2ND EDITION

AUTOMATE
THE BORING STUFF
WITH PYTHON

PRACTICAL PROGRAMMING
FOR TOTAL BEGINNERS

AL SWEIGART

AUTOMATE THE BORING STUFF WITH
PYTHON
2ND EDITION

Practical Programming for Total Beginners

by Al Sweigart

©

no starch
press

San Francisco

AUTOMATE THE BORING STUFF WITH PYTHON, 2ND EDITION. Copyright ©
2020 by Al Sweigart.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and

the publisher.

ISBN-10: 1-59327-992-2
ISBN-13: 978-1-59327-992-9

Publisher: William Pollock

Production Editor: Laurel Chun

Cover Illustration: Josh Ellingson

Interior Design: Octopod Studios

Developmental Editors: Frances Saux and Jan Cash

Technical Reviewers: Ari Lacenski and Philip James
Copyeditors: Kim Wimpsett, Britt Bogan, and Paula L. Fleming
Compositors: Susan Glinert Stevens and Danielle Foster
Proofreaders: Lisa Devoto Farrell and Emelie Burnette

Indexer: BIM Indexing and Proofreading Services

For information on distribution, translations, or bulk sales,
please contact No Starch Press, Inc. directly:

No Starch Press, Inc.

245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900; info@nostarch.com
www.nostarch.com

The Library of Congress Control Number for the first edition is: 2014953114

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press,
Inc. Other product and company names mentioned herein may be the trademarks of their
respective owners. Rather than use a trademark symbol with every occurrence of a
trademarked name, we are using the names only in an editorial fashion and to the benefit of the
trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every
precaution has been taken in the preparation of this work, neither the author nor No Starch
Press, Inc. shall have any liability to any person or entity with respect to any loss or damage
caused or alleged to be caused directly or indirectly by the information contained in it.

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike
3.0 United States License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or send a letter to Creative Commons, PO
Box 1866, Mountain View, CA 94042, USA.

mailto:info@nostarch.com
http://www.nostarch.com/
http://creativecommons.org/licenses/by-nc-sa/3.0/us/

For my nephew Jack

About the Author

Al Sweigart is a software developer and tech book author. Python is his
favorite programming language, and he is the developer of several open
source modules for it. His other books are freely available under a
Creative Commons license on his website htzps://inventwithpython.com/.
His cat now weighs 11 pounds.

https://inventwithpython.com/

About the Tech Reviewer

Philip James has been working in Python for over a decade and is a
frequent speaker in the Python community. He speaks on topics
ranging from Unix fundamentals to open source social networks. Philip
is a Core Contributor to the BeeWare project and lives in the San
Francisco Bay Area with his partner Nic and her cat River.

BRIEF CONTENTS

Acknowledgments

Introduction

PART I: PYTHON PROGRAMMING BASICS
Chapter 1: Python Basics

Chapter 2: Flow Control

Chapter 3: Functions

Chapter 4: Lists

Chapter 5: Dictionaries and Structuring Data

Chapter 6: Manipulating Strings

PART II: AUTOMATING TASKS

Chapter 7: Pattern Matching with Regular Expressions
Chapter 8: Input Validation

Chapter 9: Reading and Writing Files

Chapter 10: Organizing Files

Chapter 11: Debugging

Chapter 12: Web Scraping

Chapter 13: Working with Excel Spreadsheets

Chapter 14: Working with Google Sheets

Chapter 15: Working with PDF and Word Documents
Chapter 16: Working with CSV Files and JSON Data

Chapter 17: Keeping Time, Scheduling Tasks, and Launching Programs
Chapter 18: Sending Email and Text Messages
Chapter 19: Manipulating Images

Chapter 20: Controlling the Keyboard and Mouse with GUI
Automation

Appendix A: Installing Third-Party Modules
Appendix B: Running Programs
Appendix C: Answers to the Practice Questions

Index

CONTENTS IN DETAIL

ACKNOWLEDGMENTS

INTRODUCTION
Whom Is This Book For?

Conventions

What Is Programming?
What Is Python?
Programmers Don’t Need to Know Much Math
You Are Not Too Old to Learn Programming
Programming Is a Creative Activity

About This Book

Downloading and Installing Python

Downloading and Installing Mu

Starting Mu

Starting IDLE

The Interactive Shell

Installing Third-Party Modules

How to Find Help

Asking Smart Programming Questions

Summary

PART I: PYTHON PROGRAMMING BASICS

1
PYTHON BASICS

Entering Expressions into the Interactive Shell

The Integer, Floating-Point, and String Data Types
String Concatenation and Replication

Storing Values in Variables

Assignment Statements
Variable Names

Your First Program

Dissecting Your Program
Comments
The print() Function
The input() Function
Printing the User’s Name
The len() Function
The str(), int(), and float() Functions

Summary

Practice Questions

2
FLOW CONTROL

Boolean Values
Comparison Operators
Boolean Operators
Binary Boolean Operators
The not Operator
Mixing Boolean and Comparison Operators
Elements of Flow Control
Conditions
Blocks of Code
Program Execution
Flow Control Statements
if Statements
else Statements
elif Statements
while Loop Statements
break Statements
continue Statements
for Loops and the range() Function

Importing Modules
from import Statements
Ending a Program Early with the sys.exit() Function
A Short Program: Guess the Number
A Short Program: Rock, Paper, Scissors
Summary
Practice Questions

3
FUNCTIONS

def Statements with Parameters
Define, Call, Pass, Argument, Parameter

Return Values and return Statements

The None Value

Keyword Arguments and the print() Function

The Call Stack

Local and Global Scope
Local Variables Cannot Be Used in the Global Scope
Local Scopes Cannot Use Variables in Other Local Scopes
Global Variables Can Be Read from a Local Scope
Local and Global Variables with the Same Name

The global Statement

Exception Handling

A Short Program: Zigzag

Summary

Practice Questions

Practice Projects
The Collatz Sequence
Input Validation

4
LISTS

The List Data Type

Getting Individual Values in a List with Indexes
Negative Indexes
Getting a List from Another List with Slices
Getting a List’s Length with the len() Function
Changing Values in a List with Indexes
List Concatenation and List Replication
Removing Values from Lists with del Statements
Working with Lists
Using for Loops with Lists
The in and not in Operators
The Multiple Assignment Trick
Using the enumerate() Function with Lists
Using the random.choice() and random.shuffle() Functions
with Lists
Augmented Assignment Operators
Methods
Finding a Value in a List with the index() Method
Adding Values to Lists with the append() and insert() Methods
Removing Values from Lists with the remove() Method
Sorting the Values in a List with the sort() Method
Reversing the Values in a List with the reverse() Method
Example Program: Magic 8 Ball with a List
Sequence Data "Types
Mutable and Immutable Data Types
The Tuple Data Type
Converting Types with the list() and tuple() Functions
References
Identity and the id() Function
Passing References
The copy Module’s copy() and deepcopy() Functions
A Short Program: Conway’s Game of Life
Summary
Practice Questions

Practice Projects
Comma Code
Coin Flip Streaks
Character Picture Grid

5
DICTIONARIES AND STRUCTURING DATA
The Dictionary Data Type
Dictionaries vs. Lists
The keys(), values(), and items() Methods
Checking Whether a Key or Value Exists in a Dictionary
The get() Method
The setdefault() Method
Pretty Printing

Using Data Structures to Model Real-World Things
A Tic-Tac-"Toe Board
Nested Dictionaries and Lists
Summary
Practice Questions
Practice Projects
Chess Dictionary Validator
Fantasy Game Inventory
List to Dictionary Function for Fantasy Game Inventory

6
MANIPULATING STRINGS
Working with Strings
String Literals
Indexing and Slicing Strings
The in and not in Operators with Strings
Putting Strings Inside Other Strings
Useful String Methods
The upper(), lower(), isupper(), and islower() Methods

The isX() Methods

The startswith() and endswith() Methods

The join() and split() Methods

Splitting Strings with the partition() Method

Justifying Text with the rjust(), ljust(), and center() Methods

Removing Whitespace with the strip(), rstrip(), and Istrip()
Methods

Numeric Values of Characters with the ord() and chr() Functions
Copying and Pasting Strings with the pyperclip Module
Project: Multi-Clipboard Automatic Messages
Step 1: Program Design and Data Structures
Step 2: Handle Command Line Arguments
Step 3: Copy the Right Phrase
Project: Adding Bullets to Wiki Markup
Step 1: Copy and Paste from the Clipboard
Step 2: Separate the Lines of Text and Add the Star
Step 3: Join the Modified Lines
A Short Progam: Pig Latin
Summary
Practice Questions
Practice Projects
Table Printer
Zombie Dice Bots

PART II: AUTOMATING TASKS

7
PATTERN MATCHING WITH REGULAR EXPRESSIONS

Finding Patterns of Text Without Regular Expressions
Finding Patterns of "Text with Regular Expressions
Creating Regex Objects
Matching Regex Objects
Review of Regular Expression Matching

More Pattern Matching with Regular Expressions
Grouping with Parentheses
Matching Multiple Groups with the Pipe
Optional Matching with the Question Mark
Matching Zero or More with the Star
Matching One or More with the Plus
Matching Specific Repetitions with Braces

Greedy and Non-greedy Matching

The findall() Method

Character Classes

Making Your Own Character Classes

The Caret and Dollar Sign Characters

The Wildcard Character
Matching Everything with Dot-Star
Matching Newlines with the Dot Character

Review of Regex Symbols

Case-Insensitive Matching

Substituting Strings with the sub() Method

Managing Complex Regexes

Combining re IGNORECASE, re. DOTALL, and re. VERBOSE

Project: Phone Number and Email Address Extractor
Step 1: Create a Regex for Phone Numbers
Step 2: Create a Regex for Email Addresses
Step 3: Find All Matches in the Clipboard Text
Step 4: Join the Matches into a String for the Clipboard
Running the Program
Ideas for Similar Programs

Summary

Practice Questions

Practice Projects
Date Detection
Strong Password Detection
Regex Version of the strip() Method

8
INPUT VALIDATION

The PyInputPlus Module

The min, max, greaterThan, and lessThan Keyword
Arguments
The blank Keyword Argument
The limit, timeout, and default Keyword Arguments
The allowRegexes and blockRegexes Keyword Arguments
Passing a Custom Validation Function to inputCustom()
Project: How to Keep an Idiot Busy for Hours
Project: Multiplication Quiz
Summary
Practice Questions
Practice Projects
Sandwich Maker
Write Your Own Multiplication Quiz

9
READING AND WRITING FILES

Files and File Paths

Backslash on Windows and Forward Slash on macOS and
Linux

Using the / Operator to Join Paths
The Current Working Directory
The Home Directory
Absolute vs. Relative Paths
Creating New Folders Using the os.makedirs() Function
Handling Absolute and Relative Paths
Getting the Parts of a File Path
Finding File Sizes and Folder Contents
Modifying a List of Files Using Glob Patterns
Checking Path Validity

The File Reading/Writing Process

Opening Files with the open() Function
Reading the Contents of Files
Writing to Files
Saving Variables with the shelve Module
Saving Variables with the pprint.pformat() Function
Project: Generating Random Quiz Files
Step 1: Store the Quiz Data in a Dictionary
Step 2: Create the Quiz File and Shuffle the Question Order
Step 3: Create the Answer Options
Step 4: Write Content to the Quiz and Answer Key Files
Project: Updatable Multi-Clipboard
Step 1: Comments and Shelf Setup
Step 2: Save Clipboard Content with a Keyword
Step 3: List Keywords and Load a Keyword’s Content
Summary
Practice Questions
Practice Projects

Extending the Multi-Clipboard

Mad Libs
Regex Search
10
ORGANIZING FILES
The shutil Module
Copying Files and Folders
Moving and Renaming Files and Folders
Permanently Deleting Files and Folders
Safe Deletes with the send2trash Module
Walking a Directory Tree
Compressing Files with the zipfile Module

Reading ZIP Files
Extracting from ZIP Files
Creating and Adding to ZIP Files

Project: Renaming Files with American-Style Dates to European-Style
Dates

Step 1: Create a Regex for American-Style Dates
Step 2: Identify the Date Parts from the Filenames
Step 3: Form the New Filename and Rename the Files
Ideas for Similar Programs

Project: Backing Up a Folder into a ZIP File
Step 1: Figure Out the ZIP File’s Name
Step 2: Create the New ZIP File
Step 3: Walk the Directory Tree and Add to the ZIP File
Ideas for Similar Programs

Summary

Practice Questions

Practice Projects

Selective Copy
Deleting Unneeded Files
Filling in the Gaps

11

DEBUGGING

Raising Exceptions
Getting the Traceback as a String
Assertions
Using an Assertion in a Traffic Light Simulation
Logging
Using the logging Module
Don’t Debug with the print() Function
Logging Levels
Disabling Logging
Logging to a File
Mu’s Debugger
Continue
Step In

Step Over
Step Out
Stop
Debugging a Number Adding Program
Breakpoints
Summary
Practice Questions
Practice Project
Debugging Coin Toss

12
WEB SCRAPING

Project: maplt.py with the webbrowser Module
Step 1: Figure Out the URL
Step 2: Handle the Command Line Arguments

Step 3: Handle the Clipboard Content and Launch the
Browser

Ideas for Similar Programs
Downloading Files from the Web with the requests Module
Downloading a Web Page with the requests.get() Function
Checking for Errors
Saving Downloaded Files to the Hard Drive
HTML
Resources for Learning HT'ML
A Quick Refresher
Viewing the Source HT'ML of a Web Page
Opening Your Browser’s Developer Tools
Using the Developer Tools to Find HT'ML Elements
Parsing HT'ML with the bs4 Module
Creating a BeautifulSoup Object from HTML
Finding an Element with the select() Method
Getting Data from an Element’s Attributes
Project: Opening All Search Results

Step 1: Get the Command Line Arguments and Request the
Search Page
Step 2: Find All the Results
Step 3: Open Web Browsers for Each Result
Ideas for Similar Programs
Project: Downloading All XKCD Comics
Step 1: Design the Program
Step 2: Download the Web Page
Step 3: Find and Download the Comic Image
Step 4: Save the Image and Find the Previous Comic
Ideas for Similar Programs
Controlling the Browser with the selenium Module
Starting a selenium-Controlled Browser
Finding Elements on the Page
Clicking the Page
Filling Out and Submitting Forms
Sending Special Keys
Clicking Browser Buttons
More Information on Selenium
Summary
Practice Questions
Practice Projects
Command Line Emailer
Image Site Downloader
2048
Link Verification

13
WORKING WITH EXCEL SPREADSHEETS

Excel Documents
Installing the openpyxl Module
Reading Excel Documents
Opening Excel Documents with OpenPyXL

Getting Sheets from the Workbook
Getting Cells from the Sheets
Converting Between Column Letters and Numbers
Getting Rows and Columns from the Sheets
Workbooks, Sheets, Cells

Project: Reading Data from a Spreadsheet
Step 1: Read the Spreadsheet Data
Step 2: Populate the Data Structure
Step 3: Write the Results to a File
Ideas for Similar Programs

Writing Excel Documents
Creating and Saving Excel Documents
Creating and Removing Sheets
Writing Values to Cells

Project: Updating a Spreadsheet
Step 1: Set Up a Data Structure with the Update Information
Step 2: Check All Rows and Update Incorrect Prices
Ideas for Similar Programs

Setting the Font Style of Cells

Font Objects

Formulas

Adjusting Rows and Columns
Setting Row Height and Column Width
Merging and Unmerging Cells
Freezing Panes

Charts

Summary

Practice Questions

Practice Projects
Multiplication Table Maker
Blank Row Inserter
Spreadsheet Cell Inverter
Text Files to Spreadsheet

Spreadsheet to Text Files

14
WORKING WITH GOOGLE SHEETS
Installing and Setting Up EZSheets
Obtaining Credentials and "Token Files
Revoking the Credentials File
Spreadsheet Objects
Creating, Uploading, and Listing Spreadsheets
Spreadsheet Attributes
Downloading and Uploading Spreadsheets
Deleting Spreadsheets
Sheet Objects
Reading and Writing Data
Creating and Deleting Sheets
Copying Sheets
Working with Google Sheets Quotas
Summary
Practice Questions
Practice Projects
Downloading Google Forms Data
Converting Spreadsheets to Other Formats
Finding Mistakes in a Spreadsheet

15
WORKING WITH PDF AND WORD DOCUMENTS
PDF Documents
Extracting Text from PDFs
Decrypting PDFs
Creating PDFs
Project: Combining Select Pages from Many PDFs
Step 1: Find All PDF Files
Step 2: Open Each PDF

Step 3: Add Each Page
Step 4: Save the Results
Ideas for Similar Programs
Word Documents
Reading Word Documents
Getting the Full Text from a .docx File
Styling Paragraph and Run Objects
Creating Word Documents with Nondefault Styles
Run Attributes
Writing Word Documents
Adding Headings
Adding Line and Page Breaks
Adding Pictures
Creating PDFs from Word Documents
Summary
Practice Questions
Practice Projects
PDF Paranoia
Custom Invitations as Word Documents
Brute-Force PDF Password Breaker

16
WORKING WITH CSV FILES AND JSON DATA
The csv Module
reader Objects
Reading Data from reader Objects in a for Loop
writer Objects
The delimiter and lineterminator Keyword Arguments
DictReader and DictWriter CSV Objects
Project: Removing the Header from CSV Files
Step 1: Loop Through Each CSV File
Step 2: Read in the CSV File
Step 3: Write Out the CSV File Without the First Row

Ideas for Similar Programs
JSON and APIs
The json Module
Reading JSON with the loads() Function
Writing JSON with the dumps() Function
Project: Fetching Current Weather Data
Step 1: Get Location from the Command Line Argument
Step 2: Download the JSON Data
Step 3: Load JSON Data and Print Weather
Ideas for Similar Programs
Summary
Practice Questions
Practice Project
Excel-to-CSV Converter

17
KEEPING TIME, SCHEDULING TASKS, AND LAUNCHING
PROGRAMS
The time Module
The time.time() Function
The time.sleep() Function
Rounding Numbers
Project: Super Stopwatch
Step 1: Set Up the Program to Track Times
Step 2: Track and Print Lap Times
Ideas for Similar Programs
The datetime Module
The timedelta Data Type
Pausing Until a Specific Date
Converting datetime Objects into Strings
Converting Strings into datetime Objects
Review of Python’s Time Functions
Multithreading

Passing Arguments to the Thread’s Target Function
Concurrency Issues
Project: Multithreaded XKCD Downloader
Step 1: Modify the Program to Use a Function
Step 2: Create and Start Threads
Step 3: Wait for All Threads to End
Launching Other Programs from Python
Passing Command Line Arguments to the Popen() Function
Task Scheduler, launchd, and cron
Opening Websites with Python
Running Other Python Scripts
Opening Files with Default Applications
Project: Simple Countdown Program
Step 1: Count Down
Step 2: Play the Sound File
Ideas for Similar Programs
Summary
Practice Questions
Practice Projects
Prettified Stopwatch
Scheduled Web Comic Downloader

18
SENDING EMAIL AND TEXT MESSAGES

Sending and Receiving Email with the Gmail API
Enabling the Gmail API
Sending Mail from a Gmail Account
Reading Mail from a Gmail Account
Searching Mail from a Gmail Account
Downloading Attachments from a Gmail Account
SMTP
Sending Email
Connecting to an SM'TP Server

Sending the SM'TP “Hello” Message
Starting TLS Encryption
Logging In to the SM'TP Server
Sending an Email
Disconnecting from the SM'TP Server
IMAP
Retrieving and Deleting Emails with IMAP
Connecting to an IMAP Server
Logging In to the IMAP Server
Searching for Email
Fetching an Email and Marking It as Read
Getting Email Addresses from a Raw Message
Getting the Body from a Raw Message
Deleting Emails
Disconnecting from the IMAP Server
Project: Sending Member Dues Reminder Emails
Step 1: Open the Excel File
Step 2: Find All Unpaid Members
Step 3: Send Customized Email Reminders
Sending Text Messages with SMS Email Gateways
Sending Text Messages with "Twilio
Signing Up for a Twilio Account
Sending "Text Messages
Project: “Just Text Me” Module
Summary
Practice Questions
Practice Projects
Random Chore Assignment Emailer
Umbrella Reminder
Auto Unsubscriber
Controlling Your Computer Through Email

19
MANIPULATING IMAGES

Computer Image Fundamentals
Colors and RGBA Values
Coordinates and Box Tuples

Manipulating Images with Pillow
Working with the Image Data Type
Cropping Images
Copying and Pasting Images onto Other Images
Resizing an Image
Rotating and Flipping Images
Changing Individual Pixels

Project: Adding a Logo
Step 1: Open the Logo Image
Step 2: Loop Over All Files and Open Images
Step 3: Resize the Images
Step 4: Add the Logo and Save the Changes
Ideas for Similar Programs

Drawing on Images
Drawing Shapes
Drawing Text

Summary

Practice Questions

Practice Projects
Extending and Fixing the Chapter Project Programs
Identifying Photo Folders on the Hard Drive
Custom Seating Cards

20
CONTROLLING THE KEYBOARD AND MOUSE WITH GUI
AUTOMATION

Installing the pyautogui Module
Setting Up Accessibility Apps on macOS

Staying on Track
Pauses and Fail-Safes
Shutting Down Everything by Logging Out
Controlling Mouse Movement
Moving the Mouse
Getting the Mouse Position
Controlling Mouse Interaction
Clicking the Mouse
Dragging the Mouse
Scrolling the Mouse
Planning Your Mouse Movements
Working with the Screen
Getting a Screenshot
Analyzing the Screenshot
Image Recognition
Getting Window Information
Obtaining the Active Window
Other Ways of Obtaining Windows
Manipulating Windows
Controlling the Keyboard
Sending a String from the Keyboard
Key Names
Pressing and Releasing the Keyboard
Hotkey Combinations
Setting Up Your GUI Automation Scripts
Review of the PyAutoGUI Functions
Project: Automatic Form Filler
Step 1: Figure Out the Steps
Step 2: Set Up Coordinates
Step 3: Start Typing Data
Step 4: Handle Select Lists and Radio Buttons
Step 5: Submit the Form and Wait
Displaying Message Boxes

Summary
Practice Questions
Practice Projects
Looking Busy
Using the Clipboard to Read a Text Field
Instant Messenger Bot
Game-Playing Bot Tutorial

A
INSTALLING THIRD-PARTY MODULES

The pip Tool
Installing Third-Party Modules
Installing Modules for the Mu Editor

B
RUNNING PROGRAMS

Running Programs from the Terminal Window
Running Python Programs on Windows

Running Python Programs on macOS

Running Python Programs on Ubuntu Linux
Running Python Programs with Assertions Disabled

C
ANSWERS TO THE PRACTICE QUESTIONS
Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9

Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16
Chapter 17
Chapter 18
Chapter 19
Chapter 20

INDEX

ACKNOWLEDGMENTS

It’s misleading to have just my name on the cover. I couldn’t have
written a book like this without the help of a lot of people. I'd like to
thank my publisher, Bill Pollock; my editors, Laurel Chun, Leslie Shen,
Greg Poulos, Jennifer Griffith-Delgado, and Frances Saux; and the rest
of the staff at No Starch Press for their invaluable help. Thanks to my
tech reviewers, Ari Lacenski and Philip James, for great suggestions,
edits, and support.

Many thanks to everyone at the Python Software Foundation for
their great work. The Python community is the best one I've found in
the tech industry.

Finally, I would like to thank my family, friends, and the gang at
Shotwell’s for not minding the busy life I've had while writing this
book. Cheers!

INTRODUCTION

“You’ve just done in two hours what it takes the three of us two days to
do.” My college roommate was working at a retail electronics store in
the early 2000s. Occasionally, the store would receive a spreadsheet of
thousands of product prices from other stores. A team of three
employees would print the spreadsheet onto a thick stack of paper and
split it among themselves. For each product price, they would look up
their store’s price and note all the products that their competitors sold
for less. It usually took a couple of days.

“You know, I could write a program to do that if you have the
original file for the printouts,” my roommate told them, when he saw
them sitting on the floor with papers scattered and stacked all around.

After a couple of hours, he had a short program that read a
competitor’s price from a file, found the product in the store’s database,
and noted whether the competitor was cheaper. He was still new to
programming, so he spent most of his time looking up documentation
in a programming book. The actual program took only a few seconds
to run. My roommate and his co-workers took an extra-long lunch that
day.

This is the power of computer programming. A computer is like a
Swiss Army knife that you can configure for countless tasks. Many
people spend hours clicking and typing to perform repetitive tasks,

unaware that the machine they’re using could do their job in seconds if
they gave it the right instructions.

Whom Is This Book For?

Software is at the core of so many of the tools we use today: nearly
everyone uses social networks to communicate, many people have
internet-connected computers in their phones, and most office jobs
involve interacting with a computer to get work done. As a result, the
demand for people who can code has skyrocketed. Countless books,
interactive web tutorials, and developer boot camps promise to turn
ambitious beginners into software engineers with six-figure salaries.

This book is not for those people. It’s for everyone else.

On its own, this book won’t turn you into a professional software
developer any more than a few guitar lessons will turn you into a rock
star. But if you’re an office worker, administrator, academic, or anyone
else who uses a computer for work or fun, you will learn the basics of
programming so that you can automate simple tasks such as these:

« Moving and renaming thousands of files and sorting them into

folders

« Filling out online forms—no typing required

« Downloading files or copying text from a website whenever it
updates

« Having your computer text you custom notifications
 Updating or formatting Excel spreadsheets
o Checking your email and sending out prewritten responses

These tasks are simple but time-consuming for humans, and they’re
often so trivial or specific that there’s no ready-made software to
perform them. Armed with a little bit of programming knowledge,
however, you can have your computer do these tasks for you.

Conventions

This book is not designed as a reference manual; it’s a guide for
beginners. The coding style sometimes goes against best practices (for
example, some programs use global variables), but that’s a trade-off to
make the code simpler to learn. This book is made for people to write
throwaway code, so there’s not much time spent on style and elegance.
Sophisticated ~ programming concepts—Ilike object-oriented
programming, list comprehensions, and generators—aren’t covered
because of the complexity they add. Veteran programmers may point
out ways the code in this book could be changed to improve efficiency,
but this book is mostly concerned with getting programs to work with
the least amount of effort on your part.

What Is Programming?

Television shows and films often show programmers furiously typing
cryptic streams of Is and 0Os on glowing screens, but modern
programming isn’t that mysterious. Programming is simply the act of
entering instructions for the computer to perform. These instructions
might crunch some numbers, modify text, look up information in files,
or communicate with other computers over the internet.

All programs use basic instructions as building blocks. Here are a
few of the most common ones, in English:

“Do this; then do that.”

« “If this condition is true, perform this action; otherwise, do that
action.”

« “Do this action exactly 27 times.”
« “Keep doing that until this condition is true.”

You can combine these building blocks to implement more intricate
decisions, too. For example, here are the programming instructions,
called the sowrce code, for a simple program written in the Python
programming language. Starting at the top, the Python software runs

each line of code (some lines are run only if a certain condition is true
or else Python runs some other line) until it reaches the bottom.

@ passwordFile = open('SecretPasswordFile.txt')
@A secretPassword = passwordFile.read()
© print('Enter your password.')
typedPassword = input()
O if typedPassword == secretPassword:
O print('Access granted')
O if typedPassword == '12345':
@ print('That password is one that an idiot puts on their luggage.')
else:
O print('Access denied')

You might not know anything about programming, but you could
probably make a reasonable guess at what the previous code does just by

reading it. First, the file SecrerPasswordFile.txt is opened @, and the secret
password in it is read @. Then, the user is prompted to input a

password (from the keyboard) ©. These two passwords are compared @,
and if they’re the same, the program prints Access granted to the screen

©. Next, the program checks to see whether the password is 12345 @

and hints that this choice might not be the best for a password @. If the
passwords are not the same, the program prints Access denied to the

screen ©.

What Is Python?

Python is a programming language (with syntax rules for writing what is
considered valid Python code) and the Python interpreter software that
reads source code (written in the Python language) and performs its
instructions. You can download the Python interpreter for free at
https://python.org/, and there are versions for Linux, macOS, and
Windows.

The name Python comes from the surreal British comedy group
Monty Python, not from the snake. Python programmers are
affectionately called Pythonistas, and both Monty Python and

https://python.org/

serpentine references usually pepper Python tutorials and
documentation.

Programmers Don’t Need to Know Much Math

The most common anxiety I hear about learning to program is the
notion that it requires a lot of math. Actually, most programming
doesn’t require math beyond basic arithmetic. In fact, being good at
programming isn’t that different from being good at solving Sudoku
puzzles.

To solve a Sudoku puzzle, the numbers 1 through 9 must be filled in
for each row, each column, and each 3x3 interior square of the full 9x9
board. Some numbers are provided to give you a start, and you find a
solution by making deductions based on these numbers. In the puzzle
shown in Figure 0-1, since 5 appears in the first and second rows, it
cannot show up in these rows again. Therefore, in the upper-right grid,
it must be in the third row. Since the last column also already hasa 5 in
it, the 5 cannot go to the right of the 6, so it must go to the left of the 6.
Solving one row, column, or square will provide more clues to the rest
of the puzzle, and as you fill in one group of numbers 1 to 9 and then
another, you’ll soon solve the entire grid.

5]3 7 5(3|4]|6]|7|8]9]|1]2
6 1(9|5 6|7(2]11[9(5]|3|4|8
918 6 1{918|3|4(2]5(6]7

8 6 3 8|5(19]716|1]14|2]|3
4 8 3 1 4121618531791
7 2 6 71113]19]2[4]8|5|6
6 2|8 9l6|1|5(3]|7]12(8(4
41119 5 2(81714]1|9]|6|3|5

8 719 3{4]15]2]8|6]1]7]9

Figure O-1: A new Sudoku puzzle (left) and its solution (right). Despite using numbers,
Sudoku doesn’t involve much math. (Images © Wikimedia Commons)

Just because Sudoku involves numbers doesn’t mean you have to be
good at math to figure out the solution. The same is true of
programming. Like solving a Sudoku puzzle, writing programs involves
breaking down a problem into individual, detailed steps. Similarly,
when debugging programs (that is, finding and fixing errors), you’ll
patiently observe what the program is doing and find the cause of the
bugs. And like all skills, the more you program, the better you’ll
become.

You Are Not Too 0Id to Learn Programming

The second most common anxiety I hear about learning to program is
that people think they’re too old to learn it. I read many internet
comments from folks who think it’s too late for them because they are
already (gasp!) 23 years old. This is clearly not “too old” to learn to
program: many people learn much later in life.

You don’t need to have started as a child to become a capable
programmer. But the image of programmers as whiz kids is a persistent
one. Unfortunately, I contribute to this myth when I tell others that I
was in grade school when I started programming.

However, programming is much easier to learn today than it was in
the 1990s. Today, there are more books, better search engines, and many
more online question-and-answer websites. On top of that, the
programming languages themselves are far more user-friendly. For
these reasons, everything I learned about programming in the years
between grade school and high school graduation could be learned
today in about a dozen weekends. My head start wasn’t really much
of a head start.

It’s important to have a “growth mindset” about programming—in
other words, understand that people develop programming skills
through practice. They aren’t just born as programmers, and being
unskilled at programming now is not an indication that you can never
become an expert.

Programming Is a Creative Activity

Programming is a creative task, like painting, writing, knitting, or
constructing LEGO castles. Like painting a blank canvas, making
software has many constraints but endless possibilities.

The difference between programming and other creative activities is
that when programming, you have all the raw materials you need in
your computer; you don’t need to buy any additional canvas, paint,
film, yarn, LEGO bricks, or electronic components. A decade-old
computer is more than powerful enough to write programs. Once your
program is written, it can be copied perfectly an infinite number of
times. A knit sweater can only be worn by one person at a time, but a
useful program can easily be shared online with the entire world.

Abhout This Book

The first part of this book covers basic Python programming concepts,
and the second part covers various tasks you can have your computer
automate. Each chapter in the second part has project programs for you
to study. Here’s a brief rundown of what you'll find in each chapter.

Part I: Python Programming Basics

Chapter 1: Python Basics Covers expressions, the most basic type
of Python instruction, and how to use the Python interactive shell
software to experiment with code.

Chapter 2: Flow Control Explains how to make programs decide
which instructions to execute so your code can intelligently respond
to different conditions.

Chapter 3: Functions Instructs you on how to define your own
functions so that you can organize your code into more manageable
chunks.

Chapter 4: Lists Introduces the list data type and explains how to
organize data.

Chapter 5: Dictionaries and Structuring Data Introduces the
dictionary data type and shows you more powerful ways to organize
data.

Chapter 6: Manipulating Strings Covers working with text data
(called strings in Python).

Part II: Automating Tasks

Chapter 7: Pattern Matching with Regular Expressions Covers
how Python can manipulate strings and search for text patterns with
regular expressions.

Chapter 8: Input Validation Explains how your program can
verify the information a user gives it, ensuring that the user’s data
arrives in a format that won’t cause errors in the rest of the program.

Chapter 9: Reading and Writing Files Explains how your
program can read the contents of text files and save information to
files on your hard drive.

Chapter 10: Organizing Files Shows how Python can copy, move,
rename, and delete large numbers of files much faster than a human
user can. Also explains compressing and decompressing files.

Chapter 11: Debugging Shows how to use Python’s various bug-
finding and bug-fixing tools.

Chapter 12: Web Scraping Shows how to write programs that can
automatically download web pages and parse them for information.
This is called web scraping.

Chapter 13: Working with Excel Spreadsheets Covers
programmatically manipulating Excel spreadsheets so that you
don’t have to read them. This is helpful when the number of
documents you have to analyze is in the hundreds or thousands.

Chapter 14: Working with Google Sheets Covers how to read
and update Google Sheets, a popular web-based spreadsheet
application, using Python.

Chapter 15: Working with PDF and Word Documents Covers
programmatically reading Word and PDF documents.

Chapter 16: Working with CSV Files and JSON Data Continues
to explain how to programmatically manipulate documents, now

discussing CSV and JSON files.

Chapter 17: Keeping Time, Scheduling Tasks, and Launching
Programs Explains how Python programs handle time and dates
and how to schedule your computer to perform tasks at certain
times. Also shows how your Python programs can launch non-
Python programs.

Chapter 18: Sending Email and Text Messages Explains how to
write programs that can send emails and text messages on your

behalf.

Chapter 19: Manipulating Images Explains how to
programmatically manipulate images such as JPEG or PNG files.

Chapter 20: Controlling the Keyboard and Mouse with GUI
Automation Explains how to programmatically control the mouse
and keyboard to automate clicks and keypresses.

Appendix A: Installing Third-Party Modules Shows you how to
extend Python with useful additional modules.

Appendix B: Running Programs Shows you how to run your
Python programs on Windows, macOS, and Linux from outside of
the code editor.

Appendix C: Answers to the Practice Questions Provides
answers and some additional context to the practice questions at the
end of each chapter.

Downloading and Installing Python

You can download Python for Windows, macOS, and Ubuntu for free
at https://python.org/downloads/. If you download the latest version from
the website’s download page, all of the programs in this book should
work.

Be sure to download a version of Python 3 (such as 3.8.0). The programs in
this book are written to run on Python 3 and may not run corvectly, if at

https://python.org/downloads/

all, on Python 2.

On the download page, you’ll find Python installers for 64-bit and
32-bit computers for each operating system, so first figure out which
installer you need. If you bought your computer in 2007 or later, it is
most likely a 64-bit system. Otherwise, you have a 32-bit version, but
here’s how to find out for sure:

« On Windows, select Start » Control Panel » System and check
whether System Type says 64-bit or 32-bit.

« On macOS, go the Apple menu, select About This Mac » More
Info » System Report » Hardware, and then look at the
Processor Name field. If it says Intel Core Solo or Intel Core Duo,
you have a 32-bit machine. If it says anything else (including Intel
Core 2 Duo), you have a 64-bit machine.

« On Ubuntu Linux, open a Terminal and run the command uname -
m. A response of i686 means 32-bit, and x86_s4 means 64-bit.

On Windows, download the Python installer (the filename will end
with .msi) and double-click it. Follow the instructions the installer
displays on the screen to install Python, as listed here:

1. Select Install for All Users and click Next.

2. Accept the default options for the next several windows by clicking
Next.

On macOS, download the .dmg file that’s right for your version of
macOS and double-click it. Follow the instructions the installer
displays on the screen to install Python, as listed here:

1. When the DMG package opens in a new window, double-click the
Python.mpkg file. You may have to enter the administrator
password.

2. Accept the default options for the next several windows by clicking
Continue and click Agree to accept the license.

3. On the final window, click Install.

If you’re running Ubuntu, you can install Python from the Terminal
by following these steps:

1. Open the Terminal window.

2. Enter sudo apt-get install python3.

3. Enter sudo apt-get install idle3.

4. Enter sudo apt-get install python3-pip.

Downloading and Installing Mu

While the Python interpreter is the software that runs your Python
programs, the Mu editor software is where you’ll enter your programs,
much the way you type in a word processor. You can download Mu
from https://codewith.mu/.

On Windows and macOS, download the installer for your operating
system and then run it by double-clicking the installer file. If you are on
macOS, running the installer opens a window where you must drag the
Mu icon to the Applications folder icon to continue the installation. If
you are on Ubuntu, you'll need to install Mu as a Python package. In
that case, click the Instructions button in the Python Package section of
the download page.

Starting Mu

Once it’s installed, let’s start Mu.

« On Windows 7 or later, click the Start icon in the lower-left corner
of your screen, enter Mu in the search box, and select it.

« On macOS, open the Finder window, click Applications, and then
click mu-editor.

« On Ubuntu, select Applications » Accessories » Terminal and
then enter python3 -m mu.

https://codewith.mu/

The first time Mu runs, a Select Mode window will appear with
options Adafruit CircuitPython, BBC micro:bit, Pygame Zero, and
Python 3. Select Python 3. You can always change the mode later by
clicking the Mode button at the top of the editor window.

Youw’ll need to download Mu version 1.10.0 or later in order to install the
third-party modules featured in this book. As of this writing, 1.10.0 is an
alpha release and is listed on the download page as a sepavate link from the
main download links.

Starting IDLE

This book uses Mu as an editor and interactive shell. However, you can
use any number of editors for writing Python code. The Integrated
Development and Learning Environment (IDLE) software installs along
with Python, and it can serve as a second editor if for some reason you
can’t get Mu installed or working. Let’s start IDLE now.

« On Windows 7 or later, click the Start icon in the lower-left corner
of your screen, enter 1Le in the search box, and select IDLE

(Python GUI).

¢ On macOS, open the Finder window, click Applications, click
Python 3.8, and then click the IDLE icon.

« On Ubuntu, select Applications » Accessories » Terminal and
then enter idte3. (You may also be able to click Applications at the
top of the screen, select Programming, and then click IDLE 3.)

The Interactive Shell

When you run Mu, the window that appears is called the file editor
window. You can open the interactive shell by clicking the REPL button.
A shell is a program that lets you type instructions into the computer,

much like the Terminal or Command Prompt on macOS and
Windows, respectively. Python’s interactive shell lets you enter
instructions for the Python interpreter software to run. The computer
reads the instructions you enter and runs them immediately.

In Mu, the interactive shell is a pane in the lower half of the window
with the following text:

Jupyter QtConsole 4.3.1

Python 3.6.3 (v3.6.3:2c5fed8, Oct 3 2017, 18:11:49) [MSC v.1900 64 bit
(AMD64)]

Type 'copyright', 'credits' or 'license' for more information

IPython 6.2.1 -- An enhanced Interactive Python. Type '?' for help.

In [1]:

If you run IDLE, the interactive shell is the window that first

appears. It should be mostly blank except for text that looks something
like this:

Python 3.8.0b1 (tags/v3.8.0b1:3b5deb0116, Jun 4 2019, 19:52:55) [MSC v.1916
64 bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license" for more information.

>>>

In [1]: and >>> are called prompts. The examples in this book will use
the >>> prompt for the interactive shell since it’s more common. If you
run Python from the Terminal or Command Prompt, they’ll use the >>>
prompt, as well. The 1n [1]: prompt was invented by Jupyter
Notebook, another popular Python editor.

For example, enter the following into the interactive shell next to
the prompt:

>>> print('Hello, world!')

After you type that line and press ENTER, the interactive shell should
display this in response:

>>> print('Hello, world!')
Hello, world!

You've just given the computer an instruction, and it did what you
told it to do!

Installing Third-Party Modules

Some Python code requires your program to import modules. Some of
these modules come with Python, but others are third-party modules
created by developers outside of the Python core dev team. Appendix A
has detailed instructions on how to use the pip program (on Windows)
or pip3 program (on macOS and Linux) to install third-party modules.
Consult Appendix A when this book instructs you to install a particular
third-party module.

How to Find Help

Programmers tend to learn by searching the internet for answers to
their questions. This is quite different from the way many people are
accustomed to learning—through an in-person teacher who lectures
and can answer questions. What’s great about using the internet as a
schoolroom is that there are whole communities of folks who can
answer your questions. Indeed, your questions have probably already
been answered, and the answers are waiting online for you to find them.
If you encounter an error message or have trouble making your code
work, you won’t be the first person to have your problem, and finding a
solution is easier than you might think.

For example, let’s cause an error on purpose: enter '42' + 3 into the
interactive shell. You don’t need to know what this instruction means
right now, but the result should look like this:

>>> '42' + 3
@ Traceback (most recent call last):
File "<pyshell#0>", 1line 1, in <module>
'42' + 3
® TypeError: Can't convert 'int' object to str implicitly
>>>

The error message @ appears because Python couldn’t understand

your instruction. The traceback part @ of the error message shows the
specific instruction and line number that Python had trouble with. If
you’re not sure what to make of a particular error message, search for it
online. Enter “IypeError: Can’t convert ‘int’ object to str
implicitly” (including the quotes) into your favorite search engine, and
you should see tons of links explaining what the error message means

and what causes it, as shown in Figure 0-2.

Go SIQ "TypeError: Can't convert 'int' object to str implicitly” J;rn

Web Shopping mages News Videos More~ Search tools

About 2,100 results (0.31 seconds)

python - TypeError: Can't convert 'int’ object to str implicitly ...® o
stackoverflow.com/__ /typeerror-cant-convert-int-object-to-str-implicitly ~
Mov 30, 2012 - You cannot concatenate a string with an int. You
would need to convert your int to string using str function, or use
formatting to format your output.

TypeError: Can't convert 'int’ object to str implicitly error python& ©
stackoverfliow com/__/typeerror-cant-convert-int-object-to-str-implicitly- .. ~
Sep 22, 2013 - As the error message say, you can't add int

ohject to str object. >>>'str' + 2 Traceback (most recent call

last); File "<stdin=", line 1, in <module= ...

Can't convert 'int’ object to str implicitly: Python 3+ - Stack ...®@ @
stackoverflow com/__/cant-convert-int-object-to-str-implicity-python-3 ~

MNov 5, 2013 - Traceback (most recent call last): File "main.py",
line 29, in alltrees = distinct(x+1) TypeError: Can't convert 'int'
object to str implicitly. pythonint ...

python-forum.org « View topic - Can't convert 'int' object to str...& ©

sl e T Db 4 DT 8

Figure 0-2: The Google results for an error message can be very helpful.

You’ll often find that someone else had the same question as you and
that some other helpful person has already answered it. No one person
can know everything about programming, so an everyday part of any
software developer’s job is looking up answers to technical questions.

Asking Smart Programming Questions

If you can’t find the answer by searching online, try asking people in a
web forum such as Stack Overflow (bitps://stackoverflow.com/) or the
“learn programming” subreddit at
https://reddit.com/v/learnprogramming/. But keep in mind there are smart
ways to ask programming questions that help others help you. To begin
with, be sure to read the FAQ sections at these websites about the
proper way to post questions.

When asking programming questions, remember to do the
following:

 Explain what you are trying to do, not just what you did. This lets
your helper know if you are on the wrong track.

« Specify the point at which the error happens. Does it occur at the
very start of the program or only after you do a certain action?

« Copy and paste the enmtire error message and your code to
https://pastebin.com/ or https://gist.github.com/.

These websites make it easy to share large amounts of code with
people online, without losing any text formatting. You can then
put the URL of the posted code in your email or forum post. For
example, here some pieces of code I've posted:
https://pastebin.com/SzP2DbFx/ and
bttps://gist.github.com/asweigart/6912168/.

« Explain what you’ve already tried to do to solve your problem.
This tells people you’ve already put in some work to figure things
out on your own.

« List the version of Python you’re using. (There are some key
differences between version 2 Python interpreters and version 3
Python interpreters.) Also, say which operating system and version
you’re running.

o If the error came up after you made a change to your code, explain
exactly what you changed.

« Say whether you’re able to reproduce the error every time you run
the program or whether it happens only after you perform certain

https://stackoverflow.com/
https://reddit.com/r/learnprogramming/
https://pastebin.com/
https://gist.github.com/
https://pastebin.com/SzP2DbFx/
https://gist.github.com/asweigart/6912168/

actions. If the latter, then explain what those actions are.

Always follow good online etiquette as well. For example, don’t post
your questions in all caps or make unreasonable demands of the people
trying to help you.

You can find more information on how to ask for programming help
in the blog post at hbeps://autbor.com/belp/. You can find a list of
frequently asked questions about programming at
bttps://www.reddit. com/r/leamprogmmmmg/wzkz/fﬂq/ and a similar list
about getting a job in software development at
https://www.reddit.com/r/cscareerquestions/wiki/index/.

I love helping people discover Python. I write programming
tutorials on my blog at https://inventwithpython.com/blog/, and you can
contact me with questions at al@inventwithpython.com. Although, you
may get a faster response by posting your questions to
https://reddit.com/v/inventwithpython/.

Summary

For most people, their computer is just an appliance instead of a tool.
But by learning how to program, you’ll gain access to one of the most
powerful tools of the modern world, and you’ll have fun along the way.
Programming isn’t brain surgery—it’s fine for amateurs to experiment
and make mistakes.

This book assumes you have zero programming knowledge and will
teach you quite a bit, but you may have questions beyond its scope.
Remember that asking effective questions and knowing how to find
answers are invaluable tools on your programming journey.

Let’s begin!

https://autbor.com/help/
https://www.reddit.com/r/learnprogramming/wiki/faq/
https://www.reddit.com/r/cscareerquestions/wiki/index/
https://inventwithpython.com/blog/
mailto:al@inventwithpython.com
https://reddit.com/r/inventwithpython/

PART |
PYTHON PROGRAMMING BASICS

1
PYTHON BASICS

The Python programming language has a wide range of syntactical
constructions, standard library functions, and interactive development
environment features. Fortunately, you can ignore most of that; you just
need to learn enough to write some handy little programs.

You will, however, have to learn some basic programming concepts
before you can do anything. Like a wizard in training, you might think
these concepts seem arcane and tedious, but with some knowledge and
practice, you’ll be able to command your computer like a magic wand
and perform incredible feats.

"This chapter has a few examples that encourage you to type into the
interactive shell, also called the REPL (Read-Evaluate-Print Loop), which
lets you run (or execute) Python instructions one at a time and instantly
shows you the results. Using the interactive shell is great for learning
what basic Python instructions do, so give it a try as you follow along.
You’ll remember the things you do much better than the things you
only read.

Entering Expressions into the Interactive Shell

You can run the interactive shell by launching the Mu editor, which you
should have downloaded when going through the setup instructions in
the Preface. On Windows, open the Start menu, type “Mu,” and open
the Mu app. On macOS, open your Applications folder and double-
click Mu. Click the New button and save an empty file as blank.py.
When you run this blank file by clicking the Run button or pressing Fs,
it will open the interactive shell, which will open as a new pane that
opens at the bottom of the Mu editor’s window. You should see a >>>
prompt in the interactive shell.

Enter 2 + 2 at the prompt to have Python do some simple math. The
Mu window should now look like this:

>>> 2 + 2
4

>>>

In Python, 2 + 2 is called an expression, which is the most basic kind of
programming instruction in the language. Expressions consist of values
(such as 2) and operators (such as +), and they can always evaluare (that is,
reduce) down to a single value. That means you can use expressions
anywhere in Python code that you could also use a value.

In the previous example, 2 + 2 is evaluated down to a single value, 4.
A single value with no operators is also considered an expression,
though it evaluates only to itself, as shown here:

>>> 2

2

(")
ERRORS ARE OKAY!

Programs will crash if they contain code the computer can’t understand, which will cause
Python to show an error message. An error message won’t break your computer, though,
so don’t be afraid to make mistakes. A crzsh just means the program stopped running
unexpectedly.

If you want to know more about an error, you can search for the exact error message
text online for more information. You can also check out the resources at
bttps://nostarch.com/automatestuff2/ to see a list of common Python error messages and
their meanings.

https://nostarch.com/automatestuff2/

4

You can use plenty of other operators in Python expressions, too.
For example, Table 1-1 lists all the math operators in Python.

Table 1-1: Math Operators from Highest to Lowest Precedence

Operator Operation Example Evaluates to . .

* Exponent 2 ** 3 8

% Modulus/remainder22 % 8 6

/1 Integer 22 // 8 2
division/floored
quotient

/ Division 22 / 8 2.75

* Multiplication 3 %5 15

- Subtraction 5-2 3

¥ Addition 2 + 2 4

The order of operations (also called precedence) of Python math
operators is similar to that of mathematics. The ** operator is evaluated
first; the *, /, //, and % operators are evaluated next, from left to right;
and the + and - operators are evaluated last (also from left to right). You
can use parentheses to override the usual precedence if you need to.
Whitespace in between the operators and values doesn’t matter for
Python (except for the indentation at the beginning of the line), but a
single space is convention. Enter the following expressions into the

interactive shell:

>>> 2 + 3 *¥ 6

20

>>> (2 + 3) * 6

30

>>> 48565878 * 578453

28093077826734

>>> 2 %% 8

256

>>> 23 [7

3.2857142857142856

>>> 23 [[7

3

>>> 23 % 7

2

>>> 2 + 2

4

>>> (5 -1) * ((7T+1) /] (3 -1))
16.0

In each case, you as the programmer must enter the expression, but
Python does the hard part of evaluating it down to a single value.
Python will keep evaluating parts of the expression until it becomes a
single value, as shown here:

P (8)/ (3-1)
pr (8)fli_lg_l},
16.0

These rules for putting operators and values together to form
expressions are a fundamental part of Python as a programming
language, just like the grammar rules that help us communicate. Here’s
an example:

This is a grammatically correct English sentence.

This grammatically is sentence not English correct a.

The second line is difficult to parse because it doesn’t follow the
rules of English. Similarly, if you enter a bad Python instruction,
Python won’t be able to understand it and will display a syntaxrror
error message, as shown here:

>>> 5 +
File "<stdin>", 1line 1
5 +
N
SyntaxError: invalid syntax
>>> 42 + 5 + * 2
File "<stdin>", line 1
42 + 5 + * 2

N

SyntaxError: invalid syntax

You can always test to see whether an instruction works by entering
it into the interactive shell. Don’t worry about breaking the computer:
the worst that could happen is that Python responds with an error
message. Professional software developers get error messages while
writing code all the time.

The Integer, Floating-Point, and String Data Types

Remember that expressions are just values combined with operators,
and they always evaluate down to a single value. A data #ype is a category
for values, and every value belongs to exactly one data type. The most
common data types in Python are listed in Table 1-2. The values -2 and
30, for example, are said to be integer values. The integer (or int) data
type indicates values that are whole numbers. Numbers with a decimal
point, such as 3.14, are called floating-point numbers (or floats). Note that
even though the value 42 is an integer, the value 42.0 would be a floating-
point number.

Table 1-2: Common Data Types

Data type Examples
Integers -2,-1,0,1,2,3,4,5
Floating-point numbers -1.25, -1.0, -0.5, 0.0, 0.5, 1.0, 1.25

Strhlgs 'a', 'aa', 'aaa', 'Hello!', '11 cats'

Python programs can also have text values called strings, or swrs
(pronounced “stirs”). Always surround your string in single quote (')
characters (as in 'Hello' Or 'Goodbye cruel world!') so Python knows where
the string begins and ends. You can even have a string with no characters
in it, '', called a blank string or an empty string. Strings are explained in
greater detail in Chapter 4.

If}ﬂ)u ever see the error message Syntaxkrror: EOL while scanning string

literal, you probably forgot the final single quote character at the end
of the string, such as in this example:

>>> 'Hello, world!
SyntaxError: EOL while scanning string literal

String Concatenation and Replication

The meaning of an operator may change based on the data types of the
values next to it. For example, + is the addition operator when it
operates on two integers or floating-point values. However, when + is
used on two string values, it joins the strings as the string concatenation
operator. Enter the following into the interactive shell:

>>> "Alice' + 'Bob'
"AliceBob'

The expression evaluates down to a single, new string value that
combines the text of the two strings. However, if you try to use the +
operator on a string and an integer value, Python will not know how to
handle this, and it will display an error message.

>>> 'Alice' + 42
Traceback (most recent call last):
File "<pyshell#0>", 1line 1, in <module>
"Alice' + 42
TypeError: can only concatenate str (not "int") to str

The error message can only concatenate str (not "int") to str means
that Python thought you were trying to concatenate an integer to the
string 'Alice'. Your code will have to explicitly convert the integer to a

string because Python cannot do this automatically. (Converting data
types will be explained in “Dissecting Your Program” on page 13 when
we talk about the str(), int(), and float() functions.)

The » operator multiplies two integer or floating-point values. But
when the * operator is used on one string value and one integer value, it
becomes the string replication operator. Enter a string multiplied by a
number into the interactive shell to see this in action.

>>> 'Alice' * 5
"AliceAliceAliceAliceAlice’

The expression evaluates down to a single string value that repeats
the original string a number of times equal to the integer value. String
replication is a useful trick, but it’s not used as often as string
concatenation.

The * operator can be used with only two numeric values (for
multiplication), or one string value and one integer value (for string
replication). Otherwise, Python will just display an error message, like
the following:

>>> 'Alice' * 'Bob'
Traceback (most recent call last):
File "<pyshell#32>", 1line 1, in <module>
"Alice' * 'Bob'
TypeError: can't multiply sequence by non-int of type
>>> "Alice' * 5.0
Traceback (most recent call last):
File "<pyshell#33>", 1line 1, in <module>
"Alice' * 5.0
TypeError: can't multiply sequence by non-int of type 'float'

str

It makes sense that Python wouldn’t understand these expressions:
you can’t multiply two words, and it’s hard to replicate an arbitrary
string a fractional number of times.

Storing Values in Variables

A variable is like a box in the computer’s memory where you can store a
single value. If you want to use the result of an evaluated expression

later in your program, you can save it inside a variable.

Assignment Statements

You’ll store values in variables with an assignment statement. An
assignment statement consists of a variable name, an equal sign (called
the assignment operator), and the value to be stored. If you enter the
assignment statement span = 42, then a variable named spam will have the
integer value 42 stored in it.

Think of a variable as a labeled box that a value is placed in, as in
Figure 1-1.

Figure 1-1: spam = 42 is like telling the program, “The variable spam now has the integer
value 42 in it.”

For example, enter the following into the interactive shell:

O >>> spam = 40
>>> spam
40
>>> eggs = 2
® >>> spam + eggs
42
>>> Spam + eggs + spam
82
© >>> spam = spam + 2

>>> spam
42

A variable is initialized (or created) the first time a value is stored in it
@. After that, you can use it in expressions with other variables and
values @. When a variable is assigned a new value @, the old value is
forgotten, which is why spam evaluated to 42 instead of 46 at the end of

the example. This is called overwriting the variable. Enter the following
code into the interactive shell to try overwriting a string:

>>> spam = 'Hello'
>>> spam
'"Hello'

>>> spam
>>> spam

'Goodbye'

'Goodbye'

Just like the box in Figure 1-2, the spam variable in this example stores
'Hello' until you replace the string with 'Goodbye'.

Figure 1-2: When a new value is assigned to a variable, the old one is forgotten.

Variable Names

A good variable name describes the data it contains. Imagine that you
moved to a new house and labeled all of your moving boxes as Stuff.
You’d never find anything! Most of this book’s examples (and Python’s
documentation) use generic variable names like spam, eggs, and bacon,
which come from the Monty Python “Spam” sketch. But in your
programs, a descriptive name will help make your code more readable.

Though you can name your variables almost anything, Python does
have some naming restrictions. Table 1-3 has examples of legal variable
names. You can name a variable anything as long as it obeys the
following three rules:

« It can be only one word with no spaces.

o It can use only letters, numbers, and the underscore (_) character.
o It can’t begin with a number.

Table 1-3: Valid and Invalid Variable Names

Valid variable names Invalid variable names

current_balance current-balance (hyphens are not
allowed)

currentBalance current balance (spaces are not
allowed)

account4 4account (can’t begin with a number)

_42 42 (can’t begin with a number)

TOTAL_SUM ToTAL_$uM (special characters like $

are not allowed)

hello 'hello' (special characters like ' are
not allowed)

Variable names are case-sensitive, meaning that spam, sPAM, Spam, and
spam are four different variables. Though spanm is a valid variable you can
use in a program, it is a Python convention to start your variables with a
lowercase letter.

‘This book uses camelcase for variable names instead of underscores;
that is, variables 1lookLikeThis instead of 1looking_like_this. Some
experienced programmers may point out that the official Python code
style, PEP 8, says that underscores should be used. I unapologetically
prefer camelcase and point to the “A Foolish Consistency Is the
Hobgoblin of Little Minds” section in PEP 8 itself:

Consistency with the style guide is important. But most
importantly: know when to be inconsistent—sometimes the
style guide just doesn’t apply. When in doubt, use your best
judgment.

Your First Program

While the interactive shell is good for running Python instructions one
at a time, to write entire Python programs, you’ll type the instructions
into the file editor. The file editor is similar to text editors such as
Notepad or TextMate, but it has some features specifically for entering
source code. To open a new file in Mu, click the New button on the top
row.

The window that appears should contain a cursor awaiting your
input, but it’s different from the interactive shell, which runs Python
instructions as soon as you press ENTER. The file editor lets you type in
many instructions, save the file, and run the program. Here’s how you
can tell the difference between the two:

 The interactive shell window will always be the one with the >>>
prompt.
+ The file editor window will not have the >>> prompt.

Now it’s time to create your first program! When the file editor
window opens, enter the following into it:

O # This program says hello and asks for my name.

A print('Hello, world!')
print('What is your name?') # ask for their name

© myName = input()

O print('It is good to meet you, + myName)

O print('The length of your name is:')
print(len(myName))

O print('What is your age?') # ask for their age
myAge = input()
print('You will be

' + str(int(myAge) + 1) + ' in a year.')

Once you’ve entered your source code, save it so that you won’t have
to retype it each time you start Mu. Click the Save button, enter hello.py
in the File Name field, and then click Save.

You should save your programs every once in a while as you type
them. That way, if the computer crashes or you accidentally exit Mu,

you won’t lose the code. As a shortcut, you can press CTRL-S on
Windows and Linux or 3-S on macOS to save your file.
y

Once you’ve saved, let’s run our program. Press the F5 key. Your
program should run in the interactive shell window. Remember, you
have to press F5 from the file editor window, not the interactive shell
window. Enter your name when your program asks for it. The
program’s output in the interactive shell should look something like
this:

Python 3.7.0b4 (v3.7.0b4:eb96c37699, May 2 2018, 19:02:22) [MSC v.1913 64
bit

(AMD64)] on win32

Type "copyright", "credits" or "license()" for more information.

>>> ================================ RESTART

>>>

Hello, world!

What is your name?

Al

It is good to meet you, Al
The length of your name is:
2

What is your age?

4

You will be 5 in a year.
>>>

When there are no more lines of code to execute, the Python
program terminates; that is, it stops running. (You can also say that the
Python program exits.)

You can close the file editor by clicking the X at the top of the
window. To reload a saved program, select File»Open... from the menu.
Do that now, and in the window that appears, choose bello.py and click
the Open button. Your previously saved hello.py program should open in
the file editor window.

You can view the execution of a program using the Python Tutor
visualization tool at hetp://pythontutor.com/. You can see the execution of
this particular program at hetps://author.com/bellopy/. Click the forward
button to move through each step of the program’s execution. You’ll be
able to see how the variables’ values and the output change.

http://pythontutor.com/
https://autbor.com/hellopy/

Dissecting Your Program

With your new program open in the file editor, let’s take a quick tour of
the Python instructions it uses by looking at what each line of code
does.

Comments

The following line is called a comzment.

@ # This program says hello and asks for my name.

Python ignores comments, and you can use them to write notes or
remind yourself what the code is trying to do. Any text for the rest of
the line following a hash mark (#) is part of a comment.

Sometimes, programmers will put a # in front of a line of code to
temporarily remove it while testing a program. This is called
commenting out code, and it can be useful when you’re trying to figure
out why a program isn’t working. You can remove the # later when you
are ready to put the line back in.

Python also ignores the blank line after the comment. You can add as
many blank lines to your program as you want. This can make your
code easier to read, like paragraphs in a book.

The print() Function

The print() function displays the string value inside its parentheses on
the screen.

A print('Hello, world!')
print('What is your name?') # ask for their name

The line print('Hello, world!') means “Print out the text in the string
'Hello, world!'.” When Python executes this line, you say that Python is
calling the print() function and the string value is being passed to the
function. A value that is passed to a function call is an argument. Notice

that the quotes are not printed to the screen. They just mark where the
string begins and ends; they are not part of the string value.

You can also use this function to put a blank line on the screen; just call
print() with nothing in between the parentheses.

When you write a function name, the opening and closing
parentheses at the end identify it as the name of a function. This is why
in this book, you’ll see print() rather than print. Chapter 3 describes
functions in more detail.

The input() Function

The input() function waits for the user to type some text on the
keyboard and press ENTER.

© myName = input()

This function call evaluates to a string equal to the user’s text, and
the line of code assigns the mynane variable to this string value.

You can think of the input() function call as an expression that
evaluates to whatever string the user typed in. If the user entered 'at’,
then the expression would evaluate to myName = 'AL".

If you call input() and see an error message, like NameError: name 'Al’
is not defined, the problem is that you’re running the code with Python
2 instead of Python 3.

Printing the User’s Name

The following call to print() actually contains the expression '1t is good
to meet you, ' + myName between the parentheses.

O print('It is good to meet you, + myName)

Remember that expressions can always evaluate to a single value. If

'al" is the value stored in myname on line O, then this expression evaluates
to 'It is good to meet you, Al'. T'his single string value is then passed to
print(), which prints it on the screen.

The len() Function

You can pass the len() function a string value (or a variable containing a
string), and the function evaluates to the integer value of the number of
characters in that string.

O print('The length of your name is:')
print(len(myName))

Enter the following into the interactive shell to try this:

>>> len('hello')

5

>>> len('My very energetic monster just scarfed nachos.')
46

>>> len('")

0

Just like those examples, 1en(myNane) evaluates to an integer. It is then
passed to print() to be displayed on the screen. The print() function
allows you to pass it either integer values or string values, but notice the
error that shows up when you type the following into the interactive

shell:

>>> print('I am ' + 29 + ' years old.')
Traceback (most recent call last):
File "<pyshell#6>", 1line 1, in <module>
print('I am ' + 29 + ' years old.")
TypeError: can only concatenate str (not "int") to str

The print() function isn’t causing that error, but rather it’s the
expression you tried to pass to print(). You get the same error message if
you type the expression into the interactive shell on its own.

>>> 'T am ' + 29 + ' years old.'
Traceback (most recent call last):

File "<pyshell#7>", 1line 1, in <module>
'T am ' + 29 + ' years old.'
TypeError: can only concatenate str (not "int") to str

Python gives an error because the + operator can only be used to add
two integers together or concatenate two strings. You can’t add an
integer to a string, because this is ungrammatical in Python. You can fix
this by using a string version of the integer instead, as explained in the
next section.

The str(), int(), and float() Functions

If you want to concatenate an integer such as 29 with a string to pass to
print(), you'll need to get the value '29', which is the string form of 29.
The str() function can be passed an integer value and will evaluate to a
string value version of the integer, as follows:

>>> str(29)

|29l

>>> print('I am ' + str(29) + ' years old.')
I am 29 years old.

Because str(29) evaluates to '29', the expression 'T am ' + str(29) + '
years old.' evaluates to 'I am ' + '29' + years old.', which in turn
evaluates to 'I am 29 years old.'. This is the value that is passed to the
print() function.

The str(), int(), and float() functions will evaluate to the string,
integer, and floating-point forms of the value you pass, respectively. Try
converting some values in the interactive shell with these functions and
watch what happens.

>>> str(0)

9"

>>> str(-3.14)
'-3.14"

>>> int('42')
42

>>> int('-99"')
-99

>>> int(1.25)
1

>>> int(1.99)

1

>>> float('3.14')
3.14

>>> float(10)
10.0

"The previous examples call the str(), int(), and float() functions and
pass them values of the other data types to obtain a string, integer, or
floating-point form of those values.

The str() function is handy when you have an integer or float that
you want to concatenate to a string. The int() function is also helpful if
you have a number as a string value that you want to use in some
mathematics. For example, the input() function always returns a string,
even if the user enters a number. Enter spam = input() into the interactive
shell and enter 101 when it waits for your text.

>>> spam = input()
101

>>> spam

'101'

The value stored inside span isn’t the integer 101 but the string '101°.
If you want to do math using the value in spam, use the int() function to
get the integer form of spam and then store this as the new value in span.

>>> spam = int(spam)
>>> spam
101

Now you should be able to treat the spam variable as an integer
instead of a string.

>>> spam * 10 / 5
202.0

Note that if you pass a value to int() that it cannot evaluate as an
integer, Python will display an error message.

>>> 1nt('99.99')
Traceback (most recent call last):
File "<pyshell#18>", 1line 1, in <module>

int('99.99')
ValueError: invalid literal for int() with base 10: '99.99'
>>> int('twelve')
Traceback (most recent call last):
File "<pyshell#19>", line 1, in <module>
int('twelve')
ValueError: invalid literal for int() with base 10: 'twelve'

The int() function is also useful if you need to round a floating-point
number down.

>>> int(7.7)

7

>>> 1nt(7.7) + 1
8

You used the int() and str() functions in the last three lines of your
program to get a value of the appropriate data type for the code.

O print('What is your age?') # ask for their age
myAge = input()
print('You will be ' + str(int(myAge) + 1) + ' in a year.')

4)
TEXT AND NUMBER EQUIVALENCE

Although the string value of a number is considered a completely different value from
the integer or floating-point version, an integer can be equal to a floating point.

>>> 42
False
>>> 42 =
True

>>> 42.0 == 0042.000
True

|42l

42.0

Python makes this distinction because strings are text, while integers and floats are
both numbers.

g J

The myage variable contains the value returned from input(). Because
the input() function always returns a string (even if the user typed in a
number), you can use the int(nyAge) code to return an integer value of

the string in myage. This integer value is then added to 1 in the expression
int(myAge) + 1.

The result of this addition is passed to the str() function:
str(int(myAge) + 1). The string value returned is then concatenated with
the strings 'You will be ' and ' in a year.' to evaluate to one large string
value. This large string is finally passed to print() to be displayed on the
screen.

Let’s say the user enters the string '4' for myage. The string '4' is
converted to an integer, so you can add one to it. The result is 5. The
str() function converts the result back to a string, so you can
concatenate it with the second string, 'in a year.', to create the final
message. These evaluation steps would look something like the
following:

o+

"in a year.')

+

print('You will be ' + str(int(myAge) + 1)

str(int("4") + 1)

+

print('You will be ' 'in a year.')

+

print('You will be ' + str(4 +1) + ' in a year.')
print('You will be ' + str(5) + ' in a year.')
print('You will be " + 's’ + ' in a year.')
print('You will be 5’ + ' in a year.")

A

print('You will be 5 in a year.')

Summary

You can compute expressions with a calculator or enter string
concatenations with a word processor. You can even do string
replication easily by copying and pasting text. But expressions, and their
component values—operators, variables, and function calls—are the
basic building blocks that make programs. Once you know how to

handle these elements, you will be able to instruct Python to operate on
large amounts of data for you.

It is good to remember the different types of operators (+, -, *, /, //, %,
and ** for math operations, and + and * for string operations) and the
three data types (integers, floating-point numbers, and strings)
introduced in this chapter.

I introduced a few different functions as well. The print() and input()
functions handle simple text output (to the screen) and input (from the
keyboard). The ten() function takes a string and evaluates to an int of
the number of characters in the string. The str(), int(), and float()
functions will evaluate to the string, integer, or floating-point number
form of the value they are passed.

In the next chapter, you'll learn how to tell Python to make
intelligent decisions about what code to run, what code to skip, and
what code to repeat based on the values it has. This is known as flow
control, and it allows you to write programs that make intelligent
decisions.

Practice Questions

1. Which of the following are operators, and which are values?

*

'hello'
-88.8
/

+

5

2. Which of the following is a variable, and which is a string?

spam
'spam'

3. Name three data types.

4. What is an expression made up of? What do all expressions do?

5. This chapter introduced assignment statements, like span = 16. What
is the difference between an expression and a statement?

6. What does the variable bacon contain after the following code runs?

bacon = 20
bacon + 1

7. What should the following two expressions evaluate to?

'spam' + 'spamspam'
'spam' * 3

8. Why is eqgs a valid variable name while 100 is invalid?

9. What three functions can be used to get the integer, floating-point
number, or string version of a value?

10. Why does this expression cause an error? How can you fix it?

'T have eaten ' + 99 + ' burritos.'

Extra credit: Search online for the Python documentation for the
len() function. It will be on a web page titled “Built-in Functions.”
Skim the list of other functions Python has, look up what the round()
function does, and experiment with it in the interactive shell.

2
FLOW CONTROL

So, you know the basics of individual instructions and that a program is just a series of instructions. But
programming’s real strength isn’t just running one instruction after another like a weekend errand list. Based
on how expressions evaluate, a program can decide to skip instructions, repeat them, or choose one of several
instructions to run. In fact, you almost never want your programs to start from the first line of code and
simply execute every line, straight to the end. Flow control statements can decide which Python instructions to
execute under which conditions.

These flow control statements directly correspond to the symbols in a flowchart, so I'll provide flowchart
versions of the code discussed in this chapter. Figure 2-1 shows a flowchart for what to do if it’s raining.
Follow the path made by the arrows from Start to End.

No —#={ Wait a while. |-————

Yes Have umbrellag

No Yes

'

Go outside.

Yes —

AA
g

End

Figure 2-1: A flowchart to tell you what to do if it is raining

In a flowchart, there is usually more than one way to go from the start to the end. The same is true for
lines of code in a computer program. Flowcharts represent these branching points with diamonds, while the
other steps are represented with rectangles. The starting and ending steps are represented with rounded
rectangles.

But before you learn about flow control statements, you first need to learn how to represent those yes and
no options, and you need to understand how to write those branching points as Python code. To that end,
let’s explore Boolean values, comparison operators, and Boolean operators.

Boolean Values

While the integer, floating-point, and string data types have an unlimited number of possible values, the
Boolean data type has only two values: True and Fatse. (Boolean is capitalized because the data type is named
after mathematician George Boole.) When entered as Python code, the Boolean values True and Fatse lack
the quotes you place around strings, and they always start with a capital T or F, with the rest of the word in
lowercase. Enter the following into the interactive shell. (Some of these instructions are intentionally
incorrect, and they’ll cause error messages to appear.)

@ >>> spam = True
>>> spam
True
A >>> true
Traceback (most recent call last):
File "<pyshell#2>", line 1, in <module>
true
NameError: name 'true' is not defined
© >>> True = 2 + 2
SyntaxError: can't assign to keyword

Like any other value, Boolean values are used in expressions and can be stored in variables @. If you don’t

use the proper case ® or you try to use True and False for variable names ©, Python will give you an error
message.

Comparison Operators

Comparison operators, also called relational operators, compare two values and evaluate down to a single Boolean
value. Table 2-1 lists the comparison operators.

Table 2-1: Comparison Operators

Operator Meaning

== Equal to

1= Not equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

These operators evaluate to True or False depending on the values you give them. Let’s try some operators
now, starting with == and !=.

>>> 42 == 42
True

>>> 42 == 99
False

>>> 2 1= 3
True

>>> 2 1= 2
False

As you might expect, == (equal to) evaluates to True when the values on both sides are the same, and != (not
equal to) evaluates to True when the two values are different. The == and != operators can actually work with
values of any data type.

>>> 'hello' == 'hello'
True
>>> 'hello' == 'Hello'
False
>>> 'dog' != 'cat'
True
>>> True == True
True
>>> True != False
True
>>> 42 == 42.0
True

Q >>> 42 == '42"
False

Note that an integer or floating-point value will always be unequal to a string value. The expression 42 ==
'a2' @ evaluates to False because Python considers the integer 42 to be different from the string '42'.

The <, >, <=, and >= operators, on the other hand, work properly only with integer and floating-point
values.

>>> 42 < 100
True
>>> 42 > 100
False
>>> 42 < 42
False
>>> eggCount = 42
@ >>> eggCount <= 42
True
>>> myAge = 29
A >>> myAge >= 10
True

4)
THE DIFFERENCE BETWEEN THE == AND = OPERATORS

You might have noticed that the == operator (equal to) has two equal signs, while the = operator (assignment) has just one equal sign. It’s
easy to confuse these two operators with each other. Just remember these points:

 The == operator (equal to) asks whether two values are the same as each other.

 The = operator (assignment) puts the value on the right into the variable on the left.

To help remember which is which, notice that the == operator (equal to) consists of two characters, just like the != operator (not equal
to) consists of two characters.

. J

You'll often use comparison operators to compare a variable’s value to some other value, like in the

eggCount <= 42 @ and myAge >= 10 @ examples. (After all, instead of entering 'dog' != 'cat' in your code, you
could have just entered True.) You’ll see more examples of this later when you learn about flow control
statements.

Boolean Operators

The three Boolean operators (and, or, and not) are used to compare Boolean values. Like comparison
operators, they evaluate these expressions down to a Boolean value. Let’s explore these operators in detail,
starting with the and operator.

Binary Boolean Operators

The and and or operators always take two Boolean values (or expressions), so they’re considered binary
operators. The and operator evaluates an expression to True if both Boolean values are True; otherwise, it
evaluates to False. Enter some expressions using and into the interactive shell to see it in action.

>>> True and True
True

>>> True and False
False

A truth table shows every possible result of a Boolean operator. Table 2-2 is the truth table for the and
operator.

Table 2-2: The and Operator’s Truth Table

Expression Evaluates to . . .
True and True True
True and False False
False and True False

False and False False

On the other hand, the or operator evaluates an expression to True if either of the two Boolean values is
True. If both are False, it evaluates to False.

>>> False or True
True

>>> False or False
False

You can see every possible outcome of the or operator in its truth table, shown in Table 2-3.

Table 2-3: The or Operator’s Truth Table

Expression Evaluates to . . .
True or True True
True or False True
False or True True
False or False False

The not Operator

Unlike and and or, the not operator operates on only one Boolean value (or expression). This makes it a unary
operator. The not operator simply evaluates to the opposite Boolean value.

>>> not True
False

@ >>> not not not not True
True

Much like using double negatives in speech and writing, you can nest not operators @, though there’s
never not no reason to do this in real programs. Table 2-4 shows the truth table for not.

Table 2-4: The not Operator’s Truth Table

Expression Evaluates to . . .

Expression Evaluates to . . .

not True False

not False True

Mixing Boolean and Comparison Operators

Since the comparison operators evaluate to Boolean values, you can use them in expressions with the
Boolean operators.

Recall that the and, or, and not operators are called Boolean operators because they always operate on the
Boolean values True and Fatse. While expressions like 4 < 5 aren’t Boolean values, they are expressions that
evaluate down to Boolean values. Try entering some Boolean expressions that use comparison operators into
the interactive shell.

>>> (4 < 5) and (5 < 6)

True
>>> (4 < 5) and (9 < 6)
False
>>> (1 == 2) or (2 == 2)
True

The computer will evaluate the left expression first, and then it will evaluate the right expression. When
it knows the Boolean value for each, it will then evaluate the whole expression down to one Boolean value.
You can think of the computer’s evaluation process for (4 < 5) and (5 < 6) as the following:

(4 < 5) and (5 < 6)

True and (5 < 6)

/

True and True

|

True

You can also use multiple Boolean operators in an expression, along with the comparison operators:

>>> 2+ 2==4and not 2 +2==5and 2 *2==2+2
True

The Boolean operators have an order of operations just like the math operators do. After any math and
comparison operators evaluate, Python evaluates the not operators first, then the and operators, and then the
or operators.

Elements of Flow Control

Flow control statements often start with a part called the condition and are always followed by a block of code
called the clause. Before you learn about Python’s specific flow control statements, I'll cover what a condition
and a block are.

Conditions

The Boolean expressions you’ve seen so far could all be considered conditions, which are the same thing as
expressions; condition is just a more specific name in the context of flow control statements. Conditions
always evaluate down to a Boolean value, True or Fatse. A flow control statement decides what to do based on
whether its condition is True or False, and almost every flow control statement uses a condition.

Blocks of Code

Lines of Python code can be grouped together in blocks. You can tell when a block begins and ends from the
indentation of the lines of code. There are three rules for blocks.

+ Blocks begin when the indentation increases.
« Blocks can contain other blocks.
+ Blocks end when the indentation decreases to zero or to a containing block’s indentation.

Blocks are easier to understand by looking at some indented code, so let’s find the blocks in part of a small
game program, shown here:

name = 'Mary'

password = 'swordfish'

if name == 'Mary':

@ print('Hello, Mary')

if password == 'swordfish':
@ print('Access granted.')
else:
® print('Wrong password.')

You can view the execution of this program at bitps://autbor.com/blocks/. The first block of code @ starts at
the line print('Hello, Mary') and contains all the lines after it. Inside this block is another block @, which has
only a single line in it: print('Access Granted.'). The third block ® is also one line long: print('wrong

password.').

Program Execution

In the previous chapter’s bello.py program, Python started executing instructions at the top of the program
going down, one after another. The program execution (or simply, evecution) is a term for the current
instruction being executed. If you print the source code on paper and put your finger on each line as it is
executed, you can think of your finger as the program execution.

Not all programs execute by simply going straight down, however. If you use your finger to trace through
a program with flow control statements, you’ll likely find yourself jumping around the source code based on
conditions, and you’ll probably skip entire clauses.

Flow Control Statements

Now, let’s explore the most important piece of flow control: the statements themselves. The statements
represent the diamonds you saw in the flowchart in Figure 2-1, and they are the actual decisions your
programs will make.

if Statements

The most common type of flow control statement is the if statement. An if statement’s clause (that is, the
block following the if statement) will execute if the statement’s condition is True. The clause is skipped if the
condition is False.

In plain English, an if statement could be read as, “If this condition is true, execute the code in the
clause.” In Python, an if statement consists of the following:

+ The if keyword

+ A condition (that is, an expression that evaluates to True or False)

« A colon

« Starting on the next line, an indented block of code (called the if clause)

https://autbor.com/blocks/

For example, let’s say you have some code that checks to see whether someone’s name is Alice. (Pretend
name was assigned some value earlier.)

if name == 'Alice':
print('Hi, Alice.')

All flow control statements end with a colon and are followed by a new block of code (the clause). This if
statement’s clause is the block with print('Hi, Alice.'). Figure 2-2 shows what a flowchart of this code would

look like.

True—| print('Hi, Alice.")

False

End

Figure 2-2: The flowchart for an if statement

else Statements

An if clause can optionally be followed by an else statement. The etse clause is executed only when the if
statement’s condition is False. In plain English, an else statement could be read as, “If this condition is true,
execute this code. Or else, execute that code.” An else statement doesn’t have a condition, and in code, an
else statement always consists of the following:

* The etse keyword
+ A colon
« Starting on the next line, an indented block of code (called the etse clause)

Returning to the Alice example, let’s look at some code that uses an else statement to offer a different
greeting if the person’s name isn’t Alice.

if name == 'Alice':
print('Hi, Alice.')

else:
print('Hello, stranger.')

Figure 2-3 shows what a flowchart of this code would look like.

name == 'Alice’ True—— print('Hi, Alice.')

False

I = print('Hello, stranger.')

End -

Figure 2-3: The flowchart for an else statement

elif Statements

While only one of the if or else clauses will execute, you may have a case where you want one of many
possible clauses to execute. The elif statement is an “else if” statement that always follows an if or another
elif statement. It provides another condition that is checked only if all of the previous conditions were False.
In code, an elif statement always consists of the following:

+ The elif keyword

+ A condition (that is, an expression that evaluates to True or False)

« A colon

» Starting on the next line, an indented block of code (called the elif clause)

Let’s add an elif to the name checker to see this statement in action.

if name == 'Alice':
print('Hi, Alice.')
elif age < 12:
print('You are not Alice, kiddo.')

This time, you check the person’s age, and the program will tell them something different if they’re
younger than 12. You can see the flowchart for this in Figure 2-4.

True—m print('Hi, Alice.")
False
age < 12 True—®| print('You are not Alice, kiddo.') }—
False
End -

-t}
Figure 2-4: The flowchart for an elif statement

The elif clause executes if age < 12 is True and name == 'Alice’ is False. However, if both of the conditions
are False, then both of the clauses are skipped. It is 7oz guaranteed that at least one of the clauses will be
executed. When there is a chain of elif statements, only one or none of the clauses will be executed. Once
one of the statements’ conditions is found to be True, the rest of the elif clauses are automatically skipped.
For example, open a new file editor window and enter the following code, saving it as vampire.py:

name = 'Carol'
age = 3000
if name == 'Alice':
print('Hi, Alice.')
elif age < 12:
print('You are not Alice, kiddo.')
elif age > 2000:
print('Unlike you, Alice is not an undead, immortal vampire.')
elif age > 100:
print('You are not Alice, grannie.')

You can view the execution of this program at bttps://autbor.com/vampire/. Here, I've added two more elif
statements to make the name checker greet a person with different answers based on age. Figure 2-5 shows
the flowchart for this.

https://autbor.com/vampire/

name == 'Alice’ True —-| print('Hi, Alice.")
False
‘—Tme—h print('You are not Alice, kiddo.')

False

print('Unlike you, Alice is not

*

age > 2000 True— an undead, immortal vampire.’)]
False

age > 100 True—®| print(‘You are not Alice, grannie.') p—
False
End E

Figure 2-5: The flowchart for multiple elif statements in the vampire.py program

The order of the elif statements does matter, however. Let’s rearrange them to introduce a bug.
Remember that the rest of the elif clauses are automatically skipped once a True condition has been found, so
if you swap around some of the clauses in vampire.py, you run into a problem. Change the code to look like
the following, and save it as vampire2.py:

name = 'Carol'
age = 3000
if name == 'Alice':
print('Hi, Alice.')
elif age < 12:
print('You are not Alice, kiddo.')
@ elif age > 100:
print('You are not Alice, grannie.')
elif age > 2000:
print('Unlike you, Alice is not an undead, immortal vampire.')

You can view the execution of this program at heps://autbor.com/vampire2/. Say the age variable contains
the value 3000 before this code is executed. You might expect the code to print the string 'Unlike you, Alice is
not an undead, immortal vampire.'. However, because the age > 100 condition is True (after all, 3,000 is greater
than 100) @, the string 'You are not Alice, gramnie.' is printed, and the rest of the elif statements are
automatically skipped. Remember that at most only one of the clauses will be executed, and for etif
statements, the order matters!

Figure 2-6 shows the flowchart for the previous code. Notice how the diamonds for age > 100 and age »
2000 are swapped.

Optionally, you can have an else statement after the last elif statement. In that case, it is guaranteed that
at least one (and only one) of the clauses will be executed. If the conditions in every if and elif statement are
False, then the else clause is executed. For example, let’s re-create the Alice program to use if, elif, and else
clauses.

name = 'Carol'
age = 3000
if name == 'Alice':
print('Hi, Alice.')
elif age < 12:
print('You are not Alice, kiddo.')
else:
print('You are neither Alice nor a little kid.')

You can view the execution of this program at heps://autbor.com/littlekid/. Figure 2-7 shows the flowchart
for this new code, which we’ll save as /ittleKid.py.

In plain English, this type of flow control structure would be “If the first condition is true, do this. Else, if
the second condition is true, do that. Otherwise, do something else.” When you use if, elif, and else
statements together, remember these rules about how to order them to avoid bugs like the one in Figure 2-6.
First, there is always exactly one if statement. Any elif statements you need should follow the if statement.
Second, if you want to be sure that at least one clause is executed, close the structure with an etse statement.

https://autbor.com/vampire2/
https://autbor.com/littlekid/

name == ‘Alice’ True —m| print('Hi, Alice.')

False

‘

age < 12 True— print('You are not Alice, kiddo.")

False

age > 100 True —®| print(‘You are not Alice, grannie.') |—

*

False

A\ V 4

age > 2000 True —i|

VA \

print('Unlike you, Alice is not
an undead, immortal vampire.')

False

\ et
|
/

Figure 2-6: The flowchart for the vampire2.py program. The X path will logically never happen, because if age were greater than 2000, it
would have already been greater than 100.

True—] print('Hi, Alice.")

name == "Alice’

False

age < 12 True—={ print('You are not Alice, kiddo.')

False

print{'You are neither Alice
nor a little kid.')

Figure 2-7: Flowchart for the previous littleKid.py program

while Loop Statements

You can make a block of code execute over and over again using a while statement. The code in a white clause
will be executed as long as the while statement’s condition is True. In code, a while statement always consists of
the following:

+ The whitle keyword

+ A condition (that is, an expression that evaluates to True or False)

« A colon

« Starting on the next line, an indented block of code (called the while clause)

You can see that a while statement looks similar to an if statement. The difference is in how they behave.
At the end of an if clause, the program execution continues after the if statement. But at the end of a while
clause, the program execution jumps back to the start of the while statement. The white clause is often called
the while loop or just the loop.

Let’s look at an if statement and a while loop that use the same condition and take the same actions based
on that condition. Here is the code with an if statement:

spam = 0

if spam < 5:
print('Hello, world.")
spam = spam + 1

Here is the code with a while statement:

spam = 0

while spam < 5:
print('Hello, world.")
spam = spam + 1

These statements are similar—both if and white check the value of span, and if it’s less than 5, they print a
message. But when you run these two code snippets, something very different happens for each one. For the
if statement, the output is simply "Hello, world.". But for the while statement, it’s "Hello, world." repeated five
times! Take a look at the flowcharts for these two pieces of code, Figures 2-8 and 2-9, to see why this
happens.

True +

spam < S print('Hello, world.")

spam = spam + 1

End

Figure 2-8: The flowchart for the if statement code

True *

spam < 5 print('Hello, world.")

spam = spam + 1

False

End

Figure 2-9: The flowchart for the while statement code

The code with the if statement checks the condition, and it prints Hello, world. only once if that
condition is true. The code with the white loop, on the other hand, will print it five times. The loop stops
after five prints because the integer in spam increases by one at the end of each loop iteration, which means
that the loop will execute five times before span < 5 is False.

In the while loop, the condition is always checked at the start of each iteration (that is, each time the loop is
executed). If the condition is True, then the clause is executed, and afterward, the condition is checked again.
The first time the condition is found to be Fatse, the while clause is skipped.

An Annoying while Loop

Here’s a small example program that will keep asking you to type, literally, your name. Select File » New to
open a new file editor window, enter the following code, and save the file as yourName.py:

@ name =
® while name != 'your name':
print('Please type your name.')
©® name = input()
O print('Thank you!"')

You can view the execution of this program at heps://autbor.com/yourname/. First, the program sets the name
variable @ to an empty string. This is so that the name != 'your name' condition will evaluate to True and the
program execution will enter the white loop’s clause @.

The code inside this clause asks the user to type their name, which is assigned to the name variable ©. Since
this is the last line of the block, the execution moves back to the start of the white loop and reevaluates the

condition. If the value in name is 7ot equal to the string 'your name', then the condition is True, and the
execution enters the while clause again.

But once the user types your name, the condition of the while 100p will be 'your name' != 'your name', which
evaluates to False. The condition is now Fatse, and instead of the program execution reentering the while
loop’s clause, Python skips past it and continues running the rest of the program @. Figure 2-10 shows a
flowchart for the yourName.py program.

https://autbor.com/yourname/

name != 'your name' print('Please type your name.')

False

name = input()

print('Thank you!')

End

Figure 2-10: A flowchart of the yourName.py program

Now, let’s see yourName.py in action. Press F5 to run it, and enter something other than your name a few
times before you give the program what it wants.

Please type your name.
Al

Please type your name.
Albert

Please type your name.
%HQ#%* (A& !

Please type your name.
your name

Thank you!

If you never enter your nanme, then the while loop’s condition will never be False, and the program will just
keep asking forever. Here, the input() call lets the user enter the right string to make the program move on.
In other programs, the condition might never actually change, and that can be a problem. Let’s look at how
you can break out of a while loop.

break Statements

There is a shortcut to getting the program execution to break out of a while loop’s clause early. If the
execution reaches a break statement, it immediately exits the while loop’s clause. In code, a break statement
simply contains the break keyword.

Pretty simple, right? Here’s a program that does the same thing as the previous program, but it uses a
break statement to escape the loop. Enter the following code, and save the file as yourNamze2.py:

@ while True:
print('Please type your name.')
® name = input()
© if name == 'your name':
O break
O print('Thank you!"')

You can view the execution of this program at hsps://autbor.com/yourname2/. The first line @ creates an
infinite Joop; it is a while loop whose condition is always True. (The expression True, after all, always evaluates
down to the value True.) After the program execution enters this loop, it will exit the loop only when a break
statement is executed. (An infinite loop that never exits is a common programming bug.)

Just like before, this program asks the user to enter your name @. Now, however, while the execution is still
inside the while loop, an if statement checks ® whether name is equal to 'your name'. If this condition is True,

the break statement is run @, and the execution moves out of the loop to print('Thank you!') @. Otherwise, the
if statement’s clause that contains the break statement is skipped, which puts the execution at the end of the
while loop. At this point, the program execution jumps back to the start of the while statement @ to recheck
the condition. Since this condition is merely the True Boolean value, the execution enters the loop to ask the
user to type your name again. See Figure 2-11 for this program’s flowchart.

Run yourName2.py, and enter the same text you entered for yourName.py. The rewritten program should
respond in the same way as the original.

True +

True > print('Please type your name.')
/L l

name = input()

name == 'your name’ True—=] break

False

Y

print("Thank you!") |-

Figure 2-11: The flowchart for the yourName2.py program with an infinite loop. Note that the X path will logically never happen, because
the loop condition is always True.

continue Statements

Like break statements, continue statements are used inside loops. When the program execution reaches a
continue statement, the program execution immediately jumps back to the start of the loop and reevaluates
the loop’s condition. (This is also what happens when the execution reaches the end of the loop.)

Let’s use continue to write a program that asks for a name and password. Enter the following code into a
new file editor window and save the program as swordfish.py.

https://autbor.com/yourname2/

TRAPPED IN AN INFINITE LOOP?

If you ever run a program that has a bug causing it to get stuck in an infinite loop, press CTRL-C or select Shell » Restart Shell from

IDLE’s menu. This will send a KeyboardInterrupt error to your program and cause it to stop immediately. Try stopping a program by
creating a simple infinite loop in the file editor, and save the program as infiniteLoop.py.

while True:
print('Hello, world!")

When you run this program, it will print Hello, world! to the screen forever because the while statement’s condition is always
True. CTRL-C is also handy if you want to simply terminate your program immediately, even if it’s not stuck in an infinite loop.

- 4

while True:
print('Who are you?')
name = input()
@ if name != 'Joe':
® continue
print('Hello, Joe. What is the password? (It is a fish.)'")
© password = input()
if password == 'swordfish':
O break
O print('Access granted.')

If the user enters any name besides joe @, the continue statement @ causes the program execution to jump
back to the start of the loop. When the program reevaluates the condition, the execution will always enter
the loop, since the condition is simply the value True. Once the user makes it past that if statement, they are
asked for a password @. If the password entered is swordfish, then the break statement @ is run, and the

execution jumps out of the while loop to print Access granted ©. Otherwise, the execution continues to the
end of the while loop, where it then jumps back to the start of the loop. See Figure 2-12 for this program’s
flowchart.

True

True

False

'

print(‘'Who are you?')

:

name = input()

continue

print('Hello, Joe. What is the password? (It is a fish.)")

False

:

password = input()

password == 'swordfish'

break

W

print('Access granted.')

Figure 2-12: A flowchart for swordfish.py. The X path will logically never happen, because the loop condition is always True.

-

Conditions will consider some values in other data types equivalent to True and False. When used in conditions, 0, 0.0, and '' (the
empty string) are considered False, while all other values are considered True. For example, look at the following program:

“TRUTHY” AND “FALSEY” VALUES

name = "'

@ while not name:

print('Enter your name:')

name = input()

~

print('How many guests will you have?')
numOfGuests = int(input())
® if numOfGuests:
© print('Be sure to have enough room for all your guests.')
print('Done')

You can view the execution of this program at hrtps://autbor.com/bowmanyguests/. If the user enters a blank string for name, then the
while statement’s condition will be True @, and the program continues to ask for a name. If the value for numOfGuests is not @ @, then
the condition is considered to be True, and the program will print a reminder for the user ©.

You could have entered not name != '' instead of not name, and numOfGuests != 0 instead of numOfGuests, but using the truthy

and falsey values can make your code easier to read.

- J

Run this program and give it some input. Until you claim to be Joe, the program shouldn’t ask for a
password, and once you enter the correct password, it should exit.

Who are you?
I'm fine, thanks. Who are you?
Who are you?

Joe

Hello, Joe. What is the password? (It is a fish.)
Mary

Who are you?

Joe

Hello, Joe. What is the password? (It is a fish.)
swordfish

Access granted.

You can view the execution of this program at https://autbor.com/bellojoe/.

for Loops and the range() Function

The while loop keeps looping while its condition is True (which is the reason for its name), but what if you
want to execute a block of code only a certain number of times? You can do this with a for loop statement
and the range() function.

In code, a for statement looks something like for i in range(s): and includes the following:

+ The for keyword

« Avariable name

» The in keyword

+ A call to the range() method with up to three integers passed to it

« A colon

» Starting on the next line, an indented block of code (called the for clause)

Let’s create a new program called fiveTimes.py to help you see a for loop in action.

print('My name is')
for 1 in range(5):
print('Jimmy Five Times (' + str(i) + ')")

You can view the execution of this program at hzps://autbor.com/fivetimesfor/. The code in the for loop’s
clause is run five times. The first time it is run, the variable 1 is set to 6. The print() call in the clause will
print Jimmy Five Times (0). After Python finishes an iteration through all the code inside the for loop’s clause,
the execution goes back to the top of the loop, and the for statement increments i by one. This is why
range(5) results in five iterations through the clause, with i being set to e, then 1, then 2, then 3, and then 4.
The variable i will go up to, but will not include, the integer passed to range(). Figure 2-13 shows a flowchart
for the fiveTimes.py program.

When you run this program, it should print immy Five Times followed by the value of i five times before
leaving the for loop.

https://autbor.com/howmanyguests/
https://autbor.com/hellojoe/
https://autbor.com/fivetimesfor/

My name is

Jimmy Five Times (0)
Jimmy Five Times (1)
Jimmy Five Times (2)
Jimmy Five Times (3)
Jimmy Five Times (4)

You can use break and continue statements inside for loops as well. The continue statement will continue to the next
value of the for loop’s counter, as if the program execution had reached the end of the loop and returned to the start. In
fact, you can use continue and break statements only inside while and for loops. If you try to use these statements
elsewbere, Python will give you an error.

print('My name is')

Looping
Y

for i in range (5) print('Jimmy Five Times (' + str(i) + ')')

Done looping

End

Figure 2-13: The flowchart for fiveTimes.py

As another for loop example, consider this story about the mathematician Carl Friedrich Gauss. When
Gauss was a boy, a teacher wanted to give the class some busywork. The teacher told them to add up all the
numbers from 0 to 100. Young Gauss came up with a clever trick to figure out the answer in a few seconds,
but you can write a Python program with a for loop to do this calculation for you.

@ total = 0

® for num in range(101)
© total = total + num

O print(total)

The result should be 5,050. When the program first starts, the total variable is set to e @. The for loop @
then executes total = total + nun © 100 times. By the time the loop has finished all of its 100 iterations, every
integer from e to 160 will have been added to total. At this point, totatl is printed to the screen @. Even on the
slowest computers, this program takes less than a second to complete.

(Young Gauss figured out a way to solve the problem in seconds. There are 50 pairs of numbers that add
up to 101: 1 + 100, 2 + 99, 3 + 98, and so on, until 50 + 51. Since 50 x 101 is 5,050, the sum of all the numbers
from 0 to 100 is 5,050. Clever kid!)

An Equivalent while Loop

You can actually use a while loop to do the same thing as a for loop; for loops are just more concise. Let’s
rewrite fivelimes.py to use a while loop equivalent of a for loop.

print('My name is')

i=0

while 1 < 5:
print('Jimmy Five Times (' + str(i) + "')')
i=1+1

You can view the execution of this program at heps://autbor.com/fivetimeswhile/. If you run this program,
the output should look the same as the fiveTimes.py program, which uses a for loop.

The Starting, Stopping, and Stepping Arguments to range()

Some functions can be called with multiple arguments separated by a comma, and range() is one of them.
This lets you change the integer passed to range() to follow any sequence of integers, including starting at a
number other than zero.

for 1 in range(12, 16):
print(i)

The first argument will be where the for loop’s variable starts, and the second argument will be up to, but
not including, the number to stop at.

12
13
14
15

The range() function can also be called with three arguments. The first two arguments will be the start
and stop values, and the third will be the step argument. The step is the amount that the variable is increased
by after each iteration.

for 1 in range(0, 10, 2):
print(i)

So calling range(o, 10, 2) will count from zero to eight by intervals of two.

oo b NS

The range() function is flexible in the sequence of numbers it produces for for loops. For example (I never
apologize for my puns), you can even use a negative number for the step argument to make the for loop
count down instead of up.

for 1 in range(5, -1, -1):
print(i)

"This for loop would have the following output:

OFRr NWwWwbhAWOU

Running a for loop to print with range(s, -1, -1) should print from five down to zero.

https://autbor.com/fivetimeswhile/

Importing Modules

All Python programs can call a basic set of functions called built-in functions, including the print(), input(),
and 1len() functions you’ve seen before. Python also comes with a set of modules called the standard library.
Each module is a Python program that contains a related group of functions that can be embedded in your
programs. For example, the math module has mathematics-related functions, the random module has random
number-related functions, and so on.

Before you can use the functions in a module, you must import the module with an import statement. In
code, an import statement consists of the following:

e The import keyword
+ The name of the module
+ Optionally, more module names, as long as they are separated by commas

Once you import a module, you can use all the cool functions of that module. Let’s give it a try with the
random module, which will give us access to the randon.randint() function.

Enter this code into the file editor, and save it as printRandom.py:

import random
for 1 in range(5):
print(random.randint(1, 10))

4)
DON'T OVERWRITE MODULE NAMES

When you save your Python scripts, take care not to give them a name that is used by one of Python’s modules, such as random.py, sys.py,
os.py, or math.py. If you accidentally name one of your programs, say, 7andom.py, and use an import random statement in another
program, your program would import your rundom.py file instead of Pythons random module. This can lead to errors such as
AttributeError: module 'random' has no attribute 'randint', since your rundom.py doesn’t have the functions that the real
random module has. Don’t use the names of any built-in Python functions either, such as print() or input().

Problems like these are uncommon, but can be tricky to solve. As you gain more programming experience, you’ll become more aware
of the standard names used by Python’s modules and functions, and will run into these problems less frequently.

- J

When you run this program, the output will look something like this:

Ll ~ e T

You can view the execution of this program at https://author.com/printrandom/. The randon.randint()
function call evaluates to a random integer value between the two integers that you pass it. Since randint() is
in the random module, you must first type random. in front of the function name to tell Python to look for
this function inside the randon module.

Here’s an example of an import statement that imports four different modules:

import random, sys, os, math

Now we can use any of the functions in these four modules. We’ll learn more about them later in the
book.

from import Statements

An alternative form of the import statement is composed of the from keyword, followed by the module name,
the import keyword, and a star; for example, fron random import *.

https://autbor.com/printrandom/

With this form of import statement, calls to functions in random will not need the randon. prefix. However,
using the full name makes for more readable code, so it is better to use the import random form of the
statement.

Ending a Program Early with the sys.exit() Function

The last flow control concept to cover is how to terminate the program. Programs always terminate if the
program execution reaches the bottom of the instructions. However, you can cause the program to
terminate, or exit, before the last instruction by calling the sys.exit() function. Since this function is in the
sys module, you have to import sys before your program can use it.

Open a file editor window and enter the following code, saving it as exitExample.py:

import sys

while True:
print('Type exit to exit.')
response = input()

if response == 'exit':
sys.exit()
print('You typed ' + response + '.')

Run this program in IDLE. This program has an infinite loop with no break statement inside. The only
way this program will end is if the execution reaches the sys.exit() call. When response is equal to exit, the
line containing the sys.exit() call is executed. Since the response variable is set by the input() function, the
user must enter exit in order to stop the program.

A Short Program: Guess the Number

The examples I've shown you so far are useful for introducing basic concepts, but now let’s see how
everything you’ve learned comes together in a more complete program. In this section, I'll show you a
simple “guess the number” game. When you run this program, the output will look something like this:

I am thinking of a number between 1 and 20.
Take a guess.

10

Your guess is too low.

Take a guess.

15

Your guess is too low.

Take a guess.

17

Your guess is too high.

Take a guess.

16

Good job! You guessed my number in 4 guesses!

Enter the following source code into the file editor, and save the file as guessTheNumber.py:

This is a guess the number game.

import random

secretNumber = random.randint(1, 20)

print('I am thinking of a number between 1 and 20.')

Ask the player to guess 6 times.
for guessesTaken in range(1l, 7):
print('Take a guess.')
guess = int(input())

if guess < secretNumber:
print('Your guess is too low.')
elif guess > secretNumber:
print('Your guess is too high.')
else:
break # This condition is the correct guess!

if guess == secretNumber:

print('Good job! You guessed my number in
guesses!')
else:

print('Nope. The number I was thinking of was

+ str(guessesTaken) +

+ str(secretNumber))

You can view the execution of this program at betps://autbor.com/guessthenumber/. Let’s look at this code
line by line, starting at the top.

This 1s a guess the number game.
import random
secretNumber = random.randint(1, 20)

First, a comment at the top of the code explains what the program does. Then, the program imports the
random module so that it can use the randon.randint() function to generate a number for the user to guess. The
return value, a random integer between 1 and 20, is stored in the variable secretnumber.

print('I am thinking of a number between 1 and 20.')

Ask the player to guess 6 times.
for guessesTaken in range(1, 7):
print('Take a guess.')
guess = int(input())

The program tells the player that it has come up with a secret number and will give the player six chances
to guess it. The code that lets the player enter a guess and checks that guess is in a for loop that will loop at
most six times. The first thing that happens in the loop is that the player types in a guess. Since input()
returns a string, its return value is passed straight into int(), which translates the string into an integer value.
This gets stored in a variable named guess.

if guess < secretNumber:
print('Your guess is too low.')
elif guess > secretNumber:
print('Your guess is too high.')

These few lines of code check to see whether the guess is less than or greater than the secret number. In
either case, a hint is printed to the screen.

else:
break # This condition is the correct guess!

If the guess is neither higher nor lower than the secret number, then it must be equal to the secret number
—in which case, you want the program execution to break out of the for loop.

if guess == secretNumber:

print('Good job! You guessed my number in
else:

print('Nope. The number I was thinking of was

+ str(guessesTaken) + ' guesses!')

+ str(secretNumber))

After the for loop, the previous if...else statement checks whether the player has correctly guessed the
number and then prints an appropriate message to the screen. In both cases, the program displays a variable
that contains an integer value (quessesTaken and secretNumber). Since it must concatenate these integer values to
strings, it passes these variables to the str() function, which returns the string value form of these integers.
Now these strings can be concatenated with the + operators before finally being passed to the print() function
call.

A Short Program: Rock, Paper, Scissors

Let’s use the programming concepts we’ve learned so far to create a simple rock, paper, scissors game. The
output will look like this:

https://autbor.com/guessthenumber/

ROCK, PAPER, SCISSORS
0 Wins, O Losses, 0 Ties
Enter your move: (r)ock (p)aper (s)cissors or (q)uit

p

PAPER versus...

PAPER

It is a tie!

O Wins, 1 Losses, 1 Ties

Enter your move: (r)ock (p)aper (s)cissors or (q)uit
s

SCISSORS versus...

PAPER

You win!

1 Wins, 1 Losses, 1 Ties

Enter your move: (r)ock (p)aper (s)cissors or (q)uit
q

Type the following source code into the file editor, and save the file as rpsGamze.py:

import random, sys
print('ROCK, PAPER, SCISSORS')

These variables keep track of the number of wins, losses, and ties.
wins = 0

losses = 0

ties = 0

while True: # The main game loop.
print('%s Wins, %s Losses, %s Ties' % (wins, losses, ties))
while True: # The player input loop.
print('Enter your move: (r)ock (p)aper (s)cissors or (g)uit')
playerMove = input()
if playerMove == 'q':
sys.exit() # Quit the program.
if playerMove == 'r' or playerMove == 'p' or playerMove ==
break # Break out of the player input loop.
print('Type one of r, p, s, or q.')

s

Display what the player chose:

if playerMove == 'r':
print('ROCK versus...")

elif playerMove == 'p':
print('PAPER versus...')

elif playerMove == 's':

print('SCISSORS versus...')

Display what the computer chose:
randomNumber = random.randint(1, 3)
if randomNumber ==
computerMove =
print('ROCK")
elif randomNumber == 2:
computerMove = 'p'
print('PAPER")
elif randomNumber ==
computerMove = 's
print('SCISSORS')

r

Display and record the win/loss/tie:
if playerMove == computerMove:
print('It is a tie!')
ties = ties + 1

elif playerMove == 'r' and computerMove == 's':
print('You win!"')
wins = wins + 1

elif playerMove == 'p' and computerMove == 'r':

print('You win!")
wins = wins + 1

elif playerMove == 's' and computerMove == 'p':
print('You win!')
wins = wins + 1

elif playerMove == 'r' and computerMove == 'p':
print('You lose!')

losses = losses + 1
elif playerMove == 'p'

print('You lose!"')

losses = losses + 1
elif playerMove == 's' and computerMove == 'r':

print('You lose!')

losses = losses + 1

and computerMove == 's':

Let’s look at this code line by line, starting at the top.

import random, sys
print('ROCK, PAPER, SCISSORS')

These variables keep track of the number of wins, losses, and ties.

wins = 0
losses = 0
ties = 0

First, we import the random and sys module so that our program can call the random.randint() and sys.exit()
functions. We also set up three variables to keep track of how many wins, losses, and ties the player has had.

while True: # The main game loop.
print('%s Wins, %s Losses, %s Ties' % (wins, losses, ties))
while True: # The player input loop.
print('Enter your move: (r)ock (p)aper (s)cissors or (q)uit')
playerMove = input()
if playerMove == 'q':
sys.exit() # Quit the program.
if playerMove == 'r' or playerMove == 'p' or playerMove == 's':
break # Break out of the player input loop.
print('Type one of r, p, s, or q.')

This program uses a while loop inside of another white loop. The first loop is the main game loop, and a
single game of rock, paper, scissors is player on each iteration through this loop. The second loop asks for
input from the player, and keeps looping until the player has entered an r, p, s, or q for their move. The r, p,
and s correspond to rock, paper, and scissors, respectively, while the ¢ means the player intends to quit. In
that case, sys.exit() is called and the program exits. If the player has entered r, p, or s, the execution breaks
out of the loop. Otherwise, the program reminds the player to enter r, p, s, or q and goes back to the start of
the loop.

Display what the player chose:

if playerMove == 'r':
print('ROCK versus...")

elif playerMove == 'p':
print('PAPER versus...')

elif playerMove == 's':
print('SCISSORS versus...")

The player’s move is displayed on the screen.

Display what the computer chose:
randomNumber = random.randint(1, 3)
if randomNumber ==
computerMove = 'r
print('ROCK")
elif randomNumber == 2:
computerMove = 'p'
print('PAPER")
elif randomNumber == 3:
computerMove = 's'
print('SCISSORS')

Next, the computer’s move is randomly selected. Since randon.randint() can only return a random number,
the 1, 2, or 3 integer value it returns is stored in a variable named randomNunber. The program storesa 'r', 'p',
or 's' string in computertove based on the integer in randomNumber, as well as displays the computer’s move.

Display and record the win/loss/tie:
if playerMove == computerMove:
print('It is a tie!')
ties = ties + 1
elif playerMove == 'r
print('You win!")
wins = wins + 1
elif playerMove == 'p' and computerMove == 'r
print('You win!')
wins = wins + 1
elif playerMove == 's' and computerMove == 'p':
print('You win!")
wins = wins + 1
elif playerMove == 'r' and computerMove == 'p':
print('You lose!"')
losses = losses + 1
elif playerMove == 'p'
print('You lose!')
losses = losses + 1
elif playerMove == 's' and computerMove == 'r
print('You lose!')
losses = losses + 1

and computerMove == 's':

and computerMove == 's':

Finally, the program compares the strings in playertiove and computertove, and displays the results on the
screen. It also increments the wins, losses, or ties variable appropriately. Once the execution reaches the end,
it jumps back to the start of the main program loop to begin another game.

Summary

By using expressions that evaluate to True or False (also called conditions), you can write programs that make
decisions on what code to execute and what code to skip. You can also execute code over and over again in a
loop while a certain condition evaluates to True. The break and continue statements are useful if you need to
exit a loop or jump back to the loop’s start.

These flow control statements will let you write more intelligent programs. You can also use another type
of flow control by writing your own functions, which is the topic of the next chapter.

Practice Questions

1. What are the two values of the Boolean data type? How do you write them?
2. What are the three Boolean operators?

3. Write out the truth tables of each Boolean operator (that is, every possible combination of Boolean
values for the operator and what they evaluate to).

4. What do the following expressions evaluate to?

(5 > 4) and (3 == 5)

not (5 > 4)

(5 > 4) or (3 ==5)

not ((5 > 4) or (3 == 5))

(True and True) and (True == False)
(not False) or (not True)

. What are the six comparison operators?
. What is the difference between the equal to operator and the assignment operator?

. Explain what a condition is and where you would use one.
. Identify the three blocks in this code:

O I O W

spam = 0
if spam == 10:
print('eggs')

if spam > 5:
print('bacon')
else:
print('ham')
print('spam')
print('spam')

9. Write code that prints Hello if 1 is stored in spam, prints Howdy if 2 is stored in spam, and prints Greetings! if
anything else is stored in span.

10. What keys can you press if your program is stuck in an infinite loop?
11. What is the difference between break and continue?
12. What is the difference between range(10), range(e, 10), and range(e, 10, 1) in a for loop?

13. Write a short program that prints the numbers 1 to 10 using a for loop. Then write an equivalent
program that prints the numbers 1 to 16 using a while loop.

14. If you had a function named bacon() inside a module named spam, how would you call it after importing
>
spam:

Extra credit: Look up the round() and abs() functions on the internet, and find out what they do.
Experiment with them in the interactive shell.

3
FUNCTIONS

You're already familiar with the print(), tnput(), and ten() functions from the
previous chapters. Python provides several built-in functions like these, but you
can also write your own functions. A function is like a miniprogram within a
program.

To better understand how functions work, let’s create one. Enter this
program into the file editor and save it as helloFunc.py:

@ def hello():
® print('Howdy!')
print('Howdy!!!")
print('Hello there.')

©® hello()
hello()
hello()

You can view the execution of this program at https://autbor.com/bellofunc/. The
first line is a def statement @, which defines a function named hello(). The code

in the block that follows the def statement @ is the body of the function. This
code is executed when the function is called, not when the function is first

defined.

The hello() lines after the function © are function calls. In code, a function
call is just the function’s name followed by parentheses, possibly with some
number of arguments in between the parentheses. When the program execution
reaches these calls, it will jump to the top line in the function and begin
executing the code there. When it reaches the end of the function, the execution

https://autbor.com/hellofunc/

returns to the line that called the function and continues moving through the
code as before.

Since this program calls hetllo() three times, the code in the hello() function is
executed three times. When you run this program, the output looks like this:

Howdy!
Howdy!!!
Hello there.
Howdy!
Howdy!!!
Hello there.
Howdy!
Howdy!!!
Hello there.

A major purpose of functions is to group code that gets executed multiple
times. Without a function defined, you would have to copy and paste this code
each time, and the program would look like this:

print('Howdy!")
print('Howdy!!!")
print('Hello there.')
print('Howdy!")
print('Howdy!!!")
print('Hello there.')
print('Howdy!")
print('Howdy!!!")
print('Hello there.')

In general, you always want to avoid duplicating code because if you ever
decide to update the code—if, for example, you find a bug you need to fix—
you’ll have to remember to change the code everywhere you copied it.

As you get more programming experience, you’ll often find yourself
deduplicating code, which means getting rid of duplicated or copy-and-pasted
code. Deduplication makes your programs shorter, easier to read, and easier to
update.

def Statements with Parameters

When you call the print() or tlen() function, you pass them values, called
arguments, by typing them between the parentheses. You can also define your
own functions that accept arguments. "Type this example into the file editor and
save it as helloFunc2.py:

@ def hello(name):
® print('Hello, ' + name)

© hello('Alice')
hello('Bob"')

When you run this program, the output looks like this:

Hello, Alice
Hello, Bob

You can view the execution of this program at https://autbor.com/bellofunc2/.
The definition of the hello() function in this program has a parameter called name

@. Parameters are variables that contain arguments. When a function is called
with arguments, the arguments are stored in the parameters. The first time the

hello() function is called, it is passed the argument 'Alice’ ©. The program
execution enters the function, and the parameter name is automatically set to

'Alice’, which is what gets printed by the print() statement @.

One special thing to note about parameters is that the value stored in a
parameter is forgotten when the function returns. For example, if you added
print(name) after hello('Bob') in the previous program, the program would give
you a NameError because there is no variable named name. This variable is
destroyed after the function call hello('Bob') returns, so print(name) would refer
to a name variable that does not exist.

This is similar to how a program’s variables are forgotten when the program
terminates. I'll talk more about why that happens later in the chapter, when I
discuss what a function’s local scope is.

Define, Call, Pass, Argument, Parameter

The terms define, call, pass, argument, and parameter can be confusing. Let’s look at
a code example to review these terms:

@ def sayHello(name):
print('Hello, ' + name)
A sayHello('Al')

To define a function is to create it, just like an assignment statement like spam =
42 creates the spam variable. The def statement defines the sayHello() function @.

The sayHello('Al") line @ calls the now-created function, sending the execution to
the top of the function’s code. This function call is also known as passing the

https://autbor.com/hellofunc2/

string value 'al' to the function. A value being passed to a function in a function
call is an argument. The argument 'al' is assigned to a local variable named nanme.
Variables that have arguments assigned to them are parameters.

It’s easy to mix up these terms, but keeping them straight will ensure that you
know precisely what the text in this chapter means.

Return Values and return Statements

When you call the ten() function and pass it an argument such as 'Hello', the
function call evaluates to the integer value s, which is the length of the string
you passed it. In general, the value that a function call evaluates to is called the
return value of the function.

When creating a function using the def statement, you can specify what the
return value should be with a return statement. A return statement consists of the
following:

« The return key'WOI‘d
o 'The value or expression that the function should return

When an expression is used with a return statement, the return value is what
this expression evaluates to. For example, the following program defines a
function that returns a different string depending on what number it is passed as
an argument. Enter this code into the file editor and save it as magic§Ball.py:

@ import random

@O def getAnswer(answerNumber):
© if answerNumber ==
return 'It is certain'
elif answerNumber == 2:
return 'It is decidedly so'
elif answerNumber == 3:
return 'Yes'
elif answerNumber == 4:
return 'Reply hazy try again'
elif answerNumber == 5:
return 'Ask again later'
elif answerNumber ==
return 'Concentrate and ask again
elif answerNumber == 7:
return 'My reply is no'
elif answerNumber ==
return 'Outlook not so good'
elif answerNumber ==
return 'Very doubtful'

O r = random.randint(1, 9)
O fortune = getAnswer(r)
O print(fortune)

You can view the execution of this program at https://autbor.com/magic8bhall/.
When this program starts, Python first imports the random module @. Then the

getAnswer () function is defined @. Because the function is being defined (and not
called), the execution skips over the code in it. Next, the random.randint() function

is called with two arguments: 1 and 9 @. It evaluates to a random integer between
1 and 9 (including 1 and 9 themselves), and this value is stored in a variable
named r.

The getanswer() function is called with r as the argument ©. The program

execution moves to the top of the getAnswer() function ®, and the value r is
stored in a parameter named answerNumber. Then, depending on the value in
answerNumber, the function returns one of many possible string values. The
program execution returns to the line at the bottom of the program that

originally called getanswer() ©. The returned string is assigned to a variable

named fortune, which then gets passed to a print() call ® and is printed to the
screen.

Note that since you can pass return values as an argument to another
function call, you could shorten these three lines:

r = random.randint(1, 9)
fortune = getAnswer(r)
print(fortune)

to this single equivalent line:

print(getAnswer(random.randint(1, 9)))

Remember, expressions are composed of values and operators. A function call
can be used in an expression because the call evaluates to its return value.

The None Value

In Python, there is a value called none, which represents the absence of a value.
"The none value is the only value of the NoneType data type. (Other programming
languages might call this value nul1, nil, or undefined.) Just like the Boolean True
and False values, None must be typed with a capital N.

https://autbor.com/magic8ball/

This value-without-a-value can be helpful when you need to store something
that won’t be confused for a real value in a variable. One place where None is used
is as the return value of print(). The print() function displays text on the screen,
but it doesn’t need to return anything in the same way ten() or input() does. But
since all function calls need to evaluate to a return value, print() returns None. To
see this in action, enter the following into the interactive shell:

>>> spam = print('Hello!')
Hello!

>>> None == spam

True

Behind the scenes, Python adds return None to the end of any function
definition with no return statement. This is similar to how a white or for loop
implicitly ends with a continue statement. Also, if you use a return statement
without a value (that is, just the return keyword by itself), then none is returned.

Keyword Arguments and the print() Function

Most arguments are identified by their position in the function call. For
exanlple, random.randint(1, 10) is different from random.randint(10, 1). The
function call random.randint(1, 10) will return a random integer between 1 and 1e
because the first argument is the low end of the range and the second argument
is the high end (while random.randint(10, 1) causes an error).

However, rather than through their position, keyword arguments are identified
by the keyword put before them in the function call. Keyword arguments are
often used for optional parameters. For example, the print() function has the
optional parameters end and sep to specify what should be printed at the end of
its arguments and between its arguments (separating them), respectively.

If you ran a program with the following code:

print('Hello')
print('World')

the output would look like this:

Hello
World

The two outputted strings appear on separate lines because the print()
function automatically adds a newline character to the end of the string it is

passed. However, you can set the end keyword argument to change the newline
character to a different string. For example, if the code were this:

print('Hello', end="")
print('World')

the output would look like this:

HelloWorld

The output is printed on a single line because there is no longer a newline
printed after 'Hello'. Instead, the blank string is printed. This is useful if you
need to disable the newline that gets added to the end of every print() function
call.

Similarly, when you pass multiple string values to print(), the function will

automatically separate them with a single space. Enter the following into the
interactive shell:

>>> print('cats’', 'dogs', 'mice')
cats dogs mice

But you could replace the default separating string by passing the sep
keyword argument a different string. Enter the following into the interactive

shell:

>>> print('cats', 'dogs', 'mice', sep=',')
cats,dogs,mice

You can add keyword arguments to the functions you write as well, but first
you’ll have to learn about the list and dictionary data types in the next two
chapters. For now, just know that some functions have optional keyword
arguments that can be specified when the function is called.

The Call Stack

Imagine that you have a meandering conversation with someone. You talk about
your friend Alice, which then reminds you of a story about your coworker Bob,
but first you have to explain something about your cousin Carol. You finish you
story about Carol and go back to talking about Bob, and when you finish your
story about Bob, you go back to talking about Alice. But then you are reminded
about your brother David, so you tell a story about him, and then get back to
finishing your original story about Alice. Your conversation followed a stack-like

structure, like in Figure 3-1. The conversation is stack-like because the current
topic is always at the top of the stack.

Carol
Bob Bob Bob David

==| Alice |==| Alice || Alice || Alice || Alice || Alice || Alice |
L | L 1 L | L | L] L

Figure 3-1: Your meandering conversation stack

Similar to our meandering conversation, calling a function doesn’t send the
execution on a one-way trip to the top of a function. Python will remember
which line of code called the function so that the execution can return there
when it encounters a return statement. If that original function called other
functions, the execution would return to those function calls first, before
returning from the original function call.

Open a file editor window and enter the following code, saving it as

abedCallStack.py:

def a():

print('a() starts')
@ b()
O d()

print('a() returns')

def b():

print('b() starts')
© c()

print('b() returns')

def c():
O print('c() starts')
print('c() returns')

def d():
print('d() starts')
print('d() returns')

0 a()

If you run this program, the output will look like this:

a() starts
b() starts
c() starts
c() returns
b() returns
d() starts

d() returns
a() returns

You can view the execution of this program at https://author.com/abcdcallstack/.
When a() is called @, it calls b() @, which in turn calls c() ©. The <() function
doesn’t call anything; it just displays c() starts @ and c() returns before
returning to the line in b() that called it ®. Once execution returns to the code
in b() that called c(), it returns to the line in a() that called b() @. The execution

continues to the next line in the b() function @, which is a call to d(¢). Like the
c() function, the d() function also doesn’t call anything. It just displays d() starts
and d() returns before returning to the line in b() that called it. Since b()

contains no other code, the execution returns to the line in a() that called b() @.
The last line in a() displays a() returns before returning to the original a() call at

the end of the program ©.

The call stack is how Python remembers where to return the execution after
each function call. The call stack isn’t stored in a variable in your program;
rather, Python handles it behind the scenes. When your program calls a
function, Python creates a frume object on the top of the call stack. Frame objects
store the line number of the original function call so that Python can remember
where to return. If another function call is made, Python puts another frame
object on the call stack above the other one.

When a function call returns, Python removes a frame object from the top of
the stack and moves the execution to the line number stored in it. Note that
frame objects are always added and removed from the top of the stack and not
from any other place. Figure 3-2 illustrates the state of the call stack in
abedCallStack.py as each function is called and returns.

c()
b(] b) b() d()

| l--l G[:I I--l Gl:] J--I ﬁ[] I-.-I G” I--I GE] J-.-I G[J I--l G” I--I 1

Figure 3-2: The frame objects of the call stack as abcdCallStack.py calls and returns from functions

The top of the call stack is which function the execution is currently in.
When the call stack is empty, the execution is on a line outside of all functions.

The call stack is a technical detail that you don’t strictly need to know about
to write programs. It’s enough to understand that function calls return to the
line number they were called from. However, understanding call stacks makes it
easier to understand local and global scopes, described in the next section.

https://autbor.com/abcdcallstack/

Local and Global Scope

Parameters and variables that are assigned in a called function are said to exist in
that function’s local scope. Variables that are assigned outside all functions are said
to exist in the global scope. A variable that exists in a local scope is called a Jocal
variable, while a variable that exists in the global scope is called a global variable.
A variable must be one or the other; it cannot be both local and global.

Think of a scope as a container for variables. When a scope is destroyed, all
the values stored in the scope’s variables are forgotten. There is only one global
scope, and it is created when your program begins. When your program
terminates, the global scope is destroyed, and all its variables are forgotten.
Otherwise, the next time you ran a program, the variables would remember
their values from the last time you ran it.

A local scope is created whenever a function is called. Any variables assigned
in the function exist within the function’s local scope. When the function
returns, the local scope is destroyed, and these variables are forgotten. The next
time you call the function, the local variables will not remember the values
stored in them from the last time the function was called. Local variables are
also stored in frame objects on the call stack.

Scopes matter for several reasons:

« Code in the global scope, outside of all functions, cannot use any local
variables.

« However, code in a local scope can access global variables.

« Code in a function’s local scope cannot use variables in any other local
scope.

« You can use the same name for different variables if they are in different
scopes. That is, there can be a local variable named spam and a global
variable also named span.

The reason Python has different scopes instead of just making everything a
global variable is so that when variables are modified by the code in a particular
call to a function, the function interacts with the rest of the program only
through its parameters and the return value. This narrows down the number of
lines of code that may be causing a bug. If your program contained nothing but
global variables and had a bug because of a variable being set to a bad value, then
it would be hard to track down where this bad value was set. It could have been
set from anywhere in the program, and your program could be hundreds or
thousands of lines long! But if the bug is caused by a local variable with a bad

value, you know that only the code in that one function could have set it
incorrectly.

While using global variables in small programs is fine, it is a bad habit to rely
on global variables as your programs get larger and larger.

Local Variables Cannot Be Used in the Global Scope

Consider this program, which will cause an error when you run it:

def spam():

@ eggs = 31337
spam()
print(eggs)

If you run this program, the output will look like this:

Traceback (most recent call last):
File "C:/testl.py", line 4, in <module>
print(eggs)
NameError: name 'eggs' is not defined

The error happens because the eggs variable exists only in the local scope

created when spam() is called @. Once the program execution returns from spanm,
that local scope is destroyed, and there is no longer a variable named eggs. So
when your program tries to run print(eggs), Python gives you an error saying
that eggs is not defined. This makes sense if you think about it; when the
program execution is in the global scope, no local scopes exist, so there can’t be
any local variables. This is why only global variables can be used in the global
scope.

Local Scopes Cannot Use Variables in Other Local Scopes

A new local scope is created whenever a function is called, including when a
function is called from another function. Consider this program:

def spam():
@ eggs = 99
® bacon()
© print(eggs)

def bacon():
ham = 101

O eggs = 0

O spam()

You can view the execution of this program at
https://autbor.com/otherlocalscopes/. When the program starts, the spam() function is

called @, and a local scope is created. The local variable eggs @ is set to 99. Then

the bacon() function is called @, and a second local scope is created. Multiple
local scopes can exist at the same time. In this new local scope, the local variable
ham is set to 101, and a local variable eggs—which is different from the one in

spam()’s local scope—is also created @ and set to e.

When bacon() returns, the local scope for that call is destroyed, including its
eggs variable. The program execution continues in the span() function to print

the value of eggs ©. Since the local scope for the call to span() still exists, the only
eggs variable is the spam() function’s eggs variable, which was set to 99. This is
what the program prints.

The upshot is that local variables in one function are completely separate
from the local variables in another function.

Global Variables Can Be Read from a Local Scope

Consider the following program:

def spam():
print(eggs)
eggs = 42
spam()
print(eggs)

You can view the execution of this program at https://autbor.com/readglobal/.
Since there is no parameter named eggs or any code that assigns eggs a value in
the span() function, when eggs is used in spam(), Python considers it a reference to
the global variable eggs. This is why 42 is printed when the previous program is
run.

Local and Global Variables with the Same Name

Technically, it’s perfectly acceptable to use the same variable name for a global
variable and local variables in different scopes in Python. But, to simplify your
life, avoid doing this. To see what happens, enter the following code into the file
editor and save it as localGlobalSameName.py:

def spam():
©® eggs = 'spam local'
print(eggs) # prints 'spam local'

https://autbor.com/otherlocalscopes/
https://autbor.com/readglobal/

def bacon():

® eggs = 'bacon local'
print(eggs) # prints 'bacon local'
spam()
print(eggs) # prints 'bacon local'

© eggs = 'global'
bacon()
print(eggs) # prints 'global'

When you run this program, it outputs the following:

bacon local
spam local
bacon local
global

You can view the execution of this program at
https://author.com/localglobalsamename/. There are actually three different variables
in this program, but confusingly they are all named eggs. The variables are as
follows:

@ A variable named eggs that exists in a local scope when spam() is called.
@ A variable named eggs that exists in a local scope when bacon() is called.

© A variable named eggs that exists in the global scope.

Since these three separate variables all have the same name, it can be
confusing to keep track of which one is being used at any given time. This is why
you should avoid using the same variable name in different scopes.

The global Statement

If you need to modify a global variable from within a function, use the globat
statement. If you have a line such as global eggs at the top of a function, it tells
Python, “In this function, eggs refers to the global variable, so don’t create a
local variable with this name.” For example, enter the following code into the
file editor and save it as globalStatement.py:

def spam():
@ global eggs
M eggs = 'spam'

eggs = 'global'’

https://autbor.com/localglobalsamename/

spam()
print(eggs)

When you run this program, the final print() call will output this:

spam

You can view the execution of this program at
https://author.com/globalstatement/. Because eggs is declared global at the top of
span() @, when eggs is set to 'span' @, this assignment is done to the globally
scoped eggs. No local eggs variable is created.

There are four rules to tell whether a variable is in a local scope or global
scope:

o If a variable is being used in the global scope (that is, outside of all
functions), then it is always a global variable.

o If there is a global statement for that variable in a function, it is a global
variable.

« Otherwise, if the variable is used in an assignment statement in the
function, it is a local variable.

« But if the variable is not used in an assignment statement, it is a global
variable.

To get a better feel for these rules, here’s an example program. Enter the
following code into the file editor and save it as sameNameLocalGlobal.py:

def spam():
@ global eggs
eggs = 'spam' # this is the global

def bacon():
A eggs = 'bacon' # this is a local

def ham():
©® print(eggs) # this is the global

eggs = 42 # this is the global
spam()
print(eggs)

In the span() function, eggs is the global eggs variable because there’s a globat
statement for eggs at the beginning of the function @. In bacon(), eggs is a local
variable because there’s an assignment statement for it in that function @. In
ham() ©, eggs is the global variable because there is no assignment statement or

https://autbor.com/globalstatement/

global statement for it in that function. If you run sameNameLocalGlobal.py, the
output will look like this:

spam

You can view the execution of this program at
https://autbor.com/sameNameLocalGlobal/. In a function, a variable will either
always be global or always be local. The code in a function can’t use a local
variable named eggs and then use the global eggs variable later in that same
function.

If you ever want to modify the value stored in a global variable from in a function,
you must use a global statement on that variable.

If you try to use a local variable in a function before you assign a value to it,
as in the following program, Python will give you an error. To see this, enter the
following into the file editor and save it as sameNameError.py:

def spam():
print(eggs) # ERROR!
©® eggs = 'spam local'

M eggs = 'global’
spam()

If you run the previous program, it produces an error message.

Traceback (most recent call last):
File "C:/sameNameError.py", line 6, in <module>
spam()
File "C:/sameNameError.py", line 2, in spam
print(eggs) # ERROR!
UnboundLocalError: local variable 'eggs' referenced before assignment

You can view the execution of this program at
https://author.com/sameNameError/. This error happens because Python sees that

there is an assignment statement for eggs in the span() function @ and, therefore,
considers eggs to be local. But because print(eggs) is executed before eggs is
assigned anything, the local variable eggs doesn’t exist. Python will oz fall back

to using the global eggs variable @.

. N

https://autbor.com/sameNameLocalGlobal/
https://autbor.com/sameNameError/

FUNCTIONS AS “BLACK BOXES”

Often, all you need to know about a function are its inputs (the parameters) and output value; you
don’t always have to burden yourself with how the function’s code actually works. When you think
about functions in this high-level way, it's common to say that you’re treating a function as a “black
box.”

This idea is fundamental to modern programming. Later chapters in this book will show you
several modules with functions that were written by other people. While you can take a peek at the
source code if you're curious, you don’t need to know how these functions work in order to use
them. And because writing functions without global variables is encouraged, you usually don’t have
to worry about the function’s code interacting with the rest of your program.

\§ J

Exception Handling

Right now, getting an error, or exception, in your Python program means the
entire program will crash. You don’t want this to happen in real-world
programs. Instead, you want the program to detect errors, handle them, and
then continue to run.

For example, consider the following program, which has a divide-by-zero
error. Open a file editor window and enter the following code, saving it as
zeroDivide.py:

def spam(divideBy):
return 42 / divideBy

print(spam(2))
print(spam(12))
print(spam(0))
print(spam(1))

We've defined a function called spam, given it a parameter, and then printed
the value of that function with various parameters to see what happens. This is
the output you get when you run the previous code:

21.0
3.5
Traceback (most recent call last):
File "C:/zeroDivide.py", line 6, in <module>
print(spam(0))
File "C:/zeroDivide.py", line 2, in spam
return 42 / divideBy
ZeroDivisionError: division by zero

You can view the execution of this program at b#tps://autbor.com/zerodivide/. A
ZeroDivisionError happens whenever you try to divide a number by zero. From

https://autbor.com/zerodivide/

the line number given in the error message, you know that the return statement
in spam() 1S causing an error.

Errors can be handled with try and except statements. The code that could
potentially have an error is put in a try clause. The program execution moves to
the start of a following except clause if an error happens.

You can put the previous divide-by-zero code in a try clause and have an
except clause contain code to handle what happens when this error occurs.

def spam(divideBy):
try:
return 42 / divideBy
except ZeroDivisionError:
print('Error: Invalid argument.')

print(spam(2))
print(spam(12))
print(spam(0))
print(spam(1))

When code in a try clause causes an error, the program execution
immediately moves to the code in the except clause. After running that code, the
execution continues as normal. The output of the previous program is as
follows:

21.0
3.5
Error: Invalid argument.
None
42.0
You can view the execution of this program at

https://author.com/tryexceptzerodivide/. Note that any errors that occur in function
calls in a try block will also be caught. Consider the following program, which
instead has the spam() calls in the try block:

def spam(divideBy):
return 42 / divideBy

try:
print(spam(2))
print(spam(12))
print(spam(0))
print(spam(1))
except ZeroDivisionError:
print('Error: Invalid argument.')

When this program is run, the output looks like this:

https://autbor.com/tryexceptzerodivide/

21.0
3.5
Error: I

nvalid argument.

You

can view the execution of this program at https://autbor.com/spamintry/.
The reason print(span(1)) is never executed is because once the execution jumps
to the code in the except clause, it does not return to the try clause. Instead, it

just continues moving down the program as normal.

A Short Program: Zigzag

Let’s use the programming concepts you've learned so far to create a small
on program. This program will create a back-and-forth, zigzag pattern
until the user stops it by pressing the Mu editor’s Stop button or by pressing
When you run this program, the output will look something like this:

animati

CTRL-C.

kk

hkhk®

*kkkk*k

hhkkkhkhk%k

*kkkkkkhk

hhkkkhkhk%k

*kkkk*k

hkhk®

kk%

*kk%k

* k%

%

*

*

%

* k%

*kk%k

Type the following source code into the file editor, and save the file as

21g24g.py:

import t
indent =
indentIn

try:
whil

ime, sys
0 # How many spaces to indent.
creasing = True # Whether the indentation is increasing or not.

e True: # The main program loop.

print(' ' * indent, end='")

print('********')

time.sleep(0.1) # Pause for 1/10 of a second.

if indentIncreasing:
Increase the number of spaces:
indent = indent + 1
if indent == 20:
Change direction:
indentIncreasing = False

else:
Decrease the number of spaces:
indent = indent - 1

https://autbor.com/spamintry/

if indent ==
Change direction:
indentIncreasing = True
except KeyboardInterrupt:
sys.exit()

Let’s look at this code line by line, starting at the top.

import time, sys
indent = 0 # How many spaces to indent.
indentIncreasing = True # Whether the indentation is increasing or not.

First, we’ll import the time and sys modules. Our program uses two variables:
the indent variable keeps track of how many spaces of indentation are before the
band of eight asterisks and indentIncreasing contains a Boolean value to
determine if the amount of indentation is increasing or decreasing.

try:
while True: # The main program loop.
print(' ' * indent, end='")
pr-'l_nt(Thdkdkkhdxx!)
time.sleep(0.1) # Pause for 1/10 of a second.

Next, we place the rest of the program inside a try statement. When the user
presses CTRL-C while a Python program is running, Python raises the
KeyboardInterrupt exception. If there is no try-except statement to catch this
exception, the program crashes with an ugly error message. However, for our
program, we want it to cleanly handle the keyboardInterrupt exception by calling
sys.exit(). (The code for this is in the except statement at the end of the
program.)

The white True: infinite loop will repeat the instructions in our program
forever. This involves using ' ' * indent to print the correct amount of spaces of
indentation. We don’t want to automatically print a newline after these spaces,
so we also pass end="" to the first print() call. A second print() call prints the band
of asterisks. The time.sleep() function hasn’t been covered yet, but suffice it to
say that it introduces a one-tenth-second pause in our program at this point.

if indentIncreasing:
Increase the number of spaces:
indent = indent + 1
if indent == 20:
indentIncreasing = False # Change direction.

Next, we want to adjust the amount of indentation for the next time we print
asterisks. If indentIncreasing is True, then we want to add one to indent. But once
indent reaches 20, we want the indentation to decrease.

else:
Decrease the number of spaces:
indent = indent - 1
if indent ==
indentIncreasing = True # Change direction.

Meanwhile, if indentIncreasing was False, we want to subtract one from indent.
Once indent reaches o, we want the indentation to increase once again. Either
way, the program execution will jump back to the start of the main program
loop to print the asterisks again.

except KeyboardInterrupt:
sys.exit()

If the user presses CTRL-C at any point that the program execution is in the
try block, the KeyboardInterrrupt exception is raised and handled by this except
statement. The program execution moves inside the except block, which runs
sys.exit() and quits the program. This way, even though the main program loop
is an infinite loop, the user has a way to shut down the program.

Summary

Functions are the primary way to compartmentalize your code into logical
groups. Since the variables in functions exist in their own local scopes, the code
in one function cannot directly affect the values of variables in other functions.
This limits what code could be changing the values of your variables, which can
be helpful when it comes to debugging your code.

Functions are a great tool to help you organize your code. You can think of
them as black boxes: they have inputs in the form of parameters and outputs in
the form of return values, and the code in them doesn’t affect variables in other
functions.

In previous chapters, a single error could cause your programs to crash. In
this chapter, you learned about try and except statements, which can run code
when an error has been detected. This can make your programs more resilient
to common error cases.

Practice Questions

1. Why are functions advantageous to have in your programs?

2. When does the code in a function execute: when the function is defined or
when the function is called?

3. What statement creates a function?
4. What is the difference between a function and a function call?

5. How many global scopes are there in a Python program? How many local
scopes?

6. What happens to variables in a local scope when the function call returns?
7. What is a return value? Can a return value be part of an expression?

8. If a function does not have a return statement, what is the return value of a
call to that function?

9. How can you force a variable in a function to refer to the global variable?
10. What is the data type of None?
11. What does the import areallyourpetsnamederic Sstatement do?

12. If you had a function named bacon() in a module named span, how would you
call it after importing spam?

13. How can you prevent a program from crashing when it gets an error?

14. What goes in the try clause? What goes in the except clause?

Practice Projects

For practice, write programs to do the following tasks.

The Collatz Sequence

Write a function named collatz() that has one parameter named nunber. If number
is even, then collatz() should print number // 2 and return this value. If nunber is
Odd, then collatz() should print and return 3 * number + 1.

Then write a program that lets the user type in an integer and that keeps
calling collatz() on that number until the function returns the value 1.
(Amazingly enough, this sequence actually works for any integer—sooner or
later, using this sequence, you’ll arrive at 1! Even mathematicians aren’t sure
why. Your program is exploring what’s called the Collatz sequence, sometimes
called “the simplest impossible math problem.”)

Remember to convert the return value from tnput() to an integer with the
int() function; otherwise, it will be a string value.

Hint: An integer number is even if number % 2 == o, and it’s odd if number % 2 == 1.
The output of this program could look something like this:

Enter number:

Input Validation

Add try and except statements to the previous project to detect whether the user
types in a noninteger string. Normally, the int() function will raise a valueError
error if it is passed a noninteger string, as in int('puppy'). In the except clause,
print a message to the user saying they must enter an integer.

One more topic you’ll need to understand before you can begin writing programs in earnest is the list data
type and its cousin, the tuple. Lists and tuples can contain multiple values, which makes writing programs
that handle large amounts of data easier. And since lists themselves can contain other lists, you can use them
to arrange data into hierarchical structures.

In this chapter, I'll discuss the basics of lists. I'll also teach you about methods, which are functions that
are tied to values of a certain data type. Then I'll briefly cover the sequence data types (lists, tuples, and
strings) and show how they compare with each other. In the next chapter, I'll introduce you to the dictionary
data type.

The List Data Type

A Jist is a value that contains multiple values in an ordered sequence. The term /st value refers to the list itself
(which is a value that can be stored in a variable or passed to a function like any other value), not the values
inside the list value. A list value looks like this: ['cat', 'bat', 'rat', 'elephant']. Just as string values are typed
with quote characters to mark where the string begins and ends, a list begins with an opening square bracket
and ends with a closing square bracket, [1. Values inside the list are also called stems. Items are separated with
commas (that is, they are comma-delimited). For example, enter the following into the interactive shell:

>>> [1, 2, 3]
[1, 2, 3]
>>> ['cat', 'bat', 'rat', 'elephant']
['cat', 'bat', 'rat', 'elephant']
>>> ['hello', 3.1415, True, None, 42]
['"hello', 3.1415, True, None, 42]

@ >>> spam = ['cat', 'bat', 'rat', 'elephant']
>>> spam
['cat', 'bat', 'rat', 'elephant']

The span variable @ is still assigned only one value: the list value. But the list value itself contains other
values. The value [] is an empty list that contains no values, similar to ', the empty string.

Getting Individual Values in a List with Indexes

Say you have the list ['cat', 'bat', 'rat', 'elephant'] stored in a variable named spam. The Python code
span[0] would evaluate to 'cat’, and span[1] would evaluate to 'bat’, and so on. The integer inside the square
brackets that follows the list is called an index. The first value in the list is at index o, the second value is at
index 1, the third value is at index 2, and so on. Figure 4-1 shows a list value assigned to spanm, along with what
the index expressions would evaluate to. Note that because the first index is e, the last index is one less than
the size of the list; a list of four items has 3 as its last index.

spam = ["cat"”, "bat", "rat", "elephant”]

e o N %

spam[0] spam[1] spam[2] spam[3]
Figure 4-1: A list value stored in the variable spam, showing which value each index refers to

For example, enter the following expressions into the interactive shell. Start by assigning a list to the
variable span.

>>> spam = ['cat', 'bat', 'rat', 'elephant']
>>> spam[0]
'cat'
>>> spam[1]
'bat’
>>> spam[2]
'rat’
>>> spam[3]
'elephant’
>>> ['cat', 'bat', 'rat', 'elephant'][3]
'elephant’
@ >>> 'Hello, ' + spam[0]
A 'Hello, cat'
>>> 'The ' + spam[1] + ' ate the ' + spam[0] + '.'
'The bat ate the cat.

Notice that the expression 'Hello, ' + span[6] @ evaluates to 'Hello, ' + 'cat' because span[0] evaluates to
the string 'cat'. This expression in turn evaluates to the string value 'Hello, cat' @.

Python will give you an IndexError error message if you use an index that exceeds the number of values in
your list value.

>>> spam = ['cat', 'bat', 'rat', 'elephant']
>>> spam[10000]
Traceback (most recent call last):
File "<pyshell#9>", line 1, in <module>
spam[10000]
IndexError: list index out of range

Indexes can be only integer values, not floats. The following example will cause a TypeError error:

>>> spam = ['cat', 'bat', 'rat', 'elephant']
>>> spam[1]
'bat'
>>> spam[1.0]
Traceback (most recent call last):
File "<pyshell#13>", line 1, in <module>
spam[1.0]
TypeError: list indices must be integers or slices, not float
>>> spam[int(1.0)]
'bat’

Lists can also contain other list values. The values in these lists of lists can be accessed using multiple
indexes, like so:

>>> spam = [['cat', 'bat'], [10, 20, 30, 40, 50]]
>>> spam[0]

['cat', 'bat']

>>> spam[0][1]

'bat’

>>> spam[1][4]

50

The first index dictates which list value to use, and the second indicates the value within the list value. For
example, span[0][1] prints 'bat', the second value in the first list. If you only use one index, the program will
print the full list value at that index.

Negative Indexes

While indexes start at e and go up, you can also use negative integers for the index. The integer value -1
refers to the last index in a list, the value -2 refers to the second-to-last index in a list, and so on. Enter the
following into the interactive shell:

>>> spam = ['cat', 'bat', 'rat', 'elephant']

>>> spam[-1]

'elephant’

>>> spam[-3]

'bat’

>>> 'The ' + spam[-1] + ' is afraid of the ' + spam[-3] + '.'
'The elephant is afraid of the bat.'

Getting a List from Another List with Slices

Just as an index can get a single value from a list, a s/ice can get several values from a list, in the form of a new
list. A slice is typed between square brackets, like an index, but it has two integers separated by a colon.
Notice the difference between indexes and slices.

» span[2] is a list with an index (one integer).
» span[1:4] is a list with a slice (two integers).

In a slice, the first integer is the index where the slice starts. The second integer is the index where the
slice ends. A slice goes up to, but will not include, the value at the second index. A slice evaluates to a new list
value. Enter the following into the interactive shell:

>>> spam = ['cat', 'bat', 'rat', 'elephant']
>>> spam[0:4]

['cat', 'bat', 'rat', 'elephant']

>>> spam[1:3]

['bat', 'rat']

>>> spam[0:-1]

['cat', 'bat', 'rat']

As a shortcut, you can leave out one or both of the indexes on either side of the colon in the slice. Leaving
out the first index is the same as using o, or the beginning of the list. Leaving out the second index is the same
as using the length of the list, which will slice to the end of the list. Enter the following into the interactive
shell:

>>> spam = ['cat', 'bat', 'rat', 'elephant']
>>> spam[:2]

['cat', 'bat']

>>> spam[1:]

['bat', 'rat', 'elephant']

>>> spam[Z]

['cat', 'bat', 'rat', 'elephant']

Getting a List’s Length with the len() Function

The ten() function will return the number of values that are in a list value passed to it, just like it can count
the number of characters in a string value. Enter the following into the interactive shell:

>>> spam = ['cat', 'dog', 'moose']
>>> len(spam)

Changing Values in a List with Indexes

Normally, a variable name goes on the left side of an assignment statement, like span = 42. However, you can
also use an index of a list to change the value at that index. For example, span[1] = 'aardvark’' means “Assign

the value at index 1 in the list span to the string 'aardvark'.” Enter the following into the interactive shell:

>>> spam = ['cat', 'bat', 'rat', 'elephant']
>>> spam[1] = 'aardvark'

>>> spam

['cat', 'aardvark', 'rat', 'elephant']

>>> spam[2] = spam[1]

>>> spam

['cat', 'aardvark', 'aardvark', 'elephant']
>>> spam[-1] = 12345

>>> spam

['cat', 'aardvark', 'aardvark', 12345]

List Concatenation and List Replication

Lists can be concatenated and replicated just like strings. The + operator combines two lists to create a new
list value and the * operator can be used with a list and an integer value to replicate the list. Enter the
following into the interactive shell:

>>> [1, 2, 3] + ['A', 'B', 'C']

[1, 2, 3, 'A', 'B', 'C']

S>> ['X', 'Y', 'Z'] * 3

DX, 'Y, 'z, X, Y,z X, Y, 2]
>>> spam = [1, 2, 3]

>>> spam = spam + ['A', 'B', 'C']

>>> spam

[1, 2, 3, 'A", 'B', 'C']

Removing Values from Lists with del Statements

The del statement will delete values at an index in a list. All of the values in the list after the deleted value
will be moved up one index. For example, enter the following into the interactive shell:

>>> spam = ['cat', 'bat', 'rat', 'elephant']
>>> del spam[2]

>>> spam

['cat', 'bat', 'elephant']

>>> del spam[2]

>>> spam

['cat', 'bat']

The detl statement can also be used on a simple variable to delete it, as if it were an “unassignment”
statement. If you try to use the variable after deleting it, you will get a NameError error because the variable no
longer exists. In practice, you almost never need to delete simple variables. The det statement is mostly used
to delete values from lists.

Working with Lists

When you first begin writing programs, it’s tempting to create many individual variables to store a group of
similar values. For example, if I wanted to store the names of my cats, I might be tempted to write code like
this:

catNamel = 'Zophie'
catName2 = 'Pooka’'
catName3 = 'Simon'
catName4 = 'Lady Macbeth'
catName5 = 'Fat-tail’
catName6 = 'Miss Cleo'

It turns out that this is a bad way to write code. (Also, I don’t actually own this many cats, I swear.) For
one thing, if the number of cats changes, your program will never be able to store more cats than you have
variables. These types of programs also have a lot of duplicate or nearly identical code in them. Consider

how much duplicate code is in the following program, which you should enter into the file editor and save as
allMyCats1.py:

print('Enter the name of cat 1:')
catNamel = input()

print('Enter the name of cat 2:')
catName2 = input()

print('Enter the name of cat 3:')
catName3 = input()

print('Enter the name of cat 4:')
catName4 = input()

print('Enter the name of cat 5:')
catName5 = input()

print('Enter the name of cat 6:')
catName6 = input()

print('The cat names are:')
print(catNamel + ' ' + catName2 +
catName5 + ' ' + catName6)

+ catName3 + + catNamed4 + ' ' +

Instead of using multiple, repetitive variables, you can use a single variable that contains a list value. For
example, here’s a new and improved version of the aliMyCats].py program. This new version uses a single list
and can store any number of cats that the user types in. In a new file editor window, enter the following
source code and save it as allMyCats2.py:

catNames = []
while True:
print('Enter the name of cat ' + str(len(catNames) + 1) +
' (Or enter nothing to stop.):')
name = input()
if name == '':
break
catNames = catNames + [name] # list concatenation
print('The cat names are:')
for name in catNames:
print(' ' + name)

When you run this program, the output will look something like this:

Enter the name of cat 1 (Or enter nothing to stop.):
Zophie

Enter the name of cat 2 (Or enter nothing to stop.):
Pooka

Enter the name of cat 3 (Or enter nothing to stop.):
Simon

Enter the name of cat 4 (Or enter nothing to stop.):
Lady Macbeth

Enter the name of cat 5 (Or enter nothing to stop.):
Fat-tail

Enter the name of cat 6 (Or enter nothing to stop.):
Miss Cleo

Enter the name of cat 7 (Or enter nothing to stop.):

The cat names are:
Zophie
Pooka
Simon
Lady Macbeth
Fat-tail
Miss Cleo

You can view the execution of these programs at butps://author.com/allmycats1/ and
bttps://autbor.com/allmycats2/. The benefit of using a list is that your data is now in a structure, so your
program is much more flexible in processing the data than it would be with several repetitive variables.

Using for Loops with Lists

In Chapter 2, you learned about using for loops to execute a block of code a certain number of times.
"Technically, a for loop repeats the code block once for each item in a list value. For example, if you ran this

https://autbor.com/allmycats1/
https://autbor.com/allmycats2/

code:

for 1 in range(4):
print(i)

the output of this program would be as follows:

wN R o

"This is because the return value from range(4) is a sequence value that Python considers similar to [o, 1,
2, 31. (Sequences are described in “Sequence Data Types” on page 93.) The following program has the same
output as the previous one:

for 1 in [0, 1, 2, 3]:
print(i)

The previous for loop actually loops through its clause with the variable i set to a successive value in the
le, 1, 2, 3] listin each iteration.

A common Python technique is to use range(len(someList)) with a for loop to iterate over the indexes of a
list. For example, enter the following into the interactive shell:

>>> supplies = ['pens', 'staplers', 'flamethrowers', 'binders']
>>> for i1 in range(len(supplies)):
print('Index ' + str(i) +

in supplies is: + supplies[i])
Index © in supplies is: pens

Index 1 in supplies is: staplers

Index 2 in supplies is: flamethrowers

Index 3 in supplies is: binders

Using range(len(supplies)) in the previously shown for loop is handy because the code in the loop can
access the index (as the variable 1) and the value at that index (as supplies[i]). Best of all, range(len(supplies))
will iterate through all the indexes of supplies, no matter how many items it contains.

The in and not in Operators

You can determine whether a value is or isn’t in a list with the in and not in operators. Like other operators,
in and not in are used in expressions and connect two values: a value to look for in a list and the list where it

may be found. These expressions will evaluate to a Boolean value. Enter the following into the interactive
shell:

>>> 'howdy' in ['hello', 'hi', 'howdy', 'heyas']
True

>>> spam = ['hello', 'hi', 'howdy', 'heyas']

>>> 'cat' in spam

False

>>> 'howdy' not in spam
False

>>> 'cat' not in spam
True

For example, the following program lets the user type in a pet name and then checks to see whether the
name is in a list of pets. Open a new file editor window, enter the following code, and save it as mzyPets.py:

myPets = ['Zophie', 'Pooka', 'Fat-tail']
print('Enter a pet name:')
name = input()
if name not in myPets:

print('I do not have a pet named ' + name)
else:

print(name +

is my pet.')

The output may look something like this:

Enter a pet name:
Footfoot
I do not have a pet named Footfoot

You can view the execution of this program at https://autbor.com/mypets/.

The Multiple Assignment Trick

The multiple assignment trick (technically called ruple unpacking) is a shortcut that lets you assign multiple
variables with the values in a list in one line of code. So instead of doing this:

>>> cat = ['fat', 'gray', 'loud']
>>> size = cat[0]

>>> color = cat[1]

>>> disposition = cat[2]

you could type this line of code:

>>> cat = ['fat', 'gray', 'loud']
>>> size, color, disposition = cat

The number of variables and the length of the list must be exactly equal, or Python will give you a

ValueError:

>>> cat = ['fat', 'gray', 'loud']
>>> size, color, disposition, name = cat
Traceback (most recent call last):
File "<pyshell#84>", line 1, in <module>
size, color, disposition, name = cat
ValueError: not enough values to unpack (expected 4, got 3)

Using the enumerate() Function with Lists

Instead of using the range(len(someList)) technique with a for loop to obtain the integer index of the items in
the list, you can call the enumerate() function instead. On each iteration of the loop, enumerate() will return
two values: the index of the item in the list, and the item in the list itself. For example, this code is equivalent
to the code in the “Using for Loops with Lists” on page 84:

>>> supplies = ['pens', 'staplers', 'flamethrowers', 'binders']
>>> for index, item in enumerate(supplies):

print('Index ' + str(index) + ' in supplies is: '

+ item)

Index © in supplies is: pens

Index 1 in supplies is: staplers
Index 2 in supplies is: flamethrowers
Index 3 in