Overdispersion
If our assumptions for Poisson regression are violated—that is, if our data
has overdispersion—we can perform a negative binomial regression instead
(Figure 14.2). Overdispersion is the statistics term meaning the numbers
have more variance than expected, i.e., the values are too spread out.

Figure 14.2 Bar plot using the statsmodels countplot()
function of the NumPeople variable

Click here to view code image

fig, ax = plt.subplots()

sns.countplot(data = acs, x = "NumPeople",
ax=ax)
ax.set_title('Number of People')
ax.set_xlabel('Number of People in a Household')
ax.set_ylabel('Count')

plt.show()

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch14_images.xhtml#f0306-03

Click here to view code image

model = smf.glm(
 "NumPeople ~ Acres + NumVehicles",
 data=acs,
 family=sm.families.NegativeBinomial(
 sm.genmod.families.links.log()
),
)

results = model.fit()

Click here to view code image

print(results.summary())

 Generalized Linear Model Regression
Results
==
============================
Dep. Variable: NumPeople No.
Observations: 22745
Model: GLM Df Residuals:
22741
Model Family: NegativeBinomial Df Model:
3
Link Function: log Scale:
1.0000
Method: IRLS Log-
Likelihood: -53542.
Date: Thu, 01 Sep 2022 Deviance:
2605.6
Time: 01:55:50 Pearson chi2:
2.99e+03

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch14_images.xhtml#f0307-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch14_images.xhtml#f0307-03

No. Iterations: 6 Pseudo R-squ.
(CS): 0.003504
Covariance Type: nonrobust
==
==============================
 coef std err z
P>|z| [0.025 0.975]
--

Intercept 1.0418 0.025 41.580
0.000 0.993 1.091
Acres[T.10+] -0.0225 0.040 -0.564
0.573 -0.101 0.056
Acres[T.Sub 1] 0.0509 0.019 2.671
0.008 0.014 0.088
NumVehicles 0.0661 0.008 8.423
0.000 0.051 0.081
==
==============================

Look for the reference variable in Acres.

Click here to view code image

print(acs["Acres"].value_counts())

Sub 1 17114
1-10 4627
10+ 1004
Name: Acres, dtype: int64

14.3 More Generalized Linear Models

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch14_images.xhtml#f0308-02

The documentation page for GLM found in statsmodels lists the
various families that can be passed into the glm parameter.1 These families
can all be found under sm.families.<FAMILY>:

Binomial
Gamma
Gaussian
InverseGaussian
NegativeBinomial
Poisson
Tweedie

The link functions are found under sm.families.family.
<FAMILY>.links. Following is the list of link functions, but note that
not all link functions are available for each family:

CDFLink
CLogLog
LogLog
Log
Logit
NegativeBinomial
Power
cauchy
cloglog
loglog
identity
inverse_power
inverse_squared
log
logit

For example, using the all the link functions for the Binomial family.
1. https://www.statsmodels.org/dev/glm.html

https://www.statsmodels.org/dev/glm.html

Click here to view code image

sm.families.family.Binomial.links

[statsmodels.genmod.families.links.Logit,
 statsmodels.genmod.families.links.probit,
 statsmodels.genmod.families.links.cauchy,
 statsmodels.genmod.families.links.Log,
 statsmodels.genmod.families.links.CLogLog,
 statsmodels.genmod.families.links.LogLog,
 statsmodels.genmod.families.links.identity]

Conclusion
This chapter covered some of the most basic and common models used in
data analysis. These types of models serve as an interpretable baseline for
more complex machine learning models. As we cover more complex
models, keep in mind that sometimes simple and tried-and-true
interpretable models can outperform the fancy newer models.

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch14_images.xhtml#f0309-01

15

Survival Analysis

Survival analysis is used when we want to model how much time passes
before something happens. It is typically used in health contexts when we
are looking to see if a drug or intervention prevents an adverse event from
occurring. Before we begin with examples of survival analysis, let’s define
some terms first.

Event: Outcome, situation, or “event” you are interested in tracking in
your study.
Follow-up: “Lost to follow-up” is a term used in medical data. It means
that the patient stopped “following up” to the visits. This can mean that
the patient just stopped showing up, or the patient has died Usually, in
this context, death is the “event” of interest.
Censoring: Unsure of the status for a particular observation. This can
be right-censored (no more data after this period of time), or left-
censored (no data before this period of time). Right-censoring typically
occurs from lost to follow up, or the event of interest has occurred
(e.g., death).
Stop time: A point in the data where some censoring event has
occurred.

Survival analysis is typically used in medical research when trying to
determine whether one treatment prevents a serious adverse event (e.g.,
death) better than the standard or a different treatment. Survival analysis is
also used when data is censored, meaning the exact outcome of an event is
not entirely known. For example, patients who follow a treatment regimen
may sometimes be lost break to follow-up. The censoring usually occurs at
a “stop” event.

Survival analysis is performed using the lifelines library.1

1. lifelines documentation:
https://lifelines.readthedocs.io/en/latest/

15.1 Survival Data
Click here to view code image

bladder = pd.read_csv('data/bladder.csv')

print(bladder)

Click here to view code image

 id rx number size stop event enum
0 1 1 1 3 1 0 1
1 1 1 1 3 1 0 2
2 1 1 1 3 1 0 3
3 1 1 1 3 1 0 4
4 2 1 2 1 4 0 1
..
335 84 2 2 1 54 0 4
336 85 2 1 3 59 0 1
337 85 2 1 3 59 0 2
338 85 2 1 3 59 0 3
339 85 2 1 3 59 0 4

[340 rows x 7 columns]

About the Bladder Data Set
The bladder data set comes from the R {survival} package. It
contains 85 patients, their cancer recurrence status, and what treatment
they were on. Below is a recreation of the code book for the data.

https://lifelines.readthedocs.io/en/latest/
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch15_images.xhtml#f0311-01
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch15_images.xhtml#f0312-01

id: Patient ID
rx: Treatment (1 = placebo, 2 = thiotepa)
number: Initial number of tumors (8 = 8 or more)
size: Size (cm) of largest initial tumor
stop: Recurrence or censoring time
event: Bladder cancer re-occurrence (0: No, 1: Yes)
enum: Which recurrence (up to 4)

Here are the counts of the different treatments, rx.

Click here to view code image

print(bladder['rx'].value_counts())

1 188
2 152
Name: rx, dtype: int64

15.2 Kaplan Meier Curves
To perform our survival analysis, we import the
KaplanMeierFitter() function from the lifelines library.

Click here to view code image

from lifelines import KaplanMeierFitter

Creating the model and fitting the data proceeds similarly to how models
are fit using sklearn. The stop variable indicates when an event occurs,
and the event variable signals whether the event of interest (bladder
cancer re-occurrence) occurred. The event value can have a value of 0,
because people can be lost to follow-up. As noted earlier, this type of data
is called “censored”.

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch15_images.xhtml#f0312-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch15_images.xhtml#f0312-03
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch15_images.xhtml#f0313-02

kmf = KaplanMeierFitter()
kmf.fit(bladder['stop'],
event_observed=bladder['event'])

<lifelines.KaplanMeierFitter:"KM_estimate", fitted
with 340 total
observations, 228 right-censored observations>

We can plot the survival curve using matplotlib, as shown in Figure
15.1.

Figure 15.1 Survival function of cancer recurrence using the
KaplanMeierFitter

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch15_images.xhtml#f0313-03

import matplotlib.pyplot as plt

fig, ax = plt.subplots()
kmf.survival_function_.plot(ax=ax)
ax.set_title('Survival function of cancer
recurrence')
plt.show()

We can also show the confidence interval of our survival curve, as
shown in Figure 15.2.

Figure 15.2 Survival function of cancer recurrence with confidence
intervals

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch15_images.xhtml#f0313-04

fig, ax = plt.subplots()
kmf.plot(ax=ax)
ax.set_title('Survival with confidence
intervals')
plt.show()

15.3 Cox Proportional Hazard Model
So far, we’ve just plotted the survival curve. We can also fit a model to
predict survival rate. One such model is called the Cox proportional hazards
model. We fit this model using the CoxPHFitter() class from
lifelines.

Click here to view code image

from lifelines import CoxPHFitter

cph = CoxPHFitter()

We then pass in the columns to be used as predictors.

Click here to view code image

cph_bladder_df = bladder[
 ["rx", "number", "size", "enum", "stop",
"event"]
]
cph.fit(cph_bladder_df, duration_col="stop",
event_col="event")

<lifelines.CoxPHFitter: fitted with 340 total
observations, 228
right-censored observations>

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch15_images.xhtml#f0314-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch15_images.xhtml#f0314-03

Now we can use the .print_summary() method to print out the
coefficients.

Click here to view code image

cph.print_summary()

cova
riate

co
ef

exp
(coef
)

se
(coe
f)

coef
lower
95%

coef
upper
95%

exp (coef)
lower 95%

exp (coef)
upper 95%

cm
p
to

z p
-
log2
(p)

rx -0
.6
0

0.55 0.20 -0.99 -0.20 0.37 0.82 0.0
0

-2
.9
7

0.
0
0

8.41

num
ber

0.
22

1.24 0.05 0.13 0.31 1.13 1.36 0.0
0

4.
68

0.
0
0

18.3
8

size -0
.0
6

0.94 0.07 -0.20 0.08 0.82 1.09 0.0
0

-0
.8
0

0.
4
2

1.24

enu
m

-0
.6
0

0.55 0.09 -0.79 -0.42 0.45 0.66 0.0
0

-6
.4
2

0.
0
0

32.8
0

We mainly focus on the hazard ratio when looking at CPH models. In
the table this is represented by the exp(coef) column in the results.
Values close to 1 show that there is no change in the survival hazard.
Values from 0 -- 1 show a smaller hazard and values greater than 1
show an increase in hazard.

Note
In cancer studies, there is a difference in how the hazard ratios are
interpreted.

Hazard ratio > 1 is a bad prognostic factor

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch15_images.xhtml#f0314-04

Hazard ratio < 1 is a good prognostic factor

That is, hazard ratios < 1 tell us what may be causing cancer.

15.3.1 Testing the Cox Model Assumptions
One way to check the Cox model’s assumptions is to plot a separate
survival curve by strata. In our example, our strata will be the values of the
rx column, meaning we will plot a separate curve for each type of
treatment. If the log(-log(survival curve)) versus log(time)
curves cross each other (Figure 15.3), it signals that the model needs to be
stratified by the variable.

Figure 15.3 Plotting separate survival curves to check the Cox model
assumptions

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch15_images.xhtml#f0315-01

rx1 = bladder.loc[bladder['rx'] == 1]
rx2 = bladder.loc[bladder['rx'] == 2]

kmf1 = KaplanMeierFitter()
kmf1.fit(rx1['stop'],
event_observed=rx1['event'])

kmf2 = KaplanMeierFitter()
kmf2.fit(rx2['stop'],
event_observed=rx2['event'])

fig, axes = plt.subplots()

put both plots on the same axes
kmf1.plot_loglogs(ax=axes)
kmf2.plot_loglogs(ax=axes)

Click here to view code image

axes.legend(['rx1', 'rx2'])

plt.show()

Since the lines cross each other, it makes sense to stratify our analysis.

Click here to view code image

cph_strat = CoxPHFitter()
cph_strat.fit(
 cph_bladder_df,
 duration_col="stop",
 event_col="event",
 strata=["rx"],
)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch15_images.xhtml#f0316-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch15_images.xhtml#f0316-03

cph_strat.print_summary()

cova
riate

co
ef

exp
(coef
)

se
(coe
f)

coef
lower
95%

coef
upper
95%

exp (coef)
lower 95%

exp (coef)
upper 95%

cm
p
to

z p
-
log2
(p)

num
ber

0.
21

1.24 0.05 0.12 0.30 1.13 1.36 0.0
0

4.
60

0.
0
0

17.8
4

size -0
.0
5

0.95 0.07 -0.19 0.08 0.82 1.09 0.0
0

-0
.7
7

0.
4
4

1.19

enu
m

-0
.6
1

0.55 0.09 -0.79 -0.42 0.45 0.66 0.0
0

-6
.4
5

0.
0
0

33.0
7

Conclusion
Survival models measure “time to event” with censoring. They are
commonly used in a health context but do not have to be solely used in that
domain. If you can define some kind of event of interest, e.g., people who
come to my website and purchase an item, you can potentially use survival
models.

16

Model Diagnostics

Building models is a continuous art. As we start adding and removing
variables from our models, we need a means to compare models with one
another and a consistent way of measuring model performance. There are
many ways we can compare models, and this chapter describes some of
these methods.

16.1 Residuals
The residuals of a model compare what the model calculates and the actual
values in the data. Let’s fit some models on a housing data set.

Click here to view code image

import pandas as pd
housing =
pd.read_csv('data/housing_renamed.csv')

print(housing.head())

 neighborhood type units year_built
sq_ft income \
0 FINANCIAL R9-CONDOMINIUM 42 1920.0
36500 1332615
1 FINANCIAL R4-CONDOMINIUM 78 1985.0
126420 6633257
2 FINANCIAL RR-CONDOMINIUM 500 NaN
554174 17310000

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch16_images.xhtml#f0319-01

3 FINANCIAL R4-CONDOMINIUM 282 1930.0
249076 11776313
4 TRIBECA R4-CONDOMINIUM 239 1985.0
219495 10004582

 income_per_sq_ft expense expense_per_sq_ft
net_income \
0 36.51 342005 9.37
990610
1 52.47 1762295 13.94
4870962
2 31.24 3543000 6.39
13767000
3 47.28 2784670 11.18
8991643
4 45.58 2783197 12.68
7221385

 value value_per_sq_ft boro
0 7300000 200.00 Manhattan
1 30690000 242.76 Manhattan
2 90970000 164.15 Manhattan
3 67556006 271.23 Manhattan
4 54320996 247.48 Manhattan

We’ll begin with a multiple linear regression model with three
covariates.

Click here to view code image

import statsmodels
import statsmodels.api as sm
import statsmodels.formula.api as smf

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch16_images.xhtml#f0320-01

house1 = smf.glm(
 "value_per_sq_ft ~ units + sq_ft + boro",
data=housing
).fit()

print(house1.summary())

 Generalized Linear Model Regression
Results
==
============================
Dep. Variable: value_per_sq_ft No.
Observations: 2626
Model: GLM Df Residuals:
2619
Model Family: Gaussian Df Model:
6
Link Function: identity Scale:
1879.5
Method: IRLS Log-
Likelihood: -13621.
Date: Thu, 01 Sep 2022 Deviance:
4.9224e+06
Time: 01:55:55 Pearson
chi2: 4.92e+06
No. Iterations: 3 Pseudo R-
squ. (CS): 0.7772
Covariance Type: nonrobust
==
=======================================
 coef std err
z P>|z| [0.025 0.975]

--

Intercept 43.2909 5.330
8.122 0.000 32.845 53.737
boro[T.Brooklyn] 34.5621 5.535
6.244 0.000 23.714 45.411
boro[T.Manhattan] 130.9924 5.385
24.327 0.000 120.439 141.546
boro[T.Queens] 32.9937 5.663
5.827 0.000 21.895 44.092
boro[T.Staten Island] -3.6303 9.993
-0.363 0.716 -23.216 15.956
units -0.1881 0.022
-8.511 0.000 -0.231 -0.145
sq_ft 0.0002 2.09e-05
10.079 0.000 0.000 0.000
==
=======================================

We can plot the residuals of our model (Figure 16.1). What we are
looking for is a plot with a random scattering of points. If a pattern is
apparent, then we will need to investigate our data and model to see why
this pattern emerged.

Figure 16.1 Residuals of the house1 model

Click here to view code image

import seaborn as sns
import matplotlib.pyplot as plt

fig, ax = plt.subplots()
sns.scatterplot(
 x=house1.fittedvalues,
y=house1.resid_deviance, ax=ax
)

plt.show()

This residual plot is concerning because it contains obvious clusters and
groups (residual plots are supposed to look random). We can color our plot

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch16_images.xhtml#f0320-02

by the boro variable, which indicates the borough of New York where the
data apply (Figure 16.2).

Figure 16.2 Residuals of the house1 model colored by boro

Click here to view code image

get the data used for the residual plot and
boro color
res_df = pd.DataFrame(
 {
 "fittedvalues": house1.fittedvalues, # get a
model attribute
 "resid_deviance": house1.resid_deviance,
 "boro": housing["boro"], # get a value from
data column

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch16_images.xhtml#f0321-03

 }
)

greyscale friendly color palette
color_dict = dict(
 {
 "Manhattan": "#d7191c",
 "Brooklyn": "#fdae61",
 "Queens": "#ffffbf",
 "Bronx": "#abdda4",
 "Staten Island": "#2b83ba",
 }
)

fig, ax = plt.subplots()
fig = sns.scatterplot(
 x="fittedvalues",
 y="resid_deviance",
 data=res_df,
 hue="boro",
 ax=ax,
 palette=color_dict,
 edgecolor='black',
)

plt.show()

When we color our points based on boro, you can see that the clusters
are highly governed by the value of this variable.

16.1.1 Q-Q Plots

A q-q plot is a graphical technique that determines whether your data
conforms to a reference distribution. Since many models assume the data is
normally distributed, a q-q plot is one way to make sure your data really is
normal (Figure 16.3).

Figure 16.3 The q-q plot of the house1 model

Click here to view code image

from scipy import stats

make a copy of the variable so we don't need
to keep typing it
resid = house1.resid_deviance.copy()

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch16_images.xhtml#f0322-02

fig =
statsmodels.graphics.gofplots.qqplot(resid,
line='r')
plt.show()

We can also plot a histogram of the residuals to see if our data is normal
(Figure 16.4).

Figure 16.4 Histogram of the house1 model residuals

Click here to view code image

resid_std = stats.zscore(resid)

fig, ax = plt.subplots()
sns.histplot(resid_std, ax=ax)
plt.show()

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch16_images.xhtml#f0322-03

If the points on the q-q plot lie on the red line, that means our data match
our reference distribution. If the points do not lie on this line, then one
thing we can do is apply a transformation to our data. Table 16.1 shows
which transformations can be performed on our data. If the q-q plot of
points is convex compared to the red reference line, then you can transform
your data toward the top of the table. If the q-q plot of points is concave
compared to the red reference line, then you can transform your data
toward the bottom of the table.

Table 16.1 Transformations

xp Equivalent Description

x2 x2 Square

x1 x

x √x Square root

“x”x log(x) Log

x
Reciprocal square root

x−1 Reciprocal

x−2 Reciprocal square

16.2 Comparing Multiple Models
Now that we know how to assess a single model, we need a means to
compare multiple models so that we can pick the “best” one.

16.2.1 Working with Linear Models
We begin by fitting five models. Note that some of the models use the +
operator to add covariates to the model, whereas others use the * operator.
To specify an interaction in our model, we use the * operator. That is, the
variables that are interacting are behaving in a way that is not independent

1
2

−1

2
1

√x

1
x

1
x

2

of one another, but in such a way that their values affect one another and are
not simply additive.

Note
If the original housing data set had a column named "class", this
would cause an error because "class" is a Python keyword.
Therefore, the column was renamed "type".

Click here to view code image

f1 = 'value_per_sq_ft ~ units + sq_ft + boro'
f2 = 'value_per_sq_ft ~ units * sq_ft + boro'
f3 = 'value_per_sq_ft ~ units + sq_ft * boro +
type'
f4 = 'value_per_sq_ft ~ units + sq_ft * boro +
sq_ft * type'
f5 = 'value_per_sq_ft ~ boro + type'

house1 = smf.ols(f1, data=housing).fit()
house2 = smf.ols(f2, data=housing).fit()
house3 = smf.ols(f3, data=housing).fit()
house4 = smf.ols(f4, data=housing).fit()
house5 = smf.ols(f5, data=housing).fit()

With all our models, we can collect all of our coefficients and the model
with which they are associated.

Click here to view code image

mod_results = (
 pd.concat(
 [
 house1.params,
 house2.params,

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch16_images.xhtml#f0324-07
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch16_images.xhtml#f0325-01

 house3.params,
 house4.params,
 house5.params,
],
 axis=1,
)
 .rename(columns=lambda x: "house" + str(x +
1))
 .reset_index()
 .rename(columns={"index": "param"})
 .melt(id_vars="param", var_name="model",
value_name="estimate")
)

print(mod_results)

 param model
estimate
0 Intercept house1
43.290863
1 boro[T.Brooklyn] house1
34.562150
2 boro[T.Manhattan] house1
130.992363
3 boro[T.Queens] house1
32.993674
4 boro[T.Staten Island] house1
-3.630251
..
...
85 sq_ft:boro[T.Queens] house5
NaN
86 sq_ft:boro[T.Staten Island] house5

NaN
87 sq_ft:type[T.R4-CONDOMINIUM] house5
NaN
88 sq_ft:type[T.R9-CONDOMINIUM] house5
NaN
89 sq_ft:type[T.RR-CONDOMINIUM] house5
NaN

[90 rows x 3 columns]

Since it’s not very useful to look at a large column of values, we can plot
our coefficients to quickly see how the models are estimating parameters in
relation to each other (Figure 16.5).

Figure 16.5 Coefficients of the house1 to house5 models

Click here to view code image

color_dict = dict(
 {
 "house1": "#d7191c",
 "house2": "#fdae61",
 "house3": "#ffffbf",
 "house4": "#abdda4",
 "house5": "#2b83ba",
 }
)

Click here to view code image

fig, ax = plt.subplots()
ax = sns.pointplot(
 x="estimate",
 y="param",
 hue="model",
 data=mod_results,
 dodge=True, # jitter the points
 join=False, # don't connect the points
 palette=color_dict
)

plt.tight_layout()
plt.show()

Now that we have our linear models, we can use the analysis of variance
(ANOVA) method to compare them. The ANOVA will give us the residual
sum of squares (RSS), which is one way we can measure performance
(lower is better).

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch16_images.xhtml#f0325-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch16_images.xhtml#f0326-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch16_images.xhtml#f0326-03

model_names = ["house1", "house2", "house3",
"house4", "house5"]
house_anova = statsmodels.stats.anova.anova_lm(
 house1, house2, house3, house4, house5
)

house_anova.index = model_names

print(house_anova)

Click here to view code image

 df_resid ssr df_diff
ss_diff F \
house1 2619.0 4.922389e+06 0.0
NaN NaN
house2 2618.0 4.884872e+06 1.0
37517.437605 20.039049
house3 2612.0 4.619926e+06 6.0
264945.539994 23.585728
house4 2609.0 4.576671e+06 3.0
43255.441192 7.701289
house5 2618.0 4.901463e+06 -9.0
-324791.847907 19.275539

 Pr(>F)
house1 NaN
house2 7.912333e-06
house3 2.754431e-27
house4 4.025581e-05
house5 NaN

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch16_images.xhtml#f0327-01

Another way we can calculate model performance is by using the
Akaike information criterion (AIC) and the Bayesian information criterion
(BIC). These methods apply a penalty for each feature that is added to the
model (lower AIC and BIC value is better). Thus, we should strive to
balance performance and parsimony.

Click here to view code image

house_models = [house1, house2, house3, house4,
house5]

abic = pd.DataFrame(
 {
 "model": model_names,
 "aic": [mod.aic for mod in house_models],
 "bic": [mod.bic for mod in house_models],
 }
)

print(abic.sort_values(by=["aic", "bic"]))

 model aic bic
3 house4 27084.800043 27184.644733
2 house3 27103.502577 27185.727615
1 house2 27237.939618 27284.925354
4 house5 27246.843392 27293.829128
0 house1 27256.031113 27297.143632

16.2.2 Working with GLM Models
We can perform the same calculations and model diagnostics on generalized
linear models (GLMs). We can use the deviance of the model to do model
comparisons:

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch16_images.xhtml#f0327-02

Click here to view code image

def deviance_table(*models):
 """Create a table of model diagnostics from
model objects"""
 return pd.DataFrame(
 {
 "df_residuals": [mod.df_resid for mod in
models],
 "resid_stddev": [mod.deviance for mod in
models],
 "df": [mod.df_model for mod in models],
 "deviance": [mod.deviance for mod in
models],
 }
)

Click here to view code image

f1 = 'value_per_sq_ft ~ units + sq_ft + boro'
f2 = 'value_per_sq_ft ~ units * sq_ft + boro'
f3 = 'value_per_sq_ft ~ units + sq_ft * boro +
type'
f4 = 'value_per_sq_ft ~ units + sq_ft * boro +
sq_ft * type'
f5 = 'value_per_sq_ft ~ boro + type'

glm1 = smf.glm(f1, data=housing).fit()
glm2 = smf.glm(f2, data=housing).fit()
glm3 = smf.glm(f3, data=housing).fit()
glm4 = smf.glm(f4, data=housing).fit()
glm5 = smf.glm(f5, data=housing).fit()

glm_anova = deviance_table(glm1, glm2, glm3,

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch16_images.xhtml#f0327-03
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch16_images.xhtml#f0328-01

glm4, glm5)
print(glm_anova)

 df_residuals resid_stddev df deviance
0 2619 4.922389e+06 6 4.922389e+06
1 2618 4.884872e+06 7 4.884872e+06
2 2612 4.619926e+06 13 4.619926e+06
3 2609 4.576671e+06 16 4.576671e+06
4 2618 4.901463e+06 7 4.901463e+06

We can do the same set of calculations in a logistic regression.

Click here to view code image

create a binary variable
housing["high"] = (housing["value_per_sq_ft"] >=
150).astype(int)

print(housing["high"].value_counts())

0 1619
1 1007
Name: high, dtype: int64

create and fit our logistic regression using
GLM

f1 = "high ~ units + sq_ft + boro"
f2 = "high ~ units * sq_ft + boro"
f3 = "high ~ units + sq_ft * boro + type"
f4 = "high ~ units + sq_ft * boro + sq_ft *
type"
f5 = "high ~ boro + type"

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch16_images.xhtml#f0328-02

Click here to view code image

logistic =
statsmodels.genmod.families.family.Binomial(

link=statsmodels.genmod.families.links.Logit()
)

glm1 = smf.glm(f1, data=housing,
family=logistic).fit()
glm2 = smf.glm(f2, data=housing,
family=logistic).fit()
glm3 = smf.glm(f3, data=housing,
family=logistic).fit()
glm4 = smf.glm(f4, data=housing,
family=logistic).fit()
glm5 = smf.glm(f5, data=housing,
family=logistic).fit()

show the deviances from our GLM models
print(deviance_table(glm1, glm2, glm3, glm4,
glm5))

 df_residuals resid_stddev df deviance
0 2619 1695.631547 6 1695.631547
1 2618 1686.126740 7 1686.126740
2 2612 1636.492830 13 1636.492830
3 2609 1619.431515 16 1619.431515
4 2618 1666.615696 7 1666.615696

Finally, we can create a table of AIC and BIC values.

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch16_images.xhtml#f0329-01
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch16_images.xhtml#f0329-02

mods = [glm1, glm2, glm3, glm4, glm5]

abic_glm = pd.DataFrame(
 {
 "model": model_names,
 "aic": [mod.aic for mod in house_models],
 "bic": [mod.bic for mod in house_models],
 }
)

print(abic_glm.sort_values(by=["aic", "bic"]))

 model aic bic
3 house4 27084.800043 27184.644733
2 house3 27103.502577 27185.727615
1 house2 27237.939618 27284.925354
4 house5 27246.843392 27293.829128
0 house1 27256.031113 27297.143632

Looking at all these measures, we can say Model 4 is performing the
best so far.

16.3 k-Fold Cross-Validation
Cross-validation is another technique to compare models. One of the main
benefits is that it can account for how well your model performs on new
data. It does this by partitioning your data into k parts. It holds one of the
parts aside as the “test” set and then fits the model on the remaining k − 1
parts, the “training” set. The fitted model is then used on the “test” and an
error rate is calculated. This process is repeated until all k parts have been
used as a “test” set. The final error of the model is some average across all
the models.

Cross-validation can be performed in many different ways. The method
just described is called “k-fold cross-validation.” Alternative ways of

performing cross-validation include “leave-one-out cross-validation”, in
which the training data consists of all the data except one observation
designated as the test set.

Here we will split our data into k − 1 testing and training data sets.

Click here to view code image

from sklearn.model_selection import
train_test_split
from sklearn.linear_model import
LinearRegression

print(housing.columns)

Index(['neighborhood', 'type', 'units',
'year_built', 'sq_ft',
 'income', 'income_per_sq_ft', 'expense',
'expense_per_sq_ft',
 'net_income', 'value', 'value_per_sq_ft',
'boro', 'high'],
 dtype='object')

get training and test data
X_train, X_test, y_train, y_test =
train_test_split(
 pd.get_dummies(
 housing[["units", "sq_ft", "boro"]],
drop_first=True
),

 housing["value_per_sq_ft"],
 test_size=0.20,
 random_state=42,
)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch16_images.xhtml#f0330-01

Danger
Pay attention to the capitalization of the letter X when looking at
scikit-learn tutorials and documentation. This is a convention that
comes from matrix notation from statistics and mathematics.

We can get a score that indicates how well our model is performing
using our test data.

Click here to view code image

lr = LinearRegression().fit(X_train, y_train)
print(lr.score(X_test, y_test))

0.6137125285030868

Since sklearn relies heavily on the numpy ndarray, the patsy
library allows you to specify a formula just like the formula API in
statsmodels, and it returns a proper numpy array you can use in
sklearn.

Here is the same code as before, but using the dmatrices function in
the patsy library.

Click here to view code image

from patsy import dmatrices

y, X = dmatrices(
 "value_per_sq_ft ~ units + sq_ft + boro",
 housing,
 return_type="dataframe",
)
X_train, X_test, y_train, y_test =
train_test_split(
 X, y, test_size=0.20, random_state=42

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch16_images.xhtml#f0330-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch16_images.xhtml#f0331-01

)

lr = LinearRegression().fit(X_train, y_train)
print(lr.score(X_test, y_test))

0.6137125285030818

To perform a k-fold cross-validation, we need to import this function
from sklearn.

Click here to view code image

from sklearn.model_selection import KFold,
cross_val_score

get a fresh new housing data set
housing =
pd.read_csv('data/housing_renamed.csv')

We now have to specify how many folds we want. This number depends
on how many rows of data you have. If your data does not include too
many observations, you may opt to select a smaller k (e.g., 2). Otherwise, a
k between 5 to 10 is fairly common. However, keep in mind that the trade-
off with higher k values is more computation time.

Click here to view code image

kf = KFold(n_splits=5)

y, X = dmatrices('value_per_sq_ft ~ units +
sq_ft + boro', housing)

Next we can train and test our model on each fold.

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch16_images.xhtml#f0331-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch16_images.xhtml#f0331-03
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch16_images.xhtml#f0331-04

coefs = []
scores = []
for train, test in kf.split(X):
 X_train, X_test = X[train], X[test]
 y_train, y_test = y[train], y[test]
 lr = LinearRegression().fit(X_train, y_train)
 coefs.append(pd.DataFrame(lr.coef_))
 scores.append(lr.score(X_test, y_test))

We can also view the results.

Click here to view code image

coefs_df = pd.concat(coefs)
coefs_df.columns = X.design_info.column_names
print(coefs_df)

Click here to view code image

 Intercept boro[T.Brooklyn]
boro[T.Manhattan] boro[T.Queens] \
0 0.0 33.369037
129.904011 32.103100
0 0.0 32.889925
116.957385 31.295956
0 0.0 30.975560
141.859327 32.043449
0 0.0 41.449196
130.779013 33.050968
0 0.0 -38.511915
56.069855 -17.557939

 boro[T.Staten Island] units sq_ft
0 -4.381085e+00 -0.205890 0.000220

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch16_images.xhtml#f0331-05
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch16_images.xhtml#f0332-01

0 -4.919232e+00 -0.146180 0.000155
0 -4.379916e+00 -0.179671 0.000194
0 -3.430209e+00 -0.207904 0.000232
0 3.552714e-15 -0.145829 0.000202

We can take a look at the average coefficient across all folds using
.apply() and the np.mean() function.

Click here to view code image

import numpy as np
print(coefs_df.apply(np.mean))

Intercept 0.000000
boro[T.Brooklyn] 20.034361
boro[T.Manhattan] 115.113918
boro[T.Queens] 22.187107
boro[T.Staten Island] -3.422088
units -0.177095
sq_ft 0.000201
dtype: float64

We can also look at our scores. Each model has a default scoring
method. LinearRegression(), for example, uses the R2 (coefficient
of determination) regression score function.1

Click here to view code image

print(scores)

[0.02731416291043942, -0.5538362212110504,
-0.1563637168806138,
-0.3234202061929452, -1.6929655586752923]

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch16_images.xhtml#f0332-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch16_images.xhtml#f0332-03

We can also use cross_val_scores (for cross-validation scores) to
calculate our scores.

Click here to view code image

use cross_val_scores to calculate CV scores
model = LinearRegression()
scores = cross_val_score(model, X, y, cv=5)
print(scores)

[0.02731416 -0.55383622 -0.15636372 -0.32342021
-1.69296556]

1. Scikit-learn R2 scoring: https://scikit-
learn.org/stable/modules/generated/sklearn.metrics
.r2_score.html

When we compare multiple models to one another, we compare the
average of the scores.

Click here to view code image

print(scores.mean())

-0.5398543080098925

Now we’ll refit all our models using k-fold cross-validation.

Click here to view code image

create the predictor and response matrices
y1, X1 = dmatrices(
 "value_per_sq_ft ~ units + sq_ft + boro",
housing)

y2, X2 = dmatrices("value_per_sq_ft ~

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch16_images.xhtml#f0332-04
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch16_images.xhtml#f0333-01
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch16_images.xhtml#f0333-02

units*sq_ft + boro", housing)

y3, X3 = dmatrices(
 "value_per_sq_ft ~ units + sq_ft*boro + type",
housing
)

y4, X4 = dmatrices(
 "value_per_sq_ft ~ units + sq_ft*boro +
sq_ft*type", housing
)

y5, X5 = dmatrices("value_per_sq_ft ~ boro +
type", housing)

fit our models
model = LinearRegression()

scores1 = cross_val_score(model, X1, y1, cv=5)
scores2 = cross_val_score(model, X2, y2, cv=5)
scores3 = cross_val_score(model, X3, y3, cv=5)
scores4 = cross_val_score(model, X4, y4, cv=5)
scores5 = cross_val_score(model, X5, y5, cv=5)

We can now look at our cross-validation scores.

Click here to view code image

scores_df = pd.DataFrame(
 [scores1, scores2, scores3, scores4,
scores5]
)

print(scores_df.apply(np.mean, axis=1))

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch16_images.xhtml#f0333-03

0 -5.398543e-01
1 -1.088184e+00
2 -8.668885e+25
3 -7.634198e+25
4 -3.172546e+25
dtype: float64

Once again, we see that Model 4 has the best performance.

Conclusion
When we are working with models, it’s important to measure their
performance. Using ANOVA for linear models, looking at deviance for
GLM models, and using cross-validation are all ways we can measure error
and performance when trying to pick the best model.

17

Regularization

In Chapter 16, we considered various ways to measure model performance.
Section 16.3 described k-fold cross-validation, a technique that tries to
measure model performance by looking at how it predicts on test data. This
chapter explores regularization, one technique to improve performance on
test data. Specifically, this method aims to prevent overfitting.

17.1 Why Regularize?
Let’s begin with a base case of linear regression. We will be using the ACS
data.

Click here to view code image

import pandas as pd
acs = pd.read_csv('data/acs_ny.csv')
print(acs.columns)

Index(['Acres', 'FamilyIncome', 'FamilyType',
'NumBedrooms',
 'NumChildren', 'NumPeople', 'NumRooms',
'NumUnits',
 'NumVehicles', 'NumWorkers', 'OwnRent',
'YearBuilt',
 'HouseCosts', 'ElectricBill', 'FoodStamp',
'HeatingFuel',
 'Insurance', 'Language'],
 dtype='object')

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch17_images.xhtml#f0335-01

Now, let’s create our design matrices using patsy.

Click here to view code image

from patsy import dmatrices

sequential strings get concatenated together
in Python
response, predictors = dmatrices(
 "FamilyIncome ~ NumBedrooms + NumChildren +
NumPeople + "
 "NumRooms + NumUnits + NumVehicles +
NumWorkers + OwnRent + "
 "YearBuilt + ElectricBill + FoodStamp +
HeatingFuel + "
 "Insurance + Language",
 data=acs,
)

With our predictor and response matrices created, we can use sklearn
to split our data into training and testing sets.

Click here to view code image

from sklearn.model_selection import
train_test_split

X_train, X_test, y_train, y_test =
train_test_split(
 predictors, response, random_state=0
)

Now, let’s fit our linear model. Here we are normalizing our data so we
can compare our coefficients when we use our regularization techniques.

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch17_images.xhtml#f0335-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch17_images.xhtml#f0336-01
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch17_images.xhtml#f0336-02

from sklearn.linear_model import
LinearRegression
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler

lr = make_pipeline(
 StandardScaler(with_mean=False),
LinearRegression()
)

lr = lr.fit(X_train, y_train)
print(lr)

Pipeline(steps=[('standardscaler',
StandardScaler(with_mean=False)),
 ('linearregression',
LinearRegression())])

model_coefs = pd.DataFrame(
 data=list(
 zip(
 predictors.design_info.column_names,

lr.named_steps["linearregression"].coef_[0],
)
),
 columns=["variable", "coef_lr"],
)

print(model_coefs)

 variable coef_lr
0 Intercept 2.697159e-13
1 NumUnits[T.Single attached] 9.661755e+03
2 NumUnits[T.Single detached] 8.345408e+03
3 OwnRent[T.Outright] 2.382740e+03
4 OwnRent[T.Rented] 2.260806e+03
..
34 NumRooms 1.340575e+04
35 NumVehicles 7.228920e+03
36 NumWorkers 1.877535e+04
37 ElectricBill 1.000008e+04
38 Insurance 3.072892e+04

[39 rows x 2 columns]

Now, we can look at our model scores.

Click here to view code image

score on the _training_ data
print(lr.score(X_train, y_train))

0.2726140465638568

score on the _testing_ data
print(lr.score(X_test, y_test))

0.26976979568488013

In this particular case, our model demonstrates poor performance. In
another potential scenario, we might have a high training score and a low
test score—a sign of overfitting. Regularization solves this overfitting
issue, by putting constraints on the coefficients and variables. This causes
the coefficients of our data to be smaller. In the case of LASSO (least
absolute shrinkage and selection operator) regression, some coefficients can

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch17_images.xhtml#f0337-01

actually be dropped (i.e., become 0), whereas in ridge regression,
coefficients will approach 0, but are never dropped.

17.2 LASSO Regression
The first type of regularization technique is called LASSO, which stands for
least absolute shrinkage and selection operator. It is also known as
regression with L1 regularization.

We will fit the same model as we did in our linear regression.

Click here to view code image

from sklearn.linear_model import Lasso

lasso = make_pipeline(
 StandardScaler(with_mean=False),
 Lasso(max_iter=10000, random_state=42),
)

lasso = lasso.fit(X_test, y_test)
print(lasso)

Pipeline(steps=[('standardscaler',
StandardScaler(with_mean=False)),
 ('lasso', Lasso(max_iter=10000,
random_state=42))])

Now, let’s get a dataframe of coefficients, and combine them with our
linear regression results.

Click here to view code image

coefs_lasso = pd.DataFrame(
 data=list(
 zip(

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch17_images.xhtml#f0337-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch17_images.xhtml#f0337-03

 predictors.design_info.column_names,
 lasso.named_steps["lasso"].coef_.tolist(),
)
),
 columns=["variable", "coef_lasso"],
)

Click here to view code image

model_coefs = pd.merge(model_coefs, coefs_lasso,
on='variable')
print(model_coefs)

 variable coef_lr
coef_lasso
0 Intercept 2.697159e-13
0.000000
1 NumUnits[T.Single attached] 9.661755e+03
7765.482025
2 NumUnits[T.Single detached] 8.345408e+03
7512.067593
3 OwnRent[T.Outright] 2.382740e+03
2431.710977
4 OwnRent[T.Rented] 2.260806e+03
604.186925
..
...
34 NumRooms 1.340575e+04
10940.150208
35 NumVehicles 7.228920e+03
7724.681161
36 NumWorkers 1.877535e+04
16911.035390

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch17_images.xhtml#f0338-01

37 ElectricBill 1.000008e+04
9516.123582
38 Insurance 3.072892e+04
32155.544169

[39 rows x 3 columns]

Notice that the coefficients are now smaller than their original linear
regression values. Additionally, some of the coefficients are now 0.

Finally, let’s look at our training and test data scores.

Click here to view code image

print(lasso.score(X_train, y_train))

0.2669751487716776

print(lasso.score(X_test, y_test))

0.2752627973740016

There isn’t much difference here, but you can see that the test results are
now better than the training results. That is, there is an improvement in
prediction when using new, unseen data.

17.3 Ridge Regression
Now let’s look at another regularization technique, ridge regression. It is
also known as regression with L2 regularization.

Most of the code will be very similar to that seen with the previous
methods. We will fit the model on our training data, and combine the
results with our ongoing dataframe of results.

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch17_images.xhtml#f0338-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch17_images.xhtml#f0339-01

from sklearn.linear_model import Ridge

ridge = make_pipeline(
 StandardScaler(with_mean=False),
Ridge(random_state=42)
)

ridge = ridge.fit(X_train, y_train)
print(ridge)

Pipeline(steps=[('standardscaler',
StandardScaler(with_mean=False)),
 ('ridge',
Ridge(random_state=42))])

coefs_ridge = pd.DataFrame(
 data=list(
 zip(
 predictors.design_info.column_names,
 ridge.named_steps["ridge"].coef_.tolist()
[0],
)
),
 columns=["variable", "coef_ridge"],
)

model_coefs = pd.merge(model_coefs, coefs_ridge,
on="variable")
print(model_coefs)

 variable coef_lr
coef_lasso \

0 Intercept 2.697159e-13
0.000000
1 NumUnits[T.Single attached] 9.661755e+03
7765.482025
2 NumUnits[T.Single detached] 8.345408e+03
7512.067593
3 OwnRent[T.Outright] 2.382740e+03
2431.710977
4 OwnRent[T.Rented] 2.260806e+03
604.186925
..
...
34 NumRooms 1.340575e+04
10940.150208
35 NumVehicles 7.228920e+03
7724.681161
36 NumWorkers 1.877535e+04
16911.035390
37 ElectricBill 1.000008e+04
9516.123582
38 Insurance 3.072892e+04
32155.544169

 coef_ridge
0 0.000000
1 9659.413514
2 8342.247690
3 2381.429615
4 2259.526329
.. ...
34 13405.409584
35 7228.542922
36 18773.079462

37 10000.853603
38 30727.230542

[39 rows x 4 columns]

17.4 Elastic Net
The elastic net is a regularization technique that combines the ridge and
LASSO regression techniques.

Click here to view code image

from sklearn.linear_model import ElasticNet

en = ElasticNet(random_state=42).fit(X_train,
y_train)

coefs_en = pd.DataFrame(

list(zip(predictors.design_info.column_names,
en.coef_)),
 columns=["variable", "coef_en"],
)

model_coefs = pd.merge(model_coefs, coefs_en,
on="variable")
print(model_coefs)

 variable coef_lr
coef_lasso \
0 Intercept 2.697159e-13
0.000000
1 NumUnits[T.Single attached] 9.661755e+03
7765.482025

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch17_images.xhtml#f0340-02

2 NumUnits[T.Single detached] 8.345408e+03
7512.067593
3 OwnRent[T.Outright] 2.382740e+03
2431.710977
4 OwnRent[T.Rented] 2.260806e+03
604.186925
..
...
34 NumRooms 1.340575e+04
10940.150208
35 NumVehicles 7.228920e+03
7724.681161
36 NumWorkers 1.877535e+04
16911.035390
37 ElectricBill 1.000008e+04
9516.123582
38 Insurance 3.072892e+04
32155.544169

 coef_ridge coef_en
0 0.000000 0.000000
1 9659.413514 1342.291706
2 8342.247690 168.728479
3 2381.429615 445.533238
4 2259.526329 -600.673747
..
34 13405.409584 5685.101939
35 7228.542922 6059.776166
36 18773.079462 12247.547800
37 10000.853603 97.566664
38 30727.230542 32.484207

[39 rows x 5 columns]

The ElasticNet object has two parameters, alpha and l1_ratio,
that allow you to control the behavior of the model. The l1_ratio
parameter specifically controls how much of the L2 or L1 penalty is used.
If l1_ratio = 0, then the model will behave as described by ridge
regression. If l1_ratio = 1, then the model will behave as described
by LASSO regression. Any value in between will give some combination
of the ridge and LASSO regression results.

Since LASSO regression can zero out coefficients, let’s just see how the
coefficients compare with just the variables where LASSO has turned into a
0.

Click here to view code image

print(model_coefs.loc[model_coefs["coef_lasso"]
== 0])

 variable coef_lr coef_lasso
coef_ridge \
0 Intercept 2.697159e-13 0.0
0.000000
25 HeatingFuel[T.Solar] 1.442204e+02 0.0
142.354045

 coef_en
0 0.000000
25 0.994142

17.5 Cross-Validation
Cross-validation (first described in Section 16.3) is a commonly used
technique when fitting models. It was mentioned at the beginning of this
chapter, as a segue to regularization, but it is also a way to pick optimal
parameters for regularization. Since the user must tune certain parameters
(also known as hyper-parameters), cross-validation can be used to try out

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch17_images.xhtml#f0341-01

various combinations of these hyper-parameters to pick the “best” model.
The ElasticNet object has a similar function called ElasticNetCV
that can iteratively fit the elastic net with various hyper-parameter values.1

1. ElasticNetCV documentation: https://scikit-
learn.org/stable/modules/generated/sklearn.linear_
model.ElasticNetCV.html

Click here to view code image

from sklearn.linear_model import ElasticNetCV

en_cv = ElasticNetCV(cv=5, random_state=42).fit(
 X_train, y_train.ravel() # ravel is to
remove the 1d warning
)

coefs_en_cv = pd.DataFrame(

list(zip(predictors.design_info.column_names,
en_cv.coef_)),
 columns=["variable", "coef_en_cv"],
)

model_coefs = pd.merge(model_coefs, coefs_en_cv,
on="variable")
print(model_coefs)

Click here to view code image

 variable coef_lr
coef_lasso \
0 Intercept 2.697159e-13
0.000000
1 NumUnits[T.Single attached] 9.661755e+03

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNetCV.html
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch17_images.xhtml#f0341-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch17_images.xhtml#f0342-01

7765.482025
2 NumUnits[T.Single detached] 8.345408e+03
7512.067593
3 OwnRent[T.Outright] 2.382740e+03
2431.710977
4 OwnRent[T.Rented] 2.260806e+03
604.186925
..
...
34 NumRooms 1.340575e+04
10940.150208
35 NumVehicles 7.228920e+03
7724.681161
36 NumWorkers 1.877535e+04
16911.035390
37 ElectricBill 1.000008e+04
9516.123582
38 Insurance 3.072892e+04
32155.544169

 coef_ridge coef_en coef_en_cv
0 0.000000 0.000000 0.000000
1 9659.413514 1342.291706 -0.000000
2 8342.247690 168.728479 0.000000
3 2381.429615 445.533238 0.000000
4 2259.526329 -600.673747 -0.000000
..
34 13405.409584 5685.101939 0.028443
35 7228.542922 6059.776166 0.000000
36 18773.079462 12247.547800 0.000000
37 10000.853603 97.566664 26.166320
38 30727.230542 32.484207 38.561748

[39 rows x 6 columns]

Let’s compare which coefficients were turned into 0.

Click here to view code image

print(model_coefs.loc[model_coefs["coef_en_cv"]
== 0])

 variable coef_lr
coef_lasso \
0 Intercept 2.697159e-13
0.000000
1 NumUnits[T.Single attached] 9.661755e+03
7765.482025
2 NumUnits[T.Single detached] 8.345408e+03
7512.067593
3 OwnRent[T.Outright] 2.382740e+03
2431.710977
4 OwnRent[T.Rented] 2.260806e+03
604.186925
..
...
31 NumBedrooms 3.755708e+03
4447.892458
32 NumChildren 9.524915e+03
6905.672216
33 NumPeople -1.153672e+04
-8777.265840
35 NumVehicles 7.228920e+03
7724.681161
36 NumWorkers 1.877535e+04
16911.035390

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch17_images.xhtml#f0342-02

 coef_ridge coef_en coef_en_cv
0 0.000000 0.000000 0.0
1 9659.413514 1342.291706 -0.0
2 8342.247690 168.728479 0.0
3 2381.429615 445.533238 0.0
4 2259.526329 -600.673747 -0.0
..
31 3755.521256 2073.910045 0.0
32 9521.180875 2498.719581 0.0
33 -11533.098634 -2562.412933 0.0
35 7228.542922 6059.776166 0.0
36 18773.079462 12247.547800 0.0

[36 rows x 6 columns]

Conclusion
Regularization is a technique used to prevent overfitting of data. It achieves
this goal by applying some penalty for each feature added to the model. The
end result either drops variables from the model or decreases the
coefficients of the model. Both techniques try to fit the training data less
accurately but hope to provide better predictions with data that has not been
seen before. These techniques can be combined (as seen in the elastic net),
and can also be iterated over and improved with cross-validation.

18

Clustering

Machine learning methods can generally be classified into two main
categories of models: supervised learning and unsupervised learning. Thus
far, we have been working on supervised learning models, since we train
our models with a target y or response variable. In other words, in the
training data for our models, we know the “correct” answer. Unsupervised
models are modeling techniques in which the “correct” answer is unknown.
Many of these methods involve clustering, where the two main methods are
k-means clustering and hierarchical clustering.

18.1 k-Means
The technique known as k-means works by first selecting how many
clusters, k, exist in the data. The algorithm randomly selects k points in the
data and calculates the distance from every data point to the initially
selected k points. The closest points to each of the k clusters are assigned to
the same cluster group. The center of each cluster is then designated as the
new cluster centroid. The process is then repeated, with the distance of each
point to each cluster centroid being calculated and assigned to a cluster and
a new centroid picked. This algorithm is repeated until convergence occurs.

Great visualizations1 and explanations2 of how k-means works can be
found on the Internet. We’ll use data about wines for our k-means example.
1. Visualizing k-means: http://shabal.in/visuals.html
2. Visualization and explanation of k-means:
https://www.naftaliharris.com/blog/visualizing-k-
means-clustering/

Click here to view code image

http://shabal.in/visuals.html
https://www.naftaliharris.com/blog/visualizing-k-means-clustering/
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch18_images.xhtml#f0345-01

import pandas as pd
wine = pd.read_csv('data/wine.csv')

We will drop the Cultivar column since it correlates too closely with
the actual clusters in our data.

Click here to view code image

wine = wine.drop('Cultivar', axis=1)

note that the data values are all numeric
print(wine.columns)

Click here to view code image

Index(['Alcohol', 'Malic acid', 'Ash', 'Alcalinity
of ash ',
 'Magnesium', 'Total phenols',
'Flavanoids',
 'Nonflavanoid phenols', 'Proanthocyanins',
'Color intensity',
 'Hue', '0D280/0D315 of diluted wines',
'Proline '],
 dtype='object')

print(wine.head())

 Alcohol Malic acid Ash Alcalinity of ash
Magnesium \
0 14.23 1.71 2.43 15.6
127
1 13.20 1.78 2.14 11.2
100
2 13.16 2.36 2.67 18.6

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch18_images.xhtml#f0345-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch18_images.xhtml#f0346-01

101
3 14.37 1.95 2.50 16.8
113
4 13.24 2.59 2.87 21.0
118

 Total phenols Flavanoids Nonflavanoid phenols
Proanthocyanins \
0 2.80 3.06 0.28
2.29
1 2.65 2.76 0.26
1.28
2 2.80 3.24 0.30
2.81
3 3.85 3.49 0.24
2.18
4 2.80 2.69 0.39
1.82

 Color intensity Hue 0D280/0D315 of diluted
wines \
0 5.64 1.04
3.92
1 4.38 1.05
3.40
2 5.68 1.03
3.17
3 7.80 0.86
3.45
4 4.32 1.04
2.93

 Proline
0 1065
1 1050
2 1185
3 1480
4 735

sklearn has an implementation of the k-means algorithm called
KMeans. Here we will set k = 3, and use all the data in our data set.

We will create k=3 clusters with a random seed of 42. You can opt to
leave out the random_state parameter or use a different value; the 42 will
ensure your results are the same as those printed in the book.

Click here to view code image

from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=3,
random_state=42).fit(wine.values)

Here’s our kmeans object.

Click here to view code image

print(kmeans)

KMeans(n_clusters=3, random_state=42)

We can see that since we specified three clusters, there are only three
unique labels.

Click here to view code image

import numpy as np
print(np.unique(kmeans.labels_,
return_counts=True))

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch18_images.xhtml#f0346-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch18_images.xhtml#f0346-03
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch18_images.xhtml#f0347-01

(array([0, 1, 2], dtype=int32), array([69, 47,
62]))

kmeans_3 = pd.DataFrame(kmeans.labels_, columns=
['cluster'])
print(kmeans_3)

 cluster
0 1
1 1
2 1
3 1
4 2
.. ...
173 2
174 2
175 2
176 2
177 0

[178 rows x 1 columns]

Finally, we can visualize our clusters. Since humans can visualize things
in only three dimensions, we need to reduce the number of dimensions for
our data. Our wine data set has 13 columns, and we need to reduce this
number to three so we can understand what is going on. Furthermore, since
we are trying to plot the points in a book (a non-interactive medium), we
should reduce the number of dimensions to two, if possible.

18.1.1 Dimension Reduction with PCA
Principal component analysis (PCA) is a projection technique that is used to
reduce the number of dimensions for a data set. It works by finding a lower
dimension in the data such that the variance is maximized. Imagine a three-

dimensional sphere of points. PCA essentially shines a light through these
points and casts a shadow in the lower two-dimensional plane. Ideally, the
shadows will be spread out as much as possible. While points that are far
apart in PCA may not be cause for concern, points that are far apart in the
original 3D sphere can have the light shine through them in such a way that
the shadows cast are right next to one another. Be careful when trying to
interpret points that are close to one another because it is possible that these
points could be farther apart in the original space.

We import PCA from sklearn.

Click here to view code image

from sklearn.decomposition import PCA

We tell PCA how many dimensions (i.e., principal components) we want
to project our data into. Here we are projecting our data down into two
components.

Click here to view code image

project our data into 2 components
pca = PCA(n_components=2).fit(wine)

Next, we need to transform our data into the new space and add the
transformation to our data set.

Click here to view code image

transform our data into the new space
pca_trans = pca.transform(wine)

give our projections a name
pca_trans_df = pd.DataFrame(pca_trans, columns=
['pca1', 'pca2'])

concatenate our data
kmeans_3 = pd.concat([kmeans_3, pca_trans_df],

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch18_images.xhtml#f0347-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch18_images.xhtml#f0348-01
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch18_images.xhtml#f0348-02

axis=1)

print(kmeans_3)

 cluster pca1 pca2
0 1 318.562979 21.492131
1 1 303.097420 -5.364718
2 1 438.061133 -6.537309
3 1 733.240139 0.192729
4 2 -11.571428 18.489995
..
173 2 -6.980211 -4.541137
174 2 3.131605 2.335191
175 2 88.458074 18.776285
176 2 93.456242 18.670819
177 0 -186.943190 -0.213331

[178 rows x 3 columns]

Finally, we can plot our results (Figure 18.1).

Figure 18.1 k-means plot using PCA

Click here to view code image

import seaborn as sns
import matplotlib.pyplot as plt

fig, ax = plt.subplots()

sns.scatterplot(
 x="pca1",
 y="pca2",
 data=kmeans_3,
 hue="cluster",
 ax=ax
)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch18_images.xhtml#f0348-03

plt.show()

Now that we’ve seen what k-means does to our wine data, let’s load the
original data set again and keep the Cultivar column we dropped.

Click here to view code image

wine_all = pd.read_csv('data/wine.csv')
print(wine_all.head())

 Cultivar Alcohol Malic acid Ash Alcalinity
of ash \
0 1 14.23 1.71 2.43
15.6
1 1 13.20 1.78 2.14
11.2
2 1 13.16 2.36 2.67
18.6
3 1 14.37 1.95 2.50
16.8
4 1 13.24 2.59 2.87
21.0

 Magnesium Total phenols Flavanoids
Nonflavanoid phenols \
0 127 2.80 3.06
0.28
1 100 2.65 2.76
0.26
2 101 2.80 3.24
0.30
3 113 3.85 3.49
0.24

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch18_images.xhtml#f0349-02

4 118 2.80 2.69
0.39

 Proanthocyanins Color intensity Hue \
0 2.29 5.64 1.04
1 1.28 4.38 1.05
2 2.81 5.68 1.03
3 2.18 7.80 0.86
4 1.82 4.32 1.04

Click here to view code image

 0D280/0D315 of diluted wines Proline
0 3.92 1065
1 3.40 1050
2 3.17 1185
3 3.45 1480
4 2.93 735

We’ll run PCA on our data, just as before, and compare the clusters from
PCA and the variables from Cultivar.

Click here to view code image

pca_all = PCA(n_components=2).fit(wine_all)
pca_all_trans = pca_all.transform(wine_all)
pca_all_trans_df = pd.DataFrame(
 pca_all_trans, columns=["pca_all_1",
"pca_all_2"]
)

kmeans_3 = pd.concat(
 [kmeans_3, pca_all_trans_df,

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch18_images.xhtml#f0350-01
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch18_images.xhtml#f0350-02

wine_all["Cultivar"]], axis=1
)

We can compare the groupings by faceting our plot (Figure 18.2).

Figure 18.2 Faceted k-means plot

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch18_images.xhtml#f0350-03

with sns.plotting_context(context="talk"):
 fig = sns.relplot(
 x="pca_all_1",
 y="pca_all_2",
 data=kmeans_3,
 row="cluster",
 col="Cultivar",
)

fig.figure.set_tight_layout(True)
plt.show()

Alternatively, we can look at a cross-tabulated frequency count.

Click here to view code image

print(
 pd.crosstab(
 kmeans_3["cluster"], kmeans_3["Cultivar"],
margins=True
)
)

Cultivar 1 2 3 All
cluster
0 0 50 19 69
1 46 1 0 47
2 13 20 29 62
All 59 71 48 178

18.2 Hierarchical Clustering
As the name suggests, hierarchical clustering aims to build a hierarchy of
clusters. It can accomplish this with a bottom-up (agglomerative) or top-

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch18_images.xhtml#f0350-04

town (decisive) approach.
We can perform this type of clustering with the scipy library.

Click here to view code image

from scipy.cluster import hierarchy

We’ll load up a clean wine data set again, and drop the Cultivar
column.

Click here to view code image

wine = pd.read_csv('data/wine.csv')
wine = wine.drop('Cultivar', axis=1)

Many different formulations of the hierarchical clustering algorithm are
possible. We can use matplotlib to plot the results.

Click here to view code image

import matplotlib.pyplot as plt

Below we will cover a few clustering algorithms, they all work slightly
differently, but they can lead to different results.

Complete: Tries to make the clusters as similar to one another as
possible
Single: Creates looser and closer clusters by linking as many of them
as possible
Average and Centroid: Some combination between complete and
single
Ward: Minimizes the distance between the points within each cluster

18.2.1 Complete Clustering
A hierarchical cluster using the complete clustering algorithm is shown in
Figure 18.3.

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch18_images.xhtml#f0351-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch18_images.xhtml#f0351-03
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch18_images.xhtml#f0352-01

Figure 18.3 Hierarchical clustering: complete

Click here to view code image

wine_complete = hierarchy.complete(wine)
fig = plt.figure()
dn = hierarchy.dendrogram(wine_complete)
plt.show()

18.2.2 Single Clustering
A hierarchical cluster using the single clustering algorithm is shown in
Figure 18.4.

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch18_images.xhtml#f0352-02

Figure 18.4 Hierarchical clustering: single

Click here to view code image

wine_single = hierarchy.single(wine)
fig = plt.figure()
dn = hierarchy.dendrogram(wine_single)
plt.show()

18.2.3 Average Clustering
A hierarchical cluster using the average clustering algorithm is shown in
Figure 18.5.

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch18_images.xhtml#f0353-02

Figure 18.5 Hierarchical clustering: average

Click here to view code image

wine_average = hierarchy.average(wine)
fig = plt.figure()
dn = hierarchy.dendrogram(wine_average)
plt.show()

18.2.4 Centroid Clustering
A hierarchical cluster using the centroid clustering algorithm is shown in
Figure 18.6.

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch18_images.xhtml#f0353-03

Figure 18.6 Hierarchical clustering: centroid

Click here to view code image

wine_centroid = hierarchy.centroid(wine)
fig = plt.figure()
dn = hierarchy.dendrogram(wine_centroid)
plt.show()

18.2.5 Ward Clustering
A hierarchical cluster using the ward clustering algorithm is shown in
Figure 18.7.

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch18_images.xhtml#f0353-04

Figure 18.7 Hierarchical clustering: ward

Click here to view code image

wine_ward = hierarchy.ward(wine)
fig = plt.figure()
dn = hierarchy.dendrogram(wine_ward)
plt.show()

18.2.6 Manually Setting the Threshold
We can pass in a value for color_threshold to color the groups based
on a specific threshold (Figure 18.8). By default, scipy uses the default
MATLAB values.

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch18_images.xhtml#f0354-03

Figure 18.8 Manual hierarchical clustering threshold

Click here to view code image

wine_complete = hierarchy.complete(wine)
fig = plt.figure()
dn = hierarchy.dendrogram(
 wine_complete,
 # default MATLAB threshold
 color_threshold=0.7 *
max(wine_complete[:,2]),
 above_threshold_color='y')
plt.show()

Conclusion

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch18_images.xhtml#f0355-03

When you are trying to find the underlying structure in a data set, you will
often use unsupervised machine learning methods. k-Means and
hierarchical clustering are two methods commonly used to solve this
problem. The key is to tune your models either by specifying a value for k
in k-means or a threshold value in hierarchical clustering that makes sense
for the question you are trying to answer.

It is also common practice to mix multiple types of analysis techniques
to solve a problem. For example, you might use an unsupervised learning
method to cluster your data and then use these clusters as features in
another analysis method.

Part V

Conclusion

Chapter 19 Life Outside of Pandas

Chapter 20 It’s Dangerous to Go Alone!

If you made it to this part of the book, thank you for reading, and I hope
you enjoyed following along and learning the fundamental skills for
processing data in Python.
You may hit some of the limitations of Pandas as your data needs grow.
Chapter 19 points you to other libraries that expand and parallel Pandas.
Finally, Chapter 20 talks about a lot of additional resources for you to
continue learning.

19

Life Outside of Pandas

19.1 The (Scientific) Computing Stack
When Jake VanderPlas1 gave the SciPy2 2015 keynote address,3 he titled
his talk “The State of the Stack”. Jake described how the community of
packages that surround the core Python language developed. Python the
language was created in the 1980s. Numerical computing began in 1995
and eventually evolved into the NumPy library in 2006. The NumPy library
was the basis of the Pandas Series objects that we have worked with
throughout this book. The core plotting library, Matplotlib, was created in
2002 and is also used within Pandas in the plot method. Pandas’ ability to
work with heterogeneous data allows the analyst to clean different types of
data for subsequent analysis using the scikits, which stemmed from the
SciPy package in 2000.
1. Jake VanderPlas: http://vanderplas.com/

2. SciPy Conference: https://conference.scipy.org/
3. Jake’s SciPy 2015 keynote address:
https://speakerdeck.com/jakevdp/the-state-of-the-
stack-scipy-2015-keynote

There have also been advances in how we interface with Python. In
2001, IPython was created to provide more interactivity with the language
and the shell. In 2012, Project Jupyter created the interactive notebook for
Python, which further solidified the language as a scientific computing
platform, as this tool provides an easy and highly extensible way to do
literate programming and much more.

However, the Python ecosystem includes more than just these few
libraries and tools. SymPy4 is a fully functional computer algebra system
(CAS) in Python that can do symbolic manipulation of mathematical

http://vanderplas.com/
https://conference.scipy.org/
https://speakerdeck.com/jakevdp/the-state-of-the-stack-scipy-2015-keynote

formulas and equations. While Pandas is great for working with rectangular
flat files and has support for hierarchical indices, the xarray library5

gives Python the ability to work with n-dimensional arrays. Thinking of
Pandas as a two-dimensional dataframe—that is, as an array—gives us an
n-dimensional dataframe. These types of data are frequently encountered
within the scientific community.
4. SymPy: https://www.sympy.org/

5. Xarray: http://xarray.pydata.org/

19.2 Performance
“Premature optimization is the root of all evil”. Write your Python code in a
way that works first, and that gives you a result which you can test. If it’s
not fast enough, then you can work on optimizing the code. The SciPy
ecosystem has libraries that make Python faster: cython and numba.

19.2.1 Timing Your Code
Appendix V Gives an example of using the Jupyter %%timeit cell magic
to time your code. This can be helpful just to compare different methods or
implementations, but does not necessarily tell you where to focus your
efforts.

19.2.2 Profiling Your Code

Other tools such as cProfile6 and snakevis7 can help you time entire scripts
and blocks of code and give a line-by-line breakdown of their execution.
Additionally, snakevis comes with an IPython snakevis extension!
6. cProfile:
https://docs.python.org/3/library/profile.html#mod
ule-cProfile

7. Snakevis: https://jiffyclub.github.io/snakeviz/

19.2.3 Concurrent Futures

https://www.sympy.org/
http://xarray.pydata.org/
https://docs.python.org/3/library/profile.html#module-cProfile
https://jiffyclub.github.io/snakeviz/

Many different libraries and frameworks are available to help scale up your
computation. concurrent.futures8 allows you to essentially rewrite
the function calls into the built-in map function.9

8. concurrent.futures:
https://docs.python.org/3/library/concurrent.futur
es.html

9. Python map():
https://docs.python.org/3/library/functions.html#m
ap

19.3 Dask
Dask is another library that is geared toward working with large data sets.10

It allows you to create a computational graph, in which only calculations
that are out of date need to be recalculated. Dask also parallelizes
calculations on your own (single) machine or across multiple machines in a
cluster. It creates a system in which you can write code on your laptop, and
then quickly scale your code up to larger compute clusters. The nicest part
of Dask is that its syntax aims to mimic the syntax from Pandas, which in
turn lowers the overhead involved in learning to use this library.
10. Dask: https://www.dask.org/

19.4 Siuba
The tidyverse set of packages for the R programming language tried to
break down each step in the data processing pipeline a single step. This
allowed each step to be turned into separate function calls (aka verbs). This
is similar to how method chaining works in Pandas. Siuba builds on top of
the Pandas library and tries to port the Tidyverse verbs into Pandas.11

11. Siuba documentation: https://siuba.readthedocs.io

19.5 Ibis
The Ibis project provides a high-level API over tabular data.12 The main
benefits is that it gives the user a consistent way to interact with databases,

https://docs.python.org/3/library/concurrent.futures.html
https://docs.python.org/3/library/functions.html#map
https://www.dask.org/
https://siuba.readthedocs.io/

Dask, and Pandas.
12. Ibis project: https://ibis-project.org

19.6 Polars
Polars is a Python (and Rust) dataframe library built on top of Apache
Arrow.13 Its API is similar to Pandas, but relies heavily on method calls. It
also removes Pandas indices, something this book has avoided for sake of
simplicity. The Polars documentation contains a user’s guide that is worth
looking into: https://polars.github.io/polars-book
13. Polars Library: https://www.pola.rs/

19.7 PyJanitor
pyjanitor is a Python library that extends Pandas DataFrame objects
by providing additional DataFrame methods to make data processing a
little easier.14 It is modeled after the R package, janitor, and has a lot of
convenient methods for common data processing steps.
14. pyjanitor documentation: https://pyjanitor-
devs.github.io/pyjanitor/

19.8 Pandera
Many of the steps in data process involve checking and validating data. The
pandera provides a mechanism for you to test your data.15 For example,
you can use it to make sure there are valid values for a particular column.
The tools provided in pandera allow you to check your data and have the
code fail when it does not meet assumptions before you model the data and
make conclusions from it.
15. pandera documentation: https://pandera.readthedocs.io/

19.9 Machine Learning
This book aimed to lay a foundation to all the parts in the data science
process. It’s hard to be completely inclusive and cover everything that a

https://ibis-project.org/
https://polars.github.io/polars-book
https://www.pola.rs/
https://pyjanitor-devs.github.io/pyjanitor/
https://pandera.readthedocs.io/

data scientist might need. Machine learning methods like XGBoost have
become extremely popular for its ability to work with a wide variety of data
sets and perform well in prediction tasks.16 We’ve mentioned a little bit of
scikit-learn pipelines in Section 13.4.17

16. XGBoost: https://xgboost.readthedocs.io/

17. scikit-learn pipelines: https://scikit-
learn.org/stable/modules/generated/sklearn.pipelin
e.Pipeline.html

To use these machine learning models in production we need to be able
to maintain, version control, deploy, and monitor them. This is where
MLOps (Machine Learning Operations) come into play, and tools like
vetiver can help with that.18

18. Vetiver: https://vetiver.rstudio.com/

19.10 Publishing
This book was written in a publishing system called Quarto.19 This allows
you to do “literate programming”, where you can mix prose text with code
and code output. Why I like Quarto is that it is a single program that lets me
write reports, books, websites, presentations, etc. It also allows me to work
in R and Python simultaneously, which this book also does in Appendix Z.
19. Quarto: https://quarto.org/docs/books

JupyterBook is another literate programming platform that builds on
Jupyter Notebooks to create a book format.20

20. JupyterBook: https://jupyterbook.org/

19.11 Dashboards
Over the years many dashboard libraries have been created for Python.
Dash,21 Streamlit,22 Panel,23 and Voilà24 are some of them. I’ve personally
done a lot of my data science result communication work in the R
ecosystem, so I’m happy that Shiny for Python25 was recently announced at
the time of writing, since it is similar to what I already know. All the

https://xgboost.readthedocs.io/
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
https://vetiver.rstudio.com/
https://quarto.org/docs/books
https://jupyterbook.org/

dashboard platforms have pros and cons and have tradeoffs with learning
curve, scalability, and flexibility.
21. Dash: https://plotly.com/dash/

22. Streamlit: https://streamlit.io/

23. Panel: https://panel.holoviz.org/

24. Voilà: https://voila.readthedocs.io

25. Shiny for Python: https://shiny.rstudio.com/py/

Conclusion
Pandas is a popular data science library in Python. Its ubiquity has made it
the go-to library when working with data in Python. However, it may not
meet everyone’s needs and that is why so many other libraries have been
built to parallel or extend Pandas. This book mainly focuses around Pandas
as the tool to help you think about data processing and give you the
foundation to explore other dataframe libraries.

Look out for additional chapters published for free with the book. Many
of the libraries mentioned in this part of the book will be expanded upon
and released online.

https://plotly.com/dash/
https://streamlit.io/
https://panel.holoviz.org/
https://voila.readthedocs.io/
https://shiny.rstudio.com/py/

20

It’s Dangerous To Go Alone!

Heed this advice! One of the best ways to learn a language is to work on a
problem with other people. For example, in pair-programming, two people
program together. Alternatively, one person can do the typing while the
other person talks through the code. This allows two sets of eyes to look at
the code, improves communication between the two colleagues, and gives a
sense of ownership. These shared-programming techniques both contribute
to higher-quality code and make programming fun, which means you’re
more likely to improve by doing it more often.

20.1 Local Meetups
Many cities have a Meetup culture in which people can find a common
hobby or topic and have a place to “meet up”.1 Python-specific meetups
exist, but it’s worth going to others that focus on data cleaning,
visualization, or machine learning. Even meetups in other languages can be
helpful. The more you expose yourself to the community and the field, the
more connections you can make with your own work.
1. Meetup: https://www.meetup.com/

If there isn’t a meetup in your city, create one! You can start with friends
and people who are interested, and begin to host regular times to meet and
talk. Keep it fun. Talk about topics of interest at a bar. Again, the more
enjoyable something is, the more likely you are to do it.

Since the COVID-19 pandemic, many meetups have moved to virtual +
online, and hybrid options for meetups are becoming the norm.

20.2 Conferences

https://www.meetup.com/

Conferences are a great way to learn about the latest libraries and
techniques. You also get to meet new people as well as library maintainers.
Many conferences sponsor a “sprint day”, during which people are
encouraged to work on code and contribute to a library. This is a great way
to learn about the library itself, to improve your programming skills, and to
contribute to the community.

PyCon is the main Python conference.2 It includes topics across the
entire Python ecosystem, such as Django3 and Flask4 for web development.
The talks for these conferences are usually recorded and freely available.5
The SciPy6 and EuroSciPy7 conferences focus more on the scientific and
analytics stack aspects of Python. I have attended SciPy over the past few
years, and I can assure you that the tutorials cover a vast set of topics. The
best way to view the conference tutorials and talks is to find the respective
YouTube page for the conference.
2. PyCon conference: https://us.pycon.org

3. Django: www.djangoproject.com

4. Flask: https://flask.palletsprojects.com
5. Python 2017 talks:
www.youtube.com/channel/UCrJhliKNQ8g0qoE_zvL8eVg

6. SciPy Conference: https://conference.scipy.org

7. EuroSciPy Conference: https://www.euroscipy.org/

AnacondaCon is a newer conference that likewise has videos posted
online.8 Jupyter also hosts its own conferences. Jupyter Days and
JupyterCon have videos, and you can hear when the next conference is on
the main Jupyter blog.9 Finally, PyData, the nonprofit that supports many
open-source projects, sponsors conferences and provides videos.10

8. AnacondaCon Conference: https://anacondacon.io/

9. JupyterCon Conference https://jupytercon.com/

10. PyData: https://pydata.org/

20.3 The Carpentries

https://us.pycon.org/
http://www.djangoproject.com/
https://flask.palletsprojects.com/
http://www.youtube.com/channel/UCrJhliKNQ8g0qoE_zvL8eVg
https://conference.scipy.org/
https://www.euroscipy.org/
https://anacondacon.io/
https://jupytercon.com/
https://pydata.org/

The Carpentries is a nonprofit organization that aims to teach all the
programming and data skills to researchers. It’s where I got my start into
data science education. Software-Carpentry, Data Carpentry, and Library
Carpentry are sister organizations under The Carpentries.

The Carpentries does a great job sharing their lesson materials. If you
ever need a resource to learn or teach out of, I cannot recommend the
materials from The Carpentries enough:
https://carpentries.org/workshops-curricula/.

20.4 Podcasts
Data science related podcasts are plentiful. Here are some that I listen to (in
no particular order):

Vanishing Gradients:
https://vanishinggradients.fireside.fm/
Data Skeptic: https://dataskeptic.com/
Talk Python to Me: https://talkpython.fm/
Python Bytes: https://pythonbytes.fm/
Super Data Science:
https://www.superdatascience.com/podcast
Shiny Developer Series: https://shinydevseries.com/
R Weekly Highlights: https://rweekly.fireside.fm/
Not So Standard Deviations: https://nssdeviations.com/
Partially Derivative (discontinued):
http://partiallyderivative.com/
Linear Digressions (discontinued):
http://lineardigressions.com/
Becoming a Data Scientist (discontinued):
www.becomingadatascientist.com

While this isn’t an exhaustive list, these podcasts will give you a good
sense of the Python and data science community and the tools, news, and
thinking behind many data science methods.

https://carpentries.org/workshops-curricula/
https://vanishinggradients.fireside.fm/
https://dataskeptic.com/
https://talkpython.fm/
https://pythonbytes.fm/
https://www.superdatascience.com/podcast
https://shinydevseries.com/
https://rweekly.fireside.fm/
https://nssdeviations.com/
http://partiallyderivative.com/
http://lineardigressions.com/
http://www.becomingadatascientist.com/

20.5 Other Resources
Instead of trying to create a list of Python resources in a book, I’ve started a
project called “The Big Book of Python” that aims to parallel “The Big
Book of R”. These resources aim to curate a bunch of free resources into a
single page. I hope these resources help you with your future data science
journey.

https://www.bigbookofpython.com/
https://www.bigbookofr.com/

Conclusion
This book was intended to provide you with a solid foundation from which
to learn more about Pandas and its related libraries. Be sure to check out the
accompanying github repository for the book for updates and additional
resources:
https://github.com/chendaniely/pandas_for_everyone
.

https://www.bigbookofpython.com/
https://www.bigbookofr.com/
https://github.com/chendaniely/pandas_for_everyone

Part VI

Appendices

Appendix A Concept Maps

Appendix B Installation and Setup

Appendix C Command Line

Appendix D Project Templates

Appendix E Using Python

Appendix F Working Directories

Appendix G Environments

Appendix H Install Packages

Appendix I Importing Libraries

Appendix J Code Style

Appendix K Containers: Lists, Tuples, and Dictionaries

Appendix L Slice Values

Appendix M Loops

Appendix N Comprehensions

Appendix O Functions

Appendix P Ranges and Generators

Appendix Q Multiple Assignment

Appendix R Numpy ndarray

Appendix S Classes

Appendix T SettingwithCopyWarning

Appendix U Method Chaining

Appendix V Timing Code

Appendix W String Formatting

Appendix X Conditionals (if-elif-else)

Appendix Y New York ACS Logistic Regression Example

Appendix Z Replicating Results in R

A

Concept Maps

Figure A.1 Concept Map for Pandas DataFrame Basics

Figure A.2 Concept Map for Pandas Data Structures Basics

Figure A.3 Concept Map for Plotting Basics

Figure A.4 Concept Map for Tidy Data

Figure A.5 Concept Map for Apply Functions

B

Installation and Setup

B.1 Install Python
Since Software-Carpentry has been using the Anaconda distribution, I will
be using it for the installation instructions described in this appendix. You
can also find the generic workshop template installation instructions for
Python here:

Click here to view code image

https://carpentries.github.io/workshop-
template/#python

B.1.1 Anaconda
For the most part, the directions listed on the main Anaconda download site
will be the same as the ones listed in this book.1 You can also look at the
Anaconda installation documentation.2 Be sure to use the Python 3 version.
If you also need to have Python 2, follow the instructions in Appendix F on
creating Python environments.
1. https://www.anaconda.com/products/distribution

2. https://docs.continuum.io/anaconda/install/

B.1.1.1 Windows

Install Anaconda using the Windows installer with all the default settings.
Make sure you check off the box for Add Anaconda to my PATH
environment variable.

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appb_images.xhtml#f0373-01
https://carpentries.github.io/workshop-template/#python
https://www.anaconda.com/products/distribution
https://docs.continuum.io/anaconda/install/

B.1.1.2 Mac

Install Anaconda using the Mac installer with all the default settings.

B.1.1.3 Linux

Installing on Linux involves downloading the .sh file and running it from
the command line. You can do this by navigating to the Anaconda
download site and downloading the .sh file there. Alternatively, if you are
on a server, for example, you can use the wget command. Assuming the
.sh file is in your Downloads folder:

Click here to view code image

cd ~/Downloads
bash Anaconda3- * .sh # your version number
will differ

Note that the version of Anaconda will be different by the time this book
is published.

Keeping the default options is a good choice. When the installation
process asks you to read the license agreement, you can press q to exit or
accept by typing yes.

Type yes when the installer asks to prepend Anaconda to the PATH.
This makes Anaconda the default Python distribution on the system.

When you are done, close the current terminal window. Any new
terminal moving forward will default to the Anaconda Python distribution.

B.1.2 Miniconda
Anaconda is a big download because it comes with a lot of packages and
dependencies pre-installed. Miniconda is an alternative to the full Anaconda
distribution. It only comes with Python installed, and all the other packages
need to be installed manually.

B.1.3 Uninstall Anaconda or Miniconda

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appb_images.xhtml#f0373-02

Since Anaconda will create an Anaconda3 folder in your home directory,
deleting this folder will completely remove anything associated with
Anaconda on the machine. This is one of my favorite features of using
Anaconda. If I install a bad Python package, I can reset everything back to
“normal” by deleting the Anaconda3 folder.

For Miniconda, you will have a miniconda3 folder instead.

B.1.4 Pyenv
Pyenv is a tool that lets you manage different versions of Python. It also has
a plugin for you to also manage package environments. The benefit that
pyenv has over conda is that it plays a little bit nicer with other tools
outside of Python, since it only manages the Python version.

Below are some resources to install, setup, and use pyenv

Posit, PBC (formerly RStudio, PBC has a minimal viable python setup
instruction for Pyenv:
https://solutions.rstudio.com/python/minimum-
viable-python/
Calvin Hendryx-Parker gave a great talk at PyCon 2022 on
Bootstrapping Your Local Python Environment that goes over the
Pyenv setup with the pyenv-virtualenv plugin:
https://www.youtube.com/watch?v=-YEUFGFHWgQ
Real Python Managing Multiple Python Versions With pyenv:
https://realpython.com/intro-to-pyenv/

The main downside is that Pyenv plugins are not supported on Windows.
That means the very useful pyenv-virtualenv plugin isn’t usable. For that
reason, if you want to go to Pyenv route, I suggest you look into Pipenv for
the virtual environment management, and use Pyenv for the Python version
management. This way, you have a setup that is OS agnostic.

B.2 Install Python Packages
See Appendix H for how to install the packages needed to code along this
book. If you are using a Python setup other than Anaconda (or its

https://solutions.rstudio.com/python/minimum-viable-python/
https://www.youtube.com/watch?v=-YEUFGFHWgQ
https://realpython.com/intro-to-pyenv/

derivatives that use conda), You need to replace the conda install
command with pip install.

B.3 Download Book Data
You can download the data sets for the book by going to the book’s
repository and downloading the ZIP file of the repo.

The book’s repository can be found here:
https://github.com/chendaniely/pandas_for_everyone

You can do this by going to the main repository page then clicking Code >
Download ZIP (Figure B.1).

https://github.com/chendaniely/pandas_for_everyone

Figure B.1 Clicking on Code > Download ZIP to download the data
sets for the book. You can also try the direct URL to the ZIP file here:
https://github.com/chendaniely/pandas_for_everyo

ne/archive/refs/heads/master.zip

This will download everything in the repository as well as provide a folder
in which you can put your Python scripts or notebooks. You can also copy
the data folder from the repository and put it in a folder of your choosing.
The instructions on the GitHub repository will be updated as necessary to

facilitate downloading the data for the book.

https://github.com/chendaniely/pandas_for_everyone/archive/refs/heads/master.zip

C

Command Line

Having some familiarity with the command line can go a very long way.
My main suggestion is to go through the Software-Carpentry Unix Shell
lesson.1 The “Navigating Files and Directories” episode (i.e., lesson) is
probably the most important lesson there for this book, but learning about
“Shell Scripts” is also important when you are running your Python code
from the command line.
1. https://swcarpentry.github.io/shell-novice/

Since this book is mainly a Python book about Pandas, I won’t be able to
go over all of the topics in learning the Unix Shell. The main takeaway I
want to convey in this appendix is the notion of a “working directory”.

C.1 Installation
Likely, if you are on a Mac or Linux system, you will already have access
to the Bash Shell. By default, Windows does not have it installed.

C.1.1 Windows
In Windows, the best installation approach is to follow the Software-
Carpentry Bash Shell instructions.2 You will be installing Git for
Windows,3 which will also provide the Bash Shell.
2. https://carpentries.github.io/workshop-
template/#shell

3. https://gitforwindows.org/

If you do not want to use Git for Windows, Anaconda also comes with
its own Anaconda Prompt that you can use to run Python code from the

https://swcarpentry.github.io/shell-novice/
https://carpentries.github.io/workshop-template/#shell
https://gitforwindows.org/

command line. The only difference here is that the Anaconda Prompt will
use Windows command line commands, instead of the UNIX-like ones on a
Mac or Linux system. However, running your Python scripts from the
command line will be the same.

C.1.2 Mac
You can find the Terminal application in Applications /
Utilities. That is, in your main application folder, there will be a folder
called Utilities, where you can find the Terminal.

iTerm2 is a popular alternative to the default Mac Terminal
application.4

4. https://iterm2.com/

C.1.3 Linux
The terminal and bash are set up on Linux systems by default.

C.2 Basics
At minimum, you should know the following commands:

Where you currently are in your file system (Windows, Mac, Linux:
pwd)
List the contents of the current folder you are in (Windows: dir, Mac,
Linux: ls)
Change to a different folder (: cd <folder name>)
Run a Python script (Windows, Mac, Linux: python <python
script>.py)

Another useful “command” is .. (two dots), which refers to the parent
folder of where you are now (Windows, Mac, Linux: pwd).

https://iterm2.com/

D

Project Templates

It is very easy and convenient to put all the data, code, and outputs in the
same folder. However, this convenience is negated by disadvantages of
having a messy project folder. That is, putting everything into a single
folder can easily lead to a folder on your computer with tens or hundreds of
files, which can become unmanageable and confusing for not only others,
but yourself.

At minimum, I suggest the following folder structure for any analysis
project:

my_project/
 |
 |- data/
 |
 |- analysis/
 |
 +- output/

I put all my data sets in the data folder, any code I write for analysis in
the analysis folder (sometimes I will name this code or src), and
finally cleaned data sets or other outputs such as figures in the output
folder. You can adapt this general folder structure as you need.

Here is a paper reference that discusses the theory a bit further:

Noble WS. (2009). “A Quick Guide to Organizing Computational
Biology Projects.” PLoS Comput Biol 5(7): e1000424.
https://doi.org/10.1371/journal.pcbi.1000424

https://doi.org/10.1371/journal.pcbi.1000424

E

Using Python

There are many different ways to use Python. The “simplest” way is to use
a text editor and terminal. However, projects like IPython and Jupyter have
enhanced Python’s REPL (Read–Evaluate–Print–Loop) interface, making it
one of the standard interfaces in the data analytics and scientific Python
communities.

E.1 Command Line and Text Editor
To use Python from the command line and text editor, you need is a plain
text editor and a terminal. Although any plain text editor would work, a
“good” one would have a Python feature that will do syntax highlighting
and auto-completion. These days VSCode has become a popular text editor
that has good extensions for Python support:
https://code.visualstudio.com/

If you are on Windows, be careful not to do too much editing using the
default Notepad application, especially if you plan to collaborate with users
on other operating systems. Line endings in Notepad are different from
those in Windows and on *nix machines (Linux and Macs). If you ever
open up a Python file and the indentations and newlines do not appear
correctly, it’s probably because of how Windows is interpreting the newline
endings of the file.

When you work in a text editor, all your Python code will be saved in a
.py script. You can run the script by executing it from the command line.
For example, if your script’s name is my_script.py, you can execute all
the code in the script, line-by-line, with the following command:

python my_script.py

https://code.visualstudio.com/

More information about running Python scripts from the command line
is found in Appendix C and Appendix F.

E.2 Python and IPython
Under Windows, Anaconda will provide an “Anaconda command prompt”
application. This is just like the regular windows command prompt but is
configured to use the Anaconda Python distribution. Typing python or
ipython here will open the python or ipython command prompt,
respectively.

For OSX and Linux, you can run the python or ipython command
prompt by typing the respective command in a terminal.

There are a few differences between the python and ipython
command prompts. The regular python prompt takes only Python
commands, whereas the ipython prompt provides some useful additional
commands you can type to enhance your Python experience. My personal
suggestion is to use the ipython prompt.

You can directly type Python commands into either prompt, or you can
save your code in a file and then copy/paste commands into the prompt to
run your code.

E.3 Jupyter
Instead of running python or ipython in the command prompt to run
Python, you can run the jupyter notebook or jupyter lab. This
will open another Python interface in a web browser. Even though a web
browser is opened, it does not actually need any Internet connection to run,
nor is any information sent across the Internet.

The jupyter notebook will open in a location on your computer.
You can create a new notebook by clicking the “New” button on the top
right corner and selecting “python.” This will open up a “notebook” where
you can type your python commands. Each cell provides a site where you
can type your code, and you can run the cell by using the commands in the
“Cell” menu bar. Alternatively, you can press Shift + Enter to run the
cell and create a new cell below it, or press Ctrl + Enter to simply run
the cell.

An especially useful aspect of the notebook is the ability to interweave
your Python code, its output, and regular prose text. Similar to how the text,
code, and output is presented in this book.

To change the cell type, make sure you have the cell selected. Then, on
the top right below the menu bar, click a drop-down menu that says
“Code.” If you change this to “Markdown,” you can write regular prose text
that is not Python code to help interpret your results, or record notes about
what your code is doing.

E.4 Integrated Development Environments (IDEs)
Anaconda comes with an IDE called Spyder. Those who are familiar with
Matlab or RStudio might take comfort in having access to a similar
interface.

Other IDEs include the following:

nteract: https://nteract.io/
PyCharm: https://www.jetbrains.com/pycharm/
VSCode: https://code.visualstudio.com/

I suggest exploring the various ways to use Python and seeing which
works best for you. IPython/script, Jupyter notebook, and Spyder come pre-
installed with Anaconda, so those would be the most accessible, but the
other IDEs might work better for your particular circumstances.

https://nteract.io/
https://www.jetbrains.com/pycharm/
https://code.visualstudio.com/

F

Working Directories

Building on Appendix C, Appendix D, and Appendix E, this appendix
covers working directories, especially when you are working with project
templates (Appendix D).

A working directory simply tells the program where the base or
reference location is. It’s common to place all of your code, data, output,
figures, and other project files all in the same folder, because it means the
working directory is easy to figure out. However, this practice can easily
lead to a messy folder, as mentioned in Appendix D.

We like fully documented project templates that tell us where and how
to run our scripts. With this approach, all our scripts have a predictable and
consistent working directory.

There are a few ways to figure out what your current working directory
is. If you are using IPython, then you can type pwd into the IPython
prompt, and it will return the folder path of your current working directory.
This method also works if you are using the Jupyter notebook.

If you are executing your Python code as scripts directly in the
command line, then the working directory is the output after you run cd on
Windows (note there is nothing else after the command), and pwd on OSX
and Linux.

Here is an example of how working directories affect your code.
Suppose you have the following project structure, where the current
working directory is denoted by a star (*).

my_project/
 |
 |- data/
 | |

 | + data.csv
 |
 |- src/ *
 | |
 | + script.py
 |
 +- output/

If your script.py wants to read in a data set from the data folder, it
would have to do something like data =
pd.read_csv('../data/data.csv'). Note that because the
current working directory is in the src folder, to navigate to the
data.csv, you need to go up one level .. to the my_project folder
and then down into the data folder to get to your data set. The benefit of
this is that you can run your code by tying it to python script.py,
though this can lead to some issues discussed later in this appendix.

Let’s use a different working directory:

my_project/ *
 |
 |- data/
 | |
 | + data.csv
 |
 |- src/
 | |
 | + script.py
 |
 +- output/

Now that the working directory is on the top level, script.py can
reference the data set with the command data =
pd.read_csv('data/data.csv'). Note that you no longer need to
go up a level to reference your data. However, now if you want to run your

code, you have to reference the file as such: python src/script.py.
This may be annoying, but it allows you to create any amount of
subfolders, and data and output will always be referenced the same
way across all the files.

It also means you as a user have one and only one working directory to
execute any script in this project.

G

Environments

Using environments is a great way to work with different versions of
Python and/or packages. It also provides an isolated environment to install
everything so that if something goes wrong, it won’t affect the rest of the
system. Python environments are particularly handy when you need
different versions of packages installed across different projects. You can
also use environments to see all the package dependencies.

G.1 Conda Environments
The Anaconda Python distribution comes with conda. The “Getting
Started” guide is a useful resource in this case.1 If you installed Anaconda
with Python 3 (Appendix B), this appendix will show you how to create a
separate environment that has a different version of Python in it. If we run
python in the command line, we will begin with Python 3.9. Your exact
version will differ from that shown in this book.
1. https://conda.io/projects/conda/en/latest/user-
guide/getting-started.html

Click here to view code image

% python
Python 3.9.12 (main, Jun 1 2022, 06:34:44)
[Clang 12.0.0] :: Anaconda, Inc. on darwin
Type "help", "copyright", "credits" or "license"
for more information.
>>>

https://conda.io/projects/conda/en/latest/user-guide/getting-started.html
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appg_images.xhtml#f0385-01

To create a new environment we run the conda command from the
command line. We use the create command within conda and specify a
--name for the environment. Here we are naming our Python environment
py38. By default, the system will create a Python 3.9 environment, so we
have to specify our Python version with python=3.8.

Click here to view code image

type this in the (bash) terminal, not in
python
conda create -n py38 python=3.8

After running the command, you will see the following output.

Click here to view code image

Collecting package metadata
(current_repodata.json): done
Solving environment: done

Package Plan ##

 environment location:
/Users/danielchen/anaconda3/envs/py38

 added / updated specs:
 - python=3.8

The following packages will be downloaded:

 package | build
 ---------------------------|-----------------
 ca-certificates-2022.07.19 | hca03da5_0
124 KB

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appg_images.xhtml#f0385-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appg_images.xhtml#f0386-01

 certifi-2022.6.15 | py38hca03da5_0
153 KB
 libffi-3.4.2 | hc377ac9_4
106 KB
 ncurses-6.3 | h1a28f6b_3
866 KB
 openssl-1.1.1q | h1a28f6b_0
2.2 MB
 pip-22.1.2 | py38hca03da5_0
2.5 MB
 python-3.8.13 | hbdb9e5c_0
10.6 MB
 setuptools-63.4.1 | py38hca03da5_0
1.1 MB
 sqlite-3.39.2 | h1058600_0
1.1 MB
 --

 Total:
18.6 MB

The following NEW packages will be INSTALLED:

 ca-certificates pkgs/main/osx-arm64::ca-
certificates-2022.07.19-hca03da5_0
 certifi pkgs/main/osx-arm64::certifi-
2022.6.15-py38hca03da5_0
 libcxx pkgs/main/osx-arm64::libcxx-
12.0.0-hf6beb65_1
 libffi pkgs/main/osx-arm64::libffi-
3.4.2-hc377ac9_4
 ncurses pkgs/main/osx-arm64::ncurses-
6.3-h1a28f6b_3

 openssl pkgs/main/osx-arm64::openssl-
1.1.1q-h1a28f6b_0
 pip pkgs/main/osx-arm64::pip-22.1.2-
py38hca03da5_0
 python pkgs/main/osx-arm64::python-
3.8.13-hbdb9e5c_0
 readline pkgs/main/osx-arm64::readline-
8.1.2-h1a28f6b_1
 setuptools pkgs/main/osx-arm64::setuptools-
63.4.1-py38hca03da5_0
 sqlite pkgs/main/osx-arm64::sqlite-
3.39.2-h1058600_0
 tk pkgs/main/osx-arm64::tk-8.6.12-
hb8d0fd4_0
 wheel pkgs/main/noarch::wheel-0.37.1-
pyhd3eb1b0_0
 xz pkgs/main/osx-arm64::xz-5.2.5-
h1a28f6b_1
 zlib pkgs/main/osx-arm64::zlib-
1.2.12-h5a0b063_2

Proceed ([y]/n)? y

Downloading and Extracting Packages
certifi-2022.6.15 | 153 KB |
########################## | 100%
python-3.8.13 | 10.6 MB |
########################## | 100%
openssl-1.1.1q | 2.2 MB |
########################## | 100%
setuptools-63.4.1 | 1.1 MB |
########################## | 100%

ca-certificates-2022 | 124 KB |
########################## | 100%
pip-22.1.2 | 2.5 MB |
########################## | 100%
sqlite-3.39.2 | 1.1 MB |
########################## | 100%
ncurses-6.3 | 866 KB |
########################## | 100%
libffi-3.4.2 | 106 KB |
########################## | 100%
Preparing transaction: done
Verifying transaction: done
Executing transaction: done

To activate this environment, use

$ conda activate py38

To deactivate an active environment, use

$ conda deactivate

The last few lines of the output tell you how you can use your newly
created environment. If we run conda activate py38 from the
command line now, our prompt will be prepended with our environment
name. If we run python in the terminal to launch Python, you will see that
a different version of Python is now being used.

Click here to view code image

% python

Python 3.8.13 (default, Mar 28 2022, 06:13:39)
[Clang 12.0.0] :: Anaconda, Inc. on darwin

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appg_images.xhtml#f0387-02

Type "help", "copyright", "credits" or "license"
for more information.

To delete an environment, navigate to your anaconda3 folder. A
folder there called envs stores all your environments. In this example, if
we delete the py38 folder within envs, it’s as if we never created our
environment, and it will be removed.

Within a given environment, any package or library we install
(Appendix H) within it will be specific to that particular environment.
Thus, we can have not only different versions of Python between
environments but also different versions of libraries. You can create a
separate Python environment (p4e for “Pandas for Everyone”) for this
book as well.}

Click here to view code image

conda create --name p4e python=3

You can install the libraries needed by following the instructions in
Appendix H.

G.2 Pyenv + Pipenv
Calvin Hendryx-Parker gave a great talk at PyCon 2022 on Bootstrapping
Your Local Python Environment that goes over the Pyenv setup with the
pyenv-virtualenv plugin: https://www.youtube.com/watch?v=-
YEUFGFHWgQ

The Hitchhiker’s Guide to Python and Real Python also have resources
on using Pipenv for virtual environments:

https://docs.python-
guide.org/dev/virtualenvs/#virtualenvironments-
ref
https://realpython.com/pipenv-guide/

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appg_images.xhtml#f0387-03
https://www.youtube.com/watch?v=-YEUFGFHWgQ
https://docs.python-guide.org/dev/virtualenvs/#virtualenvironments-ref
https://realpython.com/pipenv-guide/

H

Install Packages

There will be times when you have to install a Python package that did not
come with your distribution. If you used Anaconda to install Python, then
you will have a package manager called conda.

conda has gained popularity over the past few years because of its
ability to install Python packages that require non-Python dependencies.
You may have heard of other package managers, such as pip.

This book uses a few packages that need to be installed. If you installed
the entire Anaconda distribution, then libraries like Pandas are already
installed. But there’s no harm in running the command to reinstall a library.
Check the accompanying repository1 for all the commands to install the
relevant libraries for this book.
1.
https://github.com/chendaniely/pandas_for_everyone

We can use conda to install Python libraries. If you created a separate
environment for the book (Appendix G), then you can conda activate
p4e to get into the “Pandas for Everyone” environment.
conda’s default repository is maintained by Anaconda, Inc (formerly

known as Continuum Analytics). We can install the pandas package using
conda.

Click here to view code image

typed into your terminal, not in Python
conda install pandas

For certain packages that are not listed in the default channel, or if the
default channel does not have the latest version of a package, we can use
the and community-maintained conda-forge channel.2

https://github.com/chendaniely/pandas_for_everyone
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/apph_images.xhtml#f0389-01

2. https://conda-forge.org/

Click here to view code image

conda install -c conda-forge pandas

Lastly, if the package isn’t listed in conda, you can also use pip to
install packages.

pip install pandas

For example, to install all the libraries used in this book, you can run the
following lines:

Click here to view code image

conda install -c conda-forge pandas matplotlib
pyarrow openpyxl \
 seaborn numba regex pandas-datareader
statsmodels scikit-learn \
 arrow lifelines

Again, it’s a good idea to check the accompanying repository for the
most recent installation and setup instructions.

H.1 Updating Packages
You can update conda itself with the following command:

conda update conda

Run this command to update all the packages in a given conda
environment:

conda update --all

https://conda-forge.org/
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/apph_images.xhtml#f0389-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/apph_images.xhtml#f0390-01

I

Importing Libraries

Libraries provide additional functionality in an organized and packaged
way. We mainly work with the Pandas library throughout this book, but
there are times when we will import other libraries. You will see many
different ways to import a library. The most basic way is to simply import
the library by its name.

import pandas

When we import a library, we can use its functions within Pandas using
dot notation.

Click here to view code image

print(pandas.read_csv('data/concat_1.csv'))

 A B C D
0 a0 b0 c0 d0
1 a1 b1 c1 d1
2 a2 b2 c2 d2
3 a3 b3 c3 d3

Python gives us a way to alias libraries. This allows us to use an
abbreviation for longer library names. To do so, we specify the alias after
the as statement.

import pandas as pd

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appi_images.xhtml#f0391-01

Now, instead of referring to the library as pandas, we can use our
abbreviation, pd.

Click here to view code image

print(pd.read_csv('data/concat_1.csv'))

 A B C D
0 a0 b0 c0 d0
1 a1 b1 c1 d1
2 a2 b2 c2 d2
3 a3 b3 c3 d3

Sometimes, if only a few functions are needed from a library, we can
import them directly.

from pandas import read_csv

This will allow us to use the read_csv() function directly, without
specifying the library it is coming from.

Click here to view code image

print(read_csv('data/concat_1.csv'))

 A B C D
0 a0 b0 c0 d0
1 a1 b1 c1 d1
2 a2 b2 c2 d2
3 a3 b3 c3 d3

Finally, there is a method that enables users to import all the functions of
a library directly into the namespace.

from pandas import *
from numpy import *

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appi_images.xhtml#f0391-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appi_images.xhtml#f0392-01

from scipy import *

This method is not recommended because libraries contain many
functions, and a function can mask an existing function. For example, if we
import all the functions from numpy and from scipy, which mean()
function is used? It’s not as clear as saying numpy.mean() and
scipy.mean().

J

Code Style

The Python Enhancement Proposal 8 (PEP8) discusses the official Python
code style guide: https://peps.python.org/pep-0008/.

Reading through the style guide is a good way to learn the syntax of a
language. Just keep in mind that you do not need to adhere to every single
rule.

Tools like Black1 have been created for Python so your code can be
automatically formatted. This is useful so you can have the tool do your
formatting for you, and it’s one thing less for you to worry about.
1. https://github.com/psf/black

While writing this book, I used the online black playground, to format
some of the code: https://black.vercel.app/. Not every piece of
code in the book follows PEP8 or Black. Sometimes, the code puts in
additional line breaks to emphasize the code being taught.

J.1 Line Breaks in Code
Writing analysis code does get very wide at times. An additional constraint
in the book is that the code needs to be even more narrow compared to the
PEP8 rules.

There are two ways you can break up wide lines of code.

1. Using the \ at the end of a line to tell Python that the code continues
on the next line

2. Wrapping your entire statement around a pair of round parentheses (
)

Let’s use the example from Section 4.3.

https://peps.python.org/pep-0008/
https://github.com/psf/black
https://black.vercel.app/

Click here to view code image

import pandas as pd
weather = pd.read_csv('data/weather.csv')

The first step in tidying up the data set was to call the .melt()
method.

Click here to view code image

this code is wide and will run off the page
weather_melt = weather.melt(id_vars=["id",
"year", "month", "element"],
var_name="day", value_name="temp")

This ends up being a wide line of code. So we can put in line breaks
between the round parenthesis of the .melt() method call.

Click here to view code image

previous line of code can be rewritten as
weather_melt = weather.melt(
 id_vars=["id", "year", "month", "element"],
 var_name="day",
 value_name="temp",
)

In Pandas, many of the methods can be chained together (Appendix U).
A common practice is to put each method call on its own line. This way if
your eyes look down a straight line, you can get a rough overview of all the
steps your data is going through. However, just putting arbitrary line breaks
outside of a function call does not work.

Click here to view code image

this will error, putting line break before the
.melt

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appj_images.xhtml#f0393-01
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appj_images.xhtml#f0393-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appj_images.xhtml#f0394-01
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appj_images.xhtml#f0394-02

previous line of code can be rewritten as
weather_melt = weather
 .melt(
 id_vars=["id", "year", "month", "element"],
 var_name="day",
 value_name="temp")

IndentationError: unexpected indent
(3804754158.py, line 4)

We can solve this by using one of the techniques listed above

Click here to view code image

use a \ at the end of the line
weather_melt = weather \
 .melt(
 id_vars=["id", "year", "month", "element"],
 var_name="day",
 value_name="temp")

wrap the entire statement around ()
weather_melt = (weather
 .melt(
 id_vars=["id", "year", "month", "element"],
 var_name="day",
 value_name="temp")
)

The () method is the style you will see more often reading Pandas
code.

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appj_images.xhtml#f0394-03

K

Containers: Lists, Tuples, and
Dictionaries

Python comes with built-in container objects. These objects store data and
are also iterable, meaning there is a mechanism to iterate through the
values stored in the container.

K.1 Lists
Lists are a fundamental data structure in Python. They are used to store
heterogeneous data and are created with a pair of square brackets, [].

Click here to view code image

my_list = ['a', 1, True, 3.14]
print(my_list)

['a', 1, True, 3.14]

We can subset the list using square brackets and provide the index of the
item we want.

Click here to view code image

get the first item - index 0
print(my_list[0])

a

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appk_images.xhtml#f0395-01
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appk_images.xhtml#f0395-02

We can also pass in a range of values (Appendix P).

get the first 3 values
print(my_list[:3])

['a', 1, True]

We can reassign values when we subset values from the list.

reassign the first value
my_list[0] = 'zzzzz'
print(my_list)

['zzzzz', 1, True, 3.14]

Lists are objects in Python (Appendix S), so they will have methods that
they can perform. For example, we can .append() values to the list.

Click here to view code image

my_list.append('appended a new value!')
print(my_list)

['zzzzz', 1, True, 3.14, 'appended a new value!']

More about lists and their various methods can be found in the
documentation.1
1.
https://docs.python.org/3/tutorial/datastructures.
html#more-on-lists

K.2 Tuples
A tuple is similar to a list, in that both can hold heterogeneous bits of
information. The main difference is that the contents of a tuple are

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appk_images.xhtml#f0396-01
https://docs.python.org/3/tutorial/datastructures.html#more-on-lists

“immutable”, meaning they cannot be changed. They are created with a pair
of round parentheses, ().

Click here to view code image

my_tuple =('a', 1, True, 3.14)
print(my_tuple)

('a', 1, True, 3.14)

Subsetting items can be accomplished in the same ways as for a list (i.e.,
you use square brackets).

get the first item
print(my_tuple[0])

a

However, if we try to change the contents of an index, we will get an
error.

Click here to view code image

this will cause an error
my_tuple[0] = 'zzzzz'

TypeError: 'tuple' object does not support item
assignment

More information about tuples can be found in the documentation.2
2.
https://docs.python.org/3/tutorial/datastructures.
html#tuples-and-sequences

K.3 Dictionaries

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appk_images.xhtml#f0396-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appk_images.xhtml#f0396-04
https://docs.python.org/3/tutorial/datastructures.html#tuples-and-sequences

Python dictionaries (dict) are efficient ways of storing information. Just
as an actual dictionary stores a word and its corresponding definition, a
Python dict stores some key and a corresponding value. Using
dictionaries can make your code more readable because a label is assigned
to each value in the dictionary. Contrast this with list objects, which are
unlabeled. Dictionaries are created by using a set of curly braces, { }.

my_dict = {}
print(my_dict)

{}

print(type(my_dict))

<class 'dict'>

When we have a dict, we can add values to it by using square
brackets, []. We put the key inside these square brackets. Usually, it is
some string, but it can actually be any immutable type (e.g., a Python
tuple, which is the immutable form of a Python list). Here we create
two keys, fname and lname, for a first name and last name, respectively.

my_dict['fname'] = 'Daniel'
my_dict['lname'] = 'Chen'

We can also create a dictionary directly, with key–value pairs instead of
adding them one at a time. To do this, we use our curly braces, { }, with
the key–value pairs being specified by a colon.

Click here to view code image

my_dict = {'fname': 'Daniel', 'lname': 'Chen'}
print(my_dict)

{'fname': 'Daniel', 'lname': 'Chen'}

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appk_images.xhtml#f0397-03

To get the values from our keys, we can use the square brackets with the
key inside.

fn = my_dict['fname']
print(fn)

Daniel

We can also use the .get() method.

ln = my_dict.get('lname')
print(ln)

Chen

The main difference between these two ways of getting the values from
the dictionary is the behavior that occurs when you try to get a nonexistent
key. When using the square-bracket notation, trying to get a key that does
not exist will return an error.

will return an error
print(my_dict['age'])

KeyError: 'age'

In contrast, the .get() method will return None.

will return None
print(my_dict.get('age'))

None

To get all the keys from the dict, we can use the .keys() method.

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appk_images.xhtml#f0398-03

get all the keys in the dictionary
print(my_dict.keys())

dict_keys(['fname', 'lname'])

To get all the values from the dict, we can use the .values()
method.

Click here to view code image

get all the values in the dictionary
print(my_dict.values())

dict_values(['Daniel', 'Chen'])

To get every key–value pair, you can use the .items() method. This
can be useful if you need to loop through a dictionary.

Click here to view code image

print(my_dict.items())

dict_items([('fname', 'Daniel'), ('lname',
'Chen')])

Each key–value pair is returned in a form of a tuple, as indicated by
the use of round parentheses, ().

More on dictionaries can be found in the official documentation on data
structures.3
3.
https://docs.python.org/3/tutorial/datastructures.
html#dictionaries

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appk_images.xhtml#f0398-04
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appk_images.xhtml#f0398-05
https://docs.python.org/3/tutorial/datastructures.html#dictionaries

L

Slice Values

Slicing details were also described in Section 11.1.1.
Python is a zero-indexed language (things start counting from zero), and

is also left inclusive, right exclusive you are when specifying a range of
values. This applies to objects like lists and Series, where the first
element has a position (index) of 0. When creating ranges or slicing a
range of values from a list-like object, we need to specify both the
beginning index and the ending index. This is where the left inclusive, right
exclusive terminology comes into play. The left index will be included in
the returned range or slice, but the right index will not.

Think of items in a list-like object as being fenced in. The index
represents the fence post. When we specify a range or a slice, we are
actually referring to the fence posts, so that everything between the posts is
returned.

Figure L.1 illustrates why this may be the case. When we slice from 0 to
1, we get only one value back; when we slice from 1 to 3, we get two
values back.

l = ['one', 'two', 'three']

print(l[0:1])

['one']

print(l[1:3])

['two', 'three']

Figure L.1 Think of Slicing Values as Referring to the Fence Posts

The slicing notation used, :, comes in two parts. The value on the left
denotes the starting value (left inclusive), and the value on the right denotes
the ending value (right exclusive). We can leave one of these values blank,
and the slicing will start from the beginning (if we leave the left value
blank) or go to the end (if we leave the right value blank).

print(l[1:])

['two', 'three']

print(l[:3])

['one', 'two', 'three']

We can add a second colon, which refers to the “step”. For example, if
we have a step value of 2, then for whatever range we specified using the
first colon, the returned value will be every other value from the range.

Click here to view code image

get every other value starting from the first
value
print(l[::2])

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appl_images.xhtml#f0400-02

['one', 'three']

M

Loops

Loops provide a means to perform the same action across multiple items.
Multiple items are typically stored in a Python list object. Any list-like
object can be iterated over (e.g., tuples, arrays, dataframes, dictionaries).
More information on loops can be found in the Software-Carpentry Python
lesson on loops.1

1. https://swcarpentry.github.io/python-novice-
inflammation/05-loop/index.html

To loop over a list. we use a for statement. The basic for loop looks
like this:

for item in container:
 # do something

The container represents some iterable set of values (e.g., a list).
The item represents a temporary variable that represents each item in the
iterable. In the for statement, the first element of the container is assigned
to the temporary variable (in this example, item). Everything in the
indented block after the colon is then performed. When it gets to the end of
the loop, the code assigns the next element in the iterable to the temporary
variable and performs the steps over again.

Click here to view code image

an example list of values to iterate over
l = [1, 2, 3]

write a for loop that prints the value and its

https://swcarpentry.github.io/python-novice-inflammation/05-loop/index.html
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appm_images.xhtml#f0401-02

squared value
for i in l:
 # print the current value
 print(f"the current value is: {i}")

 # print the square of the value
 print(f"its squared value is: {i*i}")

 # end of the loop, the \n at the end creates a
new line
 print("end of loop, going back to the top\n")

the current value is: 1
its squared value is: 1
end of loop, going back to the top

the current value is: 2
its squared value is: 4
end of loop, going back to the top

the current value is: 3
its squared value is: 9
end of loop, going back to the top

N

Comprehensions

A typical task in Python is to iterate over a list, run some function on each
value, and save the results into a new list.

Click here to view code image

create a list
l = [1, 2, 3, 4, 5]

list of newly calculated results
r = []

iterate over the list
for i in l:
 # square each number and add the new value to
a new list
 r.append(i ** 2)

print(r)

[1, 4, 9, 16, 25]

Unfortunately, this approach requires a few lines of code to do a
relatively simple task. One way to rewrite this loop more compactly is by
using a Python list comprehension. This shortcut offers a concise way of
performing the same action.

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appn_images.xhtml#f0403-01
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appn_images.xhtml#f0403-02

note the square brackets around on the right-
hand side
this saves the final results as a list
rc = [i ** 2 for i in l]
print(rc)

[1, 4, 9, 16, 25]

print(type(rc))

<class 'list'>

Our final results will be a list, so the right-hand side will have a pair of
square brackets. From there, we write what looks very similar to a for
loop. Starting from the center and moving toward the right side, we write
for i in l, which is very similar to the first line of our original for
loop. On the right side, we write i ** 2, which is similar to the body of
the for loop. Since we are using a list comprehension, we no longer need
to specify the list to which we want to append our new values.

O

Functions

Functions are one of the cornerstones of programming. They provide a way
to reuse code. If you’ve ever copy-pasted lines of code just to change a few
parameters, then turning those lines of code into a function not only makes
your code more readable but also prevents you from making mistakes later
on. Every time code is copy-pasted, it adds another place to look if a
correction is needed, and puts that burden on the programmer. When you
use a function, you need to make a correction only once, and it will be
applied every time the function is called.

I highly suggest the Software-Carpentry Python episode on functions for
more details.1 An empty function looks like this:
1. https://swcarpentry.github.io/python-novice-
inflammation/08-func/index.html

def empty_function():
 pass

The function begins with the def keyword, then the function name (i.e.,
how the function will be called and used), a set of round brackets, and a
colon. The body of the function is indented (one tab or four spaces). This
indentation is extremely important. If you omit it, you will get an error. In
this example, pass is used as a placeholder to do nothing.

Typically functions will have what’s called a “docstring”—a multiple-
line comment that describes the function’s purpose, parameters, and output,
and that sometimes contains testing code. When you look up help
documentation about a function in Python, the information contained in the
function docstring is usually what shows up. This allows the function’s
documentation and code to travel together, which makes the documentation
easier to maintain.

https://swcarpentry.github.io/python-novice-inflammation/08-func/index.html

Click here to view code image

def empty_function():
 """This is an empty function with a docstring.
 These docstrings are used to help document the
function.
 They can be created by using 3 single quotes
or 3 double quotes.
 The PEP-8 style guide says to use double
quotes.
 """
 pass # this function still does nothing

Functions need not have parameters to be called.

Click here to view code image

def print_value():
 """Just prints the value 3
 """
 print(3)

call our print_value function
print_value()

3

Functions can take parameters as well. We can modify our
print_value() function so that it prints whatever value we pass into
the function.

Click here to view code image

def print_value(value):
 """Prints the value passed into the parameter

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appo_images.xhtml#f0405-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appo_images.xhtml#f0406-01
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appo_images.xhtml#f0406-02

'value'
 """
 print(value)

print_value(3)

3

print_value("Hello!")

Hello!

Functions can take multiple values as well.

Click here to view code image

def person(fname, lname):
 """A function that takes 3 values, and prints
them
 """
 print(fname)
 print(lname)

person('Daniel', 'Chen')

Daniel
Chen

The examples thus far have simply created functions that printed values.
What makes functions powerful is their ability to take inputs and return an
output, not just print values to the screen. To accomplish this, we can use
the return statement.

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appo_images.xhtml#f0406-03
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appo_images.xhtml#f0406-04

def my_mean_2(x, y):
 """A function that returns the mean of 2
values
 """
 mean_value = (x + y) / 2
 return mean_value

m = my_mean_2(0, 10)
print(m)

5.0

O.1 Default Parameters
Functions can also have default values. In fact, many of the functions found
in various libraries have default values. These defaults allow users to type
less because users now have to specify just a minimal amount of
information for the function, but also give users the flexibility to make
changes to the function’s behavior if desired. Default values are also useful
if you have your own functions and want to add more features without
breaking your existing code.

Click here to view code image

def my_mean_3(x, y, z=20):
 """A function with a parameter z that has a
default value
 """
 # you can also directly return values without
having to create
 # an intermediate variable
 return (x + y + z) / 3

Here we need to specify only x and y.

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appo_images.xhtml#f0407-02

print(my_mean_3(10, 15))

15.0

We can also specify z if we want to override its default value.

print(my_mean_3(0, 50, 100))

50.0

O.2 Arbitrary Parameters
Sometimes function documentation includes the terms *args and
**kwargs. These stand for “arguments” and “keyword arguments”,
respectively. They allow the function author to capture an arbitrary number
of arguments into the function. They may also provide a means for the user
to pass arguments into another function that is called within the current
function.

O.2.1 *args
Let’s write a more generic mean() function that can take an arbitrary
number of values.

Click here to view code image

def my_mean(*args):
 """Calculate the mean for an arbitrary number
of values
 """
 # add up all the values
 sum = 0
 for i in args:

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appo_images.xhtml#f0408-01

 sum += i
 return sum / len(args)

print(my_mean(0, 10))

5.0

print(my_mean(0, 50, 100))

50.0

print(my_mean(3, 10, 25, 2))

10.0

O.2.2 **kwargs
**kwargs is similar to *args, but instead of acting like an arbitrary list
of values, they are used like a dictionary—that is, they specify arbitrary
pairs of key–value stores.

Click here to view code image

def greetings(welcome_word, **kwargs):
 """Prints out a greeting to a person,
 where the person's fname and lname are
provided by the kwargs
 """
 print(welcome_word)
 print(kwargs.get('fname'))
 print(kwargs.get('lname'))

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appo_images.xhtml#f0408-02

greetings('Hello!', fname='Daniel',
lname='Chen')

Hello!
Daniel
Chen

P

Ranges and Generators

The Python range() function allows the user to create a sequence of
values by providing a starting value, an ending value, and if needed, a step
value. It is very similar to the slicing syntax in Appendix L. By default, if
we give range() a single number, this function will create a sequence of
values starting from 0.

create a range of 5
r = range(5)

However, the range() function doesn’t just return a list of numbers. In
Python 3, it actually returns a generator.

print(r)

range(0, 5)

print(type(r))

<class 'range'>

If we wanted an actual list of the range, we can convert the generator
to a list.

lr = list(range(5))
print(lr)

[0, 1, 2, 3, 4]

Before you decide to convert a generator, you should think carefully
about what you plan to use it for. If you plan to create a generator that will
look over a set of data (Appendix M), then there is no need to convert the
generator.

for i in lr:
 print(i)

0
1
2
3
4

Generators create the next value in the sequence on the fly. As a
consequence, the entire contents of the generator do not need to be loaded
into memory before using it. Since generators know only the current
position and how to calculate the next item in the sequence, you cannot use
generators a second time.

The following example comes from the built-in itertools library in
Python. It creates a Cartesian product of values provided to the function.

Click here to view code image

import itertools
prod = itertools.product([1, 2, 3], ['a', 'b',
'c'])

for i in prod:
 print(i)

(1, 'a')
(1, 'b')
(1, 'c')
(2, 'a')

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appp_images.xhtml#f0410-01

(2, 'b')
(2, 'c')
(3, 'a')
(3, 'b')
(3, 'c')

If you need to reuse the Cartesian product again, then you would have to
either re-create the generator object or convert the generator into something
more static (e.g., a list).

Click here to view code image

this will not work because we already used
this generator
for i in prod:
 print(i)

create a new generator
prod = itertools.product([1, 2, 3], ['a', 'b',
'c'])
for i in prod:
 print(i)

(1, 'a')
(1, 'b')
(1, 'c')
(2, 'a')
(2, 'b')
(2, 'c')
(3, 'a')
(3, 'b')
(3, 'c')

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appp_images.xhtml#f0410-02

If all you are doing is creating something to iterate over once, it will
save you a lot of computer memory if you do not convert it into a list
object, since Python will just create the object as it goes, instead of trying
to store the entire thing at once.

Q

Multiple Assignment

Multiple assignment in Python is a form of syntactic sugar. It provides the
programmer with the ability to express something succinctly while making
this information easier to express and to be understood by others.

As an example, let’s use a list of values.

l = [1, 2, 3]

If we want to assign a variable to each element of this list, we can subset
the list and assign the value.

a = l[0]
b = l[1]
c = l[2]

print(a)

1

print(b)

2

print(c)

3

With multiple assignment, if the statement to the right is some kind of
container, we can directly assign its values to multiple variables on the left.
So, the preceding code can be rewritten as follows:

a1, b1, c1 = l

print(a1)

1

print(b1)

2

print(c1)

3

Multiple assignment is often used when generating figures and axes
while plotting data.

Click here to view code image

import matplotlib.pyplot as plt

f, ax = plt.subplots()

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appq_images.xhtml#f0414-01

This one-line command will create the figure and the axes. Other use
cases can be seen in the following Stack Overflow question:
https://stackoverflow.com/questions/5182573/multip
le-assignment-semantics

https://stackoverflow.com/questions/5182573/multiple-assignment-semantics

R

Numpy ndarray

The numpy library1 gives Python the ability to work with matrices and
arrays.
1. https://numpy.org/doc/stable/

import numpy as np

Pandas started off as an extension to numpy.ndarray that provided
more features suitable for data analysis. Since then, Pandas has evolved to
the point that it shouldn’t be thought of as a collection of numpy arrays,
since the two libraries are different.

Click here to view code image

import pandas as pd

df = pd.read_csv('data/concat_1.csv')
print(df)

 A B C D
0 a0 b0 c0 d0
1 a1 b1 c1 d1
2 a2 b2 c2 d2
3 a3 b3 c3 d3

If you do need to get the numpy.ndarray values from a Series
or DataFrame, you can use the values attribute.

https://numpy.org/doc/stable/
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appr_images.xhtml#f0415-01

Click here to view code image

a = df['A']
print(a)

0 a0
1 a1
2 a2
3 a3
Name: A, dtype: object

print(type(a))

<class 'pandas.core.series.Series'>

print(a.values)

['a0' 'a1' 'a2' 'a3']

print(type(a.values))

<class 'numpy.ndarray'>

This is particularly helpful when cleaning data in Pandas. You can then
use your newly cleaned data in other Python libraries that do not fully
support the Series and DataFrame objects. The Software-Carpentry
Python Inflammation lesson2 uses numpy and can be another good
reference to learn about the library and Python as a whole.
2. https://swcarpentry.github.io/python-novice-
inflammation/

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appr_images.xhtml#f0415-02
https://swcarpentry.github.io/python-novice-inflammation/

S

Classes

Python is an object-oriented language, meaning that everything you create
or use is a “class”. Classes allow the programmer to group relevant
functions and methods together. In Pandas, Series and DataFrame are
classes, and each has its own attributes (e.g., .shape) and methods (e.g.,
.apply()). While it’s not this book’s intention to give a lesson on object-
oriented programming, I want to very quickly cover classes, with the hope
that this information will help you navigate the official documentation and
understand why things are the way they are.

What’s nice about classes is that the programmer can define any class
for their intended purpose. The following class represents a person. There
are a first name (fname), a last name (lname), and an age (age)
associated with each person. When the person celebrates their birthday
(celebrate_birthday), the age increases by 1.

Click here to view code image

class Person(object):
 def __init__(self, fname, lname, age):
 self.fname = fname
 self.lname = lname
 self.age = age

 def celebrate_birthday(self):
 self.age += 1
 return(self)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/apps_images.xhtml#f0417-01

With the Person class created, we can use it in our code. Let’s create
an instance of our Person.

Click here to view code image

ka = Person(fname='King', lname='Arthur',
age=39)

This created a Person—King Arthur, age 39—and saved him to a
variable named ka. We can then get some attributes from ka (note that
attributes are not functions or methods, so they do not have round
brackets).

print(ka.fname)

King

print(ka.lname)

Arthur

print(ka.age)

39

Finally, we can call the method on our class to increment the age.

ka.celebrate_birthday()
print(ka.age)

40

The Pandas Series and DataFrame objects are more complex
versions of our Person class. The general concepts are the same, though.
We can instantiate any new class to a variable, and access its attributes or
call its methods.

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/apps_images.xhtml#f0417-02

T

SettingWithCopyWarning

The SettingWithCopyWarning is just a warning, so your code will
still run and produce a result. However, if you do see this warning, it is a
“code smell” that maybe you need to re-write something in your code.

Let’s work with one of our small example data sets to recreate the
warning.

Click here to view code image

import pandas as pd

dat = pd.read_csv("data/concat_1.csv")
print(dat)

 A B C D
0 a0 b0 c0 d0
1 a1 b1 c1 d1
2 a2 b2 c2 d2
3 a3 b3 c3 d3

T.1 Modifying a Subset of Data
It’s pretty common to subset your data for values you need, and then make
changes to that subset.

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appt_images.xhtml#f0419-01
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appt_images.xhtml#f0419-02

subset = dat[["A", "C"]]
print(subset)

 A C
0 a0 c0
1 a1 c1
2 a2 c2
3 a3 c3

this will trigger the warning
subset["new"] = ["bunch", "of", "new", "values"]
print(subset)

 A C new
0 a0 c0 bunch
1 a1 c1 of
2 a2 c2 new
3 a3 c3 values

/var/folders/2b/qckmp39n7qn1dh0tpcm8g89w0000gn/T/i
pykernel_29772/
4023129152.py:2: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice
from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value
instead

See the caveats in the documentation:
https://pandas.pydata.org/
pandas-
docs/stable/user_guide/indexing.html#returning-a-

view-versus-a-copy
 subset["new"] = ["bunch", "of", "new", "values"]

This goes into how Python passes things by reference, so Pandas does
not know for certain if you are working on a subsetted copy of the original
dataframe, or want to make changes to the original dataframe.

The way we fix this is to be explicit when we are working with a subset
of the data we plan to modify.

Click here to view code image

subset = dat[["A", "C"]].copy() # explicity copy
print(subset)

 A C
0 a0 c0
1 a1 c1
2 a2 c2
3 a3 c3

no more warning!
subset["new"] = ["bunch", "of", "new", "values"]
print(subset)

 A C new
0 a0 c0 bunch
1 a1 c1 of
2 a2 c2 new
3 a3 c3 values

In longer analysis and data processing scripts, the
SettingWithCopyWarning is not always “close” to where the
subsetting happened, so you may need to trace your code back to where you
made a copy to your data set. There were a few points in the text book

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appt_images.xhtml#f0420-02

where we made .copy() calls. This was to avoid the
SettingWithCopyWarning.

T.2 Replacing a Value
When you want to replace a particular value in a dataframe, make sure you
do the entire replacement in a single .loc[] or .iloc[] call.

Click here to view code image

reset our data
dat = pd.read_csv("data/concat_1.csv")
print(dat)

 A B C D
0 a0 b0 c0 d0
1 a1 b1 c1 d1
2 a2 b2 c2 d2
3 a3 b3 c3 d3

If you filter your rows and columns in separate steps, you will also run
into the SettingWithCopyWarning.

Click here to view code image

want to replace the c2 value
filter the rows and separately select the
column
dat.loc[dat["C"] == "c2"]["C"] = "new value"

print(dat)

 A B C D
0 a0 b0 c0 d0
1 a1 b1 c1 d1

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appt_images.xhtml#f0421-01
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appt_images.xhtml#f0421-02

2 a2 b2 c2 d2
3 a3 b3 c3 d3

/var/folders/2b/qckmp39n7qn1dh0tpcm8g89w0000gn/T/i
pykernel_29772/
3306879196.py:3: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice
from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value
instead

See the caveats in the documentation:
https://pandas.pydata.org/
pandas-
docs/stable/user_guide/indexing.html#returning-a-
view-versus-a-copy
 dat.loc[dat["C"] == "c2"]["C"] = "new value"

Instead, you want to do the entire replacement in a single step.

Click here to view code image

dat = pd.read_csv("data/concat_1.csv")
dat.loc[dat["C"] == "c2", ["C"]] = "new value"
print(dat)

 A B C D
0 a0 b0 c0 d0
1 a1 b1 c1 d1
2 a2 b2 new value d2
3 a3 b3 c3 d3

T.3 More Resources

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appt_images.xhtml#f0421-03

For more detail, there is a great blog post by Benjamin Pryke for Dataquest
that walks you through this warning:
https://www.dataquest.io/blog/settingwithcopywarni
ng/

Kevin Markham from Data School also has a great YouTube video on
the topic titled How do I avoid a SettingWithCopyWarning in pandas:
https://www.youtube.com/watch?v=4R4WsDJ-KVc

https://www.dataquest.io/blog/settingwithcopywarning/
https://www.youtube.com/watch?v=4R4WsDJ-KVc

U

Method Chaining

Objects in Python usually have methods that modify the existing object.
This means that we can call methods sequentially without having to save
out our results in intermediate results.

If we use the same Person class from Appendix S.

Click here to view code image

class Person(object):
 def __init__(self, fname, lname, age):
 self.fname = fname
 self.lname = lname
 self.age = age

 def celebrate_birthday(self):
 self.age += 1
 return(self)

We can method chain our results if we wanted our person to have two
consecutive birthdays.

Click here to view code image

ka = Person(fname='King', lname='Arthur',
age=39)
print(ka.age)

39

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appu_images.xhtml#f0423-01
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appu_images.xhtml#f0423-02

King Arthur has 2 birthdays in a row!
ka.celebrate_birthday().celebrate_birthday()

<__main__.Person at 0x1039903a0>

print(ka.age)

41

We can do something similar in Pandas in Section 4.3 where we tidied
up our weather data.

Click here to view code image

import pandas as pd

weather = pd.read_csv('data/weather.csv')
print(weather.head())

 id year month element d1 d2 d3 d4
d5 d6 ... \
0 MX17004 2010 1 tmax NaN NaN NaN NaN
NaN NaN ...
1 MX17004 2010 1 tmin NaN NaN NaN NaN
NaN NaN ...
2 MX17004 2010 2 tmax NaN 27.3 24.1 NaN
NaN NaN ...
3 MX17004 2010 2 tmin NaN 14.4 14.4 NaN
NaN NaN ...
4 MX17004 2010 3 tmax NaN NaN NaN NaN
32.1 NaN ...

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appu_images.xhtml#f0424-01

 d22 d23 d24 d25 d26 d27 d28 d29 d30 d31
0 NaN NaN NaN NaN NaN NaN NaN NaN 27.8 NaN
1 NaN NaN NaN NaN NaN NaN NaN NaN 14.5 NaN
2 NaN 29.9 NaN NaN NaN NaN NaN NaN NaN NaN
3 NaN 10.7 NaN NaN NaN NaN NaN NaN NaN NaN
4 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

[5 rows x 35 columns]

We first needed to .melt() our date, then .pivot_table(), and
finally .reset_index(). Instead of doing each of the steps in separate
parts, we can work as if the results returned themself.

Click here to view code image

weather_tidy = (
 weather
 .melt(
 id_vars=["id", "year", "month",
"element"],
 var_name="day",
 value_name="temp",
)
 .pivot_table(
 index=["id", "year", "month", "day"],
 columns="element",
 values="temp",
)
 .reset_index()
)

print(weather_tidy)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appu_images.xhtml#f0424-02

element id year month day tmax tmin
0 MX17004 2010 1 d30 27.8 14.5
1 MX17004 2010 2 d11 29.7 13.4
2 MX17004 2010 2 d2 27.3 14.4
3 MX17004 2010 2 d23 29.9 10.7
4 MX17004 2010 2 d3 24.1 14.4
..
28 MX17004 2010 11 d27 27.7 14.2
29 MX17004 2010 11 d26 28.1 12.1
30 MX17004 2010 11 d4 27.2 12.0
31 MX17004 2010 12 d1 29.9 13.8
32 MX17004 2010 12 d6 27.8 10.5

[33 rows x 6 columns]

V

Timing Code

If you’re running Python in an IPython instance (e.g., Jupyter Notebook,
Jupyter Lab, or IPython directly), you have access to “magic” commands
that allow you to easily perform non-Python tasks.

Magic commands are called with % or %%. In a Jupyter Notebook the
%timeit will time a line of code and %%timeit will time the entire cell
of code.

Let’s time the different vectorization methods from Chapter 5.

Click here to view code image

import pandas as pd
import numpy as np
import numba

def avg_2(x, y):
 return (x + y) / 2

@np.vectorize
def v_avg_2_mod(x, y):
 """Calculate the average, unless x is 20
 Same as before, but we are using the vectorize
decorator
 """
 if (x == 20):

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appv_images.xhtml#f0427-01

 return(np.NaN)
 else:
 return (x + y) / 2

@numba.vectorize
def v_avg_2_numba(x, y):
 """Calculate the average, unless x is 20
 Using the numba decorator.
 """
 # we now have to add type information to our
function
 if (int(x) == 20):
 return(np.NaN)
 else:
 return (x + y) / 2

df = pd.DataFrame({"a": [10, 20, 30], "b": [20,
30, 40]})
print(df)

 a b
0 10 20
1 20 30
2 30 40

Timing the different methods.

Click here to view code image

%%timeit
avg_2(df['a'], df['b'])

67.1 µs ± 12.7 µs per loop (mean ± std. dev. of 7
runs, 10,000 loops each)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appv_images.xhtml#f0428-02

%%timeit
v_avg_2_mod(df['a'], df['b'])

16.6 µs ± 1.05 µs per loop (mean ± std. dev. of 7
runs, 100,000 loops each)

%%timeit
v_avg_2_numba(df['a'].values, df['b'].values)

3.92 µs ± 632 ns per loop (mean ± std. dev. of 7
runs, 100,000 loops each)

The first method isn’t even as flexible as the custom functions we
created. If you are working with mathematical calculations, you can get
performance benefits from changing the library you are using. Otherwise,
using vectorize() can also help you write more readable apply code.

W

String Formatting

W.1 C-Style
An older way to perform string formatting in Python is with the % operator.
This follows the C printf style formatting. The str.format()
method (Appendix Section W.2) is preferred over the C-style formatting,
and if you are using Python 3.6+ you should be using formatted string
literals (f-strings) described in Section 11.4. Nonetheless, you may still find
code examples that use this formatting style.

We won’t go too much into detail about this method, but here are some
of the Section 11.4 examples recreated using the C printf style
formatting.

For digits we can use the %d placeholder, here, the d represents an
integer digit.

Click here to view code image

s = 'I only know %d digits of pi' % 7
print(s)

I only know 7 digits of pi

For strings, we can use the s placeholder. Note the string pattern uses
round parentheses (), instead of curly braces { }. The variable passed is a
Python dict, which uses { }.

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appw_images.xhtml#f0429-01
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appw_images.xhtml#f0429-02

print(
 "Some digits of %(cont)s: %(value).2f"
 % {"cont": "e", "value": 2.718}
)

Some digits of e: 2.72

W.2 String Formatting: .format() Method
The format string syntax1 was superseded with formatted string literals (i.e.,
f-strings) in Python 3.6.
1.
https://docs.python.org/3/library/string.html#form
atstrings

To format character strings with .format(), you essentially write a
string with special placeholder characters, { }, and use the .format()
method on the string to insert values into the placeholder.

var = 'flesh wound'
s = "It's just a {}!"

print(s.format(var))

It's just a flesh wound!

print(s.format('scratch'))

It's just a scratch!

The placeholders can also refer to variables multiple times.

Click here to view code image

https://docs.python.org/3/library/string.html#formatstrings
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appw_images.xhtml#f0430-03

using variables multiple times by index
s = """Black Knight: 'Tis but a {0}.
King Arthur: A {0}? Your arm's off!
"""
print(s.format('scratch'))

Black Knight: 'Tis but a scratch.
King Arthur: A scratch? Your arm's off!

You can also give the placeholders a variable.

Click here to view code image

s = 'Hayden Planetarium Coordinates: {lat},
{lon}'
print(s.format(lat='40.7815° N', lon='73.9733°
W'))

Hayden Planetarium Coordinates: 40.7815° N,
73.9733° W

W.3 Formatting Numbers
Numbers can also be formatted.

Click here to view code image

print('Some digits of pi:
{}'.format(3.14159265359))

Some digits of pi: 3.14159265359

You can even format numbers and use thousands-place comma
separators.

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appw_images.xhtml#f0430-04
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appw_images.xhtml#f0430-05

Click here to view code image

print(
 "In 2005, Lu Chao of China recited {:,} digits
of pi".format(67890)
)

In 2005, Lu Chao of China recited 67,890 digits of
pi

Numbers can be used to perform a calculation and formatted to a certain
number of decimal values. Here we can calculate a proportion and format it
into a percentage.

Click here to view code image

the 0 in {0:.4} and {0:.4%} refer to the 0
index in this format
the .4 refers to how many decimal values, 4
if we provide a %, it will format the decimal
as a percentage
print(
 "I remember {0:.4} or {0:.4%} of what Lu Chao
recited".format(
 7 / 67890
)
)

I remember 0.0001031 or 0.0103% of what Lu Chao
recited

Finally, you can use string formatting to pad a number with zeros,
similar to how zfill works on strings. When working with data, this
method may be useful when working with ID numbers that were read in as
numbers but should be strings.

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appw_images.xhtml#f0430-06
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appw_images.xhtml#f0431-01

Click here to view code image

the first 0 refers to the index in this format
the second 0 refers to the character to fill
the 5 in this case refers to how many
characters in total
the d signals a digit will be used
Pad the number with 0s so the entire string
has 5 characters
print("My ID number is {0:05d}".format(42))

My ID number is 00042

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appw_images.xhtml#f0431-02

X

Conditionals (if-elif-else)

Conditional statements allow your script or program to have “control flow”.
We have the option of using the if, elif, and else statements.

Let’s combine these examples into a simplified version of a popular
programming interview problem: Fizz Buzz.

If the number we want to check is a multiple of 2, we want to print
"fizz". We can use the modulo operator in Python, %, to give us the
remainder of a number after division. So, a number is a multiple of 2 if the
modulo (i.e., remainder) is 0. If that statement is true it will run the code in
that if block (denoted by the indentation).

my_num = 4

if my_num % 2 == 0:
 print("fizz")

fizz

If we put multiple if statements after one another it will run through
each of them in order.

my_num = 4

if my_num % 2 == 0:
 print("fizz")
if my_num % 4 == 0:
 print("buzz")

fizz
buzz

my_num = 6

if my_num % 3 == 0:
 print("fizz")
if my_num % 4 == 0:
 print("buzz")

fizz

Sometimes we only want the code to run the first True statement. This
is useful if we only care about one of the conditions, but also so we are not
making unnecessary calculations. We can put subsequent conditions in an
elif (for “else if”) block.

my_num = 4

if my_num % 2 == 0:
 print("fizz")
elif my_num % 4 == 0:
 print("buzz")

fizz

Finally, we can use the else block to capture all the results if nothing
else before it is True.

Click here to view code image

my_num = 7

if my_num % 2 == 0:
 print("fizz")

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appx_images.xhtml#f0434-02

elif my_num % 4 == 0:
 print("buzz")
else:
 print("Not multiple of 2 or 4.")

Not multiple of 2 or 4.

Y

New York ACS Logistic Regression
Example

Click here to view code image

import pandas as pd

acs = pd.read_csv('data/acs_ny.csv')
print(acs.columns)

Index(['Acres', 'FamilyIncome', 'FamilyType',
'NumBedrooms', 'NumChildren',
 'NumPeople', 'NumRooms', 'NumUnits',
'NumVehicles', 'NumWorkers',
 'OwnRent', 'YearBuilt', 'HouseCosts',
'ElectricBill', 'FoodStamp',
 'HeatingFuel', 'Insurance', 'Language'],
 dtype='object')

print(acs.head())

 Acres FamilyIncome FamilyType NumBedrooms
NumChildren NumPeople \
0 1-10 150 Married 4
1 3
1 1-10 180 Female Head 3
2 4

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appy_images.xhtml#f0435-01

2 1-10 280 Female Head 4
0 2
3 1-10 330 Female Head 2
1 2
4 1-10 330 Male Head 3
1 2

 Num Num Num Num
Own Year \
 Rooms Units Vehicles Workers
Rent Built
0 9 Single detached 1 0
Mortgage 1950-1959
1 6 Single detached 2 0
Rented Before 1939
2 8 Single detached 3 1
Mortgage 2000-2004
3 4 Single detached 1 0
Rented 1950-1959
4 5 Single attached 1 0
Mortgage Before 1939

 House Electric Food Heating Insurance
Language
 Costs Bill Stamp Fuel
0 1800 90 No Gas 2500
English
1 850 90 No Oil 0
English
2 2600 260 No Oil 6600 Other
European
3 1800 140 No Oil 0

English
4 860 150 No Gas 660
Spanish

To model these data, we first need to create a binary response variable.
Here we split the FamilyIncome variable into a binary variable.

Click here to view code image

acs["ge150k"] = pd.cut(
 acs["FamilyIncome"],
 [0, 150000, acs["FamilyIncome"].max()],
 labels=[0, 1],
)

acs["ge150k_i"] = acs["ge150k"].astype(int)
print(acs["ge150k_i"].value_counts())

0 18294
1 4451
Name: ge150k_i, dtype: int64

Note
The cutoff values we used to bin our FamilyIncome variable with
the .cut() function is arbitrary.

In so doing, we created a binary (0/1) variable.

Click here to view code image

acs.info()

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appy_images.xhtml#f0436-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appy_images.xhtml#f0436-03

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 22745 entries, 0 to 22744
Data columns (total 20 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 Acres 22745 non-null object
 1 FamilyIncome 22745 non-null int64
 2 FamilyType 22745 non-null object
 3 NumBedrooms 22745 non-null int64
 4 NumChildren 22745 non-null int64
 5 NumPeople 22745 non-null int64
 6 NumRooms 22745 non-null int64
 7 NumUnits 22745 non-null object
 8 NumVehicles 22745 non-null int64
 9 NumWorkers 22745 non-null int64
 10 OwnRent 22745 non-null object
 11 YearBuilt 22745 non-null object
 12 HouseCosts 22745 non-null int64
 13 ElectricBill 22745 non-null int64
 14 FoodStamp 22745 non-null object
 15 HeatingFuel 22745 non-null object
 16 Insurance 22745 non-null int64
 17 Language 22745 non-null object
 18 ge150k 22745 non-null category
 19 ge150k_i 22745 non-null int64
dtypes: category(1), int64(11), object(8)
memory usage: 3.3+ MB

Let’s subset our data with just the columns we’ll use for the example.

Click here to view code image

acs_sub = acs[
 [

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appy_images.xhtml#f0437-02

 "ge150k_i",
 "HouseCosts",
 "NumWorkers",
 "OwnRent",
 "NumBedrooms",
 "FamilyType",
]
].copy()

print(acs_sub)

 ge150k_i HouseCosts NumWorkers OwnRent
NumBedrooms FamilyType
0 0 1800 0 Mortgage
4 Married
1 0 850 0 Rented
3 Female Head
2 0 2600 1 Mortgage
4 Female Head
3 0 1800 0 Rented
2 Female Head
4 0 860 0 Mortgage
3 Male Head
...
... ...
22740 1 1700 2 Mortgage
5 Married
22741 1 1300 2 Mortgage
4 Married
22742 1 410 3 Mortgage
4 Married
22743 1 1600 3 Mortgage
3 Married

22744 1 6500 2 Mortgage
4 Married

[22745 rows x 6 columns]

import statsmodels.formula.api as smf

we break up the formula string to fit on the
page
model = smf.logit(
 "ge150k_i ~ HouseCosts + NumWorkers +
OwnRent + NumBedrooms
 + FamilyType",
 data=acs_sub,
)

results = model.fit()

Optimization terminated successfully.
 Current function value: 0.391651
 Iterations 7

print(results.summary())

 Logit Regression
Results
==
============================
Dep. Variable: ge150k_i No.
Observations: 22745
Model: Logit Df Residuals:
22737
Method: MLE Df Model:

7
Date: Thu, 01 Sep 2022 Pseudo R-
squ.: 0.2078
Time: 01:57:02 Log-
Likelihood: -8908.1
converged: True LL-Null:
-11244.
Covariance Type: nonrobust LLR p-value:
0.000
==
===
 coef std err
z P>|z| [0.025 0.975]
--

Intercept -5.8081 0.120
-48.456 0.000 -6.043 -5.573
OwnRent[T.Outright] 1.8276 0.208
8.782 0.000 1.420 2.236
OwnRent[T.Rented] -0.8763 0.101
-8.647 0.000 -1.075 -0.678
FamilyType[T.Male Head] 0.2874 0.150
1.913 0.056 -0.007 0.582
FamilyType[T.Married] 1.3877 0.088
15.781 0.000 1.215 1.560
HouseCosts 0.0007 1.72e-05
42.453 0.000 0.001 0.001
NumWorkers 0.5873 0.026
22.393 0.000 0.536 0.639
NumBedrooms 0.2365 0.017
13.985 0.000 0.203 0.270
==
===

import statsmodels.formula.api as smf

we break up the formula string to fit on the
page
model = smf.logit(
 "ge150k_i ~ HouseCosts + NumWorkers +
OwnRent + NumBedrooms + FamilyType",
 data=acs_sub,
)

results = model.fit()

Optimization terminated successfully.
 Current function value: 0.391651
 Iterations 7

print(results.summary())

 Logit Regression
Results
==
============================
Dep. Variable: ge150k_i No.
Observations: 22745
Model: Logit Df Residuals:
22737
Method: MLE Df Model:
7
Date: Thu, 01 Sep 2022 Pseudo R-
squ.: 0.2078
Time: 01:57:02 Log-
Likelihood: -8908.1

converged: True LL-Null:
-11244.
Covariance Type: nonrobust LLR p-value:
0.000
==
===
 coef std err
z P>|z| [0.025 0.975]
--

Intercept -5.8081 0.120
-48.456 0.000 -6.043 -5.573
OwnRent[T.Outright] 1.8276 0.208
8.782 0.000 1.420 2.236
OwnRent[T.Rented] -0.8763 0.101
-8.647 0.000 -1.075 -0.678
FamilyType[T.Male Head] 0.2874 0.150
1.913 0.056 -0.007 0.582
FamilyType[T.Married] 1.3877 0.088
15.781 0.000 1.215 1.560
HouseCosts 0.0007 1.72e-05
42.453 0.000 0.001 0.001
NumWorkers 0.5873 0.026
22.393 0.000 0.536 0.639
NumBedrooms 0.2365 0.017
13.985 0.000 0.203 0.270
==
===

import numpy as np

exponentiate our results

odds_ratios = np.exp(results.params)
print(odds_ratios)

Intercept 0.003003
OwnRent[T.Outright] 6.219147
OwnRent[T.Rented] 0.416310
FamilyType[T.Male Head] 1.332901
FamilyType[T.Married] 4.005636
HouseCosts 1.000731
NumWorkers 1.799117
NumBedrooms 1.266852
dtype: float64

print(acs.OwnRent.unique())

['Mortgage' 'Rented' 'Outright']

Y.0.1 With sklearn
Click here to view code image

predictors = pd.get_dummies(acs_sub.iloc[:, 1:],
drop_first=True)
print(predictors)

 HouseCosts NumWorkers NumBedrooms
OwnRent_Outright OwnRent_Rented \
0 1800 0 4
0 0
1 850 0 3
0 1
2 2600 1 4
0 0

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appy_images.xhtml#f0439-02

3 1800 0 2
0 1
4 860 0 3
0 0
...
... ...
22740 1700 2 5
0 0
22741 1300 2 4
0 0
22742 410 3 4
0 0
22743 1600 3 3
0 0
22744 6500 2 4
0 0

 FamilyType_Male Head FamilyType_Married
0 0 1
1 0 0
2 0 0
3 0 0
4 1 0
...
22740 0 1
22741 0 1
22742 0 1
22743 0 1
22744 0 1

[22745 rows x 7 columns]

from sklearn import linear_model
lr = linear_model.LogisticRegression()

results = lr.fit(X = predictors, y =
acs['ge150k_i'])

/Users/danielchen/.pyenv/versions/3.10.4/envs/pfe_
book/lib/python3.10/
site-
packages/sklearn/linear_model/_logistic.py:444:
ConvergenceWarning:
lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or
scale the data as shown in:
 https://scikit-
learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for
alternative solver options:
 https://scikit-
learn.org/stable/modules/linear_model.html#logisti
c-
 regression
 n_iter_i = _check_optimize_result(

We can also get our coefficients in the same way.

Click here to view code image

print(results.coef_)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appy_images.xhtml#f0440-02

[[5.83764740e-04 7.29381775e-01 2.82543789e-01
7.03519146e-02
 -2.11748592e+00 -1.02984936e+00 2.50310160e-01]]

We can get the intercept as well.

print(results.intercept_)

[-4.82088401]

We can print out our results in a more attractive format.

Click here to view code image

values = np.append(results.intercept_,
results.coef_)

get the names of the values
names = np.append("intercept",
predictors.columns)

put everything in a labeled dataframe
results = pd.DataFrame(
 values,
 index=names,
 columns=["coef"], # you need the square
brackets here
)

print(results)

 coef
intercept -4.820884
HouseCosts 0.000584

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appy_images.xhtml#f0441-01

NumWorkers 0.729382
NumBedrooms 0.282544
OwnRent_Outright 0.070352
OwnRent_Rented -2.117486
FamilyType_Male Head -1.029849
FamilyType_Married 0.250310

In order to interpret our coefficients, we still need to exponentiate our
values.

Click here to view code image

results['or'] = np.exp(results['coef'])
print(results)

 coef or
intercept -4.820884 0.008060
HouseCosts 0.000584 1.000584
NumWorkers 0.729382 2.073798
NumBedrooms 0.282544 1.326500
OwnRent_Outright 0.070352 1.072886
OwnRent_Rented -2.117486 0.120334
FamilyType_Male Head -1.029849 0.357061
FamilyType_Married 0.250310 1.284424

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appy_images.xhtml#f0441-02

Z

Replicating Results in R

Preparing the data used for this section.

Click here to view code image

library(MASS)

library(tidyverse)
library(tidymodels)

library(pscl)

load the tips data
tips <- readr::read_csv("data/tips.csv")

load the titanic data
titanic <- readr::read_csv("data/titanic.csv")

subset the columns and drop missing values
titanic_sub <- titanic %>%
 dplyr::select(survived, sex, age, embarked)
%>%
 tidyr::drop_na()

load the ACS data and fix the data types
acs <- readr::read_csv("data/acs_ny.csv") %>%
 dplyr::mutate(# data gets loaded differently

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appz_images.xhtml#f0443-01

from pandas
 NumChildren = as.integer(NumChildren),
 FamilyIncome = as.numeric(FamilyIncome),
 NumBedrooms = as.numeric(NumBedrooms),
 HouseCosts = as.numeric(HouseCosts),
 ElectricBill = as.numeric(ElectricBill),
 NumVehicles = as.numeric(NumVehicles)
)

Z.1 Linear Regression
Click here to view code image

r_lm <- lm(tip ~ total_bill, data = tips)
print(summary(r_lm))

Call:
lm(formula = tip ~ total_bill, data = tips)

Residuals:
 Min 1Q Median 3Q Max
-3.1982 -0.5652 -0.0974 0.4863 3.7434

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.920270 0.159735 5.761 2.53e-08

total_bill 0.105025 0.007365 14.260 < 2e-16

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05
'.' 0.1 ' ' 1

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appz_images.xhtml#f0444-01

Residual standard error: 1.022 on 242 degrees of
freedom
Multiple R-squared: 0.4566, Adjusted R-
squared: 0.4544
F-statistic: 203.4 on 1 and 242 DF, p-value: <
2.2e-16

r_lm %>%
broom::tidy()

A tibble: 2 x 5
 term estimate std.error statistic
p.value
 <chr> <dbl> <dbl> <dbl>
<dbl>
1 (Intercept) 0.920 0.160 5.76 2.53e-
8
2 total_bill 0.105 0.00736 14.3 6.69e-
34

r_lm2 <- lm(tip ~ total_bill + size, data =
tips)
print(summary(r_lm2))

Call:
lm(formula = tip ~ total_bill + size, data = tips)

Residuals:
 Min 1Q Median 3Q Max
-2.9279 -0.5547 -0.0852 0.5095 4.0425

Coefficients:
 Estimate Std. Error t value
Pr(>|t|)
(Intercept) 0.668945 0.193609 3.455 0.00065

total_bill 0.092713 0.009115 10.172 < 2e-16

size 0.192598 0.085315 2.258 0.02487
*

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05
'.' 0.1 ' ' 1

Residual standard error: 1.014 on 241 degrees of
freedom
Multiple R-squared: 0.4679, Adjusted R-
squared: 0.4635
F-statistic: 105.9 on 2 and 241 DF, p-value: <
2.2e-16

r_lm2 %>%
broom::tidy()

A tibble: 3 x 5
 term estimate std.error statistic
p.value
 <chr> <dbl> <dbl> <dbl>
<dbl>
1 (Intercept) 0.669 0.194 3.46 6.50e-
4
2 total_bill 0.0927 0.00911 10.2 1.88e-
20

3 size 0.193 0.0853 2.26 2.49e-
2

r_lm3 <- lm(
 tip ~ total_bill + size + sex + smoker + day +
time, data = tips
)
print(summary(r_lm3))

Call:
lm(formula = tip ~ total_bill + size + sex +
smoker + day + time,
 data = tips)

Residuals:
 Min 1Q Median 3Q Max
-2.8475 -0.5729 -0.1026 0.4756 4.1076

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.803817 0.352702 2.279 0.0236 *
total_bill 0.094487 0.009601 9.841 <2e-16

size 0.175992 0.089528 1.966 0.0505 .
sexMale -0.032441 0.141612 -0.229 0.8190
smokerYes -0.086408 0.146587 -0.589 0.5561
daySat -0.121458 0.309742 -0.392 0.6953
daySun -0.025481 0.321298 -0.079 0.9369
dayThur -0.162259 0.393405 -0.412 0.6804
timeLunch 0.068129 0.444617 0.153 0.8783

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05
'.' 0.1 ' ' 1

Residual standard error: 1.024 on 235 degrees of
freedom
Multiple R-squared: 0.4701, Adjusted R-
squared: 0.452
F-statistic: 26.06 on 8 and 235 DF, p-value: <
2.2e-16

r_lm3 %>%
broom::tidy()

A tibble: 9 x 5
 term estimate std.error statistic p.value
 <chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 0.804 0.353 2.28 2.36e- 2
2 total_bill 0.0945 0.00960 9.84 2.34e-19
3 size 0.176 0.0895 1.97 5.05e- 2
4 sexMale -0.0324 0.142 -0.229 8.19e- 1
5 smokerYes -0.0864 0.147 -0.589 5.56e- 1
6 daySat -0.121 0.310 -0.392 6.95e- 1
7 daySun -0.0255 0.321 -0.0793 9.37e- 1
8 dayThur -0.162 0.393 -0.412 6.80e- 1
9 timeLunch 0.0681 0.445 0.153 8.78e- 1

Z.2 Logistic Regression
Click here to view code image

fit a logistic regression model
r_logistic_glm <- glm(
 survived ~ sex + age + embarked,

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appz_images.xhtml#f0446-02

 family = binomial (link = "logit"),
 data = titanic_sub
)

summary(r_logistic_glm)

Call:
glm(formula = survived ~ sex + age + embarked,
family =
binomial(link = "logit"), data = titanic_sub)

Deviance Residuals:
 Min 1Q Median 3Q Max
-2.1185 -0.6498 -0.5972 0.7937 2.1977

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.204585 0.321796 6.851 7.34e-12

sexmale -2.475962 0.190807 -12.976 < 2e-16

age -0.008079 0.006550 -1.233 0.21746
embarkedQ -1.815592 0.535031 -3.393 0.00069

embarkedS -1.006949 0.236857 -4.251 2.13e-05

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05
'.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to
be 1)

 Null deviance: 960.90 on 711 degrees of
freedom
Residual deviance: 726.08 on 707 degrees of
freedom
AIC: 736.08

Number of Fisher Scoring iterations: 4

get the coefficient table and calculate the
odds
res_r_glm <- r_logistic_glm %>%
 broom::tidy() %>%
 dplyr::mutate(odds = exp(estimate) %>%
round(6))

res_r_glm

A tibble: 5 x 6
 term estimate std.error statistic p.value
odds
 <chr> <dbl> <dbl> <dbl> <dbl>
<dbl>
1 (Intercept) 2.20 0.322 6.85 7.34e-
12 9.07
2 sexmale -2.48 0.191 -13.0 1.67e-
38 0.0841
3 age -0.00808 0.00655 -1.23 2.17e-
1 0.992
4 embarkedQ -1.82 0.535 -3.39 6.90e-
4 0.163
5 embarkedS -1.01 0.237 -4.25 2.13e-
5 0.365

Z.3 Poisson Regression
Click here to view code image

poi <- glm(
 NumBedrooms ~ HouseCosts + OwnRent,
 family=poisson(link = "log"),
 data=acs
)

summary(poi)

Call:
glm(formula = NumBedrooms ~ HouseCosts + OwnRent,
 family = poisson(link = "log"), data = acs)

Deviance Residuals:
 Min 1Q Median 3Q Max
-2.8300 -0.2815 -0.1293 0.2890 2.8142

Coefficients:
 Estimate Std. Error z value
Pr(>|z|)
(Intercept) 1.139e+00 6.158e-03 184.928 <
2e-16 ***
HouseCosts 6.217e-05 2.958e-06 21.017 <
2e-16 ***
OwnRentOutright -2.659e-01 5.131e-02 -5.182
2.19e-07 ***
OwnRentRented -1.237e-01 1.237e-02 -9.996 <
2e-16 ***

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appz_images.xhtml#f0447-02

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05
'.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to
be 1)

 Null deviance: 7479.9 on 22744 degrees of
freedom
Residual deviance: 6839.2 on 22741 degrees of
freedom
AIC: 76477

Number of Fisher Scoring iterations: 4

poi %>%
broom::tidy()

A tibble: 4 x 5
 term estimate std.error statistic
p.value
 <chr> <dbl> <dbl> <dbl>
<dbl>
1 (Intercept) 1.14 0.00616 185.
0
2 HouseCosts 0.0000622 0.00000296 21.0
4.60e-98
3 OwnRentOutright -0.266 0.0513 -5.18
2.19e- 7
4 OwnRentRented -0.124 0.0124 -10.0
1.58e-23

Z.3.1 Negative Binomial Regression for
Overdispersion
Click here to view code image

od <- MASS::glm.nb(
 NumPeople ~ Acres + NumVehicles,
 data=acs,
 link=log
)

Warning in theta.ml(Y, mu, sum(w), w, limit =
control$maxit, trace
= control$trace > : iteration limit reached

Warning in theta.ml(Y, mu, sum(w), w, limit =
control$maxit, trace
= control$trace > : iteration limit reached

summary(od)

Call:
MASS::glm.nb(formula = NumPeople ~ Acres +
NumVehicles, data = acs,
 link = log, init.theta = 99662.32096)

Deviance Residuals:
 Min 1Q Median 3Q Max
-1.3263 -0.7064 -0.1315 0.3153 5.3101

Coefficients:
 Estimate Std. Error z value Pr(>|z|)

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appz_images.xhtml#f0448-02

(Intercept) 1.033460 0.012036 85.865 < 2e-16

Acres10+ -0.025287 0.019301 -1.310 0.19
AcresSub 1 0.050768 0.009143 5.553 2.81e-08

NumVehicles 0.070067 0.003683 19.023 < 2e-16

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05
'.' 0.1 ' ' 1

(Dispersion parameter for Negative
Binomial(99662.32) family taken to be 1)

 Null deviance: 12127 on 22744 degrees of
freedom
Residual deviance: 11754 on 22741 degrees of
freedom
AIC: 80879

Number of Fisher Scoring iterations: 1

 Theta: 99662
 Std. Err.: 93669
Warning while fitting theta: iteration limit
reached

2 x log-likelihood: -80869.33

od %>%
 broom::tidy()

A tibble: 4 x 5
 term estimate std.error statistic p.value
 <chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 1.03 0.0120 85.9 0
2 Acres10+ -0.0253 0.0193 -1.31 1.90e- 1
3 AcresSub 1 0.0508 0.00914 5.55 2.81e- 8
4 NumVehicles 0.0701 0.00368 19.0 1.10e-80

pm <- glm(
 NumChildren ~ FamilyIncome + FamilyType +
OwnRent,
 family = poisson(link="log"),
 data = acs
)

pchisq(
 2 * (logLik(od) - logLik(pm)),
 df = 1,
 lower.tail = FALSE
)

'log Lik.' 1 (df=5)

Index

Symbols

* operator, specifying model interactions, 324
{}(curly brackets), dictionary syntax, 397
% (percent) operator, calling magic commands, 427
+ (plus) operator, adding covariates to linear models, 324
() (round brackets)

line breaks, 393–394
tuple syntax, 396

[] (square brackets)
dictionary values, 397
getting first character of string, 230
list syntax, 395–396

Numbers

2D density plot, 88–89

A

Aggregation (or aggregate)
of built-in methods, 178–179
of calculations, 23
of functions, 179–182

multiple functions simultaneously, 182–184
one-variable grouped aggregation, 176–177
options for applying functions in and aggregate methods,

182–184
overview of, 176
saving groupby object without running aggregate,
transform, or filter, 190–191

AIC (Akaike information criteria), 327, 329
Alignment

DataFrame, 44–45
Series, 39–42

Anaconda
command prompt, 381–382
installers for, 373–374
Miniconda, 374
package installation, 389–390
Python distribution, 385
Spyder IDE, 382
uninstalling, 374

AnacondaCon conference, 364
ANOVA (analysis of variance), 326–327
Anscombe’s quartet

for data visualization, 65–66, 70–71
plotting with facets, 99–100

Apache Arrow, 58, 280
apply

concept map for, 372
creating/using functions, 131–132
functions across rows or columns of data, 133
lambda functions, 141–142
numba library and, 140–141
over a DataFrame, 135–138
over a Series, 133–135
overview of, 131

primer on, 131–132
summary/conclusion, 142
vectorized functions, 138–141

∗args, function parameter, 408
Arrays

scientific computing stack, 359
sklearn library and, 286–287
working with, 415–416

Arrow, 58
for dates and times, 280

assert, checking data assembly with, 166
assign, modifying columns with, 50–52
Assignment

multiple, 413–414
passing/reassigning values, 395–396

astype method
converting column to categorical type, 225–226
converting to numeric values, 221–222
converting values to strings, 220

Attributes
class, 417
dot notation and, 10–11
Series, 35

Average cluster algorithm, in hierarchical clustering, 353–354
Axes, plotting, 67–71

B

Bar plots, 89–91
Bash shell, 377–378
BIC (Bayesian information criteria), 327, 329
“The Big Book of Python,” 365
“The Big Book of R,” 365

Binary
feather format for saving, 56–57
logistic regression for binary response variable, 297
serialize and save data in binary format, 53

Bivariate statistics
in matplotlib, 74–76
in seaborn, 83–94

Booleans (bool)
subsetting DataFrame, 43
subsetting Series, 36–39

Boxplots
for bivariate statistics, 75–76
creating, 114–115

Broadcasting, Pandas support for, 40–41, 44–45

C

Calculations
datetime, 257–258
involving multiple variables, 191
with missing data (values), 215–216
of multiple functions simultaneously, 182–184
timing execution of, 360, 427–428

Carpentries, 364
CAS (computer algebra systems), 359
category

converting column to, 225–226
manipulating categorical data, 226
overview of, 225
representing categorical variables, 221
sklearn library used with categorical variables, 291–293
statsmodels library used with categorical variables, 289–

291

Centroid cluster algorithm, in hierarchical clustering, 353–354
Chaining methods, 423–425
Characters

formatting strings of, 430
getting first character of string, 230
getting last character of string, 231–233
slicing multiple letters of string, 230
strings as series of, 229

Classes, 417–418
Clustering

average cluster algorithm, 353–354
centroid cluster algorithm, 353–354
complete cluster algorithm, 352
dimension reduction using PCA, 347–351
hierarchical clustering, 351–356
k-means, 345–351
manually setting threshold for, 355–356
overview of, 345
single cluster algorithm, 352–353
summary/conclusion, 356
ward cluster algorithm, 354–355

Code
profiling, 360
reuse, 405
style, 393–394
timing execution of, 360, 427–428

coerce, 224–225
Colon (:), use in slicing syntax, 15, 399–400
Colors, multivariate statistics in seaborn, 95–97
Columns

adding, 45–47
concatenation generally, 150–151
concatenation with different indices, 153–154
converting to category, 225–226

directly changing, 47–50
dot notation to pull values of, 10–11
dropping values, 52
methods of indexing, 11
modifying with assign, 50–52
rows and columns both containing variables, 126–129
selecting, 15–16
single value returns, 8–9
slicing, 18–21
subsetting by name, 7–8
subsetting by range, 16–18
subsetting generally, 21–23
subsetting using slicing syntax, 15–16

Columns, with multiple variables
overview of, 122–123
split and add individually, 123–125
split and combine in single step, 125–126

Columns, with values not variables
keeping multiple columns fixed, 120–122
keeping one column fixed, 118–120
overview of, 118

Command line
basic commands, 378
Linux, 378
Mac, 377
overview of, 377
Windows, 377

Comma-separated values. See CSV (comma-separated values)
compile, pattern compilation, 246–247
Complete cluster algorithm, in hierarchical clustering, 352
Comprehensions

function comprehension, 403–404
list comprehension, 158–160
overview of, 401–402

Computer algebra systems (CAS), 359
Concatenation (concat)

adding columns, 150–151
adding rows, 147–150
dataframe parts and, 146–147
with different indices, 151–154
ignore_index parameter after, 149–150
observational units across multiple tables, 154–160
overview of, 146
split and combine in single step, 125–126

Concept maps, 369–372
concurrent.features, 360
conda

creating environments, 385–387
install, 374
managing packages, 389
update, 390

Conditional statements, 433–434
Conferences, 363–364
Confidence interval, in linear regression example, 285
Containers

join method and, 234–235
looping over contents, 401–402
overview, 395
types of, 229

Conversion, of data types
to category, 225–226
to datetime, 250–253
to numeric, 221–225
to string, 220–221

Counting
groupby count, 197–199
missing data (values), 210–212
Poisson regression and, 304–308

Count (bar) plot, for univariate statistics, 81–83
Covariates

adding to linear models, 324
multiple linear regression with three covariates, 320–322

Cox proportional hazards model
survival analysis, 314–316
testing assumptions, 315–316

C printf style formatting, 429
cProfile, profiling code, 360
create (environments), 385–387
Cross-validation

model diagnostics, 329–333
regularization techniques, 341–343

cross_val_scores, 332–333
CSV (comma-separated values)

for data storage, 55
importing CSV files, 55
loading multiple files using list comprehension, 158–160

Cumulative sum (cumsum), 199
cython, performance-related library, 360

D

Dash, 362
Dashboards, 362
Dask library, 360
Data assembly

adding rows, 147–150
checking your work on, 166
combining data sets, 145
concatenation, 146–154
concatenation with different indices, 151–154
dataframe parts and, 146–147

ignore_index parameter after concatenation, 149–150
loading multiple files using list comprehension, 158–160
loading multiple files using lit comprehension, 158–160
many-to-many merges, 163–166
many-to-one merges, 163
merging multiple data sets, 160–166
observational units across multiple tables, 154–160
one-to-one merges, 162–163
overview of, 145
summary/conclusion, 167
tidy data, 167

DataFrame
adding columns, 45–47
aggregation, 182–183
alignment and vectorization, 44–45
apply function(s), 135–138
basic plots, 27–28
boolean subsetting, 43
as class, 417–418
concatenation, 149
concept map for basics in, 369
converting to Arrow objects, 58
converting to dicionary objects, 58–59
creating, 32–33
defined, 3
directly changing columns, 47–50
exporting, 56
grouped and aggregated calculations, 23–27
grouped frequency counts, 27
grouped means, 23–26
histogram, 111
loading first data set, 4–6
methods, 43
ndarray save method, 53

overview of, 3, 42
parts of, 42–43
single value returns, 8–9
slicing columns, 18–21
subsetting columns by name, 7–8
subsetting columns by range, 16–18
subsetting columns using slicing syntax, 15–16
subsetting rows and columns, 21–23
subsetting rows by index label, 11–13
subsetting rows by row number, 13–14
summary/conclusion, 28–29
type function for checking, 5
writing CSV files (to_csv method), 55

Data models, 281–282
diagnostics (See Model diagnostics)
generalized linear (See GLM (generalized linear models))
linear (See Linear models)

Data normalization
multiple observational units in a table, 169–170
overview, 169

Data sets
cleaning data, 416
combining, 145
downloading for this book, 375
equality tests for missing data, 203–204
exporting/importing data (See Exporting/importing data)
Indemics (Interactive Epidemic Simulation), 196
lists for data storage, 395–396
loading, 4–6
many-to-many merges, 163–166
many-to-one merges, 163
merging, 160–166
one-to-one merges, 162–163
tidy data, 117

Data structures
adding columns, 45–47
concept map for, 370
creating, 31–33
CSV (comma-separated values), 55
DataFrame alignment and vectorization, 44–45
DataFrame boolean subsetting, 43
DataFrame generally, 42–43
directly changing columns, 47–50
dropping values, 52
Excel and, 55–56
exporting/importing data, 52
feather format, 56–57
making changes to, 45
overview of, 31
pickle data, 53–54
Series alignment and vectorization, 39–42
Series boolean subsetting, 36–39
Series generally, 33–35
Series methods, 35–37
Series similarity with ndarray, 35–36
summary/conclusion, 63

Data types (dtype)
category dtype, 225
converting to category, 225–226
converting to datetime, 250–253
converting to numeric, 221–225
converting to string, 220–221
getting list of types stored in column, 225–226
manipulating categorical data, 226
overview of, 219
Series attributes, 35
specifying from numpy library, 221

summary/conclusion, 227
to_numeric function, 222–225
viewing list of, 219–220

date_range function, 266–269
datetime

adding columns to data structures, 45–47
Arrow with, 280
calculations, 257–258
converting to, 250–253
directly changing columns, 48–49
extracting date components (year, month, day), 254–257
frequencies, 268
getting stock-related data, 261–263
loading date related data, 253–254
methods, 259–261
object, 249–250
offsets, 268–269
overview of, 249
ranges, 266–269
resampling, 276–278
shifting values, 270–276
subsetting data based on dates, 263–266
summary/conclusion, 280
time zones, 278–279

DatetimeIndex, 263–265, 268
Day, extracting date components from datetime object, 254–257
Daylight savings time, 278
def keyword, use with functions, 405–406
Density plots

2D density plot, 88–89
plot.kde function, 111–112
for univariate statistics, 80

Diagnostics. See Model diagnostics
Dictionaries (dict)

creating DataFrame, 32–33
objects to converting DataFrame objects
to, 58–59
overview of, 396–398
passing method to, 182–183

Directories, working, 383–384
distplot, creating histograms, 81–82
dmatrices function, patsy library, 331–333
Docstrings (docstring), function documentation, 132, 405
Dot notation, to pull a column of values, 10–11
dropna parameter

counting missing values, 210–212
dropping missing values, 214–215

Dropping (drop)
data structure values, 52
missing data (values), 214–215

dtype. See Data types (dtype)

E

EAFP (easier to ask for forgiveness than for permissions), 191
Elastic net, regularization technique, 340–341
elif, 433–434
else, 433–434
Environments

creating, 385–388
deleting, 387
Pipenv, 387–388
Pyenv, 387

Equality tests, for missing data, 203–204
errors parameter, numeric, 223–224
EuroSciPy conference, 364
Excel

DataFrame and, 56
Series and, 56

Exporting/importing data
Arrow, 58
CSV (comma-separated values), 55
dictionary, 58–59
Excel, 55–56
feather format, 56–57
JSON, 59–62
methods, 63
output types, 62–63
overview of, 52
pickle data, 53–54

F

Facets, plotting, 99–104
Feather format, interface with R language, 56–57
Files

loading multiple using list comprehension, 158–160
working directories and, 383

fillna method, 212–213
Filter (filter), groupby operations, 188–189
Find

missing data (values), 210–212
patterns, 244–245

findall, patterns, 244–245
Fizz Buzz, 433–434
float/float64, 221
Folders

project organization, 379
working directories and, 383

for loop. See Loops (for loop)

format method, 236
Formats/formatting

date formats, 252
serialize and save data in binary format, 53
strings (string), 236–239, 429–431

Formatted literal strings (f-strings), 236–239
formula API, in statsmodels library, 284–285
freq parameter, 268
Frequency

datetime, 268
grouped frequency counts, 27
offsets, 268–269
resampling converting between, 276–278

f-strings, 236–238
f-strings (formatted literal strings), 236–239
Functions

across rows or columns of data, 133
aggregation, 179–182
apply over DataFrame, 135–138
apply over Series, 133–135
arbitrary parameters, 407–408
calculating multiple simultaneously, 182–184
comprehensions and, 403–404
creating/using, 131–132
custom, 180–181
default parameters, 407
groupby, 178
**kwargs, 408
lambda, 141–142
options for applying in and aggregate methods, 182–184
overview of, 405–408
regular expressions (RegEx), 240
vectorized, 138–141
z-score example of transforming data, 184–186

G

Ganssle, Paul, 280
Gapminder data set, 4
Generalized linear models (GLM). See also Linear regression models

logistic regression, 446–447
model diagnostics, 327–329
more GLM options, 308–309
negative binomial regression, 306–308, 448–449
overview of, 297
Poisson regression, 304–308, 447–449
sklearn library for logistic regression, 300–304
statsmodels library for logistic regression, 299–300
statsmodels library for Poisson regression, 304–306
summary/conclusion, 309
survival analysis, 311–317
testing Cox model assumptions, 315–316

Generators
converting to list, 16–17
overview of, 409–411

get
dictionary values with, 397–398
selecting groups, 191–192

Git for Windows, 377
github, 365
GLM (generalized linear models). See Generalized linear models
glm function, in statsmodels library, 306, 308–309
Going it alone, 363–365

aggregation, 176–184
aggregation functions, 179–182
applying functions in and aggregate methods, 182–184
built-in aggregation methods, 178–179
calculations generally, 24–25

calculations involving multiple variables, 191
calculations of means, 23–26
compared with SQL, 175
filtering, 188–189
flattening results, 194–195
frequency counts, 27
iterating through groups, 192–194
methods and functions, 178
missing value example, 186–188
multiple groups, 194
one-variable grouped aggregation, 176–177
overview of, 175
saving without running aggregate, transform, or
filter methods, 190–191

selecting groups, 192
summary/conclusion, 199–200
transform, 184–188
working with multiIndex, 195–199
z-score example of transforming data, 184–186

Groups
iterating through, 192–194
selecting, 191–192
working with multiple, 194

Guido, Sarah, 241

H

Hendryx-Parker, Calvin, 387
hexbin plot

bivariate statistics in seaborn, 87–88
plt.hexbin function, 113–114

Hierarchical clustering
average cluster algorithm, 353–354

centroid cluster algorithm, 353–354
complete cluster algorithm, 352
manually setting threshold for, 355–356
overview of, 351–352
single cluster algorithm, 352–353
ward cluster algorithm, 354–355

Histograms
creating using plot.hist functions, 111
of model residuals, 323
for univariate statistics in matplotlib, 73–74
for univariate statistics in seaborn, 79–83

I

Ibis, 361
id, unique identifiers, 220
IDEs (integrated development environments), Python, 382
if, 433–434
ignore_index parameter, after concatenation, 149–150
iloc

indexing rows or columns, 11
Series attributes, 35
subsetting rows and columns, 21–23
subsetting rows by number, 13–14

Importing (import). See also Exporting/importing data
itertools library, 410–411
libraries, 391–392
loading first data set, 4–5
matplotlib library, 66–72
pandas, 415

Indemics (Interactive Epidemic Simulation) data set, 208
Indices

beginning and ending indices in ranges, 399

concatenate columns with different indices, 153–154
concatenate rows with different indices, 151–153
date ranges, 267–268
issues with absolute, 22
out of bounds notification, 138
reindexing as source of missing values, 209–210
subsetting columns by index position break, 8
subsetting date based on, 263–266
subsetting rows by index label, 11–13
working with multiIndex, 195–199

inplace parameter, functions and methods, 49–50
Installation

of Anaconda, 373–374
from command line, 377–378
Python packages, 374

Integers (int/int64)
converting to string, 220–221
vectors with integers (scalars), 40

integrated development environments (IDEs), 382
Interactive Epidemic Simulation (Indemics) data set, 196
Interpolation, in filling missing data, 213–214
IPython (ipython)

ipython command, 381–382
magic commands, 427

Iteration. See Loops (for loop)
iTerm2, 377
itertools library, 410–411

J

JavaScript Objectd notation, 59–62
join

merges and, 160

string methods, 234–235
jointplot, creating seaborn scatterplot, 85–88
JSON data, 59–62
Jupyter, 360
jupyter command, 382
JupyterCon, 364
Jupyter Days, 364

K

KaplanMeierFitter, lifelines library, 312–313
KDE plot, of bivariate statistics, 89–90
keep_default_na parameter, specifying NaN values, 205
Kelleher, Adam, 241
Kelleher, Andrew, 241
Keys, creating DataFrame, 32–33
Key–value pairs, 397–398
Key–value stores, 408
Keywords

lambda keyword, 142
passing keyword argument, 134–135

k-fold cross validation, 329–333
k-means

clustering, 345–351
using PCA, 349–351

**kwargs, 408

L

L1 regularization, 337–338, 341
L2 regularization, 338–341
lambda functions, applying, 141–142

Lander, Jared, 241
LASSO regression, 337–338, 341
Leap years/leap seconds, 278
Learning resources, for self-directed learners, 363–365
Libraries. See also by individual types

importing, 391–392
performance libraries, 360

lifelines library, 311–313
CoxPHFitter class, 314–315
KaplanMeierFitter class, 312–313

Linear regression models. See also GLM (generalized linear models)
with categorical variables, 289–293
cross-validation, 341–343
elastic net, 340–341
LASSO regression regularization, 337–338
model diagnostics, 324–327
multiple regression, 287–289
one-hot endocing in, 294–295
R2 (coefficient of determination) regression score function,

332
reasons for regularization, 335–337
replicating results in R, 444–446
residuals, 320–322
restoring labels in sklearn models, 293
ridge regression, 338–340
simple linear regression, 283–287
sklearn library for multiple regression, 288–289
sklearn library for simple linear regression, 285–287
statsmodels library for multiple regression, 287–288
statsmodels library for simple linear regression, 284–285
summary/conclusion, 296

Line breaks, 393–394
Linux

command line, 378

installing Anaconda, 373–374
running python and ipython commands, 382
viewing working directory, 383

List comprehension, 158–160
Lists (list)

comprehensions and, 403–404
converting generator to, 16–17, 409–410
creating Series, 31–32
of data types, 219–220
loading multiple files using comprehension, 158–160
loading multiple files using list comprehension, 158–160
looping, 401–402
multiple assignment, 413–414
overview of, 395–396
single value returns, 9–10

lmplot
creating scatterplots, 85
with hue parameter, 96–97

Loading data
datetime data, 253–254
as source of missing data, 205–206

loc
indexing rows or columns, 11–13
Series attributes, 35
subsetting rows and columns, 21–23
subsetting rows or columns, 15–16

Logic, three-valued, 203–204
Logistic regression

example of, 435–441
overview of, 297–304
replicating results in R, 446–447
sklearn library for, 300–304
statsmodels library for, 299–300
working with GLM models, 328–329

logit function, performing logistic
regression, 299–300

Loops (for loop)
comprehensions and, 403–404
overview of, 401–402
through groups, 192–194
through lists, 401–402

M

Mac
command line, 377–378
installing Anaconda, 373
pwd command for viewing working directory, 383
running python and ipython commands, 382

Machine learning models, 285, 361–362
Machine Learning Operations (MLOps), 362
Many-to-many merges, 163–166
Many-to-one merges, 163
Markham, Kevin, 422
match, pattern matching, 240–243
matplotlib library

axes subplots, 67–71
bivariate statistics, 74–76
figure anatomy, 71–72
figure objects, 67–71
multivariate statistics, 76–78
overview of, 66–72
statistical graphics, 72–73
univariate statistics, 73–74

Matrices, 331–333, 415–416
Mean (mean)

custom functions, 180–181

group calculations involving multiple variables, 191
grouped means, 23–26
numpy library, 179
Series in identifying, 37–38

Meetups, 363
melt function

converting wide data into tidy data, 118–120
line breaks, 393–394
rows and columns both containing variables, 126–127

Merges (merge)
many-to-many, 163–166
many-to-one, 163
of multiple data sets, 160–166
one-to-one, 162–163
as source of missing data, 206–207

Methods
built-in aggregation methods, 178–179
chaining, 423–425
class, 418
datetime, 259–261
export, 62–63
Series, 35–37
string, 233–236

Miniconda, 374
Mirjalili, Vahid, 241
Missing data (NaN values)

built-in Na value, 218
calculations with, 215–216
cleaning, 212–215
concatenation and, 148–149, 153
date range for filling in, 272–273
dropping, 214–215
fill forward or fill backward, 212–213
finding and counting, 210–212

interpolation in filling, 213–214
loading data as source of, 205–206
merged data as source of, 206–207
overview of, 203
recoding or replacing (fillna method), 212
reindexing causing, 209–210
sources of, 205–210
specifying with na_values parameter, 205–206
summary/conclusion, 218
transform example, 186–188
user input creating, 207–208
what is a NaN value, 203–204
working with, 210–216

MLOps (Machine Learning Operations), 362
Model diagnostics

comparing multiple models, 324–329
k-fold cross validation, 329–333
overview of, 319
q-q plots, 322–324
residuals, 319–324
summary/conclusion, 334
working with GLM models, 327–329
working with linear models, 324–327

Models
data, 281–282
generalized linear (See GLM (generalized linear models))
linear (See Linear models)

Month, extracting date components from datetime object, 254–257
Müller, Andreas, 241
Multiple assignment, 413–414
Multiple regression

with categorical variables, 289–293
overview of, 287
residuals, 320–322

sklearn library for, 288–289
statsmodels library for, 287–288

Multivariate statistics
in matplotlib, 76–78
in seaborn, 94–99

N

na_filter parameter, specifying NaN values, 205–206
Name, subsetting columns by, 7–8
NaN. See Missing data (NaN values)
Na value, missing data with built-in, 218
na_values parameter, specifying NaN values, 205–206
ndarray

restoring labels in sklearn models, 293
Series similarity with, 35–36
working with matrices and arrays, 415–416

Negative binomial regression, 306–308, 448–449
replicating results in R, 448–449

Negative numbers, slicing values from end of container, 230–231
New York ACS logistic regression example, 435–441
Normal distribution

of data, 336
q-q plots and, 322–324

Normalization, data, 169–173
numba library

performance-related libraries, 360
timing execution of statements or expressions, 360
vectorize decorator from, 140–141

Numbers (numeric)
converting variables to numeric values, 221–225
formatting number strings, 238–239, 430–431

negative numbers, 230–231
to_numeric function, 222–225

numpy library
broadcasting support, 44–45
exporting/importing data, 53–55
mean, 179
ndarray, 415–416
performance and, 360
restoring labels in sklearn models, 293
Series similarity with numpy.ndarray, 35
sklearn library taking numpy arrays, 286–287
specifying dtype from, 220–221
vectorize, 140

nunique method, grouped frequency counts, 27

O

Object-oriented languages, 417
Objects

classes, 417–418
converting to datetime, 250–253
datetime, 249–250
figure, plotting, 67–71
lists as, 395–396
plots and plotting using Pandas objects, 111–115

Observational units
across multiple tables, 154–160
in a table, 169–173

Odds ratios, performing logistic regression, 300
Offsets, frequency, 268–269
One-to-one merges, 162–163
OSX. See Mac

Overdispersion of data, negative binomial regression for, 306–308,
448–449

P

Packages
benefits of isolated environments, 385–386
Installing, 389–390
updating, 390

pairgrid, bivariate statistics, 93–94
Pairwise relationships (pairplot)

bivariate statistics, 93–94
with hue parameter, 98

pandera, 361
Panel, 362
Parameters

arbitrary function parameters, 407–408
default function parameters, 407
functions taking, 406–407

passing/reassigning values, 395–396
patsy library, 331–333
Patterns. See also Regular expressions (regex)

compiling, 246–247
matching, 240–243
substituting, 245–246

PCA (principal component analysis), 347–351
pd

alias for pandas, 5
reading pickle data, 53–54

PEP8 (Python Enhancement Proposal 8), 393
Performance

avoiding premature optimization, 360
profiling code, 360

timing your code, 360, 427–428
pickle data, 53–54
Pipeline, 294–295
Pipenv, 387–388
pip install, 374, 389–390
Pivot/unpivot

columns containing multiple variables, 122–126
converting wide data into tidy data, 119–120
keeping multiple columns fixed, 120–122
rows and columns both containing variables, 127–128

Placeholders, formatting strings, 238, 430
Plots/plotting (plot)

basic plots, 27–28
bivariate statistics in matplotlib, 74–76
bivariate statistics in seaborn, 83–94
concept map for, 371
creating boxplots (plot.box), 113–115
creating density plots (plot.kde), 111–112
creating scatterplots (plot.scatter), 112–113
linear regression residuals, 320–322
matplotlib library, 66–72
multivariate statistics in matplotlib, 76–78
multivariate statistics in seaborn, 94–99
overview of, 65
Pandas objects and, 111–115
q-q plots, 322–324
seaborn library, 78
statistical graphics, 72–73
summary/conclusion, 115
themes and styles in seaborn, 105–108
univariate statistics in matplotlib, 73–74
univariate statistics in seaborn, 79–83

PLOT_TYPE functions, 111

plt.hexbin function, 113–114
Podcast resources, for self-directed learners, 364–365
Point representation, Anscombe’s data set, 67
poisson function, in statsmodels library, 304–306
Poisson regression

negative binomial regression as alternative
to, 306–308, 448–449
overview of, 304
replicating results in R, 447–449
statsmodels library for, 304–306

Polars, 360
Principal component analysis (PCA), 347–351
Project templates, 379, 383
Pryke, Bejamin, 422
PyCon conference, 364
PyData, 364
pyenv, 374
Pyenv, 387–388
pyjanitor, 361
Python

Anaconda distribution, 385
assert, 166
command line and text editor, 381
comparing Pandas types with, 7
conferences, 364
enhanced features in Pandas, 3
IDEs (integrated development environments), 382
ipython command, 381–382
jupyter command, 382
as object-oriented languages, 417
running from command line, 377–378
scientific computing stack, 350
ways to use, 381–382
working with objects, 5

as zero-indexed languages, 399
Python Enhancement Proposal 8 (PEP8), 393

Q

q-q plots, model diagnostics, 322–324

R

random--state method, directly changing columns, 47–48
range, 409–410
Ranges (range)

beginning and ending indices, 399
date ranges, 266–269
filling in missing values, 272–273
overview of, 409–411
passing range of values, 395–396
subsetting columns, 16–18

Raschka, Sebastian, 241
R ecosystem, 362

replicating results in, 443–449
Regex. See Regular expressions (regex)
regplot, creating scatterplot, 83–85
Regression

keeping labels in sklearn models, 293
LASSO regression regularization, 337–338
logistic regression, 297–304, 446–447
more GLM options, 308–309
multiple regression, 287–289
negative binomial regression, 306–308, 448–449
New York ACS example, 435–441
Poisson regression, 304–308, 447–449

reasons for regularization, 335–337
ridge regression regularization, 338–340
simple linear regression, 283–287
sklearn library for logistic regression, 300–304
sklearn library for multiple regression, 288–289
sklearn library for simple linear regression, 285–287
statsmodels library for logistic regression, 299–300
statsmodels library for multiple regression, 287–288
statsmodels library for Poisson regression, 304–306
statsmodels library for simple linear regression, 284–285

Regular expressions (RegEx)
functions in re, 240
overview of, 239
pattern compilation, 246–247
pattern matching, 240–243
pattern substitution, 245–246
regex library, 247
special characters, 240
syntax, special characters, and functions, 240

Regularization
cross-validation, 341–343
elastic net, 340–341
LASSO regression, 337–338
overview of, 335
reasons for, 335–337
ridge regression, 338–340
summary/conclusion, 343

reindex method, reindexing as source of missing values, 209–210
re module, 240–243, 247
Resampling, datetime, 276–278
Residuals, model diagnostics, 319–324
Residual sum of squares (RSS), 326–327
Resources, 363–365
Ridge

regression elastic net and, 341
regularization techniques, 338–340

R language, interface with (to_feather method), 56–57
Rows

concatenation generally, 145–147
concatenation with different indices, 151–153
methods of indexing, 11
multiple observational units in a table, 169–173
removing row numbers from output, 55
rows and columns both containing variables, 126–129
subsetting multiple, 13
subsetting rows and columns, 21–23
subsetting rows by index label, 11–13
subsetting rows by row number, 13–14

RSS (residual sum of squares), 326–327
Rug plots, for univariate statistics, 80–81

S

Scalars, 40
Scatterplots

for bivariate statistics, 74–75
matplotlib example, 69
for multivariate statistics, 77–78
plot.scatter function, 112–113

Scientific computing stack, 350
SciPy conference, 364
scipy library

hierarchical clustering, 351
performance libraries, 360
scientific computing stack, 359

Scripts
project templates for running, 383

running Python from command line, 377–378
seaborn

Anscombe’s quartet for data visualization, 65–66
bivariate statistics, 83–94
multivariate statistics, 94–99
overview of, 78
themes and styles, 105–108
tips data set, 187
titanic data set, 297–299
univariate statistics, 79–83

Searches. See Find
Semicolon (;), types of delimiters, 55
Serialization, serialize and save data in binary format, 53
Series

adding columns, 45–47
aggregation functions, 183–184
alignment and vectorization, 39–42
apply function(s) over, 133–135
attributes, 35
boolean subsetting, 36–39
categorical attributes or methods, 226
as class, 417–418
creating, 31–32
defined, 3
directly changing columns, 47–50
exporting/importing data, 53
exporting to Excel (to_excel method), 56
histogram, 111
methods, 35–37
overview of, 33–35
similarity with ndarray, 35–36
single value returns, 8–9
writing CSV files (to_csv method), 55

SettingWithCopyWarning, 419–422

Shape
DataFrame attributes, 5
Series attributes, 35

Shape, in plotting, 97–98
Shell scripts, running Python from command line, 377–378
Shiny for Python, 362
Simple linear regression

overview of, 283
sklearn library, 285–287
statsmodels library, 284–285

Single cluster algorithm, in hierarchical clustering, 352–353
Siuba, 360
Size, in plotting, 77–78
size attribute, Series, 35
sklearn library

defaults in, 302–304
importing PCA function, 347–348
keeping labels in sklearn models, 293
k-fold cross validation, 330–331
KMeans function, 345–347
for logistic regression, 300–304
logistic regression example, 439–441
for multiple regression, 288–289
one-hot endocing with, 294–295
for simple linear regression, 285–287
splitting data into training and testing sets, 335–336
transformer pipelines in, 294–295

Slicing
colon (:) use in slicing syntax, 15, 399–400
columns, 18–21
string from beginning or to end, 232
strings, 230–231
strings incrementally, 232–233
subsetting columns, 15–16

subsetting multiple rows and columns, 22–23
values, 399–400

snakevis, profiling code, 360
sns.distplot, creating histograms, 81
Sns.set_style function, 105–108
Special characters, regular expressions, 240
Split–apply–combine, 175
splitlines method, strings, 235–236
split method

split and add columns individually, 123–125
split and combine in single step, 125–126

Spyder IDE, 382
SQL

comparing Pandas to, 162
groupy compared with SQL GROUP BY, 175

Square brackets ([])
getting first character of string, 230
list syntax, 395–396

Statistical graphics
bivariate statistics in matplotlib, 74–76
bivariate statistics in seaborn, 83–94
matplotlib library, 66–72
multivariate statistics in matplotlib, 76–78
multivariate statistics in seaborn, 94–99
overview of, 72–73
seaborn library, 78
univariate statistics in matplotlib, 73–74
univariate statistics in seaborn, 79–83

Statistics
basic plots, 27–28
grouped and aggregated calculations, 23–27
grouped frequency counts, 27
grouped means, 23–26

statsmodels library

for logistic regression, 299–300
for multiple regression, 287–288
for Poisson regression, 304–306
for simple linear regression, 284–285

Stocks/stock prices, 261–263
Storage

of information in dictionaries, 396–398
lists for data storage, 395–396

str accessor, 123
Streamlit, 362
strftime, for date formats, 252–253
Strings (string)

accessing methods, 123
converting values to, 220–221
formatting, 236–239, 429–431
getting last character in, 231–233
methods, 233–236
overview of, 229
pattern compilation, 246–247
pattern matching, 240–243
pattern substitution, 245–246
regular expressions (regex) and, 239–240, 247
subset and slice, 229–231
summary/conclusion, 247

str.replace, pattern substitution, 245–246
Styles, seaborn, 105–108
Subplot syntax, 68
Subsets/subsetting

columns by index position break, 8
columns by name, 7–8
columns by range, 16–18
columns generally, 21–23
columns using slicing syntax, 15–16
data by dates, 263–266

DataFrame boolean subsetting, 43
lists, 395–396
modifying with SettingWithCopyWarning, 419–420
multiple rows, 13
rows by index label, 11–13
rows by row number, 13–14
rows generally, 21–23
strings, 229–231
tuples, 396

sum
cumulative (cumsum), 199
custom functions, 180

Summarization. See Aggregation (or aggregate)
Survival analysis, 311–317

Cox proportional hazards model, 314–316
data for, 311–312
Kaplan Meier curves, 312–314
overview, 311
summary/conclusion, 317

SyiPy, 359

T

Tables
observational units across multiple, 154–160
observational units in, 169–173

Tab separated values (TSV), 55, 253
tail, returning last row, 13
T attribute, Series, 35
Templates, project, 379, 383
Terminal application, Mac, 377
Text. See also Characters; Strings (string)

function documentation (docstring), 132

overview of, 229
Themes, seaborn, 105–109
Three-valued logic, 203–204
Tidy data

columns containing multiple variables, 122–126
columns containing values not variables, 118–122
concept map for, 372
data assembly, 167
data normalization, 169–173
definition of, 117
keeping multiple columns fixed, 120–122
keeping one column fixed, 118–120
overview of, 117
rows and columns both containing variables, 126–129
split and add columns individually, 123–125
split and combine in single step, 125–126
summary/conclusion, 129

tidyverse, 360
Time. See datetime
TimedeltaIndex, 265–266
timedelta object

date calculations, 257–258
subsetting date based data, 265–266

timeit function, timing execution of statements or expressions, 360,
427–428

Time zones, 278–279
tips data set, seaborn library, 187, 283
titanic data set, 297–299
to_csv method, 55
to_datetime function, 250–253
to_dict method, 58–59
to_excel method, 56
to_feather method, 57
to_numeric function, 222–225

Transform (transform)
applying to data, 323–324
missing value example of transforming data, 186–188
overview of, 184
z-score example of transforming data, 184–186

Transformer pipelines, 294–295
True, 434
TSV (tab separated values), 55, 253
Tuples (tuple), 396
2D density plot, 88–89
type function, working with Python objects, 5

U

Unique identifiers, 220
Univariate statistics

in matplotlib, 73–74
in seaborn, 79–83

Updates, package, 390
User input, as source of missing data, 207–208

V

value_counts method, 27, 211–212
Values (value)

columns containing values not variables (See Columns, with
values not variables)

converting to strings, 220–221
creating DataFrame values, 34
directly changing columns, 47–50
dropping, 52
functions taking, 406–407

missing (See Missing data (NaN values))
multiple assignment of list of, 413–414
passing/reassigning, 395–396
replacing with SettingWithCopyWarning, 420–421
Series attributes, 35
shifting datetime values, 270–276
slicing, 399–400

VanderPlas, Jake, 359
Variables

adding covariates to linear models, 324
bi-variable statistics (See Bivariate statistics)
calculations involving multiple, 191
columns containing multiple (See Columns, with multiple

variables)
columns containing values not variables (See Columns, with

values not variables)
converting to numeric values, 221–225
multiple assignment, 413–414
multiple linear regression with three covariates, 320–322
multiple variable statistics (See Multivariate statistics)
one-variable grouped aggregation, 176–177
rows and columns both containing, 126–129
single variable statistics (See Univariate statistics)
sklearn library used with categorical variables, 291–293
statsmodels library used with categorical variables, 289–

291
Vectors (vectorize)

applying vectorized function, 138–141
with common index labels (automatic alignment), 41–42
DataFrame alignment and vectorization, 44–45
Series alignment and vectorization, 39–42
Series referred to as vectors, 35
timing, 427–428
using numba library, 140–141

using numpy library, 140
vectors of different length, 40–41
vectors of same length, 39–40
vectors with integers (scalars), 40

Violin plots
bivariate statistics, 91–93
creating scatterplots, 91–93
with hue parameter, 96–97

Visualization
Anscombe’s quartet for data visualization, 65–66
using plots for, 27–28
value of, 65–66

Voilà, 362

W

Ward cluster algorithm, in hierarchical clustering, 354–355
Wickham, Hadley, 99, 117
“Wide” data, converting into tidy data, 118–120
Windows

Anaconda command prompt, 381–382
cd command for viewing working directory, 383
command line, 377
installing Anaconda, 373

X

xarray library, 359
XGBoost, 361

Y

Year, extracting date components from datetime object, 254–257

Z

Zero-indexed languages, 399
z-score, transforming data, 184–186

Code Snippets

Many titles include programming code or configuration examples. To
optimize the presentation of these elements, view the eBook in single-
column, landscape mode and adjust the font size to the smallest setting. In
addition to presenting code and configurations in the reflowable text format,
we have included images of the code that mimic the presentation found in
the print book; therefore, where the reflowable format may compromise the
presentation of the code listing, you will see a “Click here to view code
image” link. Click the link to view the print-fidelity code image. To return
to the previous page viewed, click the Back button on your device or app.

	About This eBook
	Halftitle Page
	Title Page
	Copyright Page
	Pearson’s Commitment to Diversity, Equity, and Inclusion
	Dedication Page
	Contents
	Foreword to Second Edition
	Foreword to First Edition
	Preface
	Breakdown of the Book
	How to Read This Book
	Setup
	Feedback, Please!

	Acknowledgments
	Acknowledgments from the First Edition

	About the Author
	Changes in the Second Edition
	Part I: Introduction
	1. Pandas DataFrame Basics
	1.1 Introduction
	Learning Objectives
	1.2 Load Your First Data Set
	1.3 Look at Columns, Rows, and Cells
	1.4 Grouped and Aggregated Calculations
	1.5 Basic Plot
	Conclusion

	2. Pandas Data Structures Basics
	Learning Objectives
	2.1 Create Your Own Data
	2.2 The Series
	2.3 The DataFrame
	2.4 Making Changes to Series and DataFrames
	2.5 Exporting and Importing Data
	Conclusion

	3. Plotting Basics
	Learning Objectives
	3.1 Why Visualize Data?
	3.2 Matplotlib Basics
	3.3 Statistical Graphics Using matplotlib
	3.4 Seaborn
	3.5 Pandas Plotting Method
	Conclusion

	4. Tidy Data
	Learning Objectives
	4.1 Columns Contain Values, Not Variables
	4.2 Columns Contain Multiple Variables
	4.3 Variables in Both Rows and Columns
	Conclusion

	5. Apply Functions
	Learning Objectives
	5.1 Primer on Functions
	5.2 Apply (Basics)
	5.3 Vectorized Functions
	5.4 Lambda Functions (Anonymous Functions)
	Conclusion

	Part II: Data Processing
	6. Data Assembly
	Learning Objectives
	6.1 Combine Data Sets
	6.2 Concatenation
	6.3 Observational Units Across Multiple Tables
	6.4 Merge Multiple Data Sets
	Conclusion

	7. Data Normalization
	Learning Objectives
	7.1 Multiple Observational Units in a Table (Normalization)
	Conclusion

	8. Groupby Operations: Split-Apply-Combine
	Learning Objectives
	8.1 Aggregate
	8.2 Transform
	8.3 Filter
	8.4 The pandas.core.groupby. DataFrameGroupBy object
	8.5 Working With a MultiIndex
	Conclusion

	Part III: Data Types
	9. Missing Data
	Learning Objectives
	9.1 What Is a NaN Value?
	9.2 Where Do Missing Values Come From?
	9.3 Working With Missing Data
	9.4 Pandas Built-In NA Missing
	Conclusion

	10. Data Types
	Learning Objectives
	10.1 Data Types
	10.2 Converting Types
	10.3 Categorical Data
	Conclusion

	11. Strings and Text Data
	Introduction
	Learning Objectives
	11.1 Strings
	11.2 String Methods
	11.3 More String Methods
	11.4 String Formatting (F-Strings)
	11.5 Regular Expressions (RegEx)
	11.6 The regex Library
	Conclusion

	12. Dates and Times
	Learning Objectives
	12.1 Python’s datetime Object
	12.2 Converting to datetime
	12.3 Loading Data That Include Dates
	12.4 Extracting Date Components
	12.5 Date Calculations and Timedeltas
	12.6 Datetime Methods
	12.7 Getting Stock Data
	12.8 Subsetting Data Based on Dates
	12.9 Date Ranges
	12.10 Shifting Values
	12.11 Resampling
	12.12 Time Zones
	12.13 Arrow for Better Dates and Times
	Conclusion

	Part IV: Data Modeling
	13. Linear Regression (Continuous Outcome Variable)
	13.1 Simple Linear Regression
	13.2 Multiple Regression
	13.3 Models with Categorical Variables
	13.4 One-Hot Encoding in scikit-learn with Transformer Pipelines
	Conclusion

	14. Generalized Linear Models
	About This Chapter
	14.1 Logistic Regression (Binary Outcome Variable)
	14.2 Poisson Regression (Count Outcome Variable)
	14.3 More Generalized Linear Models
	Conclusion

	15. Survival Analysis
	15.1 Survival Data
	15.2 Kaplan Meier Curves
	15.3 Cox Proportional Hazard Model
	Conclusion

	16. Model Diagnostics
	16.1 Residuals
	16.2 Comparing Multiple Models
	16.3 k-Fold Cross-Validation
	Conclusion

	17. Regularization
	17.1 Why Regularize?
	17.2 LASSO Regression
	17.3 Ridge Regression
	17.4 Elastic Net
	17.5 Cross-Validation
	Conclusion

	18. Clustering
	18.1 k-Means
	18.2 Hierarchical Clustering
	Conclusion

	Part V: Conclusion
	19. Life Outside of Pandas
	19.1 The (Scientific) Computing Stack
	19.2 Performance
	19.3 Dask
	19.4 Siuba
	19.5 Ibis
	19.6 Polars
	19.7 PyJanitor
	19.8 Pandera
	19.9 Machine Learning
	19.10 Publishing
	19.11 Dashboards
	Conclusion

	20. It’s Dangerous To Go Alone!
	20.1 Local Meetups
	20.2 Conferences
	20.3 The Carpentries
	20.4 Podcasts
	20.5 Other Resources
	Conclusion

	Part VI: Appendices
	A. Concept Maps
	B. Installation and Setup
	B.1 Install Python
	B.2 Install Python Packages
	B.3 Download Book Data

	C. Command Line
	C.1 Installation
	C.2 Basics

	D. Project Templates
	E. Using Python
	E.1 Command Line and Text Editor
	E.2 Python and IPython
	E.3 Jupyter
	E.4 Integrated Development Environments (IDEs)

	F. Working Directories
	G. Environments
	G.1 Conda Environments
	G.2 Pyenv + Pipenv

	H. Install Packages
	H.1 Updating Packages

	I. Importing Libraries
	J. Code Style
	J.1 Line Breaks in Code

	K. Containers: Lists, Tuples, and Dictionaries
	K.1 Lists
	K.2 Tuples
	K.3 Dictionaries

	L. Slice Values
	M. Loops
	N. Comprehensions
	O. Functions
	O.1 Default Parameters
	O.2 Arbitrary Parameters

	P. Ranges and Generators
	Q. Multiple Assignment
	R. Numpy ndarray
	S. Classes
	T. SettingWithCopyWarning
	T.1 Modifying a Subset of Data
	T.2 Replacing a Value
	T.3 More Resources

	U. Method Chaining
	V. Timing Code
	W. String Formatting
	W.1 C-Style
	W.2 String Formatting: .format() Method
	W.3 Formatting Numbers

	X. Conditionals (if-elif-else)
	Y. New York ACS Logistic Regression Example
	Z. Replicating Results in R
	Z.1 Linear Regression
	Z.2 Logistic Regression
	Z.3 Poisson Regression

	Index
	Code Snippets

