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Pearson’s Commitment to Diversity, Equity, and Inclusion
Pearson is dedicated to creating bias-free content that reflects the diversity
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not limited to race, ethnicity, gender, socioeconomic status, ability, age,
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learning.
Our educational products and services are inclusive and represent the
rich diversity of learners.
Our educational content accurately reflects the histories and
experiences of the learners we serve.
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Foreword to Second Edition

As the data science domain and educational landscape continues to evolve,
there is an increasing need to train individuals to critically consider data
both holistically and logically. Each year, given the advancement in
computational power, magnitude of data, and data-informed decisions to
make, more and more individuals are dipping their toes in the water of data
science—and most are not aware of how messy their data sets are. Working
with messy data is challenging, confusing, and not necessarily exciting,
especially for newcomers. To continue to use data for informed decision-
making, it is important to introduce concepts in data logic, planning, and
purpose early in the stages of training best practices. The how, why, and
lessons learned of teaching data science represent huge areas of exploration
given the exponential increase in learners. There are numerous resources,
MOOCs, Twitter threads, packages, cheat-sheets, and more out there for
individuals to learn data science, either on their own or in a class. However,
what is effective and what pathways are best for certain learner personas?
Moreover, how does someone new to the field choose which educational
resources mesh with their needs and background familiarity?

While spending many years as an educator for RStudio and The
Carpentries, Dr. Daniel Chen recognized this need, and it has become his
passion to introduce learners to core concepts to work with their data in
more effective, reproducible, and reliable methods in an environment
matching their comfort level with the field. I met Dan by semi-random
chance and after a few conversations, we were well on our way with a
dissertation topic stemming from these interests. With a shared passion in
educating others in foundational data science methods and looking into
those “hows” and “whys” of the ways in which we were teaching, we
sought to understand our learners first and then create materials. It was a
pleasure to work with Dan on his dissertation—and to see those insights
incorporated here in Pandas for Everyone, Second Edition.



In the second edition, Dan takes learners step-by-step through practical
scratch code examples for using Pandas. Using Pandas helps demystify
Python data analysis, create organized manageable data sets, and, most
importantly, have tidy data sets! It takes a special educator to get
individuals (myself included!) excited about cleaning data, but that is what
Dan does for his learners in Pandas for Everyone. Visualizing and
modeling data are taught in easy-to-interpret style once learners become
comfortable with manipulating and transforming their data sets, all of
which is covered in sequential order. It is this mindset and presentation of
materials that really makes this book for everyone—and aids the learner in
best practices while working with example data sets that mimic data sets
they might use in real life. Pandas for Everyone, Second Edition, is a quick
but detailed foray for new data scientists, instructors, and more to
experience best practices and the massive potential of Pandas in a clear-cut
format.

–Anne M. Brown, PhD (she/her)
Assistant Professor

Data Services—University Libraries
Department of Biochemistry

Virginia Tech, Blacksburg, VA 24061



Foreword to First Edition

With each passing year data becomes more important to the world, as does
the ability to compute on this growing abundance of data. When deciding
how to interact with data, most people make a decision between R and
Python. This does not reflect a language war, but rather a luxury of choice
where data scientists and engineers can work in the language with which
they feel most comfortable. These tools make it possible for everyone to
work with data for machine learning and statistical analysis. That is why I
am happy to see what I started with R for Everyone extended to Python with
Pandas for Everyone.

I first met Dan Chen when he stumbled into the “Introduction to Data
Science” course while working toward a master’s in public health at
Columbia University’s Mailman School of Public Health. He was part of a
cohort of MPH students who cross-registered into the graduate school
course and quickly developed a knack for data science, embracing
statistical learning and reproducibility. By the end of the semester he was
devoted to, and evangelizing, the merits of data science.

This coincided with the rise of Pandas, improving Python’s use as a tool
for data science and enabling engineers already familiar with the language
to use it for data science as well. This fortuitous timing meant Dan
developed into a true multilingual data scientist, mastering both R and
Pandas. This puts him in a great position to reach different audiences, as
shown by his frequent and popular talks at both R and Python conferences
and meetups. His enthusiasm and knowledge shine through and resonate in
everything he does, from educating new users to building Python libraries.
Along the way he fully embraces the ethos of the open-source movement.

As the name implies, this book is meant for everyone who wants to use
Python for data science, whether they are veteran Python users, experienced
programmers, statisticians, or entirely new to the field. For people brand
new to Python the book contains a collection of appendixes for getting



started with the language and for installing both Python and Pandas, and it
covers the whole analysis pipeline, including reading data, visualization,
data manipulation, modeling, and machine learning.

Pandas for Everyone is a tour of data science through the lens of Python,
and Dan Chen is perfectly suited to guide that tour. His mixture of
academic and industry experience lends valuable insights into the analytics
process and how Pandas should be used to greatest effect. All this combines
to make for an enjoyable and informative read for everyone.

–Jared Lander, series editor



Preface

My foray into teaching was in 2013 when I attended my first Software-
Carpentry workshop, and I’ve been involved in teaching ever since. In
2019, I was lucky enough to be one of the RStudio (now Posit, PBC)
interns with the education group. By then, data science education has
already gained a tremendous amount of momentum. When I finished my
internship, I needed a dissertation topic for my degree, and wanted to
combine teaching with medicine. Luckily, I knew a librarian at the
university, Andi Ogier, who connected me with Anne Brown, who was also
interested in teaching data literacy skills in the health sciences. The rest is
history. Anne became my PhD chair, and with the rest of my committee,
Dave Higdon, Alex Hanlon, and Nikki Lewis, I got to do research on data
science education in the medical and biomedical sciences.1 The first edition
of the book became a foundation for what data science topics were taught
for the workshop component of the dissertation. The second edition of
Pandas for Everyone incorporates many of the things I’ve learned while
studying education and pedagogy.
1. You can learn more about my dissertation around data science education here:
https://github.com/chendaniely/dissertation

Long story short, befriend a librarian. Their profession revolves around
data.

In 2013, I didn’t even know the term “data science” existed. I was a
master’s of public health (MPH) student in epidemiology at the time and
was already captivated with the statistical methods beyond the t-test,
ANOVA, and linear regression from my psychology and neuroscience
undergraduate background. It was also in the fall of 2013 that I attended my
first Software-Carpentry workshop and that I taught my first recitation
section as a teaching assistant for my MPH program’s Quantitative

https://github.com/chendaniely/dissertation


Methods course (essentially a combination of a first-semester epidemiology
and biostatistics course). I’ve been learning and teaching ever since.

I’ve come a long way since taking my first Introduction to Data Science
course, which was taught by Rachel Schutt, PhD; Kayur Patel, PhD; and
Jared Lander. They opened my eyes to what was possible. Things that were
inconceivable (to me) were actually common practices, and anything I
could think of was possible (although I now know that “possible” doesn’t
mean “performs well”). The technical details of data science—the coding
aspects—were taught by Jared in R. Jared’s friends and colleagues know
how much of an aficionado he is of the R language.

At the time, I had been meaning to learn R, but the Python/R language
war never breached my consciousness. On the one hand, I saw Python as
just a programming language; on the other hand, I had no idea Python had
an analytics stack (I’ve come a long way since then). When I learned about
the SciPy stack and Pandas, I saw it as a bridge between what I knew how
to do in Python from my undergraduate and high school days and what I
had learned in my epidemiology studies and through my newly acquired
data science knowledge. As I became more proficient in R, I saw the
similarities to Python. I also realized that a lot of the data cleaning tasks
(and programming in general) involve thinking about how to get what you
need—the rest is more or less syntax. It’s important to try to imagine what
the steps are and not get bogged down by the programming details. I’ve
always been comfortable bouncing around the languages and never gave
too much thought to which language was “better.” Having said that, this
book is geared toward a newcomer to the Python data analytics world.

This book encapsulates all the people I’ve met, events I’ve attended, and
skills I’ve learned over the past few years. One of the more important
things I’ve learned (outside of knowing what things are called so Google
can take me to the relevant StackOverflow page) is that reading the
documentation is essential. As someone who has worked on collaborative
lessons and written Python and R libraries, I can assure you that a lot of
time and effort go into writing documentation. That’s why I constantly refer
to the relevant documentation page throughout this book. Some functions
have so many parameters used for varying use cases that it’s impractical to
go through each of them. If that were the focus of this book, it might as
well be titled Loading Data Into Python. But, as you practice working with
data and become more comfortable with the various data structures, you’ll



eventually be able to make educated guesses about what the output of
something will be, even though you’ve never written that particular line of
code before. I hope this book gives you a solid foundation to explore on
your own and be a self-guided learner.

I met a lot of people and learned a lot from them during the time I was
putting this book together. A lot of the things I learned dealt with best
practices, writing vectorized statements instead of loops, formally testing
code, organizing project folder structures, and so on. I also learned lot
about teaching from actually teaching. Teaching really is the best way to
learn material. Many of the things I’ve learned in the past few years have
come to me when I was trying to figure them out to teach others. Once you
have a basic foundation of knowledge, learning the next bit of information
is relatively easy. Repeat the process enough times, and you’ll be surprised
how much you actually know. That includes knowing the terms to use for
Google and interpreting the StackOverflow answers. The very best of us all
search for our questions. Whether this is your first language or your fourth,
I hope this book gives you a solid foundation to build upon and learn as
well as a bridge to other analytics languages.

Breakdown of the Book
This book is organized into multiple parts plus a set of appendices.

Part I
Part I aims to be an introduction to Pandas using a realistic data set.

Chapter 1: Starts by using Pandas to load a data set and begin looking
at various rows and columns of the data. Here you will get a general
sense of the syntax of Python and Pandas. The chapter ends with a
series of motivating examples that illustrate what Pandas can do.
Chapter 2: Dives deeper into what the Pandas 'DataFrame' and
'Series' objects are. This chapter also covers boolean subsetting,
dropping values, and different ways to import and export data.
Chapter 3: Covers plotting methods using 'matplotlib',
'seaborn', and 'pandas' to create plots for exploratory data



analysis.
Chapter 4: Discusses Hadley Wickham’s “Tidy Data” paper, which
deals with reshaping and cleaning common data problems.
Chapter 5: Focuses on applying functions over data, an important skill
that encompasses many programming topics. Understanding how
'.apply()' works will pave the way for more parallel and
distributed coding when your data manipulations need to scale.

Part II
Part II focuses on what happens after you load data and need to further
process your data.

Chapter 6: Focuses on combining data sets, either by concatenating
them together or by merging disparate data.
Chapter 7: Normalizes data for more robust data storage.
Chapter 8: Describes '.groupby()' operations (i.e., split-apply-
combine). These powerful concepts, like '.apply()', are often
needed to scale data. They are also great ways to efficiently aggregate,
transform, or filter your data.

Part III
Part III covers the types of data stored in columns.

Chapter 9: Covers what happens when there is missing data, how data
are created to fill in missing data, and how to work with missing data,
especially what happens when certain calculations are performed on
them.
Chapter 10: Deals with data types and how to convert from different
types within 'DataFrame' columns.
Chapter 11: Introduces string manipulation, which is frequently needed
as part of the data cleaning task because data are often encoded as text.
Chapter 12: Explores Pandas’s powerful date and time capabilities.



Part IV
With the data all cleaned and ready, the next step is to fit some models.
Models can be used for exploratory purposes, not just for prediction,
clustering, and inference. The goal of Part IV is not to teach statistics (there
are plenty of books in that realm), but rather to show you how these models
are fit and how they interface with Pandas. Part IV can be used as a bridge
to fitting models in other languages.

Chapter 13: Linear models are the simpler models to fit. This chapter
covers fitting these models using the 'statsmodels' and
'sklean' libraries.
Chapter 14: Generalized linear models, as the name suggests, are linear
models specified in a more general sense. They allow us to fit models
with different response variables, such as binary data or count data.
Chapter 15: Covers survival models, which is what you use when you
have data censoring.
Chapter 16: Since we have a core set of models that we can fit, the next
step is to perform some model diagnostics to compare multiple models
and pick the “best” one.
Chapter 17: Regularization is a technique used when the models we are
fitting are too complex or overfit our data.
Chapter 18: Clustering is a technique we use when we don’t know the
actual answer within our data, but we need a method to cluster or
group “similar” data points together.

Part V
The book concludes with a few points about the larger Python ecosystem,
and additional references.

Chapter 19: Quickly summarizes the computation stack in Python, and
starts down the path to code performance and scaling.
Chapter 20: Provides some links and references on learning beyond the
book.



Appendices
The appendices can be thought as a primer to Python programming. While
they are not a complete introduction to Python, the various appendixes do
supplement some of the topics throughout the book.

Appendix A: Provides concept maps for the introductory chapters to
help breakdown and relate concepts to one another.
Appendixes B–J: These appendices cover all the tasks related to
running Python code—from installing Python, to using the command
line to execute your scripts, and to organizing your code. They also
cover creating Python environments and installing libraries.
Appendixes K–Y: These appendices cover general programming
concepts that are relevant to Python and Pandas. They are
supplemental references to the main part of the book.
Appendix Z: Replicates some of the modeling code in R as a reference
to compare similar results.

How to Read This Book
Whether you are a newcomer to Python or a fluent Python programmer, this
book is meant to be read from the beginning. Educators, or people who plan
to use the book for teaching, may also find the order of the chapters to be
suitable for a workshop or class.

Newcomers
Absolute newcomers are encouraged to first look through Appendix A -
Appendix J as they explain how to install Python and get it working. After
taking these steps, readers will be ready to jump into the main body of the
book. The earlier chapters make references to the relevant appendixes as
needed. The concept maps and learning objectives found at the beginning of
the earlier chapters help organize and prepare the reader for what will be
covered in the chapter, as well as point to the relevant appendixes to be read
before continuing.



Fluent Python Programmers
Fluent Python programmers may find the first two chapters to be sufficient
to get started and grasp the syntax of Pandas; they can then use the rest of
the book as a reference. The objectives at the beginning of the earlier
chapters point out which topics are covered in the chapter. The chapter on
“tidy data” in Part I, and the chapters in Part III, will be particularly helpful
in data manipulation.

Instructors
Instructors who want to use the book as a teaching reference may teach
each chapter in the order presented. It should take approximately 45
minutes to 1 hour to teach each chapter. I have sought to structure the book
so that chapters do not reference future chapters, so as to minimize the
cognitive overload for students—but feel free to shuffle the chapters as
needed.

The concept maps in Appendix A and the learning objectives provided
in the earlier chapters should help contextualize how concepts are related to
one another.

Setup
Everyone will have a different setup, so the best way to get the most
updated set of instructions on setting up an environment to code through the
book would be on the accompanying GitHub repository:

Click here to view code image

https://github.com/chendaniely/pandas_for_every
one

Otherwise, see Appendix B for information on how to install Python on
your computer.

Get the Data
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The easiest way to get all the data to code along the book is to download the
ZIP file of the book’s repository here:

Click here to view code image

https://github.com/chendaniely/pandas_for_every
one

The book’s repository will have the latest instructors on how to
download the book’s data, and more detailed instructors for how to get the
book can be found in Appendix B.3.

Setup Python
Appendix G and Appendix H cover environments and installing packages,
respectively. There you will find the URLs and commands on how to setup
Python to code along the book. Again, the book’s repository will always
contain the latest set of instructions.

Feedback, Please!
Thank you for taking the time to go through this book. If you find any
problems, issues, or mistakes within the book, please send me feedback!
GitHub issues may be the best place to provide this information, but you
can also email me at chendaniely@gmail.com. Just be sure to use the
PFE or P4E tag in the beginning of the subject line so I can make sure your
emails do not get flooded by various listserv emails. If there are topics that
you feel should be covered in the book, please let me know. I will try my
best to put up a notebook in the GitHub repository and to get it incorporated
in a later printing or edition of the book.

Words of encouragement are appreciated.

Register your copy of Pandas for Everyone, Second Edition, on
the InformIT site for convenient access to updates and/or
corrections as they become available. To start the registration
process, go to informit.com/register and log in or create an
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account. Enter the product ISBN (9780137891153) and click
Submit. Look on the Registered Products tab for an Access
Bonus Content link next to this product, and follow that link to
access any available bonus materials. If you would like to be
notified of exclusive offers on new editions and updates, please
check the box to receive email from us.
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Changes in the Second Edition

The second edition mainly updates all the code and libraries to the latest
versions at the time of writing. Most of the code form the first edition was
unaffected. Bits of the plotting code and machine learning data modeling
code ended up changing over the years and were updated.

From a pedagogical perspective, the main Pandas chapters have also
been updated with proper learning objectives, and the introductory chapters
have accompanying concept maps to help educators plan a learning path,
and for learners to visualize how concepts are related to one another. These
were all topics I’ve learned about while doing my dissertation, and I hope
they become useful for learners and educators. The book also includes
access to online bonus chapters on geopandas, Dask, and creating
interactive graphics with Altair.

I’ve also rearranged the chapters in the second edition based on my
experiences when I teach workshops. Part I of the book contains the most
important bits of information that I aim to cover in my workshops. The rest
of the book can be thought of as data processing details after the more
fundamental topics are covered. The chapters that have big changes from
the first edition have a section in the chapter’s introduction on the details of
what has changed.

Many of the libraries and tools mentioned in the conclusion chapters of
the book will also have freely available chapters to accompany this book to
help you extend your learning.



Part I

Introduction

Chapter 1 Pandas DataFrame Basics

Chapter 2 Pandas Data Structures Basics

Chapter 3 Plotting Basics

Chapter 4 Tidy Data

Chapter 5 Apply Functions

This book begins with an introduction to the Pandas Python library for data
analytics. It first covers the very basics of using the pandas library,
loading your first data set and doing basic filtering and subsetting
commands with your data (Chapter 1). It then goes into more detail about
the DataFrame and Series objects, where we cover more of the
attributes and methods these objects can do, including how to save data sets
for storage (Chapter 2). It then pivots into data visualization with
matplotlib and seaborn plotting libraries as well as the built-in
pandas plotting methods (Chapter 3). Next, this part covers one of the
fundamental concepts in data literacy, tidy data principles. Where it
discusses what a “clean” and “tidy” data set looks like so you can process
data with a goal and target in mind (Chapter 4). Finally, this part covers
writing functions and applying them to your data, and lays down the
foundation for any custom data processing steps in the future (Chapter 5).
Think of this part of the book as the core data literacy knowledge on how to
work and think about your data. It also aims to teach you the relevant bits of
the Python programming language by using the Pandas library as the
motivational use case.



1

Pandas DataFrame Basics

1.1 Introduction
Pandas is an open-source Python library for data analysis. It gives Python
the ability to work with spreadsheet-like data for fast data loading,
manipulating, aligning, merging, etc. To give Python these enhanced
features, Pandas introduces two new data types to Python: Series and
DataFrame. The DataFrame will represent your entire spreadsheet or
rectangular data, whereas the Series is a single column of the DataFrame.
A Pandas DataFrame can also be thought of as a dictionary or collection
of Series.

Why should you use a programming language like Python and a tool like
Pandas to work with data? It boils down to automation and reproducibility.
If there is a particular set of analyses that needs to be performed on multiple
data sets, a programming language can automate the analysis on the data
sets. Although many spreadsheet programs have their own macro
programming languages, many users do not use them. Furthermore, not all
spreadsheet programs are available on all operating systems. Performing
data tasks using a programming language forces the user to have a running
record of all steps performed on the data. I, like many people, have
accidentally hit a key while viewing data in a spreadsheet program, only to
find out that my results do not make any sense anymore due to bad data.
This is not to say spreadsheet programs are bad or do not have their place in
the data workflow. They do, but there are better and more reliable tools out
there. These better tools can work in tandem with spreadsheet programs
while providing more reliable data manipulation, and introduce the
possibility of incorporating data from other data sets and databases.

Learning Objectives



The concept map for this chapter can be found in Figure A.1.

Use Pandas functions to load a simple delimited data file
Calculate how many rows and columns were loaded
Identify the type of data that were loaded
Name differences between functions, methods, and attributes
Use methods and attributes to subset rows and columns
Calculate basic grouped and aggregated statistics from data
Use methods and attributes to create a simple figure from data

1.2 Load Your First Data Set
When given a data set, we first load it and begin looking at its structure and
contents. The simplest way of looking at a data set is to look at and subset
specific rows and columns. We can see what type of information is stored in
each column, and can start looking for patterns by aggregating descriptive
statistics.

Since Pandas is not part of the Python standard library, we have to first
tell Python to load (i.e., import) the library. If you have not installed data
and packages needed to go through the book please see Appendix B.

import pandas

With the library loaded we can use the read_csv() function to load a
CSV data file. In order to access the read_csv() function from pandas,
we use something called “dot notation.” More on dot notations can be
found in Appendix L, Appendix P, and Appendix E. We write
pandas.read_csv() to say: within the pandas library we just loaded,
look inside for the read_csv() function.

About the Gapminder Data Set
The Gapminder data set originally comes from
https://www.gapminder.org/. This particular version of the
book is using Gapminder data prepared by Jennifer Bryan from the
University of British Columbia (now at Posit, PBC, formerly RStudio,

https://www.gapminder.org/


PBC). The repository can be found at
https://github.com/jennybc/gapminder/.

Click here to view code image

# by default read_csv() will read a comma 
separated file, 
# our gapminder data set is separated by a tab 
# we can use the sep parameter and indicate a 
tab with \t 
df  = pandas.read_csv('./data/gapminder.tsv', 
sep='\t') 
# print out the data 
print(df)

           country continent  year  lifeExp        
pop      gdpPercap 
0      Afghanistan      Asia  1952   28.801    
8425333     779.445314 
1      Afghanistan      Asia  1957   30.332    
9240934     820.853030 
2      Afghanistan      Asia  1962   31.997   
10267083     853.100710 
3      Afghanistan      Asia  1967   34.020   
11537966     836.197138 
4      Afghanistan      Asia  1972   36.088   
13079460     739.981106 
...            ...       ...   ...      ...        
...            ... 
1699      Zimbabwe    Africa  1987   62.351    
9216418     706.157306 
1700      Zimbabwe    Africa  1992   60.377   
10704340     693.420786 

https://github.com/jennybc/gapminder/
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1701      Zimbabwe    Africa  1997   46.809   
11404948     792.449960 
1702      Zimbabwe    Africa  2002   39.989   
11926563     672.038623 
1703      Zimbabwe    Africa  2007   43.487   
12311143     469.709298 
 
[1704 rows x 6 columns]

Since we will be using Pandas functions many times throughout the
book as well as in your own programming. It is common to give pandas
the alias pd. The above code will be the same as below:

Click here to view code image

import pandas as pd 
df = pd.read_csv('./data/gapminder.tsv', 
sep='\t')

We can check to see if we are working with a Pandas Dataframe by
using the built-in type() function (i.e., it comes directly from Python, not
a separate library such as Pandas).

Click here to view code image

print(type(df))

<class 'pandas.core.frame.DataFrame'>

The type() function is handy when you begin working with many
different types of Python objects and need to know what object you are
currently working on.

The data set we loaded is currently saved as a Pandas DataFrame
object (pandas.core.frame.DataFrame) and is relatively small.
Every DataFrame object has a .shape attribute that will give us the
number of rows and columns of the DataFrame.
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Click here to view code image

# get the number of rows and columns 
print(df.shape)

(1704, 6)

The shape attribute returns a tuple (Appendix G) where the first value is
the number of rows and the second value is the number of columns.

From the results above, we see our gapminder data set has 1704 rows
and 6 columns.

Since .shape is an attribute of the DataFrame object, and not a
function or method of the DataFrame object, it does not have round
parentheses after the period (i.e., it’s written as df.shape and not
df.shape()). If you made the mistake of putting parentheses after the
.shape attribute, it would return an error.

Click here to view code image

# shape is an attribute, not a method 
# this will cause an error 
print(df.shape())

TypeError: 'tuple' object is not callable

Typically, when first looking at a data set, we want to know how many
rows and columns there are (we just did that). To get a gist of what
information the data set contains, we look at the column names. The
column names, like .shape, are given using the .column attribute of the
DataFrame object.

Click here to view code image

# get column names 
print(df.columns)
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Index(['country', 'continent', 'year', 'lifeExp', 
'pop', 
       'gdpPercap'], 
      dtype='object')

Question
What is the type of the column names?

The Pandas DataFrame object is similar to other languages that have
DataFrame-like objects (e.g., Julia and R). Each column (i.e., Series) has
to be the same type, whereas each row can contain mixed types. In our
current example, we can expect the country column to be all strings, and
the year to be integers. However, it’s best to make sure that is the case by
using the .dtypes attribute or the .info() method. Table 1.1 shows
what the type in Pandas is relative to native Python.

Click here to view code image

# get the dtype of each column 
print(df.dtypes)

country        object 
continent      object 
year            int64 
lifeExp      float64 
pop             int64 
gdpPercap    float64 
dtype: object

Click here to view code image

# get more information about our data 
print(df.info())
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<class 'pandas.core.frame.DataFrame'> 
RangeIndex: 1704 entries, 0 to 1703 
Data columns (total 6 columns): 
 #    Column     Non-Null Count  Dtype 
---   ------     --------------  ----- 
 0    country    1704 non-null   object 
 1    continent  1704 non-null   object 
 2    year       1704 non-null   int64 
 3    lifeExp    1704 non-null   float64 
 4    pop        1704 non-null   int64 
 5    gdpPercap  1704 non-null   float64 
dtypes: float64(2), int64(2), object(2) 
memory usage: 80.0+ KB 
None

1.3 Look at Columns, Rows, and Cells
Now that we’re able to load up a simple data file, we want to be able to
inspect its contents. We could print() out the contents of the
DataFrame, but with today’s data, there are too many cells to make sense
of all the printed information. Instead, the best way to look at our data is to
inspect it by looking at various subsets of the data. We can use the
.head() method of a DataFrame to look at the first 5 rows of our data.

Table 1.1 Table of Pandas dtypes and Python Types

Pand
as

Pyth
on Description

object strin
g

most common data type

int64 int whole numbers

float6
4

float numbers with decimals



Pand
as

Pyth
on Description

dateti
me64

datet
ime

datetime is found in the Python standard library (i.e., it is not 
loaded by default and needs to be imported)

Click here to view code image

# show the first 5 observations 
print(df.head())

       country continent  year  lifeExp       pop   
gdpPercap 
0  Afghanistan      Asia  1952   28.801   8425333   
779.445314 
1  Afghanistan      Asia  1957   30.332   9240934   
820.853030 
2  Afghanistan      Asia  1962   31.997  10267083   
853.100710 
3  Afghanistan      Asia  1967   34.020  11537966   
836.197138 
4  Afghanistan      Asia  1972   36.088  13079460   
739.981106

This is useful to see if our data loaded properly, and to get a better sense
of the columns and contents. However, there are going to be times when we
only want particular rows, columns, or values from our data.

Before continuing, make sure you are familiar with Python containers
(Appendix F, Appendix H).

1.3.1 Select and Subset Columns by Name
If we want only a specific column from our data, we can access the data
using square brackets, [ ].
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Click here to view code image

# just get the country column and save it to its 
own variable 
country_df = df['country']

Click here to view code image

# show the first 5 observations 
print(country_df.head())

0    Afghanistan 
1    Afghanistan 
2    Afghanistan 
3    Afghanistan 
4    Afghanistan 
Name: country, dtype: object

Click here to view code image

# show the last 5 observations 
print(country_df.tail())

 
1699    Zimbabwe 
1700    Zimbabwe 
1701    Zimbabwe 
1702    Zimbabwe 
1703    Zimbabwe 
Name: country, dtype: object

In order to specify multiple columns by the column name, we need to
pass in a Python list between the square brackets. This may look a bit
strange since there will be 2 sets of square brackets, [[ ]].
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The outer set of square brackets tells us that we are subsetting our
DataFrame by columns. The inner set of square brackets tells us the list
of columns we want to use. That is, Python also uses square brackets, [ ],
to “list” multiple things as a single object.

Click here to view code image

# Looking at country, continent, and year 
subset = df[['country', 'continent', 'year']]

Click here to view code image

print(subset)

          country continent  year 
0     Afghanistan      Asia  1952 
1     Afghanistan      Asia  1957 
2     Afghanistan      Asia  1962 
3     Afghanistan      Asia  1967 
4     Afghanistan      Asia  1972 
...           ...       ...   ... 
1699     Zimbabwe    Africa  1987 
1700     Zimbabwe    Africa  1992 
1701     Zimbabwe    Africa  1997 
1702     Zimbabwe    Africa  2002 
1703     Zimbabwe    Africa  2007 
 
[1704 rows x 3 columns]

Using the square bracket notation, [ ], you cannot pass an index
position to subset a DataFrame based on the position of the columns. If
you want to do this, look down for the .iloc[] notation.

Click here to view code image
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# subset the first column based on its position. 
df[0]

KeyError: 0

1.3.1.1 Single Value Returns DataFrame or Series

When we first selected a single column we were given a Series object
back.

Click here to view code image

country_df = df['country'] 
print(type(country_df))

<class 'pandas.core.series.Series'>

We can also tell it’s a Series because it prints out slightly differently
from the DataFrame.

Click here to view code image

print(country_df)

0       Afghanistan 
1       Afghanistan 
2       Afghanistan 
3       Afghanistan 
4       Afghanistan 
           ... 
1699       Zimbabwe 
1700       Zimbabwe 
1701       Zimbabwe 
1702       Zimbabwe 
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1703       Zimbabwe 
Name: country, Length: 1704, dtype: object

Compare those results to passing in a single element list (note the double
square bracket, [[ ]]):

Click here to view code image

country_df_list = df[['country']] # note the 
double square bracket 
print(type(country_df_list))

<class 'pandas.core.frame.DataFrame'>

If we use a list to subset, we will always get a DataFrame object back.

Click here to view code image

print(country_df_list)

          country 
0     Afghanistan 
1     Afghanistan 
2     Afghanistan 
3     Afghanistan 
4     Afghanistan 
...           ... 
1699     Zimbabwe 
1700     Zimbabwe 
1701     Zimbabwe 
1702     Zimbabwe 
1703     Zimbabwe 
 
[1704 rows x 1 columns]
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Depending on what you need, sometimes you only need a single
Series (sometimes called a vector), other times for consistency, you will
want a DataFrame object.

1.3.1.2 Using Dot Notation to Pull a Column of Values

When all you need is a single column (i.e., Series or vector) of values
and typing df['column'] will be very tedious. There is a shorthand
notation where you can pull the column vector by treating it as a
DataFrame attribute.

For example, below are two ways of returning the same single column
Series.

Click here to view code image

# using square bracket notation 
print(df['country'])

0       Afghanistan 
1       Afghanistan 
2       Afghanistan 
3       Afghanistan 
4       Afghanistan 
           ... 
1699       Zimbabwe 
1700       Zimbabwe 
1701       Zimbabwe 
1702       Zimbabwe 
1703       Zimbabwe 
Name: country, Length: 1704, dtype: object

# using dot notation 
print(df.country)
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0      Afghanistan 
1      Afghanistan 
2      Afghanistan 
3      Afghanistan 
4      Afghanistan 
          ... 
1699      Zimbabwe 
1700      Zimbabwe 
1701      Zimbabwe 
1702      Zimbabwe 
1703      Zimbabwe 
Name: country, Length: 1704, dtype: object

There are subtle differences if you want to do other operations (e.g.,
deleting a column), but for now, you can treat those 2 ways of getting a
single column of values as the same. You do have to be mindful of what
your columns are named if you want to use the dot notation. That is, if there
is a column named shape, the df.shape will return the number of rows
and columns from the .shape attribute, not the intended shape column.
Also, if your column name has spaces or special characters, you will not be
able to use the dot notation to select that column of values, and will have to
use the square bracket notation.

1.3.2 Subset Rows
Rows can be subset in multiple ways, by row name or row index. Table 1.2
gives a quick overview of the various methods.

Table 1.2 Different Methods of Indexing Rows (and/or Columns)a

Subset attribute Description

.loc[] Subset based on index label (row 
name)



Subset attribute Description

.iloc[] Subset based on row index (row 
number)

.ix[] (no longer works in Pandas 
v0.20)

Subset based on index label or row 
index

a Subsetting data with .ix[] is no longer supported in Pandas. The reason why .ix[] was
removed is because it would first match on the index label, and if the value was not found, it would
match on the index position. This dual subsetting behavior was not explicit and could be problematic
since you did not always know how it was subsetting your rows.

1.3.2.1 Subset Rows by index Label - .loc[]

If we take a look at our gapminder data:

Click here to view code image

print(df)

         country continent  year  lifeExp       
pop    gdpPercap 
0    Afghanistan      Asia  1952   28.801   
8425333   779.445314 
1    Afghanistan      Asia  1957   30.332   
9240934   820.853030 
2    Afghanistan      Asia  1962   31.997  
10267083   853.100710 
3    Afghanistan      Asia  1967   34.020  
11537966   836.197138 
4    Afghanistan      Asia  1972   36.088  
13079460   739.981106 
...          ...       ...   ...      ...       
...          ... 
1699    Zimbabwe    Africa  1987   62.351   
9216418   706.157306 
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1700    Zimbabwe    Africa  1992   60.377  
10704340   693.420786 
1701    Zimbabwe    Africa  1997   46.809  
11404948   792.449960 
1702    Zimbabwe    Africa  2002   39.989  
11926563   672.038623 
1703    Zimbabwe    Africa  2007   43.487  
12311143   469.709298 
 
[1704 rows x 6 columns]

We can see on the left side of the printed DataFrame, what appear to
be row numbers. This column-less row of values is the “index” label of the
DataFrame. Think of it like column names, but, for rows. By default,
Pandas will fill in the index labels with the row numbers (note that it starts
counting from 0). A common example where the row index labels are not
the row number is when we work with time series data. In that case, the
index label will be a timestamp, but for now, we will keep the default row
number values.

We can use the .loc[] accessor attribute on the DataFrame to subset
rows based on the index label.

Click here to view code image

# get the first row 
# python counts from 0 
print(df.loc[0])

 
country       Afghanistan 
continent            Asia 
year                 1952 
lifeExp            28.801 
pop               8425333 
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gdpPercap      779.445314 
Name: 0, dtype: object

Click here to view code image

# get the 100th row 
# python counts from 0 
print(df.loc[99])

country      Bangladesh 
continent          Asia 
year               1967 
lifeExp          43.453 
pop            62821884 
gdpPercap    721.186086 
Name: 99, dtype: object

# get the last row 
# this will cause an error 
print(df.loc[-1])

KeyError: -1

Note that passing -1 as the .loc[] will cause an error because it is
actually looking for the row index label (i.e., row number) -1, which does
not exist in our example DataFrame. Instead, we can use a bit of Python
to calculate the total number of rows, and then pass that value into
.loc[].

Click here to view code image

# get the last row (correctly) 
 
# use the first value given from shape to get 
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the number of rows 
number_of_rows = df.shape[0] 
 
# subtract 1 from the value since we want the 
last index value 
last_row_index = number_of_rows - 1 
 
# finally do the subset using the index of the 
last row 
print(df.loc[last_row_index])

country        Zimbabwe 
continent        Africa 
year               2007 
lifeExp          43.487 
pop            12311143 
gdpPercap    469.709298 
Name: 1703, dtype: object

Or use the .tail() method to return the last n=1 row, instead of the
default 5.

Click here to view code image

# there are many ways of doing what you want 
print(df.tail(n=1))

       country continent  year  lifeExp       pop   
gdpPercap 
1703  Zimbabwe    Africa  2007   43.487  12311143   
469.709298

Notice that using .tail() and .loc[] printed out the results
differently. Let’s look at what type is returned when we use these methods.
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Click here to view code image

# get the last row of data in different ways 
subset_loc = df.loc[0] 
subset_head = df.head(n=1)

# type using loc of 1 row 
print(type(subset_loc))

<class 'pandas.core.series.Series'>

# type of using head of 1 row 
print(type(subset_head))

<class 'pandas.core.frame.DataFrame'>

At the beginning of this chapter, we mentioned that Pandas introduces
two new data types into Python: Series and DataFrame. Depending on
which method we use and how many rows we return, Pandas will return a
different object. The way an object gets printed to the screen can be an
indicator of the type, but it’s always best to use the type() function to be
sure. We go into more detail about these objects in Chapter 2.

1.3.2.2 Subsetting Multiple Rows

As with columns, we can filter multiple rows.

Click here to view code image

print(df.loc[[0, 99, 999]])

         country continent   year   lifeExp       
pop      gdpPercap 
0    Afghanistan      Asia   1952    28.801   
8425333     779.445314 
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99    Bangladesh      Asia   1967    43.453  
62821884     721.186086 
999     Mongolia      Asia   1967    51.253   
1149500    1226.041130

1.3.3 Subset Rows by Row Number: .iloc[]
.iloc[] does the same thing as .loc[], but is used to subset by the row
index number. In our current example, .iloc[] and .locp[] will
behave exactly the same way since the index labels are the row numbers.
However, keep in mind that the index labels do not necessarily have to be
row numbers.

Click here to view code image

# get the 2nd row 
print(df.iloc[1])

country      Afghanistan 
continent           Asia 
year                1957 
lifeExp           30.332 
pop              9240934 
gdpPercap      820.85303 
Name: 1, dtype: object

## get the 100th row 
print(df.iloc[99])

country      Bangladesh 
continent          Asia 
year               1967 
lifeExp          43.453 

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch01_images.xhtml#f0014-01


pop            62821884 
gdpPercap    721.186086 
Name: 99, dtype: object

Note that when we subset on 1, we actually get the second row, rather
than the first row. This follows Python’s zero-indexed behavior, meaning
that the first item of a container is index 0 (i.e., 0th item of the container).
More details about this kind of behavior are found in Appendix F,
Appendix I, and Appendix M.

With .iloc[], we can pass in the -1 to get the last row — something
we couldn’t do with .loc[].

Click here to view code image

# using -1 to get the last row 
print(df.iloc[-1])

country        Zimbabwe 
continent        Africa 
year               2007 
lifeExp          43.487 
pop            12311143 
gdpPercap    469.709298 
Name: 1703, dtype: object

Just as before, we can pass in a list of integers to get multiple rows.

Click here to view code image

## get the first, 100th, and 1000th row 
print(df.iloc[[0, 99, 999]])

         country continent  year  lifeExp       
pop      gdpPercap 
0    Afghanistan      Asia  1952   28.801   
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8425333     779.445314 
99    Bangladesh      Asia  1967   43.453  
62821884     721.186086 
999     Mongolia      Asia  1967   51.253   
1149500    1226.041130

1.3.4 Mix It Up
We can use .loc[] and .iloc[] to obtain subsets rows, columns, or
both. The general syntax for .loc[] and .iloc[] uses square brackets
with a comma. The part to the left of the comma is the row values to subset;
the part to the right of the comma is the column values to subset. That is,
df.loc[[rows], [columns]] or df.iloc[[rows],
[columns]].

1.3.4.1 Selecting Columns

If we want to use these techniques to just subset columns, we must use
Python’s slicing syntax (Appendix I). We need to do this because if we are
subsetting columns, we are getting all the rows for the specified column.
So, we need a method to capture all the rows.

The Python slicing syntax uses a colon, :. If we have just a colon, it
“slices” (i.e., gets) all the values in that axis. So, if we just want to get the
first column using the .loc[] or .iloc[] syntax, we can write
df.loc[:, [columns]] to subset the column(s).

Click here to view code image

# subset columns with loc 
# note the position of the colon 
# it is used to select all rows 
subset = df.loc[:, ['year', 'pop']] 
print(subset)
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      year        pop 
0     1952    8425333 
1     1957    9240934 
2     1962   10267083 
3     1967   11537966 
4     1972   13079460 
...    ...        ... 
1699  1987    9216418 
1700  1992   10704340 
1701  1997   11404948 
1702  2002   11926563 
1703  2007   12311143 
 
[1704 rows x 2 columns]

# subset columns with iloc 
# iloc will allow us to use integers 
# -1 will select the last column 
subset = df.iloc[:, [2, 4, -1]] 
print(subset)

      year        pop   gdpPercap 
0     1952    8425333  779.445314 
1     1957    9240934  820.853030 
2     1962   10267083  853.100710 
3     1967   11537966  836.197138 
4     1972   13079460  739.981106 
...     ...        ...        ... 
 
1699  1987    9216418  706.157306 
1700  1992   10704340  693.420786 
1701  1997   11404948  792.449960 
1702  2002   11926563  672.038623 



1703  2007   12311143  469.709298 
 
[1704 rows x 3 columns]

We will get an error if we don’t specify .loc[] or iloc[] correctly.

Click here to view code image

# subset columns with loc 
# but pass in integer values 
# this will cause an error 
subset = df.loc[:, [2, 4, -1]] 
print(subset)

KeyError: "None of [Int64Index([2, 4, -1], 
dtype='int64')] 
are in the [columns]"

# subset columns with iloc 
# but pass in index names 
# this will cause an error 
subset = df.iloc[:, ['year', 'pop']] 
print(subset)

IndexError: .iloc requires numeric indexers, got 
['year' 'pop']

1.3.4.2 Subsetting with range()

You can use the built-in range() function to create a range of values in
Python. This way you can specify beginning and end values, and Python
will automatically create a range of values in between. By default, every
value between the beginning and the end (inclusive left, exclusive right; see
Appendix I) will be created, unless you specify a step (Appendix I and
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Appendix M). In Python 3, the range() function returns a generator. A
generator is like a single-use list; it disappears after you use it once. This is
mainly to save system resources. See Appendix M for more information
about generators.

We just saw in Section 1.3.4.1 how we can select columns using a list of
integers. Since range() returns a generator, we have to first convert the
generator to a list.

Click here to view code image

# create a range of integers from 0 - 4 
inclusive 
small_range = list(range(5)) 
print(small_range)

[0, 1, 2, 3, 4]

# subset the dataframe with the range 
subset = df.iloc[:, small_range] 
print(subset)

 
         country continent  year  lifeExp       
pop 
0    Afghanistan      Asia  1952   28.801   
8425333 
1    Afghanistan      Asia  1957   30.332   
9240934 
2    Afghanistan      Asia  1962   31.997  
10267083 
3    Afghanistan      Asia  1967   34.020  
11537966 
4    Afghanistan      Asia  1972   36.088  
13079460 
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...          ...       ...   ...      ...       

... 
1699    Zimbabwe    Africa  1987   62.351   
9216418 
1700    Zimbabwe    Africa  1992   60.377  
10704340 
1701    Zimbabwe    Africa  1997   46.809  
11404948 
1702    Zimbabwe    Africa  2002   39.989  
11926563 
1703    Zimbabwe    Africa  2007   43.487  
12311143

[1704 rows x 5 columns]

Note that when list(range(5)) is called, five integers are returned:
0 – 4.

Click here to view code image

# create a range from 3 - 5 inclusive 
small_range = list(range(3, 6)) 
print(small_range)

[3, 4, 5]

subset = df.iloc[:, small_range] 
print(subset)

      lifeExp       pop   gdpPercap 
0      28.801   8425333  779.445314 
1      30.332   9240934  820.853030 
2      31.997  10267083  853.100710 
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3      34.020  11537966  836.197138 
4      36.088  13079460  739.981106 
...       ...       ...         ... 
1699   62.351   9216418  706.157306 
1700   60.377  10704340  693.420786 
1701   46.809  11404948  792.449960 
1702   39.989  11926563  672.038623 
1703   43.487  12311143  469.709298

[1704 rows x 3 columns]

Question
What happens when you specify a range() that’s beyond the number
of columns you have?

Again, note that the values are specified in a way such that the range is
inclusive on the left, and exclusive on the right.

We can also pass in a 3rd parameter into range, step, that allows us to
change how to increment between the start and stop values (defaults to
step=1).

Click here to view code image

# create a range from 0 - 5 inclusive, every 
other integer 
small_range = list(range(0, 6, 2)) 
subset = df.iloc[:, small_range] 
print(subset)

        country    year       pop 
0     Afghanistan  1952   8425333 
1     Afghanistan  1957   9240934 
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2     Afghanistan  1962  10267083 
3     Afghanistan  1967  11537966 
4     Afghanistan  1972  13079460 
...           ...   ...       ... 
1699     Zimbabwe  1987   9216418 
1700     Zimbabwe  1992  10704340 
1701     Zimbabwe  1997  11404948 
1702     Zimbabwe  2002  11926563 
1703     Zimbabwe  2007  12311143

[1704 rows x 3 columns]

Converting a generator to a list is a bit awkward; we can use the Python
slicing syntax to fix this.

1.3.4.3 Subsetting with Slicing :

Python’s slicing syntax, :, is similar to the range() function. Instead of a
function that specifies start, stop, and step values delimited by a
comma, we separate the values with the colon, :.

If you understand what was going on with the range() function
earlier, then slicing can be seen as a shorthand for the same thing.

The range() function can be used to create a generator that can also
be converted to a list of values. The colon syntax, :, only has meaning
within the square bracket, [ ] slicing and subsetting context; it has no
inherent meaning on its own.

Here are the columns of our data set.

Click here to view code image

print(df.columns)

Index(['country', 'continent', 'year', 'lifeExp', 
'pop', 
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       'gdpPercap'], 
    dtype='object')

See how range() and : are used to slice our data.

Click here to view code image

small_range = list(range(3)) 
subset = df.iloc[:, small_range] 
print(subset)

 
         country continent  year 
0    Afghanistan      Asia  1952 
1    Afghanistan      Asia  1957 
2    Afghanistan      Asia  1962 
3    Afghanistan      Asia  1967 
4    Afghanistan      Asia  1972 
...          ...       ...   ... 
1699    Zimbabwe    Africa  1987 
1700    Zimbabwe    Africa  1992 
1701    Zimbabwe    Africa  1997 
1702    Zimbabwe    Africa  2002 
1703    Zimbabwe    Africa  2007

[1704 rows x 3 columns]

# slice the first 3 columns 
subset = df.iloc[:, :3] 
print(subset)

         country continent  year 
0    Afghanistan      Asia  1952 
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1    Afghanistan      Asia  1957 
2    Afghanistan      Asia  1962 
3    Afghanistan      Asia  1967 
4    Afghanistan      Asia  1972 
...          ...       ...   ... 
1699    Zimbabwe    Africa  1987 
1700    Zimbabwe    Africa  1992 
1701    Zimbabwe    Africa  1997 
1702    Zimbabwe    Africa  2002 
1703    Zimbabwe    Africa  2007

[1704 rows x 3 columns]

small_range = list(range(3, 6)) 
subset = df.iloc[:, small_range] 
print(subset)

      lifeExp       pop   gdpPercap 
0      28.801   8425333  779.445314 
1      30.332   9240934  820.853030 
2      31.997  10267083  853.100710 
3      34.020  11537966  836.197138 
4      36.088  13079460  739.981106 
...       ...       ...         ... 
1699   62.351   9216418  706.157306 
1700   60.377  10704340  693.420786 
1701   46.809  11404948  792.449960 
1702   39.989  11926563  672.038623 
 
1703 43.487 12311143 469.709298 
 
[1704 rows x 3 columns]



# slice columns 3 to 5 inclusive 
subset = df.iloc[:, 3:6] 
print(subset)

     lifeExp       pop   gdpPercap 
0     28.801   8425333  779.445314 
1     30.332   9240934  820.853030 
2     31.997  10267083  853.100710 
3     34.020  11537966  836.197138 
4     36.088  13079460  739.981106 
...      ...       ...         ... 
1699  62.351   9216418  706.157306 
1700  60.377  10704340  693.420786 
1701  46.809  11404948  792.449960 
1702  39.989  11926563  672.038623 
1703  43.487  12311143  469.709298

[1704 rows x 3 columns]

small_range = list(range(0, 6, 2)) 
subset = df.iloc[:, small_range] 
print(subset)

         country    year       pop 
0    Afghanistan    1952   8425333 
1    Afghanistan    1957   9240934 
2    Afghanistan    1962  10267083 
3    Afghanistan    1967  11537966 
4    Afghanistan    1972  13079460 
...          ...     ...      ... 
1699    Zimbabwe    1987   9216418 
1700    Zimbabwe    1992  10704340 



1701    Zimbabwe    1997  11404948 
1702    Zimbabwe    2002  11926563 
1703    Zimbabwe    2007  12311143

[1704 rows x 3 columns]

# slice every other columns 
subset = df.iloc[:, 0:6:2] 
print(subset)

 
         country    year       pop 
0    Afghanistan    1952   8425333 
1    Afghanistan    1957   9240934 
2    Afghanistan    1962  10267083 
3    Afghanistan    1967  11537966 
4    Afghanistan    1972  13079460 
...          ...     ...       ... 
1699    Zimbabwe    1987   9216418 
1700    Zimbabwe    1992  10704340 
1701    Zimbabwe    1997  11404948 
1702    Zimbabwe    2002  11926563 
1703    Zimbabwe    2007  12311143 
 
[1704 rows x 3 columns]

Question
What happens if you use the slicing method with 2 colons, but leave a
value out? For example:

df.iloc[:, 0:6:]
df.iloc[:, 0::2]



df.iloc[:, :6:2]
df.iloc[:, ::2]
df.iloc[:, ::]

1.3.5 Subsetting Rows and Columns
When only using the colon, :, in .loc[] and .iloc[] to the left of the
comma, we select all the rows in our dataframe (i.e., we slice all the values
in the first axis of our DataFrame). However, we can choose to put values
to the left of the comma if we want to select specific rows along with
specific columns.

# using loc 
print(df.loc[42, 'country'])

Angola

# using iloc 
print(df.iloc[42, 0])

Angola

Just make sure you don’t confuse the differences between .loc[] and
.iloc[].

# will cause an error 
print(df.loc[42, 0])

KeyError: 0

1.3.5.1 Subsetting Multiple Rows and Columns



We can combine the row and column subsetting syntax with the multiple-
row and multiple-column subsetting syntax to get various slices of our data.

Click here to view code image

# get the 1st, 100th, and 1000th rows 
# from the 1st, 4th, and 6th column 
# note the columns we are hoping to get are: 
# country, lifeExp, and gdpPercap 
print(df.iloc[[0, 99, 999], [0, 3, 5]])

         country    lifeExp    gdpPercap 
0    Afghanistan     28.801   779.445314 
99    Bangladesh     43.453   721.186086 
999     Mongolia     51.253  1226.041130

In my own work, I try to pass in the actual column names when
subsetting data whenever possible (i.e., I try to use .loc[] as much as I
can). That approach makes the code more readable since you do not need to
look at the column name vector to know which index is being called.
Additionally, using absolute indexes can lead to problems if the column
order gets changed. This is just a general rule of thumb, as there will be
exceptions where using the index position is a better option (e.g.,
concatenating data in Chapter 6).

Click here to view code image

# if we use the column names directly, 
# it makes the code a bit easier to read 
# note now we have to use loc, instead of iloc 
print(df.loc[[0, 99, 999], ['country', 
'lifeExp', 'gdpPercap']])

         country   lifeExp    gdpPercap 
0    Afghanistan    28.801   779.445314 
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99    Bangladesh    43.453   721.186086 
999     Mongolia    51.253  1226.041130

Important
Remember, you can use the slicing syntax on the row portion of the
.loc[] and .iloc[] attributes. Pay attention to the differences in
how those two attributes select values: .loc[] matches on the named
value, and .iloc[] slices by position.

The results below are slightly different for the very reason.

Click here to view code image

print(df.loc[10:13, :])

         country continent  year  lifeExp       
pop    gdpPercap 
10   Afghanistan      Asia  2002   42.129  
25268405   726.734055 
11   Afghanistan      Asia  2007   43.828  
31889923   974.580338 
12       Albania    Europe  1952   55.230   
1282697  1601.056136 
13       Albania    Europe  1957   59.280   
1476505  1942.284244

print(df.iloc[10:13, :])

        country continent  year  lifeExp       
pop     gdpPercap 
10  Afghanistan      Asia  2002   42.129  
25268405    726.734055 
11  Afghanistan      Asia  2007   43.828  
31889923    974.580338 
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12      Albania    Europe  1952   55.230   
1282697   1601.056136

More detail about how slicing works in Python is described in
Appendix I.

1.4 Grouped and Aggregated Calculations
If you’ve worked with other Python libraries or programming languages,
you know that many basic statistical calculations either come with the
library or are built into the language. Let’s look at our Gapminder data
again.

Click here to view code image

print(df)

         country continent  year  lifeExp       
pop   gdpPercap 
0    Afghanistan      Asia  1952   28.801   
8425333  779.445314 
1    Afghanistan      Asia  1957   30.332   
9240934  820.853030 
2    Afghanistan      Asia  1962   31.997  
10267083  853.100710 
3    Afghanistan      Asia  1967   34.020  
11537966  836.197138 
4    Afghanistan      Asia  1972   36.088  
13079460  739.981106 
...          ...       ...   ...      ...       
...         ... 
1699    Zimbabwe    Africa  1987   62.351   
9216418  706.157306 
1700    Zimbabwe    Africa  1992   60.377  
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10704340  693.420786 
1701    Zimbabwe    Africa  1997   46.809  
11404948  792.449960 
1702    Zimbabwe    Africa  2002   39.989  
11926563  672.038623 
1703    Zimbabwe    Africa  2007   43.487  
12311143  469.709298

[1704 rows x 6 columns]

There are several initial questions that we can ask ourselves:

For each year in our data, what was the average life expectancy? What
is the average life expectancy, population, and GDP?
What if we stratify the data by continent and perform the same
calculations?
How many countries are listed in each continent?

1.4.1 Grouped Means
To answer the questions just posed, we need to perform a grouped (i.e.,
aggregate) calculation. In other words, we need to perform a calculation, be
it an average or a frequency count, but apply it to each subset of a variable.
Another way to think about grouped calculations is as a split–apply–
combine process. We first split our data into various parts, then apply a
function (or calculation) of our choosing to each of the split parts, and
finally combine all the individual split calculations into a single dataframe.
We accomplish grouped (i.e., aggregate) computations by using the
.groupby() method on DataFrames. Grouped calculations are further
discussed in Chapter 8.

Click here to view code image

# For each year in our data, what was the 
average life expectancy? 
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# To answer this question, we need to: 
# 1. split our data into parts by year 
# 2. get the 'lifeExp' column 
# 3. calculate the mean 
print(df.groupby('year')['lifeExp'].mean())

year 
1952    49.057620 
1957    51.507401 
1962    53.609249 
1967    55.678290 
1972    57.647386 
          ... 
1987    63.212613 
1992    64.160338 
1997    65.014676 
2002    65.694923 
2007    67.007423 
Name: lifeExp, Length: 12, dtype: float64

Let’s unpack the statement we used in this example. We first create a
grouped object.

Click here to view code image

# create grouped object by year 
grouped_year_df = df.groupby('year') 
print(type(grouped_year_df))

<class 
'pandas.core.groupby.generic.DataFrameGroupBy'>

If we printed the grouped DataFrame Pandas would return only the
memory location.
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Click here to view code image

print(grouped_year_df)

<pandas.core.groupby.generic.DataFrameGroupBy 
object at 0x15fdb7df0>

From the grouped data, we can subset the columns of interest on which
we want to perform our calculations. To our question, lifeExp column.
We can use the subsetting methods described in Section 1.3.1.

Click here to view code image

grouped_year_df_lifeExp = 
grouped_year_df['lifeExp'] 
print(type(grouped_year_df_lifeExp))

<class 
'pandas.core.groupby.generic.SeriesGroupBy'>

print(grouped_year_df_lifeExp)

<pandas.core.groupby.generic.SeriesGroupBy object 
at 0x106c55ae0>

Notice that we now are given a series (because we asked for only one
column) and the contents of the series are grouped (in our example by
year).

Finally, we know the lifeExp column is of type float64. An
operation we can perform on a vector of numbers is to calculate the mean to
get our final desired result.

Click here to view code image

mean_lifeExp_by_year = 
grouped_year_df_lifeExp.mean() 
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print(mean_lifeExp_by_year)

year 
1952    49.057620 
1957    51.507401 
1962    53.609249 
1967    55.678290 
1972    57.647386 
          ... 
1987    63.212613 
1992    64.160338 
1997    65.014676 
2002    65.694923 
2007    67.007423 
Name: lifeExp, Length: 12, dtype: float64

We can perform a similar set of calculations for the population and GDP
since they are of types int64 and float64, respectively. But what if we
want to group and stratify the data by more than one variable? And what if
we want to perform the same calculation on multiple columns? We can
build on the material earlier in this chapter by using a list!

Click here to view code image

# the backslash allows us to break up 1 long 
line of python code 
# into multiple lines 
# df.groupby(['year', 'continent'])[['lifeExp', 
'gdpPercap']].mean() 
# is the same as 
multi_group_var = df\ 
  .groupby(['year', 'continent'])\ 
  [['lifeExp', 'gdpPercap']]\ 
  .mean()
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# look at the first 10 rows 
print(multi_group_var)

                 lifeExp        gdpPercap 
year continent 
1952 Africa      39.135500    1252.572466 
     Americas    53.279840   4079.062552 
     Asia        46.314394   5195.484004 
     Europe      64.408500   5661.057435 
     Oceania     69.255000  10298.085650 
...                    ...           ... 
2007 Africa      54.806038   3089.032605 
 
 
     Americas    73.608120  11003.031625 
     Asia        70.728485  12473.026870 
     Europe      77.648600  25054.481636 
     Oceania     80.719500  29810.188275 
 
[60 rows x 2 columns]

We can also use round parentheses, ( ) for “method chaining” (more
about this notation in Appendix D.1).

Click here to view code image

# we can also wrap the entire statement 
# around round parentheses 
# with each .method() on a new line 
# this is the preferred style for writing 
"method chaining" 
multi_group_var = ( 
  df 
  .groupby(['year', 'continent']) 
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  [['lifeExp', 'gdpPercap']] 
  .mean() 
)

The output data is grouped by year and continent. For each year–
continent pair, we calculated the average life expectancy and average GDP.
The data is also printed out a little differently. Notice the year and continent
column names are not on the same line as the life expectancy and GPD
column names. There is some hierarchal structure between the year and
continent row indices. We’ll discuss working with these types of data in
more detail in Section 8.5.

If you need to “flatten” the DataFrame, you can use the
.reset_index() method.

Click here to view code image

flat = multi_group_var.reset_index() 
print(flat)

    year continent    lifeExp      gdpPercap 
0   1952    Africa  39.135500    1252.572466 
1   1952  Americas  53.279840    4079.062552 
2   1952      Asia  46.314394    5195.484004 
3   1952    Europe  64.408500    5661.057435 
4   1952   Oceania  69.255000   10298.085650 
..   ...       ...        ...            ... 
55  2007    Africa  54.806038    3089.032605 
56  2007  Americas  73.608120   11003.031625 
57  2007      Asia  70.728485   12473.026870 
58  2007    Europe  77.648600   25054.481636 
59  2007   Oceania  80.719500   29810.188275

[60 rows x 4 columns]
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Question
Does the order of the list we used to group the data matter?

1.4.2 Grouped Frequency Counts
Another common data-related task is to calculate frequencies. We can use
the .nunique() and .value_counts() methods, respectively, to get
counts of unique values and frequency counts on a Pandas Series.

Click here to view code image

# use the nunique (number unique) 
# to calculate the number of unique values in a 
series 
print(df.groupby('continent')
['country'].nunique())

continent 
Africa    52 
Americas  25 
Asia      33 
Europe    30 
Oceania    2 
Name: country, dtype: int64

Question
What do you get if you use .value_counts() instead of
.nunique()?

1.5 Basic Plot
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Visualizations are extremely important in almost every step of the data
process. They help us identify trends in data when we are trying to
understand and clean the data, and they help us convey our final findings.
More information about visualization and plotting is described in Chapter 3.

Let’s look at the yearly life expectancies for the world population again.

Click here to view code image

global_yearly_life_expectancy = 
df.groupby('year')['lifeExp'].mean() 
print(global_yearly_life_expectancy)

year 
1952    49.057620 
1957    51.507401 
1962    53.609249 
1967    55.678290 
1972    57.647386 
          ... 
1987    63.212613 
1992    64.160338 
 
1997    65.014676 
2002    65.694923 
2007    67.007423 
Name: lifeExp, Length: 12, dtype: float64

We can use Pandas to create some basic plots as shown in Figure 1.1.
More about plotting is covered in Chapter 3.

Click here to view code image

# matplotlib is the default plotting library 
# we need to import first 
import matplotlib.pyplot as plt 
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# use the .plot() DataFrame method 
global_yearly_life_expectancy.plot() 
 
# show the plot 
plt.show()

Figure 1.1 Basic plot in Pandas showing average life expectancy over
time

Conclusion
This chapter explained how to load up a simple data set and start looking at
specific observations. It may seem tedious at first to look at observations
this way, especially if you are already familiar with the use of a spreadsheet



program. Keep in mind that when doing data analytics, the goal is to
produce reproducible results, not repeat repetitive tasks, and be able to
combine multiple data sources as needed. Scripting languages give you that
ability and flexibility.

Along the way, you learned about some of the fundamental
programming abilities and data structures that Python has to offer. You also
encountered a quick way to obtain aggregated statistics and plots. The next
chapter goes into more detail about the Pandas DataFrame and Series
objects, as well as other ways you can subset and visualize your data.

As you work your way through this book, if there is a concept or data
structure that is foreign to you, check the various appendices for more
information. Many fundamental programming features of Python are
covered in the appendices.



2

Pandas Data Structures Basics

Chapter 1 introduced the Pandas DataFrame and Series objects. These
data structures resemble the primitive Python data containers (lists and
dictionaries) for indexing and labeling, but have additional features that
make working with data easier.

Learning Objectives
The concept map for this chapter can be found in Figure A.2.

Use functions to create and load manual data
Describe the Series object
Describe the DataFrame object
Identify basic operations on Series objects
Identify basic operations on DataFrame objects
Perform conditional subsetting, fancy slicing, and indexing
Use methods to save data

2.1 Create Your Own Data
Whether you are manually inputting data or creating a small test example,
knowing how to create DataFrames without loading data from a file is a
useful skill. It is especially helpful when you are asking a question about a
StackOverflow error.

2.1.1 Create a Series



The Pandas Series is a one-dimensional container (i.e., Python
Iterable), similar to the built-in Python list. It is the data type that
represents each column of the DataFrame. Table 1.1 lists the possible
dtypes for Pandas DataFrame columns. Each value in a DataFrame
column must be stored as the same dtype. For example, if a column
contains the number 1 and the sequence of letters (i.e., string) "pizza",
the entire dtype of the column will be a string (Pandas will call this an
object dtype).

Since a DataFrame can be thought of as a dictionary of Series
objects, where each key is the column name and the value is the
Series, we can conclude that a Series is very similar to a Python
list, except that each element must be the same dtype. Those who have
used the numpy library will realize this is the same behavior as
demonstrated by the ndarray.

The easiest way to create a Series is to pass in a Python list. If we
pass in a list of mixed types, the most common representation of both will
be used. Typically the dtype will be object.

Click here to view code image

import pandas as pd 
 
s = pd.Series(['banana', 42]) 
print(s)

0    banana 
1        42 
dtype: object

Notice that the “row number” is shown on the left of the Series. This
is actually the index for the series. It is similar to the row name and row
index we saw in Section 1.3.2 for DataFrames. It implies that we can
actually assign a “name” to values in our series.

Click here to view code image
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# manually assign index values to a series 
# by passing a Python list 
s = pd.Series( 
data=["Wes McKinney", "Creator of Pandas"], 
index=["Person", "Who"], 
) 
 
print(s)

Person         Wes McKinney 
Who       Creator of Pandas 
dtype: object

Question
What happens if you use other Python containers such as list,
tuple, dict, or even the ndarray from the numpy library?
What happens if you pass an index along with the containers?
Does passing in an index when you use a dict overwrite the
index? Or does it sort the values?

2.1.2 Create a DataFrame
As mentioned in Chapter 1, a DataFrame can be thought of as a
dictionary of Series objects. This is why dictionaries are the most
common way of creating a DataFrame. The key represents the column
name, and the values are the contents of the column.

Click here to view code image

scientists = pd.DataFrame( 
  { 
    "Name": ["Rosaline Franklin", "William 
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Gosset"], 
    "Occupation": ["Chemist", "Statistician"], 
    "Born": ["1920-07-25", "1876-06-13"], 
    "Died": ["1958-04-16", "1937-10-16"], 
    "Age": [37, 61], 
  } 
) 
 
print(scientists)

                Name    Occupation        Born      
Died  Age 
0  Rosaline Franklin       Chemist  1920-07-25  
1958-04-16   37 
1     William Gosset  Statistician  1876-06-13  
1937-10-16   61

If we look at the documentation for DataFrame1, we see that we can
use the columns parameter or specify the column order. If we want to use
the name column for the row index, we can use the index parameter.
1. DataFrame documentation:
https://pandas.pydata.org/docs/reference/api/panda
s.DataFrame.html

Click here to view code image

scientists = pd.DataFrame( 
  data={ 
    "Occupation": ["Chemist", "Statistician"], 
    "Born": ["1920-07-25", "1876-06-13"], 
    "Died": ["1958-04-16", "1937-10-16"], 
    "Age": [37, 61], 
  }, 
  index=["Rosaline Franklin", "William Gosset"], 

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
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  columns=["Occupation", "Born", "Died", "Age"], 
) 
print(scientists)

                    Occupation        Born        
Died  Age 
Rosaline Franklin      Chemist  1920-07-25  1958-
04-16   37 
William Gosset    Statistician  1876-06-13  1937-
10-16   61

2.2 The Series
In Section 1.3.2.1, we saw how the slicing method affects the type of the
result. If we use .loc[] to subset the first row of our scientists
DataFrame, we will get a Series object back.

First, let’s re-create our example DataFrame.

Click here to view code image

# create our example dataframe 
# with a row index label 
scientists = pd.DataFrame( 
 
  data={ 
    "Occupation": ["Chemist", "Statistician"], 
    "Born": ["1920-07-25", "1876-06-13"], 
    "Died": ["1958-04-16", "1937-10-16"], 
    "Age": [37, 61], 
  }, 
  index=["Rosaline Franklin", "William Gosset"], 
  columns=["Occupation", "Born", "Died", "Age"], 
) 
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print(scientists)

                    Occupation        Born        
Died  Age 
Rosaline Franklin      Chemist  1920-07-25  1958-
04-16   37 
William Gosset    Statistician  1876-06-13  1937-
10-16   61

Select a scientist by the row index label.

Click here to view code image

# select by row index label 
first_row = scientists.loc['William Gosset'] 
print(type(first_row))

<class 'pandas.core.series.Series'>

print(first_row)

Occupation    Statistician 
Born            1876-06-13 
Died            1937-10-16 
Age                     61 
Name: William Gosset, dtype: object

When a series is printed (i.e., the string representation), the index is
printed as the first “column,” and the values are printed as the second
“column.” There are many attributes and methods associated with a
Series object.2 Two examples of attributes are .index and .values.
2. Series documentation: https://pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.Series.html
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Click here to view code image

print(first_row.index)

Index(['Occupation', 'Born', 'Died', 'Age'], 
dtype='object')

print(first_row.values)

['Statistician' '1876-06-13' '1937-10-16' 61]

Table 2.1 Some of the Attributes Within a Series

Series attributes Description

.loc Subset using index value

.iloc Subset using index position

.dtype or dtypes The type of the Series contents

.T Transpose of the series

.shape Dimensions of the data

.size Number of elements in the Series

.values ndarray or ndarray-like of the Series

An example of a Series method is .keys(), which is an alias for the
.index attribute.

Click here to view code image

print(first_row.keys())

Index(['Occupation', 'Born', 'Died', 'Age'], 
dtype='object')
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By now, you might have questions about the syntax for .index,
.values, and .keys(). More information about attributes and methods
is found in Appendix P on classes. Attributes can be thought of as features
of an object (in this example, our object is a Series). Methods can be
thought of as some calculation or operation that is performed on an object.
The subsetting syntax for .loc[] and .iloc[] (from Section 1.3.2)
consists of all attributes. This is why the syntax does not rely on a set of
round parentheses, ( ), but rather a set of square brackets, [ ], for
subsetting. Since .keys() is a method, if we wanted to get the first key
(which is also the first index), we would use the square brackets after the
method call. Some attributes for the series are listed in Table 2.1.

Click here to view code image

# get the first index using an attribute 
print(first_row.index[0])

Occupation

# get the first index using a method 
print(first_row.keys()[0])

Occupation

2.2.1 The Series Is ndarray-like
The Pandas data structure known as Series is very similar to the
numpy.ndarray (Appendix O). In turn, many methods and functions
that operate on a ndarray will also operate on a Series. A Series
may sometimes be referred to as a “vector.”

2.2.1.1 Series Methods

Let’s first get a series of the Age column from our scientists
dataframe.
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# get the 'Age' column 
ages = scientists['Age'] 
print(ages)

Rosaline Franklin    37 
William Gosset       61 
Name: Age, dtype: int64

NumPy is a scientific computing library that typically deals with
numeric vectors. Since a Series can be thought of as an extension to the
numpy.ndarray, there is an overlap of attributes and methods. When we
have a vector of numbers, there are common calculations we can perform.3

3. Descriptive statistics: https://pandas.pydata.org/pandas-
docs/stable/user_guide/basics.html#descriptive-
statistics

Click here to view code image

# calculate the mean 
print(ages.mean())

49.0

# calculate the minimum 
print(ages.min())

37

# calculate the maximum 
print(ages.max())

61

https://pandas.pydata.org/pandas-docs/stable/user_guide/basics.html#descriptive-statistics
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# calculate the standard deviation 
print(ages.std())

16.97056274847714

The .mean(), .min(), .max(), and .std() are also methods in
the numpy.ndarray.4 Some Series methods are listed in Table 2.2.
4. NumPy ndarrary documentation:
https://numpy.org/doc/stable/reference/arrays.ndar
ray.html

2.2.2 Boolean Subsetting: Series
Chapter 1 showed how we can use specific indices to subset our data. Only
rarely, however, will we know the exact row or column index to subset the
data. Typically you are looking for values that meet (or don’t meet) a
particular calculation or observation.

To explore this process, let’s use a larger data set.

Click here to view code image

scientists = pd.read_csv('data/scientists.csv')

We just saw how we can calculate basic descriptive metrics of vectors.
The .describe() method will calculate multiple descriptive statistics in
a single method call.

Click here to view code image

        ages = scientists['Age'] 
        print(ages)

Table 2.2 Some of the Methods That Can Be Performed on a Series

Series Methods Description

https://numpy.org/doc/stable/reference/arrays.ndarray.html
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Series Methods Description

.append() Concatenates two or more Series

.corr() Calculate a correlation with another Series5

.cov() Calculate a covariance with another Series6

.describe() Calculate summary statistics7

.drop_duplicate
s()

Returns a Series without duplicates

.equals() Determines whether a Series has the same 
elements

.get_values() Get values of the Series; same as the values 
attribute

.hist() Draw a histogram

.isin() Checks whether values are contained in a Series

.min() Returns the minimum value

.max() Returns the maximum value

.mean() Returns the arithmetic mean

.median() Returns the median

.mode() Returns the mode(s)

.quantile() Returns the value at a given quantile

.replace() Replaces values in the Series with a specified 
value

.sample() Returns a random sample of values from the 
Series

.sort_values() Sorts values

.to_frame() Converts a Series to a DataFrame

.transpose() Returns the transpose



Series Methods Description

.unique() Returns a numpy.ndarray of unique values

5. Missing values will be automatically dropped.

6. Missing values will be automatically dropped.
7. Missing values will be automatically dropped.

0    37 
1    61 
2    90 
3    66 
4    56 
5    45 
6    41 
7    77 
Name: Age, dtype: int64

# get basic stats 
print(ages.describe())

count    8.000000 
mean    59.125000 
std     18.325918 
 
min     37.000000 
25%     44.000000 
50%     58.500000 
75%     68.750000 
max     90.000000 
Name: Age, dtype: float64



# mean of all ages 
print(ages.mean())

59.125

What if we wanted to subset our ages by identifying those above the
mean?

Click here to view code image

print(ages[ages > ages.mean()])

1    61 
2    90 
3    66 
7    77 
Name: Age, dtype: int64

Let’s tease out this statement and look at what ages >
ages.mean() returns.

Click here to view code image

print(ages > ages.mean())

0    False 
1     True 
2     True 
3     True 
4    False 
5    False 
6    False 
7     True 
Name: Age, dtype: bool

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch02_images.xhtml#f0038-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch02_images.xhtml#f0038-03


print(type(ages > ages.mean()))

<class 'pandas.core.series.Series'>

This statement returns a Series with a .dtype of bool. In other
words, we can not only subset values using labels and indices, but also
supply a vector of boolean values. Python has many functions and methods.
Depending on how they are implemented, they may return labels, indices,
or booleans. Keep this point in mind as you learn new methods and seek to
piece together various parts for your work.

If we liked, we could manually supply a vector of bools to subset our
data.

Click here to view code image

# get index 0, 1, 4, 5, and 7 
manual_bool_values = [ 
 
  True,  # 0 
  True,  # 1 
  False, # 2 
  False, # 3 
  True,  # 4 
  True,  # 5 
  False, # 6 
  True,  # 7 
] 
print(ages[manual_bool_values])

0    37 
1    61 
4    56 
5    45 
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7    77 
Name: Age, dtype: int64

2.2.3 Operations Are Automatically Aligned and
Vectorized (Broadcasting)
If you’re familiar with programming, you would find it strange that ages
> ages.mean() returns a vector without any for loops (Appendix J).
Many of the methods that work on Series (and also DataFrames) are
“vectorized,” meaning that they work on the entire vector simultaneously.
This approach makes the code easier to read, and typically, optimizations
are available to make calculations faster.

2.2.3.1 Vectors of the Same Length

If you perform an operation between two vectors of the same length, the
resulting vector will be an element-by-element calculation of the vectors.

print(ages + ages)

0     74 
1    122 
2    180 
3    132 
4    112 
5     90 
6     82 
7    154 
Name: Age, dtype: int64

print(ages * ages)

0    1369 
1    3721 



2    8100 
3    4356 
 
4    3136 
5    2025 
6    1681 
7    5929 
Name: Age, dtype: int64

2.2.3.2 Vectors With Integers (Scalars)

When you perform an operation on a vector using a scalar, the scalar will be
recycled across all the elements in the vector.

print(ages + 100)

0    137 
1    161 
2    190 
3    166 
4    156 
5    145 
6    141 
7    177 
Name: Age, dtype: int64

print(ages * 2)

0     74 
1    122 
2    180 
3    132 
4    112 



5     90 
6     82 
7    154 
Name: Age, dtype: int64

2.2.3.3 Vectors With Different Lengths

When you are working with vectors of different lengths, the behavior will
depend on the type() of the vectors. With a Series, the vectors will
perform an operation matched by the index. The rest of the resulting vector
will be filled with a “missing” value, denoted with NaN, signifying “not a
number” (Chapter 9).

This type of behavior, which is called broadcasting, differs between
languages. Broadcasting in Pandas refers to how operations are calculated
between arrays with different shapes.

Click here to view code image

print(ages + pd.Series([1, 100]))

0     38.0 
1    161.0 
2      NaN 
3      NaN 
 
4      NaN 
5      NaN 
6      NaN 
7      NaN 
dtype: float64

With other types(), the shapes must match.

Click here to view code image
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import numpy as np

# this will cause an error 
print(ages + np.array([1, 100]))

ValueError: operands could not be broadcast 
together with shapes (8,) (2,)

2.2.3.4 Vectors With Common Index Labels (Automatic
Alignment)

What’s convenient in Pandas is how data alignment is almost always
automatic. If possible, things will always align themselves with the index
label when actions are performed.

Click here to view code image

# ages as they appear in the data 
print(ages)

0    37 
1    61 
2    90 
3    66 
4    56 
5    45 
6    41 
7    77 
Name: Age, dtype: int64

rev_ages = ages.sort_index(ascending=False) 
print(rev_ages)
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7    77 
6    41 
5    45 
4    56 
3    66 
2    90 
1    61 
0    37 
Name: Age, dtype: int64

If we perform an operation using ages and rev_ages, it will still be
conducted on an element-by-element basis, but the vectors will be aligned
first before the operation is carried out.

Click here to view code image

# reference output to show index label alignment 
print(ages * 2)

0     74 
1    122 
2    180 
3    132 
4    112 
5     90 
6     82 
7    154 
Name: Age, dtype: int64

# note how we get the same values 
# even though the vector is reversed 
print(ages + rev_ages)
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0     74 
1    122 
2    180 
3    132 
4    112 
5     90 
6     82 
7    154 
Name: Age, dtype: int64

2.3 The DataFrame
The DataFrame is the most common Pandas object. It can be thought of
as Python’s way of storing spreadsheet-like data. Many of the features of
the Series data structure carry over into the DataFrame.

2.3.1 Parts of a DataFrame
There are 3 main parts to a Pandas DataFrame object the .index,
.columns, and .values. These refer to the row name, column names,
and data values, respectively.

Click here to view code image

scientists.index

RangeIndex(start=0, stop=8, step=1)

scientists.columns

Index(['Name', 'Born', 'Died', 'Age', 
'Occupation'], dtype='object')

scientists.values
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array([['Rosaline Franklin', '1920-07-25', '1958-
04-16', 37, 'Chemist'], 
       ['William Gosset', '1876-06-13', '1937-10-
16', 61, 'Statistician'], 
       ['Florence Nightingale', '1820-05-12', 
'1910-08-13', 90, 'Nurse'], 
       ['Marie Curie', '1867-11-07', '1934-07-04', 
66, 'Chemist'], 
       ['Rachel Carson', '1907-05-27', '1964-04-
14', 56, 'Biologist'], 
       ['John Snow', '1813-03-15', '1858-06-16', 
45, 'Physician'], 
       ['Alan Turing', '1912-06-23', '1954-06-07', 
41, 
        'Computer Scientist'], 
       ['Johann Gauss', '1777-04-30', '1855-02-
23', 77, 'Mathematician']], 
      dtype=object)

The .values comes in handy when you don’t want all the row index
label information, and really just want the base numpy representation of
the data.

2.3.2 Boolean Subsetting: DataFrames
Just as we were able to subset a Series with a boolean vector, so can we
subset a DataFrame with a bool.

Click here to view code image

# boolean vectors will subset rows 
print(scientists.loc[scientists['Age'] > 
scientists['Age'].mean()])
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                   Name        Born        Died  
Age     Occupation 
1        William Gosset  1876-06-13  1937-10-16   
61   Statistician 
2  Florence Nightingale  1820-05-12  1910-08-13   
90          Nurse 
3           Marie Curie  1867-11-07  1934-07-04   
66        Chemist 
7          Johann Gauss  1777-04-30  1855-02-23   
77  Mathematician

Table 2.3 summarizes the various subsetting methods.

Table 2.3 Table of DataFrame Subsetting Methods

Syntax Selection Result

df[column_name] Series

df[[column1, column2, ... 
]]

DataFrame

df.loc[row_label] Row by row index label (row 
name)

df.loc[[label1, label2, 
...]]

Multiple rows by index label

df.iloc[row_number] Row by row number

df.iloc[[row1, row2, ...]] Multiple rows by row number

df[bool] Row based on bool

df[[bool1, bool2, ...]] Multiple rows based on bool

df[start:stop:step] Rows based on slicing notation



2.3.3 Operations Are Automatically Aligned and
Vectorized (Broadcasting)
Pandas supports broadcasting because the Series and DataFrame
objects are built on top of the numpy library.8 Broadcasting describes what
happens when performing operations between array-like objects. These
behaviors depend on the type of object, its length, and any labels associated
with the object.
8. NumPy Library: http://www.numpy.org/

First, let’s create a subset of our dataframes.

Click here to view code image

first_half = scientists[:4] 
second_half = scientists[4:]

print(first_half)

                   Name        Born        Died    
Age    Occupation 
0     Rosaline Franklin  1920-07-25  1958-04-16     
37       Chemist 
1        William Gosset  1876-06-13  1937-10-16     
61  Statistician 
2  Florence Nightingale  1820-05-12  1910-08-13     
90         Nurse 
3           Marie Curie  1867-11-07  1934-07-04     
66       Chemist

print(second_half)

            Name        Born        Died  Age       
Occupation 

http://www.numpy.org/
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4  Rachel Carson  1907-05-27  1964-04-14   56       
Biologist 
5      John Snow  1813-03-15  1858-06-16   45       
Physician 
6    Alan Turing  1912-06-23  1954-06-07   41  
Computer Scientist 
7   Johann Gauss  1777-04-30  1855-02-23   77       
Mathematician

When we perform an action on a dataframe with a scalar, it will try to
apply the operation on each cell of the dataframe. In this example, numbers
will be multiplied by 2, and strings will be doubled (this is Python’s normal
behavior with strings).

Click here to view code image

# multiply by a scalar 
print(scientists * 2)

                                       Name         
Born  \ 
0        Rosaline FranklinRosaline Franklin  1920-
07-251920-07-25 
1              William GossetWilliam Gosset  1876-
06-131876-06-13 
2  Florence NightingaleFlorence Nightingale  1820-
05-121820-05-12 
3                    Marie CurieMarie Curie  1867-
11-071867-11-07 
4                Rachel CarsonRachel Carson  1907-
05-271907-05-27 
5                        John SnowJohn Snow  1813-
03-151813-03-15 
6                    Alan TuringAlan Turing  1912-
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06-231912-06-23 
7                  Johann GaussJohann Gauss  1777-
04-301777-04-30 
 
 
                   Died  Age                        
Occupation 
0  1958-04-161958-04-16   74                        
ChemistChemist 
1  1937-10-161937-10-16  122              
StatisticianStatistician 
2  1910-08-131910-08-13  180                        
NurseNurse 
3  1934-07-041934-07-04  132                        
ChemistChemist 
4  1964-04-141964-04-14  112                    
BiologistBiologist 
5  1858-06-161858-06-16   90                    
PhysicianPhysician 
6  1954-06-071954-06-07   82  Computer 
ScientistComputer Scientist 
7  1855-02-231855-02-23  154            
MathematicianMathematician

If your dataframes are all numeric values and you want to “add” the
values on a cell-by-cell basis, you can use the .add() method. The
automatic alignment can be better seen in Chapter 6, when we concatenate
dataframes together.

2.4 Making Changes to Series and DataFrames
Now that we know various ways of subsetting and slicing our data (see
Table 2.3), we should be able to alter our data objects.



2.4.1 Add Additional Columns
The type of the Born and Died columns is object, meaning they are
strings or a sequence of characters.

print(scientists.dtypes)

Name          object 
Born          object 
Died          object 
Age            int64 
Occupation    object 
dtype: object

We can convert the strings to a proper datetime type so we can
perform common date and time operations (e.g., take differences between
dates or calculate a person’s age). You can provide your own format if
you have a date that has a specific format. A list of format variables can
be found in the Python datetime module documentation.9 More
examples with datetimes can be found in Chapter 12. The format of our
date looks like “YYYY-MM-DD,” so we can use the %Y-%m-%d format.
9. datetime module documentation:
https://docs.python.org/3.10/library/datetime.html
#strftime-and-strptime-behavior

Click here to view code image

# format the 'Born' column as a datetime 
born_datetime = 
pd.to_datetime(scientists['Born'], format='%Y-
%m-%d') 
print(born_datetime)

 
0    1920-07-25 

https://docs.python.org/3.10/library/datetime.html#strftime-and-strptime-behavior
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1    1876-06-13 
2    1820-05-12 
3    1867-11-07 
4    1907-05-27 
5    1813-03-15 
6    1912-06-23 
7    1777-04-30 
Name: Born, dtype: datetime64[ns]

# format the 'Died' column as a datetime 
died_datetime = 
pd.to_datetime(scientists['Died'], format='%Y-
%m-%d')

If we wanted, we could create a new set of columns that contain the
datetime representations of the object (string) dates. The below
example uses python’s multiple assignment syntax (Appendix N).

Click here to view code image

scientists['born_dt'], scientists['died_dt'] = ( 
  born_datetime, 
  died_datetime 
) 
 
print(scientists.head())

                   Name        Born        Died  
Age    Occupation  \ 
0     Rosaline Franklin  1920-07-25  1958-04-16   
37       Chemist 
1        William Gosset  1876-06-13  1937-10-16   
61  Statistician 
2  Florence Nightingale  1820-05-12  1910-08-13   
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90         Nurse 
3           Marie Curie  1867-11-07  1934-07-04   
66       Chemist 
4         Rachel Carson  1907-05-27  1964-04-14   
56     Biologist

     born_dt     died_dt 
0 1920-07-25  1958-04-16 
1 1876-06-13  1937-10-16 
2 1820-05-12  1910-08-13 
3 1867-11-07  1934-07-04 
4 1907-05-27  1964-04-14

print(scientists.shape)

(8, 7)

print(scientists.dtypes)

Name                  object 
Born                  object 
Died                  object 
Age                    int64 
 
Occupation            object 
born_dt       datetime64[ns] 
died_dt       datetime64[ns] 
dtype: object

2.4.2 Directly Change a Column



We can also assign a new value directly to the existing column. The
example in this section shows how to randomize the contents of a column.
More complex calculations that involve multiple columns can be seen in
Chapter 5, in the discussion of the .apply() method.

First, let’s look at the original Age values.

print(scientists['Age'])

0  37 
1  61 
2  90 
3  66 
4  56 
5  45 
6  41 
7  77 
Name: Age, dtype: int64

Now let’s shuffle the values.

Click here to view code image

# the frac=1 tells pandas to randomly select 
100% of the values 
# the random_state makes the randomization the 
same each time 
scientists["Age"] = 
scientists["Age"].sample(frac=1, 
random_state=42)

Note
We set a random_state as a way to make sure it randomly picks
the same values on each run of the code. This way the code stats
consistent when the code from the book is generated. But this
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technique is also useful when you are programming to make sure your
values are not constantly fluctuating when you are trying to do
something randomly. You can always remove it to make it completely
random every time the code runs.

For long bits of code we can wrap the code around round parentheses (
) to break up the code into multiple lines. We will be using this convention
for longer bits of code in this book (Appendix D.1).

Click here to view code image

# the previous line of code is equivalent to 
scientists['Age'] = ( 
  scientists['Age'] 
  .sample(frac=1, random_state=42) 
)

print(scientists['Age'])

0    37 
1    61 
2    90 
3    66 
4    56 
5    45 
6    41 
7    77 
Name: Age, dtype: int64

If you notice, that we tried to randomly shuffle the column, but when we
assigned the values back into the dataframe, it reverted back to the original
order. That’s because Pandas will try to automatically join on the .index
values on many operations, for this example to get around this problem we
need to remove that .index information. One way of doing that, is to
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assign just the .values of the shuffled values that does not have any
.index value associated with it.

Click here to view code image

scientists['Age'] = ( 
scientists['Age'] 
  .sample(frac=1, random_state=42) 
  .values # remove the index so it doesn't auto 
align the values 
) 
 
print(scientists['Age'])

0    61 
1    45 
2    37 
3    77 
4    90 
5    56 
6    66 
7    41 
Name: Age, dtype: int64

We can recalculate the “real” age using datetime arithmetic. More
information about datetime can be found in Chapter 12.

Click here to view code image

# subtracting dates will give us number of days 
scientists['age_days'] = ( 
  scientists['died_dt'] - scientists['born_dt'] 
) 
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print(scientists)

                   Name        Born        Died  
Age  \ 
0     Rosaline Franklin  1920-07-25  1958-04-16   
61 
1        William Gosset  1876-06-13  1937-10-16   
45 
2  Florence Nightingale  1820-05-12  1910-08-13   
37 
 
3           Marie Curie  1867-11-07  1934-07-04   
77 
4         Rachel Carson  1907-05-27  1964-04-14   
90 
5             John Snow  1813-03-15  1858-06-16   
56 
6           Alan Turing  1912-06-23  1954-06-07   
66 
7          Johann Gauss  1777-04-30  1855-02-23   
41 
 
            Occupation    born_dt    died_dt   
age_days 
0              Chemist 1920-07-25 1958-04-16 13779 
days 
1         Statistician 1876-06-13 1937-10-16 22404 
days 
2                Nurse 1820-05-12 1910-08-13 32964 
days 
3              Chemist 1867-11-07 1934-07-04 24345 
days 



4            Biologist 1907-05-27 1964-04-14 20777 
days 
5            Physician 1813-03-15 1858-06-16 16529 
days 
6   Computer Scientist 1912-06-23 1954-06-07 15324 
days 
7        Mathematician 1777-04-30 1855-02-23 28422 
days

# we can convert the value to just the year 
# using the astype method 
scientists['age_years'] = ( 
  scientists['age_days'] 
  .astype('timedelta64[Y]') 
) 
print(scientists)

                   Name        Born        Died  
Age  \ 
0     Rosaline Franklin  1920-07-25  1958-04-16   
61 
1        William Gosset  1876-06-13  1937-10-16   
45 
2  Florence Nightingale  1820-05-12  1910-08-13   
37 
3           Marie Curie  1867-11-07  1934-07-04   
77 
4         Rachel Carson  1907-05-27  1964-04-14   
90 
5             John Snow  1813-03-15  1858-06-16   
56 
6           Alan Turing  1912-06-23  1954-06-07   
66 



7          Johann Gauss  1777-04-30  1855-02-23   
41

           Occupation    born_dt    died_dt   
age_days  age_years 
0             Chemist 1920-07-25 1958-04-16 13779 
days       37.0 
1        Statistician 1876-06-13 1937-10-16 22404 
days       61.0 
2               Nurse 1820-05-12 1910-08-13 32964 
days       90.0 
3             Chemist 1867-11-07 1934-07-04 24345 
days       66.0 
4           Biologist 1907-05-27 1964-04-14 20777 
days       56.0 
5           Physician 1813-03-15 1858-06-16 16529 
days       45.0 
6  Computer Scientist 1912-06-23 1954-06-07 15324 
days       41.0 
7       Mathematician 1777-04-30 1855-02-23 28422 
days       77.0

Important
Many functions and methods in the pandas library will have an
inplace parameter that you can set to the value True. When this is
set, the function or method will return None instead of the modified
dataframe. Generally, you do not want to use this parameter.

Contrary to popular belief, this does not make things go faster, and
the parameter may be deprecated in the future:
https://github.com/pandas-
dev/pandas/issues/16529

https://github.com/pandas-dev/pandas/issues/16529


2.4.3 Modifying Columns with .assign()
Another way you can assign and modify columns is with the .assign()
method. This has the benefit of using method chaining (Appendix R). Let’s
redo the age_years column creation, but this time using '.assign().

Click here to view code image

scientists = scientists.assign( 
  # new columns on the left of the equal sign 
  # how to calculate values on the right of the 
equal sign 
  # separate new columns with a comma 
  age_days_assign=scientists['died_dt'] - 
scientists['born_dt'], 
  
age_year_assign=scientists['age_days'].astype('t
imedelta64[Y]') 
) 
 
print(scientists)

                   Name        Born       Died  
Age  \ 
0     Rosaline Franklin  1920-07-25  1958-04-16  
61 
1        William Gosset  1876-06-13  1937-10-16  
45 
2  Florence Nightingale  1820-05-12  1910-08-13  
37 
3           Marie Curie  1867-11-07  1934-07-04  
77 
4         Rachel Carson  1907-05-27  1964-04-14  
90 
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5             John Snow  1813-03-15  1858-06-16  
56 
6           Alan Turing  1912-06-23  1954-06-07  
66 
7          Johann Gauss  1777-04-30  1855-02-23  
41

           Occupation    born_dt    died_dt   
age_days  age_years  \ 
0             Chemist 1920-07-25 1958-04-16 13779 
days       37.0 
1        Statistician 1876-06-13 1937-10-16 22404 
days       61.0 
2               Nurse 1820-05-12 1910-08-13 32964 
days       90.0 
3             Chemist 1867-11-07 1934-07-04 24345 
days       66.0 
4           Biologist 1907-05-27 1964-04-14 20777 
days       56.0 
5           Physician 1813-03-15 1858-06-16 16529 
days       45.0 
6  Computer Scientist 1912-06-23 1954-06-07 15324 
days       41.0 
7       Mathematician 1777-04-30 1855-02-23 28422 
days       77.0

  age_days_assign  age_year_assign 
0      13779 days             37.0 
1      22404 days             61.0 
2      32964 days             90.0 
3      24345 days             66.0 
4      20777 days             56.0 



5      16529 days             45.0 
6      15324 days             41.0 
7      28422 days             77.0

You can look into the .assign() documentation for more examples.10

Since this is only showing a simple example of how to use the method to
assign new values. Effectively using .assign() will require you to know
about lambda functions, which we will cover in Chapter 5.
10. .assign() documentation:
https://pandas.pydata.org/docs/reference/api/panda
s.DataFrame.assign.html

Note
In the example we just did with .assign(), we did not use the first
new value, age_days_assign, in the calculation for the second
new value, age_year_assign. We would have to know how to
write a lambda functions to know how the following code works.

Click here to view code image

scientists = scientists.assign( 
    age_days_assign=scientists["died_dt"] - 
scientists["born_dt"], 
    age_year_assign=lambda df_: 
df_["age_days_assign"].astype( 
        "timedelta64[Y]" 
    ), 
) 
print(scientists)

                   Name        Born        Died  
Age  \ 
0     Rosaline Franklin  1920-07-25  1958-04-16   
61 

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.assign.html
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1        William Gosset  1876-06-13  1937-10-16   
45 
2  Florence Nightingale  1820-05-12  1910-08-13   
37 
3           Marie Curie  1867-11-07  1934-07-04   
77 
4         Rachel Carson  1907-05-27  1964-04-14   
90 
5             John Snow  1813-03-15  1858-06-16   
56 
6           Alan Turing  1912-06-23  1954-06-07   
66 
7          Johann Gauss  1777-04-30  1855-02-23   
41

           Occupation    born_dt    died_dt   
age_days  age_years  \ 
0             Chemist 1920-07-25 1958-04-16 
13779 days       37.0 
1        Statistician 1876-06-13 1937-10-16 
22404 days       61.0 
2               Nurse 1820-05-12 1910-08-13 
32964 days       90.0 
3             Chemist 1867-11-07 1934-07-04 
24345 days       66.0 
4           Biologist 1907-05-27 1964-04-14 
20777 days       56.0 
5           Physician 1813-03-15 1858-06-16 
16529 days       45.0 
6  Computer Scientist 1912-06-23 1954-06-07 
15324 days       41.0 
7       Mathematician 1777-04-30 1855-02-23 
28422 days       77.0



  age_days_assign  age_year_assign 
0      13779 days             37.0 
1      22404 days             61.0 
2      32964 days             90.0 
3      24345 days             66.0 
 
4      20777 days             56.0 
5      16529 days             45.0 
6      15324 days             41.0 
7      28422 days             77.0

2.4.4 Dropping Values
To drop a column, we can either select all the columns we want to by using
the column subsetting techniques (Section 1.3.1), or select columns to drop
with the .drop() method on our dataframe.11

11. DataFrame .drop() method:
https://pandas.pydata.org/docs/reference/api/panda
s.DataFrame.drop.html

Click here to view code image

# all the current columns in our data 
print(scientists.columns)

Index(['Name', 'Born', 'Died', 'Age', 
'Occupation', 'born_dt', 
       'died_dt', 'age_days', 'age_years', 
'age_days_assign', 
       'age_year_assign'], dtype='object')

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.drop.html
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch02_images.xhtml#f0052-02


# drop the shuffled age column 
# you provide the axis=1 argument to drop 
column-wise 
scientists_dropped = scientists.drop(['Age'], 
axis="columns")

# columns after dropping our column 
print(scientists_dropped.columns)

Index(['Name', 'Born', 'Died', 'Occupation', 
'born_dt', 'died_dt', 
       'age_days', 'age_years', 'age_days_assign', 
       'age_year_assign'], 
      dtype='object')

2.5 Exporting and Importing Data
In our examples so far, we have been importing data. It is also common
practice to export or save data sets while processing them. Data sets are
either saved out as final cleaned versions of data or in intermediate steps.
Both of these outputs can be used for analysis or as input to another part of
the data processing pipeline.

Tip
It’s okay to save intermediate data set files as you work. You do not
need to process all your data and analysis in one giant code script.

Saving the data output from one script that gets imported from
another is the basis of creating data pipelines.

2.5.1 Pickle



Python has a way to pickle data. This is Python’s way of serializing and
saving data in a binary format. Reading pickle data is also backwards
compatible. pickle files are usually saved with an extension of .p,
.pkl, or .pickle. We will see how to save and load pickle data
below.

2.5.1.1 Series

Many of the export methods for a Series are also available for a
DataFrame. Those readers who have experience with numpy will know
that a .save() method is available for ndarrays. This method has been
deprecated, and the replacement is to use the .to_pickle method.

Click here to view code image

names = scientists['Name'] 
print(names)

0       Rosaline Franklin 
1          William Gosset 
2    Florence Nightingale 
3             Marie Curie 
4           Rachel Carson 
5               John Snow 
6             Alan Turing 
7            Johann Gauss 
Name: Name, dtype: object

# pass in a string to the path you want to save 
names.to_pickle('output/scientists_names_series.
pickle')

The pickle output is in a binary format. If you try to open it in a text
editor, you will see a bunch of garbled characters.
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If the object you are saving is an intermediate step in a set of
calculations that you want to save, or if you know that your data will stay in
the Python world, saving objects to a pickle will be optimized for Python
and disk storage space. However, this approach means that people who do
not use Python will not be able to read the data.

2.5.1.2 DataFrame

The same method can be used on DataFrame objects.

Click here to view code image

scientists.to_pickle('output/scientists_df.pickl
e')

2.5.1.3 Read pickle data

To read pickle data, we can use the pd.read_pickle() function.

Click here to view code image

# for a Series 
series_pickle = pd.read_pickle( 
    "output/scientists_names_series.pickle" 
) 
print(series_pickle)

0       Rosaline Franklin 
1          William Gosset 
2    Florence Nightingale 
3             Marie Curie 
4           Rachel Carson 
5               John Snow 
6             Alan Turing 
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7            Johann Gauss 
Name: Name, dtype: object

# for a DataFrame 
dataframe_pickle = 
pd.read_pickle('output/scientists_df.pickle') 
print(dataframe_pickle)

                   Name        Born        Died  
Age \ 
0     Rosaline Franklin  1920-07-25  1958-04-16   
61 
1        William Gosset  1876-06-13  1937-10-16   
45 
2  Florence Nightingale  1820-05-12  1910-08-13   
37 
3           Marie Curie  1867-11-07  1934-07-04   
77 
4         Rachel Carson  1907-05-27  1964-04-14   
90 
5             John Snow  1813-03-15  1858-06-16   
56 
6           Alan Turing  1912-06-23  1954-06-07   
66 
7          Johann Gauss  1777-04-30  1855-02-23   
41

           Occupation    born_dt    died_dt   
age_days  age_years  \ 
0             Chemist 1920-07-25 1958-04-16 13779 
days       37.0 
1        Statistician 1876-06-13 1937-10-16 22404 
days       61.0 



2               Nurse 1820-05-12 1910-08-13 32964 
days       90.0 
3             Chemist 1867-11-07 1934-07-04 24345 
days       66.0 
4           Biologist 1907-05-27 1964-04-14 20777 
days       56.0 
5           Physician 1813-03-15 1858-06-16 16529 
days       45.0 
6  Computer Scientist 1912-06-23 1954-06-07 15324 
days       41.0 
7       Mathematician 1777-04-30 1855-02-23 28422 
days       77.0

  age_days_assign  age_year_assign 
0      13779 days             37.0 
1      22404 days             61.0 
2      32964 days             90.0 
3      24345 days             66.0 
4      20777 days             56.0 
5      16529 days             45.0 
6      15324 days             41.0 
7      28422 days             77.0

Again, the pickle files are saved with an extension of .p, .pkl, or
.pickle.

2.5.2 Comma-Separated Values (CSV)
Comma-separated values (CSV) are the most flexible data storage type. For
each row, the column information is separated with a comma. The comma
is not the only type of delimiter, however. Some files are delimited by a tab
(TSV) or even a semicolon. The main reason why CSVs are a preferred
data format when collaborating and sharing data is because any program



can open this kind of data structure. It can even be opened in a text editor.
However, the universal storage format does come at a price. CSV files are
usually slower and take up more disk space when compared to other binary
formats.

The Series and DataFrame have a .to_csv() method to write a
CSV file. The documentation for Series12 and DataFrame13 identifies
many different ways you can modify the resulting CSV file. For example, if
you wanted to save a TSV file because there are commas in your data, you
can change the sep parameter (Appendix O).
12. Saving a Series to CSV:
https://pandas.pydata.org/docs/reference/api/panda
s.Series.to_csv.html

13. Saving a DataFrame to CSV:
https://pandas.pydata.org/docs/reference/api/panda
s.DataFrame.to_csv.html

By default, the .index of a DataFrame gets written to the CSV file.
This creates a file where the first column does not have a name, and only
holds the row numbers of the dataframe being saved. This extraneous
column in the CSV becomes problematic when you try to read the CSV
back into Pandas. So we typically put in the index=False parameter
when saving CSV files to avoid this problem.

Click here to view code image

# do not write the row names in the CSV output 
scientists.to_csv('output/scientists_df_no_index
.csv', index=False)

2.5.2.1 Import CSV Data

Importing CSV files was illustrated in Section 1.2. This operation uses the
pd.read_csv() function. In the documentation, you can see there are
various ways to read in a CSV.14 Look at Appendix O if you need more
information on using function parameters.

https://pandas.pydata.org/docs/reference/api/pandas.Series.to_csv.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_csv.html
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14. pd.read_csv() documentation:
https://pandas.pydata.org/docs/reference/api/panda
s.read_csv.html

2.5.3 Excel
Excel, which is probably the most commonly used data type (or the second
most commonly used, after CSVs), has a bad reputation within the data
science community, mainly because colors and other superfluous
information can easily find its way into the data set, not to mention one-off
calculations that ruin the rectangular structure of a data set. Some other
reasons are listed at the very beginning of this chapter. The goal of this
book isn’t to bash Excel, but to teach you about a reasonable alternative tool
for data analytics. In short, the more of your work you can do in a scripting
language, the easier it will be to scale up to larger projects, catch and fix
mistakes, and collaborate. However, Excel’s popularity and market share
are unrivaled. Excel has its own scripting language if you absolutely have to
work in it. This will allow you to work with data in a more predictable and
reproducible manner.

2.5.3.1 Series

The Series data structure does not have an explicit .to_excel()
method. If you have a Series that needs to be exported to an Excel file,
one option is to convert the Series into a one-column DataFrame.

Before saving and reading Excel files, make sure you have the
openpyxl library installed (using pip install openpyxl See
Appendix B).

Click here to view code image

print(names)

0       Rosaline Franklin 
1          William Gosset 
2    Florence Nightingale 

https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html
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3             Marie Curie 
4           Rachel Carson 
5               John Snow 
6             Alan Turing 
7            Johann Gauss 
Name: Name, dtype: object

# convert the Series into a DataFrame 
# before saving it to an Excel file 
names_df = names.to_frame() 
 
# save to an excel file 
names_df.to_excel( 
  'output/scientists_names_series_df.xls', 
engine='openpyxl' 
)

2.5.3.2 DataFrames

From the preceding example, you can see how to export a DataFrame to
an Excel file. The documentation shows several ways to further fine-tune
the output.15 For example, you can output data to a specific “sheet” using
the sheet_name parameter.
15. .to_excel() documentation:
https://pandas.pydata.org/docs/reference/api/panda
s.DataFrame.to_excel.html

Click here to view code image

# saving a DataFrame into Excel format 
scientists.to_excel( 
  "output/scientists_df.xlsx", 
  sheet_name="scientists", 

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_excel.html
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  index=False 
)

2.5.4 Feather
The format called “feather” is used to save DataFrames into a binary
object that can also be loaded into other languages (e.g., R). The main
benefit of this approach is that it is faster than writing and reading a CSV
file between the languages. See the Pandas .to_feather()16 and
feather file format documentation17 for more information on storing for
backwards compatibility.
16. Pandas to_feather() documentation:
https://pandas.pydata.org/docs/reference/api/panda
s.DataFrame.to_feather.html
17. Feather file format documentation:
https://arrow.apache.org/docs/python/feather.html

The feather formatter is installed via conda install -c
conda-forge pyarrow or pip install pyarrow. More on
installing packages are described in Appendix B.

You can use the .to_feather() method on a dataframe to save the
feather objects.

Click here to view code image

# save to feather file 
scientists.to_feather('output/scientists.feather
') 
 
# read feather file 
sci_feather = 
pd.read_feather('output/scientists.feather') 
 
print(sci_feather)

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_feather.html
https://arrow.apache.org/docs/python/feather.html
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                   Name        Born        Died  
Age  \ 
0     Rosaline Franklin  1920-07-25  1958-04-16   
61 
1        William Gosset  1876-06-13  1937-10-16   
45 
2  Florence Nightingale  1820-05-12  1910-08-13   
37 
3           Marie Curie  1867-11-07  1934-07-04   
77 
4         Rachel Carson  1907-05-27  1964-04-14   
90 
5             John Snow  1813-03-15  1858-06-16   
56 
6           Alan Turing  1912-06-23  1954-06-07   
66 
7          Johann Gauss  1777-04-30  1855-02-23   
41

           Occupation    born_dt    died_dt   
age_days  age_years  \ 
0             Chemist 1920-07-25 1958-04-16 13779 
days       37.0 
1        Statistician 1876-06-13 1937-10-16 22404 
days       61.0 
2               Nurse 1820-05-12 1910-08-13 32964 
days       90.0 
3             Chemist 1867-11-07 1934-07-04 24345 
days       66.0 
4           Biologist 1907-05-27 1964-04-14 20777 
days       56.0 
5           Physician 1813-03-15 1858-06-16 16529 
days       45.0 



6  Computer Scientist 1912-06-23 1954-06-07 15324 
days       41.0 
7       Mathematician 1777-04-30 1855-02-23 28422 
days       77.0

  age_days_assign  age_year_assign 
0      13779 days             37.0 
1      22404 days             61.0 
2      32964 days             90.0 
3      24345 days             66.0 
4      20777 days             56.0 
5      16529 days             45.0 
6      15324 days             41.0 
7      28422 days             77.0

2.5.5 Arrow
Feather files are part of the Apache Arrow project.18 One of the main goals
of Arrow is to have a memory storage format for dataframe objects that
work across multiple programming languages without having to convert
types for each of them.
18. Apache Arrow: https://arrow.apache.org/docs/index.html]

Note
The Apache Arrow project is separate from the Python Arrow library,
which is used for Dates and Times:
https://arrow.readthedocs.io/en/latest/

Arrow has its own Pandas integration19 to convert Pandas DataFrame
objects to Arrow objects (from_pandas()20) and from Arrow objects to
Pandas DataFrame objects (to_pandas()21). Once the data is in an

https://arrow.apache.org/docs/index.html
https://arrow.readthedocs.io/en/latest/


Arrow format, it can much more efficiently be used in other programming
languages.
19. Arrow Pandas integration:
https://arrow.apache.org/docs/python/pandas.html

20. Arrow from_pandas():
https://arrow.apache.org/docs/python/generated/pya
rrow.Table.html#pyarrow.Table.from_pandas

21. Arrow to_pandas():
https://arrow.apache.org/docs/python/generated/pya
rrow.Table.html#pyarrow.Table.to_pandas

2.5.6 Dictionary
The Pandas Series and DataFrame objects also have a .to_dict()
method. This converts the object into a Python dictionary object. This
format is particularly useful if you have a DataFrame or Series and
you want to use the data from outside Pandas.

Let’s create a smaller subset of the scientist data so all the
dictionary data will display properly

Click here to view code image

# first 2 rows of data 
sci_sub_dict = scientists.head(2) 
 
# convert the dataframe into a dictionary 
sci_dict = sci_sub_dict.to_dict() 
 
# using the pretty print library to print the 
dictionary 
import pprint 
pprint.pprint(sci_dict)

https://arrow.apache.org/docs/python/pandas.html
https://arrow.apache.org/docs/python/generated/pyarrow.Table.html#pyarrow.Table.from_pandas
https://arrow.apache.org/docs/python/generated/pyarrow.Table.html#pyarrow.Table.to_pandas
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{'Age': {0: 61, 1: 45}, 
 'Born': {0: '1920-07-25', 1: '1876-06-13'}, 
 'Died': {0: '1958-04-16', 1: '1937-10-16'}, 
 'Name': {0: 'Rosaline Franklin', 1: 'William 
Gosset'}, 
 'Occupation': {0: 'Chemist', 1: 'Statistician'}, 
 'age_days': {0: Timedelta('13779 days 00:00:00'), 
              1: Timedelta('22404 days 
00:00:00')}, 
 'age_days_assign': {0: Timedelta('13779 days 
00:00:00'), 
                     1: Timedelta('22404 days 
00:00:00')}, 
 
 'age_year_assign': {0: 37.0, 1: 61.0}, 
 'age_years': {0: 37.0, 1: 61.0}, 
 'born_dt': {0: Timestamp('1920-07-25 00:00:00'), 
             1: Timestamp('1876-06-13 00:00:00')}, 
 'died_dt': {0: Timestamp('1958-04-16 00:00:00'), 
             1: Timestamp('1937-10-16 00:00:00')}}

Once the dictionary output is created, we can read it back into Pandas.

Click here to view code image

# read in the dictionary object back into a 
dataframe 
sci_dict_df = pd.DataFrame.from_dict(sci_dict) 
print(sci_dict_df)

                Name        Born        Died  Age   
Occupation  \ 
0  Rosaline Franklin  1920-07-25  1958-04-16   61   
Chemist 
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1     William Gosset  1876-06-13  1937-10-16   45  
Statistician

     born_dt    died_dt   age_days  age_years 
age_days_assign  \ 
0 1920-07-25 1958-04-16 13779 days       37.0      
13779 days 
1 1876-06-13 1937-10-16 22404 days       61.0      
22404 days

  age_year_assign 
0            37.0 
1            61.0

Danger
Because the scientists data set we are working with includes
dates and times, we cannot simply copy and paste the dictionary as a
string into the pd.DataFrame.from_dict() function. You will
get a NameError: name 'Timedelta' is not defined
error.

Dates and times are stored in a different format from what gets
printed to the screen. Depending on the dtype stored in the columns,
your ability to simply copy and paste the .to_dict() output may or
may not return the same exact dataframe back.

If you need a way to work with dates, you will actually need to
convert it into a more general format and convert the value back into a
date.

2.5.7 JSON (JavaScript Objectd Notation)
JSON data is another common plain text file format. The benefit of using
the .to_jsion() is that it can convert dates and times for you to read



back into Pandas. By using orient='records' we can either pass in
the variable or copy and paste from the output to load it back into Pandas.
The indent=2 allows the output to print a bit nicer to the screen (and
book).

Click here to view code image

# convert the dataframe into a dictionary 
sci_json = sci_sub_dict.to_json( 
  orient='records', indent=2, date_format="iso" 
)

Click here to view code image

pprint.pprint(sci_json)

('[\n' 
 '  {\n' 
 '    "Name":"Rosaline Franklin",\n' 
 '    "Born":"1920-07-25",\n' 
 '    "Died":"1958-04-16",\n' 
 '    "Age":61,\n' 
 '    "Occupation":"Chemist",\n' 
 '    "born_dt":"1920-07-25T00:00:00.000Z",\n' 
 '    "died_dt":"1958-04-16T00:00:00.000Z",\n' 
 '    "age_days":"P13779DT0H0M0S",\n' 
 '    "age_years":37.0,\n' 
 '    "age_days_assign":"P13779DT0H0M0S",\n' 
 '    "age_year_assign":37.0\n' 
 '  },\n' 
 '  {\n' 
 '    "Name":"William Gosset",\n' 
 '    "Born":"1876-06-13",\n' 
 '    "Died":"1937-10-16",\n' 
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 '    "Age":45,\n' 
 '    "Occupation":"Statistician",\n' 
 '    "born_dt":"1876-06-13T00:00:00.000Z",\n' 
 '    "died_dt":"1937-10-16T00:00:00.000Z",\n' 
 '    "age_days":"P22404DT0H0M0S",\n' 
 '    "age_years":61.0,\n' 
 '    "age_days_assign":"P22404DT0H0M0S",\n' 
 '    "age_year_assign":61.0\n' 
 '  }\n' 
 ']')

# copy the string to re-create the dataframe 
sci_json_df = pd.read_json( 
  ('[\n' 
 '  {\n' 
 '    "Name":"Rosaline Franklin",\n' 
 '    "Born":"1920-07-25",\n' 
 '    "Died":"1958-04-16",\n' 
 '    "Age":61,\n' 
 '    "Occupation":"Chemist",\n' 
 '    "born_dt":"1920-07-25T00:00:00.000Z",\n' 
 '     "died_dt":"1958-04-16T00:00:00.000Z",\n' 
 '    "age_days":"P13779DT0H0M0S",\n' 
 '    "age_years":37.0,\n' 
 '    "age_days_assign":"P13779DT0H0M0S",\n' 
 '    "age_year_assign":37.0\n' 
 '  },\n' 
 '  {\n' 
 
 '    "Name":"William Gosset",\n' 
 '    "Born":"1876-06-13",\n' 
 '    "Died":"1937-10-16",\n' 
 '    "Age":45,\n' 



 '    "Occupation":"Statistician",\n' 
 '    "born_dt":"1876-06-13T00:00:00.000Z",\n' 
 '    "died_dt":"1937-10-16T00:00:00.000Z",\n' 
 '    "age_days":"P22404DT0H0M0S",\n' 
 '    "age_years":61.0,\n' 
 '    "age_days_assign":"P22404DT0H0M0S",\n' 
 '    "age_year_assign":61.0\n' 
 '  }\n' 
 ']'), 
  orient="records" 
) 
print(sci_json_df)

                Name        Born        Died   Age  
Occupation \ 
0  Rosaline Franklin  1920-07-25  1958-04-16    61  
Chemist 
1     William Gosset  1876-06-13  1937-10-16    45  
Statistician

                    born_dt                   
died_dt  \ 
0  1920-07-25T00:00:00.000Z  1958-04-
16T00:00:00.000Z 
1  1876-06-13T00:00:00.000Z  1937-10-
16T00:00:00.000Z

         age_days  age_years age_days_assign  
age_year_assign 
0  P13779DT0H0M0S         37  P13779DT0H0M0S        
37 



1  P22404DT0H0M0S         61  P22404DT0H0M0S        
61

Notice how the dates are all different from the original values? That’s
because we choose to convert the dates into ISO 8601 string format.

print(sci_json_df.dtypes)

Name               object 
Born               object 
Died               object 
Age                 int64 
Occupation         object 
born_dt            object 
died_dt            object 
age_days           object 
age_years           int64 
age_days_assign    object 
age_year_assign     int64 
dtype: object

If we want the original datetime object back, we need to convert that
representation back into a date.

Click here to view code image

sci_json_df["died_dt_json"] = 
pd.to_datetime(sci_json_df["died_dt"]) 
 
print(sci_json_df)

                Name        Born        Died  Age   
Occupation  \ 
0  Rosaline Franklin  1920-07-25  1958-04-16   61   
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Chemist 
1     William Gosset  1876-06-13  1937-10-16   45  
Statistician 
 
                    born_dt                   
died_dt  \ 
0  1920-07-25T00:00:00.000Z  1958-04-
16T00:00:00.000Z 
1  1876-06-13T00:00:00.000Z  1937-10-
16T00:00:00.000Z 
 
         age_days  age_years  age_days_assign  
age_year_assign  \ 
0  P13779DT0H0M0S         37   P13779DT0H0M0S       
37 
1  P22404DT0H0M0S         61   P22404DT0H0M0S       
61 
 
                died_dt_json 
0  1958-04-16 00:00:00+00:00 
1  1937-10-16 00:00:00+00:00

print(sci_json_df.dtypes)

Name                             object 
Born                             object 
Died                             object 
Age                               int64 
Occupation                       object 
born_dt                          object 
died_dt                          object 
age_days                         object 
age_years                         int64 



age_days_assign                  object 
age_year_assign                   int64 
died_dt_json        datetime64[ns, UTC] 
dtype: object

Working with dates and times is always tricky. We talk more about them
in Chapter 12.

2.5.8 Other Data Output Types
There are many ways Pandas can export and import data. Indeed,
.to_pickle(), .to_csv(), .to_excel(), .to_feather(),
.to_dict() are only some of the data formats that can make their way
into Pandas DataFrames. Table 2.4 lists some of these other output
formats.

Table 2.4 DataFrame Export Methods

Export Method Description

.to_clipboard() Save data into the system clipboard for pasting

.to_dense() Convert data into a regular “dense” DataFrame

.to_dict() Convert data into a Python dict

.to_gbq() Convert data into a Google BigQuery table

.to_hdf() Save data into a hierarchal data format (HDF)

.to_msgpack() Save data into a portable JSON-like binary

.to_html() Convert data into a HTML table

.to_json() Convert data into a JSON string

.to_latex() Convert data into a LATEX tabular environment

.to_records() Convert data into a record array

.to_string() Show DataFrame as a string for stdout



Export Method Description

.to_sparse() Convert data into a SparceDataFrame

.to_sql() Save data into a SQL database

.to_stata() Convert data into a Stata dta file

Conclusion
This chapter went into a little more detail about how the Pandas Series
and DataFrame objects work in Python. There were some simpler
examples of data cleaning shown, along with a few common ways to export
data to share with others. Chapter 1 and Chapter 2 should give you a good
basis on how Pandas works as a library.

The next chapter covers the basics of plotting in Python and Pandas.
Data visualization is not only used at the end of an analysis to plot results,
but also is heavily utilized throughout the entire data pipeline.



3

Plotting Basics

Data visualization is as much a part of the data processing step as the data
presentation step. It is much easier to compare plotted values than to
compare numerical values. By visualizing data we can get a better intuitive
sense of the data than would be possible by looking at tables of values
alone. Additionally, visualizations can bring to light hidden patterns in data,
that you, the analyst, can use for model selection.

Learning Objectives
The concept map for this chapter can be found in Figure A.3.

Explain why visualizing data is important
Create various statistical plots for exploratory data analysis
Use plotting functions from the matplotlib, seaborn, and
pandas libraries
Identify when to use univariate, bivariate, and multivariate plots
Use different color palettes to make plots more accessible

3.1 Why Visualize Data?
The quintessential example for creating visualizations of data is
Anscombe’s quartet. This data set was created by English statistician Frank
Anscombe to show the importance of statistical graphs.

The Anscombe data set contains four sets of data, each of which
contains two continuous variables. Each set has the same mean, variance,
correlation, and regression line. However, only when the data are visualized
does it become obvious that each set does not follow the same pattern. This



goes to show the benefits of visualizations and the pitfalls of looking at
only summary statistics.

Click here to view code image

# the anscombe data set can be found in the 
seaborn library 
import seaborn as sns 
anscombe = sns.load_data set("anscombe") 
print(anscombe)

 
 data set      x      y 
0       I   10.0   8.04 
1       I    8.0   6.95 
2       I   13.0   7.58 
3       I    9.0   8.81 
4       I   11.0   8.33 
..    ...    ...    ... 
39     IV    8.0   5.25 
40     IV   19.0  12.50 
41     IV    8.0   5.56 
42     IV    8.0   7.91 
43     IV    8.0   6.89 
 
[44 rows x 3 columns]

3.2 Matplotlib Basics
matplotlib is Python’s fundamental plotting library. It is extremely
flexible and gives the user full control over all elements of the plot.

Importing the matplotlib plotting features is a little different from
our previous package imports. You can think of it as importing the package
matplotlib, with all of the plotting utilities stored under a subfolder (or
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subpackage) called pyplot. Just as we imported a package and gave it an
abbreviated name, we can do the same with matplotlib.pyplot.

Click here to view code image

import matplotlib.pyplot as plt

The names of most of the basic plots will start with plt.plot(). In
our example, the plotting feature takes one vector for the x-values, and a
corresponding vector for the y-values (Figure 3.1).

Figure 3.1 Anscombe data set I

Click here to view code image

# create a subset of the data 
# contains only data set 1 from anscombe 
data set_1 = anscombe[anscombe['data set'] == 
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'I'] 
 
plt.plot(data set_1['x'], data set_1['y']) 
plt.show() # will need this to show explicitly 
show the plot

By default, plt.plot() will draw lines. If we want it to draw points
instead, we can pass an 'o' parameter to tell plt.plot() to use points
(Figure 3.2).

Figure 3.2 Anscombe data set I using points

Click here to view code image

plt.plot(data set_1['x'], data set_1['y'], 'o') 
plt.show()
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We can repeat this process for the rest of the data sets in our
anscombe data.

Click here to view code image

# create subsets of the anscombe data 
data set_2 = anscombe[anscombe['data set'] == 
'II'] 
data set_3 = anscombe[anscombe['data set'] == 
'III'] 
data set_4 = anscombe[anscombe['data set'] == 
'IV']

3.2.1 Figure Objects and Axes Subplots
At this point, we could make these plots individually, but matplotlib
offers a much handier way to create subplots. You can specify the
dimensions of your final figure, and put in smaller plots to fit the specified
dimensions. This way, you can present your results in a single figure.

The subplot syntax takes three parameters:

Number of rows in the figure for subplots
Number of columns in the figure for subplots
Subplot location

The subplot location is sequentially numbered, and plots are placed first
in a left-to-right direction, then from top to bottom. If we try to plot this
now (by running the following code), we will get an empty figure (Figure
3.3). All we have done so far is create a figure and split it into a 2 x 2 grid
where plots can be placed. Since no plots were created and inserted,
nothing will show up.
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Figure 3.3 Matplotlib figure with four empty axes in a 2x2 grid

Click here to view code image

# create the entire figure where our subplots 
will go 
fig = plt.figure() 
 
# tell the figure how the subplots should be 
laid out 
# in the example, we will have 
# 2 row of plots, and each row will have 2 plots 
 
# subplot has 2 rows and 2 columns, plot 
location 1 
axes1 = fig.add_subplot(2, 2, 1) 
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# subplot has 2 rows and 2 columns, plot 
location 2 
axes2 = fig.add_subplot(2, 2, 2) 
 
# subplot has 2 rows and 2 columns, plot 
location 3 
axes3 = fig.add_subplot(2, 2, 3)

Click here to view code image

# subplot has 2 rows and 2 columns, plot 
location 4 
axes4 = fig.add_subplot(2, 2, 4) 
 
plt.show()

We can use the .plot() method on each axis to create our plot (Figure
3.4).
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Figure 3.4 Matplotlib figure with four scatter plots

Important
With a lot of plotting code, you need to run all the code together.
Usually, running parts of it as you attempt to build on a figure will not
return anything.

Click here to view code image

# you need to run all the plotting code 
together, same as above 
fig = plt.figure() 
axes1 = fig.add_subplot(2, 2, 1) 
axes2 = fig.add_subplot(2, 2, 2) 
axes3 = fig.add_subplot(2, 2, 3) 
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axes4 = fig.add_subplot(2, 2, 4) 
 
# add a plot to each of the axes created above 
axes1.plot(data set_1['x'], data set_1['y'], 
'o') 
axes2.plot(data set_2['x'], data set_2['y'], 
'o') 
axes3.plot(data set_3['x'], data set_3['y'], 
'o') 
axes4.plot(data set_4['x'], data set_4['y'], 
'o') 
 
plt.show()

Finally, we can add a label to our subplots, and improve the subplot
spacing with fig.tight_layout(), but
fig.set_tight_layout() is preferred (Figure 3.5).



Figure 3.5 Anscombe data visualization

Click here to view code image

# you need to run all the plotting code 
together, same as above 
fig = plt.figure() 
axes1 = fig.add_subplot(2, 2, 1) 
axes2 = fig.add_subplot(2, 2, 2) 
axes3 = fig.add_subplot(2, 2, 3) 
axes4 = fig.add_subplot(2, 2, 4) 
axes1.plot(data set_1['x'], data set_1['y'], 
'o') 
axes2.plot(data set_2['x'], data set_2['y'], 
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'o') 
axes3.plot(data set_3['x'], data set_3['y'], 
'o') 
axes4.plot(data set_4['x'], data set_4['y'], 
'o') 
 
# add a small title to each subplot 
axes1.set_title("data set_1") 
axes2.set_title("data set_2") 
axes3.set_title("data set_3") 
axes4.set_title("data set_4") 
 
# add a title for the entire figure (title above 
the title) 
fig.suptitle("Anscombe Data") # note spelling of 
"suptitle" 
 
# use a tight layout so the plots and titles 
don't overlap 
fig.set_tight_layout(True) 
 
# show the figure 
plt.show()

The Anscombe data visualizations illustrate why just looking at
summary statistical values can be misleading. The moment the points are
visualized, it becomes clearer that even though each data set has the same
summary statistical values, the relationships between points vastly differ
across the data sets.

To finish off the Anscombe example, we can add .set_xlabel()
and .set_ylabel() to each of the subplots to add x- and y-axis labels,
just as we added a title to the figure.



3.2.2 Anatomy of a Figure
Before we move on and learn how to create more statistical plots, you
should become familiar with the matplotlib documentation on
“Anatomy of a Figure.”1 I have reproduced its older figure in Figure 3.6,
and the newer figure in Figure 3.7.

Figure 3.6 Matplotlib anatomy of a figure (old version)



Figure 3.7 Matplotlib anatomy of a figure (new version)

1. Anatomy of a matplotlib figure:
https://matplotlib.org/stable/gallery/showcase/ana
tomy.html

One of the most confusing parts of plotting in Python is the use of the
terms “axis” and “axes” especially when trying to verbally describe the

https://matplotlib.org/stable/gallery/showcase/anatomy.html


different parts (since they are pronounced similarly). In the Anscombe
example, each individual subplot plot has axes. The axes contain both an x-
axis and a y-axis. All four subplots together make the figure.

The remainder of the chapter shows you how to create statistical plots,
first with matplotlib and later using a higher-level plotting library that
is based on matplotlib and specifically made for statistical graphics,
seaborn.

Important
Knowing whether or not a plotting function returns one or more axes
or a figure will be important to know when plotting. For example,
you can’t put a figure inside another figure as you can with one
or more axes.

3.3 Statistical Graphics Using matplotlib
The tips data we will be using for the next series of visualizations come
from the seaborn library. This data set contains the amount of the tips
that people leave for various variables. For example, the total cost of the
bill, the size of the party, the day of the week, and the time of day.

We can load this data set just as we did the Anscombe data set.

Click here to view code image

tips = sns.load_data set("tips") 
print(tips)

    total_bill  tip    sex smoker  day   time size 
0        16.99 1.01 Female     No  Sun Dinner    2 
1        10.34 1.66   Male     No  Sun Dinner    3 
2        21.01 3.50   Male     No  Sun Dinner    3 
3        23.68 3.31   Male     No  Sun Dinner    2 
4        24.59 3.61 Female     No  Sun Dinner    4 
..         ...  ...    ...    ...  ...    ...  ... 
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239      29.03 5.92   Male     No  Sat Dinner    3 
240      27.18 2.00 Female    Yes  Sat Dinner    2 
241      22.67 2.00   Male    Yes  Sat Dinner    2 
242      17.82 1.75   Male     No  Sat Dinner    2 
243      18.78 3.00 Female     No Thur Dinner    2 
 
[244 rows x 7 columns]

3.3.1 Univariate (Single Variable)
In statistics jargon, the term “univariate” refers to a single variable.

3.3.1.1 Histograms

Histograms are the most common means of looking at a single variable. The
values are “binned”, meaning they are grouped together and plotted to show
the distribution of the variable (Figure 3.8).



Figure 3.8 Histogram using matplotlib

Click here to view code image

# create the figure object 
fig = plt.figure() 
 
# subplot has 1 row, 1 column, plot location 1 
axes1 = fig.add_subplot(1, 1, 1) 
 
# make the actual histogram 
axes1.hist(data=tips, x='total_bill', bins=10) 
 
# add labels 
axes1.set_title('Histogram of Total Bill') 
axes1.set_xlabel('Frequency') 
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axes1.set_ylabel('Total Bill') 
 
plt.show()

3.3.2 Bivariate (Two Variables)
In statistics jargon, the term “bivariate” refers to two variables.

3.3.2.1 Scatter Plot

Scatter plots are used when a continuous variable is plotted against another
continuous variable (Figure 3.9).

Figure 3.9 Scatter plot using matplotlib



Click here to view code image

# create the figure object 
scatter_plot = plt.figure() 
axes1 = scatter_plot.add_subplot(1, 1, 1) 
 
# make the actual scatter plot 
axes1.scatter(data=tips, x='total_bill', 
y='tip') 
 
# add labels 
axes1.set_title('Scatterplot of Total Bill vs 
Tip') 
axes1.set_xlabel('Total Bill') 
axes1.set_ylabel('Tip') 
 
plt.show()

3.3.2.2 Box Plot

Box plots are used when a discrete variable is plotted against a continuous
variable (Figure 3.10).
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Figure 3.10 Box plot using matplotlib

Note
A discrete variable is usually something that is countable (using whole
numbers). A continuous variable is usually a something that is
measured and can have a decimal or fractional value.

Click here to view code image

# create the figure object 
boxplot = plt.figure() 
axes1 = boxplot.add_subplot(1, 1, 1)

Click here to view code image
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# make the actual box plot 
axes1.boxplot( 
  # first argument of box plot is the data 
  # since we are plotting multiple pieces of 
data 
  # we have to put each piece of data into a 
list 
  x=[ 
      tips.loc[tips["sex"] == "Female", "tip"], 
      tips.loc[tips["sex"] == "Male", "tip"], 
  ], 
  # we can then pass in an optional labels 
parameter 
  # to label the data we passed 
  labels=["Female", "Male"], 
) 
 
 
# add labels 
axes1.set_xlabel('Sex') 
axes1.set_ylabel('Tip') 
axes1.set_title('Boxplot of Tips by Gender') 
 
plt.show()

3.3.3 Multivariate Data
Plotting multivariate data is tricky because there is not a panacea or
template that can be used for every case. To illustrate the process of plotting
multivariate data, let’s build on our earlier scatter plot.

If we wanted to add another variable, say sex, one option would be to
color the points based on the value of the third variable. If we wanted to
add a fourth variable, we could add size to the dots. The only caveat with



using size as a variable is that humans are not very good at visually
differentiating areas. Sure, if there’s an enormous dot next to a tiny one, the
relationship will be conveyed. But smaller differences are difficult to
distinguish and may add clutter to your visualization. One way to reduce
clutter is to add some value of transparency to the individual points, such
that many overlapping points will show a darker region of a plot than less
crowded areas.

A general convention is that different colors are much easier to
distinguish than changes in size. If you have to use areas to convey
differences in values, be sure that you are actually plotting relative areas. A
common pitfall is to map a value to the radius of a circle for plots, but since
the formula for a circle is πr2, your areas are actually based on a squared
scale. That is not only misleading but wrong.

Colors are also difficult to pick. Humans do not perceive hues on a
linear scale, so you need to think carefully when picking color palettes.
Luckily matplotlib2 and seaborn3 come with their own set of color
palettes. Tools like colorbrewer4 can help you pick good color palettes.
2. matplotlib colormaps:
https://matplotlib.org/stable/tutorials/colors/col
ormaps.html

3. seaborn color palettes:
https://seaborn.pydata.org/tutorial/color_palettes
.html

4. colorbrewer color palettes: http://colorbrewer2.org/

Figure 3.11 uses color to add a third variable, sex, to our scatter plot.
Since our values for sex only contain 2 values: Male and Female, we
need to “map” the values to a color.

https://matplotlib.org/stable/tutorials/colors/colormaps.html
https://seaborn.pydata.org/tutorial/color_palettes.html
http://colorbrewer2.org/


Figure 3.11 Matplotlib scatter plot with sex for the point color and size
as point size

Click here to view code image

# assign color values 
colors = { 
    "Female": "#f1a340",  # orange 
    "Male": "#998ec3",    # purple 
} 
 
scatter_plot = plt.figure() 
axes1 = scatter_plot.add_subplot(1, 1, 1) 
 
axes1.scatter( 
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  data=tips, 
  x='total_bill', 
  y='tip', 
 
  # set the size of the dots based on party size 
  # we multiply the values by 10 to make the 
points bigger 
  # and also to emphasize the difference 
  s=tips["size"] ** 2 * 10, 
 
 
  # set the color for the sex using our color 
values above 
  c=tips['sex'].map(colors), 
 
  # set the alpha so points are more transparent 
  # this helps with overlapping points 
  alpha=0.5 
) 
 
# label the axes 
axes1.set_title('Colored by Sex and Sized by 
Size') 
axes1.set_xlabel('Total Bill') 
axes1.set_ylabel('Tip') 
 
# figure title on top 
scatter_plot.suptitle("Total Bill vs Tip") 
 
plt.show()

matplotlib is an imperative plotting library. We’ll see how other
declarative plotting libraries allow us to make exploratory plots.



3.4 Seaborn
matplotlib is a core plotting tool in Python. seaborn builds on
matplotlib by providing a higher-level declarative interface for
statistical graphics. It gives us the ability to create more complex
visualizations with fewer lines of code. The seaborn library is tightly
integrated with the pandas library and the rest of the PyData stack
(numpy, scipy, statsmodels, etc.), making visualizations from any
part of the data analysis easier. Since seaborn is built on top of
matplotlib, the user can still fine-tune the visualizations.

We’ve already loaded the seaborn library to access its data sets.

Click here to view code image

# load seaborn if you have not done so already 
import seaborn as sns 
 
tips = sns.load_data set("tips")

You will be able to look up all the seaborn plotting function
documentation from the official seaborn site and then going to the API
reference.5

5. seaborn website: https://seaborn.pydata.org/

For print, we are also going to set the "paper" context, to change
some of the default font size, line width, axis tics, etc.

Click here to view code image

# set the default seaborn context optimized for 
paper print 
# the default is "notebook" 
sns.set_context("paper")

3.4.1 Univariate
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Just like we did with the matplotlib examples, we will make a series of
univariate plots.

3.4.1.1 Histogram

Histograms are created using sns.histplot() (Figure 3.12).

Figure 3.12 Seaborn histplot

Instead of two separate steps of creating an empty figure, and then
specifying the individual axes subplots, We can create the figure with all
the axes in a single step with the subplots() function. By default it will
return two things back. The first thing will be the figure object, the second
will be all the axes objects. We can then use the Python multiple
assignment syntax to assign the parts to variables in a single step
(Appendix Q).



From there we can use the Figure and axes objects just like before.

Click here to view code image

# the subplots function is a shortcut for 
# creating separate figure objects and 
# adding individual subplots (axes) to the 
figure 
hist, ax = plt.subplots() 
 
# use seaborn to draw a histogram into the axes 
sns.histplot(data=tips, x="total_bill", ax=ax) 
 
# use matplotlib notation to set a title 
ax.set_title('Total Bill Histogram') 
 
# use matplotlib to show the figure 
plt.show()

3.4.1.2 Density Plot (Kernel Density Estimation)

Density plots are another way to visualize a univariate distribution (Figure
3.13). In essence, they are created by drawing a normal distribution
centered at each data point, then smoothing out the overlapping plots so that
the area under the curve is 1.
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Figure 3.13 Seaborn kde plot

Click here to view code image

den, ax = plt.subplots() 
 
sns.kdeplot(data=tips, x="total_bill", ax=ax) 
 
ax.set_title('Total Bill Density') 
ax.set_xlabel('Total Bill') 
ax.set_ylabel('Unit Probability') 
 
plt.show()

3.4.1.3 Rug Plot
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Rug plots are a one-dimensional representation of a variable’s distribution.
They are typically used with other plots to enhance a visualization. Figure
3.14 shows a histogram overlaid with a density plot and a rug plot on the
bottom.

Figure 3.14 Seaborn rug plot with histogram

Click here to view code image

rug, ax = plt.subplots() 
 
# plot 2 things into the axes we created 
sns.rugplot(data=tips, x="total_bill", ax=ax) 
sns.histplot(data=tips, x="total_bill", ax=ax)

Click here to view code image
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ax.set_title("Rug Plot and Histogram of Total 
Bill") 
ax.set_title("Total Bill") 
 
plt.show()

3.4.1.4 Distribution Plots

The newer sns.displot() function allows us to put together many of
the univariate plots together into a single plot. This is the successor to the
older sns.distplot() function (note the very subtle difference in
spelling).

The sns.displot() function returns a FacetGrid object, not an
axes, so the way we have been creating a figure and plotting the axes does
not apply to this particular function. The benefit of it returning a more
complex object is how it can plot multiple things at the same time. Figure
3.15 shows how we can combine many of the distribution figures into a
single figure.



Figure 3.15 Seaborn distribution plot showing histogram, kde, and rug
plots

Click here to view code image

# the FacetGrid object creates the figure and 
axes for us 
fig = sns.displot(data=tips, x="total_bill", 
kde=True, rug=True) 
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fig.set_axis_labels(x_var="Total Bill", 
y_var="Count") 
fig.figure.suptitle('Distribution of Total 
Bill') 
 
plt.show()

3.4.1.5 Count Plot (Bar Plot)

Bar plots are very similar to histograms, but instead of binning values to
produce a distribution, bar plots can be used to count discrete variables.
Seaborn calls this a count plot (Figure 3.16).



Figure 3.16 Seaborn count plot (i.e., bar plot) using the viridis color
palette

Click here to view code image

count, ax = plt.subplots() 
 
# we can use the viridis palette to help 
distinguish the colors 
sns.countplot(data=tips, x='day', 
palette="viridis", ax=ax) 
 
ax.set_title('Count of days') 
ax.set_xlabel('Day of the Week') 
ax.set_ylabel('Frequency') 
 
plt.show()

Note
The viridis color palette was designed by Stéfan van der Walt and
Nathaniel Smith to be colorblind friendly, and also be distinguishable
in greyscale. They presented this color palette at the SciPy 2015
Conference, “A Better Default Colormap for Matplotlib”
https://www.youtube.com/watch?v=xAoljeRJ3lU

3.4.2 Bivariate Data
We will now use the seaborn library to plot two variables.

3.4.2.1 Scatter Plot

There are a few ways to create a scatter plot in seaborn. The main
difference is the type of object that gets created, an Axes or FacetGrid
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(i.e., type of Figure). sns.scatterplot() returns an Axes object
(Figure 3.17).

Figure 3.17 Seaborn scatter plot using sns.scatterplot()

Click here to view code image

scatter, ax = plt.subplots() 
 
# use fit_reg=False if you do not want the 
regression line 
sns.scatterplot(data=tips, x='total_bill', 
y='tip', ax=ax) 
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ax.set_title('Scatter Plot of Total Bill and 
Tip') 
ax.set_xlabel('Total Bill') 
ax.set_ylabel('Tip') 
 
plt.show()

We can also use sns.regplot() to create a scatter plot and also
draw a regression line (Figure 3.18).

Figure 3.18 Seaborn scatter plot using sns.regplot()

Click here to view code image
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reg, ax = plt.subplots() 
 
# use fit_reg=False if you do not want the 
regression line 
sns.regplot(data=tips, x='total_bill', y='tip', 
ax=ax) 
 
ax.set_title('Regression Plot of Total Bill and 
Tip') 
ax.set_xlabel('Total Bill') 
ax.set_ylabel('Tip') 
 
plt.show()

A similar function, sns.lmplot(), can also create scatter plots.
Internally, sns.lmplot() calls sns.regplot(), so
sns.regplot() is a more general plotting function. The main
difference is that sns.regplot() creates an axes object whereas
sns.lmplot() creates a figure object (See Section 3.2.2 for the parts
of a figure). Figure 3.19 creates a scatter plot with a regression line, but
creates the figure object directly, similar to the FacetGrid from
sns.displot() in Section 3.4.1.4.



Figure 3.19 Seaborn scatter plot using sns.lmplot()

Click here to view code image

# use if you do not want the regression line 
fig = sns.lmplot(data=tips, x='total_bill', 
y='tip') 
 
plt.show()
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3.4.2.2 Joint Plot

We can also create a scatter plot that includes a univariate plot on each axis
using sns.jointplot() (Figure 3.20). One major difference is that
sns.jointplot() does not return axes, so we do not need to create a
figure with axes on which to place our plot. Instead, this function creates a
JointGrid object. If we need access to the base matplotlib
Figure object, we use the .figure attribute.



Figure 3.20 Seaborn scatter plot using sns.jointplot()



Click here to view code image

# jointplot creates the figure and axes for us 
joint = sns.jointplot(data=tips, x='total_bill', 
y='tip') 
 
joint.set_axis_labels(xlabel='Total Bill', 
ylabel='Tip') 
 
# add a title and move the text up so it doesn't 
clash with histogram 
joint.figure.suptitle('Joint Plot of Total Bill 
and Tip', y=1.03) 
 
plt.show()

3.4.2.3 Hexbin Plot

Scatter plots are great for comparing two variables. However, sometimes
there are too many points for a scatter plot to be meaningful. One way to
get around this issue is to bin and aggregate nearby points on the plot
together. Just as histograms can bin a variable to create a bar, hexbin plots
can bin two variables (Figure 3.21). A hexagon is used for this purpose
because it is the most efficient shape to cover an arbitrary 2D surface. This
is an example of seaborn building on top of matplotlib, as
hexbin() is a matplotlib function.
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Figure 3.21 Seaborn hexbin plot using sns.jointplot()



Click here to view code image

# we can use jointplot with kind="hex" for a 
hexbin plot 
hexbin = sns.jointplot( 
  data=tips, x="total_bill", y="tip", kind="hex" 
) 
 
hexbin.set_axis_labels(xlabel='Total Bill', 
ylabel='Tip') 
hexbin.figure.suptitle('Hexbin Plot of Total 
Bill and Tip', y=1.03) 
 
plt.show()

3.4.2.4 2D Density Plot

You can also create a 2D kernel density plot. This kind of process is similar
to how sns.kdeplot() works, except it creates a density plot across
two variables. The bivariate plot can be shown on its own (Figure 3.22).
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Figure 3.22 Seaborn KDE plot using sns.kdeplot()

Click here to view code image

kde, ax = plt.subplots() 
 
# shade will fill in the contours 
sns.kdeplot(data=tips, x="total_bill", y="tip", 
shade=True, ax=ax) 
 
ax.set_title('Kernel Density Plot of Total Bill 
and Tip') 
ax.set_xlabel('Total Bill') 
ax.set_ylabel('Tip') 
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plt.show()

sns.jointplot() will also allow us to create KDE plots (Figure
3.23).



Figure 3.23 Seaborn KDE plot using sns.jointplot()



Click here to view code image

kde2d = sns.jointplot(data=tips, x="total_bill", 
y="tip", kind="kde") 
 
kde2d.set_axis_labels(xlabel='Total Bill', 
ylabel='Tip') 
kde2d.fig.suptitle('2D KDE Plot of Total Bill 
and Tip', y=1.03) 
 
plt.show()

3.4.2.5 Bar Plot

Bar plots can also be used to show multiple variables. By default,
sns.barplot() will calculate a mean (Figure 3.24), but you can pass
any function into the estimator parameter. For example, you could pass
in the np.mean() function to calculate the mean using the version from
the numpy library.
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Figure 3.24 Seaborn bar plot using the np.mean() function

Click here to view code image

import numpy as np 
 
bar, ax = plt.subplots() 
 
# plot the average total bill for each value of 
time 
# mean is calculated using numpy 
sns.barplot( 
  data=tips, x="time", y="total_bill", 
estimator=np.mean, ax=ax 
) 
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ax.set_title('Bar Plot of Average Total Bill for 
Time of Day') 
ax.set_xlabel('Time of Day') 
ax.set_ylabel('Average Total Bill') 
 
plt.show()

3.4.2.6 Box Plot

Unlike the previously mentioned plots, a box plot (Figure 3.25) shows
multiple statistics: the minimum, first quartile, median, third quartile,
maximum, and, if applicable, outliers based on the interquartile range.

Figure 3.25 Seaborn box plot of total bill by time of day



The y parameter in sns.boxplot() is optional. If it is omitted, the
plotting function will create a single box in the plot.

Click here to view code image

box, ax = plt.subplots() 
 
# the y is optional, but x would have to be a 
numeric variable 
sns.boxplot(data=tips, x='time', y='total_bill', 
ax=ax) 
 
ax.set_title('Box Plot of Total Bill by Time of 
Day') 
ax.set_xlabel('Time of Day') 
ax.set_ylabel('Total Bill') 
 
plt.show()

3.4.2.7 Violin Plot

Box plots are a classical statistical visualization, but they can obscure the
underlying distribution of the data. Violin plots (Figure 3.26) can show the
same values as a box plot, but plot the “boxes” as a kernel density
estimation. This can help retain more visual information about your data
since only plotting summary statistics can be misleading, as seen by the
Anscombe quartet (Section 3.2.1).
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Figure 3.26 Seaborn violin plot of total bill by time of day

Click here to view code image

violin, ax = plt.subplots() 
 
sns.violinplot(data=tips, x='time', 
y='total_bill', ax=ax) 
 
ax.set_title('Violin plot of total bill by time 
of day') 
ax.set_xlabel('Time of day') 
ax.set_ylabel('Total Bill') 
 
plt.show()
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We can now see how the violin plot is related to the box plot. In Figure
3.27, we will create a single figure with 2 axes (i.e., subplots).

Figure 3.27 Comparing box plots with violin plots

Click here to view code image

# create the figure with 2 subplots 
box_violin, (ax1, ax2) = plt.subplots(nrows=1, 
ncols=2) 
 
sns.boxplot(data=tips, x='time', y='total_bill', 
ax=ax1) 
sns.violinplot(data=tips, x='time', 
y='total_bill', ax=ax2) 

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0092-02


 
# set the titles 
ax1.set_title('Box Plot') 
ax1.set_xlabel('Time of day') 
ax1.set_ylabel('Total Bill') 
 
ax2.set_title('Violin Plot') 
ax2.set_xlabel('Time of day') 
ax2.set_ylabel('Total Bill') 
 
box_violin.suptitle("Comparison of Box Plot with 
Violin Plot") 
 
# space out the figure so labels do not overlap 
box_violin.set_tight_layout(True) 
 
plt.show()

3.4.2.8 Pairwise Relationships

When you have mostly numeric data, visualizing all of the pairwise
relationships can be performed using sns.pairplot(). This function
will plot a scatter plot between each pair of variables, and a histogram for
the univariate data (Figure 3.28).



Figure 3.28 Seaborn pair plot



Click here to view code image

fig = sns.pairplot(data=tips) 
 
fig.figure.suptitle( 
  'Pairwise Relationships of the Tips Data', 
y=1.03 
) 
 
plt.show()

One drawback when using sns.pairplot() is that there is
redundant information; that is, the top half of the visualization is the same
as the bottom half. We can use sns.PairGrid() to manually assign the
plots for the top half and bottom half. This plot is shown in Figure 3.29.
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Figure 3.29 Seaborn pair plot with different plots on the upper and
lower halves

Click here to view code image
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# create a PairGrid, make the diagonal plots on 
a different scale 
pair_grid = sns.PairGrid(tips, 
diag_sharey=False) 
 
# set a separate function to plot the upper, 
bottom, and diagonal 
# functions need to return an axes, not a figure 
 
 
# we can use plt.scatter instead of sns.regplot 
pair_grid = pair_grid.map_upper(sns.regplot) 
pair_grid = pair_grid.map_lower(sns.kdeplot) 
pair_grid = pair_grid.map_diag(sns.histplot) 
 
plt.show()

3.4.3 Multivariate Data
As mentioned in Section 3.3.3, there is no de facto template for plotting
multivariate data. Possible ways to include more information are to use
color, size, or shape to distinguish data within the plot.

3.4.3.1 Colors

When we are using sns.violinplot(), we can pass the hue
parameter to color the plot by sex. We can reduce the redundant
information by having each half of the violins represent a different sex, as
shown in Figure 3.30. Try the following code with and without the split
parameter.



Figure 3.30 Seaborn violin plot with hue parameter

Click here to view code image

violin, ax = plt.subplots() 
 
sns.violinplot( 
  data=tips, 
  x="time", 
  y="total_bill", 
  hue="smoker", # set color based on smoker 
variable 
  split=True, 
  palette="viridis", # palette specifies the 
colors for hue 
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  ax=ax, 
) 
 
plt.show()

The hue parameter can be passed into various other plotting functions
as well. Figure 3.31 shows its use in a sns.lmplot().

Figure 3.31 Seaborn lmplot plot with hue parameter

Click here to view code image
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# note the use of lmplot instead of regplot to 
return a figure 
scatter = sns.lmplot( 
  data=tips, 
  x="total_bill", 
  y="tip", 
  hue="smoker", 
  fit_reg=False, 
  palette="viridis", 
) 
 
plt.show()

We can make our pairwise plots a little more meaningful by passing one
of the categorical variables as the hue parameter. Figure 3.32 shows this
approach in our sns.pairplot().



Figure 3.32 Seaborn pair plot with hue parameter

Click here to view code image

fig = sns.pairplot( 
  tips, 
  hue="time", 
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  palette="viridis", 
 
  height=2, # facet height to make the entire 
figure smaller 
) 
 
plt.show()

3.4.3.2 Size and Shape

Working with point sizes can be another means of adding more information
to a plot. However, this option should be used sparingly, since the human
eye is not very good at comparing areas. Figure 3.33 shows using the hue
for color and size for point sizes in the sns.scatterplot() function.



Figure 3.33 Scatter plot of tip vs total bill, colored by time of day, and
sized by table size

Click here to view code image

fig, ax = plt.subplots() 
 
sns.scatterplot( 
  data=tips, 
  x="total_bill", 
  y="tip", 
  hue="time", 
  size="size", 
  palette="viridis", 
  ax=ax, 
) 
 
plt.show()

3.4.4 Facets
What if we want to show more variables? Or if we know which plot we
want for our visualization, but we want to make multiple plots over a
categorical variable? Facets are designed to meet these needs. Instead of
individually subsetting data and lay out the axes in a figure (as we did in
Figure 3.5), facets in seaborn can handle this work for you.

To use facets, your data needs to be what Hadley Wickham6 calls “Tidy
Data,”7 where each row represents an observation in the data, and each
column is a variable. More about tidy data is discussed in Chapter 4.
6. Hadley Wickham, PhD: http://hadley.nz

7. Tidy Data paper: http://vita.had.co.nz/papers/tidy-
data.pdf
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3.4.4.1 One Facet Variable

Figure 3.34 shows a re-creation of the Anscombe quartet data from Figure
3.5 in seaborn. The trick to faceted plots in seaborn is to look for the
col or row parameter in the plotting function. Here, we use
sns.relplot() to make our faceted scatter plot (the sns.
scatterplot() documentation also points to use sns.relplot()
for facets).

Figure 3.34 Seaborn Anscombe plot with facets



Figure 3.35 Seaborn tips scatter plot with hue, style, and facets

Click here to view code image

anscombe_plot = sns.relplot( 
  data=anscombe, 
  x="x", 
  y="y", 
  kind="scatter", 
  col="data set", 
 
  col_wrap=2, 
  height=2, 
  aspect=1.6, # aspect ratio of each facet 
) 
 
anscombe_plot.figure.set_tight_layout(True) 
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plt.show()

The col parameter is the variable that the plot will facet by, and the
col_wrap parameter creates a figure that has two columns. If we do not
use the col_wrap parameter, all four plots will be plotted in the same
row.

3.4.4.2 Two Facet Variables

We can build on this to incorporate two categorical variables into our
faceted plot. Additional categorical variables can be passed into the hue,
style, etc. parameters.

Click here to view code image

'''python 
colors = { 
  "Yes": "#f1a340", # orange 
  "No" : "#998ec3", # purple 
} 
# make the faceted scatter plot 
# this is the only part that is needed to draw 
the figure 
facet2 = sns.relplot( 
  data=tips, 
  x="total_bill", 
  y="tip", 
  hue="smoker", 
  style="sex", 
 
  kind="scatter", 
  col="day", 
  row="time", 
  palette=colors, 
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  height=1.7, # adjusted to fit figure on page 
) 
 
# below is to make the plot pretty 
# adjust facet titles 
facet2.set_titles( 
  row_template="{row_name}", 
  col_template="{col_name}" 
) 
 
# adjust the legend to not have it overlap the 
figure 
sns.move_legend( 
  facet2, 
  loc="lower center", 
  bbox_to_anchor=(0.5, 1), 
  ncol=2,   #number legend columns 
  title=None,   #legend title 
  frameon=False, #remove frame (i.e., border 
box) around legend 
) 
 
facet2.figure.set_tight_layout(True) 
 
plt.show()'''

3.4.4.3 Manually Create Facets

Many of the plots we created in seaborn are axes-level functions. What
this means is that not every plotting function will have col and
col_wrap parameters for faceting. Instead, we must create a
FacetGrid that knows which variable to facet on, and then supply the
individual plot code for each facet. Figure 3.36 shows our manually created
facet plot.



Figure 3.36 Seaborn plot with manually created facets

Danger
If you can, use one of the seaborn plotting functions that returns a
figure object with row and col parameters to facet (e.g.,
sns.relplot() or sns.catplot()). You should opt to use
those functions instead of manually creating a FacetGrid object.
Many of the seaborn plotting functions will point to a different
seaborn function if you want to facet.

Click here to view code image

# create the FacetGrid 
facet = sns.FacetGrid(tips, col='time') 
 
# for each value in time, plot a histogram of 
total bill 
# you pass in parameters as if you were passing 
them directly 
# into sns.histplot() 
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facet.map(sns.histplot, 'total_bill') 
plt.show()

The individual facets need not be univariate plots, as seen in Figure
3.37.

Figure 3.37 Seaborn plot with manually created facets that contain
multiple variables



Click here to view code image

facet = sns.FacetGrid( 
  tips, col='day', hue='sex', palette="viridis" 
) 
facet.map(plt.scatter, 'total_bill', 'tip') 
facet.add_legend() 
plt.show()

Another thing you can do with facets is to have one variable be faceted
on the x-axis, and another variable faceted on the y-axis. We accomplish
this by passing a row parameter. The result is shown in Figure 3.38.
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Figure 3.38 Seaborn plot with manually created facets with two
variables

Click here to view code image
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facet = sns.FacetGrid( 
  tips, col='time', row='smoker', hue='sex', 
palette="viridis" 
) 
facet.map(plt.scatter, 'total_bill', 'tip') 
plt.show()

If you do not want all of the hue elements to overlap (i.e., you want this
behavior in scatter plots, but not violin plots), you can use the
sns.catplot() function. The result is shown in Figure 3.39.



Figure 3.39 Seaborn plot with manually created facets with two non-
overlapping variables

facet = sns.catplot( 
    x="day", 



    y="total_bill", 
    hue="sex", 
    data=tips, 
    row="smoker", 
    col="time", 
    kind="violin", 
) 
plt.show()

3.4.5 Seaborn Styles and Themes
The seaborn plots shown in this chapter have all used the default plot
styles. We can change the plot style with the sns.set_style function.
Typically, this function is run just once at the top of your code; all
subsequent plots will use the same style set.

3.4.5.1 Styles

The styles that come with seaborn are darkgrid, whitegrid, dark,
white, and ticks. Figure 3.40 shows a base plot, and Figure 3.41 shows
a plot with the whitegrid style.



Figure 3.40 Baseline violin plot with default seaborn style



Figure 3.41 Violin plot with "darkgrid" seaborn style

The with block allow us to temporarily use a style without setting it as
a default for all subsequent plots. If you want to set the style as a default
you would use sns.set_style("whitegrid") instead of the with
block.

Click here to view code image

# initial plot for comparison 
fig, ax = plt.subplots() 
sns.violinplot( 
  data=tips, x="time", y="total_bill", 
hue="sex", split=True, ax=ax 
) 
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plt.show()

# Use this to set a global default style 
# sns.set_style("whitegrid")

# temporarily set style and plot 
# remove the with line + indentation if using 
sns.set_style() 
with sns.axes_style("darkgrid"):

  fig, ax = plt.subplots() 
  sns.violinplot( 
    data=tips, x="time", y="total_bill", 
hue="sex", split=True, ax=ax 
  ) 
 
plt.show()

The following code shows what all the styles look like (Figure 3.42).



Figure 3.42 All seaborn styles

Click here to view code image

seaborn_styles = ["darkgrid", "whitegrid", 
"dark", "white", "ticks"] 
 
fig = plt.figure() 
for idx, style in enumerate(seaborn_styles): 
  plot_position = idx + 1 
  with sns.axes_style(style): 
    ax = fig.add_subplot(2, 3, plot_position) 
    violin = sns.violinplot( 
      data=tips, x="time", y="total_bill", ax=ax 
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    ) 
    violin.set_title(style) 
fig.set_tight_layout(True) 
plt.show()

3.4.5.2 Plotting Contexts

The seaborn library comes with a set of contexts that quickly tweak
various parts of the figure (text size, line width, axis tick size, etc.) for
different “contexts.” This chapter uses the "paper" context since it is
made for printed text, but the default context is "notebook". Below you
will see the various parameters set for each context, and Figure 3.43 shows
a quick preview of each context.

Figure 3.43 Example of seaborn figure contexts



Click here to view code image

contexts = pd.DataFrame( 
  { 
    "paper": sns.plotting_context("paper"), 
    "notebook": 
sns.plotting_context("notebook"), 
    "talk": sns.plotting_context("talk"), 
    "poster": sns.plotting_context("poster"), 
  } 
) 
print(contexts)

                     paper notebook    talk poster 
axes.linewidth         1.0     1.25   1.875    2.5 
grid.linewidth         0.8     1.00   1.500    2.0 
lines.linewidth        1.2     1.50   2.250    3.0 
lines.markersize       4.8     6.00   9.000   12.0 
patch.linewidth        0.8     1.00   1.500    2.0 
xtick.major.width      1.0     1.25   1.875    2.5 
ytick.major.width      1.0     1.25   1.875    2.5 
xtick.minor.width      0.8     1.00   1.500    2.0 
ytick.minor.width      0.8     1.00   1.500    2.0 
 
xtick.major.size       4.8     6.00   9.000   12.0 
ytick.major.size       4.8     6.00   9.000   12.0 
xtick.minor.size       3.2     4.00   6.000    8.0 
ytick.minor.size       3.2     4.00   6.000    8.0 
font.size              9.6    12.00  18.000   24.0 
axes.labelsize         9.6    12.00  18.000   24.0 
axes.titlesize         9.6    12.00  18.000   24.0 
xtick.labelsize        8.8    11.00  16.500   22.0 
ytick.labelsize        8.8    11.00  16.500   22.0 
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legend.fontsize        8.8    11.00  16.500   22.0 
legend.title_fontsize  9.6    12.00  18.000   24.0

context_styles = contexts.columns 
 
fig = plt.figure() 
for idx, context in enumerate(context_styles): 
  plot_position = idx + 1 
  with sns.plotting_context(context): 
    ax = fig.add_subplot(2, 2, plot_position) 
    violin = sns.violinplot( 
      data=tips, x="time", y="total_bill", ax=ax 
    ) 
    violin.set_title(context) 
fig.set_tight_layout(True) 
plt.show()

3.4.6 How to Go Through Seaborn Documentation
Throughout this chapter discussing seaborn plotting, we’ve talked about
different plotting objects that come out of the matplotlib library, mainly
the Axes and Figure objects. For all plotting libraries that build on top of
matplotlib, it’s important to know how to read aspects of the
documentation, so you can customize your plots to your liking.

Let’s use the violin plot (Figure 3.27) and pair plot (Figure 3.28) in
Section 3.4.2.7 and Section 3.4.2.8 as examples of how to walk through
object documentation.

3.4.6.1 Matplotlib Axes Objects

A snippet of the code for Figure 3.27 is below:

Click here to view code image
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box_violin, (ax1, ax2) = plt.subplots(nrows=1, 
ncols=2) 
 
sns.boxplot(data=tips, x='time', y='total_bill', 
ax=ax1) 
sns.violinplot(data=tips, x='time', 
y='total_bill', ax=ax2) 
 
ax1.set_title('Box Plot') 
ax1.set_xlabel('Time of day') 
ax1.set_ylabel('Total Bill') 
 
ax2.set_title('Violin Plot') 
ax2.set_xlabel('Time of day') 
ax2.set_ylabel('Total Bill') 
 
box_violin.suptitle("Comparison of Box Plot with 
Violin Plot") 
 
box_violin.set_tight_layout(True) 
plt.show()

In this particular example, if we look up the documentation for the
sns.violinplot(), we will see that the function returns a
matplotlib Axes object.

Returns ax : matplotlib Axes

Click here to view code image

Returns the Axes object with the plot drawn onto 
it.

We can also confirm that the ax2 object we created is an Axes object:

Click here to view code image
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print(type(ax2))

<class 'matplotlib.axes._subplots.AxesSubplot'>

Since the Axes object is from matplotlib, if we want to make
additional tweaks to the figure outside of the sns.violinplot()
function, we would need to look into the matplotlib.axes
documentation.8 This is where you would find the documentation for the
.set_title() method that was used to create the figure title.
8. Axes API docs:
https://matplotlib.org/stable/api/axes_api.html#mo
dule-matplotlib.axes

3.4.6.2 Matplotlib Figure Objects

Using the same reproduced code for Figure 3.27 above, we can see the
type() of the box_violin object we created and go to the Figure
documentation.9

9. Figure API docs:
https://matplotlib.org/stable/api/figure_api.html#
module-matplotlib.figure

Click here to view code image

print(type(box_violin))

<class 'matplotlib.figure.Figure'>

This is where we can find the .suptitle() method used to add the
overall title to the figure.

3.4.6.3 Custom Seaborn Objects

The code for Figure 3.28 is reproduced below:

Click here to view code image
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fig = sns.pairplot(data=tips) 
fig.figure.suptitle( 
  'Pairwise Relationships of the Tips Data', 
y=1.03 
) 
plt.show()

This is an example of an object specific to seaborn, the PairGrid
object.10

10. seaborn.PairGrid docs:
https://seaborn.pydata.org/generated/seaborn.PairG
rid.html

Click here to view code image

print(type(fig))

<class 'seaborn.axisgrid.PairGrid'>

If we scroll down to the bottom of the documentation page, we can see
all the attributes and methods for the PairGrid object. However, we
know that .suptitle() is a matplotlib.Figure method. From the
API documentation at the bottom of the page, we can see how we can
access the underlying Figure object by using the .figure attribute.
This is why we needed to write .figure.suptitle() to take the
sns.FacetGrid object, access the matplotlib.Figure object, then
the .subtitle() method.

3.4.7 Next-Generation Seaborn Interface

There is a new seaborn interface in the works.11 However, at the time of
writing, the next-gen interface is not official yet. When the official change
occurs and the API is stable, the book’s website will provide the updated
code for the seaborn section.12

https://seaborn.pydata.org/generated/seaborn.PairGrid.html
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11. Next-generation seaborn interface:
https://seaborn.pydata.org/nextgen/
12. Pandas for Everyone GitHub Page:
https://github.com/chendaniely/pandas_for_everyone
/

3.5 Pandas Plotting Method
Pandas objects also come equipped with their own plotting functions. Just
as in seaborn, the plotting functions built into Pandas are just wrappers
around matplotlib with preset values. In general, plotting using Pandas
follows the DataFrame.plot.<PLOT_TYPE> or Series.plot.
<PLOT_TYPE> methods.

3.5.1 Histogram
Histograms can be created using the Series.plot.hist() (Figure
3.44) or DataFrame.plot.hist() (Figure 3.45) function.
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Figure 3.44 Histogram of a Pandas Series



Figure 3.45 Histogram of a Pandas DataFrame

Click here to view code image

# on a series 
fig, ax = plt.subplots() 
tips['total_bill'].plot.hist(ax=ax) 
plt.show()

# on a dataframe 
# set alpha channel transparency to see through 
the overlapping bars 
fig, ax = plt.subplots() 
tips[['total_bill', 'tip']].plot.hist(alpha=0.5, 
bins=20, ax=ax) 
plt.show()
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3.5.2 Density Plot
The kernel density estimation (density) plot can be created with the
DataFrame.plot. kde() function (Figure 3.46).

Figure 3.46 Pandas KDE plot

fig, ax = plt.subplots() 
tips['tip'].plot.kde(ax=ax) 
plt.show()

3.5.3 Scatter Plot
Scatter plots are created by using the DataFrame.plot.scatter()
function (Figure 3.47).



Figure 3.47 Pandas scatter plot

Click here to view code image

fig, ax = plt.subplots() 
tips.plot.scatter(x='total_bill', y='tip', 
ax=ax) 
plt.show()

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch03_images.xhtml#f0113-02


3.5.4 Hexbin Plot
Hexbin plots are created using the Dataframe.plt.hexbin()
function (Figure 3.48).

Figure 3.48 Pandas hexbin plot

Click here to view code image

fig, ax = plt.subplots() 
tips.plot.hexbin(x='total_bill', y='tip', ax=ax) 
plt.show()

Grid size can be adjusted with the gridsize parameter (Figure 3.49).
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Figure 3.49 Pandas hexbin plot with modified grid size

Click here to view code image

fig, ax = plt.subplots() 
tips.plot.hexbin(x='total_bill', y='tip', 
gridsize=10, ax=ax) 
plt.show()

3.5.5 Box Plot
Box plots are created with the DataFrame.plot.box() function
(Figure 3.50).
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Figure 3.50 Pandas box plot

fig, ax = plt.subplots() 
ax = tips.plot.box(ax=ax) 
plt.show()

Conclusion
Data visualization is an integral part of exploratory data analysis and data
presentation. This chapter provided an introduction to the various ways to
explore and present your data. As we continue through the book, we will
learn about more complex visualizations.

There are myriad plotting and visualization resources available on the
Internet. The seaborn documentation, Pandas visualization
documentation, and matplotlib documentation all provide ways to
further tweak your plots (e.g., colors, line thickness, legend placement,
figure annotations). Other resources include colorbrewer to help pick



good color schemes. The plotting libraries mentioned in this chapter also
have various color schemes that can be used to highlight the content of your
visualizations.



4

Tidy Data

Hadley Wickham, PhD,1 one of the more prominent members of the R
community, introduced the concept of tidy data in a Journal of Statistical
Software paper.2 Tidy data is a framework to structure data sets so they can
be easily analyzed and visualized. It can be thought of as a goal one should
aim for when cleaning data. Once you understand what tidy data is, that
knowledge will make your data analysis, visualization, and collection much
easier.
1. Hadley Wickham, PhD: http://hadley.nz

2. Tidy Data paper: http://vita.had.co.nz/papers/tidy-
data.pdf

What is tidy data? Hadley Wickham’s paper defines it as meeting the
following criteria: (1) Each row is an observation, (2) Each column is a
variable, and (3) Each type of observational unit forms a table.

The newer definition from the R4DS book3 focuses on an individual
data set (i.e., table):
3. R For Data Science Book: https://r4ds.had.co.nz/tidy-
data.html

1. Each variable must have its own column.
2. Each observation must have its own row.
3. Each value must have its own cell.

This chapter goes through the various ways to tidy data using examples
from Wickham’s paper.

Learning Objectives

http://hadley.nz/
http://vita.had.co.nz/papers/tidy-data.pdf
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The concept map for this chapter can be found in Figure A.4.

Identify the components of tidy data
Identify common data errors
Use functions and methods to process and tidy data

Note About This Chapter
Data used in this chapter will have NaN missing values when they are
loaded into Pandas (Chapter 9). In the raw CSV files, they will appear as
empty values. I typically try to avoid forward referencing in the book, but I
felt that the concept of tidy data warranted a much earlier place in the book
because it is so fundamental to how we should be thinking about data
technically (as opposed to ethically), that the chapter was moved toward the
front of the book without having to cover more detailed data processing
steps first. I could have changed the data sets such that there were no
missing values, but opted not to do so because (1) it would no longer follow
the data used in Wickam’s “Tidy Data” paper, and (2) it would be a less
realistic data set.

4.1 Columns Contain Values, Not Variables
Data can have columns that contain values instead of variables. This is
usually a convenient format for data collection and presentation.

4.1.1 Keep One Column Fixed
We’ll use data on income and religion in the United States from the Pew
Research Center to illustrate how to work with columns that contain values,
rather than variables.

Click here to view code image

import pandas as pd 
pew = pd.read_csv('data/pew.csv')

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch04_images.xhtml#f0118-01


When we look at this data set, we can see that not every column is a
variable. The values that relate to income are spread across multiple
columns. The format shown is a great choice when presenting data in a
table, but for data analytics, the table should be reshaped so that we have
religion, income, and count variables.

Click here to view code image

# show only the first few columns 
print(pew.iloc[:,  0:5])

                 religion  <$10k  $10-20k $20-30k  
$30-40k 
0                Agnostic     27       34      60   
81 
1                 Atheist     12       27      37   
52 
2                Buddhist     27       21      30   
34 
3                Catholic    418      617     732   
670 
4      Don’t know/refused     15       14      15   
11 
..                    ...    ...      ...     ...   
... 
13               Orthodox     13       17      23   
32 
14        Other Christian      9        7      11   
13 
15           Other Faiths     20       33      40   
46 
16  Other World Religions      5        2       3   
4 
17           Unaffiliated    217      299     374   
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365 
 
[18 rows x 5 columns]

This view of the data is also known as “wide” data. To turn it into the
“long” tidy data format, we will have to unpivot/melt/gather (depending on
which statistical programming language we use) our dataframe.

Note
I usually use the terminology from the R world of using “pivot” to
refer to going from wide data to long data and vice versa. I usually will
specify the direction with “pivot longer” to go from wide data to long
data, and “pivot wider” to go from long data to wide data.

In this chapter “pivot longer” will refer to the dataframe .melt()
method, and “pivot wider” will refer to the dataframe .pivot()
method.

Pandas DataFrames have a method called .melt() that will reshape
the dataframe into a tidy format and it takes a few parameters:

id_vars is a container (list, tuple, ndarray) that represents the
variables that will remain as is.
value_vars identifies the columns you want to melt down (or
unpivot). By default, it will melt all the columns not specified in the
id_vars parameter.
var_name is a string for the new column name when the
value_vars is melted down. By default, it will be called
variable.
value_name is a string for the new column name that represents the
values for the var_name. By default, it will be called value.

Click here to view code image

# we do not need to specify a value_vars since 
we want to pivot 
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# all the columns except for the 'religion' 
column 
pew_long = pew.melt(id_vars='religion')

print(pew_long)

                  religion            variable   
value 
0                 Agnostic               <$10k      
27 
1                  Atheist               <$10k      
12 
2                 Buddhist               <$10k      
27 
3                 Catholic               <$10k     
418 
4       Don't know/refused               <$10k      
15 
..                     ...                 ...     
... 
175               Orthodox  Don't know/refused      
73 
176        Other Christian  Don't know/refused      
18 
177           Other Faiths  Don't know/refused      
71 
178  Other World Religions  Don't know/refused      
8 
179           Unaffiliated  Don't know/refused     
597 
 
[180 rows x 3 columns]



Note
The .melt() method also exists as a pandas function, pd.melt()

The below two lines of code are equivalent:

Click here to view code image

# melt method 
pew_long = pew.melt(id_vars='religion') 
 
# melt function 
pew_long = pd.melt(pew, id_vars='religion')

Internally, the .melt() method redirects the function call to the
Pandas pd.melt() function. The .melt() method notation is
there to make the Pandas API more consistent, and also allows us to
method-chain (Appendix U).

We can change the defaults so that the melted/unpivoted columns are
named.

Click here to view code image

pew_long = pew.melt( 
  id_vars="religion", var_name="income", 
value_name="count" 
)

print(pew_long)

                  religion             income  
count 
0                 Agnostic              <$10k     
27 
1                  Atheist              <$10k     
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12 
2                 Buddhist              <$10k     
27 
3                 Catholic              <$10k    
418 
4       Don't know/refused              <$10k     
15 
..                     ...                 ...   
... 
175               Orthodox  Don't know/refused    
73 
176        Other Christian  Don't know/refused    
18 
177           Other Faiths  Don't know/refused    
71 
178  Other World Religions  Don't know/refused     
8 
179           Unaffiliated  Don't know/refused   
597 
   
[180 rows x 3 columns]

4.1.2 Keep Multiple Columns Fixed
Not every data set will have one column to hold still while you unpivot the
rest of the columns. As an example, consider the Billboard data set.

Click here to view code image

billboard = pd.read_csv('data/billboard.csv') 
   
# look at the first few rows and columns 
print(billboard.iloc[0:5, 0:16])
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   year        artist                    track  
time  date.entered  \ 
0  2000         2 Pac  Baby Don't Cry (Keep...  
4:22    2000-02-26 
1  2000       2Ge+her  The Hardest Part Of ...  
3:15    2000-09-02 
2  2000  3 Doors Down               Kryptonite  
3:53    2000-04-08 
 
3  2000  3 Doors Down                    Loser  
4:24    2000-10-21 
4  2000      504 Boyz            Wobble Wobble  
3:35    2000-04-15 
   
  wk1   wk2   wk3   wk4   wk5   wk6   wk7   wk8   
wk9  wk10  wk11 
0  87  82.0  72.0  77.0  87.0  94.0  99.0   NaN   
NaN   NaN   NaN 
1  91  87.0  92.0   NaN   NaN   NaN   NaN   NaN   
NaN   NaN   NaN 
2  81  70.0  68.0  67.0  66.0  57.0  54.0  53.0  
51.0  51.0  51.0 
3  76  76.0  72.0  69.0  67.0  65.0  55.0  59.0  
62.0  61.0  61.0 
4  57  34.0  25.0  17.0  17.0  31.0  36.0  49.0  
53.0  57.0  64.0

You can see here that each week has its own column. Again, there is
nothing wrong with this form of data. It may be easy to enter the data in this
form, and it is much quicker to understand what it means when the data is
presented in a table. However, there may be a time when you will need to
melt the data. For example, if you wanted to create a faceted plot of the
weekly ratings, the facet variable would need to be a column in the
dataframe.



Click here to view code image

# use a list to reference more than 1 variable 
billboard_long = billboard.melt( 
  id_vars=["year", "artist", "track", "time", 
"date.entered"], 
  var_name="week", 
  value_name="rating", 
) 
   
print(billboard_long)

       year            artist                   
track  time  \ 
0      2000             2 Pac  Baby Don't Cry 
(Keep... 4:22 
1      2000           2Ge+her  The Hardest Part Of 
... 3:15 
2      2000      3 Doors Down               
Kryptonite 3:53 
3      2000      3 Doors Down                    
Loser 4:24 
4      2000          504 Boyz            Wobble 
Wobble 3:35 
...     ...               ...                      
... ... 
24087  2000       Yankee Grey     Another Nine 
Minutes 3:10 
24088  2000  Yearwood, Trisha          Real Live 
Woman 3:55 
24089  2000   Ying Yang Twins  Whistle While You 
Tw... 4:19 
24090  2000     Zombie Nation            Kernkraft 
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400 3:30 
24091  2000   matchbox twenty                     
Bent 4:12 
   
      date.entered  week  rating 
0       2000-02-26   wk1    87.0 
1       2000-09-02   wk1    91.0 
2       2000-04-08   wk1    81.0 
3       2000-10-21   wk1    76.0 
4       2000-04-15   wk1    57.0 
...            ...   ...     ... 
24087   2000-04-29  wk76     NaN 
24088   2000-04-01  wk76     NaN 
 
24089   2000-03-18  wk76     NaN 
24090   2000-09-02  wk76     NaN 
24091   2000-04-29  wk76     NaN 
   
[24092 rows x 7 columns]

4.2 Columns Contain Multiple Variables
Sometimes columns in a data set may represent multiple variables. This
format is commonly seen when working with health data, for example. To
illustrate this situation, let’s look at the Ebola data set.

Click here to view code image

ebola = 
pd.read_csv('data/country_timeseries.csv') 
print(ebola.columns)

Index(['Date', 'Day', 'Cases_Guinea', 
'Cases_Liberia', 
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       'Cases_SierraLeone', 'Cases_Nigeria', 
'Cases_Senegal', 
       'Cases_UnitedStates', 'Cases_Spain', 
'Cases_Mali', 
       'Deaths_Guinea', 'Deaths_Liberia', 
'Deaths_SierraLeone', 
       'Deaths_Nigeria', 'Deaths_Senegal', 
'Deaths_UnitedStates', 
       'Deaths_Spain', 'Deaths_Mali'], 
      dtype='object')

# print select rows and columns 
print(ebola.iloc[:5, [0, 1, 2,10]])

         Date  Day  Cases_Guinea  Deaths_Guinea 
0    1/5/2015  289        2776.0         1786.0 
1    1/4/2015  288        2775.0         1781.0 
2    1/3/2015  287        2769.0         1767.0 
3    1/2/2015  286           NaN            NaN 
4  12/31/2014  284        2730.0         1739.0

The column names Cases_Guinea and Deaths_Guinea actually
contain two variables. The individual status (cases and deaths, respectively)
as well as the country name, Guinea. The data is also arranged in a wide
format that needs to be reshaped (with the .melt() method).

First, let’s fix the problem we know how to fix, by melting the data into
long format.

Click here to view code image

ebola_long = ebola.melt(id_vars=['Date', 'Day'])

print(ebola_long)
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           Date  Day       variable   value 
0      1/5/2015  289  Cases_Guinea   2776.0 
1      1/4/2015  288  Cases_Guinea   2775.0 
2      1/3/2015  287  Cases_Guinea   2769.0 
3      1/2/2015  286  Cases_Guinea      NaN 
4    12/31/2014  284  Cases_Guinea   2730.0 
...         ...  ...           ...      ... 
   
 
1947  3/27/2014    5   Deaths_Mali      NaN 
1948  3/26/2014    4   Deaths_Mali      NaN 
1949  3/25/2014    3   Deaths_Mali      NaN 
1950  3/24/2014    2   Deaths_Mali      NaN 
1951  3/22/2014    0   Deaths_Mali      NaN 
   
[1952 rows x 4 columns]

Conceptually, the column of interest can be split based on the underscore
in the column name, _. The first part will be the new status column, and the
second part will be the new country column. This will require some string
parsing and splitting in Python (more on this in Chapter 11). In Python, a
string is an object, similar to how Pandas has Series and DataFrame
objects. Chapter 2 showed how Series can have methods such as
.mean(), and DataFrames can have methods such as .to_csv().
Strings have methods as well. In this case, we will use the .split()
method that takes a string and “splits” it up based on a given delimiter. By
default, .split() will split the string based on a space, but we can pass
in the underscore, _, in our example. To get access to the string methods,
we need to use the .str. attribute. .str. is a special type of attribute
that Pandas calls an “accessor” because it can “access” string methods (see
Chapter 11 for more on strings). Access to the Python string methods and
allow us to work across the entire column. This will be the key to parting
out the multiple bits of information stored in each value.



4.2.1 Split and Add Columns Individually
We can use the .str accessor to make a call to the .split() method
and pass in the _ understore.

Click here to view code image

# get the variable column 
# access the string methods 
# and split the column based on a delimiter 
variable_split = 
ebola_long.variable.str.split('_')

print(variable_split[:5])

0    [Cases, Guinea] 
1    [Cases, Guinea] 
2    [Cases, Guinea] 
3    [Cases, Guinea] 
4    [Cases, Guinea] 
Name: variable, dtype: object

After we split on the underscore, the values are returned in a list. We can
tell it’s a list by:

1. Knowing about the .split() method on base Python string
objects4

2. Visually seeing the square brackets in the output, [ ]
3. Getting the type() of one of the items in the Series

4. String .split() documentation:
https://docs.python.org/3/library/stdtypes.html#st
r.split

Click here to view code image
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# the entire container 
print(type(variable_split))

<class 'pandas.core.series.Series'>

# the first element in the container 
print(type(variable_split[0]))

<class 'list'>

Now that the column has been split into various pieces, the next step is
to assign those pieces to a new column. First, however, we need to extract
all the 0-index elements for the status column and the 1-index elements
for the country column. To do so, we need to access the string methods
again, and then use the .get() method to “get” the index we want for
each row.

Click here to view code image

status_values = variable_split.str.get(0) 
country_values = variable_split.str.get(1)

print(status_values)

0        Cases 
1        Cases 
2        Cases 
3        Cases 
4        Cases 
         ... 
1947    Deaths 
1948    Deaths 
1949    Deaths 
1950    Deaths 
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1951    Deaths 
Name: variable, Length: 1952, dtype: object

Now that we have the vectors we want, we can add them to our
dataframe.

Click here to view code image

ebola_long['status'] = status_values 
ebola_long['country'] = country_values

print(ebola_long)

           Date  Day       variable   value   
status   country 
0      1/5/2015  289   Cases_Guinea  2776.0    
Cases    Guinea 
1      1/4/2015  288   Cases_Guinea  2775.0    
Cases    Guinea 
2      1/3/2015  287   Cases_Guinea  2769.0    
Cases    Guinea 
3      1/2/2015  286   Cases_Guinea     NaN    
Cases    Guinea 
4    12/31/2014  284   Cases_Guinea  2730.0    
Cases    Guinea 
 
...         ...  ...            ...     ...      
...       ... 
1947  3/27/2014    5    Deaths_Mali     NaN   
Deaths      Mali 
1948  3/26/2014    4    Deaths_Mali     NaN   
Deaths      Mali 
1949  3/25/2014    3    Deaths_Mali     NaN   
Deaths      Mali 
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1950  3/24/2014    2    Deaths_Mali     NaN   
Deaths      Mali 
1951  3/22/2014    0    Deaths_Mali     NaN   
Deaths      Mali 
   
[1952 rows x 6 columns]

4.2.2 Split and Combine in a Single Step
We can actually do the above steps in a single step. If we look at the
.str.split() method documentation (you can find this by looking by
going to the Pandas API documentation > Series > String Handling
(.str.) > .split() method5), there is a parameter named expand that
defaults to False, but when we set it to True, it will return a
DataFrame where each result of the split is in a separate column, instead
of a Series of list containers.
5. Series.str.split() method documentation:
https://pandas.pydata.org/docs/reference/api/panda
s.Series.str.split.html#pandas.Series.str.split

Click here to view code image

# reset our ebola_long data 
ebola_long = ebola.melt(id_vars=['Date', 'Day']) 
   
# split the column by _ into a dataframe using 
expand 
variable_split = 
ebola_long.variable.str.split('_', expand=True) 
   
print(variable_split)

https://pandas.pydata.org/docs/reference/api/pandas.Series.str.split.html#pandas.Series.str.split
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           0       1 
0      Cases  Guinea 
1      Cases  Guinea 
2      Cases  Guinea 
3      Cases  Guinea 
4      Cases  Guinea 
...      ...     ... 
1947  Deaths    Mali 
1948  Deaths    Mali 
1949  Deaths    Mali 
1950  Deaths    Mali 
1951  Deaths    Mali 
   
[1952 rows x 2 columns]

From here, we can actually use the Python and Pandas multiple
assignment feature (Appendix Q), to directly assign the newly split
columns into the original DataFrame. Since our output
variable_split returned a DataFrame with two columns, we can
assign two new columns to our ebola_long DataFrame.

Click here to view code image

ebola_long[['status', 'country']] = 
variable_split

print(ebola_long)

           Date  Day      variable    value  
status country 
0      1/5/2015  289  Cases_Guinea   2776.0   
Cases  Guinea 
1      1/4/2015  288  Cases_Guinea   2775.0   
Cases  Guinea 
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2      1/3/2015  287  Cases_Guinea   2769.0   
Cases  Guinea 
3      1/2/2015  286  Cases_Guinea      NaN   
Cases  Guinea 
4    12/31/2014  284  Cases_Guinea   2730.0   
Cases  Guinea 
...         ...  ...           ...      ...     
...     ... 
1947  3/27/2014    5   Deaths_Mali      NaN  
Deaths    Mali 
1948  3/26/2014    4   Deaths_Mali      NaN  
Deaths    Mali 
1949  3/25/2014    3   Deaths_Mali      NaN  
Deaths    Mali 
1950  3/24/2014    2   Deaths_Mali      NaN  
Deaths    Mali 
1951  3/22/2014    0   Deaths_Mali      NaN  
Deaths    Mali 
   
[1952 rows x 6 columns]

You can also opt to do this as a concatenation (pd.concat())
function call as well (Chapter 6).

4.3 Variables in Both Rows and Columns
At times, data will be formatted so that variables are in both rows and
columns – that is, in some combination of the formats described in previous
sections of this chapter. Most of the methods needed to tidy up such data
have already been presented (.melt() and some string parsing with the
.str. accessor attribute). What is left to show is what happens if a
column of data actually holds two variables instead of one variable. In this
case, we will have to “pivot” the variable into separate columns, i.e., go
from long data to wide data.



Click here to view code image

weather = pd.read_csv('data/weather.csv') 
print(weather.iloc[:5, :11])

        id  year  month element   d1    d2    d3    
d4    d5   d6   d7 
0  MX17004  2010      1    tmax  NaN   NaN   NaN   
NaN   NaN  NaN  NaN 
1  MX17004  2010      1    tmin  NaN   NaN   NaN   
NaN   NaN  NaN  NaN 
2  MX17004  2010      2    tmax  NaN  27.3  24.1   
NaN   NaN  NaN  NaN 
3  MX17004  2010      2    tmin  NaN  14.4  14.4   
NaN   NaN  NaN  NaN 
4  MX17004  2010      3    tmax  NaN   NaN   NaN   
NaN  32.1  NaN  NaN

The weather data include minimum (tmin) and maximum (tmax)
temperatures recorded for each day (d1, d2, …, d31) of the month
(month). The element column contains variables that need to be pivoted
wider to become new columns, and the day variables need to be melted into
row values.

Again, there is nothing wrong with the data in the current format. It is
simply not in a shape amenable to analysis, although this kind of formatting
can be helpful when presenting data in reports. Let’s first fix the day
values.

Click here to view code image

weather_melt = weather.melt( 
  id_vars=["id", "year", "month", "element"], 
  var_name="day", 
  value_name="temp", 
)
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print(weather_melt)

          id  year  month element  day  temp 
0    MX17004  2010      1    tmax   d1   NaN 
1    MX17004  2010      1    tmin   d1   NaN 
2    MX17004  2010      2    tmax   d1   NaN 
3    MX17004  2010      2    tmin   d1   NaN 
4    MX17004  2010      3    tmax   d1   NaN 
..       ...   ...    ...     ...   ...  ... 
677  MX17004  2010     10    tmin   d31  NaN 
678  MX17004  2010     11    tmax   d31  NaN 
679  MX17004  2010     11    tmin   d31  NaN 
680  MX17004  2010     12    tmax   d31  NaN 
681  MX17004  2010     12    tmin   d31  NaN 
   
[682 rows x 6 columns]

Next, we need to pivot up the variables stored in the element column.

Click here to view code image

weather_tidy = weather_melt.pivot_table( 
    index=['id', 'year', 'month', 'day'], 
    columns='element', 
    values='temp' 
)

print(weather_tidy)

element                 tmax  tmin 
id      year month day 
MX17004 2010 1     d30  27.8  14.5 
             2     d11  29.7  13.4 
                    d2  27.3  14.4 
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                   d23  29.9  10.7 
                    d3  24.1  14.4 
...                      ...   ... 
 
             11    d27  27.7  14.2 
                   d26  28.1  12.1 
                    d4  27.2  12.0 
             12     d1  29.9  13.8 
                    d6  27.8  10.5 
   
[33 rows x 2 columns]

Looking at the pivoted table, we notice that each value in the element
column is now a separate column. We can leave this table in its current
state, but we can also flatten the hierarchical columns.

Click here to view code image

weather_tidy_flat = weather_tidy.reset_index() 
print(weather_tidy_flat)

element       id  year  month  day  tmax  tmin 
0        MX17004  2010      1  d30  27.8  14.5 
1        MX17004  2010      2  d11  29.7  13.4 
2        MX17004  2010      2   d2  27.3  14.4 
3        MX17004  2010      2  d23  29.9  10.7 
4        MX17004  2010      2   d3  24.1  14.4 
..           ...   ...     ... ...   ...   ... 
28       MX17004  2010      11 d27  27.7  14.2 
29       MX17004  2010      11 d26  28.1  12.1 
30       MX17004  2010      11  d4  27.2  12.0 
31       MX17004  2010      12  d1  29.9  13.8 
32       MX17004  2010      12  d6  27.8  10.5 
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[33 rows x 6 columns]

Likewise, we can apply these methods without the intermediate
dataframe:

Click here to view code image

weather_tidy = ( 
  weather_melt 
  .pivot_table( 
    index=['id', 'year', 'month', 'day'], 
    columns='element', 
    values='temp') 
  .reset_index() 
) 
 
print(weather_tidy)

element       id  year  month  day  tmax  tmin 
0        MX17004  2010      1  d30  27.8  14.5 
1        MX17004  2010      2  d11  29.7  13.4 
2        MX17004  2010      2   d2  27.3  14.4 
3        MX17004  2010      2  d23  29.9  10.7 
4        MX17004  2010      2   d3  24.1  14.4 
 
..           ...   ...     ... ...   ...   ... 
28       MX17004  2010      11 d27  27.7  14.2 
29       MX17004  2010      11 d26  28.1  12.1 
30       MX17004  2010      11  d4  27.2  12.0 
31       MX17004  2010      12  d1  29.9  13.8 
32       MX17004  2010      12  d6  27.8  10.5 
 
[33 rows x 6 columns]
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Conclusion
This chapter explored how we can reshape data into a format that is
conducive to data analysis, visualization, and collection. We applied the
concepts in Hadley Wickham’s “Tidy Data” paper to show the various
functions and methods to reshape our data. This is an important skill
because some functions need data to be organized into a certain shape, tidy
or not, to work. Knowing how to reshape your data is an important skill for
both the data scientist and the analyst.



5

Apply Functions

Learning about .apply() is fundamental in the data cleaning process. It
also encapsulates key concepts in programming, mainly writing functions.
The .apply() method takes a function and applies it (i.e., runs it) across
each row or column of a DataFrame without having you write the code
for each element separately.

If you’ve programmed before, then the concept of an apply should be
familiar. It is similar to writing a for loop across each row or column and
calling the function, or making a map() call to a function. In general, this
is the preferred way to apply functions across dataframes, because it
typically is much faster than writing a for loop in Python.

If you haven’t programmed before, then prepare to see how we can
easily incorporate custom calculations that can be easily repeated across our
data.

Learning Objectives
The concept map for this chapter can be found in Figure A.1.

Create and use functions
Use the .apply() method to iteratively perform a calculation across
Series and DataFrames
Identify what parts of a Series and DataFrame are passed into
.apply()
Create vectorized functions using Python decorators

Note About This Chapter



This chapter was also moved up from a later chapter for the second edition.
This is one of the few parts of the book that relies on a completely toy
example to simplify what is going on. Later on, we will be able to build on
the skills taught in this chapter.

5.1 Primer on Functions
Functions are core elements of using the .apply() method. There’s a lot
more information about functions in Appendix O, but here’s a quick
introduction.

Functions are a way to group and reuse Python code. If you are ever in a
situation where you are copying/pasting code and changing a few parts of
the code, then chances are, the copied code can be written into a function.
To create a function, we need to define it (with the def keyword). The
body of a function is indented.

The PEP8 Style Guide for Python Code says to use four spaces for an
indentation. This book uses two spaces for an indentation because of
horizontal space limitations, but I am a new convert to using tabs for
indentation because it creates more accessible code and is friendlier for
people using Braille readers.1
1. Tabs for accessibility:
https://alexandersandberg.com/articles/default-to-
tabs-instead-of-spaces-for-an-accessible-first-
environment/

The basic function skeleton looks like this:

Click here to view code image

def my_function(): # define a new function 
called my_function 
  # indentation for 
  # function code 
  pass # this statement is here to make a valid 
empty function

https://alexandersandberg.com/articles/default-to-tabs-instead-of-spaces-for-an-accessible-first-environment/
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch05_images.xhtml#f0132-01


Since Pandas is used for data analysis, let’s write some more “useful”
functions:

squares a given value
takes two numbers and calculates their average

Click here to view code image

def my_sq(x): 
  """Squares a given value 
  """ 
  return x ** 2 
 
 
def avg_2(x, y): 
  """Calculates the average of 2 numbers 
  """ 
  return (x + y) / 2

The text within the triple quotes """ is a “docstring.” It is the text that
appears when you look up the help documentation about a function. You
can such docstrings to create your own documentation for functions you
write as well.

We’ve been using functions (and methods) throughout this book. If we
want to use functions that we’ve created ourselves, we can call them just
like functions we’ve loaded from a library.

my_calc_1 = my_sq(4) 
print(my_calc_1)

16

my_calc_2 = avg_2(10, 20) 
print(my_calc_2)
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15.0

5.2 Apply (Basics)
Now that we know how to write functions, how do we use them in Pandas?
When working with DataFrames, it’s more likely that you want to use a
function across rows or columns of your data.

Here’s a mock dataframe of two columns.

Click here to view code image

import pandas as pd 
 
df = pd.DataFrame({"a": [10, 20, 30], "b": [20, 
30, 40]}) 
print(df)

    a   b 
0  10  20 
1  20  30 
2  30  40

We can .apply() our functions over a Series (i.e., an individual
column or row).

For didactic purposes, let’s use the function we wrote to square the 'a'
column. In this overly-simplified example, we could have directly squared
the column.

print(df['a'] ** 2)

0    100 
1    400 
2    900 
Name: a, dtype: int64
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Of course, that would not allow us to use a function we wrote ourselves.

5.2.1 Apply Over a Series
In our example, if we subset a single column or row using a single pair of
square brackets, [ ], the type() of the object we get back is a Pandas
Series.

Click here to view code image

# get the first column 
print(type(df['a']))

<class 'pandas.core.series.Series'>

# get the first row 
print(type(df.iloc[0]))

<class 'pandas.core.series.Series'>

The Series has a method called .apply().2 To use the .apply()
method, we give it the function we want to use across each element in the
Series.
2. Series apply documentation:
https://pandas.pydata.org/docs/reference/api/panda
s.Series.apply.html

For example, if we want to square each value in column a, we can do
the following:

Click here to view code image

# apply our square function on the 'a' column 
sq = df['a'].apply(my_sq) 
print(sq)
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0    100 
1    400 
2    900 
Name: a, dtype: int64

Note
We do not need the round parentheses, ( ), when we pass the
function into .apply(), we pass in my_sq instead of my_sq().

In more technical terms, this is called a “function factory,” where
we are giving .apply() a reference to the function we want to use,
but we are not invoking the function at this moment.

Let’s build on this example by writing a function that takes two
parameters. The first parameter will be a value, and the second parameter
will be the exponent to which we’ll raise the value. So far in our my_sq()
function, we’ve “hard-coded” the exponent, 2, to raise our value.

def my_exp(x, e): 
  return x ** e

Now, if we want to use our function, we have to provide two parameters
to it.

Click here to view code image

# pass in the exponent, 3 
cubed = my_exp(2, 3) 
print(cubed)

8

# if we don't pass in all the parameters 
my_exp(2)
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TypeError: my_exp() missing 1 required positional 
argument: 'e'

However, if we want to apply the function on our series, we will need to
pass in the second parameter. To do this, we pass the second argument as a
keyword argument into .apply().

Click here to view code image

# the exponent, e, to 2 
ex = df['a'].apply(my_exp, e=2) 
print(ex)

0    100 
1    400 
2    900 
Name: a, dtype: int64

# exponent, e, to 3 
ex = df['a'].apply(my_exp, e=3) 
print(ex)

0     1000 
1     8000 
2    27000 
Name: a, dtype: int64

5.2.2 Apply Over a DataFrame
Now that we’ve seen how to apply functions over a one-dimensional
Series, let’s see how the syntax changes when we are working with
DataFrames. Here is the example DataFrame from earlier:

Click here to view code image
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df = pd.DataFrame({"a": [10, 20, 30], "b": [20, 
30, 40]}) 
print(df)

    a   b 
0  10  20 
1  20  30 
2  30  40

DataFrames typically have at least two dimensions. Thus, when we
apply a function over a dataframe, we first need to specify which axis to
apply the function over–for example, column-by-column or row-by-row.

Let’s first write a function that takes a single value and prints out the
given value. The function below does not have a return statement, All it
is doing is displaying on the screen whatever we pass it.

def print_me(x): 
  print(x)

Let’s .apply() this function on our dataframe, The syntax is similar
to using the .apply() method on a Series, but this time we need to
specify whether we want the function to be applied column-wise or row-
wise.

If we want the function to work column-wise, we can pass the axis=0
or axis="index" parameter into .apply(). If we want the function to
work row-wise, we can pass the axis=1 or axis="columns"
parameter into .apply().3

3. I find the “index” and “column” text specification for the axis parameter counter-intuitive, so I
will typically specify using the 0/1 notation with a comment. In practice, you will almost never set
axis=1 or axis="columns" for performance reasons.

5.2.2.1 Column-Wise Operations

Use the axis=0 parameter (the default value) in .apply() when
working with functions in a column-wise manner (i.e., for each column).



df.apply(print_me, axis=0)

0    10 
1    20 
2    30 
Name: a, dtype: int64 
0    20 
1    30 
2    40 
Name: b, dtype: int64 
___________ 
 
     0 
___________ 
 a   None 
 b   None 
___________

Compare this output to the following:

print(df['a'])

0    10 
1    20 
2    30 
Name: a, dtype: int64

print(df['b'])

0    20 
1    30 
2    40 
Name: b, dtype: int64



You can see that the outputs are exactly the same. When you apply a
function across a DataFrame (in this case, column-wise with axis=0),
the entire axis (e.g., column) is passed into the first argument of the
function. To illustrate this further, let’s write a function that calculates the
mean (average) of three numbers (each column in our data set contains
values).

def avg_3(x, y, z): 
  return (x + y + z) / 3

If we try to apply this function across our columns, we get an error.

Click here to view code image

# will cause an error 
print(df.apply(avg_3))

TypeError: avg_3() missing 2 required positional 
arguments: 'y' and 'z'

From the (last line of the) error message, you can see that the function
takes three arguments (x, y, and z), but we failed to pass in the y and z
(i.e., the second and third) arguments. Again, when we use .apply(), the
entire column is passed into the first argument. For this function to work
with the .apply() method, we will have to rewrite parts of it.

Click here to view code image

def avg_3_apply(col): 
  """The avg_3 function but apply compatible 
  by taking in all the values as the first 
argument 
  and parsing out the values within the function 
  """ 
  x = col[0] 
  y = col[1] 

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch05_images.xhtml#f0137-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch05_images.xhtml#f0137-03


  z = col[2] 
  return (x + y + z) / 3

print(df.apply(avg_3_apply))

a    20.0 
b    30.0 
dtype: float64

Now that we’ve rewritten our function to take in all the column values,
we get two values back after we apply (one for each column of our
DataFrame) and each value represents the average of the three values.

5.2.2.2 Row-Wise Operations

Row-wise operations work just like column-wise operations. The part that
differs is the axis we use. We will now use axis=1 in the .apply()
method. Instead of the entire column being passed into the first argument of
the function, the entire row is used as the first argument.

Since our example dataframe has two columns and three rows, the
avg_3\apply() function we just wrote will not work for row-wise
operations.

Click here to view code image

# will cause an error 
print(df.apply(avg_3_apply, axis=1))

IndexError: index 2 is out of bounds for axis 0 
with size 2

The main issue here is the 'index out of bounds'. We passed
the row of data in as the first argument, but in our function we begin
indexing out of range (i.e., we have only two values in each row, but we
tried to get index 2, which means the third element, and it does not exist). If
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we wanted to calculate our averages row-wise, we would have to write a
new function to work with two values.

Click here to view code image

def avg_2_apply(row): 
  """Taking the average of row value. 
  Assuming that there are only 2 values in a 
row. 
  """ 
  x = row[0] 
  y = row[1] 
  return (x + y) / 2 
 
print(df.apply(avg_2_apply, axis=0))

a    15.0 
b    25.0 
dtype: float64

5.3 Vectorized Functions
When we use .apply(), we are able to make a function work on a
column-by-column or row-by-row basis. In the previous section, Section
5.2, we had to rewrite our function when we wanted to apply it because the
entire column or row was passed into the first parameter of the function.
However, there might be times when it is not feasible to rewrite a function
in this way. We can leverage the .vectorize() function and decorator
to vectorize any function. Vectorizing your code can also lead to
performance gains (Appendix V).

Here’s our toy dataframe:

Click here to view code image
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df = pd.DataFrame({"a": [10, 20, 30], "b": [20, 
30, 40]}) 
print(df)

    a   b 
0  10  20 
1  20  30 
2  30  40

And here’s our average function, which we can apply on a row-by-row
basis:

def avg_2(x, y): 
  return (x + y) / 2

For a vectorized function, we’d like to be able to pass in a vector of
values for x and a vector of values for y, and the results should be the
average of the given x and y values in the same order. In other words, we
want to be able to write avg_2(df['a'], df['y']) and get [15,
25, 35] as a result.

Click here to view code image

print(avg_2(df['a'], df['b']))

0    15.0 
1    25.0 
2    35.0 
dtype: float64

This approach works because the actual calculations within our function
are inherently vectorized. That is, if we add two numeric columns together,
Pandas (and the NumPy library) will automatically perform element-wise
addition. Likewise, when we divide by a scalar, it will “broadcast” the
scalar, and divide each element by the scalar.
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Let’s change our function and perform a non-vectorizable calculation.

Click here to view code image

import numpy as np 
 
def avg_2_mod(x, y): 
   """Calculate the average, unless x is 20 
   If the value is 20, return a missing value 
   """ 
   if (x == 20): 
     return(np.NaN) 
   else: 
     return (x + y) / 2

If we run this function, it will cause an error.

Click here to view code image

# will cause an error 
print(avg_2_mod(df['a'], df['b']))

ValueError: The truth value of a Series is 
ambiguous. Use a.empty, 
a.bool(), a.item(), a.any() or a.all().

However, if we give it individual numbers instead of a vector, it will
work as expected.

print(avg_2_mod(10, 20))

15.0

print(avg_2_mod(20, 30))
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nan

5.3.1 Vectorize with NumPy
We want to change our function so that when it is given a vector of values,
it will perform the calculations in an element-wise manner. We can do this
by using the vectorize() function from numpy. We pass
np.vectorize() to the function we want to vectorize, to create a new
function.

Click here to view code image

import numpy as np 
 
# np.vectorize actually creates a new function 
avg_2_mod_vec = np.vectorize(avg_2_mod) 
 
# use the newly vectorized function 
print(avg_2_mod_vec(df['a'], df['b']))

[15. nan 35.]

This method works well if you do not have the source code for an
existing function. However, if you are writing your own function, you can
use a Python decorator to automatically vectorize the function without
having to create a new function. A decorator is a function that takes another
function as input, and modifies how that function’s output behaves.

Click here to view code image

# to use the vectorize decorator 
# we use the @ symbol before our function 
definition 
@np.vectorize 
def v_avg_2_mod(x, y): 
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  """Calculate the average, unless x is 20 
  Same as before, but we are using the vectorize 
decorator 
  """ 
  if (x == 20): 
    return(np.NaN) 
  else: 
    return (x + y) / 2 
 
# we can then directly use the vectorized 
function 
# without having to create a new function 
print(v_avg_2_mod(df['a'], df['b']))

[15. nan 35.]

5.3.2 Vectorize with Numba

The numba library4 is designed to optimize Python code, especially
calculations on arrays performing mathematical calculations. Just like
numpy, it also has a vectorize decorator.
4. numba: https://numba.pydata.org/

Click here to view code image

import numba 
 
@numba.vectorize 
def v_avg_2_numba(x, y): 
  """Calculate the average, unless x is 20 
  Using the numba decorator. 
  """ 
  # we now have to add type information to our 

https://numba.pydata.org/
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function 
  if (int(x) == 20): 
    return(np.NaN) 
  else: 
    return (x + y) / 2

The numba library is so optimized that it does not understand Pandas
objects.

Click here to view code image

print(v_avg_2_numba(df['a'], df['b']))

ValueError: Cannot determine Numba type of 
<class 'pandas.core.series.Series'>

We actually have to pass in the numpy array representation of our data
using the .values attribute of our Series objects (Chapter R).

Click here to view code image

# passing in the numpy array 
print(v_avg_2_numba(df['a'].values, 
df['b'].values))

[15. nan 35.]

5.4 Lambda Functions (Anonymous Functions)
Sometimes the function used in the .apply() method is simple enough
that there is no need to create a separate function.

Let’s look at our simple DataFrame example and our squaring
function again.

Click here to view code image
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df = pd.DataFrame({'a': [10, 20, 30], 
                   'b': [20, 30, 40]}) 
print(df)

    a   b 
0  10  20 
1  20  30 
2  30  40

def my_sq(x): 
  return x ** 2 
 
df['a_sq'] = df['a'].apply(my_sq) 
print(df)

 
    a   b  a_sq 
0  10  20   100 
1  20  30   400 
2  30  40   900

You can see that the actual function is a simple one-liner. Usually when
this happens, people will opt to write the one-liner directly in the apply
method. This method is called using lambda functions. We can perform
the same operation as shown earlier in the following manner.

Click here to view code image

df['a_sq_lamb'] = df['a'].apply(lambda x: x ** 
2) 
print(df)

    a   b  a_sq  a_sq_lamb 
0  10  20   100        100 
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1  20  30   400        400 
2  30  40   900        900

To write the lambda function, we use the lambda keyword. Since apply
functions will pass the entire axis as the first argument, our lambda
function example takes only one parameter, x. The x in lambda x is
analogous to the x in def my_sq(x), each value in the 'a' column will
be individually passed into our lambda function. We can then write our
function directly, without having to define it. The calculated result is
automatically returned.

Although you can write complex multiple-line lambda functions,
typically people will use the lambda function approach when small one-
liner calculations are needed. The code can become hard to read if the
lambda function tries to do too much at once.

Conclusion
This chapter covered an important concept – namely, creating functions that
can be used on our data. Not all data cleaning steps or manipulations can be
done using built-in functions. There will be many times when you will have
to write your own custom functions to process and analyze data.

This chapter uses oversimplified examples to create and use functions,
but that means we can go into more complex examples as we learn more
about the pandas library.



Part II

Data Processing

Chapter 6 Data Assembly

Chapter 7 Data Normalization

Chapter 8 Groupby Operations: Split-Apply-Combine

Now that we know the basics of working with our data, we can go into
more detail on how to process it. Data does not always come in one part.
We begin with combining multiple data sets, by either concatenating it
together or joining them by values (Chapter 6). Combining data is usually
something we do in the tidying process (Chapter 4), but normalizing data is
the process of splitting it up into separate parts. It seems counterintuitive to
split data up, but this is something that is typically done for data storage,
especially for databases (Chapter 7). Finally, we go into more detail into
grouped operations (Chapter 8) that were first introduced in Chapter 1.



6

Data Assembly

By now, you should be able to load data into pandas and do some basic
visualizations. This part of the book focuses on various data cleaning tasks.
We begin with assembling a data set for analysis by combining various data
sets together.

Learning Objectives
Identify when needs to be combined
Identify whether data needs to be concatenated or joined together
Use the appropriate function or methods to combine multiple data sets
Produce a single data set from multiple files
Assess whether data was joined properly

6.1 Combine Data Sets
We first talked about tidy data principles in Chapter 4. This chapter will
cover the third criterion in the original “Tidy Data” paper1: “each type of
observational unit forms a table.”
1. Tidy Data paper: http://vita.had.co.nz/papers/tidy-
data.pdf

When data is tidy, you need to combine various tables together to answer
a question. For example, there may be a separate table holding company
information and another table holding stock prices. If we want to look at all
the stock prices within the tech industry, we may first have to find all the
tech companies from the company information table, and then combine that
data with the stock price data to get the data we need for our question. The
data may have been split up into separate tables to reduce the amount of
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redundant information (we don’t need to store the company information
with each stock price entry), but this arrangement means we as data
analysts must combine the relevant data ourselves to answer our question.

Other times, a single data set may be split into multiple parts. For
example, with timeseries data, each date may be in a separate file. In
another case, a file may have been split into parts to make the individual
files smaller. You may also need to combine data from multiple sources to
answer a question (e.g., combine latitudes and longitudes with zip codes).
In both cases, you will need to combine data into a single dataframe for
analysis.

6.2 Concatenation
One of the (conceptually) easier ways to combine data is with
concatenation. Concatenation can be thought of as appending a row or
column to your data. This approach is possible if your data was split into
parts or if you performed a calculation that you want to append to your
existing data set.

Let’s begin with some example data sets so you can see what is actually
happening.

Click here to view code image

import pandas as pd 
 
df1 = pd.read_csv('data/concat_1.csv') 
df2 = pd.read_csv('data/concat_2.csv') 
df3 = pd.read_csv('data/concat_3.csv')

print(df1)

    A   B   C   D 
0  a0  b0  c0  d0 
1  a1  b1  c1  d1 
2  a2  b2  c2  d2 
3  a3  b3  c3  d3
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print(df2)

    A   B   C   D 
0  a4  b4  c4  d4 
1  a5  b5  c5  d5 
2  a6  b6  c6  d6 
3  a7  b7  c7  d7

print(df3)

     A    B    C    D 
0   a8   b8   c8   d8 
1   a9   b9   c9   d9 
2  a10  b10  c10  d10 
3  a11  b11  c11  d11

Concatenation is accomplished by using the concat() function from
Pandas.

6.2.1 Review Parts of a DataFrame
Section 2.3.1 talked about the three parts of a dataframe: .index,
.columns, and .values. We will be working with .index and
.columns a lot in this chapter.

The .index refers to the labels on the left of the dataframe, by default
they will be numbered starting from 0.

Click here to view code image

print(df1.index)

RangeIndex(start=0, stop=4, step=1)
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The “index” is an “axis” of a dataframe. These terms are important
because pandas will try to automatically align by axis. The other axis is the
“columns,” which we can get with .columns.

Click here to view code image

print(df1.columns)

Index(['A', 'B', 'C', 'D'], dtype='object')

This refers to the column names of the dataframe.
Finally, just to be complete, the body of the dataframe can be

represented as an numpy array with .values.

print(df1.values)

[['a0'  'b0'  'c0'  'd0'] 
 ['a1'  'b1'  'c1'  'd1'] 
 ['a2'  'b2'  'c2'  'd2'] 
 ['a3'  'b3'  'c3'  'd3']]

6.2.2 Add Rows
Stacking (i.e., concatenating) the dataframes on top of each other uses the
concat() function in pandas. All of the dataframes to be concatenated
are passed in a list.

Click here to view code image

row_concat = pd.concat([df1, df2, df3]) 
print(row_concat)

      A    B    C    D 
0    a0   b0   c0   d0 
1    a1   b1   c1   d1 
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2    a2   b2   c2   d2 
3    a3   b3   c3   d3 
0    a4   b4   c4   d4 
..  ...   ... ...  ... 
3    a7   b7   c7   d7 
0    a8   b8   c8   d8 
1    a9   b9   c9   d9 
2   a10  b10  c10  d10 
3   a11  b11  c11  d11 
 
[12 rows x 4 columns]

As you can see, concat() blindly stacks the dataframes together. If
you look at the row names (i.e., the row indices), they are also simply a
stacked version of the original row indices. If we apply the various
subsetting methods (Table 2.3), the table will be subsetted as expected.

Click here to view code image

# subset the fourth row of the concatenated 
dataframe 
print(row_concat.iloc[3, :])

A    a3 
B    b3 
C    c3 
D    d3 
Name: 3, dtype: object

Question
What happens when you use .loc[] to subset the new dataframe?
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Section 2.1.1 showed the process for creating a Series. However, if
we create a new series to append to a dataframe, it does not append
correctly.

Click here to view code image

# create a new row of data 
new_row_series = pd.Series(['n1', 'n2', 'n3', 
'n4']) 
print(new_row_series)

0    n1 
1    n2 
2    n3 
3    n4 
dtype: object

# attempt to add the new row to a dataframe 
print(pd.concat([df1, new_row_series]))

      A     B     C     D     0 
0    a0    b0    c0    d0   NaN 
1    a1    b1    c1    d1   NaN 
2    a2    b2    c2    d2   NaN 
3    a3    b3    c3    d3   NaN 
0   NaN   NaN   NaN   NaN    n1 
1   NaN   NaN   NaN   NaN    n2 
2   NaN   NaN   NaN   NaN    n3 
3   NaN   NaN   NaN   NaN    n4

The first things you may notice are the NaN missing values. This is
simply Python’s way of representing a “missing value” (more about
missing values in Chapter 9). We were hoping to append our new values as
a row, but that didn’t happen. In fact, not only did our code not append the
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values as a row, but it also created a new column completely misaligned
with everything else.

Let’s think about what is happening here. First, our series did not have a
matching column, so our new_row was added to a new column. The rest
of the values were concatenated to the bottom of the dataframe, and the
original index values were retained.

To fix this problem, we need turn our series into a dataframe. This data
frame contains one row of data, and the column names are the ones the data
will bind to.

Click here to view code image

new_row_df = pd.DataFrame( 
  # note the double brackets to create a "row" 
of data 
  data=[["n1", "n2", "n3", "n4"]], 
  columns=["A", "B", "C", "D"], 
) 
 
print(new_row_df)

    A    B    C    D 
0  n1   n2   n3   n4

# concatenate the row of data 
print(pd.concat([df1, new_row_df]))

    A    B    C    D 
0  a0   b0   c0   d0 
1  a1   b1   c1   d1 
2  a2   b2   c2   d2 
3  a3   b3   c3   d3 
0  n1   n2   n3   n4
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concat() is a general function that can concatenate multiple things at
once.

6.2.2.1 Ignore the Index

In the last example, when we added a dict to a dataframe, we had to use
the ignore_index parameter. If we look closer, you can see that the row
index was also incremented by 1, and did not repeat a previous index value.

If we simply want to concatenate or append data together, we can use the
ignore_index parameter to reset the row index after the concatenation.

Click here to view code image

row_concat_i = pd.concat([df1, df2, df3], 
ignore_index=True) 
print(row_concat_i)

       A     B     C     D 
0     a0    b0    c0    d0 
1     a1    b1    c1    d1 
2     a2    b2    c2    d2 
3     a3    b3    c3    d3 
4     a4    b4    c4    d4 
..   ...   ...   ...   ... 
7     a7    b7    c7    d7 
8     a8    b8    c8    d8 
9     a9    b9    c9    d9 
10   a10   b10   c10   d10 
11   a11   b11   c11   d11 
 
[12 rows x 4 columns]

6.2.3 Add Columns
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Concatenating columns is very similar to concatenating rows. The main
difference is the axis parameter in the concat function. The default
value of axis is 0 (or "index"), so it will concatenate data in a row-wise
fashion. However, if we pass axis=1 (or axis="columns" ) to the
function, it will concatenate data in a column-wise manner.

Click here to view code image

col_concat = pd.concat([df1, df2, df3], 
axis="columns") 
print(col_concat)

    A   B   C   D   A   B   C   D    A    B    C    
D 
0  a0  b0  c0  d0  a4  b4  c4  d4   a8   b8   c8   
d8 
1  a1  b1  c1  d1  a5  b5  c5  d5   a9   b9   c9   
d9 
2  a2  b2  c2  d2  a6  b6  c6  d6  a10  b10  c10  
d10 
3  a3  b3  c3  d3  a7  b7  c7  d7  a11  b11  c11  
d11

If we try to subset data based on column names, we will get a similar
result when we concatenated row-wise and subset by row index.

print(col_concat['A'])

    A   A   A 
0  a0  a4   a8 
1  a1  a5   a9 
2  a2  a6  a10 
3  a3  a7  a11
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Adding a single column to a dataframe can be done directly without
using any specific Pandas function (We saw this in Section 2.4.1). Simply
pass a new column name for the vector you want assigned to the new
column.

Click here to view code image

col_concat['new_col_list'] = ['n1', 'n2', 'n3', 
'n4'] 
print(col_concat)

    A   B   C   D   A   B   C   D    A    B   C    
D  new_col_list 
0  a0  b0  c0  d0  a4  b4  c4  d4   a8   b8   c8   
d8           n1 
1  a1  b1  c1  d1  a5  b5  c5  d5   a9   b9   c9   
d9           n2 
2  a2  b2  c2  d2  a6  b6  c6  d6  a10  b10  c10  
d10           n3 
3  a3  b3  c3  d3  a7  b7  c7  d7  a11  b11  c11  
d11           n4

Click here to view code image

col_concat['new_col_series'] = pd.Series(['n1', 
'n2', 'n3', 'n4']) 
print(col_concat)

    A   B   C   D   A   B   C   D    A    B    C    
D  new_col_list \ 
0  a0  b0  c0  d0  a4  b4  c4  d4   a8   b8   c8   
d8            n1 
1  a1  b1  c1  d1  a5  b5  c5  d5   a9   b9   c9   
d9            n2 
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2  a2  b2  c2  d2  a6  b6  c6  d6  a10  b10  c10  
d10            n3 
3  a3  b3  c3  d3  a7  b7  c7  d7  a11  b11  c11  
d11            n4

  new_col_series 
0             n1 
1             n2 
2             n3 
3             n4

Using the concat() function still works, as long as you give it a
dataframe. However this approach requires more code.

Finally, we can reset the column indices so we do not have duplicated
column names.

Click here to view code image

print(pd.concat([df1, df2, df3], axis="columns", 
ignore_index=True))

    0   1   2   3   4   5   6   7    8    9   10   
11 
0  a0  b0  c0  d0  a4  b4  c4  d4   a8   b8   c8   
d8 
1  a1  b1  c1  d1  a5  b5  c5  d5   a9   b9   c9   
d9 
2  a2  b2  c2  d2  a6  b6  c6  d6  a10  b10  c10  
d10 
3  a3  b3  c3  d3  a7  b7  c7  d7  a11  b11  c11  
d11

6.2.4 Concatenate with Different Indices
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The examples shown so far have assumed we are performing a row or
column concatenation. They also assume that the new row(s) had the same
column names or the column(s) had the same row indices.

This section addresses what happens when the row and column indices
are not aligned.

6.2.4.1 Concatenate Rows with Different Columns

Let’s modify our dataframes for the next few examples.

Click here to view code image

# rename the columns of our dataframes 
df1.columns = ['A', 'B', 'C', 'D'] 
df2.columns = ['E', 'F', 'G', 'H'] 
df3.columns = ['A', 'C', 'F', 'H'] 
 
print(df1)

    A   B   C   D 
0  a0  b0  c0  d0 
1  a1  b1  c1  d1 
2  a2  b2  c2  d2 
3  a3  b3  c3  d3

print(df2)

 
    E   F   G   H 
0  a4  b4  c4  d4 
1  a5  b5  c5  d5 
2  a6  b6  c6  d6 
3  a7  b7  c7  d7

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch06_images.xhtml#f0151-03


print(df3)

     A    C    F    H 
0   a8   b8   c8   d8 
1   a9   b9   c9   d9 
2  a10  b10  c10  d10 
3  a11  b11  c11  d11

If we try to concatenate these dataframes as we did in Section 6.2.2, the
dataframes now do much more than simply stack one on top of the other.
The columns align themselves, and NaN fills in any missing areas.

Click here to view code image

row_concat = pd.concat([df1, df2, df3]) 
print(row_concat)

     A     B     C    D      E     F     G     H 
0   a0    b0    c0    d0   NaN   NaN   NaN   NaN 
1   a1    b1    c1    d1   NaN   NaN   NaN   NaN 
2   a2    b2    c2    d2   NaN   NaN   NaN   NaN 
3   a3    b3    c3    d3   NaN   NaN   NaN   NaN 
0  NaN   NaN   NaN   NaN    a4    b4    c4    d4 
.. ...   ...   ...   ...   ...   ...   ...   ... 
3  NaN   NaN   NaN   NaN    a7    b7    c7    d7 
0   a8   NaN    b8   NaN   NaN    c8   NaN    d8 
1   a9   NaN    b9   NaN   NaN    c9   NaN    d9 
2  a10   NaN   b10   NaN   NaN   c10   NaN   d10 
3  a11   NaN   b11   NaN   NaN   c11   NaN   d11 
 
[12 rows x 8 columns]

One way to avoid the inclusion of NaN values is to keep only those
columns that are shared in common by the list of objects to be
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concatenated. A parameter named join accomplishes this. By default, it
has a value of 'outer', meaning it will keep all the columns. However,
we can set join='inner' to keep only the columns that are shared
among the data sets.

If we try to keep only the columns from all three dataframes, we will get
an empty dataframe, since there are no columns in common.

Click here to view code image

print(pd.concat([df1, df2, df3], join='inner'))

 
Empty DataFrame 
Columns: [] 
Index: [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3] 
 
[12 rows x 0 columns]

If we use the dataframes that have columns in common, only the
columns that all of them share will be returned.

Click here to view code image

print(pd.concat([df1,df3], ignore_index=False, 
join='inner'))

     A    C 
0   a0   c0 
1   a1   c1 
2   a2   c2 
3   a3   c3 
0   a8   b8 
1   a9   b9 
2  a10  b10 
3  a11  b11
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6.2.4.2 Concatenate Columns with Different Rows

Let’s take our dataframes and modify them again so that they have different
row indices. Here, we are building on the same dataframe modifications
from Section 6.2.4.1.

df1.index = [0, 1, 2, 3] 
df2.index = [4, 5, 6, 7] 
df3.index = [0, 2, 5, 7]

print(df1)

    A   B   C   D 
0  a0  b0  c0  d0 
1  a1  b1  c1  d1 
2  a2  b2  c2  d2 
3  a3  b3  c3  d3

print(df2)

    E   F   G   H 
4  a4  b4  c4  d4 
5  a5  b5  c5  d5 
6  a6  b6  c6  d6 
7  a7  b7  c7  d7

print(df3)

     A    C    F    H 
0   a8   b8   c8   d8 
2   a9   b9   c9   d9 
5  a10  b10  c10  d10 
7  a11  b11  c11  d11



When we concatenate along axis="columns" (axis=1), the new
dataframes will be added in a column-wise fashion and matched against
their respective row indices. Missing values indicators appear in the areas
where the indices did not align.

Click here to view code image

col_concat = pd.concat([df1, df2, df3], 
axis="columns") 
print(col_concat)

     A    B    C    D    E    F    G    H    A   C  
F   H 
0   a0   b0   c0   d0  NaN  NaN  NaN  NaN   a8   
b8   c8   d8 
1   a1   b1   c1   d1  NaN  NaN  NaN  NaN  NaN  
NaN  NaN  NaN 
2   a2   b2   c2   d2  NaN  NaN  NaN  NaN   a9   
b9   c9   d9 
3   a3   b3   c3   d3  NaN  NaN  NaN  NaN  NaN  
NaN  NaN  NaN 
4  NaN  NaN  NaN  NaN   a4   b4   c4   d4  NaN  
NaN  NaN  NaN 
5  NaN  NaN  NaN  NaN   a5   b5   c5   d5  a10  
b10  c10  d10 
6  NaN  NaN  NaN  NaN   a6   b6   c6   d6  NaN  
NaN  NaN  NaN 
7  NaN  NaN  NaN  NaN   a7   b7   c7   d7  a11  
b11  c11  d11

Just as we did when we concatenated in a row-wise manner, we can
choose to keep the results only when there are matching indices by using
join="inner".

Click here to view code image
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print(pd.concat([df1, df3], axis="columns", 
join='inner'))

    A   B   C   D   A   C   F   H 
0  a0  b0  c0  d0  a8  b8  c8  d8 
2  a2  b2  c2  d2  a9  b9  c9  d9

6.3 Observational Units Across Multiple Tables
One reason why data might be split across multiple files would be the size
of the files. By splitting up data into various parts, each part would be
smaller. This may be good when we need to share data on the Internet or via
email, since many services limit the size of a file that can be opened or
shared. Another reason why a data set might be split into multiple parts
would be to account for the data collection process. For example, a separate
data set containing stock information could be created for each day.

Since merging and concatenation have already been covered, this section
will focus on techniques for quickly loading multiple data sources and
assembling them together.

In this example, all of the billboard ratings data have a pattern.

Click here to view code image

data/billboard-by_week/billboard-XX.csv

Where XX represents the week (e.g., 03). We can use the a pattern
matching function from the built-in pathlib module in Python to get a
list of all the filenames that match a particular pattern.

Click here to view code image

from pathlib import Path 
 
# from my current directory fine (glob) the this 
pattern 
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billboard_data_files = ( 
    Path(".") 
    .glob("data/billboard-by_week/billboard-
*.csv") 
) 
 
# this line is optional if you want to see the 
full list of files 
billboard_data_files = 
sorted(list(billboard_data_files)) 
 
print(billboard_data_files)

[PosixPath('data/billboard-by_week/billboard-
01.csv'), 
PosixPath('data/billboard-by_week/billboard-
02.csv'), 
PosixPath('data/billboard-by_week/billboard-
03.csv'), 
PosixPath('data/billboard-by_week/billboard-
04.csv'), 
PosixPath('data/billboard-by_week/billboard-
05.csv'), 
..    ...                ...               ...   
... 
PosixPath('data/billboard-by_week/billboard-
72.csv'), 
PosixPath('data/billboard-by_week/billboard-
73.csv'), 
PosixPath('data/billboard-by_week/billboard-
74.csv'), 
PosixPath('data/billboard-by_week/billboard-



75.csv'), 
PosixPath('data/billboard-by_week/billboard-
76.csv')]

The type() of billboard_data_files is a generator object, so
if you “use it” you will lose its contents. If you want to see the full list, you
would need to run:

Click here to view code image

billboard_data_files = list(billboard_data_files)

Now that we have a list of filenames we want to load, we can load each
file into a dataframe. We can choose to load each file individually, as we
have been doing so far.

Click here to view code image

billboard01 = 
pd.read_csv(billboard_data_files[0]) 
billboard02 = 
pd.read_csv(billboard_data_files[1]) 
billboard03 = 
pd.read_csv(billboard_data_files[2])

# just look at one of the data sets we loaded 
print(billboard01)

     year            artist                    
track   time  \ 
0    2000             2 Pac  Baby Don't Cry 
(Keep...   4:22 
1    2000           2Ge+her  The Hardest Part Of 
...   3:15 
2    2000      3 Doors Down               
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Kryptonite   3:53 
3    2000      3 Doors Down                    
Loser   4:24 
4    2000          504 Boyz             Wobble 
Wobble  3:35 
..    ...               ...                       
...   ... 
312  2000       Yankee Grey      Another Nine 
Minutes  3:10 
313  2000  Yearwood, Trisha           Real Live 
Woman  3:55 
314  2000   Ying Yang Twins   Whistle While You 
Tw...  4:19 
315  2000     Zombie Nation             Kernkraft 
400  3:30 
316  2000   matchbox twenty                      
Bent  4:12 
 
   date.entered week  rating 
0    2000-02-26  wk1    87.0 
1    2000-09-02  wk1    91.0 
2    2000-04-08  wk1    81.0 
3    2000-10-21  wk1    76.0 
4    2000-04-15  wk1    57.0 
..          ...  ...     ... 
312  2000-04-29  wk1    86.0 
313  2000-04-01  wk1    85.0 
314  2000-03-18  wk1    95.0 
315  2000-09-02  wk1    99.0 
316  2000-04-29  wk1    60.0 
 
[317 rows x 7 columns]



We can concatenate them just as we did in Chapter 6.

Click here to view code image

# shape of each dataframe 
print(billboard01.shape) 
print(billboard02.shape) 
print(billboard03.shape)

(317, 7) 
(317, 7) 
(317, 7)

# concatenate the dataframes together 
billboard = pd.concat([billboard01, billboard02, 
billboard03]) 
 
# shape of final concatenated taxi data 
print(billboard.shape)

(951, 7)

Let’s write a check to make sure the number of rows were concatenated
correctly

assert ( 
    billboard01.shape[0] 
    + billboard02.shape[0] 
    + billboard03.shape[0] 
    == billboard.shape[0] 
)

However, manually saving each dataframe will get tedious when the
data is split into many parts. As an alternative approach, we can automate
the process using loops and list comprehensions.
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6.3.1 Load Multiple Files Using a Loop
An easier way to load multiple files is to first create an empty list, use a
loop to iterate though each of the CSV files, load the CSV files into a
Pandas dataframe, and finally append the dataframe to the list. The final
type of data we want is a list of dataframes because the concat()
function takes a list of dataframes to concatenate.

Click here to view code image

# this part was the same as earlier 
from pathlib import Path 
billboard_data_files = ( 
    Path(".") 
    .glob("data/billboard-by_week/billboard-
*.csv") 
) 
 
# create an empty list to append to 
list_billboard_df = [] 
 
# loop though each CSV filename 
for csv_filename in billboard_data_files: 
    # you can choose to print the filename for 
debugging 
    # print(csv_filename) 
 
    # load the CSV file into a dataframe 
    df = pd.read_csv(csv_filename) 
 
    # append the dataframe to the list that will 
hold the dataframes 
    list_billboard_df.append(df) 
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# print the length of the dataframe 
print(len(list_billboard_df))

76

Important
The Path.glob() method returns a generator (Appendix P). This
means that when we go through each element of the “list,” the item
gets “used up,” so it won’t exist again. This saves a lot of compute
resources since Python does not need to store everything in memory all
at once. The downside is you will need to re-create the generator if you
plan on using it multiple times. You can opt to turn the generator into a
regular python list so all the elements are stored perpetually by using
the list() function, e.g., list(billboard_data_files).

Click here to view code image

# type of the first element 
print(type(list_billboard_df[0]))

<class 'pandas.core.frame.DataFrame'>

Click here to view code image

# look at the first dataframe 
print(list_billboard_df[0])

     year            artist                    
track  time  \ 
0    2000             2 Pac  Baby Don't Cry 
(Keep...  4:22 
1    2000           2Ge+her  The Hardest Part Of 
...  3:15 
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2    2000      3 Doors Down               
Kryptonite  3:53 
3    2000      3 Doors Down                    
Loser  4:24 
4    2000          504 Boyz            Wobble 
Wobble  3:35 
 
..    ...               ...                      
...   ... 
312  2000       Yankee Grey     Another Nine 
Minutes  3:10 
313  2000  Yearwood, Trisha          Real Live 
Woman  3:55 
314  2000   Ying Yang Twins  Whistle While You 
Tw...  4:19 
315  2000     Zombie Nation            Kernkraft 
400  3:30 
316  2000   matchbox twenty                     
Bent  4:12 
 
   date.entered  week  rating 
0    2000-02-26  wk15     NaN 
1    2000-09-02  wk15     NaN 
2    2000-04-08  wk15    38.0 
3    2000-10-21  wk15    72.0 
4    2000-04-15  wk15    78.0 
..          ...   ...     ... 
312  2000-04-29  wk15     NaN 
313  2000-04-01  wk15     NaN 
314  2000-03-18  wk15     NaN 
315  2000-09-02  wk15     NaN 
316  2000-04-29  wk15     3.0 



 
[317 rows x 7 columns]

Now that we have a list of dataframes, we can concatenate them.

Click here to view code image

billboard_loop_concat = 
pd.concat(list_billboard_df) 
print(billboard_loop_concat.shape)

(24092, 7)

6.3.2 Load Multiple Files Using a List
Comprehension
Python has an idiom for looping though something and adding it to a list,
called a list comprehension. The loop given previously, which is shown
here again without the comments, can be written in a list comprehension
(Appendix K).

Click here to view code image

# we have to re-create the generator because we 
# "used it up" in the previous example 
billboard_data_files = ( 
    Path(".") 
    .glob("data/billboard-by_week/billboard-
*.csv") 
) 
# the loop code without comments 
list_billboard_df = [] 
for csv_filename in billboard_data_files: 
    df = pd.read_csv(csv_filename) 
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    list_billboard_df.append(df) 
 
billboard_data_files = ( 
    Path(".") 
    .glob("data/billboard-by_week/billboard-
*.csv") 
) 
 
# same code in a list comprehension 
billboard_dfs = [pd.read_csv(data) for data in 
billboard_data_files]

Warning
If you get a ValueError: No objects to concatenate
message, it means you did not re-create the
billboard_data_files generator.

The result from our list comprehension is a list, just as the earlier loop
example.

print(type(billboard_dfs))

<class 'list'>

print(len(billboard_dfs))

76

Finally, we can concatenate the results just as we did earlier.

Click here to view code image

billboard_concat_comp = pd.concat(billboard_dfs)
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print(billboard_concat_comp)

     year            artist                    
track  time  \ 
0    2000             2 Pac  Baby Don't Cry 
(Keep...  4:22 
1    2000           2Ge+her  The Hardest Part Of 
...  3:15 
2    2000      3 Doors Down               
Kryptonite  3:53 
3    2000      3 Doors Down                    
Loser  4:24 
4    2000          504 Boyz            Wobble 
Wobble  3:35 
..    ...               ...                      
...   ... 
312  2000       Yankee Grey     Another Nine 
Minutes  3:10 
313  2000  Yearwood, Trisha          Real Live 
Woman  3:55 
314  2000   Ying Yang Twins  Whistle While You 
Tw...  4:19 
315  2000     Zombie Nation            Kernkraft 
400  3:30 
316  2000   matchbox twenty                     
Bent  4:12 
 
   date.entered  week  rating 
0    2000-02-26  wk15     NaN 
1    2000-09-02  wk15     NaN 
2    2000-04-08  wk15    38.0 
3    2000-10-21  wk15    72.0 
4    2000-04-15  wk15    78.0 



..          ...   ...     ... 
312  2000-04-29  wk18    NaN 
313  2000-04-01  wk18    NaN 
314  2000-03-18  wk18    NaN 
315  2000-09-02  wk18    NaN 
316  2000-04-29  wk18    3.0 
 
[24092 rows x 7 columns]

6.4 Merge Multiple Data Sets
The previous section alluded to a few database concepts. The
join="inner" and the default join="outer" parameters come from
working with databases when we want to merge tables.

Instead of simply having a row or column index that you want to use to
concatenate values, sometimes you may have two or more dataframes that
you want to combine based on common data values. This task is known in
the database world as performing a “join.”

Pandas has a .join() method that uses .merge() under the hood.
.join() will merge dataframe objects based on an index, but the
.merge() function is much more explicit and flexible.

If you are planning to merge dataframes by the row index, for example,
you might want to look into the .join() method.2

2. Pandas DataFrame.join() method:
https://pandas.pydata.org/docs/reference/api/panda
s.DataFrame.join.html

We will be using the set of survey data in the following examples.

Click here to view code image

person = pd.read_csv('data/survey_person.csv') 
site = pd.read_csv('data/survey_site.csv') 
survey = pd.read_csv('data/survey_survey.csv') 
visited = pd.read_csv('data/survey_visited.csv')

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.join.html
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print(person)

 
      ident   personal   family 
0      dyer    William     Dyer 
1        pb      Frank  Pabodie 
2      lake   Anderson     Lake 
3       roe  Valentina  Roerich 
4  danforth      Frank Danforth

print(site)

    name    lat    long 
0   DR-1 -49.85 -128.57 
1   DR-3 -47.15 -126.72 
2  MSK-4 -48.87 -123.40

print(visited)

  ident  site       dated 
0   619  DR-1  1927-02-08 
1   622  DR-1  1927-02-10 
2   734  DR-3  1939-01-07 
3   735  DR-3  1930-01-12 
4   751  DR-3  1930-02-26 
5   752  DR-3         NaN 
6   837 MSK-4  1932-01-14 
7   844  DR-1  1932-03-22

print(survey)



   taken person  quant reading 
0    619   dyer    rad    9.82 
1    619   dyer    sal    0.13 
2    622   dyer    rad    7.80 
3    622   dyer    sal    0.09 
4    734     pb    rad    8.41 
..   ...    ...    ...     ... 
16   752    roe    sal   41.60 
17   837   lake    rad    1.46 
18   837   lake    sal    0.21 
19   837    roe    sal   22.50 
20   844    roe    rad   11.25 
 
[21 rows x 4 columns]

Currently, our data is split into multiple parts, where each part is an
observational unit. If we wanted to look at the dates at each site along with
the latitude and longitude information for that site, we would have to
combine (and merge) multiple dataframes. We can do this with the
.merge() method in Pandas.

When we call this method, the dataframe that is called will be referred to
as the one on the “left.” Within the .merge() method, the first parameter
is the “right” dataframe (i.e., left.merge(right)). The next
parameter is how the final merged result looks.

Table 6.1 provides more details. Next, we set the on parameter. This
specifies which columns to match on. If the left and right columns do not
have the same name, we can use the left_on and right_on parameters
instead.

Table 6.1 How the Pandas how Parameter Relates to SQL

Pandas SQL Description

left left outer Keep all the keys from the left

right right outer Keep all the keys from the right



Pandas SQL Description

outer full outer Keep all the keys from both left and right

inner inner Keep only the keys that exist in both left and right

6.4.1 One-to-One Merge
In the simplest type of merge, we have two dataframes where we want to
join one column to another column, and where the columns we want to join
do not contain any duplicate values.

For this example, we will modify the visited dataframe so there are
no duplicated site values.

Click here to view code image

visited_subset = visited.loc[[0, 2, 6], :] 
print(visited_subset)

 ident   site       dated 
0  619   DR-1  1927-02-08 
2  734   DR-3  1939-01-07 
6  837  MSK-4  1932-01-14

# get a count of the values in the site column 
print( 
  visited_subset["site"].value_counts() 
)

DR-1     1 
DR-3     1 
MSK-4    1 
Name: site, dtype: int64
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We can perform our one-to-one merge as follows:

Click here to view code image

# the default value for 'how' is 'inner' 
# so it doesn't need to be specified 
o2o_merge = site.merge( 
    visited_subset, left_on="name", 
right_on="site" 
) 
print(o2o_merge)

 
   name    lat    long  ident   site       dated 
0  DR-1 -49.85 -128.57    619   DR-1  1927-02-08 
1  DR-3 -47.15 -126.72    734   DR-3  1939-01-07 
2 MSK-4 -48.87 -123.40    837  MSK-4  1932-01-14

As you can see, we have now created a new dataframe from two
separate dataframes where the rows were matched based on a particular set
of columns. In SQL-speak, the columns used to match are called “keys.”

6.4.2 Many-to-One Merge
If we choose to do the same merge, but this time without using the
subsetted visited dataframe, we would perform a many-to-one merge. In
this kind of merge, one of the dataframes has key values that repeat.

Click here to view code image

# get a count of the values in the site column 
print( 
  visited["site"].value_counts() 
)
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DR-3     4 
DR-1     3 
MSK-4    1 
Name: site, dtype: int64

The dataframes that contain the single observations will then be
duplicated in the merge.

Click here to view code image

m2o_merge = site.merge(visited, left_on='name', 
right_on='site') 
print(m2o_merge)

    name    lat    long  ident   site       dated 
0   DR-1 -49.85 -128.57    619   DR-1  1927-02-08 
1   DR-1 -49.85 -128.57    622   DR-1  1927-02-10 
2   DR-1 -49.85 -128.57    844   DR-1  1932-03-22 
3   DR-3 -47.15 -126.72    734   DR-3  1939-01-07 
4   DR-3 -47.15 -126.72    735   DR-3  1930-01-12 
5   DR-3 -47.15 -126.72    751   DR-3  1930-02-26 
6   DR-3 -47.15 -126.72    752   DR-3         NaN 
7  MSK-4 -48.87 -123.40    837  MSK-4  1932-01-14

The site information (name, lat, and long) were duplicated and
matched to the visited data.

6.4.3 Many-to-Many Merge
Lastly, there will be times when we want to perform a match based on
multiple columns. As an example, suppose we have two dataframes that
come from person merged with survey, and another dataframe that
comes from visited merged with survey.
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Danger
All the code for performing a merge uses the same method,
.merge(). The only thing that makes the results differ is whether or
not the left and/or right dataframe has duplicate keys.

In practice, you usually do not want a many-to-many merge. Since
that means a cartesian product of the keys were joined together. That
is, every combination of duplicated values were combined.

Click here to view code image

ps = person.merge(survey, left_on='ident', 
right_on='person') 
vs = visited.merge(survey, left_on='ident', 
right_on='taken')

print(ps)

   ident   personal   family taken person quant 
reading 
0   dyer    William     Dyer   619   dyer   rad    
9.82 
1   dyer    William     Dyer   619   dyer   sal    
0.13 
2   dyer    William     Dyer   622   dyer   rad    
7.80 
3   dyer    William     Dyer   622   dyer   sal    
0.09 
4     pb      Frank  Pabodie   734     pb   rad    
8.41 
..   ...        ...      ...   ...    ...   ...     
... 
14  lake   Anderson     Lake   837   lake   rad    
1.46 

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch06_images.xhtml#f0164-01


15  lake   Anderson     Lake   837   lake   sal    
0.21 
16   roe  Valentina  Roerich   752    roe   sal   
41.60 
17   roe  Valentina  Roerich   837    roe   sal   
22.50 
18   roe  Valentina  Roerich   844    roe   rad   
11.25 
 
[19 rows x 7 columns]

print(vs)

  ident   site       dated  taken person quant 
reading 
0   619   DR-1  1927-02-08    619   dyer   rad    
9.82 
1   619   DR-1  1927-02-08    619   dyer   sal    
0.13 
2   622   DR-1  1927-02-10    622   dyer   rad    
7.80 
3   622   DR-1  1927-02-10    622   dyer   sal    
0.09 
4   734   DR-3  1939-01-07    734     pb   rad    
8.41 
..  ...    ...         ...    ...    ...   ...    
... 
16  752   DR-3         NaN    752    roe   sal   
41.60 
17  837  MSK-4  1932-01-14    837   lake   rad    
1.46 
18  837  MSK-4  1932-01-14    837   lake   sal    
0.21 



19  837  MSK-4  1932-01-14    837    roe   sal   
22.50 
20  844   DR-1  1932-03-22    844    roe   rad   
11.25 
 
[21 rows x 7 columns]

We know there is a many-to-many merge happening because there are
duplicate values in the keys for both the left and right dataframe.

Click here to view code image

print( 
  ps["quant"].value_counts() 
)

rad     8 
sal     8 
temp    3 
Name: quant, dtype: int64

print( 
  vs["quant"].value_counts() 
)

sal     9 
rad     8 
temp    4 
Name: quant, dtype: int64

We can perform a many-to-many merge by passing the multiple columns
to match on in a Python list.
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ps_vs = ps.merge( 
    vs, 
    left_on=["quant"], 
    right_on=["quant"], 
)

Let’s look at just the first row of data.

Click here to view code image

print(ps_vs.loc[0, :])

ident_x            dyer 
personal        William 
family             Dyer 
taken_x             619 
person_x           dyer 
                ... 
site               DR-1 
dated        1927-02-08 
taken_y             619 
person_y           dyer 
reading_y          9.82 
Name: 0, Length: 13, dtype: object

Pandas will automatically add a suffix to a column name if there are
collisions in the name. In the output, the _x refers to values from the left
dataframe, and the _y suffix comes from values in the right dataframe.

6.4.4 Check Your Work with Assert
A simple way to check your work before and after a merge is by looking at
the number of rows of our data before and after the merge. If you end up
with more rows than either of the dataframes you are merging together, that
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means a many-to-many merge occurred, and that is usually situation you do
not want.

Click here to view code image

print(ps.shape) # left dataframe

(19, 7)

print(vs.shape) # right dataframe

(21, 7)

print(ps_vs.shape) # after merge

(148, 13)

One way you can check your work is by having your code fail when you
know a bad condition exists. You can achieve this by using the Python
assert statement. When an expression evaluates to True, assert will
not return anything, and your code will continue on to the next expression.

# expect this to be true 
# note there is no output 
assert vs.shape[0] == 21

However, if the expression to assert evaluates to False, it will
throw an AssertionError, and your code will stop.

Click here to view code image

assert ps_vs.shape[0] <= vs.shape[0]

AssertionError:
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Using assert is a good technique to build in checks into your code
without having to run it and visually inspecting the result. This is also the
basis for creating “unit tests” for functions.

Conclusion
Sometimes, you may need to combine various parts or data or multiple data
sets depending on the question you are trying to answer. Keep in mind,
however, that the data you need for analysis does not necessarily equate to
the best shape of data for storage.

The survey data used in the last example came in four separate parts that
needed to be merged together. After we merged the tables, a lot of
redundant information appeared across the rows. From a data storage and
data entry point of view, each of these duplications can lead to errors and
data inconsistency. This is what Hadley meant by saying that in tidy data,
“each type of observational unit forms a table.”



7

Data Normalization

The final point in the original “Tidy Data” paper stated that for data to be
tidy “… each type of observational unit forms a table.” However, usually
we need to combine multiple data sets together so we can do an analysis
(Chapter 6). But when we think about how to store and manage data in a
way where we reduce the amount of duplication and potential for errors, we
should try to normalize our data into separate tables so a single fix can
propagate when we combine the data together again.

Learning Objectives
Identify the differences between tidy data and data normalization
Apply data subsetting to split data into normalized parts

7.1 Multiple Observational Units in a Table
(Normalization)
One of the simplest ways of knowing whether multiple observational units
are represented in a table is by looking at each of the rows and taking note
of any cells or values that are being repeated from row to row. This is very
common in government education administration data, where student
demographics are reported for each student for each year the student is
enrolled, and in other data sets that track a value over time.

Let’s look again at the Billboard data we cleaned in Section 4.1.2.

Click here to view code image

import pandas as pd 
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billboard = pd.read_csv('data/billboard.csv') 
 
billboard_long = billboard.melt( 
  id_vars=["year", "artist", "track", "time", 
"date.entered"], 
  var_name="week", 
  value_name="rating", 
) 
 
print(billboard_long)

 
       year            artist                    
track  time  \ 
0      2000             2 Pac  Baby Don't Cry 
(Keep...  4:22 
1      2000           2Ge+her  The Hardest Part Of 
...  3:15 
2      2000      3 Doors Down               
Kryptonite  3:53 
3      2000      3 Doors Down                    
Loser  4:24 
4      2000          504 Boyz            Wobble 
Wobble  3:35 
...     ...               ...                      
...  ... 
24087  2000       Yankee Grey     Another Nine 
Minutes  3:10 
24088  2000  Yearwood, Trisha          Real Live 
Woman  3:55 
24089  2000   Ying Yang Twins  Whistle While You 
Tw...  4:19 
24090  2000     Zombie Nation            Kernkraft 



400  3:30 
24091  2000   matchbox twenty                     
Bent  4:12 
 
      date.entered  week  rating 
0       2000-02-26   wk1    87.0 
1       2000-09-02   wk1    91.0 
2       2000-04-08   wk1    81.0 
3       2000-10-21   wk1    76.0 
4       2000-04-15   wk1    57.0 
...            ...   ...     ... 
24087   2000-04-29  wk76     NaN 
24088   2000-04-01  wk76     NaN 
24089   2000-03-18  wk76     NaN 
24090   2000-09-02  wk76     NaN 
24091   2000-04-29  wk76     NaN 
 
[24092 rows x 7 columns]

Suppose we subset the data based on a particular track:

Click here to view code image

print(billboard_long.loc[billboard_long.track == 
'Loser'])

       year        artist  track  time 
date.entered  week  rating 
3      2000  3 Doors Down  Loser  4:24   2000-10-
21   wk1    76.0 
320    2000  3 Doors Down  Loser  4:24   2000-10-
21   wk2    76.0 
637    2000  3 Doors Down  Loser  4:24   2000-10-
21   wk3    72.0 
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954    2000  3 Doors Down  Loser  4:24   2000-10-
21   wk4    69.0 
1271   2000  3 Doors Down  Loser  4:24   2000-10-
21   wk5    67.0 
...     ...           ...  ...     ...          
...   ...     ... 
22510  2000  3 Doors Down  Loser  4:24   2000-10-
21   wk72    NaN 
22827  2000  3 Doors Down  Loser  4:24   2000-10-
21   wk73    NaN 
23144  2000  3 Doors Down  Loser  4:24   2000-10-
21   wk74    NaN 
23461  2000  3 Doors Down  Loser  4:24   2000-10-
21   wk75    NaN 
23778  2000  3 Doors Down  Loser  4:24   2000-10-
21   wk76    NaN 
 
[76 rows x 7 columns]

We can see that this table actually holds two types of data: the track
information and the weekly ranking. It would be better to store the track
information in a separate table. This way, the information stored in the
year, artist, track, and time columns would not be repeated in the
data set. This consideration is particularly important if the data is manually
entered. Repeating the same values over and over during data entry
increases the risk of inconsistent data.

We can place the year, artist, track, and time in a new
dataframe, with each unique set of values being assigned a unique ID. We
can then use this unique ID in a second dataframe that represents a date
entered, song, date, week number, and ranking. This entire process can be
thought of as reversing the steps in concatenating and merging data
described in Chapter 6.

Click here to view code image
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billboard_songs = billboard_long[ 
    ["year", "artist", "track", "time"] 
] 
print(billboard_songs.shape)

(24092, 4)

We know there are duplicate entries in this dataframe, so we need to
drop the duplicate rows.

Click here to view code image

billboard_songs = 
billboard_songs.drop_duplicates() 
print(billboard_songs.shape)

(317, 4)

We can then assign a unique value to each row of data. There are many
ways you could do this, there we take the index value and add 1 so it
doesn’t start with 0.

Click here to view code image

billboard_songs['id'] = billboard_songs.index + 
1 
print(billboard_songs)

     year            artist                    
track  time   id 
0    2000             2 Pac  Baby Don't Cry 
(Keep...  4:22    1 
1    2000           2Ge+her  The Hardest Part Of 
...  3:15    2 
2    2000           3 Doors          Down 
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Kryptonite  3:53    3 
3    2000           3 Doors               Down 
Loser  4:24    4 
4    2000          504 Boyz            Wobble 
Wobble  3:35    5 
..    ...               ...                      
...   ...  ... 
312  2000       Yankee Grey     Another Nine 
Minutes  3:10  313 
313  2000  Yearwood, Trisha          Real Live 
Woman  3:55  314 
314  2000   Ying Yang Twins  Whistle While You 
Tw...  4:19  315 
315  2000     Zombie Nation            Kernkraft 
400  3:30  316 
316  2000   matchbox twenty                     
Bent  4:12  317 
 
[317 rows x 5 columns]

Now that we have a separate dataframe about songs, we can use the
newly created id column to match a song to its weekly ranking.

Click here to view code image

# Merge the song dataframe to the original data 
set 
billboard_ratings = billboard_long.merge( 
    billboard_songs, on=["year", "artist", 
"track", "time"] 
) 
print(billboard_ratings.shape)

(24092, 8)
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print(billboard_ratings)

       year           artist                    
track  time  \ 
0      2000            2 Pac  Baby Don't Cry 
(Keep...  4:22 
1      2000            2 Pac  Baby Don't Cry 
(Keep...  4:22 
2      2000            2 Pac  Baby Don't Cry 
(Keep...  4:22 
3      2000            2 Pac  Baby Don't Cry 
(Keep...  4:22 
4      2000            2 Pac  Baby Don't Cry 
(Keep...  4:22 
...     ...              ...                      
...   ... 
24087  2000  matchbox twenty                     
Bent  4:12 
24088  2000  matchbox twenty                     
Bent  4:12 
24089  2000  matchbox twenty                     
Bent  4:12 
24090  2000  matchbox twenty                     
Bent  4:12 
24091  2000  matchbox twenty                     
Bent  4:12 
 
      date.entered  week  rating  id 
0       2000-02-26   wk1  87.0     1 
1       2000-02-26   wk2  82.0     1 
2       2000-02-26   wk3  72.0     1 
3       2000-02-26   wk4  77.0     1 



4       2000-02-26   wk5  87.0     1 
...            ...   ...   ...   ... 
24087   2000-04-29  wk72   NaN   317 
24088   2000-04-29  wk73   NaN   317 
24089   2000-04-29  wk74   NaN   317 
24090   2000-04-29  wk75   NaN   317 
24091   2000-04-29  wk76   NaN   317 
 
[24092 rows x 8 columns]

Finally, we subset the columns to the ones we want in our ratings
dataframe.

Click here to view code image

billboard_ratings = billboard_ratings[ 
     ["id", "date.entered", "week", "rating"] 
] 
print(billboard_ratings)

        id date.entered  week  rating 
0        1   2000-02-26   wk1    87.0 
1        1   2000-02-26   wk2    82.0 
2        1   2000-02-26   wk3    72.0 
3        1   2000-02-26   wk4    77.0 
4        1   2000-02-26   wk5    87.0 
...    ...          ...   ...     ... 
24087  317   2000-04-29  wk72     NaN 
24088  317   2000-04-29  wk73     NaN 
24089  317   2000-04-29  wk74     NaN 
24090  317   2000-04-29  wk75     NaN 
24091  317   2000-04-29  wk76     NaN 
 
[24092 rows x 4 columns]
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Conclusion
This chapter explored how we can reduce the amount of duplicate
information in data for efficient data storage. Data normalization can be
thought of as the opposite process of preparing data for analysis,
visualization, and model fitting. But typically you will need to combine
multiple normalized data sets together into a tidy data set.



8

Groupby Operations: Split-Apply-
Combine

Grouped operations are a powerful way to aggregate, transform, and filter
data. They rely on the mantra of “split–apply–combine”:

1. Data is split into separate parts based on key(s).
2. A function is applied to each part of the data.
3. The results from each part are combined to create a new data set.

This is a powerful concept because parts of your original data can be
split up into independent parts to perform a calculation. If you worked with
databases in the past, then you should recognize that the Pandas
.groupby() works just like the SQL GROUP BY. The split–apply–
combine concept is also heavily used in “big data” systems that use
distributed computing, with the data being split into independent parts and
dispatched to a separate server where a function is applied, and the results
are then combined.

The techniques shown in this chapter can all be done without using the
.groupby() method. For example:

Aggregation can be done by using conditional subsetting on a
dataframe
Transformation can be done by passing a column into a separate
function
Filtering can be done with conditional subsetting

However, when you work with your data using .groupby()
statements, your code can be faster, you have greater flexibility when you



want to create multiple groups, and you can more readily work with larger
data sets on distributed or parallel systems.

Learning Objectives
Understand what grouped data is
Calculate summaries of data using .groupby() operations
Perform aggregation, transformation, and filtering operations on
grouped data
Separate data by groups for separate calculations

8.1 Aggregate
Aggregation is the process of taking multiple values and returning a single
value. Calculating an arithmetic mean is an example, as multiple values are
averaged to produce a single value.

8.1.1 Basic One-Variable Grouped Aggregation
Section 1.4.1 showed how to calculate grouped means using the
gapminder data set. We calculated the average life expectancy for each
year of the data and plotted it. This is an example of using group-by
operations for data aggregation; that is, we used the .groupby() method
to calculate a summary statistic, the mean, for all the values in each year.

Aggregation may sometimes be referred to as summarization. Both
terms mean that some form of data reduction is involved. For example,
when you calculate a summary statistic, such as the mean, you are taking
multiple values and replacing them with a single value. The amount of data
is now smaller.

Click here to view code image

import pandas as pd 
df = pd.read_csv('data/gapminder.tsv', sep='\t') 
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# calculate the average life expectancy for each 
year 
avg_life_exp_by_year = df.groupby('year')
["lifeExp"].mean() 
 
print(avg_life_exp_by_year)

year 
1952    49.057620 
1957    51.507401 
1962    53.609249 
1967    55.678290 
1972    57.647386 
          ... 
1987    63.212613 
1992    64.160338 
1997    65.014676 
2002    65.694923 
2007    67.007423 
Name: lifeExp, Length: 12, dtype: float64

Groupby statements can be thought of as creating a subset of each
unique value of a column (or unique pairs from columns). For example, we
could get a list of unique values in the column.

Click here to view code image

# get a list of unique years in the data 
years = df.year.unique() 
print(years)

[1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 
2002 2007]

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0176-02


We can go through each of the years and subset the data.

Click here to view code image

# subset the data for the year 1952 
y1952 = df.loc[df.year == 1952, :] 
print(y1952)

                 country continent  year  lifeExp   
pop  \ 
0            Afghanistan      Asia  1952   28.801   
8425333 
12               Albania    Europe  1952   55.230   
1282697 
24               Algeria    Africa  1952   43.077   
9279525 
36                Angola    Africa  1952   30.015   
4232095 
48             Argentina  Americas  1952   62.485  
17876956 
...                  ...       ...   ...      ...   
... 
1644             Vietnam      Asia  1952   40.412  
26246839 
1656  West Bank and Gaza      Asia  1952   43.160   
1030585 
1668         Yemen, Rep.      Asia  1952   32.548   
4963829 
1680              Zambia    Africa  1952   42.038   
2672000 
1692            Zimbabwe    Africa  1952   48.451   
3080907 
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        gdpPercap 
0      779.445314 
12    1601.056136 
24    2449.008185 
36    3520.610273 
48    5911.315053 
...           ... 
1644   605.066492 
1656  1515.592329 
1668   781.717576 
1680  1147.388831 
1692   406.884115 
 
[142 rows x 6 columns]

Finally, we can perform a function on the subset data. Here we take the
mean of the lifeExp values.

Click here to view code image

y1952_mean = y1952["lifeExp"].mean() 
print(y1952_mean)

49.057619718309866

The .groupby() method essentially repeats this process for every
year column (i.e., splits the data), calculates the mean value (i.e., applies a
function), and conveniently returns all the results in a single dataframe (i.e.,
combines the values together).

Of course, mean is not the only type of aggregation function you can
use. There are many built-in methods in Pandas you can use with the
.groupby() method.

8.1.2 Built-In Aggregation Methods
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Table 8.1 provides a non-exclusive list of built-in Pandas methods you can
use to aggregate your data.

Table 8.1 Methods and Functions That Can Be Used With
.groupby()

Pandas 
Method

Numpy/Scipy 
Function Description

.count() np.count_non
zero()

Frequency count not including

NaN values

.size() Frequency count with NaN values

.mean() np.mean() Mean of the values

.std() np.std() Sample standard deviation

.min() np.min() Minimum values

.quantile
(q=0.25)

np.percentil
e(q=0.25)

25th percentile of the values

.quantile
(q=0.50)

np.percentil
e(q=0.50)

50th percentile of the values

.quantile
(q=0.75)

np.percentil
e(q=0.75)

75th percentile of the values

.max() np.max() Maximum value

.sum() np.sum() Sum of the values

.var() np.var() Unbiased variance

.sem() scipy.stats.
sem()

Unbiased standard error of the mean

.describe
()

scipy.stats.
describe()

Count, mean, standard deviation, 
minimum, 25%, 50%, 75%, and maximum

.first() Returns the first row



Pandas 
Method

Numpy/Scipy 
Function Description

.last() Returns the last row

.nth() Returns the nth row (Python starts 
counting from 0)

For example, we can calculate multiple summary statistics
simultaneously with .describe().

Click here to view code image

# group by continent and describe each group 
continent_describe = df.groupby('continent')
["lifeExp"].describe() 
print(continent_describe)

           count       mean        std     min      
25%      50%  \ 
continent 
Africa     624.0  48.865330   9.150210  23.599  
42.37250  47.7920 
Americas   300.0  64.658737   9.345088  37.579  
58.41000  67.0480 
Asia       396.0  60.064903  11.864532  28.801  
51.42625  61.7915 
Europe     360.0  71.903686   5.433178  43.585  
69.57000  72.2410 
Oceania     24.0  74.326208   3.795611  69.120  
71.20500  73.6650 
 
                75%     max 
continent 
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Africa     54.41150  76.442 
Americas   71.69950  80.653 
Asia       69.50525  82.603 
Europe     75.45050  81.757 
Oceania    77.55250  81.235

8.1.3 Aggregation Functions
You can also use an aggregation function that is not listed in the “Pandas
Method” column in Table 8.1. Instead of directly calling the aggregation
method, you can call the .agg() or .aggregate() method, and pass
the aggregation function you want in there. When using .agg() or
.aggregate(), you will use the functions listed in the “Numpy/Scipy
Function” column in Table 8.1.

Note
The .agg() method is an alias for .aggregate(). The
Pandas documentation suggests you use the alias, .agg(), over
the fully spelled out method.

8.1.3.1 Functions From Other Libraries

We can use the mean() function from the numpy library by passing the
function into the .agg() method.

Click here to view code image

import numpy as np 
 
# calculate the average life expectancy by 
continent 
# but use the np.mean function 
cont_le_agg = df.groupby('continent')
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["lifeExp"].agg(np.mean) 
 
print(cont_le_agg)

continent 
Africa      48.865330 
Americas    64.658737 
Asia        60.064903 
Europe      71.903686 
Oceania     74.326208 
Name: lifeExp, dtype: float64

Note
When we pass in the function into .agg(), we only need the
actual function object, we do not need to “call” the function.
That’s why we write np.mean and not np.mean(). This is
similar to when we called .apply() in Chapter 5.

8.1.3.2 Custom User Functions

Sometimes we may want to perform a calculation that is not provided by
Pandas or another library. We can write our own function that performs the
calculation we want and use it in .agg() as well.

Let’s create our own mean function. Recall the mean function:

mean = x̄ =
n

Σ
i=1

xi (8.1)

Click here to view code image

def my_mean(values): 
  """My version of calculating a mean""" 
  # get the total number of numbers for the 

1
n

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0180-02


denominator 
  n = len(values) 
 
  # start the sum at 0 
  sum = 0 
  for value in values: 
      # add each value to the running sum 
      sum += value 
 
  # return the summed values divided by the 
number of values 
  return sum / n

Note that the function we wrote takes only one parameter, values.
What gets passed into the function, however, is the entire series of values.
This is why we need to iterate through the values to take the sum.

Also, we could have calculated the sum in the function by using
values.sum(), which can actually handle missing values better than the
way the for loop is currently written. See Chapter 5 for a review of these
concepts.

We can pass our custom function straight into the .agg() or
.aggregate() method with my_mean.

Click here to view code image

# use our custom function into agg 
agg_my_mean = df.groupby('year')
["lifeExp"].agg(my_mean) 
 
print(agg_my_mean)

year 
1952    49.057620 
1957    51.507401 
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1962    53.609249 
1967    55.678290 
1972    57.647386 
          ... 
1987    63.212613 
1992    64.160338 
1997    65.014676 
2002    65.694923 
2007    67.007423 
Name: lifeExp, Length: 12, dtype: float64

Finally, we can write functions that take multiple parameters. As long as
the first parameter takes the series of values from the dataframe, you can
pass the other arguments as keywords into .agg() or .aggregate().

In the following example, we will calculate the global average life
expectancy, diff_value, and subtract it from each grouped value.

Click here to view code image

def my_mean_diff(values, diff_value): 
    """Difference between the mean and 
diff_value 
    """ 
    n = len(values) 
    sum = 0 
    for value in values: 
        sum += value 
    mean = sum / n 
    return(mean - diff_value) 
 
# calculate the global average life expectancy 
mean 
global_mean = df["lifeExp"].mean() 
print(global_mean)
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59.474439366197174

# custom aggregation function with multiple 
parameters 
agg_mean_diff = ( 
  df 
  .groupby("year") 
  ["lifeExp"] 
  .agg(my_mean_diff, diff_value=global_mean) 
) 
 
print(agg_mean_diff)

year 
1952   -10.416820 
1957    -7.967038 
1962    -5.865190 
1967    -3.796150 
1972    -1.827053 
          ... 
1987     3.738173 
1992     4.685899 
1997     5.540237 
2002     6.220483 
2007     7.532983 
Name: lifeExp, Length: 12, dtype: float64

8.1.4 Multiple Functions Simultaneously
When we want to calculate multiple aggregation functions, we can pass the
individual functions into .agg() or .aggregate() as a Python list.
Examples of functions you can use here are listed in the “Numpy/Scipy
Function” column in Table 8.1.



Click here to view code image

# calculate the count, mean, std of the lifeExp 
by continent 
gdf = ( 
  df 
  .groupby("year") 
  ["lifeExp"] 
  .agg([np.count_nonzero, np.mean, np.std]) 
) 
 
print(gdf)

      count_nonzero       mean        std 
year 
1952            142  49.057620  12.225956 
1957            142  51.507401  12.231286 
1962            142  53.609249  12.097245 
1967            142  55.678290  11.718858 
1972            142  57.647386  11.381953 
...             ...        ...        ... 
1987            142  63.212613  10.556285 
1992            142  64.160338  11.227380 
1997            142  65.014676  11.559439 
2002            142  65.694923  12.279823 
2007            142  67.007423  12.073021 
 
[12 rows x 3 columns]

8.1.5 Use a dict in .agg() / .aggregate()
There are some other ways you can apply functions in the .agg() and
.aggregate() methods. For example, you can pass .agg() a Python

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0182-01


dictionary. However, the results will differ depending on whether you are
aggregating directly on a DataFrame or on a Series object.

8.1.5.1 On a DataFrame

When specifying a dict on a grouped DataFrame, the keys are the
columns of the DataFrame, and the values are the functions used in the
aggregated calculation. This approach allows you to group one or more
variables and use a different aggregation function on different columns
simultaneously.

Click here to view code image

# use a dictionary on a dataframe to agg 
different columns 
# for each year, calculate the 
# average lifeExp, median pop, and median 
gdpPercap 
gdf_dict = df.groupby("year").agg( 
 
  { 
    "lifeExp": "mean", 
    "pop": "median", 
    "gdpPercap": "median" 
  } 
) 
 
print(gdf_dict)

        lifeExp         pop    gdpPercap 
year 
1952  49.057620   3943953.0  1968.528344 
1957  51.507401   4282942.0  2173.220291 
1962  53.609249   4686039.5  2335.439533 
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1967  55.678290   5170175.5  2678.334740 
1972  57.647386   5877996.5  3339.129407 
...         ...         ...          ... 
1987  63.212613   7774861.5  4280.300366 
1992  64.160338   8688686.5  4386.085502 
1997  65.014676   9735063.5  4781.825478 
2002  65.694923  10372918.5  5319.804524 
2007  67.007423  10517531.0  6124.371108 
 
[12 rows x 3 columns]

8.1.5.2 On a Series

In the past, passing a dict into a Series after a .groupby() allowed
you to directly calculate aggregate statistics as the returned value, with the
key of the dict being the new column name. However, this notation is not
consistent with the behavior when dicts are passed into grouped
DataFrames, as shown in the example in Section 8.1.5.1. To have user-
defined column names in the output of a grouped series calculation, you
need to rename those columns after the fact.

Click here to view code image

gdf = ( 
  df 
  .groupby("year") 
  ["lifeExp"] 
  .agg( 
    [ 
      np.count_nonzero, 
      np.mean, 
      np.std, 
    ] 
  ) 
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  .rename( 
    columns={ 
      "count_nonzero": "count", 
      "mean": "avg", 
      "std": "std_dev", 
    } 
  ) 
  .reset_index() # return a flat dataframe 
) 
 
print(gdf)

    year  count        avg    std_dev 
0   1952    142  49.057620  12.225956 
1   1957    142  51.507401  12.231286 
2   1962    142  53.609249  12.097245 
3   1967    142  55.678290  11.718858 
4   1972    142  57.647386  11.381953 
..   ...    ...        ...        ... 
7   1987    142  63.212613  10.556285 
8   1992    142  64.160338  11.227380 
9   1997    142  65.014676  11.559439 
10  2002    142  65.694923  12.279823 
11  2007    142  67.007423  12.073021 
 
[12 rows x 4 columns]

8.2 Transform
When we transform data, we pass values from our dataframe into a
function. The function then “transforms” the data. Unlike .agg(), which
can take multiple values and return a single (aggregated) value,



.transform() takes multiple values and returns a one-to-one
transformation of the values. That is, it does not reduce the amount of data.

8.2.1 Z-Score Example
Let’s calculate the z-score of our life expectancy data by year. The z-score
identifies the number of standard deviations from the mean of our data. It
centers our data around 0, with a standard deviation of 1. This technique
standardizes our data and makes it easier to compare different variables
with different units to each other.

Here’s the formula for calculating z-score:

z = (8.2)

x is a data point in our data set
µ is the average of our data set, as calculated by Equation 8.1
σ is the standard deviation, as calculated by Equation 8.3

σ = √
n

Σ
i=1

(xi − μ)
2

(8.3)

Let’s write a Python function that calculates a z-score.

Click here to view code image

def my_zscore(x): 
  '''Calculates the z-score of provided data 
  'x' is a vector or series of values 
  ''' 
  return((x - x.mean()) / x.std())

Now we can use this function to .transform() our data by group.

Click here to view code image

x−μ

σ

1
n
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transform_z = df.groupby('year')
["lifeExp"].transform(my_zscore) 
 
print(transform_z)

0      -1.656854 
1      -1.731249 
2      -1.786543 
3      -1.848157 
4      -1.894173 
          ... 
1699   -0.081621 
1700   -0.336974 
1701   -1.574962 
1702   -2.093346 
1703   -1.948180 
Name: lifeExp, Length: 1704, dtype: float64

Note the shape of our original dataframe, and that of the
transform_z value. Both have the same number of rows and data.

Click here to view code image

# note the number of rows in our data 
print(df.shape)

(1704, 6)

# note the number of values in our 
transformation 
print(transform_z.shape)

(1704,)
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The scipy library has its own zscore() function. Let’s use its
zscore() function in a .groupby() .transform() and compare it
to what happens when we do not use .groupby().

Click here to view code image

from scipy.stats import zscore 
 
# calculate a grouped zscore 
 
sp_z_grouped = df.groupby('year')
["lifeExp"].transform(zscore) 
 
# calculate a nongrouped zscore 
sp_z_nogroup = zscore(df["lifeExp"])

Notice that not all of the zscore() values are the same.

# grouped z-score 
print(transform_z.head())

0   -1.656854 
1   -1.731249 
2   -1.786543 
3   -1.848157 
4   -1.894173 
Name: lifeExp, dtype: float64

# grouped z-score using scipy 
print(sp_z_grouped.head())

0   -1.662719 
1   -1.737377 
2   -1.792867 
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3   -1.854699 
4   -1.900878 
Name: lifeExp, dtype: float64

# nongrouped z-score 
print(sp_z_nogroup[:5])

0   -2.375334 
1   -2.256774 
2   -2.127837 
3   -1.971178 
4   -1.811033 
Name: lifeExp, dtype: float64

Our grouped results are similar. However, when we calculate the z-score
outside the .groupby(), we get the z-score calculated on the entire data
set, not broken out by group.

8.2.2 Missing Value Example
Chapter 9 covers missing values and explored how we can fill in missing
values. In the Ebola data set example in that chapter, it made more sense to
fill in the missing data using the .interpolate() method, or
forward/backward filling our data.

In certain data sets, filling the missing values with the mean of the
column could also make sense. At other times, however, it may make more
sense to fill in missing data based on a particular group. Let’s work with the
tips data set that comes from the seaborn library.

Click here to view code image

import seaborn as sns 
import numpy as np 
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# set the seed so results are deterministic 
np.random.seed(42) 
 
# sample 10 rows from tips 
tips_10 = sns.load_dataset("tips").sample(10) 
 
# randomly pick 4 'total_bill' values and turn 
them into missing 
tips_10.loc[ 
    np.random.permutation(tips_10.index)[:4], 
    "total_bill" 
] = np.NaN 
 
print(tips_10)

    total_bill   tip     sex smoker   day    time  
size 
24       19.82  3.18    Male     No   Sat  Dinner   
2 
6         8.77  2.00    Male     No   Sun  Dinner   
2 
153        NaN  2.00    Male     No   Sun  Dinner   
4 
211        NaN  5.16    Male    Yes   Sat  Dinner   
4 
198        NaN  2.00  Female    Yes  Thur   Lunch   
2 
176        NaN  2.00    Male    Yes   Sun  Dinner   
2 
192      28.44  2.56    Male    Yes  Thur   Lunch   
2 
124      12.48  2.52  Female     No  Thur   Lunch   
2 



9        14.78  3.23    Male     No   Sun  Dinner   
2 
101      15.38  3.00  Female    Yes   Fri  Dinner   
2

Chapter 9 also shows how you can use the .fillna() method to fill
in the missing values. However, we may not want to simply fill the missing
values with the mean of total_bill. Perhaps the Male and Female
values in the sex column have different spending habits, or perhaps the
total_bill values differ between time of day (time), or and size of
the table. These are all valid concerns when processing our data.

We can use the .groupby() method to calculate a statistic to fill in
missing values. Instead of using .agg(), we use the .transform()
method. First, let’s count the non-missing values by sex.

Click here to view code image

count_sex = tips_10.groupby('sex').count() 
print(count_sex)

        total_bill tip smoker day time size 
sex 
Male             4   7      7   7    7    7 
Female           2   3      3   3    3    3

This result gives us the number of non-missing values for each value of
sex in each column. We have three missing values for Male, and one
missing value for Female. Now let’s calculate a grouped average, and use
the grouped average to fill in the missing values.

Click here to view code image

def fill_na_mean(x): 
  """Returns the average of a given vector""" 
  avg = x.mean() 
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  return x.fillna(avg) 
 
 
# calculate a mean 'total_bill' by 'sex' 
total_bill_group_mean = ( 
  tips_10 
  .groupby("sex") 
  .total_bill 
  .transform(fill_na_mean) 
) 
 
# assign to a new column in the original data 
# you can also replace the original column by 
using 'total_bill' 
tips_10["fill_total_bill"] = 
total_bill_group_mean

If we just look at the two total_bill columns, we see that different
values were filled in for the NaN missing values.

Click here to view code image

print(tips_10[['sex', 'total_bill', 
'fill_total_bill']])

        sex  total_bill  fill_total_bill 
24     Male       19.82          19.8200 
6      Male        8.77           8.7700 
153    Male         NaN          17.9525 
211    Male         NaN          17.9525 
198  Female         NaN          13.9300 
176    Male         NaN          17.9525 
192    Male       28.44          28.4400 
124  Female       12.48          12.4800 
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9      Male       14.78          14.7800 
101  Female       15.38          15.3800

8.3 Filter
The last type of action you can perform with the .groupby() method is
.filter(). This allows you to split your data by keys, and then perform
some kind of boolean subsetting on the data. As with all the examples for
.groupby(), you can accomplish the same thing by using regular
subsetting, as described in Section 1.3 and Section 2.4.1. Let’s use the full
tips data set and look at the number of observations for the various size
values.

Click here to view code image

# load the tips data set 
tips = sns.load_dataset('tips') 
 
# note the number of rows in the original data 
print(tips.shape)

(244, 7)

# look at the frequency counts for the table 
size 
print(tips['size'].value_counts())

2    156 
3     38 
4     37 
5      5 
1      4 
6      4 
Name: size, dtype: int64
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The output shows that table sizes of 1, 5, and 6 are infrequent.
Depending on your needs, you may want to filter those data points out. In
this example, we want each group to consist of 30 or more observations.

To accomplish this goal, we can use the .filter() method on a
grouped operation.

Click here to view code image

# filter the data such that each group has more 
than 30 observations 
tips_filtered = ( 
  tips 
  .groupby("size") 
  .filter(lambda x: x["size"].count() >= 30) 
)

The output shows that our data set was filtered down.

Click here to view code image

print(tips_filtered.shape)

(231, 7)

print(tips_filtered['size'].value_counts())

2    156 
3     38 
4     37 
Name: size, dtype: int64

8.4 The pandas.core.groupby. DataFrameGroupBy
object
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The .aggregate(), .transform(), and .filter() methods are
commonly used ways of working with grouped objects in Pandas. In this
section, we will investigate some of the inner workings of grouped objects.
The .groupby() documentation is an excellent resource for some of the
more nuanced features of .groupby().1

1. groupby() documentation:
https://pandas.pydata.org/pandas-
docs/stable/user_guide/groupby.html

8.4.1 Groups
Throughout this chapter, we’ve directly chained .agg(),
.transform(), or .filter() after the .groupby(). However, we
can actually save the results of .groupby() before we perform those
other methods. We will start with the subsetted tips data set.

Click here to view code image

tips_10 = sns.load_dataset('tips').sample(10, 
random_state=42) 
print(tips_10)

    total_bill   tip     sex  smoker   day    time  
size 
24       19.82  3.18    Male      No   Sat  Dinner  
2 
6         8.77  2.00    Male      No   Sun  Dinner  
2 
153      24.55  2.00    Male      No   Sun  Dinner  
4 
211      25.89  5.16    Male     Yes   Sat  Dinner  
4 
198      13.00  2.00  Female     Yes  Thur   Lunch  
2 
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file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0190-01


176      17.89  2.00    Male     Yes   Sun  Dinner  
2 
192      28.44  2.56    Male     Yes  Thur   Lunch  
2 
124      12.48  2.52  Female      No  Thur   Lunch  
2 
9        14.78  3.23    Male      No   Sun  Dinner  
2 
101      15.38  3.00  Female     Yes   Fri  Dinner  
2

We can choose to save just the groupby object without running any
other .agg(), .transform(), or .filter() method on it.

Click here to view code image

# save just the grouped object 
grouped = tips_10.groupby('sex') 
 
# note that we just get back the object and its 
memory location 
print(grouped)

<pandas.core.groupby.generic.DataFrameGroupBy 
object at 0x15ed37880>

When we try to print out the grouped result, we get a memory
reference back and the data type is a Pandas DataFrameGroupBy object.
Under the hood, nothing has been actually calculated yet, because we never
performed an action that requires a calculation. If we want to actually see
the calculated groups, we can call the groups attribute.

Click here to view code image
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# see the actual groups of the groupby 
# it returns only the index 
print(grouped.groups)

{'Male': [24, 6, 153, 211, 176, 192, 9], 'Female': 
[198, 124, 101]}

Even when we ask for the groups from our grouped object, we get
only the index of the dataframe back. Think of this index as indicating the
row numbers. It is intended mainly to optimize performance. Again, we
haven’t calculated anything yet.

This approach does allow you to save just the grouped result. You could
then perform multiple .agg(), .transform(), or .filter()
operations without having to process the .groupby() statement again.

8.4.2 Group Calculations Involving Multiple
Variables
One of the nice things about Python is that it follows the EAFP mantra: It is
“easier to ask for forgiveness than for permission.” Throughout the chapter,
we have been performing .groupby() calculations on a single column. If
we specify the calculation we want right after the .groupby(), however,
Python will perform the calculation on all the columns it can and silently
drop the rest.

Here’s an example of a grouped mean on all the columns by sex.

Click here to view code image

# calculate the mean on relevant columns 
avgs = grouped.mean() 
print(avgs)

        total_bill       tip      size 
sex 
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Male         20.02  2.875714  2.571429 
Female       13.62  2.506667  2.000000

As you can see, not all the columns reported a mean.

Click here to view code image

# list all the columns 
print(tips_10.columns)

Index(['total_bill', 'tip', 'sex', 'smoker', 
'day', 'time', 'size'], 
 dtype='object')

The smoker, day, and time columns were not returned in the results
those columns do not contain numeric values, rather, they contain
categorical values. To use the time column as an example, there is no
arithmetic mean for the terms Dinner and Lunch.

8.4.3 Selecting a Group
If we want to extract a particular group, we can use the .get_group()
method, and pass in the group that we want. For example, if we wanted the
Female values:

Click here to view code image

# get the 'Female' group 
female = grouped.get_group('Female') 
print(female)

     total_bill   tip     sex smoker   day    time  
size 
198       13.00  2.00  Female    Yes  Thur   Lunch  
2 
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124       12.48  2.52  Female     No  Thur   Lunch  
2 
101       15.38  3.00  Female    Yes   Fri  Dinner  
2

8.4.4 Iterating Through Groups
Another benefit of saving just the groupby object is that you can then
iterate through the groups individually. There might be times when it’s
easier to conceptualize a question using a for loop, rather than trying to
formulate an .agg(), .transform(), or .filter() method.
Sometimes this might be the only way to do the task. Other times, it might
be the way to get the task done for now, and you can work on optimizing
the solution later.

We can iterate through our grouped values just like any other
container in Python using a for loop.

Click here to view code image

for sex_group in grouped: 
    print(sex_group)

('Male',      total_bill   tip  sex  smoker  day    
time  size 
24        19.82  3.18  Male     No   Sat     
Dinner    2 
6          8.77  2.00  Male     No   Sun     
Dinner    2 
153       24.55  2.00  Male     No   Sun     
Dinner    4 
211       25.89  5.16  Male     Yes  Sat     
Dinner    4 
176       17.89  2.00  Male     Yes  Sun     
Dinner    2 
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192       28.44  2.56  Male     Yes  Thur    Lunch  
2 
9         14.78  3.23  Male     No   Sun     
Dinner    2) 
('Female',      total_bill   tip     sex smoker   
day   time  size 
198       13.00  2.00  Female   Yes  Thur    Lunch  
2 
124       12.48  2.52  Female   No   Thur    Lunch  
2 
101       15.38  3.00  Female   Yes  Fri     
Dinner    2)

If you try to get just the first index from the grouped object, you will
get an error message. This object is still a
pandas.core.groupby.DataFrameGroupBy object, rather than a
real Pandas container.

Click here to view code image

# you can't really get the 0 element from the 
grouped object 
print(grouped[0])

KeyError: 'Column not found: 0'

For now, let’s modify the for loop to just show the first element, along
with some of the things we get when we loop over the grouped object.

Click here to view code image

for sex_group in grouped: 
    # get the type of the object (tuple) 
    print(f'the type is: {type(sex_group)}\n') 
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    # get the length of the object (2 elements) 
    print(f'the length is: {len(sex_group)}\n') 
 
    # get the first element 
    first_element = sex_group[0] 
    print(f'the first element is: 
{first_element}\n') 
 
    # the type of the first element (string) 
    print(f'it has a type of:  
{type(sex_group[0])}\n') 
 
    # get the second element 
    second_element = sex_group[1] 
    print(f'the second element 
is:\n{second_element}\n') 
 
    # get the type of the second element 
(dataframe) 
    print(f'it has a type of:  
{type(second_element)}\n') 
 
    # print what we have 
    print(f'what we have:') 
    print(sex_group) 
 
    # stop after first iteration 
    break

the type is: <class 'tuple'> 
 
the length is: 2 
 



the first element is: Male 
 
it has a type of: <class 'str'> 
 
the second element is: 
     total_bill   tip   sex smoker   day    time  
size 
24        19.82  3.18  Male     No   Sat  Dinner    
2 
6          8.77  2.00  Male     No   Sun  Dinner    
2 
153       24.55  2.00  Male     No   Sun  Dinner    
4 
211       25.89  5.16  Male    Yes   Sat  Dinner    
4 
176       17.89  2.00  Male    Yes   Sun  Dinner    
2 
192       28.44  2.56  Male    Yes  Thur  Lunch     
2 
9         14.78  3.23  Male     No   Sun  Dinner    
2 
 
it has a type of: <class 
'pandas.core.frame.DataFrame'> 
 
 
what we have: 
('Male',      total_bill   tip  sex  smoker  day    
time  size 
24        19.82  3.18  Male     No   Sat     
Dinner  2 
6          8.77  2.00  Male     No   Sun     
Dinner  2 



153       24.55  2.00  Male     No   Sun     
Dinner  4 
211       25.89  5.16  Male     Yes  Sat     
Dinner  4 
176       17.89  2.00  Male     Yes  Sun     
Dinner  2 
192       28.44  2.56  Male     Yes  Thur    Lunch  
2 
9         14.78  3.23  Male     No   Sun     
Dinner  2)

We have a two-element tuple in which the first element is a str
(string) that represents the Male key, and the second element is a
DataFrame of the Male data.

If you prefer, you can forgo all the techniques introduced in this chapter
and iterate through your grouped values in this manner to perform your
calculations. Again, there may be times when this is the only way to get
something done. Perhaps you have a complicated condition you want to
check for each group, or you want to write out each group into separate
files. This option is available to you if you need to iterate through the
groups one at a time.

8.4.5 Multiple Groups
So far in this chapter, we have included one variable in the .groupby()
method. In fact, we can add multiple variables during the .groupby()
process. Section 1.4.1 briefly showed such a case.

Let’s say we want to calculate the mean of our tips data by sex, time
of day (time), and day of week (day). We can pass in ['sex',
'time'] as a Python list instead of the single string we have been
using.

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0194-02


# mean by sex and time 
bill_sex_time = tips_10.groupby(['sex', 'time']) 
 
group_avg = bill_sex_time.mean()

8.4.6 Flattening the Results (.reset_index())
The final topic that will be covered in this section is the results from the
.groupby() statement. Let’s look at the type of the group_avg we just
calculated.

Click here to view code image

# type of the group_avg 
print(type(group_avg))

<class 'pandas.core.frame.DataFrame'>

We have a DataFrame, but the results look a little strange: We have
what appear to be empty cells in the dataframe.

If we look at the columns, we get what we expect.

Click here to view code image

print(group_avg.columns)

Index(['total_bill', 'tip', 'size'], 
dtype='object')

However, more interesting things happen when we look at the index.

Click here to view code image

print(group_avg.index)
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MultiIndex([(  'Male',  'Lunch'), 
            (  'Male', 'Dinner'), 
            ('Female',  'Lunch'), 
            ('Female', 'Dinner')], 
           names=['sex', 'time'])

If we like, we can use a MultiIndex. If we want to get a regular flat
dataframe back, we can call the .reset_index() method on the results.

Click here to view code image

group_method = tips_10.groupby(['sex', 
'time']).mean().reset_index() 
print(group_method)

      sex    time  total_bill       tip      size 
0    Male   Lunch   28.440000  2.560000  2.000000 
1    Male  Dinner   18.616667  2.928333  2.666667 
2  Female   Lunch   12.740000  2.260000  2.000000 
3  Female  Dinner   15.380000  3.000000  2.000000

Alternatively, we can use the as_index=False parameter in the
.groupby() method (it is True by default).

Click here to view code image

group_param = tips_10.groupby(['sex', 'time'], 
as_index=False).mean() 
print(group_param)

      sex    time  total_bill       tip      size 
0    Male   Lunch   28.440000  2.560000  2.000000 
1    Male  Dinner   18.616667  2.928333  2.666667 
2  Female   Lunch   12.740000  2.260000  2.000000 
3  Female  Dinner   15.380000  3.000000  2.000000
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8.5 Working With a MultiIndex
Sometimes, you may want to chain calculations after a .groupby()
method. You can always “flatten” the results and then execute another
.groupby() statement, but that may not always be the most efficient way
of performing the calculation.

We begin with epidemiological simulation data on influenza cases in
Chicago (this is a fairly large data set).

Click here to view code image

# notice that we can even read a compressed zip 
file of a csv 
intv_df = pd.read_csv('data/epi_sim.zip') 
 
print(intv_df)

         ig_type  intervened        pid  rep  sid   
tr 
0              3          40  294524448    1  201  
0.000135 
1              3          40  294571037    1  201  
0.000135 
2              3          40  290699504    1  201  
0.000135 
3              3          40  288354895    1  201  
0.000135 
4              3          40  292271290    1  201  
0.000135 
...          ...          ...       ...  ...  ...   
... 
9434648        2          87  345636694    2  201  
0.000166 
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9434649        3          87  295125214    2  201  
0.000166 
9434650        2          89  292571119    2  201  
0.000166 
9434651        3          89  292528142    2  201  
0.000166 
9434652        2          95  291956763    2  201  
0.000166 
 
[9434653 rows x 6 columns]

About the Epidemiological Simulation Data Set
This data set comes from a simulation which was run using a program
called Indemics. It was developed by the Network Dynamics and
Simulation Science Laboratory at Virginia Tech.

The references for the program are:

Bisset KR, Chen J, Deodhar S, Feng X, Ma Y, Marathe MV.
Indemics: An interactive high-performance computing framework
for data intensive epidemic modeling. ACM Transactions on
Modeling and Computer Simulation. 2014; 24(1):10.
1145/2501602. doi:10.1145/2501602.
Deodhar S, Bisset K, Chen J, Ma Y, Marathe MV. Enhancing
software capability through integration of distinct software in
epidemiological systems. 2nd ACM SIGHIT International Health
Informatics Symposium, 2012.
Bisset KR, Chen J, Feng X, Ma Y, Marathe MV. Indemics: An
interactive data intensive framework for high performance
epidemic simulation. In Proceedings the 24rd International
Conference on Conference on Supercomputing. 2010; 233-242.

The data set includes six columns:



ig_type: edge type (type of relationship between two nodes in the
network, such as “school” and “work”)
intervened: time in the simulation at which an intervention
occurred for a given person (pid)
pid: simulated person’s ID number
rep: replication run (each set of simulation parameters was run
multiple times)
sid: simulation ID
tr: transmissibility value of the influenza virus

Let’s count the number of interventions for each replicate, intervention
time, and treatment value. Here, we are counting the ig_type arbitrarily.
We just need a value to get a count of observations for the groups.

Click here to view code image

count_only = ( 
  intv_df 
  .groupby(["rep", "intervened", "tr"]) 
  ["ig_type"] 
  .count() 
) 
 
print(count_only)

rep  intervened  tr 
0    8           0.000166    1 
     9           0.000152    3 
                 0.000166    1 
     10          0.000152    1 
                 0.000166    1 
                            .. 
2    193         0.000135    1 
                 0.000152    1 
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     195         0.000135    1 
     198         0.000166    1 
     199         0.000135    1 
Name: ig_type, Length: 1196, dtype: int64

Now that we’ve done a .groupby() .count(), we can perform an
additional .groupby() that calculates the average value. However, our
initial .groupby() method does not return a regular flat dataframe.

Click here to view code image

print(type(count_only))

<class 'pandas.core.series.Series'>

Instead, the results take the form of a multi-index series. If we want to
do another .groupby() operation, we have to pass in the levels
parameter to refer to the multi-index levels. Here we pass in [0, 1, 2]
for the first, second, and third index levels, respectively.

Click here to view code image

count_mean = count_only.groupby(level=[0, 1, 
2]).mean() 
print(count_mean.head())

 
rep  intervened  tr 
0    8           0.000166     1.0 
     9           0.000152     3.0 
                 0.000166     1.0 
     10          0.000152     1.0 
                 0.000166     1.0 
Name: ig_type, dtype: float64
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We can combine all of these operations in a single command.

Click here to view code image

count_mean = ( 
    intv_df 
    .groupby(["rep", "intervened", "tr"])
["ig_type"] 
    .count() 
    .groupby(level=[0, 1, 2]) 
    .mean() 
)

Figure 8.1 shows our results.

Click here to view code image

import seaborn as sns 
import matplotlib.pyplot as plt 
 
 
fig = sns.lmplot( 
   data=count_mean.reset_index(), 
   x="intervened", 
   y="ig_type", 
   hue="rep", 
   col="tr", 
   fit_reg=False, 
   palette="viridis" 
) 
 
plt.show()
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Figure 8.1 Grouped counts and mean

Figure 8.2 Grouped cumulative counts. The plot shows that one of the
replicates did not run in our simulation.

The previous example showed how we can pass in a level to perform
an additional .groupby() calculation. It used integer positions, but we
can also pass in the string of the level to make our code a bit more readable.

Here, instead of looking at the .mean(), we will be using
.cumsum() for the cumulative sum.

Figure 8.2 shows our results.

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch08_images.xhtml#f0199-02


cumulative_count = ( 
  intv_df 
  .groupby(["rep", "intervened", "tr"]) 
  ["ig_type"] 
  .count() 
  .groupby(level=["rep"]) 
  .cumsum() 
  .reset_index() 
) 
 
fig = sns.lmplot( 
  data=cumulative_count, 
  x="intervened", 
  y="ig_type", 
  hue="rep", 
  col="tr", 
  fit_reg=False, 
  palette="viridis" 
) 
plt.show()

Conclusion
The .groupby() statement follows the pattern of “split–apply–
combine.”” It is a powerful concept that is not necessarily new to data
analytics, but can help you think about your data and pipelines in a different
way that will scale more readily to “big data” and “distributed” systems.

I urge you to check out the documentation for the .groupby()
method and the general documentation for .groupby(), as there are
many more complex things you can do with groupby statements. The
material covered in this chapter should suffice for the vast majority of
needs and use cases.



Part III

Data Types

Chapter 9 Missing Data

Chapter 10 Data Types

Chapter 11 Strings and Text Data

Chapter 12 Dates and Times

After we have all the data we want, we can go into processing different
parts of it. Working with missing data (Chapter 9), changing the data type
stored in columns (Chapter 10), and working with string (Chapter 11) and
date-time (Chapter 12) data are all common data types we need to be able to
work with while cleaning and munging our data.



9

Missing Data

Rarely will you be given a data set without any missing values. There are
many representations of missing data. In databases, they are NULL values;
certain programming languages use NA; and depending on where you get
your data, missing values can be an empty string, ", or even numeric values
such as 88 or 99. Pandas displays missing values as NaN.

Learning Objectives
Identify how missing values are represented in pandas
Recognize potential ways data can go missing in data processing
Use different functions to fill in missing values

9.1 What Is a NaN Value?
The NaN value in Pandas comes from numpy. Missing values may be used
or displayed in a few ways in Pandas — NaN, NAN, or nan— they are all
the same in terms of how you specify a missing (floating point) number, but
they are not the same in terms of equality. Appendix I describes how these
missing values are imported.

Click here to view code image

# Just import the numpy missing values 
from numpy import NaN, NAN, nan

Missing values are different than other types of data in that they don’t
really equal anything, not even to themselves. The data is missing, so there
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is no concept of equality. NaN is not equivalent to 0 or an empty string, ".
This is known as “three-valued logic.”

print(NaN == True)

False

print(NaN == 0)

False

print(NaN == ")

False

print(NaN == NaN)

False

print(NaN == NAN)

False

print(NaN == nan)

False

print(nan == NAN)

False

Pandas has functions to test for missing values, isnull().

import pandas as pd



print(pd.isnull(NaN))

True

print(pd.isnull(nan))

True

print(pd.isnull(NAN))

True

Pandas also has functions for testing non-missing values, notnull().

print(pd.notnull(NaN))

False

print(pd.notnull(42))

True

print(pd.notnull('missing'))

True

9.2 Where Do Missing Values Come From?
We can get missing values when we load in a data set with missing values,
or from the data munging process.

9.2.1 Load Data



The survey data we used in Chapter 6 included a data set, visited, that
contained missing data. When we loaded the data, Pandas automatically
found the missing data cell and gave us a dataframe with the NaN value in
the appropriate cell. In the read_csv() function, three parameters relate
to reading missing values: na_values, keep_default_na, and
na_filter.

The na_values parameter allows you to specify additional missing or
NaN values. You can pass in either a Python str (i.e., string) or a list-like
object to be automatically coded as missing values when the file is read. Of
course, default missing values, such as NA, NaN, or nan, are already
available, which is why this parameter is not always used. Some health data
may code 99 as a missing value; to specify the use of this value, you would
set na_values=[99].

The keep_default_na parameter is a bool (i.e., True or False
boolean) that allows you to specify whether any additional values need to
be considered as missing. This parameter is True by default, meaning any
additional missing values specified with the na_values parameter will be
appended to the list of missing values. However, keep_default_na can
also be set to keep_default_na=False, which will only use the
missing values specified in na_values.

Lastly, na_filter is a bool that will specify whether any values will
be read as missing. The default value of na_filter=True means that
missing values will be coded as NaN. If we assign na_filter=False,
then nothing will be recoded as missing. This parameter can be thought of
as a means to turn off all the parameters set for na_values and
keep_default_na, but it is more likely to be used when you want to
achieve a performance boost by loading in data without missing values.

Click here to view code image

# set the location for data 
visited_file = 'data/survey_visited.csv'

print(pd.read_csv(visited_file))
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   ident   site       dated 
0    619   DR-1  1927-02-08 
1    622   DR-1  1927-02-10 
2    734   DR-3  1939-01-07 
3    735   DR-3  1930-01-12 
4    751   DR-3  1930-02-26 
5    752   DR-3         NaN 
6    837  MSK-4  1932-01-14 
7    844   DR-1  1932-03-22

print(pd.read_csv(visited_file, 
keep_default_na=False))

 
   ident   site       dated 
0    619   DR-1  1927-02-08 
1    622   DR-1  1927-02-10 
2    734   DR-3  1939-01-07 
3    735   DR-3  1930-01-12 
4    751   DR-3  1930-02-26 
5    752   DR-3 
6    837  MSK-4  1932-01-14 
7    844   DR-1  1932-03-22

print( 
  pd.read_csv(visited_file, na_values=[""], 
keep_default_na=False) 
)

   ident   site       dated 
0    619   DR-1  1927-02-08 
1    622   DR-1  1927-02-10 
2    734   DR-3  1939-01-07 



3    735   DR-3  1930-01-12 
4    751   DR-3  1930-02-26 
5    752   DR-3         NaN 
6    837  MSK-4  1932-01-14 
7    844   DR-1  1932-03-22

9.2.2 Merged Data
Chapter 6 showed you how to combine data sets. Some of the examples in
that chapter included missing values in the output. If we recreate the
merged table from Section 6.4.3, we will see missing values in the merged
output.

Click here to view code image

visited = pd.read_csv('data/survey_visited.csv') 
survey = pd.read_csv('data/survey_survey.csv')

print(visited)

   ident   site       dated 
0    619   DR-1  1927-02-08 
1    622   DR-1  1927-02-10 
2    734   DR-3  1939-01-07 
3    735   DR-3  1930-01-12 
4    751   DR-3  1930-02-26 
5    752   DR-3         NaN 
6    837  MSK-4  1932-01-14 
7    844   DR-1  1932-03-22

print(survey)

    taken person quant  reading 
0     619   dyer   rad     9.82 

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch09_images.xhtml#f0206-02


1     619   dyer   sal     0.13 
2     622   dyer   rad     7.80 
3     622   dyer   sal     0.09 
4     734     pb   rad     8.41 
..    ...    ...   ...      ... 
16    752    roe   sal    41.60 
17    837   lake   rad     1.46 
18    837   lake   sal     0.21 
19    837    roe   sal    22.50 
20    844    roe   rad    11.25 
 
[21 rows x 4 columns]

vs = visited.merge(survey, left_on='ident', 
right_on='taken') 
print(vs)

    ident   site       dated  taken person quant  
reading 
0     619   DR-1  1927-02-08    619   dyer   rad    
9.82 
1     619   DR-1  1927-02-08    619   dyer   sal    
0.13 
2     622   DR-1  1927-02-10    622   dyer   rad    
7.80 
3     622   DR-1  1927-02-10    622   dyer   sal    
0.09 
4     734   DR-3  1939-01-07    734     pb   rad    
8.41 
..    ...    ...         ...    ...    ...   ...    
... 
16    752   DR-3         NaN    752    roe   sal    
41.60 



17    837  MSK-4  1932-01-14    837   lake   rad    
1.46 
18    837  MSK-4  1932-01-14    837   lake   sal    
0.21 
19    837  MSK-4  1932-01-14    837    roe   sal    
22.50 
20    844   DR-1  1932-03-22    844    roe   rad    
11.25 
 
[21 rows x 7 columns]

9.2.3 User Input Values
The user can also create missing values—for example, by creating a vector
of values from a calculation or a manually curated vector. To build on the
examples from Section 2.1, we will create our own data with missing
values. NaN values are valid for both Series and DataFrame objects.

Click here to view code image

# missing value in a series 
num_legs = pd.Series({'goat': 4, 'amoeba': nan}) 
print(num_legs)

goat       4.0 
amoeba     NaN 
dtype: float64

# missing value in a dataframe 
scientists = pd.DataFrame( 
  { 
    "Name": ["Rosaline Franklin", "William 
Gosset"], 
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    "Occupation": ["Chemist", "Statistician"], 
    "Born": ["1920-07-25", "1876-06-13"], 
    "Died": ["1958-04-16", "1937-10-16"], 
    "missing": [NaN, nan], 
  } 
) 
print(scientists)

                Name    Occupation        Born      
Died  missing 
0  Rosaline Franklin       Chemist  1920-07-25  
1958-04-16      NaN 
1     William Gosset  Statistician  1876-06-13  
1937-10-16      NaN

You will notice the dtype of the missing column will be a
float64. This is because the NaN missing value from numpy is a
floating point value.

print(scientists.dtypes)

Name            object 
Occupation      object 
Born            object 
Died            object 
missing       float64 
dtype: object

You can also assign a column of missing values to a dataframe directly.

Click here to view code image

# create a new dataframe 
scientists = pd.DataFrame( 
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  { 
    "Name": ["Rosaline Franklin", "William 
Gosset"], 
    "Occupation": ["Chemist", "Statistician"], 
    "Born": ["1920-07-25", "1876-06-13"], 
    "Died": ["1958-04-16", "1937-10-16"], 
  } 
) 
 
# assign a column of missing values 
scientists["missing"] = nan 
 
print(scientists)

                Name    Occupation        Born      
Died  missing 
0  Rosaline Franklin       Chemist  1920-07-25  
1958-04-16      NaN 
1     William Gosset  Statistician  1876-06-13  
1937-10-16      NaN

9.2.4 Reindexing
Another way to introduce missing values into your data is to reindex your
dataframe. This is useful when you want to add new indices to your
dataframe, but still want to retain its original values. A common usage is
when the index represents some time interval, and you want to add more
dates.

If we wanted to look at only the years from 2000 to 2010 from the
Gapminder data plot in Section 1.5, we could perform the same grouped
operations, subset the data, and then reindex it.

Click here to view code image
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gapminder = pd.read_csv('data/gapminder.tsv', 
sep='\t') 
 
life_exp = gapminder.groupby(['year'])
['lifeExp'].mean() 
print(life_exp)

year 
1952    49.057620 
1957    51.507401 
1962    53.609249 
1967    55.678290 
1972    57.647386 
          ... 
1987    63.212613 
1992    64.160338 
1997    65.014676 
2002    65.694923 
2007    67.007423 
Name: lifeExp, Length: 12, dtype: float64

We can reindex by subsetting the data and use the .reindex()
method.

Click here to view code image

# subset 
y2000 = life_exp[life_exp.index > 2000] 
print(y2000)

year 
2002    65.694923 
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2007    67.007423 
Name: lifeExp, dtype: float64

# reindex 
print(y2000.reindex(range(2000, 2010)))

year 
2000          NaN 
2001          NaN 
2002    65.694923 
2003          NaN 
2004          NaN 
2005          NaN 
2006          NaN 
2007    67.007423 
2008          NaN 
2009          NaN 
Name: lifeExp, dtype: float64

9.3 Working With Missing Data
Now that we know how missing values can be created, let’s see how they
behave when we are working with data.

9.3.1 Find and Count Missing Data
One way to look at the number of missing values is to count() them.

Click here to view code image

ebola = 
pd.read_csv('data/country_timeseries.csv')
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# count the number of non-missing values 
print(ebola.count())

Date                   122 
Day                    122 
Cases_Guinea            93 
Cases_Liberia           83 
Cases_SierraLeone       87 
                      ... 
Deaths_Nigeria          38 
Deaths_Senegal          22 
Deaths_UnitedStates     18 
Deaths_Spain            16 
Deaths_Mali             12 
Length: 18, dtype: int64

You can also subtract the number of non-missing rows from the total
number of rows.

Click here to view code image

num_rows = ebola.shape[0] 
num_missing = num_rows - ebola.count() 
print(num_missing)

Date                     0 
Day                      0 
Cases_Guinea            29 
Cases_Liberia           39 
Cases_SierraLeone       35 
                      ... 
Deaths_Nigeria          84 
Deaths_Senegal         100 
Deaths_UnitedStates    104 
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Deaths_Spain           106 
Deaths_Mali            110 
Length: 18, dtype: int64

If you want to count the total number of missing values in your data, or
count the number of missing values for a particular column, you can use the
count_nonzero() function from numpy in conjunction with the
.isnull() method.

Click here to view code image

import numpy as np 
 
print(np.count_nonzero(ebola.isnull()))

1214

print(np.count_nonzero(ebola['Cases_Guinea'].isn
ull()))

29

Another way to get missing data counts is to use the
.value_counts() method on a series. This will print a frequency table
of values. If you use the dropna parameter, you can also get a missing
value count.

Click here to view code image

# value counts from the Cases_Guinea column 
cnts = 
ebola.Cases_Guinea.value_counts(dropna=False) 
print(cnts)
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NaN       29 
86.0       3 
495.0      2 
112.0      2 
390.0      2 
          .. 
1199.0     1 
1298.0     1 
1350.0     1 
1472.0     1 
49.0       1 
Name: Cases_Guinea, Length: 89, dtype: int64

The results are sorted so you can subset the count vector to just look at
the missing values.

Click here to view code image

# select the values in the Series where the 
index is a NaN value 
print(cnts.loc[pd.isnull(cnts.index)])

NaN    29 
Name: Cases_Guinea, dtype: int64

In Python, True values equate to the integer value 1, and False
values equate to the integer value 0. We can use this behavior to get the
number of missing values by summing up a boolean vector with the
.sum() method.

Click here to view code image

# check if the value is missing, and sum up the 
results 
print(ebola.Cases_Guinea.isnull().sum())
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29

9.3.2 Clean Missing Data
There are many different ways we can deal with missing data. For example,
we can replace the missing data with another value, fill in the missing data
using existing data, or drop the data from our data set.

9.3.2.1 Recode or Replace

We can use the .fillna() method to recode the missing values to
another value. For example, suppose we wanted the missing values to be
recoded as a 0. When we use .fillna(), we can recode the values to a
specific value.

Click here to view code image

# fill the missing values to 0 and only look at 
the first 5 columns 
print(ebola.fillna(0).iloc[:, 0:5])

           Date  Day  Cases_Guinea  Cases_Liberia  
Cases_SierraLeone 
0      1/5/2015  289        2776.0            0.0   
10030.0 
1      1/4/2015  288        2775.0            0.0   
9780.0 
2      1/3/2015  287        2769.0         8166.0   
9722.0 
3      1/2/2015  286           0.0         8157.0   
0.0 
4    12/31/2014  284        2730.0         8115.0   
9633.0 
..          ...  ...           ...            ...   
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... 
117   3/27/2014    5         103.0            8.0   
6.0 
118   3/26/2014    4          86.0            0.0   
0.0 
119   3/25/2014    3          86.0            0.0   
0.0 
120   3/24/2014    2          86.0            0.0   
0.0 
121   3/22/2014    0          49.0            0.0   
0.0 
 
[122 rows x 5 columns]

9.3.2.2 Forward Fill

We can use built-in methods to fill forward or backward. When we fill data
forward, the last known value (from top to bottom) is used for the next
missing value. In this way, missing values are replaced with the last known
and recorded value.

Click here to view code image

print(ebola.fillna(method='ffill').iloc[:, 0:5])

           Date  Day  Cases_Guinea  Cases_Liberia  
Cases_SierraLeone 
0      1/5/2015  289        2776.0            NaN   
10030.0 
1      1/4/2015  288        2775.0            NaN   
9780.0 
2      1/3/2015  287        2769.0         8166.0   
9722.0 
3      1/2/2015  286        2769.0         8157.0   
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9722.0 
4    12/31/2014  284        2730.0         8115.0   
9633.0 
..          ...  ...           ...            ...   
... 
117   3/27/2014    5         103.0            8.0   
6.0 
118   3/26/2014    4          86.0            8.0   
6.0 
119   3/25/2014    3          86.0            8.0   
6.0 
120   3/24/2014    2          86.0            8.0   
6.0 
121   3/22/2014    0          49.0            8.0   
6.0 
 
[122 rows x 5 columns]

If a column begins with a missing value, then that data will remain
missing because there is no previous value to fill in.

9.3.2.3 Backward Fill

We can also have Pandas fill data backward. When we fill data backward,
the newest value (from top to bottom) is used to replace the missing data. In
this way, missing values are replaced with the newest value.

Click here to view code image

print(ebola.fillna(method='bfill').iloc[:, 0:5])

           Date  Day  Cases_Guinea  Cases_Liberia  
Cases_SierraLeone 
0      1/5/2015  289        2776.0         8166.0   
10030.0 
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1      1/4/2015  288        2775.0         8166.0   
9780.0 
2      1/3/2015  287        2769.0         8166.0   
9722.0 
3      1/2/2015  286        2730.0         8157.0   
9633.0 
4    12/31/2014  284        2730.0         8115.0   
9633.0 
..          ...  ...           ...            ...   
... 
117   3/27/2014    5         103.0            8.0   
6.0 
118   3/26/2014    4          86.0            NaN   
NaN 
119   3/25/2014    3          86.0            NaN   
NaN 
120   3/24/2014    2          86.0            NaN   
NaN 
121   3/22/2014    0          49.0            NaN   
NaN 
 
[122 rows x 5 columns]

If a column ends with a missing value, then it will remain missing
because there is no new value to fill in.

9.3.2.4 Interpolate

Interpolation uses existing values to fill in missing values. There are many
ways to fill in missing values, the interpolation in Pandas fills in missing
values linearly. Specifically, it treats the missing values as if they should be
equally spaced apart.

Click here to view code image

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch09_images.xhtml#f0213-03


print(ebola.interpolate().iloc[:, 0:5])

           Date  Day  Cases_Guinea  Cases_Liberia  
Cases_SierraLeone 
0      1/5/2015  289        2776.0            NaN   
10030.0 
1      1/4/2015  288        2775.0            NaN   
9780.0 
2      1/3/2015  287        2769.0         8166.0   
9722.0 
3      1/2/2015  286        2749.5         8157.0   
9677.5 
4    12/31/2014  284        2730.0         8115.0   
9633.0 
..          ...  ...           ...            ...   
... 
117   3/27/2014    5         103.0            8.0   
6.0 
118   3/26/2014    4          86.0            8.0   
6.0 
119   3/25/2014    3          86.0            8.0   
6.0 
120   3/24/2014    2          86.0            8.0   
6.0 
121   3/22/2014    0          49.0            8.0   
6.0 
 
[122 rows x 5 columns]

Notice how it behaves kind of in a forward fill fashion, but instead of
passing on the last known value, it will fill in the differences between
values.



The .interpolate() method has a method parameter that can
change the interpolation method.1 Possible values at the time of writing
have been reproduced in Table 9.1.
1. Series.interpolate() documentation:
https://pandas.pydata.org/docs/reference/api/panda
s.Series.interpolate.html

Table 9.1 Possible Values (at the Time of Writing) to Pass Into the
method Parameter in the .interpolate() Method

Technique Description

1linear Ignore the index and treat the values as 
equally spaced. This is the only method 
supported on Multi-Indexes

2time Works on daily and higher resolution data to 
interpolate given length of interval

3index, values Use the actual numerical values of the index

4pad Fill in NaNs using existing values

5nearest, zero, slinear, 
quadratic, cubic, spline, 
barycentric, polynomial

Passed to scipy.interpolate. 
interp1d; these methods use the 
numerical values of the index

6krogh, 
piecewise_polynomial, 
spline, pchip, akima, 
cubicspline

Wrappers around the SciPy interpolation 
methods of similar names

7from_derivatives Refers to scipy.interpolate.BPoly

9.3.2.5 Drop Missing Values

The last way to work with missing data is to drop observations or variables
with missing data. Depending on how much data is missing, keeping only
complete case data can leave you with a useless data set. Perhaps the
missing data is not random, so that dropping missing values will leave you

https://pandas.pydata.org/docs/reference/api/pandas.Series.interpolate.html


with a biased data set, or perhaps keeping only complete data will leave you
with insufficient data to run your analysis.

We can use the.dropna() method to drop missing data, and specify
parameters to this method that control how data are dropped. For instance,
the how parameter lets you specify whether a row (or column) is dropped
when 'any' or 'all' of the data is missing. The thresh parameter lets
you specify how many non-NaN values you have before dropping the row
or column.

print(ebola.shape)

(122, 18)

If we keep only complete cases in our Ebola data set, we are left with
just one row of data.

Click here to view code image

ebola_dropna = ebola.dropna() 
print(ebola_dropna.shape)

(1, 18)

print(ebola_dropna)

          Date  Day  Cases_Guinea  Cases_Liberia  
Cases_SierraLeone  \ 
19  11/18/2014  241        2047.0         7082.0    
6190.0 
 
    Cases_Nigeria  Cases_Senegal  
Cases_UnitedStates  Cases_Spain  \ 
19           20.0            1.0                 
4.0          1.0 
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    Cases_Mali  Deaths_Guinea  Deaths_Liberia  
Deaths_SierraLeone  \ 
19         6.0         1214.0          2963.0       
1267.0 
 
    Deaths_Nigeria  Deaths_Senegal  
Deaths_UnitedStates  \ 
19             8.0             0.0                  
1.0 
 
    Deaths_Spain  Deaths_Mali 
19           0.0          6.0

9.3.3 Calculations With Missing Data
Suppose we wanted to look at the case counts for multiple regions. We can
add multiple regions together to get a new column holding the case counts.

ebola["Cases_multiple"] = ( 
  ebola["Cases_Guinea"] 
  + ebola["Cases_Liberia"] 
  + ebola["Cases_SierraLeone"] 
)

Let’s look at the first 10 lines of the calculation.

Click here to view code image

ebola_subset = ebola.loc[ 
    :, 
    [ 
        "Cases_Guinea", 
        "Cases_Liberia", 
        "Cases_SierraLeone", 
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        "Cases_multiple", 
    ], 
] 
print(ebola_subset.head(n=10))

   Cases_Guinea  Cases_Liberia  Cases_SierraLeone  
Cases_multiple 
0        2776.0            NaN            10030.0   
NaN 
1        2775.0            NaN             9780.0   
NaN 
2        2769.0         8166.0             9722.0   
20657.0 
3           NaN         8157.0                NaN   
NaN 
4        2730.0         8115.0             9633.0   
20478.0 
5        2706.0         8018.0             9446.0   
20170.0 
6        2695.0            NaN             9409.0   
NaN 
7        2630.0         7977.0             9203.0   
19810.0 
8        2597.0     NaN 9004.0                NaN 
9        2571.0         7862.0             8939.0   
19372.0

You can see that a value for Cases_multiple was calculated only
when there was no missing value for Cases_Guinea,
Cases_Liberia, and Cases_SierraLeone. Calculations with
missing values will typically return a missing value, unless the function or
method called has a means to ignore missing values in its calculations.



Examples of built-in methods that can ignore missing values include
.mean() and .sum(). These functions will typically have a skipna
parameter that will still calculate a value by skipping over the missing
values.

Click here to view code image

# skipping missing values is True by default 
print(ebola.Cases_Guinea.sum(skipna = True))

84729.0

print(ebola.Cases_Guinea.sum(skipna = False))

nan

9.4 Pandas Built-In NA Missing
Pandas 1.0 introduced a built-in NA value (pd.NA). At the time of writing
this feature is still “experimental.”2 The main goal of this feature is to
provide a missing value that works across different data types.
2. Pandas experimental NA:
https://pandas.pydata.org/docs/user_guide/missing_
data.html#experimental-na-scalar-to-denote-
missing-values

Let’s use our previous scientists data set from earlier and look at
the .dtypes.

Click here to view code image

scientists = pd.DataFrame( 
  { 
    "Name": ["Rosaline Franklin", "William 
Gosset"], 
    "Occupation": ["Chemist", "Statistician"], 
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    "Born": ["1920-07-25", "1876-06-13"], 
    "Died": ["1958-04-16", "1937-10-16"], 
    "Age": [37, 61] 
  } 
) 
 
print(scientists)

                Name    Occupation        Born      
Died  Age 
0  Rosaline Franklin       Chemist  1920-07-25  
1958-04-16   37 
1     William Gosset  Statistician  1876-06-13  
1937-10-16   61

print(scientists.dtypes)

Name          object 
Occupation    object 
Born          object 
Died          object 
Age            int64 
dtype: object

scientists.loc[1, "Name"] = pd.NA 
scientists.loc[1, "Age"] = pd.NA 
 
print(scientists)

                Name    Occupation        Born      
Died   Age 
0  Rosaline Franklin        Chemist  1920-07-25  
1958-04-16    37 



1               <NA>  Statistician  1876-06-13  
1937-10-16  <NA>

print(scientists.dtypes)

Name          object 
Occupation    object 
Born          object 
Died          object 
Age           object 
dtype: object

Compare the .dtypes from pd.NA and np.NaN from earlier in this
chapter.

Click here to view code image

scientists = pd.DataFrame( 
  { 
    "Name": ["Rosaline Franklin", "William 
Gosset"], 
    "Occupation": ["Chemist", "Statistician"], 
    "Born": ["1920-07-25", "1876-06-13"], 
    "Died": ["1958-04-16", "1937-10-16"], 
    "Age": [37, 61] 
  } 
) 
 
scientists.loc[1, "Name"] = np.NaN 
scientists.loc[1, "Age"] = np.NaN 
 
print(scientists.dtypes)
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Name           object 
Occupation     object 
Born           object 
Died           object 
Age           float64 
dtype: object

Since pd.NA is still experimental, best follow up with its behavior in
the official documentation.

Conclusion
It is rare to have a data set without any missing values. It is important to
know how to work with missing values because, even when you are
working with data that is complete, missing values can still arise from your
own data munging. In this chapter, we examined some of the basic methods
used in the data analysis process that pertain to data validity. By looking at
your data and tabulating missing values, you can start the process of
assessing whether the data is of sufficiently high quality for making
decisions and drawing inferences.



10

Data Types

Data types determine what can and cannot be done to a variable (i.e.,
column). For example, when numeric data types are added together, the
result will be a sum of the values; in contrast, if strings (in Pandas they are
object or string types) are added, the strings will be concatenated
together.

This chapter presents a quick overview of the various data types you
may encounter in Pandas, and means to convert from one data type to
another.

Learning Objectives
Recognize columns in data store the same data type
Identify what kind of data type is stored in a column
Use functions to change the type of a column
Modify categorical columns

10.1 Data Types
In this chapter, we’ll use the built-in tips data set from the seaborn
library.

Click here to view code image

import pandas as pd 
import seaborn as sns 
 
tips = sns.load_data set("tips")
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To get a list of the data types stored in each column of our dataframe, we
call the dtypes attribute (Section 1.2).

print(tips.dtypes)

total_bill     float64 
tip            float64 
sex           category 
smoker        category 
day           category 
time          category 
size            int64 
dtype: object

Table 1.1 listed the various types of data that can be stored in a Pandas
column. Our data set includes data of types int64, float64, and
category. The int64 and float64 types represent numeric values
without and with decimal points, respectively. The number following the
numeric data type represents the number of bits of information that will be
stored for that particular number.

The category data type represents categorical variables. It differs
from the generic object data type that stores arbitrary Python objects
(usually strings). We will explore these differences later in this chapter.
Since the tips data set is a fully prepared and cleaned data set, variables
that store strings were saved as a category.

10.2 Converting Types
The data type that is stored in a column will govern which kinds of
functions and calculations you can perform on the data found in that
column. Clearly, then, it’s important to know how to convert between data
types.

This section focuses on how to convert from one data type to another.
Keep in mind that you need not do all your data type conversions at once,
when you first get your data. Data analytics is not a linear process, and you



can choose to convert types on the fly as needed. We saw an example of
this in Section 2.4.2, when we converted a date value into just the number
of years.

10.2.1 Converting to String Objects
In our tips data, the sex, smoker, day, and time variables are stored
as a category. In general, it’s much easier to work with string object
types when the variable is not a numeric number. There are performance
benefits from using a category data type, however.

Some data sets may have an id column in which the id is stored as a
number, but has no meaning if you perform a calculation on it (e.g., if you
try to find the mean). Unique identifiers or id numbers are typically coded
this way, and you may want to convert them to string object types
depending on what you need.

To convert values into strings, we use the .astype() method on the
column (i.e., Series).1 The .astype() method takes a parameter,
dtype, which will be the new data type the column will take on. In this
case, we want to convert the sex variable to a string object, str.
1. Series.astype() method documentation:
https://pandas.pydata.org/pandas-
docs/version/0.23/generated/pandas.Series.astype.h
tml

Click here to view code image

# convert the category sex column into a string 
dtype 
tips['sex_str'] = tips['sex'].astype(str)

Python has built-in str, float, int, complex, and bool types.
However, you can also specify any dtype from the numpy library. If we
look at the dtypes now, you will see the sex_str now has a dtype of
object.

print(tips.dtypes)

https://pandas.pydata.org/pandas-docs/version/0.23/generated/pandas.Series.astype.html
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total_bill       float64 
tip              float64 
sex             category 
smoker          category 
day             category 
time            category 
size               int64 
sex_str           object 
dtype: object

10.2.2 Converting to Numeric Values
The .astype() method is a generic function that can be used to convert
any column in a dataframe to another dtype.

Recall that each column in a DataFrame is a Pandas Series object.
That’s why the .astype() documentation is listed under
pandas.Series.astype. The example here shows how to change the
type of a DataFrame column, but if you are working with a Series
object, you can use the same .astype() method to convert the Series
as well.

We can provide any built-in or numpy type to the .astype() method
to convert the dtype of the column. For example, if we wanted to convert
the total_bill column first to a string object and then back to its
original float64, we can pass in str and float into astype,
respectively.

Click here to view code image

# convert total_bill into a string 
tips['total_bill'] = 
tips['total_bill'].astype(str) 
print(tips.dtypes)
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total_bill     object 
tip           float64 
sex          category 
smoker       category 
day          category 
time         category 
size            int64 
sex_str        object 
dtype: object

# convert it back to a float 
tips['total_bill'] = 
tips['total_bill'].astype(float) 
print(tips.dtypes)

 
total_bill        float64 
tip               float64 
sex              category 
smoker           category 
day              category 
time             category 
size                int64 
sex_str            object 
dtype: object

10.2.2.1 The .to_numeric() Method

When converting variables into numeric values (e.g., int, float), you
can also use the Pandas to_numeric() function, which handles non-
numeric values better.

Since each column in a dataframe has to have the same dtype, there
will be times when a numeric column contains strings as some of its values.



For example, instead of the NaN value that represents a missing value in
Pandas, a numeric column might use the string 'missing' or 'null'
for this purpose instead. This would make the entire column a string
object type instead of a numeric type.

Let’s subset our tips dataframe and also put in a 'missing' value in
the total_bill column to illustrate how the to_numeric() function
works.

Note
We use the .copy() method here to avoid the
SettingWithCopyWarning message when we modify the
subsetted data set (Appendix T).

Click here to view code image

# subset the tips data 
tips_sub_miss = tips.head(10).copy()

# assign some 'missing' values 
tips_sub_miss.loc[[1, 3, 5, 7], 'total_bill'] = 
'missing'

print(tips_sub_miss)

  total_bill  tip    sex smoker day   time size 
sex_str 
0      16.99 1.01 Female     No Sun Dinner    2  
Female 
1    missing 1.66   Male     No Sun Dinner    3    
Male 
2      21.01 3.50   Male     No Sun Dinner    3    
Male 
3    missing 3.31   Male     No Sun Dinner    2    

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch10_images.xhtml#f0222-02


Male 
4      24.59 3.61 Female     No Sun Dinner    4  
Female 
5    missing 4.71   Male     No Sun Dinner    4    
Male 
6       8.77 2.00   Male     No Sun Dinner    2    
Male 
7    missing 3.12   Male     No Sun Dinner    4    
Male 
8      15.04 1.96   Male     No Sun Dinner    2    
Male 
9      14.78 3.23   Male     No Sun Dinner    2    
Male

Looking at the dtypes, you will see that the total_bill column is
now a string object.

print(tips_sub_miss.dtypes)

total_bill         object 
tip               float64 
sex              category 
smoker           category 
day              category 
time             category 
size                int64 
sex_str            object 
dtype: object

If we now try to use the .astype() method to convert the column
back to a float, we will get an error: Pandas does not know how to
convert 'missing' into a float.

Click here to view code image
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# this will cause an error 
tips_sub_miss['total_bill'].astype(float)

ValueError: could not convert string to float: 
'missing'

If we use the to_numeric() function from the pandas library, we
get a similar error.

Click here to view code image

# this will cause an error 
pd.to_numeric(tips_sub_miss['total_bill'])

ValueError: Unable to parse string "missing" at 
position 1

The to_numeric() function has a parameter called errors that
governs what happens when the function encounters a value that it is unable
to convert to a numeric value. By default, this value is set to 'raise';
that is, if it does encounter a value it is unable to convert to a numeric
value, it will 'raise' an error.

Based on the documentation:2

2. to_numeric() function documentation:
https://pandas.pydata.org/docs/reference/api/panda
s.to_numeric.html

‘raise’, then invalid parsing will raise an exception
‘coerce’, then invalid parsing will be set as NaN
‘ignore’, then invalid parsing will return the input

Going out of order from the documentation, if we pass errors the
'ignore' value, nothing will change in our column. But we also do not
get an error message, which may not always be the behavior we want.

Click here to view code image
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tips_sub_miss["total_bill"] = pd.to_numeric( 
    tips_sub_miss["total_bill"], errors="ignore" 
) 
 
print(tips_sub_miss)

 
  total_bill  tip    sex smoker day   time size 
sex_str 
0      16.99 1.01 Female     No Sun Dinner    2  
Female 
1    missing 1.66   Male     No Sun Dinner    3    
Male 
2      21.01 3.50   Male     No Sun Dinner    3    
Male 
3    missing 3.31   Male     No Sun Dinner    2    
Male 
4      24.59 3.61 Female     No Sun Dinner    4  
Female 
5    missing 4.71   Male     No Sun Dinner    4    
Male 
6       8.77 2.00   Male     No Sun Dinner    2    
Male 
7    missing 3.12   Male     No Sun Dinner    4    
Male 
8      15.04 1.96   Male     No Sun Dinner    2    
Male 
9      14.78 3.23   Male     No Sun Dinner    2    
Male

print(tips_sub_miss.dtypes)



total_bill     object 
tip           float64 
sex          category 
smoker       category 
day          category 
time         category 
size            int64 
sex_str        object 
dtype: object

In contrast, if we pass in the 'coerce' value, we will get NaN values
for the 'missing' string.

Click here to view code image

tips_sub_miss["total_bill"] = pd.to_numeric( 
    tips_sub_miss["total_bill"], errors="coerce" 
)

print(tips_sub_miss)

   total_bill  tip    sex smoker day   time size 
sex_str 
0       16.99 1.01 Female     No Sun Dinner    2  
Female 
1         NaN 1.66   Male     No Sun Dinner    3    
Male 
2       21.01 3.50   Male     No Sun Dinner    3    
Male 
3         NaN 3.31   Male     No Sun Dinner    2    
Male 
4       24.59 3.61 Female     No Sun Dinner    4  
Female 
5         NaN 4.71   Male     No Sun Dinner    4    
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Male 
6        8.77 2.00   Male     No Sun Dinner    2    
Male 
7         NaN 3.12   Male     No Sun Dinner    4    
Male 
8       15.04 1.96   Male     No Sun Dinner    2    
Male 
9       14.78 3.23   Male     No Sun Dinner    2    
Male

print(tips_sub_miss.dtypes)

total_bill    float64 
tip           float64 
sex          category 
smoker       category 
day          category 
time         category 
size            int64 
sex_str        object 
dtype: object

This is a useful trick when you know a column must contain numeric
values, but for some reason the data include non-numeric values.

10.3 Categorical Data
Not all data values are numeric. Pandas has a category dtype that can
encode categorical values.3 Here are a few use cases for categorical data:
3. Categorical data:
https://pandas.pydata.org/docs/user_guide/categori
cal.html

It can be memory and speed efficient to store data in this manner,
especially if the data set includes many repeated string values

https://pandas.pydata.org/docs/user_guide/categorical.html


Categorical data may be appropriate when a column of values has an
order (e.g., a Likert scale)
Some Python libraries understand how to deal with categorical data
(e.g., when fitting statistical models)

10.3.1 Convert to Category
To convert a column into a categorical type, we pass category into the
.astype() method.

Click here to view code image

# convert the sex column into a string object 
first 
tips['sex'] = tips['sex'].astype('str') 
print(tips.info())

<class 'pandas.core.frame.DataFrame'> 
RangeIndex: 244 entries, 0 to 243 
Data columns (total 8 columns):

 #  Column     Non-Null Count Dtype 
--- ------     -------------- ----- 
 0  total_bill 244 non-null   float64 
 1  tip        244 non-null   float64 
 2  sex        244 non-null   object 
 3  smoker     244 non-null   category 
 4  day        244 non-null   category 
 5  time       244 non-null   category 
 6  size       244 non-null   int64 
 7  sex_str    244 non-null   object 
dtypes: category(3), float64(2), int64(1), 
object(2) 
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memory usage: 10.8+ KB 
None

Click here to view code image

# convert the sex column back into categorical 
data 
tips['sex'] = tips['sex'].astype('category') 
print(tips.info())

<class 'pandas.core.frame.DataFrame'> 
RangeIndex: 244 entries, 0 to 243 
Data columns (total 8 columns):

 #  Column       Non-Null Count Dtype 
--- ------       -------------- ----- 
 0  total_bill   244 non-null   float64 
 1  tip          244 non-null   float64 
 2  sex          244 non-null   category 
 3  smoker       244 non-null   category 
 4  day          244 non-null   category 
 5  time         244 non-null   category 
 6  size         244 non-null   int64 
 7  sex_str      244 non-null   object 
dtypes: category(4), float64(2), int64(1), 
object(1) 
memory usage: 9.3+ KB 
None

You can also see the difference in memory usage from the string and
category storage.

10.3.2 Manipulating Categorical Data
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The API reference has a list of which operations can be performed on a
categorical Series.4 The .cat. accessor is an attribute that allows you
to access the category information in the Series. This list has been
reproduced in Table 10.1.
4. The .cat. accessor:
https://pandas.pydata.org/docs/reference/series.ht
ml#categorical-accessor

Table 10.1 Categorical Accessor Attributes and Methods

Attribute or Method Description

Series.cat.categories The categories

Series.cat.ordered Whether the categories are 
ordered

Series.cat.codes Return the integer code of the 
category

Series.cat.rename_categories(
)

Rename categories

Series.cat.reorder_categories
()

Reorder categories

Series.cat.add_categories() Add new categories

Series.cat.remove_categories(
)

Remove categories

Series.cat.remove_unused_cate
gories()

Remove unused categories

Series.cat.set_categories()) Set new categories

Series.cat.as_ordered() Make the category ordered

Series.cat.as_unordered() Make the category unordered

Conclusion

https://pandas.pydata.org/docs/reference/series.html#categorical-accessor


This chapter covered how to convert from one data type to another.
dtypes govern which operations can and cannot be performed on a
column. While this chapter is relatively short, converting types is an
important skill when you are working with data and when you are using
other Pandas methods.



11

Strings and Text Data

Introduction
Most data in the world can be stored as text and strings. Even values that
may eventually be numeric data may initially come in the form of text. It’s
important to be able to work with text data. This chapter won’t be specific
to Pandas. That is, we will mainly explore how you manipulate strings
within Python without Pandas. The following chapters will cover some
more Pandas materials. Then we will come back to strings and see how it
all ties back with Pandas. As an aside, some of the string examples in this
chapter come from Monty Python and the Holy Grail.

Learning Objectives
Recall how to subset containers and sequences
Recognize strings are a type of container object
Modify strings based on use case
Create regular expression patterns to match strings
Combine pose text with code output into a single sentence

11.1 Strings
In Python, a string is simply a series of characters. They are created by a
set of opening and matching single or double quotes. Below are two strings,
grail and a scratch. These strings are assigned to the variables word
and sent, respectively.

word = 'grail' 
sent = 'a scratch'



So far in this book, we have seen strings in a column represented as the
object dtype.

11.1.1 Subset and Slice Strings
A string can be thought of as a container of characters. You can subset a
string like any other Python container (e.g., list or Series).

Table 11.1 and Table 11.2 show the strings with their associated index.
This information will help you understand the examples in which we slice
values using the index.

Table 11.1 Index Positions for the String "grail"

index 0 1 2 3 4

string g r a i l

neg index –5 –4 –3 –2 –1

Table 11.2 Index Positions for the String "a scratch"

index 0 1 2 3 4 5 6 7 8

string a  s c r a t c h

neg index –9 –8 –7 –6 –5 –4 –3 –2 –1

11.1.1.1 Single Letter

To get the first letter of our strings, we can use the square bracket notation,
[ ]. This notation is the same method we used in Section 1.3 when we
looked at various slices of data.

print(word[0])

g



print(sent[3])

c

11.1.1.2 Slice Multiple Letters

Alternatively, we can use slicing notation (Appendix L) to get ranges from
our strings.

Click here to view code image

# get the first 3 characters 
# note index 3 is really the 4th character 
print(word[0:3])

gra

Recall that when using slicing notation in Python, it is left-side
inclusive, right-side exclusive. In other words, it will include the index
value specified first, but it will not include the index value specified
second.

For example, the notation [0:3] will include the characters from 0 to
3, but not index 3. Another way to say this is to state that [0:3] will
include the indices from 0 to 2, inclusive.

11.1.1.3 Negative Numbers

Recall that in Python, passing in a negative index actually starts the count
from the end of a container.

Click here to view code image

# get the last letter from "a scratch" 
print(sent[ -1])

h
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The negative index refers to the index position as well, so you can also
use it to slice values.

# get 'a' from "a scratch" 
print(sent[ -9: -8])

a

You can combine non-negative numbers with negative numbers.

# get 'a' 
print(sent[0: -8])

a

Note that you can’t actually get the last letter when using a negative
index for the second value.

# scratch 
print(sent[2: -1])

scratc

# scratch 
print(sent[ -7: -1])

scratc

11.1.2 Get the Last Character in a String
Just getting the last element in a string (or any container) can be done with
the negative index, -1. However, it becomes problematic when we want to
use slicing notation and also include the last character. For example, if we



tried to use slicing notation to get the word “scratch” from the sent
variable, the result returned would be one letter short.

Since Python is right-side exclusive, we need to specify an index
position that is one greater than the last index. To do this, we can get the
len (length) of the string and then pass that value into the slicing notation.

Click here to view code image

# note that the last index is one position is 
smaller than 
# the number returned for len 
s_len = len(sent) 
print(s_len)

9

print(sent[2:s_len])

scratch

11.1.2.1 Slice from the Beginning or to the End

A very common task is to slice a value from the beginning to a certain point
in the string (or container). The first element will always be 0, so we can
always write something like word[0:3] to get the first three elements, or
word[-3:len(word)] to get the last three elements.

Another shortcut for this task is to leave out the data on the left or right
side of the :. If the left side of the : is empty, then the slice will start from
the beginning and end at the index on the right (non-inclusive). If the right
side of the : is empty, then the slice will start from the index on the left,
and end at the end of the string. For example, these slices are equivalent:

print(word[0:3])

gra

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch11_images.xhtml#f0231-05


# left the left side empty 
print(word[ :3])

gra

print(sent[2:len(sent)])

scratch

# leave the right side empty 
print(sent[2: ])

scratch

Another way to specify the entire string is to leave both values empty.

print(sent[:])

a scratch

11.1.2.2 Slice Increments (Steps)

The final notation while slicing allows you to slice in increments. To do
this, you use a second colon, :, to provide a third number. The third number
allows you to specify the increment to pull values out.

For example, you can get every other string by passing in 2 for every
second character.

Click here to view code image

# step by 2, to get every other character 
print(sent[::2])

asrth
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Any integer can be passed here, so if you wanted every third character
(or value in a container), you could pass in 3.

# get every third character 
print(sent[::3])

act

11.2 String Methods
Many methods are also used when processing data in Python. A list of all
the string methods can be found on the “String Methods” documentation
page.1 Table 11.3 and Table 11.4 summarize some string methods that are
commonly used in Python.
1. String methods:
https://docs.python.org/3/library/stdtypes.html#st
ring-methods

Table 11.3 Python String Methods

Method Description

.capit
alize(
)

Capitalizes the first character

.count
()

Counts the number of occurrences of a string

.start
swith(
)

True if the string begins with specified value

.endsw
ith()

True if the string ends with specified value

.find(
)

Smallest index of where the string matched, -1 if no match

https://docs.python.org/3/library/stdtypes.html#string-methods


Method Description

.index
()

Same as find but returns ValueError if no match

.isalp
ha()

True if all characters are alphabetic

.isdec
imal()

True if all characters are decimal numbers (see documentation 
as well as .isdigit(), .isnumeric(), and .isalnum())

.isaln
um()

True if all characters are alphanumeric (alphabetic or numeric)

.lower
()

Copy of a string with all lowercase letters

.upper
()

Copy of string with all uppercase letters

.repla
ce()

Copy of a string with the old values replaced with new

.strip
()

Removes leading and trailing whitespace; also see lstrip and 
rstrip

.split
()

Returns a list of values split by the delimiter (separator)

.parti
tion()

Similar to split(maxsplit=1) but also returns the separator

.cente
r()

Centers the string to a given width

.zfill
()

Copy of string left filled with '0'

Table 11.4 Examples of Using Python String Methods

Code Results



Code Results

"black Knight".capitalize() 'Black knight'

"It's just a flesh 
wound!".count('u')

2

"Halt! Who goes 
there?".startswith('Halt')

True

"coconut".endswith('nut') True

"It's just a flesh 
wound!".find('u')

7

"It's just a flesh 
wound!".index('scratch')

ValueError

"old woman".isalpha() False (there is a 
whitespace)

"37".isdecimal() True

"I'm 37".isalnum() False (apostrophe and 
space)

"Black Knight".lower() 'black knight'

"Black Knight".upper() 'BLACK KNIGHT'

"flesh wound!".replace('flesh 
wound', 'scratch')

'scratch!'

" I'm not dead.   ".strip() "I'm not dead."

"NI! NI! NI! NI!".split(sep=' 
')

['NI!', 'NI!', 
'NI!', 'NI!']

"3,4.partition(',') ('3', ',', '4')

"nine".center(width=10) '    nine   '

"9".zfill(with=5) '00009'



11.3 More String Methods
There are a few more string methods that are useful, but hard to convey in a
table.

11.3.1 Join
The .join() method takes a container (e.g., a list) and returns a new
string that combines each element in the list. For example, suppose we
wanted to combine coordinates in the degrees, minutes, seconds (DMS)
notation.

d1 = '40°' 
m1 = "46'" 
s1 = '52.837"' 
u1 = 'N' 
 
d2 = '73°' 
m2 = "58'" 
s2 = '26.302"' 
u2 = 'W'

We can join all the values with a space, ' ', by using the .join()
method on the space string.

Click here to view code image

coords = ' '.join([d1, m1, s1, u1, d2, m2, s2, 
u2]) 
print(coords)

40° 46' 52.837" N 73° 58' 26.302" W

This method is also useful if you have a list of strings that you want to
separate using your own delimiter (e.g., tabs with \t and commas with ,).
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If we wanted, we could now .split() on a space, " ", and get the
individual parts from coords.

Click here to view code image

coords.split(" ")

['40°', "46'", '52.837"', 'N', '73°', "58'", 
'26.302"', 'W']

11.3.2 Splitlines
The .splitlines() method is similar to the .split() method. It is
typically used on strings that are multiple lines long and will return a list in
which each element of the list is a line in the multiple-line string.

Note
You can create a multi-line string in Python by beginning and ending
the string with a triple-quote, ''' or """.

Click here to view code image

multi_str = """Guard: What? Ridden on a horse? 
King Arthur: Yes! 
Guard: You're using coconuts! 
King Arthur: What? 
Guard: You've got ... coconut[s] and you're 
bangin' 'em together. 
""" 
 
print(multi_str)
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Guard: What? Ridden on a horse? 
King Arthur: Yes! 
Guard: You're using coconuts! 
King Arthur: What? 
Guard: You've got ... coconut[s] and you're 
bangin' 'em together.

We can get every line as a separate element in a list using
.splitlines().

Click here to view code image

multi_str_split = multi_str.splitlines()

print(multi_str_split)

[ 
  "Guard: What? Ridden on a horse?", 
  "King Arthur: Yes!", 
  "Guard: You're using coconuts!", 
  "King Arthur: What?", 
  "Guard: You've got ... coconut[s] and you're 
bangin' 'em together." 
]

Finally, suppose we just wanted the text from the “Guard”. This is a two-
person conversation, so the “Guard” speaks every other line.

Click here to view code image

guard = multi_str_split[::2]

print(guard)
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[ 
  "Guard: What? Ridden on a horse?", 
  "Guard: You're using coconuts!", 
  "Guard: You've got ... coconut[s] and you're 
bangin' 'em together." 
]

There are a few ways to just get the lines from the “Guard”. One way
would be to use the .replace() method on the string and
.replace() the Guard: string with an empty string ''. We could then
use the .splitlines() method.

Click here to view code image

guard = multi_str.replace("Guard: 
","").splitlines()[::2]

print(guard)

[ 
  "What? Ridden on a horse?", 
  "You're using coconuts!", 
  "You've got ... coconut[s] and you're bangin' 
'em together." 
]

11.4 String Formatting (F-Strings)
Formatting strings allows you to specify a generic template for a string, and
insert variables into the pattern. It can also handle various ways to visually
represent strings—for example, showing two decimal values in a float,
or showing a number as a percentage instead of a decimal value.

String formatting can even help when you want to print something to the
console. Instead of just printing out the variable, you can print a string that
provides hints about the value that is printed.
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This chapter will only talk about “formatted literal strings”, also known
as f-strings, which were introduced in Python 3.6. Older C-Style formatting
and the .format() method have been moved to Appendix W.1 and
Appendix W.2, respectively.

To create an f-string, we will write our strings as f"":

s = f"hello" 
print(s)

hello

This tells the string that it is an f-string. This now allows us to use { }
within the string to put in Python variables or calculations.

Click here to view code image

num = 7 
s = f"I only know {num} digits of pi." 
print(s)

I only know 7 digits of pi.

This allows us to create readable strings using Python variables. You can
put in different types of objects within a f-string.

Click here to view code image

const = "e" 
value = 2.718 
s = f"Some digits of {const}: {value}" 
print(s)

Some digits of e: 2.718
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lat = "40.7815° N" 
lon = "73.9733° W" 
s = f"Hayden Planetarium Coordinates: {lat}, 
{lon}" 
print(s)

Hayden Planetarium Coordinates: 40.7815° N, 
73.9733° W

Variables can be reused within a f-string.

Click here to view code image

word = "scratch" 
 
s = f"""Black Knight:  'Tis but a {word}. 
King Arthur: A {word}? Your arm's off! 
""" 
print(s)

Black Knight: 'Tis but a scratch. 
King Arthur: A scratch? Your arm's off!

11.4.1 Formatting Numbers
Numbers can also be formatted.

Click here to view code image

p = 3.14159265359 
print(f"Some digits of pi: {p}")

Some digits of pi: 3.14159265359
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You can specify how to format a placeholder by using the optional colon
character, :, and use the format specification mini-language2 to change how
it outputs in the string. Here is an example of formatting numbers and use
thousands-place comma separators.
2. String formatting mini-language:
https://docs.python.org/3.4/library/string.html#fo
rmat-string-syntax

Click here to view code image

digits = 67890 
s = f"In 2005, Lu Chao of China recited 
{67890:,} digits of pi." 
print(s)

In 2005, Lu Chao of China recited 67,890 digits of 
pi.

The formatting mini-language also supports how many decimal values
are displayed.

Click here to view code image

prop = 7 / 67890 
s = f"I remember {prop:.4} or {prop:.4%} of what 
Lu Chao recited." 
print(s)

I remember 0.0001031 or 0.0103% of what Lu Chao 
recited.

We can also use the formatting mini-language to left pad a digit with 0.

Click here to view code image
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id = 42 
print(f"My ID number is {id:05d}")

My ID number is 00042

In the :05d, the colon tells us we are going to provide a formatting
pattern, the 0 is the character we will use to pad, and the 5d tells us to pad
with 5 digits.

Sometimes we can use the formatting mini-language, but we can also
use a lot of the built-in string methods as well.

Click here to view code image

id_zfill = "42".zfill(5) 
print(f"My ID number is {id_zfill}")

My ID number is 00042

Or we can put in a python expression directly in the f-string.

Click here to view code image

print(f"My ID number is {'42'.zfill(5)}")

My ID number is 00042

It is usually better to do all the function calls before creating the f-string,
so all you are passing into the f-string is a variable. This just makes the
code easier to read.

11.5 Regular Expressions (RegEx)
When the base Python string methods that search for patterns aren’t enough,
you can throw the kitchen sink at the problem by using regular expressions
(regex). The extremely powerful regular expressions provide a (nontrivial)
way to find and match patterns in strings. The downside is that after you
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finish writing a complex regular expression, it becomes difficult to figure
out what the pattern does by looking at it. That is, the syntax is difficult to
read.

For many data tasks, such as matching a telephone number or address
field validation, it’s almost easier to Google which type of pattern you are
trying to match, and paste what someone has already written into your own
code (don’t forget to document where you got the pattern from).

Before continuing, you might want to visit regex101.3 It’s a great place
and reference for regular expressions and testing patterns on test strings. It
even has a Python mode, so you can directly copy/paste a pattern from the
site into your own Python code.

Regular expressions in Python use the re module.4 This module also
has a great How To5 that can be used as an additional resource.
3. Regex101 website: https://regex101.com/

4. re module documentation:
https://docs.python.org/3/library/re.html
5. Regular Expression HOWTO:
https://docs.python.org/3/howto/regex.html#regex-
howto

Table 11.5 and Table 11.6 show some RegEx syntax and special
characters that will be used in this section.

Table 11.5 Basic RegEx Syntax

Syntax Description

. Matches any one character

^ Matches from the beginning of a string

$ Matches from the end of a string

* Matches zero or more repetitions of the previous character

+ Matches one or more repetitions of the previous character

? Matches zero or one repetition of the previous character

{m} Matches m repetitions of the previous character

https://regex101.com/
https://docs.python.org/3/library/re.html
https://docs.python.org/3/howto/regex.html#regex-howto


Syntax Description

{m,n}Matches any number from m to n of the previous character

\ Escape character

[ ] A set of characters (e.g., [a-z] will match all letters from a to z)

| OR; A | B will match A or B

( ) Matches the pattern specified within the parentheses exactly

Table 11.6 RegEx Special Characters

Sequence Description

\d A digit

\D Any character NOT a digit (opposite of \d)

\s Any whitespace character

\S Any character NOT a whitespace (opposite of \s)

\w Word characters

\W Any character NOT a word character (opposite of \w)

To use regular expressions, we write a string that contains the RegEx
pattern, and provide a string for the pattern to match. Various functions
within re can be used to handle specific needs. Some common tasks are
provided in Table 11.7.

Table 11.7 Common RegEx Functions in re

Function Description

search() Find the first occurrence of a string

match() Match from the beginning of a string

fullmatch() Match the entire string



Function Description

split() Split string by the pattern

findall() Find all non-overlapping matches of a string

finditer() Similar to findall but returns a Python iterator

sub() Substitute the matched pattern with the provided string

11.5.1 Match a Pattern
We will be using the re module to write the regular expression pattern we
want to match in a string. Let’s write a pattern that will match 10 digits (the
digits for a U.S. telephone number).

import re 
 
tele_num = '1234567890'

There are many ways we can match 10 consecutive digits. We can use
the match() function to see if the pattern matches a string. The output of
many re functions is a match object.

Click here to view code image

m = re.match(pattern='\d\d\d\d\d\d\d\d\d\d', 
string=tele_num) 
print(type(m))

<class 're.Match'>

print(m)

<re.Match object; span=(0, 10), 
match='1234567890'>
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If we look at the printed match object, we see that, if there was a match,
the span identifies the index of the string where the matches occurred, and
the match identifies the exact string that got matched.

Many times when we are matching a pattern to a string, we simply want
a True or False value indicating whether there was a match. If you just
need a True/False value returned, you can run the built-in bool()
function to get the boolean value of the match object.

print(bool(m))

True

At other times, a regular expression match will be part of an if
statement (Appendix X), so this kind of bool() casting is unnecessary.

# should print match 
if m: 
  print('match') 
else: 
  print('no match')

match

If we wanted to extract some of the match object values, such as the
index positions or the actual string that matched, we can use a few methods
on the match object.

Click here to view code image

# get the first index of the string match 
print(m.start())

0
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# get the last index of the string match 
print(m.end())

10

# get the first and last index of the string 
match 
print(m.span())

(0, 10)

# the string that matched the pattern 
print(m.group())

1234567890

Telephone numbers can be a little more complex than a series of 10
consecutive digits. Here’s another common representation.

Click here to view code image

tele_num_spaces = '123 456 7890'

Suppose we use the previous pattern in this example.

Click here to view code image

# we can simplify the previous pattern 
m = re.match(pattern='\d{10}', 
string=tele_num_spaces) 
print(m)

None
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You can tell the pattern did not match because the match object returned
None. If we run our if statement again, it will print 'no match'.

if m: 
   print('match') 
else: 
   print('no match')

no match

Let’s modify our pattern this time, by assuming the new string has three
digits, a space, another three digits, and another space, followed by four
digits. If we want to make it general to the original example, the spaces can
be matched zero or one time. The new RegEx pattern will look like the
following code:

Click here to view code image

# you may see the RegEx pattern as a separate 
variable 
# because it can get long and 
# make the actual match function call hard to 
read 
p = '\d{3}\s?\d{3}\s?\d{4}' 
m = re.match(pattern=p, string=tele_num_spaces) 
print(m)

<re.Match object; span=(0, 12), match='123 456 
7890'>

Area codes can also be surrounded by parentheses and a dash between
the seven main digits.

Click here to view code image
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tele_num_space_paren_dash = '(123) 456-7890' 
p = '\(?\d{3}\)?\s?\d{3}\s?-?\d{4}' 
m = re.match(pattern=p, 
string=tele_num_space_paren_dash) 
print(m)

<re.Match object; span=(0, 14), match='(123) 456-
7890'>

Finally, there could be a country code before the number.

Click here to view code image

cnty_tele_num_space_paren_dash = '+1 (123) 456-
7890' 
p = '\+?1\s?\(?\d{3}\)?\s?\d{3}\s?-?\d{4}' 
m = re.match(pattern=p, 
string=cnty_tele_num_space_paren_dash) 
print(m)

<re.Match object; span=(0, 17), match='+1 (123) 
456-7890'>

As these examples suggest, although powerful, regular expressions can
easily become unwieldy. Even something as simple as a telephone number
can lead to a daunting series of symbols and numbers. Even so, sometimes
regular expressions are the only way to get something done.

11.5.2 Remember What Your RegEx Patterns Are
The last regular expression of a phone number had many complex
components. Chances are you forget what most of the pattern means after
you write it, let alone trying to figure out what it means when you
eventually review back your code.
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Let’s see how we can re-write the last example in a more maintainable
way, by utilizing one of the quirks of the Python language.

In Python 2 strings next to each other will be concatenated and joined
together into a single string.

Click here to view code image

"multiple" "strings" "next" "to" "each" "other"

'multiplestringsnexttoeachother'

Note that no extra delimiter, space, or character is added between
subsequent strings, they are just concatenated together.

Tip
You can also use this trick with really long URLs that you want to split
across multiple lines.

That also means that we could break up our long pattern string across
multiple lines. We can tell python to treat all the separate strings as a single
value that we can assign to a variable by wrapping the statement around a
pair of round parentheses, ( ).

Click here to view code image

p = ( 
  '\+?' 
  '1' 
  '\s?' 
  '\(?' 
  '\d{3}' 
   '\)?' 
  '\s?' 
  '\d{3}' 
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  '\s?' 
  '-?' 
  '\d{4}' 
) 
print(p)

\+?1\s?\(?\d{3}\)?\s?\d{3}\s?-?\d{4}

Now that we have our code across multiple lines, we can add comments
to our string, as if it was regular Python code.

Click here to view code image

p = ( 
  '\+?'     # maybe starts with a + 
  '1'       # the number 1 
  '\s?'     # maybe there's a whitespace 
  '\(?'     # maybe there's an open round 
parenthesis ( 
  '\d{3}'   # 3 numbers 
  '\)?'     # maybe there's a closing round 
parenthesis ) 
  '\s?'     # maybe there's a whitespace 
  '\d{3}'   # 3 numbers 
  '\s?'     # maybe there's a whitespace 
  '-?'      # maybe there's a dash character 
  '\d{4}'   # 4 numbers 
) 
print(p)

\+?1\s?\(?\d{3}\)?\s?\d{3}\s?-?\d{4}

This technique allows you to write your regular expressions in a manner
that you can understand later on, and make it easier to debug the pattern if
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something is not matching as you expect.

Click here to view code image

cnty_tele_num_space_paren_dash = '+1 (123) 456-
7890' 
m = re.match(pattern=p, 
string=cnty_tele_num_space_paren_dash) 
print(m)

<re.Match object; span=(0, 17), match='+1 (123) 
456-7890'>

11.5.3 Find a Pattern
We can use the findall() function to find all matches within a pattern.
Let’s write a pattern that matches digits and uses it to find all the digits from
a string.

Click here to view code image

# python will concatenate 2 strings next to each 
other 
s = ( 
  "14 Ncuti Gatwa, " 
  "13 Jodie Whittaker, war John Hurt, 12 Peter 
Capaldi, " 
  "11 Matt Smith, 10 David Tennant, 9 
Christopher Eccleston" 
) 
 
print(s)
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14 Ncuti Gatwa, 13 Jodie Whittaker, war John Hurt, 
12 Peter Capaldi, 
11 Matt Smith, 10 David Tennant, 9 Christopher 
Eccleston

Click here to view code image

# pattern to match 1 or more digits 
p = "\d+" 
 
m = re.findall(pattern=p, string=s) 
print(m)

['14', '13', '12', '11', '10', '9']

11.5.4 Substitute a Pattern
In our str.replace() example (Section 11.3.2), we wanted to get all
the lines from the Guard, so we ended up doing a direct string replacement
on the script. However, using regular expressions, we can generalize the
pattern so we can get either the line from the Guard or the line from King
Arthur.

Click here to view code image

multi_str = """Guard: What? Ridden on a horse? 
King Arthur: Yes! 
Guard: You're using coconuts! 
King Arthur: What? 
Guard: You've got ... coconut[s] and you're 
bangin' 'em together. 
""" 
 
p = '\w+\s?\w+:\s?' 
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s = re.sub(pattern=p, string=multi_str, repl='') 
print(s)

What? Ridden on a horse? 
Yes! 
You're using coconuts! 
What? 
You've got ... coconut[s] and you're bangin' 'em 
together.

Now we can get either party’s line by using string slicing with
increments.

Click here to view code image

guard = s.splitlines()[ ::2] 
kinga = s.splitlines()[1::2] # skip the first 
element

print(guard)

[ 
  "What? Ridden on a horse?", 
  "You're using coconuts!", 
  "You've got ... coconut[s] and you're bangin' 
'em together." 
]

print(kinga)

[ 
  "Yes!", 
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  "What?" 
]

Don’t be afraid to mix and match regular expressions with the simpler
pattern match and string methods.

11.5.5 Compile a Pattern
When we work with data, typically many operations will occur on a
column-by-column or row-by-row basis. Python’s re module allows you to
compile() a pattern so it can be reused. This can lead to performance
benefits, especially if your data set is large. Here we will see how to
compile a pattern and use it just as we did in the previous examples in this
section.

The syntax is almost the same. We write our regular expression pattern,
but this time, instead of saving it to a variable directly, we pass the string
into the compile() function and save that result. We can then use the
other re functions on the compiled pattern. Also, since the pattern is
already compiled, you no longer need to specify the pattern parameter in
the method.

Here is the match() example:

Click here to view code image

# pattern to match 10 digits 
p = re.compile('\d{10}') 
s = '1234567890' 
 
# note: calling match on the compiled pattern 
# not using the re.match function 
m = p.match(s) 
print(m)

<re.Match object; span=(0, 10), 
match='1234567890'>
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The findall() example:

Click here to view code image

p = re.compile('\d+') 
s = ( 
  "14 Ncuti Gatwa, " 
  "13 Jodie Whittaker, war John Hurt, 12 Peter 
Capaldi, " 
  "11 Matt Smith, 10 David Tennant, 9 
Christopher Eccleston" 
) 
 
m = p.findall(s) 
print(m)

['14', '13', '12', '11', '10', '9']

The sub() or substitution example:

Click here to view code image

p = re.compile('\w+\s?\w+:\s?') 
s = "Guard: You're using coconuts!" 
 
m = p.sub(string=s, repl='') 
print(m)

You're using coconuts!

11.6 The regex Library
The re library is popular because it comes with the Python installation.
However, seasoned regular expression writers may find the regex library
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to have more comprehensive features. It is backward compatible with the
re library, so all the code from the re RegEx section (Section 11.5) will
still work with the regex library. The documentation for this library can be
found on the PyPI page.6

6. regex documentation: https://pypi.python.org/pypi/regex

Click here to view code image

import regex 
 
# a re example using the regex library 
p = regex.compile('\d+') 
s = ( 
  "14 Ncuti Gatwa, " 
  "13 Jodie Whittaker, war John Hurt, 12 Peter 
Capaldi, " 
  "11 Matt Smith, 10 David Tennant, 9 
Christopher Eccleston" 
) 
 
m = p.findall(s) 
print(m)

['14', '13', '12', '11', '10', '9']

I will defer to the examples and explanations on
http://www.rexegg.com/ for more details:

www.rexegg.com/regex-python.html
www.rexegg.com/regex-best-trick.html

Conclusion
The world is filled with data stored as text. Understanding how to
manipulate text strings is a fundamental skill for the data scientist. Python
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has many built-in string methods and libraries that can make string and text
manipulation easier. This chapter covered some of the fundamental methods
of string manipulations that we can build on when working with data.
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Dates and Times

One of the bigger reasons for using Pandas is its ability to work with
timeseries data. We observed some of this capability earlier, when we
concatenated data in Chapter 6 and saw how the indices automatically
aligned themselves. This chapter focuses on the more common tasks
encountered when working with data that involve dates and times.

Learning Objectives
Create date objects with the datetime library
Use functions to convert strings into a date
Use functions to format dates
Perform date calculations
Use functions to resample dates
Use functions to work with and convert time zones

12.1 Python's datetime Object
Python has a built-in datetime object that is found in the datetime
library.

Click here to view code image

from datetime import datetime

We can use datetime to get the current date and time.

Click here to view code image
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now = datetime.now() 
print(f"Last time this chapter was rendered for 
print: {now}")

Last time this chapter was rendered for print: 
2022-09-01 01:55:41.496795

We can also create our own datetime manually.

t1 = datetime.now() 
t2 = datetime(1970, 1,1) 

And we can do datetime math.

 
diff = t1 - t2 
print(diff)

19236 days, 1:55:41.499914

The data type of a date calculation is a timedelta.

print(type(diff))

<class 'datetime.timedelta'>

We can perform these types of actions when working within a Pandas
dataframe.

12.2 Converting to datetime
Converting an object type into a datetime type is done with the
to_datatime function. Let’s load up our Ebola data set and convert the
Date column into a proper datetime object.

Click here to view code image
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import pandas as pd 
ebola = 
pd.read_csv('data/country_timeseries.csv') 
 
# top left corner of the data 
print(ebola.iloc[:5, :5])

        Date Day Cases_Guinea Cases_Liberia 
Cases_SierraLeone 
0   1/5/2015 289       2776.0           NaN         
10030.0 
1   1/4/2015 288       2775.0           NaN         
9780.0 
2   1/3/2015 287       2769.0        8166.0         
9722.0 
3   1/2/2015 286          NaN        8157.0         
NaN 
4 12/31/2014 284       2730.0        8115.0         
9633.0

The first Date column contains date information, but the .info()
attribute tells us it is actually encoded as a generic string object in
Pandas.

Click here to view code image

print(ebola.info())

<class 'pandas.core.frame.DataFrame'> 
RangeIndex: 122 entries, 0 to 121 
Data columns (total 18 columns): 
 
 #  Column              Non-Null Count Dtype 
--- ------              -------------- ----- 
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 0  Date                122 non-null   object 
 1  Day                 122 non-null   int64 
 2  Cases_Guinea        93 non-null   float64 
 3  Cases_Liberia       83 non-null   float64 
 4  Cases_SierraLeone   87 non-null   float64 
 5  Cases_Nigeria       38 non-null   float64 
 6  Cases_Senegal       25 non-null   float64 
 7  Cases_UnitedStates  18 non-null   float64 
 8  Cases_Spain         16 non-null   float64 
 9  Cases_Mali          12 non-null   float64 
 10 Deaths_Guinea       92 non-null   float64 
 11 Deaths_Liberia      81 non-null   float64 
 12 Deaths_SierraLeone  87 non-null   float64 
 13 Deaths_Nigeria      38 non-null   float64 
 14 Deaths_Senegal      22 non-null   float64 
 15 Deaths_UnitedStates 18 non-null   float64 
 16 Deaths_Spain        16 non-null   float64 
 17 Deaths_Mali         12 non-null   float64 
dtypes: float64(16), int64(1), object(1) 
memory usage: 17.3+ KB 
None

We can create a new column, date_dt, that converts the Date column
into a datetime.

Click here to view code image

ebola['date_dt'] = pd.to_datetime(ebola['Date'])

We can also be a little more explicit with how we convert data into a
datetime object.

The to_datetime() function has a parameter called format that
allows you to manually specify the format of the date you are hoping to
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parse. Since our date is in a month/day/year format, we can pass in the
string %m/%d/%Y.

Click here to view code image

ebola['date_dt'] = pd.to_datetime(ebola['Date'], 
format='%m/%d/%Y')

In both cases, we end up with a new column with a datetime type.

Click here to view code image

print(ebola.info())

<class 'pandas.core.frame.DataFrame'> 
RangeIndex: 122 entries, 0 to 121 
Data columns (total 21 columns): 
 
 #  Column              Non-Null Count Dtype 
--- ------              -------------- ----- 
 0  Date                122 non-null   object 
 1  Day                 122 non-null   int64 
 2  Cases_Guinea        93 non-null   float64 
 3  Cases_Liberia       83 non-null   float64 
 4  Cases_SierraLeone   87 non-null   float64 
 5  Cases_Nigeria       38 non-null   float64 
 6  Cases_Senegal       25 non-null   float64 
 7  Cases_UnitedStates  18 non-null   float64 
 8  Cases_Spain         16 non-null   float64 
 9  Cases_Mali          12 non-null   float64 
 10 Deaths_Guinea       92 non-null   float64 
 11 Deaths_Liberia      81 non-null   float64 
 12 Deaths_SierraLeone  87 non-null   float64 
 13 Deaths_Nigeria      38 non-null   float64 
 14 Deaths_Senegal      22 non-null   float64 
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 15 Deaths_UnitedStates 18 non-null   float64 
 16 Deaths_Spain        16 non-null   float64 
 17 Deaths_Mali         12 non-null   float64 
 18 date_dt             122 non-null  
datetime64[ns] 
 19 date_dt_a           122 non-null  
datetime64[ns] 
 20 date_dt_al          122 non-null  
datetime64[ns] 
dtypes: datetime64[ns](3), float64(16), int64(1), 
object(1) 
memory usage: 20.1+ KB 
None

The to_datetime() function includes convenient built-in options.
For example, you can set the dayfirst or yearfirst options to True
if the date format begins with a day (e.g., 31-03-2014) or if the date
begins with a year (e.g., 2014-03-31), respectively.

For other date formats, you can manually specify how they are
represented using the syntax specified by python’s strptime.1 This
syntax is replicated in Table 12.1 from the official Python documentation.
1. strftime (string format time) and strptime (string parse time) behavior:
https://docs.python.org/3/library/datetime.html#st
rftime-and-strptime-behavior

Table 12.1 Python strftime and strptime Behavior (reproduced from
the official Python documentation2)

Direct
ive Meaning Example

%a Weekday abbreviated name Sun, Mon, …, Sat

%A Weekday full name Sunday, Monday, …, 
Saturday

https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior


Direct
ive Meaning Example

%w Weekday as a number, where 0 is 
Sunday

0, 1, …, 6

%d Day of the month as a two-digit number 01, 02, …, 31

%b Month abbreviated name Jan, Feb, …, Dec

%B Month full name January, February, …, 
December

%m Month as a two-digit number 01, 02, …, 12

%y Year as a two-digit number 00, 01, …, 99

%Y Year as a four-digit number 0001, 0002, …, 2013, 
2014, …, 9999

%H Hour (24-hour clock) as a two-digit 
number

00, 01, …, 23

%I Hour (12-hour clock) as a two-digit 
number

01, 02, …, 12

%p AM or PM AM, PM

%M Minute as a two-digit number 00, 01, …, 59

%S Second as a two-digit number 00, 01, …, 59

%f Microsecond as a number 000000, 000001, …, 
999999

%z UTC offset in the form of +HHMM or 
\hbox{--HHMM}

(empty), +0000, -0400, 
+1030

%Z Time zone name (empty), UTC, EST, CST

%j Day of the year as a three-digit number 001, 002, …, 366

%U Week number of the year (Sunday first) 00, 01, …, 53

%W Week number of the year (Monday first) 00, 01, …, 53



Direct
ive Meaning Example

%c Date and time representation Tue Aug 16 21:30:00 
1988

 

%x Date representation 08/16/88 
(None);08/16/1988

 

%X Time representation 21:30:00

%% Literal % character %

%G ISO 8601 year 0001, 0002, …, 2013, 
2014, …, 9999

%u ISO 8601 weekday 1, 2, …, 7

%V ISO 8601 week 01, 02, …, 53

2. strftime (string format time) and strptime (string parse time) behavior:
https://docs.python.org/3/library/datetime.html#st
rftime-and-strptime-behavior

12.3 Loading Data That Include Dates
Many of the data sets used in this book are in a CSV format, or else they
come from the seaborn library. The gapminder data set was an
exception: It was a tab-separated file (TSV). The read_csv() function
has a lot of parameters – for example, parse_dates,
inher_datetime_format, keep_date_col, date_parser,
dayfirst, and cache_dates. We can parse the Date column directly
by specifying the column we want in the parse_dates parameter.

Click here to view code image

ebola = 
pd.read_csv('data/country_timeseries.csv', 

https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior
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parse_dates=["Date"]) 
print(ebola.info())

<class 'pandas.core.frame.DataFrame'> 
RangeIndex: 122 entries, 0 to 121 
Data columns (total 18 columns): 
 
 #  Column              Non-Null Count Dtype 
--- ------              -------------- ----- 
 0  Date                122 non-null   
datetime64[ns] 
 1  Day                 122 non-null   int64 
 2  Cases_Guinea        93 non-null   float64 
 3  Cases_Liberia       83 non-null   float64 
 4  Cases_SierraLeone   87 non-null   float64 
 5  Cases_Nigeria       38 non-null   float64 
 6  Cases_Senegal       25 non-null   float64 
 7  Cases_UnitedStates  18 non-null   float64 
 8  Cases_Spain         16 non-null   float64 
 9  Cases_Mali          12 non-null   float64 
 10 Deaths_Guinea       92 non-null   float64 
 11 Deaths_Liberia      81 non-null   float64 
 12 Deaths_SierraLeone  87 non-null   float64 
 13 Deaths_Nigeria      38 non-null   float64 
 14 Deaths_Senegal      22 non-null   float64 
 15 Deaths_UnitedStates 18 non-null   float64 
 16 Deaths_Spain        16 non-null   float64 
 17 Deaths_Mali         12 non-null   float64 
dtypes: datetime64[ns](1), float64(16), int64(1) 
memory usage: 17.3 KB 
None



This example shows how we can automatically convert columns into
dates directly when the data are loaded.

12.4 Extracting Date Components
Now that we have a datetime object, we can extract various parts of the
date, such as year, month, or day. Here’s an example datetime object.

Click here to view code image

d = pd.to_datetime('2021-12-14') 
print(d)

2021-12-14 00:00:00

If we pass in a single string, we get a Timestamp.

Click here to view code image

print(type(d))

<class 'pandas._libs.tslibs.timestamps.Timestamp'>

Now that we have a proper datetime, we can access various date
components as attributes.

print(d.year)

2021

print(d.month)

12

print(d.day)
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In Chapter 4, we tidied our data when we needed to parse a column that
stored multiple bits of information and used the .str. accessor to use
string methods like .split(). We can do something similar here with
datetime objects by accessing datetime methods using the .dt.
accessor.3 Let’s first re-create our date_dt column.
3. Datetime-like properties:
https://pandas.pydata.org/docs/reference/series.ht
ml#datetimelike-properties

Click here to view code image

ebola['date_dt'] = pd.to_datetime(ebola['Date'])

We know we can get date components such as the year, month, and day
by using the year, month, and day attributes, respectively, on a column
basis; we saw how this works when we parsed strings in a column using
.str.. Here’s the Date and date_dt columns we just created.

Click here to view code image

print(ebola[['Date', 'date_dt']])

          Date    date_dt 
0   2015-01-05 2015-01-05 
1   2015-01-04 2015-01-04 
2   2015-01-03 2015-01-03 
3   2015-01-02 2015-01-02 
4   2014-12-31 2014-12-31 
..         ...        ... 
117 2014-03-27 2014-03-27 
118 2014-03-26 2014-03-26 
119 2014-03-25 2014-03-25 
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120 2014-03-24 2014-03-24 
121 2014-03-22 2014-03-22

[122 rows x 2 columns]

We can create a new year column based on the Date column.

Click here to view code image

ebola['year'] = ebola['date_dt'].dt.year 
print(ebola[['Date', 'date_dt', 'year']])

          Date    date_dt year 
0   2015-01-05 2015-01-05 2015 
1   2015-01-04 2015-01-04 2015 
2   2015-01-03 2015-01-03 2015 
3   2015-01-02 2015-01-02 2015 
4   2014-12-31 2014-12-31 2014 
..         ...        ...  ... 
117 2014-03-27 2014-03-27 2014 
118 2014-03-26 2014-03-26 2014 
119 2014-03-25 2014-03-25 2014 
120 2014-03-24 2014-03-24 2014 
121 2014-03-22 2014-03-22 2014

[122 rows x 3 columns]

Let’s finish parsing our date.

Click here to view code image

ebola = ebola.assign( 
    month=ebola["date_dt"].dt.month, 
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    day=ebola["date_dt"].dt.day 
)

print(ebola[['Date', 'date_dt', 'year', 'month', 
'day']])

          Date    date_dt year month day 
0   2015-01-05 2015-01-05 2015     1   5 
1   2015-01-04 2015-01-04 2015     1   4 
2   2015-01-03 2015-01-03 2015     1   3 
3   2015-01-02 2015-01-02 2015     1   2 
4   2014-12-31 2014-12-31 2014    12  31 
..         ...        ...  ...   ... ... 
117 2014-03-27 2014-03-27 2014      3 27 
118 2014-03-26 2014-03-26 2014      3 26 
119 2014-03-25 2014-03-25 2014      3 25 
120 2014-03-24 2014-03-24 2014      3 24 
121 2014-03-22 2014-03-22 2014      3 22

[122 rows x 5 columns]

When we parsed out our dates, the data type was not preserved.

Click here to view code image

print(ebola.info())

<class 'pandas.core.frame.DataFrame'> 
RangeIndex: 122 entries, 0 to 121 
Data columns (total 22 columns): 
 
 #   Column             Non-Null Count Dtype 
---  ------             -------------- ----- 
 0  Date                122 non-null   
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datetime64[ns] 
 1  Day                 122 non-null   int64 
 2  Cases_Guinea        93 non-null    float64 
 3  Cases_Liberia       83 non-null    float64 
 4  Cases_SierraLeone   87 non-null    float64 
 5  Cases_Nigeria       38 non-null    float64 
 6  Cases_Senegal       25 non-null    float64 
 7  Cases_UnitedStates  18 non-null    float64 
 8  Cases_Spain         16 non-null    float64 
 9  Cases_Mali          12 non-null    float64 
 10 Deaths_Guinea       92 non-null    float64 
 11 Deaths_Liberia      81 non-null    float64 
 12 Deaths_SierraLeone  87 non-null    float64 
 13 Deaths_Nigeria      38 non-null    float64 
 14 Deaths_Senegal      22 non-null    float64 
 15 Deaths_UnitedStates 18 non-null    float64 
 16 Deaths_Spain        16 non-null    float64 
 17 Deaths_Mali         12 non-null    float64 
 18 date_dt             122 non-null   
datetime64[ns] 
 19 year                122 non-null   int64 
 20 month               122 non-null   int64 
 21 day                 122 non-null   int64 
dtypes: datetime64[ns](2), float64(16), int64(4) 
memory usage: 21.1 KB 
None

12.5 Date Calculations and Timedeltas
One of the benefits of having date objects is being able to do date
calculations. Our Ebola data set includes a column named Day that
indicates how many days into an Ebola outbreak a country is. We can



recreate this column using date arithmetic. Here’s the bottom left corner of
our data.

Click here to view code image

print(ebola.iloc[-5:, :5])

          Date  Day   Cases_Guinea   Cases_Liberia  
Cases_SierraLeone 
117 2014-03-27    5          103.0             8.0  
6.0 
118 2014-03-26    4           86.0             NaN  
NaN 
119 2014-03-25    3           86.0             NaN  
NaN 
120 2014-03-24    2           86.0             NaN  
NaN 
121 2014-03-22    0           49.0             NaN  
NaN

The first day of the outbreak (the earliest date in this data set) is 2015-
03-22. So, if we want to calculate the number of days into the outbreak,
we can subtract this date from each date by using the .min() method of
the column.

print(ebola['date_dt'].min())

2014-03-22 00:00:00

We can use this date in our calculation.

Click here to view code image

ebola['outbreak_d'] = ebola['date_dt'] - 
ebola['date_dt'].min()
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print(ebola[['Date', 'Day', 'outbreak_d']])

          Date Day  outbreak_d 
0   2015-01-05 289    289 days 
1   2015-01-04 288    288 days 
2   2015-01-03 287    287 days 
3   2015-01-02 286    286 days 
4   2014-12-31 284    284 days 
..         ... ...         ... 
117 2014-03-27   5      5 days 
118 2014-03-26   4      4 days 
119 2014-03-25   3      3 days 
120 2014-03-24   2      2 days 
121 2014-03-22   0      0 days

[122 rows x 3 columns]

When we perform this kind of date calculation, we actually end up with
a timedelta object.

Click here to view code image

print(ebola.info())

<class 'pandas.core.frame.DataFrame'> 
RangeIndex: 122 entries, 0 to 121 
Data columns (total 23 columns): 
 #  Column              Non-Null Count  Dtype 
--- ------              --------------  ----- 
 0  Date                122 non-null    
datetime64[ns] 
 1  Day                 122 non-null    int64 
 2  Cases_Guinea        93 non-null     float64 
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 3  Cases_Liberia       83 non-null     float64 
 4  Cases_SierraLeone   87 non-null     float64 
 5  Cases_Nigeria       38 non-null     float64 
 6  Cases_Senegal       25 non-null     float64 
 7  Cases_UnitedStates  18 non-null     float64 
 8  Cases_Spain         16 non-null     float64 
 9  Cases_Mali          12 non-null     float64 
 10 Deaths_Guinea       92 non-null     float64 
 11 Deaths_Liberia      81 non-null     float64 
 12 Deaths_SierraLeone  87 non-null     float64 
 13 Deaths_Nigeria      38 non-null     float64 
 14 Deaths_Senegal      22 non-null     float64 
 15 Deaths_UnitedStates 18 non-null     float64 
 16 Deaths_Spain        16 non-null     float64 
 17 Deaths_Mali         12 non-null     float64 
 18 date_dt             122 non-null    
datetime64[ns] 
 19 year                122 non-null    int64 
 20 month               122 non-null    int64 
 21 day                 122 non-null    int64 
 22 outbreak_d          122 non-null    
timedelta64[ns] 
dtypes: datetime64[ns](2), float64(16), int64(4), 
timedelta64[ns](1) 
memory usage: 22.0 KB 
None

We get timedelta objects as results when we perform calculations
with datetime objects.

12.6 Datetime Methods
Let’s look at another data set. This one deals with bank failures.



Click here to view code image

banks = pd.read_csv('data/banklist.csv') 
print(banks.head())

                                             Bank 
Name  \ 
0                                  Fayette County 
Bank 
1    Guaranty Bank, (d/b/a BestBank in Georgia & 
Mi... 
2                                       First NBC 
Bank 
3                                       Proficio 
Bank 
4                         Seaway Bank and Trust 
Company 
 
                   City     ST   CERT  \ 
0            Saint Elmo     IL   1802 
1             Milwaukee     WI  30003 
2           New Orleans     LA  58302 
3    Cottonwood Heights     UT  35495 
4               Chicago     IL  19328 
 
                   Acquiring Institution      
Closing Date Updated Date 
0             United Fidelity  Bank, fsb         
26-May-17    26-Jul-17 
1    First-Citizens Bank & Trust Company          
5-May-17    26-Jul-17 
2                           Whitney Bank         
28-Apr-17    26-Jul-17 
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3                      Cache Valley Bank          
3-Mar-17    18-May-17 
4                    State Bank of Texas         
27-Jan-17    18-May-17

Again, we can import our data with the dates directly parsed.

Click here to view code image

banks = pd.read_csv( 
  "data/banklist.csv", parse_dates=["Closing 
Date", "Updated Date"] 
) 
 
print(banks.info())

<class 'pandas.core.frame.DataFrame'> 
RangeIndex: 553 entries, 0 to 552 
Data columns (total 7 columns): 
 #  Column                Non-Null Count  Dtype 
--- ------                --------------  ----- 
 0  Bank Name             553 non-null    object 
 1  City                  553 non-null    object 
 2  ST                    553 non-null    object 
 3  CERT                  553 non-null    int64 
 4  Acquiring Institution 553 non-null    object 
 5  Closing Date          553 non-null    
datetime64[ns] 
 6  Updated Date          553 non-null    
datetime64[ns] 
dtypes: datetime64[ns](2), int64(1), object(4) 
memory usage: 30.4+ KB 
None
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We can parse out the date by obtaining the quarter and year in which the
bank closed.

Click here to view code image

banks = banks.assign( 
  closing_quarter=banks['Closing 
Date'].dt.quarter, 
  closing_year=banks['Closing Date'].dt.year 
)

closing_year = 
banks.groupby(['closing_year']).size()

Alternatively, we can calculate how many banks closed in each quarter
of each year.

Click here to view code image

closing_year_q = ( 
  banks 
  .groupby(['closing_year', 'closing_quarter']) 
  .size() 
)

We can then plot these results as shown in Figure 12.1 and Figure 12.2.
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Figure 12.1 Number of banks closing each year



Figure 12.2 Number of banks closing each year by quarter

Click here to view code image

import matplotlib.pyplot as plt 
 
fig, ax = plt.subplots() 
ax = closing_year.plot() 
plt.show()

fig, ax = plt.subplots() 
ax = closing_year_q.plot() 
plt.show()
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12.7 Getting Stock Data
One commonly encountered type of data that contains dates is stock prices.
Luckily Python has a way of getting this type of data programmatically
with the pandas-datareader library.4

4. pandas-datareader library: https://pandas-
datareader.readthedocs.io/

Click here to view code image

# we can install and use the pandas_datafreader 
# to get data from the Internet 
import pandas_datareader.data as web 
 
# in this example we are getting stock 
information about Tesla 
tesla = web.DataReader('TSLA', 'yahoo') 
 
print(tesla)

      Date      High       Low      Open         
Close \ 
2017-09-05 23.699333 23.059334 23.586666     
23.306000 
2017-09-06 23.398666 22.770666 23.299999     
22.968666 
2017-09-07 23.498667 22.896667 23.065332     
23.374001 
2017-09-08 23.318666 22.820000 23.266001     
22.893333 
2017-09-11 24.247334 23.333332 23.423332     
24.246000 
...        ...        ...        ...               
... 
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2022-08-25 302.959991 291.600006 302.359985 
296.070007 
2022-08-26 302.000000 287.470001 297.429993 
288.089996 
2022-08-29 287.739990 280.700012 282.829987 
284.820007 
2022-08-30 288.480011 272.649994 287.869995 
277.700012 
2022-08-31 281.250000 271.809998 280.619995 
275.609985

      Date      Volume   Adj Close 
2017-09-05  57526500.0   23.306000 
2017-09-06  61371000.0   22.968666 
2017-09-07  63588000.0   23.374001 
2017-09-08  48952500.0   22.893333 
2017-09-11 115006500.0   24.246000 
       ...         ...         ... 
2022-08-25  53230000.0  296.070007 
2022-08-26  56905800.0  288.089996 
2022-08-29  41864700.0  284.820007 
2022-08-30  50541800.0  277.700012 
2022-08-31  51788900.0  275.609985

[1257 rows x 6 columns]

# the stock data was saved 
# so we do not need to rely on the Internet 
again 
# instead we can load the same data set as a 
file 
tesla = pd.read_csv( 



  'data/tesla_stock_yahoo.csv', parse_dates=
["Date"] 
) 
 
print(tesla)

           Date       Open      High          Low   
Close \ 
0    2010-06-29  19.000000  25.000000   17.540001  
23.889999 
1    2010-06-30  25.790001  30.420000   23.299999  
23.830000 
2    2010-07-01  25.000000  25.920000   20.270000  
21.959999 
3    2010-07-02  23.000000  23.100000   18.709999  
19.200001 
4    2010-07-06  20.000000  20.000000   15.830000  
16.110001 
...         ...        ...        ...         ...   
... 
1786 2017-08-02 318.940002 327.119995  311.220001 
325.890015 
1787 2017-08-03 345.329987 350.000000  343.149994 
347.089996 
1788 2017-08-04 347.000000 357.269989  343.299988 
356.910004 
1789 2017-08-07 357.350006 359.480011  352.750000 
355.170013 
1790 2017-08-08 357.529999 368.579987  357.399994 
365.220001



     Adj Close    Volume 
0    23.889999  18766300 
1    23.830000  17187100 
2    21.959999   8218800 
3    19.200001   5139800 
4    16.110001   6866900 
...        ...       ... 
1786 325.890015 13091500 
1787 347.089996 13535000 
1788 356.910004  9198400 
1789 355.170013  6276900 
1790 365.220001  7449837

[1791 rows x 7 columns]

12.8 Subsetting Data Based on Dates
Since we now know how to extract parts of a date out of a column (Section
12.4), we can incorporate these methods to subset our data without having
to parse out the individual components manually.

For example, if we want only data for June 2010 from our stock price
data set, we can use boolean subsetting.

Click here to view code image

print( 
  tesla.loc[ 
    (tesla.Date.dt.year == 2010) & 
(tesla.Date.dt.month == 6) 
  ] 
)

        Date       Open   High        Low      
Close Adj Close \ 
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0 2010-06-29  19.000000  25.00  17.540001  
23.889999 23.889999 
1 2010-06-30  25.790001  30.42  23.299999  
23.830000 23.830000

    Volume 
0 18766300 
1 17187100

12.8.1 The DatetimeIndex Object
When we are working with datetime data, we often need to set the
datetime object to be the dataframe’s index. To this point, we’ve mainly
left the dataframe row index to be the row number. We have also seen some
side effects that arise because the row index may not always be the row
number, such as when we were concatenating dataframes in Chapter 6.

First, let’s assign the Date column as the index.

Click here to view code image

tesla.index = tesla['Date'] 
print(tesla.index)

DatetimeIndex(['2010-06-29', '2010-06-30', '2010-
07-01', 
               '2010-07-02', '2010-07-06', '2010-
07-07', 
               '2010-07-08', '2010-07-09', '2010-
07-12', 
               '2010-07-13', 
               ... 
               '2017-07-26', '2017-07-27', '2017-
07-28', 
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               '2017-07-31', '2017-08-01', '2017-
08-02', 
               '2017-08-03', '2017-08-04', '2017-
08-07', 
               '2017-08-08'], 
              dtype='datetime64[ns]', name='Date', 
length=1791, freq=None)

With the index set as a date object, we can now use the date directly to
subset rows. For example, we can subset our data based on the year.

Click here to view code image

print(tesla['2015'])

                 Date       Open       High        
Low \ 
Date 
2015-01-02 2015-01-02 222.869995 223.250000 
213.259995 
2015-01-05 2015-01-05 214.550003 216.500000 
207.160004 
2015-01-06 2015-01-06 210.059998 214.199997 
204.210007 
2015-01-07 2015-01-07 213.350006 214.779999 
209.779999 
2015-01-08 2015-01-08 212.809998 213.800003 
210.009995 
       ...        ...        ...        ...        
... 
2015-12-24 2015-12-24 230.559998 231.880005 
228.279999 
2015-12-28 2015-12-28 231.490005 231.979996 
225.539993 
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2015-12-29 2015-12-29 230.059998 237.720001 
229.550003 
2015-12-30 2015-12-30 236.600006 243.630005 
235.669998 
2015-12-31 2015-12-31 238.509995 243.449997 
238.369995

                Close  Adj Close  Volume 
Date 
2015-01-02 219.309998 219.309998 4764400 
2015-01-05 210.089996 210.089996 5368500 
2015-01-06 211.279999 211.279999 6261900 
2015-01-07 210.949997 210.949997 2968400 
2015-01-08 210.619995 210.619995 3442500 
...               ...        ...     ... 
2015-12-24 230.570007 230.570007  708000 
2015-12-28 228.949997 228.949997 1901300 
2015-12-29 237.190002 237.190002 2406300 
2015-12-30 238.089996 238.089996 3697900 
2015-12-31 240.009995 240.009995 2683200

[252 rows x 7 columns]

  print(tesla.loc['2015'])

Alternatively, we can subset the data based on the year and month.

Click here to view code image

 
print(tesla['2010-06'])
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                 Date       Open  High        Low   
Close \ 
Date 
2010-06-29 2010-06-29  19.000000  25.00  17.540001  
23.889999 
2010-06-30 2010-06-30  25.790001  30.42  23.299999  
23.830000

           Adj Close   Volume 
Date 
2010-06-29 23.889999 18766300 
2010-06-30 23.830000 17187100

print(tesla.loc['2010-06'])

12.8.2 The TimedeltaIndex Object
Just as we set the index of a dataframe to a datetime to create a
DatetimeIndex, so we can do the same thing with a timedelta to
create a TimedeltaIndex.

Let’s create a timedelta.

Click here to view code image

tesla['ref_date'] = tesla['Date'] - 
tesla['Date'].min()

Now we can assign the timedelta to the index.

Click here to view code image

tesla.index = tesla['ref_date']

print(tesla)
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                 Date      Open        High        
Low \ 
ref_date 
0 days     2010-06-29 19.000000   25.000000  
17.540001 
1 days     2010-06-30 25.790001   30.420000  
23.299999 
2 days     2010-07-01 25.000000   25.920000  
20.270000 
3 days     2010-07-02 23.000000   23.100000  
18.709999 
7 days     2010-07-06 20.000000   20.000000  
15.830000 
...               ...       ...         ...        
... 
2591 days  2017-08-02 318.940002 327.119995 
311.220001 
2592 days  2017-08-03 345.329987 350.000000 
343.149994 
2593 days  2017-08-04 347.000000 357.269989 
343.299988 
2596 days  2017-08-07 357.350006 359.480011 
352.750000 
2597 days  2017-08-08 357.529999 368.579987 
357.399994

           Close Adj Close Volume   ref_date 
ref_date 
0 days     23.889999  23.889999  18766300    0 
days 
1 days     23.830000  23.830000  17187100    1 
days 
2 days     21.959999  21.959999   8218800    2 



days 
3 days     19.200001  19.200001   5139800    3 
days 
7 days     16.110001  16.110001   6866900    7 
days 
...              ...        ...      ...       ... 
2591 days 325.890015 325.890015  13091500 2591 
days 
2592 days 347.089996 347.089996  13535000 2592 
days 
2593 days 356.910004 356.910004   9198400 2593 
days 
2596 days 355.170013 355.170013   6276900 2596 
days 
2597 days 365.220001 365.220001   7449837 2597 
days

[1791 rows x 8 columns]

We can now select our data based on these deltas.

Click here to view code image

print(tesla['0 day': '10 day'])

              Date      Open      High       Low    
Close \ 
ref_date 
0 days  2010-06-29 19.000000 25.000000 17.540001 
23.889999 
1 days  2010-06-30 25.790001 30.420000 23.299999 
23.830000 
2 days  2010-07-01 25.000000 25.920000 20.270000 
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21.959999 
3 days  2010-07-02 23.000000 23.100000 18.709999 
19.200001 
7 days  2010-07-06 20.000000 20.000000 15.830000 
16.110001 
8 days  2010-07-07 16.400000 16.629999 14.980000 
15.800000 
9 days  2010-07-08 16.139999 17.520000 15.570000 
17.459999 
10 days 2010-07-09 17.580000 17.900000 16.549999 
17.400000

          Adj Close   Volume ref_date 
ref_date 
0 days    23.889999 18766300    0 days 
1 days    23.830000 17187100    1 days 
2 days    21.959999  8218800    2 days 
3 days    19.200001  5139800    3 days 
7 days    16.110001  6866900    7 days 
8 days    15.800000  6921700    8 days 
9 days    17.459999  7711400    9 days 
10 days   17.400000  4050600   10 days

12.9 Date Ranges
Not every data set will have a fixed frequency of values. For example, in
our Ebola data set, we do not have an observation for every day in the date
range.

Click here to view code image

ebola = pd.read_csv( 
'data/country_timeseries.csv', parse_dates=
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["Date"] 
)

Here, 2015-01-01 is missing from the .head() of the data.

Click here to view code image

print(ebola.iloc[:, :5])

 
            Date Day  Cases_Guinea  Cases_Liberia  
Cases_SierraLeone 
0     2015-01-05 289        2776.0            NaN   
10030.0 
1     2015-01-04 288        2775.0            NaN   
9780.0 
2     2015-01-03 287        2769.0         8166.0   
9722.0 
3     2015-01-02 286           NaN         8157.0   
NaN 
4     2014-12-31 284        2730.0         8115.0   
9633.0 
..           ... ...           ...            ...   
... 
117   2014-03-27   5         103.0            8.0   
6.0 
118   2014-03-26   4          86.0            NaN   
NaN 
119   2014-03-25   3          86.0            NaN   
NaN 
120   2014-03-24   2          86.0            NaN   
NaN 
121   2014-03-22   0          49.0            NaN   
NaN
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[122 rows x 5 columns]

It’s common practice to create a date range to .reindex() a data set.
We can use the date_range()

Click here to view code image

head_range = pd.date_range(start='2014-12-31', 
end='2015-01-05') 
print(head_range)

DatetimeIndex(['2014-12-31', '2015-01-01', '2015-
01-02', 
               '2015-01-03', '2015-01-04', '2015-
01-05'], 
             dtype='datetime64[ns]', freq='D')

We’ll just work with the first five rows in this example.

ebola_5 = ebola.head()

If we want to set this date range as the index, we need to first set the date
as the index.

Click here to view code image

ebola_5.index = ebola_5['Date']

Next we can .reindex() our data.

Click here to view code image

ebola_5 = ebola_5.reindex(head_range) 
 
print(ebola_5.iloc[:, :5])
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                 Date          Day  Cases_Guinea 
Cases_Liberia \ 
2014-12-31 2014-12-31        284.0        2730.0    
8115.0 
2015-01-01        NaT          NaN           NaN    
NaN 
2015-01-02 2015-01-02        286.0           NaN    
8157.0 
2015-01-03 2015-01-03        287.0        2769.0    
8166.0 
2015-01-04 2015-01-04        288.0        2775.0    
NaN 
2015-01-05 2015-01-05        289.0        2776.0    
NaN

 
      Cases_SierraLeone 
2014-12-31       9633.0 
2015-01-01          NaN 
2015-01-02          NaN 
2015-01-03       9722.0 
2015-01-04       9780.0 
2015-01-05      10030.0

12.9.1 Frequencies
When we created our head_range, the print statement included a
parameter called freq. In that example, freq was 'D' for “day.” That is,
the values in our date range were stepped through using a day-by-day
increment. The possible frequencies are reproduced from the Pandas
timeseries documentation that is listed in Table 12.2.5

5. Frequency offset aliases:
https://pandas.pydata.org/docs/user_guide/timeseri

https://pandas.pydata.org/docs/user_guide/timeseries.html#offset-aliases


es.html#offset-aliases

Table 12.2 Possible Frequencies

Alias Description

B Business day frequency

C Custom business day frequency (experimental)

D Calendar day frequency

W Weekly frequency

M Month end frequency

SM Semi-month end frequency (15th and end of month)

BM Business month end frequency

CBM Custom business month end frequency

MS Month start frequency

SMS Semi-month start frequency (1st and 15th)

BMS Business month start frequency

CBMS Custom business month start frequency

Q Quarter end frequency

BQ Business quarter end frequency

QS Quarter start frequency

BQS Business quarter start frequency

A Year end frequency

BA Business year end frequency

AS Year start frequency

BAS Business year start frequency

BH Business hour frequency

H Hour frequency
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Alias Description

T Minute frequency

S Second frequency

L Millisecond frequency

U Microsecond frequency

N Nanosecond frequency

These values can be passed into the freq parameter when calling
date_range. For example, January 2, 2022, was a Sunday, and we can
create a range consisting of the business days in that week.

Click here to view code image

# business days during the week of Jan 1, 2022 
print(pd.date_range('2022-01-01', '2022-01-07', 
freq='B'))

DatetimeIndex(['2022-01-03', '2022-01-04', '2022-
01-05', 
               '2022-01-06', '2022-01-07'], 
             dtype='datetime64[ns]', freq='B')

12.9.2 Offsets
Offsets are variations on a base frequency. For example, we can take the
business days range that we just created and add an offset such that instead
of every business day, data are included for every other business day.

Click here to view code image

# every other business day during the week of 
Jan 1, 2022 
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print(pd.date_range('2022-01-01', '2017-01-07', 
freq='2B'))

DatetimeIndex([], dtype='datetime64[ns]', 
freq='2B')

We created this offset by putting a multiplying value before the base
frequency. This kind of offset can be combined with other base frequencies
as well. For example, we can specify the first Thursday of each month in
the year 2022.

Click here to view code image

print(pd.date_range('2022-01-01', '2022-12-31', 
freq='WOM-1THU'))

DatetimeIndex(['2022-01-06', '2022-02-03', '2022-
03-03', 
               '2022-04-07', '2022-05-05', '2022-
06-02', 
               '2022-07-07', '2022-08-04', '2022-
09-01', 
               '2022-10-06', '2022-11-03', '2022-
12-01'], 
             dtype='datetime64[ns]', freq='WOM-
1THU')

We can also specify the third Friday of each month.

Click here to view code image

print(pd.date_range('2022-01-01', '2022-12-31', 
freq='WOM-3FRI'))
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DatetimeIndex(['2022-01-21', '2022-02-18', '2022-
03-18', 
               '2022-04-15', '2022-05-20', '2022-
06-17', 
               '2022-07-15', '2022-08-19', '2022-
09-16', 
               '2022-10-21', '2022-11-18', '2022-
12-16'], 
             dtype='datetime64[ns]', freq='WOM-
3FRI')

12.10 Shifting Values
There are a few reasons why you might want to shift your dates by a certain
value. For example, you might need to correct some kind of measurement
error in your data. Alternatively, you might want to standardize the start
dates for your data so you can compare trends.

Even though our Ebola data isn’t “tidy,” one of the benefits of the data in
its current format is that it allows us to plot the outbreak. This plot is shown
in Figure 12.3.



Figure 12.3 Ebola plot of cases and deaths (unshifted dates)

Click here to view code image

import matplotlib.pyplot as plt 
 
ebola.index = ebola['Date']

fig, ax = plt.subplots() 
ax = ebola.plot(ax=ax) 
ax.legend(fontsize=7, loc=2, borderaxespad=0.0) 
plt.show()
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When we’re looking at an outbreak, one useful piece of information is
how fast an outbreak is spreading relative to other countries. Let’s look at
just a few columns from our Ebola data set.

Click here to view code image

 
ebola_sub = ebola[['Day', 'Cases_Guinea', 
'Cases_Liberia']] 
print(ebola_sub.tail(10))

          Day Cases_Guinea  Cases_Liberia 
Date 
2014-04-04 13        143.0           18.0 
2014-04-01 10        127.0            8.0 
2014-03-31  9        122.0            8.0 
2014-03-29  7        112.0            7.0 
2014-03-28  6        112.0            3.0 
2014-03-27  5        103.0            8.0 
2014-03-26  4         86.0            NaN 
2014-03-25  3         86.0            NaN 
2014-03-24  2         86.0            NaN 
2014-03-22  0         49.0            NaN

You can see that each country’s starting date is different, which makes it
difficult to compare the actual slopes between countries when a new
outbreak occurs later in time.

In this example, we want all our dates to start from a common 0 day.
There are multiple steps to this process.

Since not every date is listed, we need to create a date range of all the
dates in our data set.
We need to calculate the difference between the earliest date in our
data set, and the earliest valid (non NaN) date in each column.
We can then shift each of the columns by this calculated value.
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Before we begin, let’s start with a fresh copy of the Ebola data set. We’ll
parse the Date column as a proper date object, and assign this date to the
.index. In this example, we are parsing the date and setting it as the index
directly.

Click here to view code image

ebola = pd.read_csv( 
  "data/country_timeseries.csv", 
  index_col="Date", 
  parse_dates=["Date"], 
) 
 
print(ebola.iloc[:, :4])

           Day Cases_Guinea Cases_Liberia 
Cases_SierraLeone 
Date 
2015-01-05 289       2776.0           NaN           
10030.0 
2015-01-04 288       2775.0           NaN           
9780.0 
2015-01-03 287       2769.0        8166.0           
9722.0 
2015-01-02 286          NaN        8157.0           
NaN 
2014-12-31 284       2730.0        8115.0           
9633.0 
...        ...          ...           ...           
... 
2014-03-27   5        103.0           8.0           
6.0 
2014-03-26   4         86.0           NaN           
NaN 

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch12_images.xhtml#f0271-02


2014-03-25   3         86.0           NaN           
NaN 
2014-03-24   2         86.0           NaN           
NaN 
2014-03-22   0         49.0           NaN           
NaN

[122 rows x 4 columns]

First, we need to create the date range to fill in all the missing dates in
our data. Then, when we shift our date values downward, the number of
days that the data will shift will be the same as the number of rows that will
be shifted.

Click here to view code image

new_idx = pd.date_range(ebola.index.min(), 
ebola.index.max()) 
 
print(new_idx)

DatetimeIndex(['2014-03-22', '2014-03-23', '2014-
03-24', 
              '2014-03-25', '2014-03-26', '2014-
03-27', 
              '2014-03-28', '2014-03-29', '2014-
03-30', 
              '2014-03-31', 
 
              ... 
              '2014-12-27', '2014-12-28', '2014-
12-29', 
              '2014-12-30', '2014-12-31', '2015-
01-01', 
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              '2015-01-02', '2015-01-03', '2015-
01-04', 
              '2015-01-05'], 
             dtype='datetime64[ns]', length=290, 
freq='D')

Looking at our new_idx, we see that the dates are not in the order that
we want. To fix this, we can reverse the order of the index.

Click here to view code image

new_idx = reversed(new_idx) 
print(new_idx)

<reversed object at 0x105aedfc0>

Now we can properly .reindex() our data. This will create rows of
NaN values if the index does not exist already in our data set.

Click here to view code image

ebola = ebola.reindex(new_idx)

If we look at the .head() and .tail() of the resulting data, we see
that dates that were originally not listed have been added into the data set,
along with a row of NaN missing values. Additionally, the Date column is
filled with the NaT value, which is an internal Pandas representation for
missing time value (similar to how NaN is used for numeric missing
values).

Click here to view code image

print(ebola.iloc[:, :4])

 
             Day Cases_Guinea Cases_Liberia 
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Cases_SierraLeone 
Date 
2015-01-05  289.0       2776.0           NaN        
10030.0 
2015-01-04  288.0       2775.0           NaN        
9780.0 
2015-01-03  287.0       2769.0        8166.0        
9722.0 
2015-01-02  286.0          NaN        8157.0        
NaN 
2015-01-01    NaN          NaN           NaN        
NaN 
...           ...          ...           ...        
... 
2014-03-26    4.0         86.0           NaN        
NaN 
2014-03-25    3.0         86.0           NaN        
NaN 
2014-03-24    2.0         86.0           NaN        
NaN 
2014-03-23    NaN          NaN           NaN        
NaN 
2014-03-22    0.0         49.0           NaN        
NaN

[290 rows x 4 columns]

Now that we’ve created our date range and assigned it to the index,
our next step is to calculate the difference between the earliest date in our
data set and the earliest valid (non-missing) date in each column. To
perform this calculation, we can use the Series method called
.last_valid_index(), which returns the label (index) of the last
non-missing or non-null value. An analogous method called



.first_valid_index() returns the first non-missing or non-null
value. Since we want to perform this calculation across all the columns, we
can use the .apply() method.

Click here to view code image

last_valid = 
ebola.apply(pd.Series.last_valid_index) 
print(last_valid)

Day                 2014-03-22 
Cases_Guinea        2014-03-22 
Cases_Liberia       2014-03-27 
Cases_SierraLeone   2014-03-27 
Cases_Nigeria       2014-07-23 
                         ... 
Deaths_Nigeria      2014-07-23 
Deaths_Senegal      2014-09-07 
Deaths_UnitedStates 2014-10-01 
Deaths_Spain        2014-10-08 
Deaths_Mali         2014-10-22 
Length: 17, dtype: datetime64[ns]

Next, we want to get the earliest date in our data set.

Click here to view code image

earliest_date = ebola.index.min() 
print(earliest_date)

2014-03-22 00:00:00

We then subtract this date from each of our last_valid dates.

Click here to view code image
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shift_values = last_valid - earliest_date 
print(shift_values)

Day                    0 days 
Cases_Guinea           0 days 
Cases_Liberia          5 days 
Cases_SierraLeone     5 days 
Cases_Nigeria        123 days 
                       ... 
Deaths_Nigeria       123 days 
Deaths_Senegal       169 days 
Deaths_UnitedStates  193 days 
Deaths_Spain         200 days 
Deaths_Mali          214 days 
Length: 17, dtype: timedelta64[ns]

Finally, we can iterate through each column, using the .shift()
method to shift the columns down by the corresponding value in
shift_values. Note that the values in shift_values are all
positive. If they were negative (if we flipped the order of our subtraction),
this operation would shift the values up.

Click here to view code image

ebola_dict = {} 
 
for idx, col in enumerate(ebola): 
    d = shift_values[idx].days 
    shifted = ebola[col].shift(d) 
    ebola_dict[col] = shifted 
 
#print(ebola_dict)
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Since we have a dict of values, we can convert it to a dataframe using
the Pandas DataFrame function.

Click here to view code image

ebola_shift = pd.DataFrame(ebola_dict)

The last row in each column now has a value; that is, the columns have
been shifted down appropriately.

Click here to view code image

print(ebola_shift.tail())

           Day Cases_Guinea Cases_Liberia  
Cases_SierraLeone \ 
Date 
2014-03-26 4.0         86.0           8.0           
2.0 
2014-03-25 3.0         86.0           NaN           
NaN 
2014-03-24 2.0         86.0           7.0           
NaN 
2014-03-23 NaN          NaN           3.0           
2.0 
2014-03-22 0.0         49.0           8.0           
6.0

 
           Cases_Nigeria Cases_Senegal  
Cases_UnitedStates \ 
Date 
2014-03-26           1.0           NaN              
1.0 
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2014-03-25           NaN           NaN              
NaN 
2014-03-24           NaN           NaN              
NaN 
2014-03-23           NaN           NaN              
NaN 
2014-03-22           0.0           1.0              
1.0

              Cases_Spain Cases_Mali Deaths_Guinea 
Deaths_Liberia \ 
Date 
2014-03-26            1.0        NaN          62.0  
4.0 
2014-03-25            NaN        NaN          60.0  
NaN 
2014-03-24            NaN        NaN          59.0  
2.0 
2014-03-23            NaN        NaN           NaN  
3.0 
2014-03-22            1.0        1.0          29.0  
6.0

            Deaths_SierraLeone Deaths_Nigeria 
Deaths_Senegal \ 
Date 
2014-03-26                 2.0            1.0       
NaN 
2014-03-25                 NaN            NaN       
NaN 
2014-03-24                 NaN            NaN       
NaN 



2014-03-23                 2.0            NaN       
NaN 
2014-03-22                 5.0            0.0       
0.0

            Deaths_UnitedStates Deaths_Spain 
Deaths_Mali 
Date 
2014-03-26                  0.0          1.0        
NaN 
2014-03-25                  NaN          NaN        
NaN 
2014-03-24                  NaN          NaN        
NaN 
2014-03-23                  NaN          NaN        
NaN 
2014-03-22                  0.0          1.0        
1.0

Finally, since the indices are no longer valid across each row, we can
remove them, and then assign the correct index, which is the Day. Note
that Day no longer represents the first day of the entire outbreak, but rather
the first day of an outbreak for the given country.

Click here to view code image

ebola_shift.index = ebola_shift['Day'] 
ebola_shift = ebola_shift.drop(['Day'], 
axis="columns")

print(ebola_shift.tail())

 
      Cases_Guinea Cases_Liberia Cases_SierraLeone 
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Cases_Nigeria \ 
Day 
4.0           86.0           8.0               2.0  
1.0 
3.0           86.0           NaN               NaN  
NaN 
2.0           86.0           7.0               NaN  
NaN 
NaN            NaN           3.0               2.0  
NaN 
0.0           49.0           8.0               6.0  
0.0

    Cases_Senegal Cases_UnitedStates Cases_Spain 
Cases_Mali \ 
Day 
4.0           NaN                1.0         1.0    
NaN 
3.0           NaN                NaN         NaN    
NaN 
2.0           NaN                NaN         NaN    
NaN 
NaN           NaN                NaN         NaN    
NaN 
0.0           1.0                1.0         1.0    
1.0

     Deaths_Guinea Deaths_Liberia 
Deaths_SierraLeone \ 
Day 
4.0           62.0            4.0                
2.0 



3.0           60.0            NaN                
NaN 
2.0           59.0            2.0                
NaN 
NaN            NaN            3.0                
2.0 
0.0           29.0            6.0                
5.0

    Deaths_Nigeria Deaths_Senegal 
Deaths_UnitedStates \ 
Day 
4.0            1.0            NaN                 
0.0 
3.0            NaN            NaN                 
NaN 
2.0            NaN            NaN                 
NaN 
NaN            NaN            NaN                 
NaN 
0.0            0.0            0.0                 
0.0

   Deaths_Spain Deaths_Mali 
Day 
4.0         1.0         NaN 
3.0         NaN         NaN 
2.0         NaN         NaN 
NaN         NaN         NaN 
0.0         1.0         1.0

12.11 Resampling



Resampling converts a datetime from one frequency to another
frequency. Three types of resampling can occur:

Downsampling: from a higher frequency to a lower frequency (e.g.,
daily to monthly)
Upsampling: from a lower frequency to a higher frequency (e.g.,
monthly to daily)
No change: frequency does not change (e.g., every first Thursday of
the month to the last Friday of the month)

The values we can pass into .resample() are listed in Table 12.2.

Click here to view code image

# downsample daily values to monthly values 
# since we have multiple values, we need to 
aggregate the results 
# here we will use the mean 
down = ebola.resample('M').mean() 
print(down.iloc[:,  :5])

                  Day Cases_Guinea   Cases_Liberia 
\ 
Date 
2014-03-31   4.500000    94.500000        6.500000 
2014-04-30  24.333333   177.818182       24.555556 
2014-05-31  51.888889   248.777778       12.555556 
2014-06-30  84.636364   373.428571       35.500000 
2014-07-31 115.700000   423.000000      212.300000 
...               ...          ...             ... 
2014-09-30 177.500000   967.888889     2815.625000 
2014-10-31 207.470588  1500.444444     4758.750000 
2014-11-30 237.214286  1950.500000     7039.000000 
2014-12-31 271.181818  2579.625000     7902.571429 
2015-01-31 287.500000  2773.333333     8161.500000
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     Cases_SierraLeone  Cases_Nigeria 
Date 
2014-03-31    3.333333            NaN 
2014-04-30    2.200000            NaN 
2014-05-31    7.333333            NaN 
2014-06-30  125.571429            NaN 
2014-07-31  420.500000       1.333333 
...                ...            ... 
2014-09-30 1726.000000      20.714286 
2014-10-31 3668.111111      20.000000 
2014-11-30 5843.625000      20.000000 
2014-12-31 8985.875000      20.000000 
2015-01-31 9844.000000            NaN

[11 rows x 5 columns]

# here we will upsample our downsampled value 
# notice how missing dates are populated, 
# but they are filled in with missing values 
up = down.resample('D').mean() 
print(up.iloc[:, :5])

             Day Cases_Guinea Cases_Liberia 
Cases_SierraLeone \ 
Date 
2014-03-31   4.5    94.500000           6.5         
3.333333 
2014-04-01   NaN          NaN           NaN         
NaN 
2014-04-02   NaN          NaN           NaN         
NaN 
2014-04-03   NaN          NaN           NaN         
NaN 



2014-04-04   NaN          NaN           NaN         
NaN 
...          ...          ...           ...         
... 
2015-01-27   NaN          NaN           NaN         
NaN 
2015-01-28   NaN          NaN           NaN         
NaN 
2015-01-29   NaN          NaN           NaN         
NaN 
2015-01-30   NaN          NaN           NaN         
NaN 
2015-01-31 287.5  2773.333333        8161.5       
9844.000000

     Cases_Nigeria 
Date 
2014-03-31     NaN 
2014-04-01     NaN 
2014-04-02     NaN 
2014-04-03     NaN 
2014-04-04     NaN 
...            ... 
2015-01-27     NaN 
2015-01-28     NaN 
2015-01-29     NaN 
2015-01-30     NaN 
2015-01-31     NaN

[307 rows x 5 columns]

12.12 Time Zones



Don’t try to write your own time zone converter. As Tom Scott explains in a
“Computerphile” video, “That way lies madness.”6 There are many things
you probably did not even think to consider when working with different
time zones. For example, not every country implements daylight savings
time, and even those that do, may not necessarily change the clocks on the
same day of the year. And don’t forget about leap years and leap seconds!
Luckily Python has a library specifically designed to work with time
zones7, Pandas also wraps this library when working with time zones.
6. The problem with time and time zones: Computerphile:
www.youtube.com/watch?v=-5wpm-gesOY

7. Documentation for pytz:a https://pythonhosted.org/pytz/

import pytz

There are many time zones available in the library.

Click here to view code image

print(len(pytz.all_timezones))

594

Here are the U.S. time zones:

Click here to view code image

import re 
regex = re.compile(r'^US') 
selected_files = filter(regex.search, 
pytz.common_timezones) 
print(list(selected_files))

['US/Alaska', 'US/Arizona', 'US/Central', 
'US/Eastern', 'US/Hawaii', 
' US/Mountain', 'US/Pacific']

http://www.youtube.com/watch?v=-5wpm-gesOY
https://pythonhosted.org/pytz/
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The easiest way to interact with time zones in Pandas is to use the string
names given in pytz.all_timezones().

One way to illustrate time zones is to create two timestamps using the
Pandas Timestamp function. For example, if there was a flight between
the JFK and LAX airports that departed at 7:00 AM from New York and
landed at 9:57 AM in Los Angeles. We can encode these times with the
proper time zone.

Click here to view code image

# 7AM Eastern 
depart = pd.Timestamp('2017-08-29 07:00', 
tz='US/Eastern') 
print(depart)

2017-08-29 07:00:00-04:00

arrive = pd.Timestamp('2017-08-29 09:57') 
print(arrive)

2017-08-29 09:57:00

Another way we can encode a time zone is by using the
.tz_localize() method on an “empty” timestamp.

Click here to view code image

arrive = arrive.tz_localize('US/Pacific') 
print(arrive)

2017-08-29 09:57:00-07:00

We can convert the arrival time back to the Eastern time zone to see
what the time would be on the East Coast when the flight arrives.

Click here to view code image
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print(arrive.tz_convert('US/Eastern'))

2017-08-29 12:57:00-04:00

We can also perform operations on time zones. Here we look at the
difference between the times to get the flight duration.

duration = arrive - depart 
print(duration)

0 days 05:57:00

12.13 Arrow for Better Dates and Times
If you do end up working with date and time columns often, I would
suggest looking into the arrow library. You can find the documentation
page here: https://arrow.readthedocs.io/en/latest/ Do
not confuse this Arrow library with the Apache Arrow project for language-
independent dataframe formats.

Arrow is a separate library that needs to be installed, but works slightly
different from the methods shown in this chapter. However, it does do a
better job handling time zones. See this post by Paul Ganssle for more
information about the benefits of arrow over pytz:
https://blog.ganssle.io/articles/2018/03/pytz-
fastest-footgun.html

Conclusion
Pandas provides a series of convenient methods and functions when we are
working with dates and times because these types of data are used so often
with time-series data. A common example of time-series data is stock
prices, but other examples include observational and simulated data. These
convenient Pandas functions and methods allow you to easily work with
date objects without having to resort to string manipulation and parsing.
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Part IV

Data Modeling

Chapter 13 Linear Regression (Continuous Outcome Variable)

Chapter 14 Generalized Linear Models

Chapter 15 Survival Analysis

Chapter 16 Model Diagnostics

Chapter 17 Regularization

Chapter 18 Clustering

This part of the book follows the methods described in Jared Lander’s R for
Everyone. The rationale is that since you have learned the methods of data
manipulation in Python using Pandas, you can save out the cleaned data set
if you need to use a method from another analytics language.

This part covers many of the basic modeling techniques and serves as an
introduction to data analytics and machine learning. Other great references
are:

Andreas Müller and Sarah Guido’s Introduction to Machine Learning
with Python
Sebastian Raschka and Vahid Mirjalili’s Python Machine Learning
Mark Fenner’s Machine Learning with Python for Everyone
Andrew Kelleher and Adam Kelleher’s Machine Learning in
Production: Developing and Optimizing Data Science Workflows and
Applications



Many of the techniques covered so far in the book apply to figuring out
what kind of information is stored in our columns, in particular, the variable
we are trying to model or predict. If our data has an outcome variable, we
can use supervised modeling techniques. If our variable of interest is
continuous, we would use a linear regression model (Chapter 13). If our
outcome variable is binary we would use a logistic regression model, if it is
count data, we would use a Poisson model (Chapter 14). Survival models
are used when we are looking for an outcome of interest, but also have
censoring (Chapter 15). When we are fitting models for prediction, we
sometimes need to find a way to pick the “best” model, this is when we
have to compare model diagnostics (Chapter 16).

If we are solely interested in prediction, and not inference, we can
employ regularization techniques to make our model more numerically
stable (Chapter 17). If we do not have an outcome variable we can test our
model against, we would use some kind of unsupervised modeling
technique, such as clustering (Chapter 18).



13

Linear Regression (Continuous
Outcome Variable)

13.1 Simple Linear Regression
The goal of linear regression is to draw a straight-line relationship between
a response variable (also known as an outcome or dependent variable) and a
predictor variable (also known as a feature, covariate, or independent
variable).

Let’s take another look at our tips data set.

Click here to view code image

import pandas as pd 
import seaborn as sns 
 
tips = sns.load_dataset('tips') 
print(tips)

    total_bill  tip     sex smoker   day    time  
size 
0        16.99 1.01  Female     No   Sun  Dinner    
2 
1        10.34 1.66    Male     No   Sun  Dinner    
3 
2        21.01 3.50    Male     No   Sun  Dinner    
3 
3        23.68 3.31    Male     No   Sun  Dinner    
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2 
4        24.59 3.61  Female     No   Sun  Dinner    
4 
..         ...  ...     ...    ...   ...     ...   
... 
239      29.03 5.92    Male     No   Sat  Dinner    
3 
240      27.18 2.00  Female    Yes   Sat  Dinner    
2 
241      22.67 2.00    Male    Yes   Sat  Dinner    
2 
242      17.82 1.75    Male     No   Sat  Dinner    
2 
243      18.78 3.00  Female     No  Thur  Dinner    
2 
 
[244 rows x 7 columns]

In our simple linear regression, we’d like to see how the total_bill
relates to or predicts the tip.

13.1.1 With statsmodels
We can use the statsmodels library to perform our simple linear
regression. We will use the formula API (application programming
interface) from statsmodels. This is a new library we are working with.

Click here to view code image

import statsmodels.formula.api as smf

To perform this simple linear regression, we use the ols() function,
which computes the ordinary least squares value; it is one method to
estimate parameters in a linear regression. Recall that the formula for a line
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is y = mx + b, where y is our response variable, x is our predictor, b is the
intercept, and m is the slope, the parameter we are estimating.

The formula notation has two parts, separated by a tilde, ~. To the left of
the tilde is the response variable, and to the right of the tilde are the
predictor(s).

Click here to view code image

model = smf.ols(formula='tip ~ total_bill', 
data=tips)

Once we have specified our model, we can fit the data to the model by
using the fit method.

Click here to view code image

results = model.fit()

To look at our results, we can call the .summary() method on the
results.

Click here to view code image

print(results.summary())

                     OLS Regression Results 
==================================================
======================== 
Dep. Variable:                   tip   R-squared:   
0.457 
Model:                           OLS   Adj. R-
squared:               0.454 
Method:                Least Squares   F-
statistic:                  203.4 
Date:               Thu, 01 Sep 2022   Prob (F-
statistic):        6.69e-34 
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Time:                       01:55:45   Log-
Likelihood:             -350.54 
No. Observations:                244   AIC:         
705.1 
Df Residuals:                    242   BIC:         
712.1 
Df Model:                          1 
Covariance Type:           nonrobust 
==================================================
======================== 
                  coef   std err        t     
P>|t|     [0.025      0.975] 
--------------------------------------------------
------------------------ 
Intercept       0.9203     0.160    5.761     
0.000      0.606       1.235 
total_bill      0.1050     0.007   14.260     
0.000      0.091       0.120 
==================================================
======================== 
Omnibus:                        20.185  Durbin-
Watson:               2.151 
Prob(Omnibus):                   0.000  Jarque-
Bera (JB):           37.750 
Skew:                            0.443  Prob(JB):   
6.35e-09 
Kurtosis:                        4.711  Cond. No.   
53.0 
==================================================
======================== 
 
Notes: 



[1] Standard Errors assume that the covariance 
matrix of the errors is correctly specified.

Here we can see the Intercept of the model and the total_bill.
We can use these parameters in our formula for the line, y = (0.105)x +
0.920. To interpret these numbers, we say: for every one unit increase in
total_bill (i.e., every time the bill increases by a dollar), the tip
increases by 0.105 (i.e., 10.5 cents).

If we just want the coefficients, we can call the .params attribute on
the results.

Click here to view code image

print(results.params)

Intercept     0.920270 
total_bill    0.105025 
dtype: float64

Depending on your field, you may also need to report a confidence
interval, which identifies the possible values the estimated value can take
on. The confidence interval includes the values less than [0.025
0.975]. We can also extract these values using the .conf_int()
method.

Click here to view code image

print(results.conf_int())

                  0        1 
Intercept  0.605622 1.234918 
total_bill 0.090517 0.119532

13.1.2 With scikit-learn
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We can also use the sklearn library to fit various machine learning
models. To perform the same analysis we just did, we need to import the
linear_model module from this library.

Click here to view code image

from sklearn import linear_model

We can then create our linear regression object.

Click here to view code image

# create our LinearRegression object 
lr = linear_model.LinearRegression()

Next, we need to specify the predictor, X, and the response, y. To do
this, we pass in the columns we want to use for the model.

Note
Note the parameters are upper-case letter X and lower-case letter y.

This comes from mathematical notation, where the predictors, X are
a matrix of values, and the response, y, is a vector of values.

Too simple of an example
If we simply pass in a single variable into the X parameter, we actually get
an error.

Click here to view code image

# note it is an uppercase X 
# and a lowercase y 
# this will fail because our X has only 1 
variable 
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predicted = lr.fit(X=tips['total_bill'], 
y=tips['tip'])

ValueError: Expected 2D array, got 1D array 
instead: 
array=[16.99 10.34 21.01 23.68 24.59 25.29  8.77 
26.88 15.04 14.78 10.27 35.26 
 15.42 18.43 14.83 21.58 10.33 16.29 16.97 20.65 
17.92 20.29 15.77 39.42 
 19.82 17.81 13.37 12.69 21.7  19.65  9.55 18.35 
15.06 20.69 17.78 24.06 
 16.31 16.93 18.69 31.27 16.04 17.46 13.94  9.68 
30.4  18.29 22.23 32.4 
 28.55 18.04 12.54 10.29 34.81  9.94 25.56 19.49 
38.01 26.41 11.24 48.27 
 20.29 13.81 11.02 18.29 17.59 20.08 16.45  3.07 
20.23 15.01 12.02 17.07 
 26.86 25.28 14.73 10.51 17.92 27.2  22.76 17.29 
19.44 16.66 10.07 32.68 
 15.98 34.83 13.03 18.28 24.71 21.16 28.97 22.49  
5.75 16.32 22.75 40.17 
 27.28 12.03 21.01 12.46 11.35 15.38 44.3  22.42 
20.92 15.36 20.49 25.21 
 18.24 14.31 14.    7.25 38.07 23.95 25.71 17.31 
29.93 10.65 12.43 24.08 
 11.69 13.42 14.26 15.95 12.48 29.8   8.52 14.52 
11.38 22.82 19.08 20.27 
 11.17 12.26 18.26  8.51 10.33 14.15 16.   13.16 
17.47 34.3  41.19 27.05 
 16.43  8.35 18.64 11.87  9.78  7.51 14.07 13.13 
17.26 24.55 19.77 29.85 
 48.17 25.   13.39 16.49 21.5 12.66  16.21 13.81 
17.51 24.52 20.76 31.71 



 10.59 10.63 50.81 15.81  7.25 31.85 16.82 32.9  
17.89 14.48  9.6  34.63 
 34.65 23.33 45.35 23.17 40.55 20.69 20.9  30.46 
18.15 23.1  15.69 19.81 
 28.44 15.48 16.58  7.56 10.34 43.11 13.   13.51 
18.71 12.74 13.   16.4 
 20.53 16.47 26.59 38.73 24.27 12.76 30.06 25.89 
48.33 13.27 28.17 12.9 
 28.15 11.59  7.74 30.14 12.16 13.42  8.58 15.98 
13.42 16.27 10.09 20.45 
 13.28 22.12 24.01 15.69 11.61 10.77 15.53 10.07 
12.6  32.83 35.83 29.03 
 27.18 22.67 17.82 18.78]. 
Reshape your data either using array.reshape(-1, 
1) if your data has a 
single feature or array.reshape(1, -1) if it 
contains a single sample.

Since sklearn is built to take numpy arrays, there will be times when
you have to do some data manipulations to pass your dataframe into
sklearn. The error message in the preceding output essentially tells us
the matrix passed is not in the correct shape. We need to reshape our inputs.
Depending on whether we have a single feature (which is the case here) or
a single sample (i.e., multiple observations), we will specify
reshape(-1, 1) or reshape(1, -1), respectively.

Calling .reshape() directly on the column will raise either a
DeprecationWarning (Pandas 0.17), a ValueError (Pandas 0.19),
or an AttributeError depending on the version of Pandas being used.

Click here to view code image

# this will fail 
predicted = lr.fit( 
    X=tips["total_bill"].reshape(-1, 1), 
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y=tips["tip"] 
)

AttributeError: 'Series' object has no attribute 
'reshape'

To properly reshape our data, we must use the .values attribute
(otherwise you may get another error or warning). When we call .values
on a Pandas dataframe or series, we get the numpy ndarray
representation of the data.

Click here to view code image

# we fix the data by putting it in the correct 
shape for sklearn 
predicted = lr.fit( 
    X=tips["total_bill"].values.reshape(-1, 1), 
y=tips["tip"] 
)

Since sklearn works on numpy ndarrays, you may see code that
explicitly passes in the numpy vector into the X or y parameter:
y=tips['tip'].values.

Unfortunately, sklearn doesn’t provide us with the nice summary
tables that statsmodels does. This reflects differing schools of thought:
statistics and computer science in contrast to prediction and machine
learning. To obtain the coefficients in sklearn, we call the .coef_
attribute on the fitted model.

print(predicted.coef_)

[0.10502452]

To get the intercept, we call the .intercept_ attribute.

print(predicted.intercept_)
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0.920269613554674

Notice that we get the same results as we did with statsmodels. That
is, people in our data set are tipping about 10% of their bill amount.

13.2 Multiple Regression
In simple linear regression, one predictor is regressed on a single response
variable. Alternatively, we can use multiple regression to put multiple
predictors in a model.

13.2.1 With statsmodels
Fitting a multiple regression model to a data set is very similar to fitting a
simple linear regression model. Using the formula interface, we add the
other covariates to the right-hand side.

Click here to view code image

# note the .fit() method chain at the end 
model = smf.ols(formula="tip ~ total_bill + 
size", data=tips).fit()

Click here to view code image

print(model.summary())

Click here to view code image

                          OLS Regression Results 
==================================================
======================== 
Dep. Variable:                    tip  R-squared:   
0.468 
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Model:                            OLS  Adj. R-
squared:               0.463 
Method:                 Least Squares  F-
statistic:                  105.9 
Date:                Thu, 01 Sep 2022  Prob (F-
statistic):        9.67e-34 
Time:                        01:55:46  Log-
Likelihood:             -347.99 
No. Observations:                 244  AIC:         
702.0 
Df Residuals:                     241  BIC:         
712.5 
Df Model:                           2 
Covariance Type:            nonrobust 
==================================================
======================== 
                 coef    std err         t       
P>|t|      [0.025  0.975] 
--------------------------------------------------
------------------------ 
Intercept      0.6689      0.194     3.455       
0.001       0.288   1.050 
total_bill     0.0927      0.009    10.172       
0.000       0.075   0.111 
size           0.1926      0.085     2.258       
0.025       0.025   0.361 
==================================================
======================== 
Omnibus:                      24.753   Durbin-
Watson:                2.100 
Prob(Omnibus):                 0.000   Jarque-Bera 
(JB):            46.169 
Skew:                          0.545   Prob(JB):    



9.43e-11 
Kurtosis:                      4.831   Cond. No.    
67.6 
==================================================
========================

Notes: 
[1] Standard Errors assume that the covariance 
matrix of the errors is correctly specified.

The interpretations are exactly the same as before, except each
parameter is interpreted “with all other variables held constant.” That is, for
every one unit increase (dollar) in total_bill, the tip increases by
0.09 (i.e., 9 cents) as long as the size of the group does not change.

13.2.2 With scikit-learn
The syntax for multiple regression in sklearn is very similar to the
syntax for simple linear regression with this library. To add more features to
the model, we pass in the columns we want to use.

Click here to view code image

lr = linear_model.LinearRegression() 
 
# since we are performing multiple regression 
# we no longer need to reshape our X values 
predicted = lr.fit (X=tips[["total_bill", 
"size"]], y=tips["tip"]) 
 
print(predicted.coef_)

[0.09271334 0.19259779]
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We can get the intercept from the model just as we did earlier.

Click here to view code image

print(predicted.intercept_)

0.6689447408125035

13.3 Models with Categorical Variables
So far, we have used only continuous predictors in our model. If we look at
the .info() method of our tips data set, however, we can see that our
data includes categorical variables (you can also use the .dtypes
attribute).

Click here to view code image

print(tips.info())

<class 'pandas.core.frame.DataFrame'> 
RangeIndex: 244 entries, 0 to 243 
Data columns (total 7 columns): 
 #   Column       Non-Null Count  Dtype 
---  ------       --------------  ----- 
 0   total_bill   244 non-null    float64 
 1   tip          244 non-null    float64 
 2   sex          244 non-null    category 
 3   smoker       244 non-null    category 
 4   day          244 non-null    category 
 5   time         244 non-null    category 
 6   size         244 non-null    int64 
dtypes: category(4), float64(2), int64(1) 
memory usage: 7.4 KB 
None
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When we want to model a categorical variable, we have to create
“dummy variables.” That is, each unique value in the category becomes a
new binary feature. These are also called “one-hot encoding,” depending on
the field you’re in. For example, sex in our data can hold one of two
values, Female or Male.

Click here to view code image

print(tips.sex.unique())

['Female', 'Male'] 
Categories (2, object): ['Male', 'Female']

13.3.1 Categorical Variables in statsmodels
statsmodels will automatically create dummy variables for us. To avoid
multicollinearity, we typically drop one of the dummy variables. That is, if
we have a column that indicates whether an individual is female, then we
know if the person is not female (in our data), that person must be male. In
such a case, we can effectively drop the dummy variable that codes for
males and still have the same information.

Here’s the model that uses all the variables in our data.

Click here to view code image

model = smf.ols( 
    formula="tip ~ total_bill + size + sex + 
smoker + day + time", 
    data=tips, 
).fit()

We can see from the summary that statsmodels automatically
creates dummy variables as well as drops the reference variable to avoid
multicollinearity.

Click here to view code image
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print(model.summary())

                    OLS Regression Results 
==================================================
======================== 
Dep. Variable:                   tip  R-squared:    
0.470 
Model:                           OLS  Adj. R-
squared:                0.452 
Method:                Least Squares  F-statistic:  
26.06 
Date:               Thu, 01 Sep 2022  Prob (F-
statistic):         1.20e-28 
Time:                       01:55:46  Log-
Likelihood:              -347.48 
No. Observations:                244  AIC:          
713.0 
Df Residuals:                    235  BIC:          
744.4 
Df Model:                          8 
Covariance Type:           nonrobust 
==================================================
======================== 
                  coef   std err      t     P>|t|   
[0.025       0.975] 
--------------------------------------------------
------------------------ 
Intercept       0.5908     0.256   2.310    0.022   
0.087        1.095 
sex[T.Female]   0.0324     0.142   0.229    0.819   
-0.247        0.311 
smoker[T.No]    0.0864     0.147   0.589    0.556   
-0.202        0.375 



day[T.Fri]      0.1623     0.393   0.412    0.680   
-0.613        0.937 
day[T.Sat]      0.0408     0.471   0.087    0.931   
-0.886        0.968 
day[T.Sun]      0.1368     0.472   0.290    0.772   
-0.793        1.066 
time[T.Dinner] -0.0681     0.445  -0.153    0.878   
-0.944        0.808 
total_bill      0.0945     0.010   9.841    0.000   
0.076        0.113 
size            0.1760     0.090   1.966    0.051   
-0.000        0.352 
==================================================
===================== 
Omnibus:                  27.860   Durbin-Watson:   
2.096 
Prob(Omnibus):             0.000   Jarque-Bera 
(JB):             52.555 
Skew:                      0.607   Prob(JB):        
3.87e-12 
Kurtosis:                  4.923   Cond. No.        
281. 
==================================================
========================

Notes: 
[1] Standard Errors assume that the covariance 
matrix of the errors is correctly specified.

The interpretation of the continuous (i.e., numeric) parameters is the
same as before. However, our interpretation of categorical variables must
be stated in relation to the reference variable (i.e., the dummy variable that
was dropped from the analysis). For example, the coefficient for



sex[T.Female] is 0.0324. We interpret this value in relation to the
reference value, Male; that is, we say that when the sex of the server
“changes” from Male to Female, the tip increases by 0.324. For the
day variable:

Click here to view code image

print(tips.day.unique())

['Sun', 'Sat', 'Thur', 'Fri'] 
Categories (4, object): ['Thur', 'Fri', 'Sat', 
'Sun']

We see that our .summary() is missing Thur, so that is the reference
variable to use to interpret the coefficients.

13.3.2 Categorical Variables in scikit-learn
We have to manually create our dummy variables for sklearn. Luckily,
Pandas has a function, .get_dummies(), that will do this work for us.
This function converts all the categorical variables into dummy variables
automatically, so we do not need to pass in individual columns one at a
time. sklearn has a OneHotEncoder function that does something
similar.

13.3.2.1 Dummy Variables in Pandas

The get_dummies() function in Pandas can create dummy variable
encoding of a dataframe for us.

Click here to view code image

tips_dummy = pd.get_dummies( 
    tips[["total_bill", "size", "sex", "smoker", 
"day", "time"]] 
) 
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print(tips_dummy)

   total_bill  size  sex_Male  sex_Female  
smoker_Yes  smoker_No  \ 
0       16.99     2         0           1           
0          1 
1       10.34     3         1           0           
0          1 
2       21.01     3         1           0           
0          1 
3       23.68     2         1           0           
0          1 
4       24.59     4         0           1           
0          1 
..        ...   ...       ...         ...         
...        ... 
239     29.03     3         1           0           
0          1 
240     27.18     2         0           1           
1          0 
241     22.67     2         1           0           
1          0 
242     17.82     2         1           0           
0          1 
243     18.78     2         0           1           
0          1

    day_Thur  day_Fri  day_Sat  day_Sun  
time_Lunch  time_Dinner 
0          0        0        0        1           
0            1 



1          0        0        0        1           
0            1 
2          0        0        0        1           
0            1 
3          0        0        0        1           
0            1 
4          0        0        0        1           
0            1 
..       ...      ...      ...      ...         
...          ... 
239        0        0        1        0           
0            1 
240        0        0        1        0           
0            1 
241        0        0        1        0           
0            1 
242        0        0        1        0           
0            1 
243        1        0        0        0           
0            1

[244 rows x 12 columns]

To drop the reference variable, we can pass in drop_first=True.

Click here to view code image

x_tips_dummy_ref = pd.get_dummies( 
    tips[["total_bill", "size", "sex", "smoker", 
"day", "time"]], 
    drop_first=True, 
) 
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print(x_tips_dummy_ref)

     total_bill  size  sex_Female  smoker_No  
day_Fri  day_Sat  \ 
0         16.99     2           1          1        
0        0 
1         10.34     3           0          1        
0        0 
2         21.01     3           0          1        
0        0 
3         23.68     2           0          1        
0        0 
4         24.59     4           1          1        
0        0 
..          ...   ...         ...        ...      
...      ... 
239       29.03     3           0          1        
0        1 
240       27.18     2           1          0        
0        1 
241       22.67     2           0          0        
0        1 
242       17.82     2           0          1        
0        1 
243       18.78     2           1          1        
0        0

     day_Sun   time_Dinner 
0          1             1 
1          1             1 
2          1             1 



3          1             1 
4          1             1 
..       ...           ... 
239        0             1 
240        0             1 
241        0             1 
242        0             1 
243        0             1

[244 rows x 8 columns]

We fit the model just as we did earlier.

Click here to view code image

lr = linear_model.LinearRegression() 
predicted = lr.fit(X=x_tips_dummy_ref, 
y=tips["tip"])

We also obtain the coefficients in the same way.

Click here to view code image

print(predicted.intercept_)

0.5908374259513787

Click here to view code image

print(predicted.coef_)

[ 0.09448701   0.175992   0.03244094   0.08640832   
0.1622592   0.04080082 
  0.13677854  -0.0681286 ]
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13.3.2.2 Keeping Index Labels from sklearn

One of the annoying things when trying to interpret a model from
sklearn is that the coefficients are not labeled. The labels are omitted
because the numpy ndarray is unable to store this type of metadata. If
we want our output to resemble something from statsmodels, we need
to manually store the labels and append the coefficients to them.

Click here to view code image

import numpy as np 
 
# create and fit the model 
lr = linear_model.LinearRegression() 
predicted = lr.fit (X=x_tips_dummy_ref, 
y=tips["tip"]) 
 
# get the intercept along with other 
coefficients 
values = np.append(predicted.intercept_, 
predicted.coef_) 
 
# get the names of the values 
names = np.append("intercept", 
x_tips_dummy_ref.columns) 
 
# put everything in a labeled dataframe 
results = pd.DataFrame({"variable": names, 
"coef": values}) 
 
print(results)

      variable      coef 
0    intercept  0.590837 

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch13_images.xhtml#f0293-02


1   total_bill  0.094487 
2         size  0.175992 
3   sex_Female  0.032441 
4    smoker_No  0.086408 
5      day_Fri  0.162259 
6      day_Sat  0.040801 
7      day_Sun  0.136779 
8  time_Dinner -0.068129

13.4 One-Hot Encoding in scikit-learn with
Transformer Pipelines
Scikit-learn has its own way of processing data for analysis using
“pipelines.” We can use the one-hot encoding transformer in a pipeline to
process our data in scikit-learn, instead of pandas, before we fit our model.

Click here to view code image

from sklearn.compose import ColumnTransformer 
from sklearn.preprocessing import OneHotEncoder 
from sklearn.pipeline import Pipeline

We first need to specify which columns we want to process, here we are
only looking to work with categorical variables.

Click here to view code image

categorical_features = ["sex", "smoker", "day", 
"time"] 
categorical_transformer = 
OneHotEncoder(drop="first")

Once we have the columns and the processing step we want, we can then
pass the steps into ColumnTransformer(). Since we want to still have
the numeric variables in the final model, but didn’t specify a processing
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step for them, we pass in remainder="passthrough" to make sure
those variables not specified in the transformers step still make it to
the final model.

Click here to view code image

preprocessor = ColumnTransformer( 
  transformers=[ 
    ("cat", categorical_transformer, 
categorical_features), 
  ], 
  remainder="passthrough", # keep the numeric 
columns 
)

Finally, we can create a Pipeline() with all the preprocessing steps,
and then to the model we want.

Click here to view code image

pipe = Pipeline( 
  steps=[ 
    ("preprocessor", preprocessor), 
    ("lr", linear_model.LinearRegression()), 
  ] 
)

Finally, we can fit our model just like before.

Click here to view code image

pipe.fit( 
  X=tips[["total_bill", "size", "sex", "smoker", 
"day", "time"]], 
  y=tips["tip"], 
)
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Click here to view code image

Pipeline(steps=[('preprocessor', 
              
ColumnTransformer(remainder='passthrough', 
                                transformers=
[('cat', 
                                               
OneHotEncoder(drop='first'), 
                                               
['sex', 'smoker', 'day', 
                                                
'time'])])), 
             ('lr', LinearRegression())])

We can’t get the .intercept_ and coef_ because the
Pipeline(), is not a LinearRegression() object.

Click here to view code image

print(type(pipe))

<class 'sklearn.pipeline.Pipeline'>

We need to access the coefficients in an additional step. This is because
not all models will have intercept_ and coef_ values, the
Pipeline() is a generic function that works with any model within the
sklearn library.

Click here to view code image

# combine the intercept and coefficients into 
single vector 
coefficients = np.append( 
  pipe.named_steps["lr"].intercept_, 
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pipe.named_steps["lr"].coef_ 
) 
 
# combine the intercept text with the other 
feature names 
labels = np.append( 
  ["intercept"], pipe[ 
:-1].get_feature_names_out() 
) 
 
# create a dataframe of all the results 
coefs = pd.DataFrame({"variable": labels, 
"coef": coefficients}) 
 
print(coefs)

                variable      coef 
0              intercept  0.803817 
1          cat__sex_Male -0.032441 
2        cat__smoker_Yes -0.086408 
3           cat__day_Sat -0.121458 
4           cat__day_Sun -0.025481 
5          cat__day_Thur -0.162259 
6        cat__time_Lunch  0.068129 
7  remainder__total_bill  0.094487 
8        remainder__size  0.175992

Note that here the coefficients are not exactly the same as the
statsmodels values because the reference variable is different.

Conclusion
This chapter introduced the basics of fitting models using the
statsmodels and sklearn libraries. The concepts of adding features



to a model and creating dummy variables are constantly used when fitting
models. Thus far, we have focused on fitting linear models, where the
response variable is a continuous variable. In later chapters, we’ll fit
models where the response variable is not a continuous variable.



14

Generalized Linear Models

Not every response variable will be continuous, so a linear regression will
not be the correct model in every circumstance. Some outcomes may
contain binary data (e.g., sick and not sick), or even count data (e.g., how
many heads will I get when I flip a coin). A general class of models called
generalized linear models (GLM) can account for these types of data, yet
still use a linear combination of predictors.

About This Chapter
This chapter has been improved from its first edition version in a few ways.
First, the data set example was changed to use the titanic data set from
the seaborn library. The original code from the New York American
Community Survey (ACS) was replaced with a new data set to make the
model outputs more comparable across multiple libraries and programming
languages (Appendix Z).

Next, the first edition of this book did not emphasize the different
parameter options in functions from the scikit-learn library. This was
originally a bit misleading as it gave off the impression that the models
were doing exactly the same thing when they have different default
behaviors. This chapter now gives more code and examples to emphasize
the model differences between the modeling libraries. The original ACS
modeling code can still be found in Appendix Y.

14.1 Logistic Regression (Binary Outcome
Variable)
When you have a binary response variable (i.e., two possible outcomes),
logistic regression is often used to model the data. We will be using the



titanic data set that was exported from the seaborn library.

About the Titanic Data Set
The titanic data set is coming from the seaborn library. It was
exported directly from the library to be read in so the exact data set can
be reused in this chapter along with the example used in Appendix Z.2.

Below is the code used to create the data set.

Click here to view code image

import seaborn as sns 
 
titanic = sns.load_data set("titanic") 
titanic.to_csv("data/titanic.csv", 
index=False)

With our data loaded, let’s first subset the dataframe using only the
columns we will be using for this model. We will also be dropping rows
with missing values in them since models usually ignore observations that
are not complete anyway, and we are not showing how to impute missing
data in this chapter. Notice that we are dropping the missing values after
we subsetted the columns we wanted, so we are not artificially dropping
observations.

Click here to view code image

titanic_sub = ( 
    titanic[["survived", "sex", "age", 
"embarked"]].copy().dropna() 
) 
 
print(titanic_sub)
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         survived    sex      age embarked 
0               0   male     22.0        S 
1               1 female     38.0        C 
2               1 female     26.0        S 
3               1 female     35.0        S 
4               0   male     35.0        S 
..            ...    ...      ...      ... 
885             0 female     39.0        Q 
886             0   male     27.0        S 
887             1 female     19.0        S 
889             1   male     26.0        C 
890             0   male     32.0        Q

[712 rows x 4 columns]

In this data set, our outcome of interest is the survived column, on
whether an individual survived (1) or died (0) during the sinking of the
Titanic. The other columns, sex, age, and embarked are going to be the
variable we use to see who survived.

Click here to view code image

# count of values in the survived column 
print(titanic_sub["survived"].value_counts())

0    424 
1    288 
Name: survived, dtype: int64

The embarked column describes where the individual boarded the ship
from. There are three values for embarked: Southampton (S), Cherbourg
(C), and Queenstown (Q).

Click here to view code image
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# count of values in the embarked column 
print(titanic_sub["embarked"].value_counts())

S    554 
C    130 
Q     28 
Name: embarked, dtype: int64

Interpreting results from a logistic regression model is not as
straightforward as interpreting a linear regression model. In a logistic
regression, as with all generalized linear models, there is a transformation
(i.e., link function), that that affects how to interpret the results.

The link function for logistic regression is usually the logit link
function.

log it (p) = log( )

Where p is the probability of the event, and  is the odds of the event.
This is why logistic regression output is typically interpreted as “odds”, and
we do that by undoing the log call by exponentiating our results. You can
think of the “odds” of something as how many “times likely” the outcome
will be. That phrasing should only be used as an analogy, however, as it is
not technically correct. The value of an odds can only be greater than zero,
and can never be negative. However, the “log odds” (i.e., logit), can be
negative.

14.1.1 With statsmodels
To perform a logistic regression in statsmodels we can use the
logit() function. The syntax for this function is the same as that used for
linear regression in Chapter 13.

Click here to view code image

p

1−p

p

1−p

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch14_images.xhtml#f0299-04


import statsmodels.formula.api as smf 
 
# formula for the model 
form = 'survived ~ sex + age + embarked' 
 
# fitting the logistic regression model, note 
the .fit() at the end 
py_logistic_smf = smf.logit(formula=form, 
data=titanic_sub).fit() 
 
print(py_logistic_smf.summary())

Optimization terminated successfully. 
         Current function value: 0.509889 
         Iterations 6 
                       Logit Regression Results 
==================================================
========================== 
Dep. Variable:              survived   No. 
Observations:                 712 
Model:                         Logit   Df 
Residuals:                     707 
Method:                          MLE   Df Model:    
4 
Date:               Thu, 01 Sep 2022   Pseudo R-
squ.:                 0.2444 
Time:                       01:55:49   Log-
Likelihood:               -363.04 
 
converged:                      True   LL-Null:     
-480.45 
Covariance Type:           nonrobust   LLR p-
value:                1.209e-49 



==================================================
============================ 
                    coef     std err        z    
P>|z|    [0.025        0.975] 
--------------------------------------------------
---------------------------- 
Intercept         2.2046       0.322    6.851    
0.000     1.574         2.835 
sex[T.male]      -2.4760       0.191  -12.976    
0.000    -2.850        -2.102 
embarked[T.Q]    -1.8156       0.535   -3.393    
0.001    -2.864        -0.767 
embarked[T.S]    -1.0069       0.237   -4.251    
0.000    -1.471        -0.543 
age              -0.0081       0.007   -1.233    
0.217    -0.021         0.005 
==================================================
============================

We can then get the coefficients of the model, and exponentiate it to
calculate the odds of each variable.

Click here to view code image

import numpy as np 
 
# get the coefficients into a dataframe 
res_sm = pd.DataFrame(py_logistic_smf.params, 
columns=["coefs_sm"]) 
 
# calculate the odds 
res_sm["odds_sm"] = np.exp(res_sm["coefs_sm"]) 
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# round the decimals 
print(res_sm.round(3))

              coefs_sm  odds_sm 
Intercept        2.205    9.066 
sex[T.male]     -2.476    0.084 
embarked[T.Q]   -1.816    0.163 
embarked[T.S]   -1.007    0.365 
age             -0.008    0.992

An example interpretation of these numbers would be that for every one
unit increase in age, the odds of the survived decreases by 0.992 times.
Since the value is close to 1, it seems that age wasn’t too much of a factor
in survival. You can also confirm that statement by looking at the p-value
for the variable in the summary table (under the P>|z| column).

A similar interpretation can be made with categorical variables. Recall
that categorical variables are always interpreted in relation to the reference
variable.

There are two potential values for sex in this data set, male and
female, but only a coefficient for male is given. So that means the value
is interpreted as “males compared to females”, where female is the
reference variable. The odds for the male variable are interpreted as: males
were 0.084 times more likely to survive compared to females (the odds
for not surviving the tragedy were high for males).

14.1.2 With sklearn
When using sklearn, remember that dummy variables need to be created
manually.

Click here to view code image

titanic_dummy = pd.get_dummies( 
    titanic_sub[["survived", "sex", "age", 
"embarked"]], 
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    drop_first=True 
)

Click here to view code image

# note our outcome variable is the first column 
(index 0) 
print(titanic_dummy)

     survived   age sex_male embarked_Q embarked_S 
0           0  22.0        1          0          1 
1           1  38.0        0          0          0 
2           1  26.0        0          0          1 
3           1  35.0        0          0          1 
4           0  35.0        1          0          1 
..        ...   ...      ...        ...        ... 
885         0  39.0        0          1          0 
886         0  27.0        1          0          1 
887         1  19.0        0          0          1 
889         1  26.0        1          0          0 
890         0  32.0        1          1          0

[712 rows x 5 columns]

We can then use the LogisticRegression() function from the
linear_model module to create a logistic regression output to fit our
model.

Click here to view code image

from sklearn import linear_model 
 
# this is the only part that fits the model 
py_logistic_sklearn1 = ( 
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  linear_model.LogisticRegression().fit( 
    X=titanic_dummy.iloc[:, 1:], # all the 
columns except first 
    y=titanic_dummy.iloc[:, 0]   # just the 
first column 
  ) 
)

Danger
Please read Section 14.1.3, which emphasizes reading the
documentation and being aware of the ramifications of the default
scikit-learn LogisticRegression() values.

The code below will process the scikit-learn logistic regression fitted
model into a single dataframe so we can better compare results.

Click here to view code image

# get the names of the dummy variable columns 
dummy_names = titanic_dummy.columns.to_list() 
# get the intercept and coefficients into a 
dataframe 
sk1_res1 = pd.DataFrame( 
    py_logistic_sklearn1.intercept_, 
    index=["Intercept"], 
    columns=["coef_sk1"], 
 
) 
sk1_res2 = pd.DataFrame( 
    py_logistic_sklearn1.coef_.T, 
    index=dummy_names[1:], 
    columns=["coef_sk1"], 
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) 
 
# put the results into a single dataframe to 
show the results 
res_sklearn_pd_1 = pd.concat([sk1_res1, 
sk1_res2]) 
 
# calculate the odds 
res_sklearn_pd_1["odds_sk1"] = 
np.exp(res_sklearn_pd_1["coef_sk1"]) 
 
print(res_sklearn_pd_1.round(3))

           coef_sk1   odds_sk1 
Intercept     2.024      7.571 
age          -0.008      0.992 
sex_male     -2.372      0.093 
embarked_Q   -1.369      0.254 
embarked_S   -0.887      0.412

You will notice here that the coefficient values are different from the
ones calculated from the statsmodels section we just did. The
differences are more than a simple rounding error too!

14.1.3 Be Careful of scikit-learn Defaults
The main reason why the sklearn results differ from the statsmodels
results stems from the domain differences where the two packages come
from. Scikit-learn comes more from the machine learning world and is
focused on prediction so the model defaults are set for numeric stability,
and not for inference. However, statsmodels functions are implemented
in a manner more traditional for statistics.

The LogisticRegression() function has a penalty parameter
that defaults to 'l2', which adds an L2 penalty term (more about penalty



terms in Chapter 17). If we want LogisticRegression() to behave in
a manner more traditional for statistics, we need to set
penalty="none".

Click here to view code image

# fit another logistic regression with no 
penalty 
py_logistic_sklearn2 = 
linear_model.LogisticRegression( 
     penalty="none" # this parameter is 
important! 
).fit( 
     X=titanic_dummy.iloc[:, 1:],   # all the 
columns except first 
     y=titanic_dummy.iloc[:, 0]    # just the 
first column 
) 
 
# rest of the code is the same as before, except 
variable names 
sk2_res1 = pd.DataFrame( 
    py_logistic_sklearn2.intercept_, 
    index=["Intercept"], 
    columns=["coef_sk2"], 
) 
sk2_res2 = pd.DataFrame( 
    py_logistic_sklearn2.coef_.T, 
    index=dummy_names[1:], 
    columns=["coef_sk2"], 
) 
 
res_sklearn_pd_2 = pd.concat([sk2_res1, 
sk2_res2]) 
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res_sklearn_pd_2["odds_sk2"] = 
np.exp(res_sklearn_pd_2["coef_sk2"])

Note
In general, always check the documentation for the functions you are
using, and make sure you know what all the parameters are doing.

First, let’s look at the original statsmodels results

Click here to view code image

sm_results = res_sm.round(3) 
 
# sort values to make things easier to compare 
sm_results = sm_results.sort_index() 
 
print(sm_results)

              coefs_sm  odds_sm 
Intercept        2.205    9.066 
age             -0.008    0.992 
embarked[T.Q]   -1.816    0.163 
embarked[T.S]   -1.007    0.365 
sex[T.male]     -2.476    0.084

Now, let’s compare them with the two sklearn results

Click here to view code image

# concatenate the 2 model results 
sk_results = pd.concat( 
   [res_sklearn_pd_1.round(3), 
res_sklearn_pd_2.round(3)], 
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   axis="columns", 
) 
 
# sort cols and rows to make things easy to 
compare 
sk_results = 
sk_results[sk_results.columns.sort_values()] 
sk_results = sk_results.sort_index() 
 
print(sk_results)

Click here to view code image

             coef_sk1  coef_sk2  odds_sk1  
odds_sk2 
Intercept       2.024     2.205     7.571     
9.066 
age            -0.008    -0.008     0.992     
0.992 
embarked_Q     -1.369    -1.816     0.254     
0.163 
embarked_S     -0.887    -1.007     0.412     
0.365 
sex_male       -2.372    -2.476     0.093     
0.084

The results here can also be compared to the same data and model from
the R programming language in Appendix Z.2. You can see how subtle
differences between the model parameters can cause differences in the
interpretations.

14.2 Poisson Regression (Count Outcome
Variable)
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Poisson regression is performed when our response variable involves count
data.

Click here to view code image

acs = pd.read_csv('data/acs_ny.csv') 
print(acs.columns)

Index(['Acres', 'FamilyIncome', 'FamilyType', 
'NumBedrooms', 
       'NumChildren', 'NumPeople', 'NumRooms', 
'NumUnits', 
       'NumVehicles', 'NumWorkers', 'OwnRent', 
'YearBuilt', 
       'HouseCosts', 'ElectricBill', 'FoodStamp', 
'HeatingFuel', 
       'Insurance', 'Language'], 
      dtype='object')

For example, in the acs data, the NumChildren variable is an
example of count data.

About the ACS Data Set
The American Community Survey (ACS) data we are using contains
information about family and house size in New York.

14.2.1 With statsmodels
We can perform a Poisson regression using the poisson() function in
statsmodels. We will use the NumBedrooms variable (Figure 14.1).
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Figure 14.1 Bar plot using the statsmodels countplot()
function of the NumBedrooms variable

Click here to view code image

import matplotlib.pyplot as plt 
 
fig, ax = plt.subplots() 
sns.countplot(data = acs, x = "NumBedrooms", 
ax=ax) 
 
ax.set_title('Number of Bedrooms') 
ax.set_xlabel('Number of Bedrooms in a House') 
ax.set_ylabel('Count') 
 
plt.show()
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Click here to view code image

model = smf.poisson( 
  "NumBedrooms ~ HouseCosts + OwnRent", data=acs 
) 
results = model.fit() 
 
print(results.summary())

Optimization terminated successfully. 
         Current function value: 1.680998 
         Iterations 10 
 
                     Poisson Regression Results 
==================================================
============================ 
Dep. Variable:            NumBedrooms   No. 
Observations:                22745 
Model:                        Poisson   Df 
Residuals:                    22741 
Method:                           MLE   Df Model:   
3 
Date:                Thu, 01 Sep 2022   Pseudo R-
squ.:                0.008309 
Time:                        01:55:49   Log-
Likelihood:                -38234. 
converged:                       True   LL-Null:    
-38555. 
Covariance Type:            nonrobust   LLR p-
value:                1.512e-138 
==================================================
==================================== 
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                         coef      std err        
z      P>|z|    [0.025        0.975] 
--------------------------------------------------
------------------------------------ 
Intercept              1.1387        0.006  
184.928      0.000     1.127         1.151 
OwnRent[T.Outright]   -0.2659        0.051   
-5.182      0.000    -0.367        -0.165 
OwnRent[T.Rented]     -0.1237        0.012   
-9.996      0.000    -0.148        -0.099 
HouseCosts          6.217e-05     2.96e-06   
21.017      0.000  5.64e-05       6.8e-05 
==================================================
====================================

The benefit of using a generalized linear model is that the only things
that need to be changed are the family of the model that needs to be fit,
and the link function that transforms our data. We can also use the more
general glm() function to perform all the same calculations.

Click here to view code image

import statsmodels.api as sm 
import statsmodels.formula.api as smf 
 
model = smf.glm( 
   "NumBedrooms ~ HouseCosts + OwnRent", 
   data=acs, 
   
family=sm.families.Poisson(sm.genmod.families.li
nks.log()), 
).fit()
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In this example, we are using the Poisson family, which comes from
sm.families. Poisson, and we’re passing in the log link function via
sm.genmod.families.links.log(). We get the same values as we
did earlier when we use this method.

Click here to view code image

print(results.summary())

                    Poisson Regression Results 
==================================================
============================ 
Dep. Variable:              NumBedrooms  No. 
Observations:               22745 
Model:                       Poisson Df  
Residuals:                      22741 
Method:                          MLE Df  Model:     
3 
Date:                  Thu, 01 Sep 2022  Pseudo R-
squ.:               0.008309 
Time:                          01:55:49  Log-
Likelihood:               -38234. 
converged:                         True  LL-Null:   
-38555. 
Covariance Type:              nonrobust  LLR p-
value:               1.512e-138 
==================================================
=================================== 
                          coef    std err         
z   P>|z|     [0.025         0.975] 
--------------------------------------------------
----------------------------------- 
Intercept               1.1387      0.006   
184.928   0.000      1.127          1.151 
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OwnRent[T.Outright]    -0.2659      0.051    
-5.182   0.000     -0.367         -0.165 
OwnRent[T.Rented]      -0.1237      0.012    
-9.996   0.000     -0.148         -0.099 
HouseCosts           6.217e-05   2.96e-06    
21.017   0.000   5.64e-05        6.8e-05 
==================================================
===================================

14.2.2 Negative Binomial Regression for
Overdispersion
If our assumptions for Poisson regression are violated—that is, if our data
has overdispersion—we can perform a negative binomial regression instead
(Figure 14.2). Overdispersion is the statistics term meaning the numbers
have more variance than expected, i.e., the values are too spread out.



Figure 14.2 Bar plot using the statsmodels countplot()
function of the NumPeople variable

Click here to view code image

fig, ax = plt.subplots() 
 
sns.countplot(data = acs, x = "NumPeople", 
ax=ax) 
ax.set_title('Number of People') 
ax.set_xlabel('Number of People in a Household') 
ax.set_ylabel('Count') 
 
plt.show()
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Click here to view code image

model = smf.glm( 
  "NumPeople ~ Acres + NumVehicles", 
  data=acs, 
  family=sm.families.NegativeBinomial( 
    sm.genmod.families.links.log() 
  ), 
) 
 
results = model.fit()

Click here to view code image

print(results.summary())

              Generalized Linear Model Regression 
Results 
==================================================
============================ 
Dep. Variable:           NumPeople   No. 
Observations:                   22745 
Model:                      GLM Df   Residuals:     
22741 
Model Family:  NegativeBinomial Df   Model:         
3 
Link Function:                 log   Scale:         
1.0000 
Method:                       IRLS   Log-
Likelihood:                   -53542. 
Date:             Thu, 01 Sep 2022   Deviance:      
2605.6 
Time:                     01:55:50   Pearson chi2:  
2.99e+03 
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No. Iterations:                  6   Pseudo R-squ. 
(CS):              0.003504 
Covariance Type:         nonrobust 
==================================================
============================== 
                    coef   std err         z      
P>|z|      [0.025       0.975] 
--------------------------------------------------
------------------------------ 
Intercept         1.0418     0.025    41.580      
0.000       0.993        1.091 
Acres[T.10+]     -0.0225     0.040    -0.564      
0.573      -0.101        0.056 
Acres[T.Sub 1]    0.0509     0.019     2.671      
0.008       0.014        0.088 
NumVehicles       0.0661     0.008     8.423      
0.000       0.051        0.081 
==================================================
==============================

Look for the reference variable in Acres.

Click here to view code image

print(acs["Acres"].value_counts())

Sub 1   17114 
1-10     4627 
10+      1004 
Name: Acres, dtype: int64

14.3 More Generalized Linear Models
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The documentation page for GLM found in statsmodels lists the
various families that can be passed into the glm parameter.1 These families
can all be found under sm.families.<FAMILY>:

Binomial
Gamma
Gaussian
InverseGaussian
NegativeBinomial
Poisson
Tweedie

The link functions are found under sm.families.family.
<FAMILY>.links. Following is the list of link functions, but note that
not all link functions are available for each family:

CDFLink
CLogLog
LogLog
Log
Logit
NegativeBinomial
Power
cauchy
cloglog
loglog
identity
inverse_power
inverse_squared
log
logit

For example, using the all the link functions for the Binomial family.
1. https://www.statsmodels.org/dev/glm.html

https://www.statsmodels.org/dev/glm.html


Click here to view code image

sm.families.family.Binomial.links

[statsmodels.genmod.families.links.Logit, 
 statsmodels.genmod.families.links.probit, 
 statsmodels.genmod.families.links.cauchy, 
 statsmodels.genmod.families.links.Log, 
 statsmodels.genmod.families.links.CLogLog, 
 statsmodels.genmod.families.links.LogLog, 
 statsmodels.genmod.families.links.identity]

Conclusion
This chapter covered some of the most basic and common models used in
data analysis. These types of models serve as an interpretable baseline for
more complex machine learning models. As we cover more complex
models, keep in mind that sometimes simple and tried-and-true
interpretable models can outperform the fancy newer models.
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15

Survival Analysis

Survival analysis is used when we want to model how much time passes
before something happens. It is typically used in health contexts when we
are looking to see if a drug or intervention prevents an adverse event from
occurring. Before we begin with examples of survival analysis, let’s define
some terms first.

Event: Outcome, situation, or “event” you are interested in tracking in
your study.
Follow-up: “Lost to follow-up” is a term used in medical data. It means
that the patient stopped “following up” to the visits. This can mean that
the patient just stopped showing up, or the patient has died Usually, in
this context, death is the “event” of interest.
Censoring: Unsure of the status for a particular observation. This can
be right-censored (no more data after this period of time), or left-
censored (no data before this period of time). Right-censoring typically
occurs from lost to follow up, or the event of interest has occurred
(e.g., death).
Stop time: A point in the data where some censoring event has
occurred.

Survival analysis is typically used in medical research when trying to
determine whether one treatment prevents a serious adverse event (e.g.,
death) better than the standard or a different treatment. Survival analysis is
also used when data is censored, meaning the exact outcome of an event is
not entirely known. For example, patients who follow a treatment regimen
may sometimes be lost break to follow-up. The censoring usually occurs at
a “stop” event.

Survival analysis is performed using the lifelines library.1



1. lifelines documentation:
https://lifelines.readthedocs.io/en/latest/

15.1 Survival Data
Click here to view code image

bladder = pd.read_csv('data/bladder.csv') 
 
print(bladder)

Click here to view code image

    id rx number size stop event enum 
0    1  1      1    3    1     0    1 
1    1  1      1    3    1     0    2 
2    1  1      1    3    1     0    3 
3    1  1      1    3    1     0    4 
4    2  1      2    1    4     0    1 
..  .. ..    ...  ...  ...   ...  ... 
335 84  2      2    1   54     0    4 
336 85  2      1    3   59     0    1 
337 85  2      1    3   59     0    2 
338 85  2      1    3   59     0    3 
339 85  2      1    3   59     0    4

[340 rows x 7 columns]

About the Bladder Data Set
The bladder data set comes from the R {survival} package. It
contains 85 patients, their cancer recurrence status, and what treatment
they were on. Below is a recreation of the code book for the data.

https://lifelines.readthedocs.io/en/latest/
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id: Patient ID
rx: Treatment (1 = placebo, 2 = thiotepa)
number: Initial number of tumors (8 = 8 or more)
size: Size (cm) of largest initial tumor
stop: Recurrence or censoring time
event: Bladder cancer re-occurrence (0: No, 1: Yes)
enum: Which recurrence (up to 4)

Here are the counts of the different treatments, rx.

Click here to view code image

print(bladder['rx'].value_counts())

1    188 
2    152 
Name: rx, dtype: int64

15.2 Kaplan Meier Curves
To perform our survival analysis, we import the
KaplanMeierFitter() function from the lifelines library.

Click here to view code image

from lifelines import KaplanMeierFitter

Creating the model and fitting the data proceeds similarly to how models
are fit using sklearn. The stop variable indicates when an event occurs,
and the event variable signals whether the event of interest (bladder
cancer re-occurrence) occurred. The event value can have a value of 0,
because people can be lost to follow-up. As noted earlier, this type of data
is called “censored”.

Click here to view code image
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kmf = KaplanMeierFitter() 
kmf.fit(bladder['stop'], 
event_observed=bladder['event'])

<lifelines.KaplanMeierFitter:"KM_estimate", fitted 
with 340 total 
observations, 228 right-censored observations>

We can plot the survival curve using matplotlib, as shown in Figure
15.1.

Figure 15.1 Survival function of cancer recurrence using the
KaplanMeierFitter

Click here to view code image
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import matplotlib.pyplot as plt

fig, ax = plt.subplots() 
kmf.survival_function_.plot(ax=ax) 
ax.set_title('Survival function of cancer 
recurrence') 
plt.show()

We can also show the confidence interval of our survival curve, as
shown in Figure 15.2.

Figure 15.2 Survival function of cancer recurrence with confidence
intervals

Click here to view code image
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fig, ax = plt.subplots() 
kmf.plot(ax=ax) 
ax.set_title('Survival with confidence 
intervals') 
plt.show()

15.3 Cox Proportional Hazard Model
So far, we’ve just plotted the survival curve. We can also fit a model to
predict survival rate. One such model is called the Cox proportional hazards
model. We fit this model using the CoxPHFitter() class from
lifelines.

Click here to view code image

from lifelines import CoxPHFitter 
 
cph = CoxPHFitter()

We then pass in the columns to be used as predictors.

Click here to view code image

cph_bladder_df = bladder[ 
    ["rx", "number", "size", "enum", "stop", 
"event"] 
] 
cph.fit(cph_bladder_df, duration_col="stop", 
event_col="event")

<lifelines.CoxPHFitter: fitted with 340 total 
observations, 228 
right-censored observations>
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Now we can use the .print_summary() method to print out the
coefficients.

Click here to view code image

cph.print_summary()
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We mainly focus on the hazard ratio when looking at CPH models. In
the table this is represented by the exp(coef) column in the results.
Values close to 1 show that there is no change in the survival hazard.
Values from 0 -- 1 show a smaller hazard and values greater than 1
show an increase in hazard.

Note
In cancer studies, there is a difference in how the hazard ratios are
interpreted.

Hazard ratio > 1 is a bad prognostic factor
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Hazard ratio < 1 is a good prognostic factor

That is, hazard ratios < 1 tell us what may be causing cancer.

15.3.1 Testing the Cox Model Assumptions
One way to check the Cox model’s assumptions is to plot a separate
survival curve by strata. In our example, our strata will be the values of the
rx column, meaning we will plot a separate curve for each type of
treatment. If the log(-log(survival curve)) versus log(time)
curves cross each other (Figure 15.3), it signals that the model needs to be
stratified by the variable.

Figure 15.3 Plotting separate survival curves to check the Cox model
assumptions

Click here to view code image
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rx1 = bladder.loc[bladder['rx'] == 1] 
rx2 = bladder.loc[bladder['rx'] == 2] 
 
kmf1 = KaplanMeierFitter() 
kmf1.fit(rx1['stop'], 
event_observed=rx1['event']) 
 
kmf2 = KaplanMeierFitter() 
kmf2.fit(rx2['stop'], 
event_observed=rx2['event']) 
 
fig, axes = plt.subplots() 
 
# put both plots on the same axes 
kmf1.plot_loglogs(ax=axes) 
kmf2.plot_loglogs(ax=axes)

Click here to view code image

axes.legend(['rx1', 'rx2']) 
 
plt.show()

Since the lines cross each other, it makes sense to stratify our analysis.

Click here to view code image

cph_strat = CoxPHFitter() 
cph_strat.fit( 
    cph_bladder_df, 
    duration_col="stop", 
    event_col="event", 
    strata=["rx"], 
) 
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cph_strat.print_summary()

cova
riate

co
ef

exp 
(coef
)

se 
(coe
f)

coef 
lower 
95%

coef 
upper 
95%

exp (coef) 
lower 95%

exp (coef) 
upper 95%

cm
p 
to

z p
- 
log2
(p)

num
ber

0.
21

1.24 0.05 0.12 0.30 1.13 1.36 0.0
0

4.
60

0.
0
0

17.8
4

size -0
.0
5

0.95 0.07 -0.19 0.08 0.82 1.09 0.0
0

-0
.7
7

0.
4
4

1.19

enu
m

-0
.6
1

0.55 0.09 -0.79 -0.42 0.45 0.66 0.0
0

-6
.4
5

0.
0
0

33.0
7

Conclusion
Survival models measure “time to event” with censoring. They are
commonly used in a health context but do not have to be solely used in that
domain. If you can define some kind of event of interest, e.g., people who
come to my website and purchase an item, you can potentially use survival
models.



16

Model Diagnostics

Building models is a continuous art. As we start adding and removing
variables from our models, we need a means to compare models with one
another and a consistent way of measuring model performance. There are
many ways we can compare models, and this chapter describes some of
these methods.

16.1 Residuals
The residuals of a model compare what the model calculates and the actual
values in the data. Let’s fit some models on a housing data set.

Click here to view code image

import pandas as pd 
housing = 
pd.read_csv('data/housing_renamed.csv') 
 
print(housing.head())

  neighborhood           type  units  year_built   
sq_ft    income  \ 
0    FINANCIAL R9-CONDOMINIUM     42      1920.0   
36500   1332615 
1    FINANCIAL R4-CONDOMINIUM     78      1985.0  
126420   6633257 
2    FINANCIAL RR-CONDOMINIUM    500         NaN  
554174  17310000 
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3    FINANCIAL R4-CONDOMINIUM    282      1930.0  
249076  11776313 
4      TRIBECA R4-CONDOMINIUM    239      1985.0  
219495  10004582

    income_per_sq_ft  expense  expense_per_sq_ft  
net_income  \ 
0              36.51   342005               9.37    
990610 
1              52.47  1762295              13.94    
4870962 
2              31.24  3543000               6.39    
13767000 
3              47.28  2784670              11.18    
8991643 
4              45.58  2783197              12.68    
7221385

      value  value_per_sq_ft       boro 
0   7300000           200.00  Manhattan 
1  30690000           242.76  Manhattan 
2  90970000           164.15  Manhattan 
3  67556006           271.23  Manhattan 
4  54320996           247.48  Manhattan

We’ll begin with a multiple linear regression model with three
covariates.

Click here to view code image

import statsmodels 
import statsmodels.api as sm 
import statsmodels.formula.api as smf 
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house1 = smf.glm( 
    "value_per_sq_ft ~ units + sq_ft + boro", 
data=housing 
).fit() 
 
print(house1.summary())

            Generalized Linear Model Regression 
Results 
==================================================
============================ 
Dep. Variable:       value_per_sq_ft   No. 
Observations:                  2626 
Model:                        GLM Df   Residuals:   
2619 
Model Family:            Gaussian Df   Model:       
6 
Link Function:              identity   Scale:       
1879.5 
Method:                         IRLS   Log-
Likelihood:                 -13621. 
Date:               Thu, 01 Sep 2022   Deviance:    
4.9224e+06 
Time:                       01:55:55   Pearson 
chi2:                  4.92e+06 
No. Iterations:                    3   Pseudo R-
squ. (CS):              0.7772 
Covariance Type:           nonrobust 
==================================================
======================================= 
                            coef   std err         
z      P>|z|      [0.025       0.975] 



--------------------------------------------------
--------------------------------------- 
Intercept                43.2909     5.330      
8.122     0.000      32.845       53.737 
boro[T.Brooklyn]         34.5621     5.535      
6.244     0.000      23.714       45.411 
boro[T.Manhattan]       130.9924     5.385     
24.327     0.000     120.439      141.546 
boro[T.Queens]           32.9937     5.663      
5.827     0.000      21.895       44.092 
boro[T.Staten Island]    -3.6303     9.993     
-0.363     0.716     -23.216       15.956 
units                    -0.1881     0.022     
-8.511     0.000      -0.231       -0.145 
sq_ft                     0.0002  2.09e-05     
10.079     0.000       0.000        0.000 
==================================================
=======================================

We can plot the residuals of our model (Figure 16.1). What we are
looking for is a plot with a random scattering of points. If a pattern is
apparent, then we will need to investigate our data and model to see why
this pattern emerged.



Figure 16.1 Residuals of the house1 model

Click here to view code image

import seaborn as sns 
import matplotlib.pyplot as plt 
 
fig, ax = plt.subplots() 
sns.scatterplot( 
  x=house1.fittedvalues, 
y=house1.resid_deviance, ax=ax 
) 
 
plt.show()

This residual plot is concerning because it contains obvious clusters and
groups (residual plots are supposed to look random). We can color our plot
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by the boro variable, which indicates the borough of New York where the
data apply (Figure 16.2).

Figure 16.2 Residuals of the house1 model colored by boro

Click here to view code image

# get the data used for the residual plot and 
boro color 
res_df = pd.DataFrame( 
  { 
    "fittedvalues": house1.fittedvalues, # get a 
model attribute 
    "resid_deviance": house1.resid_deviance, 
    "boro": housing["boro"], # get a value from 
data column 
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  } 
) 
 
# greyscale friendly color palette 
color_dict = dict( 
  { 
    "Manhattan": "#d7191c", 
    "Brooklyn": "#fdae61", 
    "Queens": "#ffffbf", 
    "Bronx": "#abdda4", 
    "Staten Island": "#2b83ba", 
  } 
) 
 
fig, ax = plt.subplots() 
fig = sns.scatterplot( 
   x="fittedvalues", 
   y="resid_deviance", 
   data=res_df, 
   hue="boro", 
   ax=ax, 
   palette=color_dict, 
   edgecolor='black', 
) 
 
plt.show()

When we color our points based on boro, you can see that the clusters
are highly governed by the value of this variable.

16.1.1 Q-Q Plots



A q-q plot is a graphical technique that determines whether your data
conforms to a reference distribution. Since many models assume the data is
normally distributed, a q-q plot is one way to make sure your data really is
normal (Figure 16.3).

Figure 16.3 The q-q plot of the house1 model

Click here to view code image

from scipy import stats 
 
# make a copy of the variable so we don't need 
to keep typing it 
resid = house1.resid_deviance.copy()
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fig = 
statsmodels.graphics.gofplots.qqplot(resid, 
line='r') 
plt.show()

We can also plot a histogram of the residuals to see if our data is normal
(Figure 16.4).

Figure 16.4 Histogram of the house1 model residuals

Click here to view code image

resid_std = stats.zscore(resid) 
 
fig, ax = plt.subplots() 
sns.histplot(resid_std, ax=ax) 
plt.show()
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If the points on the q-q plot lie on the red line, that means our data match
our reference distribution. If the points do not lie on this line, then one
thing we can do is apply a transformation to our data. Table 16.1 shows
which transformations can be performed on our data. If the q-q plot of
points is convex compared to the red reference line, then you can transform
your data toward the top of the table. If the q-q plot of points is concave
compared to the red reference line, then you can transform your data
toward the bottom of the table.

Table 16.1 Transformations

xp Equivalent Description

x2 x2 Square

x1 x  

x √x Square root

“x”x log(x) Log

x
Reciprocal square root

x−1 Reciprocal

x−2 Reciprocal square

16.2 Comparing Multiple Models
Now that we know how to assess a single model, we need a means to
compare multiple models so that we can pick the “best” one.

16.2.1 Working with Linear Models
We begin by fitting five models. Note that some of the models use the +
operator to add covariates to the model, whereas others use the * operator.
To specify an interaction in our model, we use the * operator. That is, the
variables that are interacting are behaving in a way that is not independent

1
2

−1

2
1

√x

1
x

1
x

2



of one another, but in such a way that their values affect one another and are
not simply additive.

Note
If the original housing data set had a column named "class", this
would cause an error because "class" is a Python keyword.
Therefore, the column was renamed "type".

Click here to view code image

f1 = 'value_per_sq_ft ~ units + sq_ft + boro' 
f2 = 'value_per_sq_ft ~ units *  sq_ft + boro' 
f3 = 'value_per_sq_ft ~ units + sq_ft * boro + 
type' 
f4 = 'value_per_sq_ft ~ units + sq_ft * boro + 
sq_ft * type' 
f5 = 'value_per_sq_ft ~ boro + type' 
 
house1 = smf.ols(f1, data=housing).fit() 
house2 = smf.ols(f2, data=housing).fit() 
house3 = smf.ols(f3, data=housing).fit() 
house4 = smf.ols(f4, data=housing).fit() 
house5 = smf.ols(f5, data=housing).fit()

With all our models, we can collect all of our coefficients and the model
with which they are associated.

Click here to view code image

mod_results = ( 
  pd.concat( 
    [ 
      house1.params, 
      house2.params, 
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      house3.params, 
      house4.params, 
      house5.params, 
    ], 
    axis=1, 
  ) 
  .rename(columns=lambda x: "house" + str(x + 
1)) 
  .reset_index() 
  .rename(columns={"index": "param"}) 
  .melt(id_vars="param", var_name="model", 
value_name="estimate") 
)

print(mod_results)

                           param   model     
estimate 
0                      Intercept  house1    
43.290863 
1               boro[T.Brooklyn]  house1    
34.562150 
2              boro[T.Manhattan]  house1   
130.992363 
3                 boro[T.Queens]  house1    
32.993674 
4          boro[T.Staten Island]  house1    
-3.630251 
..                           ...     ...          
... 
85          sq_ft:boro[T.Queens]  house5          
NaN 
86   sq_ft:boro[T.Staten Island]  house5          



NaN 
87  sq_ft:type[T.R4-CONDOMINIUM]  house5          
NaN 
88  sq_ft:type[T.R9-CONDOMINIUM]  house5          
NaN 
89  sq_ft:type[T.RR-CONDOMINIUM]  house5          
NaN

[90 rows x 3 columns]

Since it’s not very useful to look at a large column of values, we can plot
our coefficients to quickly see how the models are estimating parameters in
relation to each other (Figure 16.5).

Figure 16.5 Coefficients of the house1 to house5 models



Click here to view code image

color_dict = dict( 
  { 
    "house1": "#d7191c", 
    "house2": "#fdae61", 
    "house3": "#ffffbf", 
    "house4": "#abdda4", 
    "house5": "#2b83ba", 
  } 
)

Click here to view code image

fig, ax = plt.subplots() 
ax = sns.pointplot( 
  x="estimate", 
  y="param", 
  hue="model", 
  data=mod_results, 
  dodge=True, # jitter the points 
  join=False, # don't connect the points 
  palette=color_dict 
) 
 
plt.tight_layout() 
plt.show()

Now that we have our linear models, we can use the analysis of variance
(ANOVA) method to compare them. The ANOVA will give us the residual
sum of squares (RSS), which is one way we can measure performance
(lower is better).

Click here to view code image
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model_names = ["house1", "house2", "house3", 
"house4", "house5"] 
house_anova = statsmodels.stats.anova.anova_lm( 
  house1, house2, house3, house4, house5 
) 
 
house_anova.index = model_names 
 
print(house_anova)

Click here to view code image

         df_resid           ssr  df_diff         
ss_diff           F  \ 
house1     2619.0  4.922389e+06      0.0            
NaN          NaN 
house2     2618.0  4.884872e+06      1.0    
37517.437605    20.039049 
house3     2612.0  4.619926e+06      6.0   
264945.539994    23.585728 
house4     2609.0  4.576671e+06      3.0    
43255.441192     7.701289 
house5     2618.0  4.901463e+06     -9.0  
-324791.847907    19.275539

               Pr(>F) 
house1            NaN 
house2   7.912333e-06 
house3   2.754431e-27 
house4   4.025581e-05 
house5            NaN
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Another way we can calculate model performance is by using the
Akaike information criterion (AIC) and the Bayesian information criterion
(BIC). These methods apply a penalty for each feature that is added to the
model (lower AIC and BIC value is better). Thus, we should strive to
balance performance and parsimony.

Click here to view code image

house_models = [house1, house2, house3, house4, 
house5]

abic = pd.DataFrame( 
  { 
    "model": model_names, 
    "aic": [mod.aic for mod in house_models], 
    "bic": [mod.bic for mod in house_models], 
  } 
) 
 
print(abic.sort_values(by=["aic", "bic"]))

    model           aic           bic 
3  house4  27084.800043  27184.644733 
2  house3  27103.502577  27185.727615 
1  house2  27237.939618  27284.925354 
4  house5  27246.843392  27293.829128 
0  house1  27256.031113  27297.143632

16.2.2 Working with GLM Models
We can perform the same calculations and model diagnostics on generalized
linear models (GLMs). We can use the deviance of the model to do model
comparisons:
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Click here to view code image

def deviance_table( *models): 
  """Create a table of model diagnostics from 
model objects""" 
  return pd.DataFrame( 
    { 
      "df_residuals": [mod.df_resid for mod in 
models], 
      "resid_stddev": [mod.deviance for mod in 
models], 
      "df": [mod.df_model for mod in models], 
      "deviance": [mod.deviance for mod in 
models], 
    } 
  )

Click here to view code image

f1 = 'value_per_sq_ft ~ units + sq_ft + boro' 
f2 = 'value_per_sq_ft ~ units * sq_ft + boro' 
f3 = 'value_per_sq_ft ~ units + sq_ft * boro + 
type' 
f4 = 'value_per_sq_ft ~ units + sq_ft * boro + 
sq_ft * type' 
f5 = 'value_per_sq_ft ~ boro + type' 
 
glm1 = smf.glm(f1, data=housing).fit() 
glm2 = smf.glm(f2, data=housing).fit() 
glm3 = smf.glm(f3, data=housing).fit() 
glm4 = smf.glm(f4, data=housing).fit() 
glm5 = smf.glm(f5, data=housing).fit() 
 
glm_anova = deviance_table(glm1, glm2, glm3, 
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glm4, glm5) 
print(glm_anova)

   df_residuals  resid_stddev    df       deviance 
0          2619  4.922389e+06     6   4.922389e+06 
1          2618  4.884872e+06     7   4.884872e+06 
2          2612  4.619926e+06    13   4.619926e+06 
3          2609  4.576671e+06    16   4.576671e+06 
4          2618  4.901463e+06     7   4.901463e+06

We can do the same set of calculations in a logistic regression.

Click here to view code image

# create a binary variable 
housing["high"] = (housing["value_per_sq_ft"] >= 
150).astype(int) 
 
print(housing["high"].value_counts())

0     1619 
1     1007 
Name: high, dtype: int64

# create and fit our logistic regression using 
GLM 
 
f1 = "high ~ units + sq_ft + boro" 
f2 = "high ~ units * sq_ft + boro" 
f3 = "high ~ units + sq_ft * boro + type" 
f4 = "high ~ units + sq_ft * boro + sq_ft * 
type" 
f5 = "high ~ boro + type"
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Click here to view code image

logistic = 
statsmodels.genmod.families.family.Binomial( 
    
link=statsmodels.genmod.families.links.Logit() 
) 
 
glm1 = smf.glm(f1, data=housing, 
family=logistic).fit() 
glm2 = smf.glm(f2, data=housing, 
family=logistic).fit() 
glm3 = smf.glm(f3, data=housing, 
family=logistic).fit() 
glm4 = smf.glm(f4, data=housing, 
family=logistic).fit() 
glm5 = smf.glm(f5, data=housing, 
family=logistic).fit()

# show the deviances from our GLM models 
print(deviance_table(glm1, glm2, glm3, glm4, 
glm5))

   df_residuals  resid_stddev  df     deviance 
0          2619   1695.631547   6  1695.631547 
1          2618   1686.126740   7  1686.126740 
2          2612   1636.492830  13  1636.492830 
3          2609   1619.431515  16  1619.431515 
4          2618   1666.615696   7  1666.615696

Finally, we can create a table of AIC and BIC values.

Click here to view code image
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mods = [glm1, glm2, glm3, glm4, glm5] 
 
abic_glm = pd.DataFrame( 
  { 
    "model": model_names, 
    "aic": [mod.aic for mod in house_models], 
    "bic": [mod.bic for mod in house_models], 
  } 
) 
 
print(abic_glm.sort_values(by=["aic", "bic"]))

    model          aic            bic 
3  house4  27084.800043  27184.644733 
2  house3  27103.502577  27185.727615 
1  house2  27237.939618  27284.925354 
4  house5  27246.843392  27293.829128 
0  house1  27256.031113  27297.143632

Looking at all these measures, we can say Model 4 is performing the
best so far.

16.3 k-Fold Cross-Validation
Cross-validation is another technique to compare models. One of the main
benefits is that it can account for how well your model performs on new
data. It does this by partitioning your data into k parts. It holds one of the
parts aside as the “test” set and then fits the model on the remaining k − 1
parts, the “training” set. The fitted model is then used on the “test” and an
error rate is calculated. This process is repeated until all k parts have been
used as a “test” set. The final error of the model is some average across all
the models.

Cross-validation can be performed in many different ways. The method
just described is called “k-fold cross-validation.” Alternative ways of



performing cross-validation include “leave-one-out cross-validation”, in
which the training data consists of all the data except one observation
designated as the test set.

Here we will split our data into k − 1 testing and training data sets.

Click here to view code image

from sklearn.model_selection import 
train_test_split 
from sklearn.linear_model import 
LinearRegression 
 
print(housing.columns)

Index(['neighborhood', 'type', 'units', 
'year_built', 'sq_ft', 
       'income', 'income_per_sq_ft', 'expense', 
'expense_per_sq_ft', 
       'net_income', 'value', 'value_per_sq_ft', 
'boro', 'high'], 
      dtype='object')

# get training and test data 
X_train, X_test, y_train, y_test = 
train_test_split( 
    pd.get_dummies( 
        housing[["units", "sq_ft", "boro"]], 
drop_first=True 
    ), 
 
    housing["value_per_sq_ft"], 
    test_size=0.20, 
    random_state=42, 
)
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Danger
Pay attention to the capitalization of the letter X when looking at
scikit-learn tutorials and documentation. This is a convention that
comes from matrix notation from statistics and mathematics.

We can get a score that indicates how well our model is performing
using our test data.

Click here to view code image

lr = LinearRegression().fit(X_train, y_train) 
print(lr.score(X_test, y_test))

0.6137125285030868

Since sklearn relies heavily on the numpy ndarray, the patsy
library allows you to specify a formula just like the formula API in
statsmodels, and it returns a proper numpy array you can use in
sklearn.

Here is the same code as before, but using the dmatrices function in
the patsy library.

Click here to view code image

from patsy import dmatrices 
 
y, X = dmatrices( 
    "value_per_sq_ft ~ units + sq_ft + boro", 
    housing, 
    return_type="dataframe", 
) 
X_train, X_test, y_train, y_test = 
train_test_split( 
  X, y, test_size=0.20, random_state=42 

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch16_images.xhtml#f0330-02
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/ch16_images.xhtml#f0331-01


) 
 
lr = LinearRegression().fit(X_train, y_train) 
print(lr.score(X_test, y_test))

0.6137125285030818

To perform a k-fold cross-validation, we need to import this function
from sklearn.

Click here to view code image

from sklearn.model_selection import KFold, 
cross_val_score 
 
# get a fresh new housing data set 
housing = 
pd.read_csv('data/housing_renamed.csv')

We now have to specify how many folds we want. This number depends
on how many rows of data you have. If your data does not include too
many observations, you may opt to select a smaller k (e.g., 2). Otherwise, a
k between 5 to 10 is fairly common. However, keep in mind that the trade-
off with higher k values is more computation time.

Click here to view code image

kf = KFold(n_splits=5) 
 
y, X = dmatrices('value_per_sq_ft ~ units + 
sq_ft + boro', housing)

Next we can train and test our model on each fold.

Click here to view code image
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coefs = [] 
scores = [] 
for train, test in kf.split(X): 
  X_train, X_test = X[train], X[test] 
  y_train, y_test = y[train], y[test] 
  lr = LinearRegression().fit(X_train, y_train) 
  coefs.append(pd.DataFrame(lr.coef_)) 
  scores.append(lr.score(X_test, y_test))

We can also view the results.

Click here to view code image

coefs_df = pd.concat(coefs) 
coefs_df.columns = X.design_info.column_names 
print(coefs_df)

Click here to view code image

     Intercept  boro[T.Brooklyn]  
boro[T.Manhattan]  boro[T.Queens]  \ 
0          0.0         33.369037         
129.904011       32.103100 
0          0.0         32.889925         
116.957385       31.295956 
0          0.0         30.975560         
141.859327       32.043449 
0          0.0         41.449196         
130.779013       33.050968 
0          0.0        -38.511915          
56.069855      -17.557939 
 
   boro[T.Staten Island]      units     sq_ft 
0          -4.381085e+00  -0.205890  0.000220 
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0          -4.919232e+00  -0.146180  0.000155 
0          -4.379916e+00  -0.179671  0.000194 
0          -3.430209e+00  -0.207904  0.000232 
0           3.552714e-15  -0.145829  0.000202

We can take a look at the average coefficient across all folds using
.apply() and the np.mean() function.

Click here to view code image

import numpy as np 
print(coefs_df.apply(np.mean))

Intercept                0.000000 
boro[T.Brooklyn]        20.034361 
boro[T.Manhattan]      115.113918 
boro[T.Queens]          22.187107 
boro[T.Staten Island]   -3.422088 
units                   -0.177095 
sq_ft                    0.000201 
dtype: float64

We can also look at our scores. Each model has a default scoring
method. LinearRegression(), for example, uses the R2 (coefficient
of determination) regression score function.1

Click here to view code image

print(scores)

[0.02731416291043942, -0.5538362212110504, 
-0.1563637168806138, 
-0.3234202061929452, -1.6929655586752923]
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We can also use cross_val_scores (for cross-validation scores) to
calculate our scores.

Click here to view code image

# use cross_val_scores to calculate CV scores 
model = LinearRegression() 
scores = cross_val_score(model, X, y, cv=5) 
print(scores)

[ 0.02731416 -0.55383622 -0.15636372 -0.32342021 
-1.69296556]

1. Scikit-learn R2 scoring: https://scikit-
learn.org/stable/modules/generated/sklearn.metrics
.r2_score.html

When we compare multiple models to one another, we compare the
average of the scores.

Click here to view code image

print(scores.mean())

-0.5398543080098925

Now we’ll refit all our models using k-fold cross-validation.

Click here to view code image

# create the predictor and response matrices 
y1, X1 = dmatrices( 
   "value_per_sq_ft ~ units + sq_ft + boro", 
housing) 
 
y2, X2 = dmatrices("value_per_sq_ft ~ 
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units*sq_ft + boro", housing) 
 
y3, X3 = dmatrices( 
  "value_per_sq_ft ~ units + sq_ft*boro + type", 
housing 
) 
 
y4, X4 = dmatrices( 
    "value_per_sq_ft ~ units + sq_ft*boro + 
sq_ft*type", housing 
) 
 
y5, X5 = dmatrices("value_per_sq_ft ~ boro + 
type", housing)

# fit our models 
model = LinearRegression() 
 
scores1 = cross_val_score(model, X1, y1, cv=5) 
scores2 = cross_val_score(model, X2, y2, cv=5) 
scores3 = cross_val_score(model, X3, y3, cv=5) 
scores4 = cross_val_score(model, X4, y4, cv=5) 
scores5 = cross_val_score(model, X5, y5, cv=5)

We can now look at our cross-validation scores.

Click here to view code image

scores_df = pd.DataFrame( 
    [scores1, scores2, scores3, scores4, 
scores5] 
) 
 
print(scores_df.apply(np.mean, axis=1))
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0   -5.398543e-01 
1   -1.088184e+00 
2   -8.668885e+25 
3   -7.634198e+25 
4   -3.172546e+25 
dtype: float64

Once again, we see that Model 4 has the best performance.

Conclusion
When we are working with models, it’s important to measure their
performance. Using ANOVA for linear models, looking at deviance for
GLM models, and using cross-validation are all ways we can measure error
and performance when trying to pick the best model.



17

Regularization

In Chapter 16, we considered various ways to measure model performance.
Section 16.3 described k-fold cross-validation, a technique that tries to
measure model performance by looking at how it predicts on test data. This
chapter explores regularization, one technique to improve performance on
test data. Specifically, this method aims to prevent overfitting.

17.1 Why Regularize?
Let’s begin with a base case of linear regression. We will be using the ACS
data.

Click here to view code image

import pandas as pd 
acs = pd.read_csv('data/acs_ny.csv') 
print(acs.columns)

Index(['Acres', 'FamilyIncome', 'FamilyType', 
'NumBedrooms', 
       'NumChildren', 'NumPeople', 'NumRooms', 
'NumUnits', 
       'NumVehicles', 'NumWorkers', 'OwnRent', 
'YearBuilt', 
       'HouseCosts', 'ElectricBill', 'FoodStamp', 
'HeatingFuel', 
       'Insurance', 'Language'], 
      dtype='object')
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Now, let’s create our design matrices using patsy.

Click here to view code image

from patsy import dmatrices 
    
# sequential strings get concatenated together 
in Python 
response, predictors = dmatrices( 
  "FamilyIncome ~ NumBedrooms + NumChildren + 
NumPeople + " 
  "NumRooms + NumUnits + NumVehicles + 
NumWorkers + OwnRent + " 
  "YearBuilt + ElectricBill + FoodStamp + 
HeatingFuel + " 
  "Insurance + Language", 
  data=acs, 
)

With our predictor and response matrices created, we can use sklearn
to split our data into training and testing sets.

Click here to view code image

from sklearn.model_selection import 
train_test_split 
 
X_train, X_test, y_train, y_test = 
train_test_split( 
  predictors, response, random_state=0 
)

Now, let’s fit our linear model. Here we are normalizing our data so we
can compare our coefficients when we use our regularization techniques.

Click here to view code image
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from sklearn.linear_model import 
LinearRegression 
from sklearn.pipeline import make_pipeline 
from sklearn.preprocessing import StandardScaler 
 
lr = make_pipeline( 
  StandardScaler(with_mean=False), 
LinearRegression() 
) 
 
lr = lr.fit(X_train, y_train) 
print(lr)

Pipeline(steps=[('standardscaler', 
StandardScaler(with_mean=False)), 
                ('linearregression', 
LinearRegression())])

model_coefs = pd.DataFrame( 
  data=list( 
    zip( 
      predictors.design_info.column_names, 
      
lr.named_steps["linearregression"].coef_[0], 
    ) 
  ), 
  columns=["variable", "coef_lr"], 
) 
 
print(model_coefs)



                       variable      coef_lr 
0                     Intercept 2.697159e-13 
1   NumUnits[T.Single attached] 9.661755e+03 
2   NumUnits[T.Single detached] 8.345408e+03 
3           OwnRent[T.Outright] 2.382740e+03 
4             OwnRent[T.Rented] 2.260806e+03 
..                          ...          ... 
34                     NumRooms 1.340575e+04 
35                  NumVehicles 7.228920e+03 
36                   NumWorkers 1.877535e+04 
37                 ElectricBill 1.000008e+04 
38                    Insurance 3.072892e+04 
 
[39 rows x 2 columns]

Now, we can look at our model scores.

Click here to view code image

# score on the _training_ data 
print(lr.score(X_train, y_train))

0.2726140465638568

# score on the _testing_ data 
print(lr.score(X_test, y_test))

0.26976979568488013

In this particular case, our model demonstrates poor performance. In
another potential scenario, we might have a high training score and a low
test score—a sign of overfitting. Regularization solves this overfitting
issue, by putting constraints on the coefficients and variables. This causes
the coefficients of our data to be smaller. In the case of LASSO (least
absolute shrinkage and selection operator) regression, some coefficients can
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actually be dropped (i.e., become 0), whereas in ridge regression,
coefficients will approach 0, but are never dropped.

17.2 LASSO Regression
The first type of regularization technique is called LASSO, which stands for
least absolute shrinkage and selection operator. It is also known as
regression with L1 regularization.

We will fit the same model as we did in our linear regression.

Click here to view code image

from sklearn.linear_model import Lasso 
 
lasso = make_pipeline( 
  StandardScaler(with_mean=False), 
  Lasso(max_iter=10000, random_state=42), 
) 
 
lasso = lasso.fit(X_test, y_test) 
print(lasso)

Pipeline(steps=[('standardscaler', 
StandardScaler(with_mean=False)), 
                ('lasso', Lasso(max_iter=10000, 
random_state=42))])

Now, let’s get a dataframe of coefficients, and combine them with our
linear regression results.

Click here to view code image

coefs_lasso = pd.DataFrame( 
  data=list( 
    zip( 
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      predictors.design_info.column_names, 
      lasso.named_steps["lasso"].coef_.tolist(), 
    ) 
  ), 
  columns=["variable", "coef_lasso"], 
)

Click here to view code image

model_coefs = pd.merge(model_coefs, coefs_lasso, 
on='variable') 
print(model_coefs)

                       variable       coef_lr    
coef_lasso 
0                     Intercept  2.697159e-13      
0.000000 
1   NumUnits[T.Single attached]  9.661755e+03   
7765.482025 
2   NumUnits[T.Single detached]  8.345408e+03   
7512.067593 
3           OwnRent[T.Outright]  2.382740e+03   
2431.710977 
4             OwnRent[T.Rented]  2.260806e+03    
604.186925 
..                          ...           ...       
... 
34                     NumRooms  1.340575e+04  
10940.150208 
35                  NumVehicles  7.228920e+03   
7724.681161 
36                   NumWorkers  1.877535e+04  
16911.035390 
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37                 ElectricBill  1.000008e+04   
9516.123582 
38                    Insurance  3.072892e+04  
32155.544169 
 
[39 rows x 3 columns]

Notice that the coefficients are now smaller than their original linear
regression values. Additionally, some of the coefficients are now 0.

Finally, let’s look at our training and test data scores.

Click here to view code image

print(lasso.score(X_train, y_train))

0.2669751487716776

print(lasso.score(X_test, y_test))

0.2752627973740016

There isn’t much difference here, but you can see that the test results are
now better than the training results. That is, there is an improvement in
prediction when using new, unseen data.

17.3 Ridge Regression
Now let’s look at another regularization technique, ridge regression. It is
also known as regression with L2 regularization.

Most of the code will be very similar to that seen with the previous
methods. We will fit the model on our training data, and combine the
results with our ongoing dataframe of results.

Click here to view code image
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from sklearn.linear_model import Ridge 
 
ridge = make_pipeline( 
    StandardScaler(with_mean=False), 
Ridge(random_state=42) 
) 
 
ridge = ridge.fit(X_train, y_train) 
print(ridge)

Pipeline(steps=[('standardscaler', 
StandardScaler(with_mean=False)), 
                ('ridge', 
Ridge(random_state=42))])

coefs_ridge = pd.DataFrame( 
  data=list( 
    zip( 
      predictors.design_info.column_names, 
      ridge.named_steps["ridge"].coef_.tolist()
[0], 
    ) 
  ), 
  columns=["variable", "coef_ridge"], 
) 
 
model_coefs = pd.merge(model_coefs, coefs_ridge, 
on="variable") 
print(model_coefs)

                       variable       coef_lr    
coef_lasso \ 



0                     Intercept  2.697159e-13      
0.000000 
1   NumUnits[T.Single attached]  9.661755e+03   
7765.482025 
2   NumUnits[T.Single detached]  8.345408e+03   
7512.067593 
3           OwnRent[T.Outright]  2.382740e+03   
2431.710977 
4             OwnRent[T.Rented]  2.260806e+03    
604.186925 
..                          ...           ...       
... 
34                     NumRooms  1.340575e+04  
10940.150208 
35                  NumVehicles  7.228920e+03   
7724.681161 
36                   NumWorkers  1.877535e+04  
16911.035390 
37                 ElectricBill  1.000008e+04   
9516.123582 
38                    Insurance  3.072892e+04  
32155.544169

      coef_ridge 
0       0.000000 
1    9659.413514 
2    8342.247690 
3    2381.429615 
4    2259.526329 
..           ... 
34  13405.409584 
35   7228.542922 
36  18773.079462 



37  10000.853603 
38  30727.230542 
 
[39 rows x 4 columns]

17.4 Elastic Net
The elastic net is a regularization technique that combines the ridge and
LASSO regression techniques.

Click here to view code image

from sklearn.linear_model import ElasticNet 
 
en = ElasticNet(random_state=42).fit(X_train, 
y_train) 
 
coefs_en = pd.DataFrame( 
    
list(zip(predictors.design_info.column_names, 
en.coef_)), 
    columns=["variable", "coef_en"], 
) 
 
model_coefs = pd.merge(model_coefs, coefs_en, 
on="variable") 
print(model_coefs)

                       variable       coef_lr    
coef_lasso \ 
0                     Intercept  2.697159e-13      
0.000000 
1   NumUnits[T.Single attached]  9.661755e+03   
7765.482025 
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2   NumUnits[T.Single detached]  8.345408e+03   
7512.067593 
3           OwnRent[T.Outright]  2.382740e+03   
2431.710977 
4             OwnRent[T.Rented]  2.260806e+03    
604.186925 
..                         ...            ...       
... 
34                     NumRooms  1.340575e+04  
10940.150208 
35                  NumVehicles  7.228920e+03   
7724.681161 
36                   NumWorkers  1.877535e+04  
16911.035390 
37                 ElectricBill  1.000008e+04   
9516.123582 
38                    Insurance  3.072892e+04  
32155.544169

      coef_ridge       coef_en 
0       0.000000      0.000000 
1    9659.413514   1342.291706 
2    8342.247690    168.728479 
3    2381.429615    445.533238 
4    2259.526329   -600.673747 
..           ...           ... 
34  13405.409584   5685.101939 
35   7228.542922   6059.776166 
36  18773.079462  12247.547800 
37  10000.853603     97.566664 
38  30727.230542     32.484207 
 
[39 rows x 5 columns]



The ElasticNet object has two parameters, alpha and l1_ratio,
that allow you to control the behavior of the model. The l1_ratio
parameter specifically controls how much of the L2 or L1 penalty is used.
If l1_ratio = 0, then the model will behave as described by ridge
regression. If l1_ratio = 1, then the model will behave as described
by LASSO regression. Any value in between will give some combination
of the ridge and LASSO regression results.

Since LASSO regression can zero out coefficients, let’s just see how the
coefficients compare with just the variables where LASSO has turned into a
0.

Click here to view code image

print(model_coefs.loc[model_coefs["coef_lasso"] 
== 0])

                variable       coef_lr coef_lasso   
coef_ridge \ 
0              Intercept  2.697159e-13        0.0   
0.000000 
25  HeatingFuel[T.Solar]  1.442204e+02        0.0   
142.354045

     coef_en 
0   0.000000 
25  0.994142

17.5 Cross-Validation
Cross-validation (first described in Section 16.3) is a commonly used
technique when fitting models. It was mentioned at the beginning of this
chapter, as a segue to regularization, but it is also a way to pick optimal
parameters for regularization. Since the user must tune certain parameters
(also known as hyper-parameters), cross-validation can be used to try out
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various combinations of these hyper-parameters to pick the “best” model.
The ElasticNet object has a similar function called ElasticNetCV
that can iteratively fit the elastic net with various hyper-parameter values.1

1. ElasticNetCV documentation: https://scikit-
learn.org/stable/modules/generated/sklearn.linear_
model.ElasticNetCV.html

Click here to view code image

from sklearn.linear_model import ElasticNetCV 
 
en_cv = ElasticNetCV(cv=5, random_state=42).fit( 
    X_train, y_train.ravel() # ravel is to 
remove the 1d warning 
) 
 
coefs_en_cv = pd.DataFrame( 
    
list(zip(predictors.design_info.column_names, 
en_cv.coef_)), 
    columns=["variable", "coef_en_cv"], 
) 
 
model_coefs = pd.merge(model_coefs, coefs_en_cv, 
on="variable") 
print(model_coefs)

Click here to view code image

                       variable       coef_lr    
coef_lasso \ 
0                     Intercept  2.697159e-13      
0.000000 
1   NumUnits[T.Single attached]  9.661755e+03   
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7765.482025 
2   NumUnits[T.Single detached]  8.345408e+03   
7512.067593 
3           OwnRent[T.Outright]  2.382740e+03   
2431.710977 
4             OwnRent[T.Rented]  2.260806e+03    
604.186925 
..                          ...           ...       
... 
34                     NumRooms  1.340575e+04  
10940.150208 
35                  NumVehicles  7.228920e+03   
7724.681161 
36                   NumWorkers  1.877535e+04  
16911.035390 
37                 ElectricBill  1.000008e+04   
9516.123582 
38                    Insurance  3.072892e+04  
32155.544169

      coef_ridge       coef_en  coef_en_cv 
0       0.000000      0.000000    0.000000 
1    9659.413514   1342.291706   -0.000000 
2    8342.247690    168.728479    0.000000 
3    2381.429615    445.533238    0.000000 
4    2259.526329   -600.673747   -0.000000 
..           ...           ...         ... 
34  13405.409584   5685.101939    0.028443 
35   7228.542922   6059.776166    0.000000 
36  18773.079462  12247.547800    0.000000 
37  10000.853603     97.566664   26.166320 
38  30727.230542     32.484207   38.561748 



 
[39 rows x 6 columns]

Let’s compare which coefficients were turned into 0.

Click here to view code image

print(model_coefs.loc[model_coefs["coef_en_cv"] 
== 0])

                       variable       coef_lr   
coef_lasso \ 
0                     Intercept  2.697159e-13     
0.000000 
1   NumUnits[T.Single attached]  9.661755e+03  
7765.482025 
2   NumUnits[T.Single detached]  8.345408e+03  
7512.067593 
3           OwnRent[T.Outright]  2.382740e+03  
2431.710977 
4             OwnRent[T.Rented]  2.260806e+03   
604.186925 
..                          ...           ...       
... 
31                  NumBedrooms  3.755708e+03  
4447.892458 
32                  NumChildren  9.524915e+03  
6905.672216 
33                    NumPeople -1.153672e+04 
-8777.265840 
35                  NumVehicles  7.228920e+03  
7724.681161 
36                   NumWorkers  1.877535e+04 
16911.035390
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      coef_ridge       coef_en   coef_en_cv 
0       0.000000      0.000000          0.0 
1    9659.413514   1342.291706         -0.0 
2    8342.247690    168.728479          0.0 
3    2381.429615    445.533238          0.0 
4    2259.526329   -600.673747         -0.0 
..           ...           ...          ... 
31   3755.521256   2073.910045          0.0 
32   9521.180875   2498.719581          0.0 
33 -11533.098634  -2562.412933          0.0 
35   7228.542922   6059.776166          0.0 
36  18773.079462  12247.547800          0.0 
           
[36 rows x 6 columns]

Conclusion
Regularization is a technique used to prevent overfitting of data. It achieves
this goal by applying some penalty for each feature added to the model. The
end result either drops variables from the model or decreases the
coefficients of the model. Both techniques try to fit the training data less
accurately but hope to provide better predictions with data that has not been
seen before. These techniques can be combined (as seen in the elastic net),
and can also be iterated over and improved with cross-validation.



18

Clustering

Machine learning methods can generally be classified into two main
categories of models: supervised learning and unsupervised learning. Thus
far, we have been working on supervised learning models, since we train
our models with a target y or response variable. In other words, in the
training data for our models, we know the “correct” answer. Unsupervised
models are modeling techniques in which the “correct” answer is unknown.
Many of these methods involve clustering, where the two main methods are
k-means clustering and hierarchical clustering.

18.1 k-Means
The technique known as k-means works by first selecting how many
clusters, k, exist in the data. The algorithm randomly selects k points in the
data and calculates the distance from every data point to the initially
selected k points. The closest points to each of the k clusters are assigned to
the same cluster group. The center of each cluster is then designated as the
new cluster centroid. The process is then repeated, with the distance of each
point to each cluster centroid being calculated and assigned to a cluster and
a new centroid picked. This algorithm is repeated until convergence occurs.

Great visualizations1 and explanations2 of how k-means works can be
found on the Internet. We’ll use data about wines for our k-means example.
1. Visualizing k-means: http://shabal.in/visuals.html
2. Visualization and explanation of k-means:
https://www.naftaliharris.com/blog/visualizing-k-
means-clustering/

Click here to view code image

http://shabal.in/visuals.html
https://www.naftaliharris.com/blog/visualizing-k-means-clustering/
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import pandas as pd 
wine = pd.read_csv('data/wine.csv')

We will drop the Cultivar column since it correlates too closely with
the actual clusters in our data.

Click here to view code image

wine = wine.drop('Cultivar', axis=1) 
 
# note that the data values are all numeric 
print(wine.columns)

Click here to view code image

Index(['Alcohol', 'Malic acid', 'Ash', 'Alcalinity 
of ash ', 
        'Magnesium', 'Total phenols', 
'Flavanoids', 
        'Nonflavanoid phenols', 'Proanthocyanins', 
'Color intensity', 
        'Hue', '0D280/0D315 of diluted wines', 
'Proline '], 
      dtype='object')

print(wine.head())

   Alcohol  Malic acid   Ash  Alcalinity of ash   
Magnesium \ 
0    14.23        1.71  2.43               15.6     
127 
1    13.20        1.78  2.14               11.2     
100 
2    13.16        2.36  2.67               18.6     
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101 
3    14.37        1.95  2.50               16.8     
113 
4    13.24        2.59  2.87               21.0     
118

   Total phenols  Flavanoids  Nonflavanoid phenols  
Proanthocyanins \ 
0           2.80        3.06                  0.28  
2.29 
1           2.65        2.76                  0.26  
1.28 
2           2.80        3.24                  0.30  
2.81 
3           3.85        3.49                  0.24  
2.18 
4           2.80        2.69                  0.39  
1.82

   Color intensity   Hue  0D280/0D315 of diluted 
wines \ 
0             5.64  1.04                          
3.92 
1             4.38  1.05                          
3.40 
2             5.68  1.03                          
3.17 
3             7.80  0.86                          
3.45 
4             4.32  1.04                          
2.93



   Proline 
0                 1065 
1                 1050 
2                 1185 
3                 1480 
4                  735

sklearn has an implementation of the k-means algorithm called
KMeans. Here we will set k = 3, and use all the data in our data set.

We will create k=3 clusters with a random seed of 42. You can opt to
leave out the random_state parameter or use a different value; the 42 will
ensure your results are the same as those printed in the book.

Click here to view code image

from sklearn.cluster import KMeans 
kmeans = KMeans(n_clusters=3, 
random_state=42).fit(wine.values)

Here’s our kmeans object.

Click here to view code image

print(kmeans)

KMeans(n_clusters=3, random_state=42)

We can see that since we specified three clusters, there are only three
unique labels.

Click here to view code image

import numpy as np 
print(np.unique(kmeans.labels_, 
return_counts=True))
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(array([0, 1, 2], dtype=int32), array([69, 47, 
62]))

kmeans_3 = pd.DataFrame(kmeans.labels_, columns=
['cluster']) 
print(kmeans_3)

    cluster 
0         1 
1         1 
2         1 
3         1 
4         2 
..      ... 
173       2 
174       2 
175       2 
176       2 
177       0 
 
[178 rows x 1 columns]

Finally, we can visualize our clusters. Since humans can visualize things
in only three dimensions, we need to reduce the number of dimensions for
our data. Our wine data set has 13 columns, and we need to reduce this
number to three so we can understand what is going on. Furthermore, since
we are trying to plot the points in a book (a non-interactive medium), we
should reduce the number of dimensions to two, if possible.

18.1.1 Dimension Reduction with PCA
Principal component analysis (PCA) is a projection technique that is used to
reduce the number of dimensions for a data set. It works by finding a lower
dimension in the data such that the variance is maximized. Imagine a three-



dimensional sphere of points. PCA essentially shines a light through these
points and casts a shadow in the lower two-dimensional plane. Ideally, the
shadows will be spread out as much as possible. While points that are far
apart in PCA may not be cause for concern, points that are far apart in the
original 3D sphere can have the light shine through them in such a way that
the shadows cast are right next to one another. Be careful when trying to
interpret points that are close to one another because it is possible that these
points could be farther apart in the original space.

We import PCA from sklearn.

Click here to view code image

from sklearn.decomposition import PCA

We tell PCA how many dimensions (i.e., principal components) we want
to project our data into. Here we are projecting our data down into two
components.

Click here to view code image

# project our data into 2 components 
pca = PCA(n_components=2).fit(wine)

Next, we need to transform our data into the new space and add the
transformation to our data set.

Click here to view code image

# transform our data into the new space 
pca_trans = pca.transform(wine) 
 
# give our projections a name 
pca_trans_df = pd.DataFrame(pca_trans, columns=
['pca1', 'pca2']) 
 
# concatenate our data 
kmeans_3 = pd.concat([kmeans_3, pca_trans_df], 
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axis=1) 
 
print(kmeans_3)

     cluster        pca1       pca2 
0          1  318.562979  21.492131 
1          1  303.097420  -5.364718 
2          1  438.061133  -6.537309 
3          1  733.240139   0.192729 
4          2  -11.571428  18.489995 
..       ...         ...        ... 
173        2   -6.980211  -4.541137 
174        2    3.131605   2.335191 
175        2   88.458074  18.776285 
176        2   93.456242  18.670819 
177        0 -186.943190  -0.213331 
 
[178 rows x 3 columns]

Finally, we can plot our results (Figure 18.1).



Figure 18.1 k-means plot using PCA

Click here to view code image

import seaborn as sns 
import matplotlib.pyplot as plt 
 
fig, ax = plt.subplots() 
 
sns.scatterplot( 
  x="pca1", 
  y="pca2", 
  data=kmeans_3, 
  hue="cluster", 
  ax=ax 
) 
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plt.show()

Now that we’ve seen what k-means does to our wine data, let’s load the
original data set again and keep the Cultivar column we dropped.

Click here to view code image

wine_all = pd.read_csv('data/wine.csv') 
print(wine_all.head())

   Cultivar  Alcohol  Malic acid   Ash  Alcalinity 
of ash \ 
0         1    14.23        1.71  2.43              
15.6 
1         1    13.20        1.78  2.14              
11.2 
2         1    13.16        2.36  2.67              
18.6 
3         1    14.37        1.95  2.50              
16.8 
4         1    13.24        2.59  2.87              
21.0

   Magnesium  Total phenols  Flavanoids  
Nonflavanoid phenols \ 
0        127           2.80        3.06             
0.28 
1        100           2.65        2.76             
0.26 
2        101           2.80        3.24             
0.30 
3        113           3.85        3.49             
0.24 
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4        118           2.80        2.69             
0.39

   Proanthocyanins  Color intensity   Hue \ 
0             2.29             5.64  1.04 
1             1.28             4.38  1.05 
2             2.81             5.68  1.03 
3             2.18             7.80  0.86 
4             1.82             4.32  1.04

Click here to view code image

   0D280/0D315 of diluted wines  Proline 
0                          3.92              1065 
1                          3.40              1050 
2                          3.17              1185 
3                          3.45              1480 
4                          2.93               735

We’ll run PCA on our data, just as before, and compare the clusters from
PCA and the variables from Cultivar.

Click here to view code image

pca_all = PCA(n_components=2).fit(wine_all) 
pca_all_trans = pca_all.transform(wine_all) 
pca_all_trans_df = pd.DataFrame( 
  pca_all_trans, columns=["pca_all_1", 
"pca_all_2"] 
) 
 
kmeans_3 = pd.concat( 
  [kmeans_3, pca_all_trans_df, 
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wine_all["Cultivar"]], axis=1 
)

We can compare the groupings by faceting our plot (Figure 18.2).



Figure 18.2 Faceted k-means plot

Click here to view code image
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with sns.plotting_context(context="talk"): 
  fig = sns.relplot( 
    x="pca_all_1", 
    y="pca_all_2", 
    data=kmeans_3, 
    row="cluster", 
    col="Cultivar", 
  ) 
 
fig.figure.set_tight_layout(True) 
plt.show()

Alternatively, we can look at a cross-tabulated frequency count.

Click here to view code image

print( 
  pd.crosstab( 
    kmeans_3["cluster"], kmeans_3["Cultivar"], 
margins=True 
  ) 
)

Cultivar   1    2   3  All 
cluster 
0          0   50  19   69 
1         46    1   0   47 
2         13   20  29   62 
All       59   71  48  178

18.2 Hierarchical Clustering
As the name suggests, hierarchical clustering aims to build a hierarchy of
clusters. It can accomplish this with a bottom-up (agglomerative) or top-
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town (decisive) approach.
We can perform this type of clustering with the scipy library.

Click here to view code image

from scipy.cluster import hierarchy

We’ll load up a clean wine data set again, and drop the Cultivar
column.

Click here to view code image

wine = pd.read_csv('data/wine.csv') 
wine = wine.drop('Cultivar', axis=1)

Many different formulations of the hierarchical clustering algorithm are
possible. We can use matplotlib to plot the results.

Click here to view code image

import matplotlib.pyplot as plt

Below we will cover a few clustering algorithms, they all work slightly
differently, but they can lead to different results.

Complete: Tries to make the clusters as similar to one another as
possible
Single: Creates looser and closer clusters by linking as many of them
as possible
Average and Centroid: Some combination between complete and
single
Ward: Minimizes the distance between the points within each cluster

18.2.1 Complete Clustering
A hierarchical cluster using the complete clustering algorithm is shown in
Figure 18.3.
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Figure 18.3 Hierarchical clustering: complete

Click here to view code image

wine_complete = hierarchy.complete(wine) 
fig = plt.figure() 
dn = hierarchy.dendrogram(wine_complete) 
plt.show()

18.2.2 Single Clustering
A hierarchical cluster using the single clustering algorithm is shown in
Figure 18.4.
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Figure 18.4 Hierarchical clustering: single

Click here to view code image

wine_single = hierarchy.single(wine) 
fig = plt.figure() 
dn = hierarchy.dendrogram(wine_single) 
plt.show()

18.2.3 Average Clustering
A hierarchical cluster using the average clustering algorithm is shown in
Figure 18.5.
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Figure 18.5 Hierarchical clustering: average

Click here to view code image

wine_average = hierarchy.average(wine) 
fig = plt.figure() 
dn = hierarchy.dendrogram(wine_average) 
plt.show()

18.2.4 Centroid Clustering
A hierarchical cluster using the centroid clustering algorithm is shown in
Figure 18.6.
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Figure 18.6 Hierarchical clustering: centroid

Click here to view code image

wine_centroid = hierarchy.centroid(wine) 
fig = plt.figure() 
dn = hierarchy.dendrogram(wine_centroid) 
plt.show()

18.2.5 Ward Clustering
A hierarchical cluster using the ward clustering algorithm is shown in
Figure 18.7.
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Figure 18.7 Hierarchical clustering: ward

Click here to view code image

wine_ward = hierarchy.ward(wine) 
fig = plt.figure() 
dn = hierarchy.dendrogram(wine_ward) 
plt.show()

18.2.6 Manually Setting the Threshold
We can pass in a value for color_threshold to color the groups based
on a specific threshold (Figure 18.8). By default, scipy uses the default
MATLAB values.
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Figure 18.8 Manual hierarchical clustering threshold

Click here to view code image

wine_complete = hierarchy.complete(wine) 
fig = plt.figure() 
dn = hierarchy.dendrogram( 
     wine_complete, 
     # default MATLAB threshold 
     color_threshold=0.7 * 
max(wine_complete[:,2]), 
     above_threshold_color='y') 
plt.show()

Conclusion
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When you are trying to find the underlying structure in a data set, you will
often use unsupervised machine learning methods. k-Means and
hierarchical clustering are two methods commonly used to solve this
problem. The key is to tune your models either by specifying a value for k
in k-means or a threshold value in hierarchical clustering that makes sense
for the question you are trying to answer.

It is also common practice to mix multiple types of analysis techniques
to solve a problem. For example, you might use an unsupervised learning
method to cluster your data and then use these clusters as features in
another analysis method.



Part V

Conclusion

Chapter 19 Life Outside of Pandas

Chapter 20 It’s Dangerous to Go Alone!

If you made it to this part of the book, thank you for reading, and I hope
you enjoyed following along and learning the fundamental skills for
processing data in Python.
You may hit some of the limitations of Pandas as your data needs grow.
Chapter 19 points you to other libraries that expand and parallel Pandas.
Finally, Chapter 20 talks about a lot of additional resources for you to
continue learning.
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Life Outside of Pandas

19.1 The (Scientific) Computing Stack
When Jake VanderPlas1 gave the SciPy2 2015 keynote address,3 he titled
his talk “The State of the Stack”. Jake described how the community of
packages that surround the core Python language developed. Python the
language was created in the 1980s. Numerical computing began in 1995
and eventually evolved into the NumPy library in 2006. The NumPy library
was the basis of the Pandas Series objects that we have worked with
throughout this book. The core plotting library, Matplotlib, was created in
2002 and is also used within Pandas in the plot method. Pandas’ ability to
work with heterogeneous data allows the analyst to clean different types of
data for subsequent analysis using the scikits, which stemmed from the
SciPy package in 2000.
1. Jake VanderPlas: http://vanderplas.com/

2. SciPy Conference: https://conference.scipy.org/
3. Jake’s SciPy 2015 keynote address:
https://speakerdeck.com/jakevdp/the-state-of-the-
stack-scipy-2015-keynote

There have also been advances in how we interface with Python. In
2001, IPython was created to provide more interactivity with the language
and the shell. In 2012, Project Jupyter created the interactive notebook for
Python, which further solidified the language as a scientific computing
platform, as this tool provides an easy and highly extensible way to do
literate programming and much more.

However, the Python ecosystem includes more than just these few
libraries and tools. SymPy4 is a fully functional computer algebra system
(CAS) in Python that can do symbolic manipulation of mathematical
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formulas and equations. While Pandas is great for working with rectangular
flat files and has support for hierarchical indices, the xarray library5

gives Python the ability to work with n-dimensional arrays. Thinking of
Pandas as a two-dimensional dataframe—that is, as an array—gives us an
n-dimensional dataframe. These types of data are frequently encountered
within the scientific community.
4. SymPy: https://www.sympy.org/

5. Xarray: http://xarray.pydata.org/

19.2 Performance
“Premature optimization is the root of all evil”. Write your Python code in a
way that works first, and that gives you a result which you can test. If it’s
not fast enough, then you can work on optimizing the code. The SciPy
ecosystem has libraries that make Python faster: cython and numba.

19.2.1 Timing Your Code
Appendix V Gives an example of using the Jupyter %%timeit cell magic
to time your code. This can be helpful just to compare different methods or
implementations, but does not necessarily tell you where to focus your
efforts.

19.2.2 Profiling Your Code

Other tools such as cProfile6 and snakevis7 can help you time entire scripts
and blocks of code and give a line-by-line breakdown of their execution.
Additionally, snakevis comes with an IPython snakevis extension!
6. cProfile:
https://docs.python.org/3/library/profile.html#mod
ule-cProfile

7. Snakevis: https://jiffyclub.github.io/snakeviz/

19.2.3 Concurrent Futures
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Many different libraries and frameworks are available to help scale up your
computation. concurrent.futures8 allows you to essentially rewrite
the function calls into the built-in map function.9

8. concurrent.futures:
https://docs.python.org/3/library/concurrent.futur
es.html

9. Python map():
https://docs.python.org/3/library/functions.html#m
ap

19.3 Dask
Dask is another library that is geared toward working with large data sets.10

It allows you to create a computational graph, in which only calculations
that are out of date need to be recalculated. Dask also parallelizes
calculations on your own (single) machine or across multiple machines in a
cluster. It creates a system in which you can write code on your laptop, and
then quickly scale your code up to larger compute clusters. The nicest part
of Dask is that its syntax aims to mimic the syntax from Pandas, which in
turn lowers the overhead involved in learning to use this library.
10. Dask: https://www.dask.org/

19.4 Siuba
The tidyverse set of packages for the R programming language tried to
break down each step in the data processing pipeline a single step. This
allowed each step to be turned into separate function calls (aka verbs). This
is similar to how method chaining works in Pandas. Siuba builds on top of
the Pandas library and tries to port the Tidyverse verbs into Pandas.11

11. Siuba documentation: https://siuba.readthedocs.io

19.5 Ibis
The Ibis project provides a high-level API over tabular data.12 The main
benefits is that it gives the user a consistent way to interact with databases,
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Dask, and Pandas.
12. Ibis project: https://ibis-project.org

19.6 Polars
Polars is a Python (and Rust) dataframe library built on top of Apache
Arrow.13 Its API is similar to Pandas, but relies heavily on method calls. It
also removes Pandas indices, something this book has avoided for sake of
simplicity. The Polars documentation contains a user’s guide that is worth
looking into: https://polars.github.io/polars-book
13. Polars Library: https://www.pola.rs/

19.7 PyJanitor
pyjanitor is a Python library that extends Pandas DataFrame objects
by providing additional DataFrame methods to make data processing a
little easier.14 It is modeled after the R package, janitor, and has a lot of
convenient methods for common data processing steps.
14. pyjanitor documentation: https://pyjanitor-
devs.github.io/pyjanitor/

19.8 Pandera
Many of the steps in data process involve checking and validating data. The
pandera provides a mechanism for you to test your data.15 For example,
you can use it to make sure there are valid values for a particular column.
The tools provided in pandera allow you to check your data and have the
code fail when it does not meet assumptions before you model the data and
make conclusions from it.
15. pandera documentation: https://pandera.readthedocs.io/

19.9 Machine Learning
This book aimed to lay a foundation to all the parts in the data science
process. It’s hard to be completely inclusive and cover everything that a
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data scientist might need. Machine learning methods like XGBoost have
become extremely popular for its ability to work with a wide variety of data
sets and perform well in prediction tasks.16 We’ve mentioned a little bit of
scikit-learn pipelines in Section 13.4.17

16. XGBoost: https://xgboost.readthedocs.io/

17. scikit-learn pipelines: https://scikit-
learn.org/stable/modules/generated/sklearn.pipelin
e.Pipeline.html

To use these machine learning models in production we need to be able
to maintain, version control, deploy, and monitor them. This is where
MLOps (Machine Learning Operations) come into play, and tools like
vetiver can help with that.18

18. Vetiver: https://vetiver.rstudio.com/

19.10 Publishing
This book was written in a publishing system called Quarto.19 This allows
you to do “literate programming”, where you can mix prose text with code
and code output. Why I like Quarto is that it is a single program that lets me
write reports, books, websites, presentations, etc. It also allows me to work
in R and Python simultaneously, which this book also does in Appendix Z.
19. Quarto: https://quarto.org/docs/books

JupyterBook is another literate programming platform that builds on
Jupyter Notebooks to create a book format.20

20. JupyterBook: https://jupyterbook.org/

19.11 Dashboards
Over the years many dashboard libraries have been created for Python.
Dash,21 Streamlit,22 Panel,23 and Voilà24 are some of them. I’ve personally
done a lot of my data science result communication work in the R
ecosystem, so I’m happy that Shiny for Python25 was recently announced at
the time of writing, since it is similar to what I already know. All the
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dashboard platforms have pros and cons and have tradeoffs with learning
curve, scalability, and flexibility.
21. Dash: https://plotly.com/dash/

22. Streamlit: https://streamlit.io/

23. Panel: https://panel.holoviz.org/

24. Voilà: https://voila.readthedocs.io

25. Shiny for Python: https://shiny.rstudio.com/py/

Conclusion
Pandas is a popular data science library in Python. Its ubiquity has made it
the go-to library when working with data in Python. However, it may not
meet everyone’s needs and that is why so many other libraries have been
built to parallel or extend Pandas. This book mainly focuses around Pandas
as the tool to help you think about data processing and give you the
foundation to explore other dataframe libraries.

Look out for additional chapters published for free with the book. Many
of the libraries mentioned in this part of the book will be expanded upon
and released online.
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It’s Dangerous To Go Alone!

Heed this advice! One of the best ways to learn a language is to work on a
problem with other people. For example, in pair-programming, two people
program together. Alternatively, one person can do the typing while the
other person talks through the code. This allows two sets of eyes to look at
the code, improves communication between the two colleagues, and gives a
sense of ownership. These shared-programming techniques both contribute
to higher-quality code and make programming fun, which means you’re
more likely to improve by doing it more often.

20.1 Local Meetups
Many cities have a Meetup culture in which people can find a common
hobby or topic and have a place to “meet up”.1 Python-specific meetups
exist, but it’s worth going to others that focus on data cleaning,
visualization, or machine learning. Even meetups in other languages can be
helpful. The more you expose yourself to the community and the field, the
more connections you can make with your own work.
1. Meetup: https://www.meetup.com/

If there isn’t a meetup in your city, create one! You can start with friends
and people who are interested, and begin to host regular times to meet and
talk. Keep it fun. Talk about topics of interest at a bar. Again, the more
enjoyable something is, the more likely you are to do it.

Since the COVID-19 pandemic, many meetups have moved to virtual +
online, and hybrid options for meetups are becoming the norm.

20.2 Conferences

https://www.meetup.com/


Conferences are a great way to learn about the latest libraries and
techniques. You also get to meet new people as well as library maintainers.
Many conferences sponsor a “sprint day”, during which people are
encouraged to work on code and contribute to a library. This is a great way
to learn about the library itself, to improve your programming skills, and to
contribute to the community.

PyCon is the main Python conference.2 It includes topics across the
entire Python ecosystem, such as Django3 and Flask4 for web development.
The talks for these conferences are usually recorded and freely available.5
The SciPy6 and EuroSciPy7 conferences focus more on the scientific and
analytics stack aspects of Python. I have attended SciPy over the past few
years, and I can assure you that the tutorials cover a vast set of topics. The
best way to view the conference tutorials and talks is to find the respective
YouTube page for the conference.
2. PyCon conference: https://us.pycon.org

3. Django: www.djangoproject.com

4. Flask: https://flask.palletsprojects.com
5. Python 2017 talks:
www.youtube.com/channel/UCrJhliKNQ8g0qoE_zvL8eVg

6. SciPy Conference: https://conference.scipy.org

7. EuroSciPy Conference: https://www.euroscipy.org/

AnacondaCon is a newer conference that likewise has videos posted
online.8 Jupyter also hosts its own conferences. Jupyter Days and
JupyterCon have videos, and you can hear when the next conference is on
the main Jupyter blog.9 Finally, PyData, the nonprofit that supports many
open-source projects, sponsors conferences and provides videos.10

8. AnacondaCon Conference: https://anacondacon.io/

9. JupyterCon Conference https://jupytercon.com/

10. PyData: https://pydata.org/

20.3 The Carpentries
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The Carpentries is a nonprofit organization that aims to teach all the
programming and data skills to researchers. It’s where I got my start into
data science education. Software-Carpentry, Data Carpentry, and Library
Carpentry are sister organizations under The Carpentries.

The Carpentries does a great job sharing their lesson materials. If you
ever need a resource to learn or teach out of, I cannot recommend the
materials from The Carpentries enough:
https://carpentries.org/workshops-curricula/.

20.4 Podcasts
Data science related podcasts are plentiful. Here are some that I listen to (in
no particular order):

Vanishing Gradients:
https://vanishinggradients.fireside.fm/
Data Skeptic: https://dataskeptic.com/
Talk Python to Me: https://talkpython.fm/
Python Bytes: https://pythonbytes.fm/
Super Data Science:
https://www.superdatascience.com/podcast
Shiny Developer Series: https://shinydevseries.com/
R Weekly Highlights: https://rweekly.fireside.fm/
Not So Standard Deviations: https://nssdeviations.com/
Partially Derivative (discontinued):
http://partiallyderivative.com/
Linear Digressions (discontinued):
http://lineardigressions.com/
Becoming a Data Scientist (discontinued):
www.becomingadatascientist.com

While this isn’t an exhaustive list, these podcasts will give you a good
sense of the Python and data science community and the tools, news, and
thinking behind many data science methods.
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20.5 Other Resources
Instead of trying to create a list of Python resources in a book, I’ve started a
project called “The Big Book of Python” that aims to parallel “The Big
Book of R”. These resources aim to curate a bunch of free resources into a
single page. I hope these resources help you with your future data science
journey.

https://www.bigbookofpython.com/
https://www.bigbookofr.com/

Conclusion
This book was intended to provide you with a solid foundation from which
to learn more about Pandas and its related libraries. Be sure to check out the
accompanying github repository for the book for updates and additional
resources:
https://github.com/chendaniely/pandas_for_everyone
.
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Concept Maps

Figure A.1 Concept Map for Pandas DataFrame Basics



Figure A.2 Concept Map for Pandas Data Structures Basics



Figure A.3 Concept Map for Plotting Basics



Figure A.4 Concept Map for Tidy Data



Figure A.5 Concept Map for Apply Functions



B

Installation and Setup

B.1 Install Python
Since Software-Carpentry has been using the Anaconda distribution, I will
be using it for the installation instructions described in this appendix. You
can also find the generic workshop template installation instructions for
Python here:

Click here to view code image

https://carpentries.github.io/workshop-
template/#python

B.1.1 Anaconda
For the most part, the directions listed on the main Anaconda download site
will be the same as the ones listed in this book.1 You can also look at the
Anaconda installation documentation.2 Be sure to use the Python 3 version.
If you also need to have Python 2, follow the instructions in Appendix F on
creating Python environments.
1. https://www.anaconda.com/products/distribution

2. https://docs.continuum.io/anaconda/install/

B.1.1.1 Windows

Install Anaconda using the Windows installer with all the default settings.
Make sure you check off the box for Add Anaconda to my PATH
environment variable.

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appb_images.xhtml#f0373-01
https://carpentries.github.io/workshop-template/#python
https://www.anaconda.com/products/distribution
https://docs.continuum.io/anaconda/install/


B.1.1.2 Mac

Install Anaconda using the Mac installer with all the default settings.

B.1.1.3 Linux

Installing on Linux involves downloading the .sh file and running it from
the command line. You can do this by navigating to the Anaconda
download site and downloading the .sh file there. Alternatively, if you are
on a server, for example, you can use the wget command. Assuming the
.sh file is in your Downloads folder:

Click here to view code image

cd ~/Downloads 
bash Anaconda3- * .sh  # your version number 
will differ

Note that the version of Anaconda will be different by the time this book
is published.

Keeping the default options is a good choice. When the installation
process asks you to read the license agreement, you can press q to exit or
accept by typing yes.

Type yes when the installer asks to prepend Anaconda to the PATH.
This makes Anaconda the default Python distribution on the system.

When you are done, close the current terminal window. Any new
terminal moving forward will default to the Anaconda Python distribution.

B.1.2 Miniconda
Anaconda is a big download because it comes with a lot of packages and
dependencies pre-installed. Miniconda is an alternative to the full Anaconda
distribution. It only comes with Python installed, and all the other packages
need to be installed manually.

B.1.3 Uninstall Anaconda or Miniconda

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appb_images.xhtml#f0373-02


Since Anaconda will create an Anaconda3 folder in your home directory,
deleting this folder will completely remove anything associated with
Anaconda on the machine. This is one of my favorite features of using
Anaconda. If I install a bad Python package, I can reset everything back to
“normal” by deleting the Anaconda3 folder.

For Miniconda, you will have a miniconda3 folder instead.

B.1.4 Pyenv
Pyenv is a tool that lets you manage different versions of Python. It also has
a plugin for you to also manage package environments. The benefit that
pyenv has over conda is that it plays a little bit nicer with other tools
outside of Python, since it only manages the Python version.

Below are some resources to install, setup, and use pyenv

Posit, PBC (formerly RStudio, PBC has a minimal viable python setup
instruction for Pyenv:
https://solutions.rstudio.com/python/minimum-
viable-python/
Calvin Hendryx-Parker gave a great talk at PyCon 2022 on
Bootstrapping Your Local Python Environment that goes over the
Pyenv setup with the pyenv-virtualenv plugin:
https://www.youtube.com/watch?v=-YEUFGFHWgQ
Real Python Managing Multiple Python Versions With pyenv:
https://realpython.com/intro-to-pyenv/

The main downside is that Pyenv plugins are not supported on Windows.
That means the very useful pyenv-virtualenv plugin isn’t usable. For that
reason, if you want to go to Pyenv route, I suggest you look into Pipenv for
the virtual environment management, and use Pyenv for the Python version
management. This way, you have a setup that is OS agnostic.

B.2 Install Python Packages
See Appendix H for how to install the packages needed to code along this
book. If you are using a Python setup other than Anaconda (or its

https://solutions.rstudio.com/python/minimum-viable-python/
https://www.youtube.com/watch?v=-YEUFGFHWgQ
https://realpython.com/intro-to-pyenv/


derivatives that use conda), You need to replace the conda install
command with pip install.

B.3 Download Book Data
You can download the data sets for the book by going to the book’s
repository and downloading the ZIP file of the repo.

The book’s repository can be found here:
https://github.com/chendaniely/pandas_for_everyone

You can do this by going to the main repository page then clicking Code >
Download ZIP (Figure B.1).

https://github.com/chendaniely/pandas_for_everyone


Figure B.1 Clicking on Code > Download ZIP to download the data
sets for the book. You can also try the direct URL to the ZIP file here:
https://github.com/chendaniely/pandas_for_everyo

ne/archive/refs/heads/master.zip

This will download everything in the repository as well as provide a folder
in which you can put your Python scripts or notebooks. You can also copy
the data folder from the repository and put it in a folder of your choosing.
The instructions on the GitHub repository will be updated as necessary to

facilitate downloading the data for the book.

https://github.com/chendaniely/pandas_for_everyone/archive/refs/heads/master.zip


C

Command Line

Having some familiarity with the command line can go a very long way.
My main suggestion is to go through the Software-Carpentry Unix Shell
lesson.1 The “Navigating Files and Directories” episode (i.e., lesson) is
probably the most important lesson there for this book, but learning about
“Shell Scripts” is also important when you are running your Python code
from the command line.
1. https://swcarpentry.github.io/shell-novice/

Since this book is mainly a Python book about Pandas, I won’t be able to
go over all of the topics in learning the Unix Shell. The main takeaway I
want to convey in this appendix is the notion of a “working directory”.

C.1 Installation
Likely, if you are on a Mac or Linux system, you will already have access
to the Bash Shell. By default, Windows does not have it installed.

C.1.1 Windows
In Windows, the best installation approach is to follow the Software-
Carpentry Bash Shell instructions.2 You will be installing Git for
Windows,3 which will also provide the Bash Shell.
2. https://carpentries.github.io/workshop-
template/#shell

3. https://gitforwindows.org/

If you do not want to use Git for Windows, Anaconda also comes with
its own Anaconda Prompt that you can use to run Python code from the

https://swcarpentry.github.io/shell-novice/
https://carpentries.github.io/workshop-template/#shell
https://gitforwindows.org/


command line. The only difference here is that the Anaconda Prompt will
use Windows command line commands, instead of the UNIX-like ones on a
Mac or Linux system. However, running your Python scripts from the
command line will be the same.

C.1.2 Mac
You can find the Terminal application in Applications /
Utilities. That is, in your main application folder, there will be a folder
called Utilities, where you can find the Terminal.

iTerm2 is a popular alternative to the default Mac Terminal
application.4

4. https://iterm2.com/

C.1.3 Linux
The terminal and bash are set up on Linux systems by default.

C.2 Basics
At minimum, you should know the following commands:

Where you currently are in your file system (Windows, Mac, Linux:
pwd)
List the contents of the current folder you are in (Windows: dir, Mac,
Linux: ls)
Change to a different folder (: cd <folder name>)
Run a Python script (Windows, Mac, Linux: python <python
script>.py)

Another useful “command” is .. (two dots), which refers to the parent
folder of where you are now (Windows, Mac, Linux: pwd).

https://iterm2.com/


D

Project Templates

It is very easy and convenient to put all the data, code, and outputs in the
same folder. However, this convenience is negated by disadvantages of
having a messy project folder. That is, putting everything into a single
folder can easily lead to a folder on your computer with tens or hundreds of
files, which can become unmanageable and confusing for not only others,
but yourself.

At minimum, I suggest the following folder structure for any analysis
project:

my_project/ 
  | 
  |- data/ 
  | 
  |- analysis/ 
  | 
  +- output/

I put all my data sets in the data folder, any code I write for analysis in
the analysis folder (sometimes I will name this code or src), and
finally cleaned data sets or other outputs such as figures in the output
folder. You can adapt this general folder structure as you need.

Here is a paper reference that discusses the theory a bit further:

Noble WS. (2009). “A Quick Guide to Organizing Computational
Biology Projects.” PLoS Comput Biol 5(7): e1000424.
https://doi.org/10.1371/journal.pcbi.1000424

https://doi.org/10.1371/journal.pcbi.1000424


E

Using Python

There are many different ways to use Python. The “simplest” way is to use
a text editor and terminal. However, projects like IPython and Jupyter have
enhanced Python’s REPL (Read–Evaluate–Print–Loop) interface, making it
one of the standard interfaces in the data analytics and scientific Python
communities.

E.1 Command Line and Text Editor
To use Python from the command line and text editor, you need is a plain
text editor and a terminal. Although any plain text editor would work, a
“good” one would have a Python feature that will do syntax highlighting
and auto-completion. These days VSCode has become a popular text editor
that has good extensions for Python support:
https://code.visualstudio.com/

If you are on Windows, be careful not to do too much editing using the
default Notepad application, especially if you plan to collaborate with users
on other operating systems. Line endings in Notepad are different from
those in Windows and on *nix machines (Linux and Macs). If you ever
open up a Python file and the indentations and newlines do not appear
correctly, it’s probably because of how Windows is interpreting the newline
endings of the file.

When you work in a text editor, all your Python code will be saved in a
.py script. You can run the script by executing it from the command line.
For example, if your script’s name is my_script.py, you can execute all
the code in the script, line-by-line, with the following command:

python my_script.py

https://code.visualstudio.com/


More information about running Python scripts from the command line
is found in Appendix C and Appendix F.

E.2 Python and IPython
Under Windows, Anaconda will provide an “Anaconda command prompt”
application. This is just like the regular windows command prompt but is
configured to use the Anaconda Python distribution. Typing python or
ipython here will open the python or ipython command prompt,
respectively.

For OSX and Linux, you can run the python or ipython command
prompt by typing the respective command in a terminal.

There are a few differences between the python and ipython
command prompts. The regular python prompt takes only Python
commands, whereas the ipython prompt provides some useful additional
commands you can type to enhance your Python experience. My personal
suggestion is to use the ipython prompt.

You can directly type Python commands into either prompt, or you can
save your code in a file and then copy/paste commands into the prompt to
run your code.

E.3 Jupyter
Instead of running python or ipython in the command prompt to run
Python, you can run the jupyter notebook or jupyter lab. This
will open another Python interface in a web browser. Even though a web
browser is opened, it does not actually need any Internet connection to run,
nor is any information sent across the Internet.

The jupyter notebook will open in a location on your computer.
You can create a new notebook by clicking the “New” button on the top
right corner and selecting “python.” This will open up a “notebook” where
you can type your python commands. Each cell provides a site where you
can type your code, and you can run the cell by using the commands in the
“Cell” menu bar. Alternatively, you can press Shift + Enter to run the
cell and create a new cell below it, or press Ctrl + Enter to simply run
the cell.



An especially useful aspect of the notebook is the ability to interweave
your Python code, its output, and regular prose text. Similar to how the text,
code, and output is presented in this book.

To change the cell type, make sure you have the cell selected. Then, on
the top right below the menu bar, click a drop-down menu that says
“Code.” If you change this to “Markdown,” you can write regular prose text
that is not Python code to help interpret your results, or record notes about
what your code is doing.

E.4 Integrated Development Environments (IDEs)
Anaconda comes with an IDE called Spyder. Those who are familiar with
Matlab or RStudio might take comfort in having access to a similar
interface.

Other IDEs include the following:

nteract: https://nteract.io/
PyCharm: https://www.jetbrains.com/pycharm/
VSCode: https://code.visualstudio.com/

I suggest exploring the various ways to use Python and seeing which
works best for you. IPython/script, Jupyter notebook, and Spyder come pre-
installed with Anaconda, so those would be the most accessible, but the
other IDEs might work better for your particular circumstances.

https://nteract.io/
https://www.jetbrains.com/pycharm/
https://code.visualstudio.com/


F

Working Directories

Building on Appendix C, Appendix D, and Appendix E, this appendix
covers working directories, especially when you are working with project
templates (Appendix D).

A working directory simply tells the program where the base or
reference location is. It’s common to place all of your code, data, output,
figures, and other project files all in the same folder, because it means the
working directory is easy to figure out. However, this practice can easily
lead to a messy folder, as mentioned in Appendix D.

We like fully documented project templates that tell us where and how
to run our scripts. With this approach, all our scripts have a predictable and
consistent working directory.

There are a few ways to figure out what your current working directory
is. If you are using IPython, then you can type pwd into the IPython
prompt, and it will return the folder path of your current working directory.
This method also works if you are using the Jupyter notebook.

If you are executing your Python code as scripts directly in the
command line, then the working directory is the output after you run cd on
Windows (note there is nothing else after the command), and pwd on OSX
and Linux.

Here is an example of how working directories affect your code.
Suppose you have the following project structure, where the current
working directory is denoted by a star (*).

my_project/ 
  | 
  |- data/ 
  |    | 



  |    + data.csv 
  | 
  |- src/ * 
  |    | 
  |    + script.py 
  | 
  +- output/

If your script.py wants to read in a data set from the data folder, it
would have to do something like data =
pd.read_csv('../data/data.csv'). Note that because the
current working directory is in the src folder, to navigate to the
data.csv, you need to go up one level .. to the my_project folder
and then down into the data folder to get to your data set. The benefit of
this is that you can run your code by tying it to python script.py,
though this can lead to some issues discussed later in this appendix.

Let’s use a different working directory:

my_project/ * 
  | 
  |- data/ 
  |   | 
  |   + data.csv 
  | 
  |- src/ 
  |    | 
  |    + script.py 
  | 
  +- output/

Now that the working directory is on the top level, script.py can
reference the data set with the command data =
pd.read_csv('data/data.csv'). Note that you no longer need to
go up a level to reference your data. However, now if you want to run your



code, you have to reference the file as such: python src/script.py.
This may be annoying, but it allows you to create any amount of
subfolders, and data and output will always be referenced the same
way across all the files.

It also means you as a user have one and only one working directory to
execute any script in this project.



G

Environments

Using environments is a great way to work with different versions of
Python and/or packages. It also provides an isolated environment to install
everything so that if something goes wrong, it won’t affect the rest of the
system. Python environments are particularly handy when you need
different versions of packages installed across different projects. You can
also use environments to see all the package dependencies.

G.1 Conda Environments
The Anaconda Python distribution comes with conda. The “Getting
Started” guide is a useful resource in this case.1 If you installed Anaconda
with Python 3 (Appendix B), this appendix will show you how to create a
separate environment that has a different version of Python in it. If we run
python in the command line, we will begin with Python 3.9. Your exact
version will differ from that shown in this book.
1. https://conda.io/projects/conda/en/latest/user-
guide/getting-started.html

Click here to view code image

% python 
Python 3.9.12 (main, Jun  1 2022, 06:34:44) 
[Clang 12.0.0 ] :: Anaconda, Inc. on darwin 
Type "help", "copyright", "credits" or "license" 
for more information. 
>>>

https://conda.io/projects/conda/en/latest/user-guide/getting-started.html
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appg_images.xhtml#f0385-01


To create a new environment we run the conda command from the
command line. We use the create command within conda and specify a
--name for the environment. Here we are naming our Python environment
py38. By default, the system will create a Python 3.9 environment, so we
have to specify our Python version with python=3.8.

Click here to view code image

# type this in the (bash) terminal, not in 
python 
conda create -n py38 python=3.8

After running the command, you will see the following output.

Click here to view code image

Collecting package metadata 
(current_repodata.json): done 
Solving environment: done 
 
## Package Plan ## 
 
  environment location: 
/Users/danielchen/anaconda3/envs/py38 
 
  added / updated specs: 
    - python=3.8 
 
 
The following packages will be downloaded: 
 
    package                    |            build 
    ---------------------------|----------------- 
    ca-certificates-2022.07.19 |       hca03da5_0   
124 KB 

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appg_images.xhtml#f0385-02
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    certifi-2022.6.15          |   py38hca03da5_0   
153 KB 
    libffi-3.4.2               |       hc377ac9_4   
106 KB 
    ncurses-6.3                |       h1a28f6b_3   
866 KB 
    openssl-1.1.1q             |       h1a28f6b_0   
2.2 MB 
    pip-22.1.2                 |   py38hca03da5_0   
2.5 MB 
    python-3.8.13              |       hbdb9e5c_0   
10.6 MB 
    setuptools-63.4.1          |   py38hca03da5_0   
1.1 MB 
    sqlite-3.39.2              |       h1058600_0   
1.1 MB 
    ----------------------------------------------
-------------- 
                                           Total:   
18.6 MB 
 
The following NEW packages will be INSTALLED: 
 
  ca-certificates pkgs/main/osx-arm64::ca-
certificates-2022.07.19-hca03da5_0 
  certifi         pkgs/main/osx-arm64::certifi-
2022.6.15-py38hca03da5_0 
  libcxx           pkgs/main/osx-arm64::libcxx-
12.0.0-hf6beb65_1 
  libffi          pkgs/main/osx-arm64::libffi-
3.4.2-hc377ac9_4 
  ncurses         pkgs/main/osx-arm64::ncurses-
6.3-h1a28f6b_3 



  openssl         pkgs/main/osx-arm64::openssl-
1.1.1q-h1a28f6b_0 
  pip             pkgs/main/osx-arm64::pip-22.1.2-
py38hca03da5_0 
  python          pkgs/main/osx-arm64::python-
3.8.13-hbdb9e5c_0 
  readline        pkgs/main/osx-arm64::readline-
8.1.2-h1a28f6b_1 
  setuptools      pkgs/main/osx-arm64::setuptools-
63.4.1-py38hca03da5_0 
  sqlite          pkgs/main/osx-arm64::sqlite-
3.39.2-h1058600_0 
  tk              pkgs/main/osx-arm64::tk-8.6.12-
hb8d0fd4_0 
  wheel           pkgs/main/noarch::wheel-0.37.1-
pyhd3eb1b0_0 
  xz              pkgs/main/osx-arm64::xz-5.2.5-
h1a28f6b_1 
  zlib            pkgs/main/osx-arm64::zlib-
1.2.12-h5a0b063_2 
 
 
Proceed ([y]/n)? y 
 
Downloading and Extracting Packages 
certifi-2022.6.15    | 153 KB    | 
########################## | 100% 
python-3.8.13        | 10.6 MB   | 
########################## | 100% 
openssl-1.1.1q       | 2.2 MB    | 
########################## | 100% 
setuptools-63.4.1    | 1.1 MB    | 
########################## | 100% 



ca-certificates-2022 | 124 KB    | 
########################## | 100% 
pip-22.1.2           | 2.5 MB    | 
########################## | 100% 
sqlite-3.39.2        | 1.1 MB    | 
########################## | 100% 
ncurses-6.3          | 866 KB    | 
########################## | 100% 
libffi-3.4.2         | 106 KB    | 
########################## | 100% 
Preparing transaction: done 
Verifying transaction: done 
Executing transaction: done 
# 
# To activate this environment, use 
# 
#     $ conda activate py38 
# 
# To deactivate an active environment, use 
# 
#     $ conda deactivate

The last few lines of the output tell you how you can use your newly
created environment. If we run conda activate py38 from the
command line now, our prompt will be prepended with our environment
name. If we run python in the terminal to launch Python, you will see that
a different version of Python is now being used.

Click here to view code image

% python 
 
Python 3.8.13 (default, Mar 28 2022, 06:13:39) 
[Clang 12.0.0 ] :: Anaconda, Inc. on darwin 

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appg_images.xhtml#f0387-02


Type "help", "copyright", "credits" or "license" 
for more information.

To delete an environment, navigate to your anaconda3 folder. A
folder there called envs stores all your environments. In this example, if
we delete the py38 folder within envs, it’s as if we never created our
environment, and it will be removed.

Within a given environment, any package or library we install
(Appendix H) within it will be specific to that particular environment.
Thus, we can have not only different versions of Python between
environments but also different versions of libraries. You can create a
separate Python environment (p4e for “Pandas for Everyone”) for this
book as well.}

Click here to view code image

conda create --name p4e python=3

You can install the libraries needed by following the instructions in
Appendix H.

G.2 Pyenv + Pipenv
Calvin Hendryx-Parker gave a great talk at PyCon 2022 on Bootstrapping
Your Local Python Environment that goes over the Pyenv setup with the
pyenv-virtualenv plugin: https://www.youtube.com/watch?v=-
YEUFGFHWgQ

The Hitchhiker’s Guide to Python and Real Python also have resources
on using Pipenv for virtual environments:

https://docs.python-
guide.org/dev/virtualenvs/#virtualenvironments-
ref
https://realpython.com/pipenv-guide/

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appg_images.xhtml#f0387-03
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H

Install Packages

There will be times when you have to install a Python package that did not
come with your distribution. If you used Anaconda to install Python, then
you will have a package manager called conda.

conda has gained popularity over the past few years because of its
ability to install Python packages that require non-Python dependencies.
You may have heard of other package managers, such as pip.

This book uses a few packages that need to be installed. If you installed
the entire Anaconda distribution, then libraries like Pandas are already
installed. But there’s no harm in running the command to reinstall a library.
Check the accompanying repository1 for all the commands to install the
relevant libraries for this book.
1.
https://github.com/chendaniely/pandas_for_everyone

We can use conda to install Python libraries. If you created a separate
environment for the book (Appendix G), then you can conda activate
p4e to get into the “Pandas for Everyone” environment.
conda’s default repository is maintained by Anaconda, Inc (formerly

known as Continuum Analytics). We can install the pandas package using
conda.

Click here to view code image

# typed into your terminal, not in Python 
conda install pandas

For certain packages that are not listed in the default channel, or if the
default channel does not have the latest version of a package, we can use
the and community-maintained conda-forge channel.2

https://github.com/chendaniely/pandas_for_everyone
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/apph_images.xhtml#f0389-01


2. https://conda-forge.org/

Click here to view code image

conda install -c conda-forge pandas

Lastly, if the package isn’t listed in conda, you can also use pip to
install packages.

pip install pandas

For example, to install all the libraries used in this book, you can run the
following lines:

Click here to view code image

conda install -c conda-forge pandas matplotlib 
pyarrow openpyxl \ 
  seaborn numba regex pandas-datareader 
statsmodels scikit-learn \ 
  arrow lifelines

Again, it’s a good idea to check the accompanying repository for the
most recent installation and setup instructions.

H.1 Updating Packages
You can update conda itself with the following command:

conda update conda

Run this command to update all the packages in a given conda
environment:

conda update --all

https://conda-forge.org/
file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/apph_images.xhtml#f0389-02
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I

Importing Libraries

Libraries provide additional functionality in an organized and packaged
way. We mainly work with the Pandas library throughout this book, but
there are times when we will import other libraries. You will see many
different ways to import a library. The most basic way is to simply import
the library by its name.

import pandas

When we import a library, we can use its functions within Pandas using
dot notation.

Click here to view code image

print(pandas.read_csv('data/concat_1.csv'))

   A  B  C  D 
0 a0 b0 c0 d0 
1 a1 b1 c1 d1 
2 a2 b2 c2 d2 
3 a3 b3 c3 d3

Python gives us a way to alias libraries. This allows us to use an
abbreviation for longer library names. To do so, we specify the alias after
the as statement.

import pandas as pd

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appi_images.xhtml#f0391-01


Now, instead of referring to the library as pandas, we can use our
abbreviation, pd.

Click here to view code image

print(pd.read_csv('data/concat_1.csv'))

   A  B  C  D 
0 a0 b0 c0 d0 
1 a1 b1 c1 d1 
2 a2 b2 c2 d2 
3 a3 b3 c3 d3

Sometimes, if only a few functions are needed from a library, we can
import them directly.

from pandas import read_csv

This will allow us to use the read_csv() function directly, without
specifying the library it is coming from.

Click here to view code image

print(read_csv('data/concat_1.csv'))

   A  B  C  D 
0 a0 b0 c0 d0 
1 a1 b1 c1 d1 
2 a2 b2 c2 d2 
3 a3 b3 c3 d3

Finally, there is a method that enables users to import all the functions of
a library directly into the namespace.

from pandas import * 
from numpy import * 
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from scipy import *

This method is not recommended because libraries contain many
functions, and a function can mask an existing function. For example, if we
import all the functions from numpy and from scipy, which mean()
function is used? It’s not as clear as saying numpy.mean() and
scipy.mean().



J

Code Style

The Python Enhancement Proposal 8 (PEP8) discusses the official Python
code style guide: https://peps.python.org/pep-0008/.

Reading through the style guide is a good way to learn the syntax of a
language. Just keep in mind that you do not need to adhere to every single
rule.

Tools like Black1 have been created for Python so your code can be
automatically formatted. This is useful so you can have the tool do your
formatting for you, and it’s one thing less for you to worry about.
1. https://github.com/psf/black

While writing this book, I used the online black playground, to format
some of the code: https://black.vercel.app/. Not every piece of
code in the book follows PEP8 or Black. Sometimes, the code puts in
additional line breaks to emphasize the code being taught.

J.1 Line Breaks in Code
Writing analysis code does get very wide at times. An additional constraint
in the book is that the code needs to be even more narrow compared to the
PEP8 rules.

There are two ways you can break up wide lines of code.

1. Using the \ at the end of a line to tell Python that the code continues
on the next line

2. Wrapping your entire statement around a pair of round parentheses (
)

Let’s use the example from Section 4.3.

https://peps.python.org/pep-0008/
https://github.com/psf/black
https://black.vercel.app/


Click here to view code image

import pandas as pd 
weather = pd.read_csv('data/weather.csv')

The first step in tidying up the data set was to call the .melt()
method.

Click here to view code image

# this code is wide and will run off the page 
weather_melt = weather.melt(id_vars=["id", 
"year", "month", "element"], 
var_name="day", value_name="temp")

This ends up being a wide line of code. So we can put in line breaks
between the round parenthesis of the .melt() method call.

Click here to view code image

# previous line of code can be rewritten as 
weather_melt = weather.melt( 
  id_vars=["id", "year", "month", "element"], 
  var_name="day", 
  value_name="temp", 
)

In Pandas, many of the methods can be chained together (Appendix U).
A common practice is to put each method call on its own line. This way if
your eyes look down a straight line, you can get a rough overview of all the
steps your data is going through. However, just putting arbitrary line breaks
outside of a function call does not work.

Click here to view code image

# this will error, putting line break before the 
.melt 
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# previous line of code can be rewritten as 
weather_melt = weather 
  .melt( 
    id_vars=["id", "year", "month", "element"], 
    var_name="day", 
    value_name="temp")

IndentationError: unexpected indent 
(3804754158.py, line 4)

We can solve this by using one of the techniques listed above

Click here to view code image

# use a \ at the end of the line 
weather_melt = weather \ 
  .melt( 
    id_vars=["id", "year", "month", "element"], 
    var_name="day", 
    value_name="temp")

# wrap the entire statement around ( ) 
weather_melt = (weather 
  .melt( 
    id_vars=["id", "year", "month", "element"], 
    var_name="day", 
    value_name="temp") 
)

The ( ) method is the style you will see more often reading Pandas
code.
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K

Containers: Lists, Tuples, and
Dictionaries

Python comes with built-in container objects. These objects store data and
are also iterable, meaning there is a mechanism to iterate through the
values stored in the container.

K.1 Lists
Lists are a fundamental data structure in Python. They are used to store
heterogeneous data and are created with a pair of square brackets, [ ].

Click here to view code image

my_list = ['a', 1, True, 3.14] 
print(my_list)

['a', 1, True, 3.14]

We can subset the list using square brackets and provide the index of the
item we want.

Click here to view code image

# get the first item - index 0 
print(my_list[0])

a
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We can also pass in a range of values (Appendix P).

# get the first 3 values 
print(my_list[:3])

['a', 1, True]

We can reassign values when we subset values from the list.

# reassign the first value 
my_list[0] = 'zzzzz' 
print(my_list)

['zzzzz', 1, True, 3.14]

Lists are objects in Python (Appendix S), so they will have methods that
they can perform. For example, we can .append() values to the list.

Click here to view code image

my_list.append('appended a new value!') 
print(my_list)

['zzzzz', 1, True, 3.14, 'appended a new value!']

More about lists and their various methods can be found in the
documentation.1
1.
https://docs.python.org/3/tutorial/datastructures.
html#more-on-lists

K.2 Tuples
A tuple is similar to a list, in that both can hold heterogeneous bits of
information. The main difference is that the contents of a tuple are
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“immutable”, meaning they cannot be changed. They are created with a pair
of round parentheses, ( ).

Click here to view code image

my_tuple  =('a', 1, True, 3.14) 
print(my_tuple)

('a', 1, True, 3.14)

Subsetting items can be accomplished in the same ways as for a list (i.e.,
you use square brackets).

# get the first item 
print(my_tuple[0])

a

However, if we try to change the contents of an index, we will get an
error.

Click here to view code image

# this will cause an error 
my_tuple[0] = 'zzzzz'

TypeError: 'tuple' object does not support item 
assignment

More information about tuples can be found in the documentation.2
2.
https://docs.python.org/3/tutorial/datastructures.
html#tuples-and-sequences

K.3 Dictionaries
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Python dictionaries (dict) are efficient ways of storing information. Just
as an actual dictionary stores a word and its corresponding definition, a
Python dict stores some key and a corresponding value. Using
dictionaries can make your code more readable because a label is assigned
to each value in the dictionary. Contrast this with list objects, which are
unlabeled. Dictionaries are created by using a set of curly braces, { }.

my_dict = {} 
print(my_dict)

{}

print(type(my_dict))

<class 'dict'>

When we have a dict, we can add values to it by using square
brackets, [ ]. We put the key inside these square brackets. Usually, it is
some string, but it can actually be any immutable type (e.g., a Python
tuple, which is the immutable form of a Python list). Here we create
two keys, fname and lname, for a first name and last name, respectively.

my_dict['fname'] = 'Daniel' 
my_dict['lname'] = 'Chen'

We can also create a dictionary directly, with key–value pairs instead of
adding them one at a time. To do this, we use our curly braces, { }, with
the key–value pairs being specified by a colon.

Click here to view code image

my_dict = {'fname': 'Daniel', 'lname': 'Chen'} 
print(my_dict)

{'fname': 'Daniel', 'lname': 'Chen'}
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To get the values from our keys, we can use the square brackets with the
key inside.

fn = my_dict['fname'] 
print(fn)

Daniel

We can also use the .get() method.

ln = my_dict.get('lname') 
print(ln)

Chen

The main difference between these two ways of getting the values from
the dictionary is the behavior that occurs when you try to get a nonexistent
key. When using the square-bracket notation, trying to get a key that does
not exist will return an error.

# will return an error 
print(my_dict['age'])

KeyError: 'age'

In contrast, the .get() method will return None.

# will return None 
print(my_dict.get('age'))

None

To get all the keys from the dict, we can use the .keys() method.

Click here to view code image
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# get all the keys in the dictionary 
print(my_dict.keys())

dict_keys(['fname', 'lname'])

To get all the values from the dict, we can use the .values()
method.

Click here to view code image

# get all the values in the dictionary 
print(my_dict.values())

dict_values(['Daniel', 'Chen'])

To get every key–value pair, you can use the .items() method. This
can be useful if you need to loop through a dictionary.

Click here to view code image

print(my_dict.items())

dict_items([('fname', 'Daniel'), ('lname', 
'Chen')])

Each key–value pair is returned in a form of a tuple, as indicated by
the use of round parentheses, ( ).

More on dictionaries can be found in the official documentation on data
structures.3
3.
https://docs.python.org/3/tutorial/datastructures.
html#dictionaries
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L

Slice Values

Slicing details were also described in Section 11.1.1.
Python is a zero-indexed language (things start counting from zero), and

is also left inclusive, right exclusive you are when specifying a range of
values. This applies to objects like lists and Series, where the first
element has a position (index) of 0. When creating ranges or slicing a
range of values from a list-like object, we need to specify both the
beginning index and the ending index. This is where the left inclusive, right
exclusive terminology comes into play. The left index will be included in
the returned range or slice, but the right index will not.

Think of items in a list-like object as being fenced in. The index
represents the fence post. When we specify a range or a slice, we are
actually referring to the fence posts, so that everything between the posts is
returned.

Figure L.1 illustrates why this may be the case. When we slice from 0 to
1, we get only one value back; when we slice from 1 to 3, we get two
values back.

l = ['one', 'two', 'three'] 
 
print(l[0:1])

['one']

print(l[1:3])

['two', 'three']



Figure L.1 Think of Slicing Values as Referring to the Fence Posts

The slicing notation used, :, comes in two parts. The value on the left
denotes the starting value (left inclusive), and the value on the right denotes
the ending value (right exclusive). We can leave one of these values blank,
and the slicing will start from the beginning (if we leave the left value
blank) or go to the end (if we leave the right value blank).

print(l[1:])

['two', 'three']

print(l[:3])

['one', 'two', 'three']

We can add a second colon, which refers to the “step”. For example, if
we have a step value of 2, then for whatever range we specified using the
first colon, the returned value will be every other value from the range.

Click here to view code image

# get every other value starting from the first 
value 
print(l[::2])
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['one', 'three']



M

Loops

Loops provide a means to perform the same action across multiple items.
Multiple items are typically stored in a Python list object. Any list-like
object can be iterated over (e.g., tuples, arrays, dataframes, dictionaries).
More information on loops can be found in the Software-Carpentry Python
lesson on loops.1

1. https://swcarpentry.github.io/python-novice-
inflammation/05-loop/index.html

To loop over a list. we use a for statement. The basic for loop looks
like this:

for item in container: 
  # do something

The container represents some iterable set of values (e.g., a list).
The item represents a temporary variable that represents each item in the
iterable. In the for statement, the first element of the container is assigned
to the temporary variable (in this example, item). Everything in the
indented block after the colon is then performed. When it gets to the end of
the loop, the code assigns the next element in the iterable to the temporary
variable and performs the steps over again.

Click here to view code image

# an example list of values to iterate over 
l = [1, 2, 3] 
 
# write a for loop that prints the value and its 

https://swcarpentry.github.io/python-novice-inflammation/05-loop/index.html
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squared value 
for i in l: 
  # print the current value 
  print(f"the current value is: {i}") 
 
  # print the square of the value 
  print(f"its squared value is: {i*i}") 
 
  # end of the loop, the \n at the end creates a 
new line 
  print("end of loop, going back to the top\n")

the current value is: 1 
its squared value is: 1 
end of loop, going back to the top

the current value is: 2 
its squared value is: 4 
end of loop, going back to the top

the current value is: 3 
its squared value is: 9 
end of loop, going back to the top



N

Comprehensions

A typical task in Python is to iterate over a list, run some function on each
value, and save the results into a new list.

Click here to view code image

# create a list 
l = [1, 2, 3, 4, 5] 
 
# list of newly calculated results 
r = [] 
 
# iterate over the list 
for i in l: 
  # square each number and add the new value to 
a new list 
  r.append(i ** 2) 
 
print(r)

[1, 4, 9, 16, 25]

Unfortunately, this approach requires a few lines of code to do a
relatively simple task. One way to rewrite this loop more compactly is by
using a Python list comprehension. This shortcut offers a concise way of
performing the same action.

Click here to view code image
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# note the square brackets around on the right-
hand side 
# this saves the final results as a list 
rc = [i ** 2 for i in l] 
print(rc)

[1, 4, 9, 16, 25]

print(type(rc))

<class 'list'>

Our final results will be a list, so the right-hand side will have a pair of
square brackets. From there, we write what looks very similar to a for
loop. Starting from the center and moving toward the right side, we write
for i in l, which is very similar to the first line of our original for
loop. On the right side, we write i ** 2, which is similar to the body of
the for loop. Since we are using a list comprehension, we no longer need
to specify the list to which we want to append our new values.



O

Functions

Functions are one of the cornerstones of programming. They provide a way
to reuse code. If you’ve ever copy-pasted lines of code just to change a few
parameters, then turning those lines of code into a function not only makes
your code more readable but also prevents you from making mistakes later
on. Every time code is copy-pasted, it adds another place to look if a
correction is needed, and puts that burden on the programmer. When you
use a function, you need to make a correction only once, and it will be
applied every time the function is called.

I highly suggest the Software-Carpentry Python episode on functions for
more details.1 An empty function looks like this:
1. https://swcarpentry.github.io/python-novice-
inflammation/08-func/index.html

def empty_function(): 
  pass

The function begins with the def keyword, then the function name (i.e.,
how the function will be called and used), a set of round brackets, and a
colon. The body of the function is indented (one tab or four spaces). This
indentation is extremely important. If you omit it, you will get an error. In
this example, pass is used as a placeholder to do nothing.

Typically functions will have what’s called a “docstring”—a multiple-
line comment that describes the function’s purpose, parameters, and output,
and that sometimes contains testing code. When you look up help
documentation about a function in Python, the information contained in the
function docstring is usually what shows up. This allows the function’s
documentation and code to travel together, which makes the documentation
easier to maintain.

https://swcarpentry.github.io/python-novice-inflammation/08-func/index.html


Click here to view code image

def empty_function(): 
  """This is an empty function with a docstring. 
  These docstrings are used to help document the 
function. 
  They can be created by using 3 single quotes 
or 3 double quotes. 
  The PEP-8 style guide says to use double 
quotes. 
  """ 
  pass # this function still does nothing

Functions need not have parameters to be called.

Click here to view code image

def print_value(): 
  """Just prints the value 3 
  """ 
  print(3)

# call our print_value function 
print_value()

3

Functions can take parameters as well. We can modify our
print_value() function so that it prints whatever value we pass into
the function.

Click here to view code image

def print_value(value): 
  """Prints the value passed into the parameter 
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'value' 
  """ 
  print(value)

print_value(3)

3

print_value("Hello!")

Hello!

Functions can take multiple values as well.

Click here to view code image

def person(fname, lname): 
  """A function that takes 3 values, and prints 
them 
  """ 
  print(fname) 
  print(lname)

person('Daniel', 'Chen')

Daniel 
Chen

The examples thus far have simply created functions that printed values.
What makes functions powerful is their ability to take inputs and return an
output, not just print values to the screen. To accomplish this, we can use
the return statement.

Click here to view code image
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def my_mean_2(x, y): 
  """A function that returns the mean of 2 
values 
  """ 
  mean_value = (x + y) / 2 
  return mean_value 
 
m = my_mean_2(0, 10) 
print(m)

5.0

O.1 Default Parameters
Functions can also have default values. In fact, many of the functions found
in various libraries have default values. These defaults allow users to type
less because users now have to specify just a minimal amount of
information for the function, but also give users the flexibility to make
changes to the function’s behavior if desired. Default values are also useful
if you have your own functions and want to add more features without
breaking your existing code.

Click here to view code image

def my_mean_3(x, y, z=20): 
  """A function with a parameter z that has a 
default value 
  """ 
  # you can also directly return values without 
having to create 
  # an intermediate variable 
  return (x + y + z) / 3

Here we need to specify only x and y.

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appo_images.xhtml#f0407-02


print(my_mean_3(10, 15))

15.0

We can also specify z if we want to override its default value.

print(my_mean_3(0, 50, 100))

50.0

O.2 Arbitrary Parameters
Sometimes function documentation includes the terms *args and
**kwargs. These stand for “arguments” and “keyword arguments”,
respectively. They allow the function author to capture an arbitrary number
of arguments into the function. They may also provide a means for the user
to pass arguments into another function that is called within the current
function.

O.2.1 *args
Let’s write a more generic mean() function that can take an arbitrary
number of values.

Click here to view code image

def my_mean(*args): 
  """Calculate the mean for an arbitrary number 
of values 
  """ 
  # add up all the values 
  sum = 0 
  for i in args: 
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      sum += i 
  return sum / len(args)

print(my_mean(0, 10))

5.0

print(my_mean(0, 50, 100))

50.0

print(my_mean(3, 10, 25, 2))

10.0

O.2.2 **kwargs
**kwargs is similar to *args, but instead of acting like an arbitrary list
of values, they are used like a dictionary—that is, they specify arbitrary
pairs of key–value stores.

Click here to view code image

def greetings(welcome_word, **kwargs): 
  """Prints out a greeting to a person, 
  where the person's fname and lname are 
provided by the kwargs 
  """ 
  print(welcome_word) 
  print(kwargs.get('fname')) 
  print(kwargs.get('lname'))
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greetings('Hello!', fname='Daniel', 
lname='Chen')

Hello! 
Daniel 
Chen



P

Ranges and Generators

The Python range() function allows the user to create a sequence of
values by providing a starting value, an ending value, and if needed, a step
value. It is very similar to the slicing syntax in Appendix L. By default, if
we give range() a single number, this function will create a sequence of
values starting from 0.

# create a range of 5 
r = range(5)

However, the range() function doesn’t just return a list of numbers. In
Python 3, it actually returns a generator.

print(r)

range(0, 5)

print(type(r))

<class 'range'>

If we wanted an actual list of the range, we can convert the generator
to a list.

lr = list(range(5)) 
print(lr)

[0, 1, 2, 3, 4]



Before you decide to convert a generator, you should think carefully
about what you plan to use it for. If you plan to create a generator that will
look over a set of data (Appendix M), then there is no need to convert the
generator.

for i in lr: 
  print(i)

0 
1 
2 
3 
4

Generators create the next value in the sequence on the fly. As a
consequence, the entire contents of the generator do not need to be loaded
into memory before using it. Since generators know only the current
position and how to calculate the next item in the sequence, you cannot use
generators a second time.

The following example comes from the built-in itertools library in
Python. It creates a Cartesian product of values provided to the function.

Click here to view code image

import itertools 
prod = itertools.product([1, 2, 3], ['a', 'b', 
'c']) 
 
for i in prod: 
  print(i)

(1, 'a') 
(1, 'b') 
(1, 'c') 
(2, 'a') 
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(2, 'b') 
(2, 'c') 
(3, 'a') 
(3, 'b') 
(3, 'c')

If you need to reuse the Cartesian product again, then you would have to
either re-create the generator object or convert the generator into something
more static (e.g., a list).

Click here to view code image

# this will not work because we already used 
this generator 
for i in prod: 
  print(i)

# create a new generator 
prod = itertools.product([1, 2, 3], ['a', 'b', 
'c']) 
for i in prod: 
  print(i)

(1, 'a') 
(1, 'b') 
(1, 'c') 
(2, 'a') 
(2, 'b') 
(2, 'c') 
(3, 'a') 
(3, 'b') 
(3, 'c')
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If all you are doing is creating something to iterate over once, it will
save you a lot of computer memory if you do not convert it into a list
object, since Python will just create the object as it goes, instead of trying
to store the entire thing at once.



Q

Multiple Assignment

Multiple assignment in Python is a form of syntactic sugar. It provides the
programmer with the ability to express something succinctly while making
this information easier to express and to be understood by others.

As an example, let’s use a list of values.

l = [1, 2, 3]

If we want to assign a variable to each element of this list, we can subset
the list and assign the value.

a = l[0] 
b = l[1] 
c = l[2]

print(a)

1

print(b)

2

print(c)

3



With multiple assignment, if the statement to the right is some kind of
container, we can directly assign its values to multiple variables on the left.
So, the preceding code can be rewritten as follows:

a1, b1, c1 = l

print(a1)

1

print(b1)

2

print(c1)

3

Multiple assignment is often used when generating figures and axes
while plotting data.

Click here to view code image

import matplotlib.pyplot as plt 
 
f, ax = plt.subplots()
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This one-line command will create the figure and the axes. Other use
cases can be seen in the following Stack Overflow question:
https://stackoverflow.com/questions/5182573/multip
le-assignment-semantics

https://stackoverflow.com/questions/5182573/multiple-assignment-semantics


R

Numpy ndarray

The numpy library1 gives Python the ability to work with matrices and
arrays.
1. https://numpy.org/doc/stable/

import numpy as np

Pandas started off as an extension to numpy.ndarray that provided
more features suitable for data analysis. Since then, Pandas has evolved to
the point that it shouldn’t be thought of as a collection of numpy arrays,
since the two libraries are different.

Click here to view code image

import pandas as pd 
 
df = pd.read_csv('data/concat_1.csv') 
print(df)

   A  B  C  D 
0 a0 b0 c0 d0 
1 a1 b1 c1 d1 
2 a2 b2 c2 d2 
3 a3 b3 c3 d3

If you do need to get the numpy.ndarray values from a Series
or DataFrame, you can use the values attribute.

https://numpy.org/doc/stable/
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Click here to view code image

a = df['A'] 
print(a)

0    a0 
1    a1 
2    a2 
3    a3 
Name: A, dtype: object

print(type(a))

<class 'pandas.core.series.Series'>

print(a.values)

['a0' 'a1' 'a2' 'a3']

print(type(a.values))

<class 'numpy.ndarray'>

This is particularly helpful when cleaning data in Pandas. You can then
use your newly cleaned data in other Python libraries that do not fully
support the Series and DataFrame objects. The Software-Carpentry
Python Inflammation lesson2 uses numpy and can be another good
reference to learn about the library and Python as a whole.
2. https://swcarpentry.github.io/python-novice-
inflammation/
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Classes

Python is an object-oriented language, meaning that everything you create
or use is a “class”. Classes allow the programmer to group relevant
functions and methods together. In Pandas, Series and DataFrame are
classes, and each has its own attributes (e.g., .shape) and methods (e.g.,
.apply()). While it’s not this book’s intention to give a lesson on object-
oriented programming, I want to very quickly cover classes, with the hope
that this information will help you navigate the official documentation and
understand why things are the way they are.

What’s nice about classes is that the programmer can define any class
for their intended purpose. The following class represents a person. There
are a first name (fname), a last name (lname), and an age (age)
associated with each person. When the person celebrates their birthday
(celebrate_birthday), the age increases by 1.

Click here to view code image

class Person(object): 
  def __init__(self, fname, lname, age): 
    self.fname = fname 
    self.lname = lname 
    self.age = age 
 
  def celebrate_birthday(self): 
    self.age += 1 
    return(self)
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With the Person class created, we can use it in our code. Let’s create
an instance of our Person.

Click here to view code image

ka = Person(fname='King', lname='Arthur', 
age=39)

This created a Person—King Arthur, age 39—and saved him to a
variable named ka. We can then get some attributes from ka (note that
attributes are not functions or methods, so they do not have round
brackets).

print(ka.fname)

King

print(ka.lname)

Arthur

print(ka.age)

39

Finally, we can call the method on our class to increment the age.

ka.celebrate_birthday() 
print(ka.age)

40

The Pandas Series and DataFrame objects are more complex
versions of our Person class. The general concepts are the same, though.
We can instantiate any new class to a variable, and access its attributes or
call its methods.
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T

SettingWithCopyWarning

The SettingWithCopyWarning is just a warning, so your code will
still run and produce a result. However, if you do see this warning, it is a
“code smell” that maybe you need to re-write something in your code.

Let’s work with one of our small example data sets to recreate the
warning.

Click here to view code image

import pandas as pd 
 
dat = pd.read_csv("data/concat_1.csv") 
print(dat)

   A  B  C  D 
0 a0 b0 c0 d0 
1 a1 b1 c1 d1 
2 a2 b2 c2 d2 
3 a3 b3 c3 d3

T.1 Modifying a Subset of Data
It’s pretty common to subset your data for values you need, and then make
changes to that subset.

Click here to view code image
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subset = dat[["A", "C"]] 
print(subset)

   A  C 
0 a0 c0 
1 a1 c1 
2 a2 c2 
3 a3 c3

# this will trigger the warning 
subset["new"] = ["bunch", "of", "new", "values"] 
print(subset)

 
   A  C    new 
0 a0 c0  bunch 
1 a1 c1     of 
2 a2 c2    new 
3 a3 c3 values

/var/folders/2b/qckmp39n7qn1dh0tpcm8g89w0000gn/T/i
pykernel_29772/ 
4023129152.py:2: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice 
from a DataFrame. 
Try using .loc[row_indexer,col_indexer] = value 
instead

See the caveats in the documentation: 
https://pandas.pydata.org/ 
pandas-
docs/stable/user_guide/indexing.html#returning-a-



view-versus-a-copy 
  subset["new"] = ["bunch", "of", "new", "values"]

This goes into how Python passes things by reference, so Pandas does
not know for certain if you are working on a subsetted copy of the original
dataframe, or want to make changes to the original dataframe.

The way we fix this is to be explicit when we are working with a subset
of the data we plan to modify.

Click here to view code image

subset = dat[["A", "C"]].copy() # explicity copy 
print(subset)

   A  C 
0 a0 c0 
1 a1 c1 
2 a2 c2 
3 a3 c3

# no more warning! 
subset["new"] = ["bunch", "of", "new", "values"] 
print(subset)

   A  C    new 
0 a0 c0  bunch 
1 a1 c1     of 
2 a2 c2    new 
3 a3 c3 values

In longer analysis and data processing scripts, the
SettingWithCopyWarning is not always “close” to where the
subsetting happened, so you may need to trace your code back to where you
made a copy to your data set. There were a few points in the text book
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where we made .copy() calls. This was to avoid the
SettingWithCopyWarning.

T.2 Replacing a Value
When you want to replace a particular value in a dataframe, make sure you
do the entire replacement in a single .loc[] or .iloc[] call.

Click here to view code image

# reset our data 
dat = pd.read_csv("data/concat_1.csv") 
print(dat)

   A  B  C  D 
0 a0 b0 c0 d0 
1 a1 b1 c1 d1 
2 a2 b2 c2 d2 
3 a3 b3 c3 d3

If you filter your rows and columns in separate steps, you will also run
into the SettingWithCopyWarning.

Click here to view code image

# want to  replace the c2 value 
# filter the rows and separately select the 
column 
dat.loc[dat["C"] == "c2"]["C"] = "new value" 
 
print(dat)

   A  B  C  D 
0 a0 b0 c0 d0 
1 a1 b1 c1 d1 
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2 a2 b2 c2 d2 
3 a3 b3 c3 d3

/var/folders/2b/qckmp39n7qn1dh0tpcm8g89w0000gn/T/i
pykernel_29772/ 
3306879196.py:3: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice 
from a DataFrame. 
Try using .loc[row_indexer,col_indexer] = value 
instead

See the caveats in the documentation: 
https://pandas.pydata.org/ 
pandas-
docs/stable/user_guide/indexing.html#returning-a-
view-versus-a-copy 
  dat.loc[dat["C"] == "c2"]["C"] = "new value"

Instead, you want to do the entire replacement in a single step.

Click here to view code image

dat = pd.read_csv("data/concat_1.csv") 
dat.loc[dat["C"] == "c2", ["C"] ] = "new value" 
print(dat)

   A  B         C  D 
0 a0 b0        c0 d0 
1 a1 b1        c1 d1 
2 a2 b2 new value d2 
3 a3 b3        c3 d3

T.3 More Resources
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For more detail, there is a great blog post by Benjamin Pryke for Dataquest
that walks you through this warning:
https://www.dataquest.io/blog/settingwithcopywarni
ng/

Kevin Markham from Data School also has a great YouTube video on
the topic titled How do I avoid a SettingWithCopyWarning in pandas:
https://www.youtube.com/watch?v=4R4WsDJ-KVc

https://www.dataquest.io/blog/settingwithcopywarning/
https://www.youtube.com/watch?v=4R4WsDJ-KVc
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Method Chaining

Objects in Python usually have methods that modify the existing object.
This means that we can call methods sequentially without having to save
out our results in intermediate results.

If we use the same Person class from Appendix S.

Click here to view code image

class Person(object): 
    def __init__(self, fname, lname, age): 
        self.fname = fname 
        self.lname = lname 
        self.age = age 
 
    def celebrate_birthday(self): 
        self.age += 1 
        return(self)

We can method chain our results if we wanted our person to have two
consecutive birthdays.

Click here to view code image

ka = Person(fname='King', lname='Arthur', 
age=39) 
print(ka.age)

39
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# King Arthur has 2 birthdays in a row! 
ka.celebrate_birthday().celebrate_birthday()

<__main__.Person at 0x1039903a0>

print(ka.age)

41

We can do something similar in Pandas in Section 4.3 where we tidied
up our weather data.

Click here to view code image

import pandas as pd 
 
weather = pd.read_csv('data/weather.csv') 
print(weather.head())

       id year month element  d1   d2   d3  d4    
d5  d6   ... \ 
0 MX17004 2010     1    tmax NaN  NaN  NaN NaN   
NaN NaN   ... 
1 MX17004 2010     1    tmin NaN  NaN  NaN NaN   
NaN NaN   ... 
2 MX17004 2010     2    tmax NaN 27.3 24.1 NaN   
NaN NaN   ... 
3 MX17004 2010     2    tmin NaN 14.4 14.4 NaN   
NaN NaN   ... 
4 MX17004 2010     3    tmax NaN  NaN  NaN NaN  
32.1 NaN   ...
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  d22  d23 d24 d25 d26 d27 d28 d29  d30 d31 
0 NaN  NaN NaN NaN NaN NaN NaN NaN 27.8 NaN 
1 NaN  NaN NaN NaN NaN NaN NaN NaN 14.5 NaN 
2 NaN 29.9 NaN NaN NaN NaN NaN NaN  NaN NaN 
3 NaN 10.7 NaN NaN NaN NaN NaN NaN  NaN NaN 
4 NaN  NaN NaN NaN NaN NaN NaN NaN  NaN NaN

[5 rows x 35 columns]

We first needed to .melt() our date, then .pivot_table(), and
finally .reset_index(). Instead of doing each of the steps in separate
parts, we can work as if the results returned themself.

Click here to view code image

weather_tidy = ( 
    weather 
    .melt( 
        id_vars=["id", "year", "month", 
"element"], 
        var_name="day", 
        value_name="temp", 
    ) 
    .pivot_table( 
        index=["id", "year", "month", "day"], 
        columns="element", 
        values="temp", 
    ) 
    .reset_index() 
) 
 
print(weather_tidy)
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element      id year month day tmax tmin 
0       MX17004 2010     1 d30 27.8 14.5 
1       MX17004 2010     2 d11 29.7 13.4 
2       MX17004 2010     2  d2 27.3 14.4 
3       MX17004 2010     2 d23 29.9 10.7 
4       MX17004 2010     2  d3 24.1 14.4 
..          ...  ...   ... ...  ...  ... 
28      MX17004 2010    11 d27 27.7 14.2 
29      MX17004 2010    11 d26 28.1 12.1 
30      MX17004 2010    11  d4 27.2 12.0 
31      MX17004 2010    12  d1 29.9 13.8 
32      MX17004 2010    12  d6 27.8 10.5 
 
[33 rows x 6 columns]



V

Timing Code

If you’re running Python in an IPython instance (e.g., Jupyter Notebook,
Jupyter Lab, or IPython directly), you have access to “magic” commands
that allow you to easily perform non-Python tasks.

Magic commands are called with % or %%. In a Jupyter Notebook the
%timeit will time a line of code and %%timeit will time the entire cell
of code.

Let’s time the different vectorization methods from Chapter 5.

Click here to view code image

import pandas as pd 
import numpy as np 
import numba 
 
 
def avg_2(x, y): 
  return (x + y) / 2 
 
 
@np.vectorize 
def v_avg_2_mod(x, y): 
  """Calculate the average, unless x is 20 
  Same as before, but we are using the vectorize 
decorator 
  """ 
  if (x == 20): 
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    return(np.NaN) 
  else: 
    return (x + y) / 2 
 
@numba.vectorize 
def v_avg_2_numba(x, y): 
  """Calculate the average, unless x is 20 
  Using the numba decorator. 
  """ 
  # we now have to add type information to our 
function 
  if (int(x) == 20): 
    return(np.NaN) 
  else: 
    return (x + y) / 2 
 
df = pd.DataFrame({"a": [10, 20, 30], "b": [20, 
30, 40]}) 
print(df)

   a  b 
0 10 20 
1 20 30 
2 30 40

Timing the different methods.

Click here to view code image

%%timeit 
avg_2(df['a'], df['b'])

67.1 µs ± 12.7 µs per loop (mean ± std. dev. of 7 
runs, 10,000 loops each)
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%%timeit 
v_avg_2_mod(df['a'], df['b'])

16.6 µs ± 1.05 µs per loop (mean ± std. dev. of 7 
runs, 100,000 loops each)

%%timeit 
v_avg_2_numba(df['a'].values, df['b'].values)

3.92 µs ± 632 ns per loop (mean ± std. dev. of 7 
runs, 100,000 loops each)

The first method isn’t even as flexible as the custom functions we
created. If you are working with mathematical calculations, you can get
performance benefits from changing the library you are using. Otherwise,
using vectorize() can also help you write more readable apply code.



W

String Formatting

W.1 C-Style
An older way to perform string formatting in Python is with the % operator.
This follows the C printf style formatting. The str.format()
method (Appendix Section W.2) is preferred over the C-style formatting,
and if you are using Python 3.6+ you should be using formatted string
literals (f-strings) described in Section 11.4. Nonetheless, you may still find
code examples that use this formatting style.

We won’t go too much into detail about this method, but here are some
of the Section 11.4 examples recreated using the C printf style
formatting.

For digits we can use the %d placeholder, here, the d represents an
integer digit.

Click here to view code image

s = 'I only know %d digits of pi' % 7 
print(s)

I only know 7 digits of pi

For strings, we can use the s placeholder. Note the string pattern uses
round parentheses ( ), instead of curly braces { }. The variable passed is a
Python dict, which uses { }.

Click here to view code image
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print( 
    "Some digits of %(cont)s: %(value).2f" 
    % {"cont": "e", "value": 2.718} 
)

Some digits of e: 2.72

W.2 String Formatting: .format() Method
The format string syntax1 was superseded with formatted string literals (i.e.,
f-strings) in Python 3.6.
1.
https://docs.python.org/3/library/string.html#form
atstrings

To format character strings with .format(), you essentially write a
string with special placeholder characters, { }, and use the .format()
method on the string to insert values into the placeholder.

var = 'flesh wound' 
s = "It's just a {}!"

print(s.format(var))

It's just a flesh wound!

print(s.format('scratch'))

It's just a scratch!

The placeholders can also refer to variables multiple times.

Click here to view code image

https://docs.python.org/3/library/string.html#formatstrings
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# using variables multiple times by index 
s = """Black Knight: 'Tis but a {0}. 
King Arthur: A {0}? Your arm's off! 
""" 
print(s.format('scratch'))

Black Knight: 'Tis but a scratch. 
King Arthur: A scratch? Your arm's off!

You can also give the placeholders a variable.

Click here to view code image

s = 'Hayden Planetarium Coordinates: {lat}, 
{lon}' 
print(s.format(lat='40.7815° N', lon='73.9733° 
W'))

Hayden Planetarium Coordinates: 40.7815° N, 
73.9733° W

W.3 Formatting Numbers
Numbers can also be formatted.

Click here to view code image

print('Some digits of pi: 
{}'.format(3.14159265359))

Some digits of pi: 3.14159265359

You can even format numbers and use thousands-place comma
separators.
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Click here to view code image

print( 
  "In 2005, Lu Chao of China recited {:,} digits 
of pi".format(67890) 
)

In 2005, Lu Chao of China recited 67,890 digits of 
pi

Numbers can be used to perform a calculation and formatted to a certain
number of decimal values. Here we can calculate a proportion and format it
into a percentage.

Click here to view code image

# the 0 in {0:.4} and {0:.4%} refer to the 0 
index in this format 
# the .4 refers to how many decimal values, 4 
# if we provide a %, it will format the decimal 
as a percentage 
print( 
  "I remember {0:.4} or {0:.4%} of what Lu Chao 
recited".format( 
    7 / 67890 
  ) 
)

I remember 0.0001031 or 0.0103% of what Lu Chao 
recited

Finally, you can use string formatting to pad a number with zeros,
similar to how zfill works on strings. When working with data, this
method may be useful when working with ID numbers that were read in as
numbers but should be strings.
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Click here to view code image

# the first 0 refers to the index in this format 
# the second 0 refers to the character to fill 
# the 5 in this case refers to how many 
characters in total 
# the d signals a digit will be used 
# Pad the number with 0s so the entire string 
has 5 characters 
print("My ID number is {0:05d}".format(42))

My ID number is 00042
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X

Conditionals (if-elif-else)

Conditional statements allow your script or program to have “control flow”.
We have the option of using the if, elif, and else statements.

Let’s combine these examples into a simplified version of a popular
programming interview problem: Fizz Buzz.

If the number we want to check is a multiple of 2, we want to print
"fizz". We can use the modulo operator in Python, %, to give us the
remainder of a number after division. So, a number is a multiple of 2 if the
modulo (i.e., remainder) is 0. If that statement is true it will run the code in
that if block (denoted by the indentation).

my_num = 4 
 
if my_num % 2 == 0: 
  print("fizz")

fizz

If we put multiple if statements after one another it will run through
each of them in order.

my_num = 4 
 
if my_num % 2 == 0: 
  print("fizz") 
if my_num % 4 == 0: 
  print("buzz")



fizz 
buzz

my_num = 6 
 
if my_num % 3 == 0: 
  print("fizz") 
if my_num % 4 == 0: 
  print("buzz")

fizz

Sometimes we only want the code to run the first True statement. This
is useful if we only care about one of the conditions, but also so we are not
making unnecessary calculations. We can put subsequent conditions in an
elif (for “else if”) block.

my_num = 4 
 
if my_num % 2 == 0: 
  print("fizz") 
elif my_num % 4 == 0: 
  print("buzz")

fizz

Finally, we can use the else block to capture all the results if nothing
else before it is True.

Click here to view code image

my_num = 7 
 
if my_num % 2 == 0: 
  print("fizz") 
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elif my_num % 4 == 0: 
  print("buzz") 
else: 
  print("Not multiple of 2 or 4.")

Not multiple of 2 or 4.



Y

New York ACS Logistic Regression
Example

Click here to view code image

import pandas as pd 
 
acs = pd.read_csv('data/acs_ny.csv') 
print(acs.columns)

Index(['Acres', 'FamilyIncome', 'FamilyType', 
'NumBedrooms', 'NumChildren', 
       'NumPeople', 'NumRooms', 'NumUnits', 
'NumVehicles', 'NumWorkers', 
       'OwnRent', 'YearBuilt', 'HouseCosts', 
'ElectricBill', 'FoodStamp', 
       'HeatingFuel', 'Insurance', 'Language'], 
     dtype='object')

print(acs.head())

 Acres FamilyIncome  FamilyType NumBedrooms 
NumChildren NumPeople \ 
0 1-10          150     Married           4         
1         3 
1 1-10          180 Female Head           3         
2         4 
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2 1-10          280 Female Head           4         
0         2 
3 1-10          330 Female Head           2         
1         2 
4 1-10          330   Male Head           3         
1         2

   Num        Num       Num         Num         
Own       Year  \ 
  Rooms       Units      Vehicles   Workers     
Rent      Built 
0     9 Single detached        1         0 
Mortgage   1950-1959 
1     6 Single detached        2         0   
Rented Before 1939 
2     8 Single detached        3         1 
Mortgage   2000-2004 
3     4 Single detached        1         0   
Rented   1950-1959 
4     5 Single attached        1         0 
Mortgage Before 1939

   House  Electric  Food   Heating Insurance       
Language 
   Costs  Bill     Stamp   Fuel 
0   1800       90     No       Gas      2500        
English 
1    850       90     No       Oil         0        
English 
2   2600      260     No       Oil      6600 Other 
European 
3   1800      140     No       Oil         0        



English 
4    860      150     No       Gas       660        
Spanish

To model these data, we first need to create a binary response variable.
Here we split the FamilyIncome variable into a binary variable.

Click here to view code image

acs["ge150k"] = pd.cut( 
     acs["FamilyIncome"], 
     [0, 150000, acs["FamilyIncome"].max()], 
     labels=[0, 1], 
) 
 
acs["ge150k_i"] = acs["ge150k"].astype(int) 
print(acs["ge150k_i"].value_counts())

0    18294 
1     4451 
Name: ge150k_i, dtype: int64

Note
The cutoff values we used to bin our FamilyIncome variable with
the .cut() function is arbitrary.

In so doing, we created a binary (0/1) variable.

Click here to view code image

acs.info()
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<class 'pandas.core.frame.DataFrame'> 
RangeIndex: 22745 entries, 0 to 22744 
Data columns (total 20 columns): 
 #   Column         Non-Null Count  Dtype 
---  ------         --------------  ----- 
 0   Acres          22745 non-null  object 
 1   FamilyIncome   22745 non-null  int64 
 2   FamilyType     22745 non-null  object 
 3   NumBedrooms    22745 non-null  int64 
 4   NumChildren    22745 non-null  int64 
 5   NumPeople      22745 non-null  int64 
 6   NumRooms       22745 non-null  int64 
 7   NumUnits       22745 non-null  object 
 8   NumVehicles    22745 non-null  int64 
 9   NumWorkers     22745 non-null  int64 
 10  OwnRent        22745 non-null  object 
 11  YearBuilt      22745 non-null  object 
 12  HouseCosts     22745 non-null  int64 
 13  ElectricBill   22745 non-null  int64 
 14  FoodStamp      22745 non-null  object 
 15  HeatingFuel    22745 non-null  object 
 16  Insurance      22745 non-null  int64 
 17  Language       22745 non-null  object 
 18  ge150k         22745 non-null  category 
 19  ge150k_i       22745 non-null  int64 
dtypes: category(1), int64(11), object(8) 
memory usage: 3.3+ MB

Let’s subset our data with just the columns we’ll use for the example.

Click here to view code image

acs_sub = acs[ 
  [ 
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    "ge150k_i", 
    "HouseCosts", 
    "NumWorkers", 
    "OwnRent", 
    "NumBedrooms", 
    "FamilyType", 
  ] 
].copy() 
 
print(acs_sub)

   ge150k_i  HouseCosts  NumWorkers  OwnRent  
NumBedrooms  FamilyType 
0         0        1800           0 Mortgage        
4     Married 
1         0         850           0   Rented        
3 Female Head 
2         0        2600           1 Mortgage        
4 Female Head 
3         0        1800           0   Rented        
2 Female Head 
4         0         860           0 Mortgage        
3   Male Head 
...     ...         ...         ...      ...        
...         ... 
22740     1        1700           2 Mortgage        
5     Married 
22741     1        1300           2 Mortgage        
4     Married 
22742     1         410           3 Mortgage        
4     Married 
22743     1        1600           3 Mortgage        
3     Married 



22744     1        6500           2 Mortgage        
4     Married

[22745 rows x 6 columns]

import statsmodels.formula.api as smf 
 
# we break up the formula string to fit on the 
page 
model = smf.logit( 
    "ge150k_i ~ HouseCosts + NumWorkers + 
OwnRent + NumBedrooms 
      + FamilyType", 
    data=acs_sub, 
) 
 
results = model.fit()

Optimization terminated successfully. 
         Current function value: 0.391651 
         Iterations 7

print(results.summary())

                              Logit Regression 
Results 
==================================================
============================ 
Dep. Variable:              ge150k_i No. 
Observations:   22745 
Model:                         Logit Df Residuals:  
22737 
Method:                          MLE Df Model:      



7 
Date:               Thu, 01 Sep 2022 Pseudo R-
squ.:     0.2078 
Time:                       01:57:02 Log-
Likelihood:   -8908.1 
converged:                      True LL-Null:       
-11244. 
Covariance Type:           nonrobust LLR p-value:   
0.000 
==================================================
========================================= 
                             coef   std err       
z   P>|z|  [0.025  0.975] 
--------------------------------------------------
----------------------------------------- 
Intercept                 -5.8081     0.120 
-48.456   0.000  -6.043  -5.573 
OwnRent[T.Outright]        1.8276     0.208   
8.782   0.000   1.420   2.236 
OwnRent[T.Rented]         -0.8763     0.101  
-8.647   0.000  -1.075  -0.678 
FamilyType[T.Male Head]    0.2874     0.150   
1.913   0.056  -0.007   0.582 
FamilyType[T.Married]      1.3877     0.088  
15.781   0.000   1.215   1.560 
HouseCosts                 0.0007  1.72e-05  
42.453   0.000   0.001   0.001 
NumWorkers                 0.5873     0.026  
22.393   0.000   0.536   0.639 
NumBedrooms                0.2365     0.017  
13.985   0.000   0.203   0.270 
==================================================
=========================================



import statsmodels.formula.api as smf 
 
# we break up the formula string to fit on the 
page 
model = smf.logit( 
    "ge150k_i ~ HouseCosts + NumWorkers + 
OwnRent + NumBedrooms + FamilyType", 
    data=acs_sub, 
) 
 
results = model.fit()

Optimization terminated successfully. 
         Current function value: 0.391651 
         Iterations 7

print(results.summary())

                              Logit Regression 
Results 
==================================================
============================ 
Dep. Variable:              ge150k_i No. 
Observations:   22745 
Model:                         Logit Df Residuals:  
22737 
Method:                          MLE Df Model:      
7 
Date:               Thu, 01 Sep 2022 Pseudo R-
squ.:     0.2078 
Time:                       01:57:02 Log-
Likelihood:   -8908.1 



converged:                      True LL-Null:       
-11244. 
Covariance Type:           nonrobust LLR p-value:   
0.000 
==================================================
========================================= 
                             coef   std err       
z   P>|z|  [0.025  0.975] 
--------------------------------------------------
----------------------------------------- 
Intercept                 -5.8081     0.120 
-48.456   0.000  -6.043  -5.573 
OwnRent[T.Outright]        1.8276     0.208   
8.782   0.000   1.420   2.236 
OwnRent[T.Rented]         -0.8763     0.101  
-8.647   0.000  -1.075  -0.678 
FamilyType[T.Male Head]    0.2874     0.150   
1.913   0.056  -0.007   0.582 
FamilyType[T.Married]      1.3877     0.088  
15.781   0.000   1.215   1.560 
HouseCosts                 0.0007  1.72e-05  
42.453   0.000   0.001   0.001 
NumWorkers                 0.5873     0.026  
22.393   0.000   0.536   0.639 
NumBedrooms                0.2365     0.017  
13.985   0.000   0.203   0.270 
==================================================
=========================================

import numpy as np 
 
# exponentiate our results 



odds_ratios = np.exp(results.params) 
print(odds_ratios)

Intercept                0.003003 
OwnRent[T.Outright]      6.219147 
OwnRent[T.Rented]        0.416310 
FamilyType[T.Male Head]  1.332901 
FamilyType[T.Married]    4.005636 
HouseCosts               1.000731 
NumWorkers               1.799117 
NumBedrooms              1.266852 
dtype: float64

print(acs.OwnRent.unique())

['Mortgage' 'Rented' 'Outright']

Y.0.1 With sklearn
Click here to view code image

predictors = pd.get_dummies(acs_sub.iloc[:, 1:], 
drop_first=True) 
print(predictors)

    HouseCosts NumWorkers NumBedrooms 
OwnRent_Outright OwnRent_Rented \ 
0         1800          0           4               
0              0 
1          850          0           3               
0              1 
2         2600          1           4               
0              0 
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3         1800          0           2               
0              1 
4          860          0           3               
0              0 
...        ...        ...         ...              
...            ... 
22740     1700          2           5               
0              0 
22741     1300          2           4               
0              0 
22742      410          3           4               
0              0 
22743     1600          3           3               
0              0 
22744     6500          2           4               
0              0

   FamilyType_Male Head FamilyType_Married 
0                     0                  1 
1                     0                  0 
2                     0                  0 
3                     0                  0 
4                     1                  0 
...                 ...                ... 
22740                 0                  1 
22741                 0                  1 
22742                 0                  1 
22743                 0                  1 
22744                 0                  1

[22745 rows x 7 columns]



from sklearn import linear_model 
lr = linear_model.LogisticRegression()

results = lr.fit(X = predictors, y = 
acs['ge150k_i'])

/Users/danielchen/.pyenv/versions/3.10.4/envs/pfe_
book/lib/python3.10/ 
site-
packages/sklearn/linear_model/_logistic.py:444: 
ConvergenceWarning: 
lbfgs failed to converge (status=1): 
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or 
scale the data as shown in: 
    https://scikit-
learn.org/stable/modules/preprocessing.html 
Please also refer to the documentation for 
alternative solver options: 
    https://scikit-
learn.org/stable/modules/linear_model.html#logisti
c- 
    regression 
  n_iter_i = _check_optimize_result(

We can also get our coefficients in the same way.

Click here to view code image

print(results.coef_)
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[[ 5.83764740e-04  7.29381775e-01 2.82543789e-01 
7.03519146e-02 
  -2.11748592e+00 -1.02984936e+00 2.50310160e-01]]

We can get the intercept as well.

print(results.intercept_)

[-4.82088401]

We can print out our results in a more attractive format.

Click here to view code image

values = np.append(results.intercept_, 
results.coef_) 
 
# get the names of the values 
names = np.append("intercept", 
predictors.columns) 
 
# put everything in a labeled dataframe 
results = pd.DataFrame( 
    values, 
    index=names, 
    columns=["coef"], # you need the square 
brackets here 
) 
 
print(results)

                          coef 
intercept            -4.820884 
HouseCosts            0.000584 
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NumWorkers            0.729382 
NumBedrooms           0.282544 
OwnRent_Outright      0.070352 
OwnRent_Rented       -2.117486 
FamilyType_Male Head -1.029849 
FamilyType_Married    0.250310

In order to interpret our coefficients, we still need to exponentiate our
values.

Click here to view code image

results['or'] = np.exp(results['coef']) 
print(results)

                            coef       or 
intercept              -4.820884 0.008060 
HouseCosts              0.000584 1.000584 
NumWorkers              0.729382 2.073798 
NumBedrooms             0.282544 1.326500 
OwnRent_Outright        0.070352 1.072886 
OwnRent_Rented         -2.117486 0.120334 
FamilyType_Male Head   -1.029849 0.357061 
FamilyType_Married      0.250310 1.284424
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Z

Replicating Results in R

Preparing the data used for this section.

Click here to view code image

library(MASS) 
 
library(tidyverse) 
library(tidymodels) 
 
library(pscl) 
 
# load the tips data 
tips <- readr::read_csv("data/tips.csv") 
 
# load the titanic data 
titanic <- readr::read_csv("data/titanic.csv") 
 
# subset the columns and drop missing values 
titanic_sub <- titanic %>% 
  dplyr::select(survived, sex, age, embarked) 
%>% 
  tidyr::drop_na() 
 
# load the ACS data and fix the data types 
acs <- readr::read_csv("data/acs_ny.csv") %>% 
  dplyr::mutate( # data gets loaded differently 
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from pandas 
    NumChildren = as.integer(NumChildren), 
    FamilyIncome = as.numeric(FamilyIncome), 
    NumBedrooms = as.numeric(NumBedrooms), 
    HouseCosts = as.numeric(HouseCosts), 
    ElectricBill = as.numeric(ElectricBill), 
    NumVehicles = as.numeric(NumVehicles) 
  )

Z.1 Linear Regression
Click here to view code image

r_lm <- lm(tip ~ total_bill, data = tips) 
print(summary(r_lm))

Call: 
lm(formula = tip ~ total_bill, data = tips)

Residuals: 
    Min      1Q  Median     3Q    Max 
-3.1982 -0.5652 -0.0974 0.4863 3.7434

Coefficients: 
             Estimate Std. Error t value Pr(>|t|) 
(Intercept)  0.920270   0.159735   5.761 2.53e-08 
*** 
total_bill   0.105025   0.007365  14.260  < 2e-16 
*** 
--- 
Signif. codes:   0 '***' 0.001 '**' 0.01 '*' 0.05 
'.' 0.1 ' ' 1
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Residual standard error: 1.022 on 242 degrees of 
freedom 
Multiple R-squared:  0.4566,    Adjusted R-
squared:  0.4544 
F-statistic: 203.4 on 1 and 242 DF,  p-value: < 
2.2e-16

r_lm %>% 
broom::tidy()

# A tibble: 2 x 5 
  term        estimate std.error statistic  
p.value 
  <chr>          <dbl>     <dbl>     <dbl>    
<dbl> 
1 (Intercept)    0.920   0.160        5.76 2.53e- 
8 
2 total_bill     0.105   0.00736     14.3  6.69e-
34

r_lm2 <- lm(tip ~ total_bill + size, data = 
tips) 
print(summary(r_lm2))

Call: 
lm(formula = tip ~ total_bill + size, data = tips)

Residuals: 
    Min      1Q  Median     3Q    Max 
-2.9279 -0.5547 -0.0852 0.5095 4.0425



Coefficients: 
               Estimate Std. Error t value 
Pr(>|t|) 
(Intercept)    0.668945   0.193609   3.455 0.00065 
*** 
total_bill     0.092713   0.009115  10.172 < 2e-16 
*** 
size           0.192598   0.085315   2.258 0.02487 
* 
--- 
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 
'.' 0.1 ' ' 1

Residual standard error: 1.014 on 241 degrees of 
freedom 
Multiple R-squared:  0.4679,    Adjusted R-
squared:  0.4635 
F-statistic: 105.9 on 2 and 241 DF, p-value:  < 
2.2e-16

r_lm2 %>% 
broom::tidy()

# A tibble: 3 x 5 
  term        estimate std.error statistic  
p.value 
  <chr>          <dbl>     <dbl>     <dbl>    
<dbl> 
1 (Intercept)   0.669    0.194        3.46 6.50e- 
4 
2 total_bill    0.0927   0.00911     10.2  1.88e-
20 



3 size          0.193    0.0853       2.26 2.49e- 
2

r_lm3 <- lm( 
  tip ~ total_bill + size + sex + smoker + day + 
time, data = tips 
) 
print(summary(r_lm3))

Call: 
lm(formula = tip ~ total_bill + size + sex + 
smoker + day + time, 
    data = tips)

Residuals: 
    Min     1Q   Median     3Q    Max 
-2.8475 -0.5729 -0.1026 0.4756 4.1076

Coefficients: 
            Estimate Std. Error t value Pr(>|t|) 
(Intercept) 0.803817   0.352702   2.279   0.0236 * 
total_bill  0.094487   0.009601   9.841   <2e-16 
*** 
size        0.175992   0.089528   1.966   0.0505 . 
sexMale    -0.032441   0.141612  -0.229   0.8190 
smokerYes  -0.086408   0.146587  -0.589   0.5561 
daySat     -0.121458   0.309742  -0.392   0.6953 
daySun     -0.025481   0.321298  -0.079   0.9369 
dayThur    -0.162259   0.393405  -0.412   0.6804 
timeLunch   0.068129   0.444617   0.153   0.8783 
--- 



Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 
'.' 0.1 ' ' 1

Residual standard error: 1.024 on 235 degrees of 
freedom 
Multiple R-squared:   0.4701,   Adjusted R-
squared:  0.452 
F-statistic: 26.06 on 8 and 235 DF, p-value: < 
2.2e-16

r_lm3 %>% 
broom::tidy()

# A tibble: 9 x 5 
  term        estimate std.error statistic p.value 
  <chr>         <dbl>      <dbl>     <dbl>   <dbl> 
1 (Intercept)  0.804    0.353      2.28   2.36e- 2 
2 total_bill   0.0945   0.00960    9.84   2.34e-19 
3 size         0.176    0.0895     1.97   5.05e- 2 
4 sexMale     -0.0324   0.142     -0.229  8.19e- 1 
5 smokerYes   -0.0864   0.147     -0.589  5.56e- 1 
6 daySat      -0.121    0.310     -0.392  6.95e- 1 
7 daySun      -0.0255   0.321     -0.0793 9.37e- 1 
8 dayThur     -0.162    0.393     -0.412  6.80e- 1 
9 timeLunch    0.0681   0.445      0.153  8.78e- 1

Z.2 Logistic Regression
Click here to view code image

# fit a logistic regression model 
r_logistic_glm <- glm( 
  survived ~ sex + age + embarked, 
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  family = binomial (link = "logit"), 
  data = titanic_sub 
) 
 
summary(r_logistic_glm)

Call: 
glm(formula = survived ~ sex + age + embarked, 
family = 
binomial(link = "logit"),      data = titanic_sub)

Deviance Residuals: 
    Min      1Q  Median     3Q    Max 
-2.1185 -0.6498 -0.5972 0.7937 2.1977

Coefficients: 
            Estimate Std. Error z value Pr(>|z|) 
(Intercept) 2.204585   0.321796   6.851 7.34e-12 
*** 
sexmale    -2.475962   0.190807 -12.976  < 2e-16 
*** 
age        -0.008079   0.006550  -1.233  0.21746 
embarkedQ  -1.815592   0.535031  -3.393  0.00069 
*** 
embarkedS  -1.006949   0.236857  -4.251 2.13e-05 
*** 
--- 
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 
'.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to 
be 1)



    Null deviance: 960.90 on 711 degrees of 
freedom 
Residual deviance: 726.08 on 707 degrees of 
freedom 
AIC: 736.08

Number of Fisher Scoring iterations: 4

# get the coefficient table and calculate the 
odds 
res_r_glm <- r_logistic_glm %>% 
  broom::tidy() %>% 
  dplyr::mutate(odds = exp(estimate) %>% 
round(6)) 
 
res_r_glm

# A tibble: 5 x 6 
  term        estimate std.error statistic p.value  
odds 
  <chr>          <dbl>     <dbl>     <dbl>   <dbl>  
<dbl> 
1 (Intercept)   2.20     0.322        6.85 7.34e-
12  9.07 
2 sexmale      -2.48     0.191      -13.0  1.67e-
38  0.0841 
3 age          -0.00808  0.00655     -1.23 2.17e- 
1  0.992 
4 embarkedQ    -1.82     0.535       -3.39 6.90e- 
4  0.163 
5 embarkedS    -1.01     0.237       -4.25 2.13e- 
5  0.365



Z.3 Poisson Regression
Click here to view code image

poi <- glm( 
  NumBedrooms ~ HouseCosts + OwnRent, 
  family=poisson(link = "log"), 
  data=acs 
)

summary(poi)

Call: 
glm(formula = NumBedrooms ~ HouseCosts + OwnRent, 
    family = poisson(link = "log"),  data = acs)

Deviance Residuals: 
    Min       1Q   Median      3Q     Max 
-2.8300  -0.2815  -0.1293  0.2890  2.8142

Coefficients: 
                   Estimate Std. Error z value 
Pr(>|z|) 
(Intercept)       1.139e+00  6.158e-03 184.928  < 
2e-16 *** 
HouseCosts        6.217e-05  2.958e-06 21.017   < 
2e-16 *** 
OwnRentOutright  -2.659e-01  5.131e-02 -5.182  
2.19e-07 *** 
OwnRentRented    -1.237e-01  1.237e-02 -9.996   < 
2e-16 *** 
--- 
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Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 
'.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to 
be 1)

    Null deviance: 7479.9 on 22744 degrees of 
freedom 
Residual deviance: 6839.2 on 22741 degrees of 
freedom 
AIC: 76477

Number of Fisher Scoring iterations: 4

poi %>% 
broom::tidy()

# A tibble: 4 x 5 
  term              estimate  std.error statistic  
p.value 
  <chr>                <dbl>      <dbl>     <dbl>   
<dbl> 
1 (Intercept)      1.14      0.00616       185.   
0 
2 HouseCosts       0.0000622 0.00000296     21.0  
4.60e-98 
3 OwnRentOutright -0.266     0.0513         -5.18 
2.19e- 7 
4 OwnRentRented   -0.124     0.0124        -10.0  
1.58e-23



Z.3.1 Negative Binomial Regression for
Overdispersion
Click here to view code image

od <- MASS::glm.nb( 
  NumPeople ~ Acres + NumVehicles, 
  data=acs, 
  link=log 
)

Warning in theta.ml(Y, mu, sum(w), w, limit = 
control$maxit, trace 
= control$trace > : iteration limit reached

Warning in theta.ml(Y, mu, sum(w), w, limit = 
control$maxit, trace 
= control$trace > : iteration limit reached

summary(od)

Call: 
MASS::glm.nb(formula = NumPeople ~ Acres + 
NumVehicles, data = acs, 
    link = log, init.theta = 99662.32096)

Deviance Residuals: 
    Min      1Q  Median     3Q    Max 
-1.3263 -0.7064 -0.1315 0.3153 5.3101

Coefficients: 
             Estimate Std. Error z value Pr(>|z|) 

file:///tmp/calibre_4.99.4_tmp_xw_0ouqf/zinjakq5_pdf_out/OEBPS/Images/appz_images.xhtml#f0448-02


(Intercept)  1.033460   0.012036  85.865  < 2e-16 
*** 
Acres10+    -0.025287   0.019301  -1.310     0.19 
AcresSub 1   0.050768   0.009143   5.553 2.81e-08 
*** 
NumVehicles  0.070067   0.003683  19.023  < 2e-16 
*** 
--- 
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 
'.' 0.1 ' ' 1

(Dispersion parameter for Negative 
Binomial(99662.32) family taken to be 1)

    Null deviance: 12127 on 22744 degrees of 
freedom 
Residual deviance: 11754 on 22741 degrees of 
freedom 
AIC: 80879

Number of Fisher Scoring iterations: 1

               Theta: 99662 
           Std. Err.: 93669 
Warning while fitting theta: iteration limit 
reached

2 x log-likelihood: -80869.33

od %>% 
  broom::tidy()



# A tibble: 4 x 5 
  term       estimate std.error statistic  p.value 
  <chr>         <dbl>     <dbl>     <dbl>    <dbl> 
1 (Intercept)  1.03     0.0120      85.9  0 
2 Acres10+    -0.0253   0.0193      -1.31 1.90e- 1 
3 AcresSub 1   0.0508   0.00914      5.55 2.81e- 8 
4 NumVehicles  0.0701   0.00368     19.0  1.10e-80

pm <- glm( 
  NumChildren ~ FamilyIncome + FamilyType + 
OwnRent, 
  family = poisson(link="log"), 
  data = acs 
) 
 
pchisq( 
  2 * (logLik(od) - logLik(pm)), 
  df = 1, 
  lower.tail = FALSE 
)

'log Lik.' 1 (df=5)
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Symbols

* operator, specifying model interactions, 324
{}(curly brackets), dictionary syntax, 397
% (percent) operator, calling magic commands, 427
+ (plus) operator, adding covariates to linear models, 324
() (round brackets)

line breaks, 393–394
tuple syntax, 396

[] (square brackets)
dictionary values, 397
getting first character of string, 230
list syntax, 395–396

Numbers

2D density plot, 88–89

A

Aggregation (or aggregate)
of built-in methods, 178–179
of calculations, 23
of functions, 179–182



multiple functions simultaneously, 182–184
one-variable grouped aggregation, 176–177
options for applying functions in and aggregate methods,

182–184
overview of, 176
saving groupby object without running aggregate,
transform, or filter, 190–191

AIC (Akaike information criteria), 327, 329
Alignment

DataFrame, 44–45
Series, 39–42

Anaconda
command prompt, 381–382
installers for, 373–374
Miniconda, 374
package installation, 389–390
Python distribution, 385
Spyder IDE, 382
uninstalling, 374

AnacondaCon conference, 364
ANOVA (analysis of variance), 326–327
Anscombe’s quartet

for data visualization, 65–66, 70–71
plotting with facets, 99–100

Apache Arrow, 58, 280
apply

concept map for, 372
creating/using functions, 131–132
functions across rows or columns of data, 133
lambda functions, 141–142
numba library and, 140–141
over a DataFrame, 135–138
over a Series, 133–135
overview of, 131



primer on, 131–132
summary/conclusion, 142
vectorized functions, 138–141

∗args, function parameter, 408
Arrays

scientific computing stack, 359
sklearn library and, 286–287
working with, 415–416

Arrow, 58
for dates and times, 280

assert, checking data assembly with, 166
assign, modifying columns with, 50–52
Assignment

multiple, 413–414
passing/reassigning values, 395–396

astype method
converting column to categorical type, 225–226
converting to numeric values, 221–222
converting values to strings, 220

Attributes
class, 417
dot notation and, 10–11
Series, 35

Average cluster algorithm, in hierarchical clustering, 353–354
Axes, plotting, 67–71

B

Bar plots, 89–91
Bash shell, 377–378
BIC (Bayesian information criteria), 327, 329
“The Big Book of Python,” 365
“The Big Book of R,” 365



Binary
feather format for saving, 56–57
logistic regression for binary response variable, 297
serialize and save data in binary format, 53

Bivariate statistics
in matplotlib, 74–76
in seaborn, 83–94

Booleans (bool)
subsetting DataFrame, 43
subsetting Series, 36–39

Boxplots
for bivariate statistics, 75–76
creating, 114–115

Broadcasting, Pandas support for, 40–41, 44–45

C

Calculations
datetime, 257–258
involving multiple variables, 191
with missing data (values), 215–216
of multiple functions simultaneously, 182–184
timing execution of, 360, 427–428

Carpentries, 364
CAS (computer algebra systems), 359
category

converting column to, 225–226
manipulating categorical data, 226
overview of, 225
representing categorical variables, 221
sklearn library used with categorical variables, 291–293
statsmodels library used with categorical variables, 289–

291



Centroid cluster algorithm, in hierarchical clustering, 353–354
Chaining methods, 423–425
Characters

formatting strings of, 430
getting first character of string, 230
getting last character of string, 231–233
slicing multiple letters of string, 230
strings as series of, 229

Classes, 417–418
Clustering

average cluster algorithm, 353–354
centroid cluster algorithm, 353–354
complete cluster algorithm, 352
dimension reduction using PCA, 347–351
hierarchical clustering, 351–356
k-means, 345–351
manually setting threshold for, 355–356
overview of, 345
single cluster algorithm, 352–353
summary/conclusion, 356
ward cluster algorithm, 354–355

Code
profiling, 360
reuse, 405
style, 393–394
timing execution of, 360, 427–428

coerce, 224–225
Colon (:), use in slicing syntax, 15, 399–400
Colors, multivariate statistics in seaborn, 95–97
Columns

adding, 45–47
concatenation generally, 150–151
concatenation with different indices, 153–154
converting to category, 225–226



directly changing, 47–50
dot notation to pull values of, 10–11
dropping values, 52
methods of indexing, 11
modifying with assign, 50–52
rows and columns both containing variables, 126–129
selecting, 15–16
single value returns, 8–9
slicing, 18–21
subsetting by name, 7–8
subsetting by range, 16–18
subsetting generally, 21–23
subsetting using slicing syntax, 15–16

Columns, with multiple variables
overview of, 122–123
split and add individually, 123–125
split and combine in single step, 125–126

Columns, with values not variables
keeping multiple columns fixed, 120–122
keeping one column fixed, 118–120
overview of, 118

Command line
basic commands, 378
Linux, 378
Mac, 377
overview of, 377
Windows, 377

Comma-separated values. See CSV (comma-separated values)
compile, pattern compilation, 246–247
Complete cluster algorithm, in hierarchical clustering, 352
Comprehensions

function comprehension, 403–404
list comprehension, 158–160
overview of, 401–402



Computer algebra systems (CAS), 359
Concatenation (concat)

adding columns, 150–151
adding rows, 147–150
dataframe parts and, 146–147
with different indices, 151–154
ignore_index parameter after, 149–150
observational units across multiple tables, 154–160
overview of, 146
split and combine in single step, 125–126

Concept maps, 369–372
concurrent.features, 360
conda

creating environments, 385–387
install, 374
managing packages, 389
update, 390

Conditional statements, 433–434
Conferences, 363–364
Confidence interval, in linear regression example, 285
Containers

join method and, 234–235
looping over contents, 401–402
overview, 395
types of, 229

Conversion, of data types
to category, 225–226
to datetime, 250–253
to numeric, 221–225
to string, 220–221

Counting
groupby count, 197–199
missing data (values), 210–212
Poisson regression and, 304–308



Count (bar) plot, for univariate statistics, 81–83
Covariates

adding to linear models, 324
multiple linear regression with three covariates, 320–322

Cox proportional hazards model
survival analysis, 314–316
testing assumptions, 315–316

C printf style formatting, 429
cProfile, profiling code, 360
create (environments), 385–387
Cross-validation

model diagnostics, 329–333
regularization techniques, 341–343

cross_val_scores, 332–333
CSV (comma-separated values)

for data storage, 55
importing CSV files, 55
loading multiple files using list comprehension, 158–160

Cumulative sum (cumsum), 199
cython, performance-related library, 360

D

Dash, 362
Dashboards, 362
Dask library, 360
Data assembly

adding rows, 147–150
checking your work on, 166
combining data sets, 145
concatenation, 146–154
concatenation with different indices, 151–154
dataframe parts and, 146–147



ignore_index parameter after concatenation, 149–150
loading multiple files using list comprehension, 158–160
loading multiple files using lit comprehension, 158–160
many-to-many merges, 163–166
many-to-one merges, 163
merging multiple data sets, 160–166
observational units across multiple tables, 154–160
one-to-one merges, 162–163
overview of, 145
summary/conclusion, 167
tidy data, 167

DataFrame
adding columns, 45–47
aggregation, 182–183
alignment and vectorization, 44–45
apply function(s), 135–138
basic plots, 27–28
boolean subsetting, 43
as class, 417–418
concatenation, 149
concept map for basics in, 369
converting to Arrow objects, 58
converting to dicionary objects, 58–59
creating, 32–33
defined, 3
directly changing columns, 47–50
exporting, 56
grouped and aggregated calculations, 23–27
grouped frequency counts, 27
grouped means, 23–26
histogram, 111
loading first data set, 4–6
methods, 43
ndarray save method, 53



overview of, 3, 42
parts of, 42–43
single value returns, 8–9
slicing columns, 18–21
subsetting columns by name, 7–8
subsetting columns by range, 16–18
subsetting columns using slicing syntax, 15–16
subsetting rows and columns, 21–23
subsetting rows by index label, 11–13
subsetting rows by row number, 13–14
summary/conclusion, 28–29
type function for checking, 5
writing CSV files (to_csv method), 55

Data models, 281–282
diagnostics (See Model diagnostics)
generalized linear (See GLM (generalized linear models))
linear (See Linear models)

Data normalization
multiple observational units in a table, 169–170
overview, 169

Data sets
cleaning data, 416
combining, 145
downloading for this book, 375
equality tests for missing data, 203–204
exporting/importing data (See Exporting/importing data)
Indemics (Interactive Epidemic Simulation), 196
lists for data storage, 395–396
loading, 4–6
many-to-many merges, 163–166
many-to-one merges, 163
merging, 160–166
one-to-one merges, 162–163
tidy data, 117



Data structures
adding columns, 45–47
concept map for, 370
creating, 31–33
CSV (comma-separated values), 55
DataFrame alignment and vectorization, 44–45
DataFrame boolean subsetting, 43
DataFrame generally, 42–43
directly changing columns, 47–50
dropping values, 52
Excel and, 55–56
exporting/importing data, 52
feather format, 56–57
making changes to, 45
overview of, 31
pickle data, 53–54
Series alignment and vectorization, 39–42
Series boolean subsetting, 36–39
Series generally, 33–35
Series methods, 35–37
Series similarity with ndarray, 35–36
summary/conclusion, 63

Data types (dtype)
category dtype, 225
converting to category, 225–226
converting to datetime, 250–253
converting to numeric, 221–225
converting to string, 220–221
getting list of types stored in column, 225–226
manipulating categorical data, 226
overview of, 219
Series attributes, 35
specifying from numpy library, 221



summary/conclusion, 227
to_numeric function, 222–225
viewing list of, 219–220

date_range function, 266–269
datetime

adding columns to data structures, 45–47
Arrow with, 280
calculations, 257–258
converting to, 250–253
directly changing columns, 48–49
extracting date components (year, month, day), 254–257
frequencies, 268
getting stock-related data, 261–263
loading date related data, 253–254
methods, 259–261
object, 249–250
offsets, 268–269
overview of, 249
ranges, 266–269
resampling, 276–278
shifting values, 270–276
subsetting data based on dates, 263–266
summary/conclusion, 280
time zones, 278–279

DatetimeIndex, 263–265, 268
Day, extracting date components from datetime object, 254–257
Daylight savings time, 278
def keyword, use with functions, 405–406
Density plots

2D density plot, 88–89
plot.kde function, 111–112
for univariate statistics, 80

Diagnostics. See Model diagnostics
Dictionaries (dict)



creating DataFrame, 32–33
objects to converting DataFrame objects
to, 58–59
overview of, 396–398
passing method to, 182–183

Directories, working, 383–384
distplot, creating histograms, 81–82
dmatrices function, patsy library, 331–333
Docstrings (docstring), function documentation, 132, 405
Dot notation, to pull a column of values, 10–11
dropna parameter

counting missing values, 210–212
dropping missing values, 214–215

Dropping (drop)
data structure values, 52
missing data (values), 214–215

dtype. See Data types (dtype)

E

EAFP (easier to ask for forgiveness than for permissions), 191
Elastic net, regularization technique, 340–341
elif, 433–434
else, 433–434
Environments

creating, 385–388
deleting, 387
Pipenv, 387–388
Pyenv, 387

Equality tests, for missing data, 203–204
errors parameter, numeric, 223–224
EuroSciPy conference, 364
Excel



DataFrame and, 56
Series and, 56

Exporting/importing data
Arrow, 58
CSV (comma-separated values), 55
dictionary, 58–59
Excel, 55–56
feather format, 56–57
JSON, 59–62
methods, 63
output types, 62–63
overview of, 52
pickle data, 53–54

F

Facets, plotting, 99–104
Feather format, interface with R language, 56–57
Files

loading multiple using list comprehension, 158–160
working directories and, 383

fillna method, 212–213
Filter (filter), groupby operations, 188–189
Find

missing data (values), 210–212
patterns, 244–245

findall, patterns, 244–245
Fizz Buzz, 433–434
float/float64, 221
Folders

project organization, 379
working directories and, 383

for loop. See Loops (for loop)



format method, 236
Formats/formatting

date formats, 252
serialize and save data in binary format, 53
strings (string), 236–239, 429–431

Formatted literal strings (f-strings), 236–239
formula API, in statsmodels library, 284–285
freq parameter, 268
Frequency

datetime, 268
grouped frequency counts, 27
offsets, 268–269
resampling converting between, 276–278

f-strings, 236–238
f-strings (formatted literal strings), 236–239
Functions

across rows or columns of data, 133
aggregation, 179–182
apply over DataFrame, 135–138
apply over Series, 133–135
arbitrary parameters, 407–408
calculating multiple simultaneously, 182–184
comprehensions and, 403–404
creating/using, 131–132
custom, 180–181
default parameters, 407
groupby, 178
**kwargs, 408
lambda, 141–142
options for applying in and aggregate methods, 182–184
overview of, 405–408
regular expressions (RegEx), 240
vectorized, 138–141
z-score example of transforming data, 184–186
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Gapminder data set, 4
Generalized linear models (GLM). See also Linear regression models

logistic regression, 446–447
model diagnostics, 327–329
more GLM options, 308–309
negative binomial regression, 306–308, 448–449
overview of, 297
Poisson regression, 304–308, 447–449
sklearn library for logistic regression, 300–304
statsmodels library for logistic regression, 299–300
statsmodels library for Poisson regression, 304–306
summary/conclusion, 309
survival analysis, 311–317
testing Cox model assumptions, 315–316

Generators
converting to list, 16–17
overview of, 409–411

get
dictionary values with, 397–398
selecting groups, 191–192

Git for Windows, 377
github, 365
GLM (generalized linear models). See Generalized linear models
glm function, in statsmodels library, 306, 308–309
Going it alone, 363–365

aggregation, 176–184
aggregation functions, 179–182
applying functions in and aggregate methods, 182–184
built-in aggregation methods, 178–179
calculations generally, 24–25



calculations involving multiple variables, 191
calculations of means, 23–26
compared with SQL, 175
filtering, 188–189
flattening results, 194–195
frequency counts, 27
iterating through groups, 192–194
methods and functions, 178
missing value example, 186–188
multiple groups, 194
one-variable grouped aggregation, 176–177
overview of, 175
saving without running aggregate, transform, or
filter methods, 190–191

selecting groups, 192
summary/conclusion, 199–200
transform, 184–188
working with multiIndex, 195–199
z-score example of transforming data, 184–186

Groups
iterating through, 192–194
selecting, 191–192
working with multiple, 194
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bivariate statistics in seaborn, 87–88
plt.hexbin function, 113–114

Hierarchical clustering
average cluster algorithm, 353–354



centroid cluster algorithm, 353–354
complete cluster algorithm, 352
manually setting threshold for, 355–356
overview of, 351–352
single cluster algorithm, 352–353
ward cluster algorithm, 354–355

Histograms
creating using plot.hist functions, 111
of model residuals, 323
for univariate statistics in matplotlib, 73–74
for univariate statistics in seaborn, 79–83

I

Ibis, 361
id, unique identifiers, 220
IDEs (integrated development environments), Python, 382
if, 433–434
ignore_index parameter, after concatenation, 149–150
iloc

indexing rows or columns, 11
Series attributes, 35
subsetting rows and columns, 21–23
subsetting rows by number, 13–14

Importing (import). See also Exporting/importing data
itertools library, 410–411
libraries, 391–392
loading first data set, 4–5
matplotlib library, 66–72
pandas, 415

Indemics (Interactive Epidemic Simulation) data set, 208
Indices

beginning and ending indices in ranges, 399



concatenate columns with different indices, 153–154
concatenate rows with different indices, 151–153
date ranges, 267–268
issues with absolute, 22
out of bounds notification, 138
reindexing as source of missing values, 209–210
subsetting columns by index position break, 8
subsetting date based on, 263–266
subsetting rows by index label, 11–13
working with multiIndex, 195–199

inplace parameter, functions and methods, 49–50
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of Anaconda, 373–374
from command line, 377–378
Python packages, 374

Integers (int/int64)
converting to string, 220–221
vectors with integers (scalars), 40

integrated development environments (IDEs), 382
Interactive Epidemic Simulation (Indemics) data set, 196
Interpolation, in filling missing data, 213–214
IPython (ipython)

ipython command, 381–382
magic commands, 427

Iteration. See Loops (for loop)
iTerm2, 377
itertools library, 410–411
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JavaScript Objectd notation, 59–62
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merges and, 160



string methods, 234–235
jointplot, creating seaborn scatterplot, 85–88
JSON data, 59–62
Jupyter, 360
jupyter command, 382
JupyterCon, 364
Jupyter Days, 364

K

KaplanMeierFitter, lifelines library, 312–313
KDE plot, of bivariate statistics, 89–90
keep_default_na parameter, specifying NaN values, 205
Kelleher, Adam, 241
Kelleher, Andrew, 241
Keys, creating DataFrame, 32–33
Key–value pairs, 397–398
Key–value stores, 408
Keywords

lambda keyword, 142
passing keyword argument, 134–135

k-fold cross validation, 329–333
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clustering, 345–351
using PCA, 349–351

**kwargs, 408
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L1 regularization, 337–338, 341
L2 regularization, 338–341
lambda functions, applying, 141–142
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LASSO regression, 337–338, 341
Leap years/leap seconds, 278
Learning resources, for self-directed learners, 363–365
Libraries. See also by individual types

importing, 391–392
performance libraries, 360

lifelines library, 311–313
CoxPHFitter class, 314–315
KaplanMeierFitter class, 312–313

Linear regression models. See also GLM (generalized linear models)
with categorical variables, 289–293
cross-validation, 341–343
elastic net, 340–341
LASSO regression regularization, 337–338
model diagnostics, 324–327
multiple regression, 287–289
one-hot endocing in, 294–295
R2 (coefficient of determination) regression score function,

332
reasons for regularization, 335–337
replicating results in R, 444–446
residuals, 320–322
restoring labels in sklearn models, 293
ridge regression, 338–340
simple linear regression, 283–287
sklearn library for multiple regression, 288–289
sklearn library for simple linear regression, 285–287
statsmodels library for multiple regression, 287–288
statsmodels library for simple linear regression, 284–285
summary/conclusion, 296

Line breaks, 393–394
Linux

command line, 378



installing Anaconda, 373–374
running python and ipython commands, 382
viewing working directory, 383

List comprehension, 158–160
Lists (list)

comprehensions and, 403–404
converting generator to, 16–17, 409–410
creating Series, 31–32
of data types, 219–220
loading multiple files using comprehension, 158–160
loading multiple files using list comprehension, 158–160
looping, 401–402
multiple assignment, 413–414
overview of, 395–396
single value returns, 9–10

lmplot
creating scatterplots, 85
with hue parameter, 96–97

Loading data
datetime data, 253–254
as source of missing data, 205–206

loc
indexing rows or columns, 11–13
Series attributes, 35
subsetting rows and columns, 21–23
subsetting rows or columns, 15–16

Logic, three-valued, 203–204
Logistic regression

example of, 435–441
overview of, 297–304
replicating results in R, 446–447
sklearn library for, 300–304
statsmodels library for, 299–300
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regression, 299–300
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command line, 377–378
installing Anaconda, 373
pwd command for viewing working directory, 383
running python and ipython commands, 382

Machine learning models, 285, 361–362
Machine Learning Operations (MLOps), 362
Many-to-many merges, 163–166
Many-to-one merges, 163
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matplotlib library

axes subplots, 67–71
bivariate statistics, 74–76
figure anatomy, 71–72
figure objects, 67–71
multivariate statistics, 76–78
overview of, 66–72
statistical graphics, 72–73
univariate statistics, 73–74

Matrices, 331–333, 415–416
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custom functions, 180–181
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numpy library, 179
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built-in Na value, 218
calculations with, 215–216
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concatenation and, 148–149, 153
date range for filling in, 272–273
dropping, 214–215
fill forward or fill backward, 212–213
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loading data as source of, 205–206
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reindexing causing, 209–210
sources of, 205–210
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summary/conclusion, 218
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na_values parameter, specifying NaN values, 205–206
ndarray
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replicating results in R, 448–449
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q-q plots and, 322–324
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ndarray, 415–416
performance and, 360
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Series similarity with numpy.ndarray, 35
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Overdispersion of data, negative binomial regression for, 306–308,
448–449

P

Packages
benefits of isolated environments, 385–386
Installing, 389–390
updating, 390

pairgrid, bivariate statistics, 93–94
Pairwise relationships (pairplot)

bivariate statistics, 93–94
with hue parameter, 98

pandera, 361
Panel, 362
Parameters

arbitrary function parameters, 407–408
default function parameters, 407
functions taking, 406–407

passing/reassigning values, 395–396
patsy library, 331–333
Patterns. See also Regular expressions (regex)

compiling, 246–247
matching, 240–243
substituting, 245–246

PCA (principal component analysis), 347–351
pd

alias for pandas, 5
reading pickle data, 53–54

PEP8 (Python Enhancement Proposal 8), 393
Performance

avoiding premature optimization, 360
profiling code, 360



timing your code, 360, 427–428
pickle data, 53–54
Pipeline, 294–295
Pipenv, 387–388
pip install, 374, 389–390
Pivot/unpivot

columns containing multiple variables, 122–126
converting wide data into tidy data, 119–120
keeping multiple columns fixed, 120–122
rows and columns both containing variables, 127–128

Placeholders, formatting strings, 238, 430
Plots/plotting (plot)

basic plots, 27–28
bivariate statistics in matplotlib, 74–76
bivariate statistics in seaborn, 83–94
concept map for, 371
creating boxplots (plot.box), 113–115
creating density plots (plot.kde), 111–112
creating scatterplots (plot.scatter), 112–113
linear regression residuals, 320–322
matplotlib library, 66–72
multivariate statistics in matplotlib, 76–78
multivariate statistics in seaborn, 94–99
overview of, 65
Pandas objects and, 111–115
q-q plots, 322–324
seaborn library, 78
statistical graphics, 72–73
summary/conclusion, 115
themes and styles in seaborn, 105–108
univariate statistics in matplotlib, 73–74
univariate statistics in seaborn, 79–83

PLOT_TYPE functions, 111



plt.hexbin function, 113–114
Podcast resources, for self-directed learners, 364–365
Point representation, Anscombe’s data set, 67
poisson function, in statsmodels library, 304–306
Poisson regression

negative binomial regression as alternative
to, 306–308, 448–449
overview of, 304
replicating results in R, 447–449
statsmodels library for, 304–306

Polars, 360
Principal component analysis (PCA), 347–351
Project templates, 379, 383
Pryke, Bejamin, 422
PyCon conference, 364
PyData, 364
pyenv, 374
Pyenv, 387–388
pyjanitor, 361
Python

Anaconda distribution, 385
assert, 166
command line and text editor, 381
comparing Pandas types with, 7
conferences, 364
enhanced features in Pandas, 3
IDEs (integrated development environments), 382
ipython command, 381–382
jupyter command, 382
as object-oriented languages, 417
running from command line, 377–378
scientific computing stack, 350
ways to use, 381–382
working with objects, 5



as zero-indexed languages, 399
Python Enhancement Proposal 8 (PEP8), 393

Q

q-q plots, model diagnostics, 322–324

R

random--state method, directly changing columns, 47–48
range, 409–410
Ranges (range)

beginning and ending indices, 399
date ranges, 266–269
filling in missing values, 272–273
overview of, 409–411
passing range of values, 395–396
subsetting columns, 16–18

Raschka, Sebastian, 241
R ecosystem, 362

replicating results in, 443–449
Regex. See Regular expressions (regex)
regplot, creating scatterplot, 83–85
Regression

keeping labels in sklearn models, 293
LASSO regression regularization, 337–338
logistic regression, 297–304, 446–447
more GLM options, 308–309
multiple regression, 287–289
negative binomial regression, 306–308, 448–449
New York ACS example, 435–441
Poisson regression, 304–308, 447–449



reasons for regularization, 335–337
ridge regression regularization, 338–340
simple linear regression, 283–287
sklearn library for logistic regression, 300–304
sklearn library for multiple regression, 288–289
sklearn library for simple linear regression, 285–287
statsmodels library for logistic regression, 299–300
statsmodels library for multiple regression, 287–288
statsmodels library for Poisson regression, 304–306
statsmodels library for simple linear regression, 284–285

Regular expressions (RegEx)
functions in re, 240
overview of, 239
pattern compilation, 246–247
pattern matching, 240–243
pattern substitution, 245–246
regex library, 247
special characters, 240
syntax, special characters, and functions, 240

Regularization
cross-validation, 341–343
elastic net, 340–341
LASSO regression, 337–338
overview of, 335
reasons for, 335–337
ridge regression, 338–340
summary/conclusion, 343

reindex method, reindexing as source of missing values, 209–210
re module, 240–243, 247
Resampling, datetime, 276–278
Residuals, model diagnostics, 319–324
Residual sum of squares (RSS), 326–327
Resources, 363–365
Ridge



regression elastic net and, 341
regularization techniques, 338–340

R language, interface with (to_feather method), 56–57
Rows

concatenation generally, 145–147
concatenation with different indices, 151–153
methods of indexing, 11
multiple observational units in a table, 169–173
removing row numbers from output, 55
rows and columns both containing variables, 126–129
subsetting multiple, 13
subsetting rows and columns, 21–23
subsetting rows by index label, 11–13
subsetting rows by row number, 13–14

RSS (residual sum of squares), 326–327
Rug plots, for univariate statistics, 80–81

S

Scalars, 40
Scatterplots

for bivariate statistics, 74–75
matplotlib example, 69
for multivariate statistics, 77–78
plot.scatter function, 112–113

Scientific computing stack, 350
SciPy conference, 364
scipy library

hierarchical clustering, 351
performance libraries, 360
scientific computing stack, 359

Scripts
project templates for running, 383



running Python from command line, 377–378
seaborn

Anscombe’s quartet for data visualization, 65–66
bivariate statistics, 83–94
multivariate statistics, 94–99
overview of, 78
themes and styles, 105–108
tips data set, 187
titanic data set, 297–299
univariate statistics, 79–83

Searches. See Find
Semicolon (;), types of delimiters, 55
Serialization, serialize and save data in binary format, 53
Series

adding columns, 45–47
aggregation functions, 183–184
alignment and vectorization, 39–42
apply function(s) over, 133–135
attributes, 35
boolean subsetting, 36–39
categorical attributes or methods, 226
as class, 417–418
creating, 31–32
defined, 3
directly changing columns, 47–50
exporting/importing data, 53
exporting to Excel (to_excel method), 56
histogram, 111
methods, 35–37
overview of, 33–35
similarity with ndarray, 35–36
single value returns, 8–9
writing CSV files (to_csv method), 55

SettingWithCopyWarning, 419–422



Shape
DataFrame attributes, 5
Series attributes, 35

Shape, in plotting, 97–98
Shell scripts, running Python from command line, 377–378
Shiny for Python, 362
Simple linear regression

overview of, 283
sklearn library, 285–287
statsmodels library, 284–285

Single cluster algorithm, in hierarchical clustering, 352–353
Siuba, 360
Size, in plotting, 77–78
size attribute, Series, 35
sklearn library

defaults in, 302–304
importing PCA function, 347–348
keeping labels in sklearn models, 293
k-fold cross validation, 330–331
KMeans function, 345–347
for logistic regression, 300–304
logistic regression example, 439–441
for multiple regression, 288–289
one-hot endocing with, 294–295
for simple linear regression, 285–287
splitting data into training and testing sets, 335–336
transformer pipelines in, 294–295

Slicing
colon (:) use in slicing syntax, 15, 399–400
columns, 18–21
string from beginning or to end, 232
strings, 230–231
strings incrementally, 232–233
subsetting columns, 15–16



subsetting multiple rows and columns, 22–23
values, 399–400

snakevis, profiling code, 360
sns.distplot, creating histograms, 81
Sns.set_style function, 105–108
Special characters, regular expressions, 240
Split–apply–combine, 175
splitlines method, strings, 235–236
split method

split and add columns individually, 123–125
split and combine in single step, 125–126

Spyder IDE, 382
SQL

comparing Pandas to, 162
groupy compared with SQL GROUP BY, 175

Square brackets ([])
getting first character of string, 230
list syntax, 395–396

Statistical graphics
bivariate statistics in matplotlib, 74–76
bivariate statistics in seaborn, 83–94
matplotlib library, 66–72
multivariate statistics in matplotlib, 76–78
multivariate statistics in seaborn, 94–99
overview of, 72–73
seaborn library, 78
univariate statistics in matplotlib, 73–74
univariate statistics in seaborn, 79–83

Statistics
basic plots, 27–28
grouped and aggregated calculations, 23–27
grouped frequency counts, 27
grouped means, 23–26

statsmodels library



for logistic regression, 299–300
for multiple regression, 287–288
for Poisson regression, 304–306
for simple linear regression, 284–285

Stocks/stock prices, 261–263
Storage

of information in dictionaries, 396–398
lists for data storage, 395–396

str accessor, 123
Streamlit, 362
strftime, for date formats, 252–253
Strings (string)

accessing methods, 123
converting values to, 220–221
formatting, 236–239, 429–431
getting last character in, 231–233
methods, 233–236
overview of, 229
pattern compilation, 246–247
pattern matching, 240–243
pattern substitution, 245–246
regular expressions (regex) and, 239–240, 247
subset and slice, 229–231
summary/conclusion, 247

str.replace, pattern substitution, 245–246
Styles, seaborn, 105–108
Subplot syntax, 68
Subsets/subsetting

columns by index position break, 8
columns by name, 7–8
columns by range, 16–18
columns generally, 21–23
columns using slicing syntax, 15–16
data by dates, 263–266



DataFrame boolean subsetting, 43
lists, 395–396
modifying with SettingWithCopyWarning, 419–420
multiple rows, 13
rows by index label, 11–13
rows by row number, 13–14
rows generally, 21–23
strings, 229–231
tuples, 396

sum
cumulative (cumsum), 199
custom functions, 180

Summarization. See Aggregation (or aggregate)
Survival analysis, 311–317

Cox proportional hazards model, 314–316
data for, 311–312
Kaplan Meier curves, 312–314
overview, 311
summary/conclusion, 317

SyiPy, 359

T

Tables
observational units across multiple, 154–160
observational units in, 169–173

Tab separated values (TSV), 55, 253
tail, returning last row, 13
T attribute, Series, 35
Templates, project, 379, 383
Terminal application, Mac, 377
Text. See also Characters; Strings (string)

function documentation (docstring), 132



overview of, 229
Themes, seaborn, 105–109
Three-valued logic, 203–204
Tidy data

columns containing multiple variables, 122–126
columns containing values not variables, 118–122
concept map for, 372
data assembly, 167
data normalization, 169–173
definition of, 117
keeping multiple columns fixed, 120–122
keeping one column fixed, 118–120
overview of, 117
rows and columns both containing variables, 126–129
split and add columns individually, 123–125
split and combine in single step, 125–126
summary/conclusion, 129

tidyverse, 360
Time. See datetime
TimedeltaIndex, 265–266
timedelta object

date calculations, 257–258
subsetting date based data, 265–266

timeit function, timing execution of statements or expressions, 360,
427–428

Time zones, 278–279
tips data set, seaborn library, 187, 283
titanic data set, 297–299
to_csv method, 55
to_datetime function, 250–253
to_dict method, 58–59
to_excel method, 56
to_feather method, 57
to_numeric function, 222–225



Transform (transform)
applying to data, 323–324
missing value example of transforming data, 186–188
overview of, 184
z-score example of transforming data, 184–186

Transformer pipelines, 294–295
True, 434
TSV (tab separated values), 55, 253
Tuples (tuple), 396
2D density plot, 88–89
type function, working with Python objects, 5

U

Unique identifiers, 220
Univariate statistics

in matplotlib, 73–74
in seaborn, 79–83

Updates, package, 390
User input, as source of missing data, 207–208

V

value_counts method, 27, 211–212
Values (value)

columns containing values not variables (See Columns, with
values not variables)

converting to strings, 220–221
creating DataFrame values, 34
directly changing columns, 47–50
dropping, 52
functions taking, 406–407



missing (See Missing data (NaN values))
multiple assignment of list of, 413–414
passing/reassigning, 395–396
replacing with SettingWithCopyWarning, 420–421
Series attributes, 35
shifting datetime values, 270–276
slicing, 399–400

VanderPlas, Jake, 359
Variables

adding covariates to linear models, 324
bi-variable statistics (See Bivariate statistics)
calculations involving multiple, 191
columns containing multiple (See Columns, with multiple

variables)
columns containing values not variables (See Columns, with

values not variables)
converting to numeric values, 221–225
multiple assignment, 413–414
multiple linear regression with three covariates, 320–322
multiple variable statistics (See Multivariate statistics)
one-variable grouped aggregation, 176–177
rows and columns both containing, 126–129
single variable statistics (See Univariate statistics)
sklearn library used with categorical variables, 291–293
statsmodels library used with categorical variables, 289–

291
Vectors (vectorize)

applying vectorized function, 138–141
with common index labels (automatic alignment), 41–42
DataFrame alignment and vectorization, 44–45
Series alignment and vectorization, 39–42
Series referred to as vectors, 35
timing, 427–428
using numba library, 140–141



using numpy library, 140
vectors of different length, 40–41
vectors of same length, 39–40
vectors with integers (scalars), 40

Violin plots
bivariate statistics, 91–93
creating scatterplots, 91–93
with hue parameter, 96–97

Visualization
Anscombe’s quartet for data visualization, 65–66
using plots for, 27–28
value of, 65–66

Voilà, 362

W

Ward cluster algorithm, in hierarchical clustering, 354–355
Wickham, Hadley, 99, 117
“Wide” data, converting into tidy data, 118–120
Windows

Anaconda command prompt, 381–382
cd command for viewing working directory, 383
command line, 377
installing Anaconda, 373

X

xarray library, 359
XGBoost, 361

Y



Year, extracting date components from datetime object, 254–257

Z

Zero-indexed languages, 399
z-score, transforming data, 184–186









Code Snippets

Many titles include programming code or configuration examples. To
optimize the presentation of these elements, view the eBook in single-
column, landscape mode and adjust the font size to the smallest setting. In
addition to presenting code and configurations in the reflowable text format,
we have included images of the code that mimic the presentation found in
the print book; therefore, where the reflowable format may compromise the
presentation of the code listing, you will see a “Click here to view code
image” link. Click the link to view the print-fidelity code image. To return
to the previous page viewed, click the Back button on your device or app.
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