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Introduction

What’s in this book? This book is designed to be a practical introduction to
data structures and algorithms for students who have just begun to write
computer programs. This introduction will tell you more about the book,
how it is organized, what experience we expect readers will have before
starting the book, and what knowledge you will get by reading it and doing
the exercises.

Who This Book Is For
Data structures and algorithms are the core of computer science. If you’ve
ever wanted to understand what computers can do, how they do it, and what
they can’t do, then you need a deep understanding of both (it’s probably
better to say “what computers have difficulty doing” instead of what they
can’t do). This book may be used as a text in a data structures and/or
algorithms course, frequently taught in the second year of a university
computer science curriculum. The text, however, is also designed for
professional programmers, for high school students, and for anyone else
who needs to take the next step up from merely knowing a programming
language. Because it’s easy to understand, it is also appropriate as a
supplemental text to a more formal course. It is loaded with examples,
exercises, and supplemental materials, so it can be used for self-study
outside of a classroom setting.

Our approach in writing this book is to make it easy for readers to
understand how data structures operate and how to apply them in practice.
That’s different from some other texts that emphasize the mathematical
theory, or how those structures are implemented in a particular language or
software library. We’ve selected examples with real-world applications and
avoid using math-only or obscure examples. We use figures and
visualization programs to help communicate key ideas. We still cover the



complexity of the algorithms and the math needed to show how complexity
impacts performance.

What You Need to Know Before You Read This
Book
The prerequisites for using this book are: knowledge of some programming
language and some mathematics. Although the sample code is written in
Python, you don’t need to know Python to follow what’s happening. Python
is not hard to understand, if you’ve done some procedural and/or object-
oriented programming. We’ve kept the syntax in the examples as general as
possible,

More specifically, we use Python version 3 syntax. This version differs
somewhat from Python 2, but not greatly. Python is a rich language with
many built-in data types and libraries that extend its capabilities. Our
examples, however, use the more basic constructs for two reasons: it makes
them easier to understand for programmers familiar with other languages,
and it illustrates the details of the data structures more explicitly. In later
chapters, we do make use of some Python features not found in other
languages such as generators and list comprehensions. We explain what
these are and how they benefit the programmer.

Of course, it will help if you’re already familiar with Python (version 2 or
3). Perhaps you’ve used some of Python’s many data structures and are
curious about how they are implemented. We review Python syntax in
Chapter 1, “Overview,” for those who need an introduction or refresher. If
you’ve programmed in languages like Java, C++, C#, JavaScript, or Perl,
many of the constructs should be familiar. If you’ve only programmed
using functional or domain-specific languages, you may need to spend more
time becoming familiar with basic elements of Python. Beyond this text,
there are many resources available for novice Python programmers,
including many tutorials on the Internet.

Besides a programming language, what should every programmer know? A
good knowledge of math from arithmetic through algebra is essential.
Computer programming is symbol manipulation. Just like algebra, there are
ways of transforming expressions to rearrange terms, put them in different



forms, and make certain parts more prominent, all while preserving the
same meaning. It’s also critical to understand exponentials in math. Much
of computer science is based on knowing what raising one number to a
power of another means. Beyond math, a good sense of organization is also
beneficial for all programming. Knowing how to organize items in different
ways (by time, by function, by size, by complexity, and so on) is crucial to
making programs efficient and maintainable. When we talk about efficiency
and maintainability, they have particular meanings in computer science.
Efficiency is mostly about how much time it takes to compute things but can
also be about the amount of space it takes. Maintainability refers to the ease
of understanding and modifying your programs by other programmers as
well as yourself.

You’ll also need knowledge of how to find things on the Internet, download
and install software, and run them on a computer. The instructions for
downloading and running the visualization programs can be found in
Appendix A of this book. The Internet has made it very easy to access a
cornucopia of tools, including tools for learning programming and
computer science. We expect readers to already know how to find useful
resources and avoid sources that might provide malicious software.

What You Can Learn from This Book
As you might expect from its title, this book can teach you about how data
structures make programs (and programmers) more efficient in their work.
You can learn how data organization and its coupling with appropriate
algorithms greatly affect what can be computed with a given amount of
computing resources. This book can give you a thorough understanding of
how to implement the data structures, and that should enable you to
implement them in any programming language. You can learn the process
of deciding what data structure(s) and algorithms are the most appropriate
to meet a particular programming request. Perhaps most importantly, you
can learn when an algorithm and/or data structure will fail in a given use
case. Understanding data structures and algorithms is the core of computer
science, which is different from being a Python (or other language)
programmer.



The book teaches the fundamental data structures that every programmer
should know. Readers should understand that there are many more. These
basic data structures work in a wide variety of situations. With the skills
you develop in this book, you should be able to read a description of
another data structure or algorithm and begin to analyze whether or not it
will outperform or perform worse than the ones you’ve already learned in
particular use cases.

This book explains some Python syntax and structure, but it will not teach
you all its capabilities. The book uses a subset of Python’s full capabilities
to illustrate how more complex data structures are built from the simpler
constructs. It is not designed to teach the basics of programming to
someone who has never programmed. Python is a very high-level language
with many built-in data structures. Using some of the more primitive types
such as arrays of integers or record structures, as you might find in C or
C++, is somewhat more difficult in Python. Because the book’s focus is the
implementation and analysis of data structures, our examples use
approximations to these primitive types. Some Python programmers may
find these examples unnecessarily complex, knowing about the more
elegant constructs provided with the language in standard libraries. If you
want to understand computer science, and in particular, the complexity of
algorithms, you must understand the underlying operations on the
primitives. When you use a data structure provided in a programming
language or from one of its add-on modules, you will often have to know its
complexity to know whether it will work well for your use case.
Understanding the core data structures, their complexities, and trade-offs
will help you understand the ones built on top of them.

All the data structures are developed using object-oriented programming
(OOP). If that’s a new concept for you, the review in Chapter 1 of how
classes are defined and used in Python provides a basic introduction to
OOP. You should not expect to learn the full power and benefits of OOP
from this text. Instead, you will learn to implement each data structure as a
class. These classes are the types of objects in OOP and make it easier to
develop software that can be reused by many different applications in a
reliable way.

The book uses many examples, but this is not a book about a particular
application area of computer science such as databases, user interfaces, or



artificial intelligence. The examples are chosen to illustrate typical
applications of programs, but all programs are written in a particular
context, and that changes over time. A database program written in 1970
may have appeared very advanced at that time, but it might seem very
trivial today. The examples presented in this text are designed to teach how
data structures are implemented, how they perform, and how to compare
them when designing a new program. The examples should not be taken as
the most comprehensive or best implementation possible of each data
structure, nor as a thorough review of all the potential data structures that
could be appropriate for a particular application area.

Structure
Each chapter presents a particular group of data structures and associated
algorithms. At the end of the chapters, we provide review questions
covering the key points in the chapter and sometimes relationships to
previous chapters. The answers for these can be found in Appendix C,
“Answers to Questions.” These questions are intended as a self-test for
readers, to ensure you understood all the material.

Many chapters suggest experiments for readers to try. These can be
individual thought experiments, team assignments, or exercises with the
software tools provided with the book. These are designed to apply the
knowledge just learned to some other area and help deepen your
understanding.

Programming projects are longer, more challenging programming exercises.
We provide a range of projects of different levels of difficulty. These
projects might be used in classroom settings as homework assignments.
Sample solutions to the programming projects are available to qualified
instructors from the publisher.

History
Mitchell Waite and Robert Lafore developed the first version of this book
and titled it Data Structures and Algorithms in Java. The first edition was
published in 1998, and the second edition, by Robert, came out in 2002.



John Canning and Alan Broder developed this version using Python due to
its popularity in education and commercial and noncommercial software
development. Java is widely used and an important language for computer
scientists to know. With many schools adopting Python as a first
programming language, the need for textbooks that introduce new concepts
in an already familiar language drove the development of this book. We
expanded the coverage of data structures and updated many of the
examples.

We’ve tried to make the learning process as painless as possible. We hope
this text makes the core, and frankly, the beauty of computer science
accessible to all. Beyond just understanding, we hope you find learning
these ideas fun. Enjoy yourself!



1. Overview

You have written some programs and learned enough to think that
programming is fun, or at least interesting. Some parts are easy, and some parts
are hard. You’d like to know more about how to make the process easier, get
past the hard parts, and conquer more complex tasks. You are starting to study
the heart of computer science, and that brings up many questions. This chapter
sets the stage for learning how to make programs that work properly and fast. It
explains a bunch of new terms and fills in background about the programming
language that we use in the examples.

In This Chapter

• What Are Data Structures and Algorithms?

• Overview of Data Structures

• Overview of Algorithms

• Some Definitions

• Programming in Python

• Object-Oriented Programming

What Are Data Structures and Algorithms?
Data organizations are ways data is arranged in the computer using its various
storage media (such as random-access memory, or RAM, and disk) and how
that data is interpreted to represent something. Algorithms are the procedures
used to manipulate the data in these structures. The way data is arranged can
simplify the algorithms and make algorithms run faster or slower. Together, the
data organization and the algorithm form a data structure. The data structures



act like building blocks, with more complex data structures using other data
structures as components with appropriate algorithms.

Does the way data is arranged and the algorithm used to manipulate it make a
difference? The answer is a definite yes. From the perspective of
nonprogrammers, it often seems as though computers can do anything and do it
very fast. That’s not really true. To see why, let’s look at a nonprogramming
example.

When you cook a meal, a collection of ingredients needs to be combined and
manipulated in specific ways. There is a huge variety of ways that you could
go about the individual steps needed to complete the meal. Some of those
methods are going to be more efficient than others. Let’s assume that you have
a written recipe, but are working in an unfamiliar kitchen, perhaps while
visiting a friend. One method for making the meal would be Method A:

1. Read through the full recipe noting all the ingredients it mentions, their
quantities, and any equipment needed to process them.

2. Find the ingredients, measure out the quantity needed, and store them.

3. Get out all the equipment needed to complete the steps in the recipe.

4. Go through the steps of the recipe in the order specified.

Let’s compare that to Method B:

1. Read the recipe until you identify the first set of ingredients or equipment
that is needed to complete the first step.

2. Find the identified ingredients or equipment.

3. Measure any ingredients found.

4. Perform the first step with the equipment and ingredients already found.

5. Return to the beginning of this method and repeat the instructions
replacing the word first with next. If there is no next step, then quit.

Both methods are complete in that that they should finish the complete recipe if
all the ingredients and equipment are available. For simple recipes, they should
take about the same amount of time too. The methods differ as the recipes get
more complex. For example, what if you can’t find the fifth ingredient? In
method A, that issue is identified at the beginning before any other ingredients
are combined. While neither method really explains what to do about



exceptions like a missing ingredient, you can still compare them under the
assumption that you handle the exceptions the same way.

A missing ingredient could be handled in several ways: find a substitute
ingredient, broaden the search for the ingredient (look in other rooms, ask a
neighbor, go to the market), or ignore the ingredient (an optional garnish). Each
of those remedies takes some time. If there is one missing ingredient and two
cooks using the different methods handle it in the same way, both are delayed
the same amount of time. If there are multiple missing ingredients, however,
Method A should identify those earlier and allow for the possibility of getting
all the missing ingredients in one visit to a neighbor or a market. The time
savings of combining the tasks of replacing missing ingredients could be
significant (imagine the market being far away or neighbors who want to talk
for hours on every visit).

The order of performing the operations could have significant impact on the
time needed to complete the meal. Another difference could be in the quality of
the meal. For example, in Method B the cook would perform the first “step”
and then move on to the next step. Let’s assume those use two different groups
of ingredients or equipment. If finding or measuring the ingredients, or getting
the equipment for the later steps takes significant time, then the results of the
first step sit around for a significant time. That can have a bad effect on the
quality of the meal. The cook might be able to overcome that effect in some
circumstances by, say, putting the results of the first step in a freezer or
refrigerator and then bringing them back to room temperature later. The cook
would be preserving the quality of the food at the expense of the time needed
to prepare it.

Would Method B ever be desirable if it takes longer or risks degrading the
quality of the food? Perhaps. Imagine that the cook is preparing this meal in the
unfamiliar kitchen of a family relative. The kitchen is full of family members,
and each one is trying to make part of the meal. In this crowded situation, it
could be difficult for each cook to get out all of their ingredients and equipment
at once. There might not be enough counter space, or mixing bowls, or knives,
for example, for each cook to have all their items assembled at the beginning.
The cooks could be constrained to work on individual steps while waiting for
equipment, space, or ingredients to become available. In this case, Method B
could have advantages over asking all the cooks to work one at a time using
Method A.



Coming back to programming, the algorithm specifies the sequence of
operations that are to be performed, much like the steps in the recipe. The data
organizations are somewhat analogous to how the ingredients are stored, laid
out in the kitchen, and their proximity to other ingredients and equipment. For
example, having the ingredient in the kitchen makes the process much faster
than if the ingredient needs to be retrieved from a neighbor or the market. You
can think of the amount of space taken up by spreading out the ingredients in
various locations as the amount of space needed for the algorithm. Even if all
the ingredients are in the kitchen where the cook is, there are ways of setting up
the ingredients to make the cooking tasks go faster. Having them compactly
arranged in the order they are needed minimizes the amount of moving around
the cook must do. The organization of the ingredients can also help if a cook
must be replaced by another cook in the middle of the preparation;
understanding where each of the ingredients fits in to the recipe is faster if the
layout is organized. This is another reason why good data organization is
important. It also reinforces that concept that the algorithm and the data
organization work together to make the data structure.

Data structures are important not just for speed but also to properly model the
meaning of the data. Let’s say there’s an event that many people want to attend
and they need to submit their phone number to have a chance to get tickets.
Each person can request multiple tickets. If there are fewer tickets than the
number of people who want to get them, some method needs to be applied to
decide which phone numbers to contact first and determine the number of
tickets they will receive. One method would be to go through the phone
numbers one at a time and total up the number of tickets until all are given out,
then go through the remaining numbers to let them know the tickets are gone.
That might be a fair method if the numbers were put in an ordered list defined
in a way that potential recipients understood— for example, a chronological
list of phone numbers submitted by people interested in the tickets. If the
tickets are to be awarded as a sort of lottery, then going through them
sequentially means following any bias that is implicit in the order of the list.
Randomly choosing a number from the list, contacting the buyer, and then
removing the number would be fairer in a lottery system.

Data structures model systems by assigning specific meanings to each of the
pieces and how they interact. The “systems” are real-world things like first-
come, first-served ticket sales, or a lottery giveaway, or how roads connect
cities. For the list of phone numbers with ticket requests, a first-come, first-
served system needs the list in chronological order, some pointer to where in



the list the next number should be taken, and a pointer to where any newly
arriving number should be added (after all previous list entries). The lottery
system would need a different organization, and modeling the map of roads and
cities needs another. In this book we examine a lot of different data structures.
Each one has its strengths and weaknesses and is applicable to different kinds
of real-world problems. It’s important to understand how each one operates,
whether it correctly models the behavior needed by a particular problem area,
whether it will operate efficiently to perform the operations, and whether it can
“scale” well. We say a data structure or algorithm scales well if it will perform
as efficiently as possible as the amount of data grows.

Overview of Data Structures
As we’ve discussed, not every data structure models every type of problem. Or
perhaps a better way to put it is that the structures model the problem
awkwardly or inefficiently. You can generalize the data structures somewhat by
looking at the common operations that you are likely to do across all of them.
For example, to manage the requests for tickets, you need to

• Add a new phone number (for someone who wants one or more tickets)

• Remove a phone number (for someone who later decides they don’t want
tickets)

• Find a particular phone number (the next one to get a ticket by some
method, or to look up one by its characteristics)

• List all the phone numbers (show all the phone numbers exactly once,
that is, without repeats except, perhaps, for cases where multiple
identical entries were made)

These four operations are needed for almost every data structure that manages
a large collection of similar items. We call them insertion, deletion, search,
and traversal.

Here’s a list of the data structures covered in this book and some of their
advantages and disadvantages with respect to the four operations. Table 1-1
shows a very high-level view of the structures; we look at them in much more
detail in the following chapters. One aspect mentioned in this table is the data
structure’s complexity. In this context, we’re referring to the structure’s ability



to be understood easily by programmers, not how quickly it can be
manipulated by the computer.

Table 1-1 Comparison of Different Data Types





Overview of Algorithms
Algorithms are ways to implement an operation using a data structure or group
of structures. A single algorithm can sometimes be applied to multiple data
structures with each data structure needing some variations in the algorithm.
For example, a depth first search algorithm applies to all the tree data
structures, perhaps the graph, and maybe even stacks and queues (consider a
stack as a tree with branching factor of 1). In most cases, however, algorithms
are intimately tied to particular data structures and don’t generalize easily to
others. For example, the way to insert new items or search for the presence of
an item is very specific to each data structure. We examine the algorithms for
insertion, search, deletion, and traversal for all the data structures. That
illustrates how much they vary by data structure and the complexity involved
in those structures.

Another core algorithm is sorting, where a collection of items is put in a
particular order. Ordering the items makes searching for items faster. There are
many ways to perform sort operations, and we devote Chapter 3, “Simple
Sorting,” to this topic, and revisit the problem in Chapter 7, “Advanced
Sorting.”

Algorithms are often defined recursively, where part of the algorithm refers to
executing the algorithm again on some subset of the data. This very important
concept can simplify the definition of algorithms and make it very easy to
prove the correctness of an implementation. We study that topic in more detail
in Chapter 6, “Recursion.”

Some Definitions
This section provides some definitions of key terms.

Database
We use the term database to refer to the complete collection of data that’s
being processed in a particular situation. Using the example of people
interested in tickets, the database could contain the phone numbers, the names,
the desired number of tickets, and the tickets awarded. This is a broader
definition than what’s meant by a relational database or object-oriented
database.



Record
Records group related data and are the units into which a database is divided.
They provide a format for storing information. In the ticket distribution
example, a record could contain a person’s name, a person’s phone number, a
desired number of tickets, and a number of awarded tickets. A record typically
includes all the information about some entity, in a situation in which there are
many such entities. A record might correspond to a user of a banking
application, a car part in an auto supply inventory, or a stored video in a
collection of videos.

Field
Records are usually divided into several fields. Each field holds a particular
kind of data. In the ticket distribution example, the fields could be as shown in
Figure 1-1.

Figure 1-1 A record definition for ticket distribution

The fields are named and have values. Figure 1-1 shows an empty box
representing the storage space for the value. In many systems, the type of value
is restricted to a single or small range of data types, just like variables are in
many programming languages. For example, the desired number of tickets
could be restricted to only integers, or only non-negative integers. In object-
oriented systems, objects often represent records, and each object’s attributes
are the fields of that record. The terminology can be different in the various
programming languages. Object attributes might be called members, fields, or
variables.

Key
When searching for records or sorting them, one of the fields is called the key
(or search key or sort key). Search algorithms look for an exact match of the



key value to some target value and return the record containing it. The program
calling the search routine can then access all the fields in the record. For
example, in the ticket distribution system, you might search for a record by a
particular phone number and then look at the number of desired tickets in that
record. Another kind of search could use a different key. For example, you
could search for a record using the desired tickets as search key and look for
people who want three tickets. Note in this case that you could define the
search to return the first such record it finds or a collection of all records where
the desired number of tickets is three.

Databases vs. Data Structures
The collection of records representing a database is going to require a data
structure to implement it. Each record within the database may also be
considered a data structure with its own data organization and algorithms. This
decomposition of the data into smaller and smaller units goes on until you get
to primitive data structures like integers, floating-point numbers, characters,
and Boolean values. Not all data structures can be considered databases; they
must support insertion, search, deletion, and traversal of records to implement a
database.

Programming in Python
Python is a programming language that debuted in 1991. It embraces object-
oriented programming and introduced syntax that made many common
operations very concise and elegant. One of the first things that programmers
new to Python notice is that certain whitespace is significant to the meaning of
the program. That means that when you edit Python programs, you should use
an editor that recognizes its syntax and helps you create the program as you
intend it to work. Many editors do this, and even editors that don’t recognize
the syntax by filename extension or the first few lines of text can often be
configured to use Python syntax for a particular file.

Interpreter
Python is an interpreted language, which means that even though there is a
compiler, you can execute programs and individual expressions and statements
by passing the text to an interpreter program. The compiler works by



translating the source code of a program into bytecode that is more easily read
by the machine and more efficient to process. Many Python programmers
never have to think about the compiler because the Python interpreter runs it
automatically, when appropriate.

Interpreted languages have the great benefit of allowing you to try out parts of
your code using an interactive command-line interpreter. There are often
multiple ways to start a Python interpreter, depending on how Python was
installed on the computer. If you use an Integrated Development Environment
(IDE) such as IDLE, which comes with most Python distributions, there is a
window that runs the command-line interpreter. The method for starting the
interpreter differs between IDEs. When IDLE is launched, it automatically
starts the command-line interpreter and calls it the Shell.

On computers that don’t have a Python IDE installed, you can still launch the
Python interpreter from a command-line interface (sometimes called a terminal
window, or shell, or console). In that command-line interface, type python and
then press the Return or Enter key. It should display the version of Python you
are using along with some other information, and then wait for you to type
some expression in Python. After reading the expression, the interpreter
decides if it’s complete, and if it is, computes the value of the expression and
prints it. The example in Listing 1-1 shows using the Python interpreter to
compute some math results.

Listing 1-1 Using the Python Interpreter to Do Math

 
$ python 
Python 3.6.0 (default, Dec 23 2016, 13:19:00) 
Type "help", "copyright", "credits" or "license" for more information. 
>>> 2019 - 1991 
28 
>>> 2**32 - 1 
4294967295 
>>> 10**27 + 1 
1000000000000000000000000001 
>>> 10**27 + 1.001 
1e+27 
>>>

In Listing 1-1, we’ve colored the text that you type in blue italics. The first
dollar sign ($) is the prompt from command-line interpreter. The Python



interpreter prints out the rest of the text. The Python we use in this book is
version 3. If you see Python 2… on the first line, then you have an older version
of the Python interpreter. Try running python3 in the command-line interface
to see if Python version 3 is already installed on the computer. If not, either
upgrade the version of Python or find a different computer that has python3.
The differences between Python 2 and 3 can be subtle and difficult to
understand for new programmers, so it’s important to get the right version.
There are also differences between every minor release version of Python, for
example, between versions 3.8 and 3.9. Check the online documentation at
https://docs.python.org to find the changes.

The interpreter continues prompting for Python expressions, evaluating them,
and printing their values until you ask it to stop. The Python interpreter
prompts for expressions using >>>. If you want to terminate the interpreter and
you’re using an IDE, you typically quit the IDE application. For interpreters
launched in a command-line interface, you can press Ctrl-D or sometimes Ctrl-
C to exit the Python interpreter. In this book, we show all of the Python
examples being launched from a command line, with a command that starts
with $ python3.

In Listing 1-1, you can see that simple arithmetic expressions produce results
like other programming languages. What might be less obvious is that small
integers and very large integers (bigger than what fits in 32 or 64 bits of data)
can be calculated and used just like smaller integers. For example, look at the
result of the expression 10**27 + 1. Note that these big integers are not the
same as floating-point numbers. When adding integers and floating-point
numbers as in 10**27 + 1.0001, the big integer is converted to floating-point
representation. Because floating-point numbers only have enough precision for
a fixed number of decimal places, the result is rounded to 1e+27 or 1 × 1027.

Whitespace syntax is important even when using the Python interpreter
interactively. Nested expressions use indentation instead of a visible character
to enclose the expressions that are evaluated conditionally. For example,
Python if statements demarcate the then-expression and the else-expression
by indentation. In C++ and JavaScript, you could write
 
if (x / 2 == 1) {do_two(x)} 
else {do_other(x)}

The curly braces enclose the two expressions. In Python, you would write

https://docs.python.org/


 
if x / 2 == 1: 
   do_two(x) 
else: 
   do_other(x)

You must indent the two procedure call lines for the interpreter to recognize
their relation to the line before it. You must be consistent in the indentation,
using the same tabs or spaces, on each indented line for the interpreter to know
the nested expressions are at the same level. Think of the indentation changes
as replacements for the open curly brace and the close curly brace. When the
indent increases, it’s a left brace. When it decreases, it is a right brace.

When you enter the preceding expression interactively, the Python interpreter
prompts for additional lines with the ellipsis prompt (…). These prompts
continue until you enter an empty line to signal the end of the top-level
expression. The transcript looks like this, assuming that x is 3 and the
do_other() procedure prints a message:
 
>>> if x / 2 == 1: 
...    do_two(x) 
... else: 
...    do_other(x) 
... 
Processing other value 
>>>

Note, if you’ve only used Python 2 before, the preceding result might surprise
you, and you should read the details of the differences between the two
versions at https://docs.python.org. To get integer division in Python 3, use the
double slash (//) operator.

Python requires that the indentation of logical lines be the same if they are at
the same level of nesting. Logical lines are complete statements or expressions.
A logical line might span multiple lines of text, such as the previous if
statement. The next logical line to be executed after the if statement’s then or
else clause should start at the same indentation as the if statement does. The
deeper indentation indicates statements that are to be executed later (as in a
function definition), conditionally (as in an else clause), repeatedly (as in a
loop), or as parts of larger construct (as in a class definition). If you have long
expressions that you would prefer to split across multiple lines, they either

https://docs.python.org/


• Need to be inside parentheses or one of the other bracketed expression
types (lists, tuples, sets, or dictionaries), or

• Need to terminate with the backslash character (\) in all but the last line
of the expression

Inside of parentheses/brackets, the indentation can be whatever you like
because the closing parenthesis/bracket determines where the expression ends.
When the logical line containing the expression ends, the next logical line
should be at the same level of indentation as the one just finished. The
following example shows some unusual indentation to illustrate the idea:
 
>>> x = 9 
>>> if (x % 
...             2 == 0): 
...    if (x % 
... 3 == 0): 
...       ’Divisible by 6’ 
...    else: 
...       ’Divisible by 2’ 
... else: 
...    if (x % 
...    3 == 0): 
...       ’Divisible by 3’ 
...    else: 
...       ’Not divisble by 2 or 3’ 
... 
’Divisible by 3’

The tests of divisibility in the example occur within parentheses and are split
across lines in an arbitrary way. Because the parentheses are balanced, the
Python interpreter knows where the if test expressions end and doesn’t
complain about the odd indentation. The nested if statements, however, must
have the same indentation to be recognized as being at equal levels within the
conditional tests. The else clauses must be at the same indentation as the
corresponding if statement for the interpreter to recognize their relationship. If
the first else clause is omitted as in the following example,
 
>>> if (x % 
...             2 == 0): 
...    if (x % 
... 3 == 0): 



...       ’Divisible by 6’ 

... else: 

...    if (x % 

...    3 == 0): 

...       ’Divisible by 3’ 

...    else: 

...       ’Not divisble by 2 or 3’ 

... 
’Divisible by 3’

then the indentation makes clear that the first else clause now belongs to the
if (x % 2 == 0) and not the nested if (x % 3 == 0). If x is 4, then the
statement would evaluate to None because the else clause was omitted. The
mandatory indentation makes the structure clearer, and mixing in
unconventional indentation makes the program very hard to read!

Whitespace inside of strings is important and is preserved. Simple strings are
enclosed in single (‘) or double (“) quote characters. They cannot span lines but
may contain escaped whitespace such as newline (\n) or tab (\t) characters,
e.g.,
 
>>> "Plank’s constant:\n quantum of action:\t6.6e-34" 
"Plank’s constant:\n quantum of action:\t6.6e-34" 
>>> print("Plank’s constant:\n quantum of action:\t6.6e-34") 
Plank’s constant: 
 quantum of action:   6.6e-34

The interpreter reads the double-quoted string from the input and shows it in
printed representation form, essentially the same as the way it would be
entered in source code with the backslashes used to escape the special
whitespace. If that same double-quoted string is given to the print function, it
prints the embedded whitespace in output form. To create long strings with
many embedded newlines, you can enclose the string in triple quote characters
(either single or double quotes).
 
>>> """Python 
... enforces readability 
... using structured 
... indentation. 
... """ 
’Python\nenforces readability\nusing structured\nindentation.\n’



Long, multiline strings are especially useful as documentation strings in
function definitions.

You can add comments to the code by starting them with the pound symbol (#)
and continuing to the end of the line. Multiline comments must each have their
own pound symbol on the left. For example:

def within(x, lo, hi):   # Check if x is within the [lo, hi] range 
   return lo <= x and x <= hi  # Include hi in the range

We’ve added some color highlights to the comments and reserved words used
by Python like def, return, and and, to improve readability. We discuss the
meaning of those terms shortly. Note that comments are visible in the source
code files but not available in the runtime environment. The documentation
strings mentioned previously are attached to objects in the code, like function
definitions, and are available at runtime.

Dynamic Typing
The next most noticeable difference between Python and some other languages
is that it uses dynamic typing. That means that the data types of variables are
determined at runtime, not declared at compile time. In fact, Python doesn’t
require any variable declarations at all; simply assigning a value to variable
identifier creates the variable. You can change the value and type in later
assignments. For example,
 
>>> x = 2 
>>> x 
2 
>>> x = 2.71828 
>>> x 
2.71828 
>>> x = ’two’ 
>>> x 
’two’

The assignment statement itself doesn’t return a value, so nothing is printed
after each assignment statement (more precisely, Python’s None value is
returned, and the interpreter does not print anything when the typed expression
evaluates to None). In Python 3.8, a new operator, :=, was introduced that



allows assignment in an expression that returns a value. For example,
evaluating

(x := 2) ** 2 + (y := 3) ** 2

sets x to be 2 and y to be 3 and returns 13 as a value.

The type of a variable’s value can be determined by the type() function or
tested using the isinstance() function.

Sequences
Arrays are different in Python than in other languages. The built-in data type
that “looks like” an array is called a list. Python’s list type is a hybrid of the
arrays and linked lists found in other languages. As with variables, the
elements of Python lists are dynamically typed, so they do not all have to be of
the same type. The maximum number of elements does not need to be declared
when creating a list, and lists can grow and shrink at runtime. What’s quite
different between Python lists and other linked list structures is that they can
be indexed like arrays to retrieve any element at any position. There is no data
type called array in the core of Python, but there is an array module that can
be imported. The array module allows for construction of arrays of fixed-
typed elements.

In this book, we make extensive use of the built-in list data type as if it were
an array. This is for convenience of syntax, and because the underlying
implementation of the list acts like arrays do in terms of indexed access to
elements. Please note, however, that we do not use all of the features that the
Python list type provides. The reason is that we want to show how fixed-type,
fixed-length arrays behave in all computer languages. For new programmers,
it’s better to use the simpler syntax that comes with the built-in list for
constructing arrays while learning how to manipulate their contents in an
algorithm.

Python’s built-in lists can be indexed using 0-relative indexes. For example:
 
>>> a = [1, ’a’, False] 
>>> a 
[1, ’a’, False] 
>>> len(a) 



3 
>>> a[2] 
False 
>>> a[2] = True 
>>> a 
[1, ’a’, True] 
>>>

The three-element list in the example contains an integer, a string, and a
Boolean value. The square brackets are used either to create a new list (as in
the first assignment to a) or to enclose the index of an existing list (as in a[2]).
The built-in len() function is used to determine the current size of its
argument. Individual values in the list can be changed using the assignment
statement. Strings can be treated like lists or arrays of characters, except that
unlike lists, strings are immutable, meaning that after a string is created, the
characters of the string cannot be changed. In Python 3, strings always contain
Unicode characters, which means there can be multiple bytes per character.
 
>>> s = ’π = 3.14159’ 
>>> s 
’π = 3.14159’ 
>>> len(s) 
11 
>>> π = 3.14159 
>>> π 
3.14159

In the preceding example, the string, s, contains the Greek letter π, which is
counted as one character by the len() function, whereas the Unicode character
takes two bytes of space. Unicode characters can also be used in variable
names in Python 3 as shown by using π as a variable name.

Python treats all the data types that can be indexed, such as lists, arrays, and
strings, as sequence data types. The sequence data types can be sliced to form
new sequences. Slicing means creating a subsequence of the data, which is
equivalent to getting a substring for strings. Slices are specified by a start and
end index, separated by a colon (:) character. Every element from the start
index up to, but not including, the end index is copied into the new sequence.
The start index defaults to 0, the beginning of the sequence, and the end index
defaults to the length of sequence. You can use negative numbers for both array
and slice indexes. Negative indices count backwards from the end of the



sequence; −1 means the last element, −2 means the second to last element, and
so on. Here are some examples with a string:
 
>>> digits = ’0123456789’ 
>>> digits[3] 
’3’ 
>>> digits[-1] 
’9’ 
>>> digits[-2] 
’8’ 
>>> digits[3:6] 
’345’ 
>>> digits[:-2] 
’01234567’

Sequence data types can be concatenated, multiplied, searched, and
enumerated. These operations sometimes require more function calls in other
languages, but Python provides simple syntax to perform them. For example:
 
>>> [1, 2, 3] + [’a’, ’b’] 
[1, 2, 3, ’a’, ’b’] 
>>> ’011’ * 7 
’011011011011011011011’ 
>>> ’011’ * 0 
’’ 
>>> 3 in [1, 2, 3] 
True 
>>> ’elm’ in [’Elm’, ’Asp’, ’Oak’] 
False

The preceding example shows two lists concatenated with the plus (+)
operator to form a longer list. Multiplying a string by an integer produces that
many copies of the string, concatenated together. The in operator is a Boolean
test that searches for an element in a sequence. It uses the == equality test to
determine whether the element matches. These operations work with all
sequence data types. This compact syntax hides some of the complexity of
stepping through each sequence element and doing some operation such as
equality testing or copying the value over to a new sequence.

Looping and Iteration



Frequently we want to implement algorithms that process each of the elements
of a sequence in order. For that, Python has several ways to iterate and
enumerate sequences. For example:
 
>>> total = 0 
>>> for x in [5, 4, 3, 2, 1]: 
...   total += x 
... 
>>> total 
15

The for variable in sequence syntax is the basic loop construct (or iteration)
in Python. The nested expression is evaluated once for each value in the
sequence with the variable bound to the value. There is no need to explicitly
manipulate an index variable that points to the current element of the sequence;
that’s handled by the Python interpreter. One common mistake when trying to
enter this expression in the interactive interpreter is to forget the empty line
after the nested expression.
 
>>> total = 0 
>>> for x in [5, 4, 3, 2, 1]: 
...   total += x 
... total 
  File "<stdin>", line 3 
    total 
        ^ 
SyntaxError: invalid syntax

The reason this is so common is that the empty line is needed only for the
interactive interpreter; the same Python expressions written in a file would not
report this as an error. The interactive interpreter, however, waits for the empty
line to signal the end of the for loop and begin evaluation of that full
expression. When the interpreter finds a new expression starting at the same
indent level as the for loop, it is dealing with two consecutive expressions and
does not allow it. The interpreter expects to read one expression, evaluate it,
and print the value, before starting to determine where the next expression
begins and ends.

In some circumstances, having an explicit index variable is important. In those
cases, there are a couple of convenient ways to perform the work. For example:



 
>>> height = [5, 4, 7, 2, 3] 
>>> weightedsum = 0 
>>> for i in range(len(height)): 
...   weightedsum += i * height[i] 
... 
>>> weightedsum 
36 
>>> for i, h in enumerate(height): 
...   weightedsum += i * h 
... 
>>> weightedsum 
72

The example calculates a weighted sum where we multiply each value in the
height list by the index of that value. The range() function can be thought of
as a function that produces a list of integers starting at 0 and going up to, but
not equal to, its argument. By passing len(height) as an argument, range()
produces the list [0, 1, 2, 3, 4]. In the body of the first for loop, the
weightedsum variable is incremented by the product of the index, i, and the
value that i indexes in the height list. The second for loop repeats the same
calculation using a slightly more concise form called enumeration. The
enumerate() function can be thought of as taking a sequence as input and
producing a sequence of pairs. The first element of each pair is an index, and
the second is the corresponding value from its sequence argument. The second
for loop has two variables separated by a comma, i and h, instead of just one
in the previous loops. On each iteration of the enumerate loop, i is bound to
the index and h is bound to the corresponding value from height. Python
makes the common pattern of looping over a sequence very easy to write, both
with or without an index variable.

The range() and enumerate() functions actually create iterators, which are
complex data types that get called in each loop iteration to get the next value of
the sequence. It doesn’t actually produce a list in memory for the full sequence.
We discuss how iterators can be used to represent very long sequences without
taking up much memory in Chapter 5, “Linked Lists.”

Multivalued Assignment
The comma-separated list of variables can also be used in assignment
statements to perform multiple assignments with a single equal sign (=)



operator. This makes the most sense when all the values being assigned are
closely related, like coordinates of a vector. To illustrate:
 
>>> x, y, z = 3, 4, 5 
>>> y 
4 
>>> (x, y, z) = [7, 8, 9] 
>>> y 
8

The sequences on both sides of the assignment operator must have the same
length; otherwise, an error occurs. The sequences can be of different types. The
second assignment here uses a tuple on the left and a list on the right side.
Python’s tuple data type is also a sequence data type very similar to a list, with
the distinction that its elements cannot be modified. In this case, the tuple on
the left must be a tuple of variable names. The comma is the operator that
creates the tuple of the x, y, and z variables. Each of them is bound to the
corresponding value in the list on the right. Looking back at the enumerate loop
in the previous example, the iterations of the loop are performing the
equivalent of
 
>>> i, h = (0, 5) 
>>> weightedsum += i * h 
>>> i, h = (1, 4) 
>>> weightedsum += i * h 
>>> i, h = (2, 7) 
>>> weightedsum += i * h 
>>> i, h = (3, 2) 
>>> weightedsum += i * h 
>>> i, h = (4, 3) 
>>> weightedsum += i * h

Python’s multivalued assignments can be used to swap or rotate values. That
can be a surprise to programmers of other languages where an explicit
temporary variable must be used to hold one or more of the values. For
example:
 
>>> left, middle, right = ’Elm’, ’Asp’, ’Oak’ 
>>> left, middle, right 
(’Elm’, ’Asp’, ’Oak’) 
>>> left, middle, right = middle, right, left 



>>> left, middle, right 
(’Asp’, ’Oak’, ’Elm’)

The Python interpreter evaluates all the expressions on the right of the equal
sign, puts the results in a tuple, and then makes the assignments to the variables
on the left side from the tuple. The tuple holding the results is something like a
hidden temporary variable. The parentheses surrounding the tuples on both
sides of the equal sign operator are optional.

There is another kind of assignment statement that looks like the multivalued
assignment but is different. You use it to assign the same value to multiple
variables. For example:
 
>>> left = middle = right = ’Gum’ 
>>> left, middle, right 
(’Gum’, ’Gum’, ’Gum’)

Several variables are all assigned the same value. The overall assignment
statement, however, still evaluates as None.

Importing Modules
Functions can return multiple values in the form of tuples, too. You can decide
whether to store all these values as a single tuple, or in several variables, one
for each of the tuple’s elements, just like the multivalued assignment does. A
good example of this is splitting pathname components. The os module is in
Python’s standard library and provides many tools to operate on the underlying
operating system where Python is running. To access a module, you import it.
After it is imported, you refer to its contents via the module name, followed by
a period, and then the name of one of its functions or other definitions. For
example:
 
>>> import math 
>>> math.pi 
3.141592653589793 
>>> import os 
>>> os.path.splitext(’myfile.ext’) 
(’myfile’, ’.ext’) 
>>> filename, extension = os.path.splitext(’myfile.ext’) 
>>> extension 
’.ext’



The import statement creates a namespace for all the objects it defines. That’s
important to avoid conflicts between a variable or function that you define and
the one in the module. In the preceding example, the value for pi is stored in
the math namespace. If you have a separate definition, say an approximation
like pi = 3.1, your program can refer to each one without confusion. The os
module has submodules, one of which is the path module. Nested submodules
create nested namespaces with corresponding names separated by periods. The
os.path.splitext() function splits a filename at the last period and returns
the two parts as a tuple. The preceding example shows binding that result to
two variables, filename and extension, and then shows the value of the
extension. Occasionally, you may call a function that returns multiple values
without needing to retain all of them. Some Python programmers like to use the
simplest variable name, a single underscore (_), as a throwaway variable. For
instance, if only the filename extension was needed, you could write
 
_, extension = os.path.splitext(’myfile.ext’)

Functions and Subroutines
Of course, the core of all programming languages is the ability to define
functions and subroutines. In Python, they are defined with the def statement.
The parameters the function accepts are provided in a list of variables.
Parameters can be mandatory or optional; the optional ones must have a default
value to use when they are missing. The def statement has the name of the
function, the parameter list in parentheses, a colon, followed by a nested
expression that is the body of the routine. If it is a function, the body should
contain one or more return statements for the value to be returned.
Subroutines in other programming languages do not return values. In Python,
all functions and subroutines return something, but if no explicit return value is
provided in the body of a def statement, then the value returned is None.

Here’s an implementation of a weighted sum function. It takes a sequence of
weights and a sequence of values. If the weights sequence is shorter than that
of the values, it uses the missing value as the default weight.
 
>>> def weightedsum(values, weights, missing=0): 
...     sum = 0 
...     for i, val in enumerate(values): 
...        sum += val * (weights[i] if i < len(weights) else missing) 



...     return sum 

... 
>>> weightedsum([4, 9, 16, 25], [2, 2]) 
26 
>>> weightedsum([4, 9, 16, 25], [2, 2], 1) 
67

The preceding example also illustrates Python’s conditional expression, which
has the following form:

expression if test_expression else expression

First the test_expression is evaluated. If it is true, then the leftmost expression
is evaluated and returned. Otherwise, the rightmost expression is evaluated and
returned.

We refer to the variables in the function’s def statement as its parameters. The
arguments are the values that the caller submits to the function. Most of the
time, arguments are matched to their parameters by their position in the
argument list. Keyword arguments, in contrast, can be in any order but must
follow any positional arguments in the call. A function call can specify a
parameter’s value by preceding the value with the parameter’s name and an
equal sign (=). Function definitions can also treat a sequence of parameters as a
list. These are marked in the function definition using an asterisk (*) before the
parameter name. As an example, Python’s print function accepts any number
of objects to print along with multiple keyword parameters that control what
separators it uses in printing and where and how it produces the output. Its
definition looks like this:
 
def print(*objects, sep=’ ’, end=’\n’, file=sys.stdout, flush=False):

Inside the body of the print subroutine, the objects parameter holds the list of
things to print. The printed output is the string representation of each object
value separated by a space character and terminated by a newline, by default.
Normally, the output string is sent to the standard output stream and can be
buffered. If, instead, you wanted to send the output to the standard error stream
separated by tab characters, you could write
 
>>> import sys 
>>> print(print, ’is a’, type(print), file=sys.stderr, sep=’\t’) 



<built-in function print>     is a  <class 
’builtin_function_or_method’>

In this example, the call to print has three positional parameters that all get
bound to the objects list. Note that the file and sep arguments are not in the
same position as their corresponding parameters.

List Comprehensions
Applying a calculation or function on each element of a list to produce a new
list is such a useful concept that Python has a special syntax for it. The concept
is called a list comprehension, and it is written as a little loop inside the
brackets used to create lists:

[expression for variable in sequence]

The for variable in sequence part is the same syntax as for procedural loops.
The expression at the beginning is the same as the loop body (except that it
can’t contain multiple statements; only a single expression is allowed). The
Python interpreter goes through the sequence getting each element and binding
the variable to that element. It evaluates the expression in the context of the
bound variable to compute a value. That computed value is put in the output
sequence in the same position as the element from the input sequence. Here are
two equivalent ways to produce a list of squares of the values in another list:
 
>>> values = [7, 11, 13, 17, 19] 
>>> squares = [] 
>>> for val in values: 
...     squares.append(val * val) 
... 
>>> squares 
[49, 121, 169, 289, 361] 
>>> [ x * x for x in values ] 
[49, 121, 169, 289, 361]

The first few lines in the example show a simple loop that appends the squares
to an initially empty list. The last line in the example collapses all those lines
(other than defining the values) into a single expression. The whitespace just
inside the square brackets is optional, but many programmers put it in to make
it clearer that this is a list comprehension instead of a list created by evaluating
a series of comma-separated expressions.



The list comprehension is a very compact syntax for describing the incredibly
useful concept of mapping. It hides all the implementation details of indices
and loop exit conditions while still making the essence of the operation very
clear. Mapping is used everywhere in programming. In many applications the
same operation needs to be applied over huge amounts of data and collected
into a similar structure to the input.

Let’s look at a couple more comprehensions to get the idea. To get the cube of
all the integers between 10 and 20, you can write
 
>>> [ x ** 3 for x in range(10, 21) ] 
[1000, 1331, 1728, 2197, 2744, 3375, 4096, 4913, 5832, 6859, 8000]

To split hyphenated words, you could write
 
>>> [ w.split(’-’) for w in [’ape’, ’ape-man’, ’hand-me-down’] ] 
[[’ape’], [’ape’, ’man’], [’hand’, ’me’, ’down’]]

The loop can also have a filter condition. Only those elements satisfying the
condition are put in the output sequence. The filter expression goes at the end,
that is,

[expression for variable in sequence if filter_expression]

The filter expression should evaluate to True for those sequence elements you
wish to keep in the output. For example, let’s get the cube of all the integers
between 10 and 20 that are not multiples of 3:
 
>>> [ x ** 3 for x in range(10, 21) if x % 3 != 0 ] 
[1000, 1331, 2197, 2744, 4096, 4913, 6859, 8000]

And find all the characters in a string that are alphabetic:
 
>>> [ c for c in ’We, the People...’ if c.isalpha() ] 
[’W’, ’e’, ’t’, ’h’, ’e’, ’P’, ’e’, ’o’, ’p’, ’l’, ’e’]

These compact forms make it easy to describe the core operation while hiding
many of the looping details needed to implement basic operations.



Exceptions
Python allows programs to define what happens when particular exception
conditions occur. These exceptions aren’t just for errors; Python uses
exceptions to handle things like the end of iteration for loops, keyboard
interrupts, and timer expiration, which are all expected events. Your programs
can define new kinds of exceptions and ways to handle them if they occur.
Exception handling can be defined within try except statements. The basic
form is
 
try: 
    <statements> 
except: 
    <statements>

The set of statements after the try: are executed from top to bottom, and if and
only if an exception occurs during that execution, the statements after the
except: are executed. If no exception occurs, then the next logical line after
the try except statement is executed.

Programs can define different handlers for different kinds of exceptions. For
example:
 
try: 
    long_running_function() 
except KeyboardInterrupt: 
    print(’Keyboard interrupted long running function’) 
except IndexError: 
    print(’Index out of range during long running function’)

Each of the except clauses can specify a type (class) of exception. Exceptions
of that type (or a subclass of the declared class) trigger the corresponding
statements to be executed. When no exception class is specified in an except
clause, as in the basic form example, any type of exception triggers the
execution of the clause.

When a program doesn’t specify an exception handler for the type of exception
that occurs, Python’s default exception handlers print out information about the
exception and where it occurred. There are also optional else and finally
clauses for try except statements, but we don’t use them in this book.



You can specify exceptions in your programs by using the raise statement,
which expects a single argument, an exception object, describing the condition.
The statement
 
raise Exception(’No more tickets’)

raises a general exception with a short description. If the program has defined
an exception handler for the general Exception class at the time this exception
is raised, then it is used in place of Python’s default handler. Otherwise, Python
prints a stack trace and exits the program if you’re not running in the
interactive interpreter. We look more at exception objects in the next section.

Object-Oriented Programming
Object-oriented programming developed as a way to organize code for data
structures. The data managed in the structure is kept in an object. The object is
also called an instance of a class of objects. For example, in distributing
tickets for an event, you would want an object to hold the list of phone
numbers for people desiring tickets. The class of the object could be a queue
that makes it easier to implement a first-come, first-served distribution system
(as described in Chapter 4, “Stacks and Queues”). Object classes define
specific methods that implement operations on the object instances. For the
ticketing system, there needs to be a method to add a new phone number for
someone desiring tickets. There also needs to be methods to get the next phone
number to call and to record how many tickets are assigned to each person
(which might be stored in the same or different object). The methods are
common to all objects in the class and operate on the data specific to each
instance. If there were several events where tickets are being distributed, each
event would need its own queue instance. The method for adding a phone
number is common to each one of them and is inherited from the object class.

Python defines classes of objects with the class statement. These are
organized in a hierarchy so that classes can inherit the definitions in other
classes. The top of that hierarchy is Python’s base class, object. The nested
statements inside a class statement define the class; the def statements define
methods and assignment statements define class attributes. The first parameter
of each defined method should be self. The self parameter holds the object
instance, allowing methods to call other instance methods and reference
instance attributes. You reference an object instance’s methods or attributes by



appending the method or attribute name to the variable holding the object,
separated by a period as in object.method().

To define the constructor for object instances, there should be a def
__init__() statement inside the class definition. Like the other methods,
__init__() should accept self as its first parameter. The __init__() method
takes the empty instance and performs any needed initialization like creating
instance variables and setting their values (and doesn’t need to return self like
constructors do in other languages). The __init__() method is unusual in that
you will rarely see it called explicitly in a program (that is, in the form
variable.__init()). Python has several special methods and other constructs
that all have names beginning and ending with double underscores. We point
out a few of them as we use them in examples in the text.

The short example in Listing 1-2 illustrates the basic elements of object-
oriented programming in Python, along with some of its ability to handle fancy
math concepts.

Listing 1-2 Object-Oriented Program Example, Object_Oriented_Client.py

class Power(object): 
    """A class that computes a specific power of other numbers. 
    In other words, it raises numbers by a constant exponent. 
    """ 
 
    default_exponent = 2 
 
    def __init__(self, exponent=default_exponent): 
        self.exponent = exponent 
 
    def of(self, x): 
        return x ** self.exponent 
 
class RealPower(Power):  # A subclass of Power for real numbers 
 
    def of(self, x): 
        if isinstance(self.exponent, int) or x >= 0: 
            return x ** self.exponent 
        raise ValueError( 
            ’Fractional powers of negative numbers are imaginary’) 
 
print(’Power:’, Power) 
print(’Power.default_exponent:’, Power.default_exponent) 



square = Power() 
root = Power(0.5) 
print(’square: ’, square) 
print(’square.of(3) =’, square.of(3)) 
print(’root.of(3) =’, root.of(3)) 
print(’root.of(-3) =’, root.of(-3)) 
real_root = RealPower(0.5) 
print(’real_root.of(3) =’, real_root.of(3)) 
print(’real_root.of(-3) =’, real_root.of(-3)) 
print(’Done.’)

Listing 1-2 shows a file with two class definitions, three object instances, and
some print statements to show how the objects behave. The purpose of the first
class, Power, is to make objects that can be used to raise numbers to various
exponents. That is explained in the optional document string that follows the
class definition. Note that this is not a Python comment, which would have to
start with a pound symbol (#) on the left.

Each object instance is created with its own exponent, so you can create Power
objects to perform different power functions. The Power class has one class
attribute, default_exponent. This is used by the constructor for the class to
define what exponent to use if none is provided when an instance is created.

The constructor for the Power class simply stores the desired exponent as an
instance attribute. This is somewhat subtle because there are three distinct
kinds of storage: class attributes, instance attributes, and local variables in
the methods. The default_exponent attribute is defined by the assignment in
the top level of the class statement, so it is a class attribute and is shared
among all instances. The exponent parameter in the __init__() method of
Power is a local variable available only during the evaluation of the
constructor. It has a default value that is supplied from the class attribute.
When __init__() assigns a value to self.exponent, it creates an instance
attribute for self. The instance attribute is unique to the object instance being
created and is not shared with other objects of the class.

The Power class has one method called of that returns the result of raising a
number to the exponent defined at instance creation. We use it after creating
two instances, square and root, that can be called using square.of(3), for
example. To create the first instance, the program calls Power(2) and binds the
result to the variable square. This behavior might be somewhat unexpected
because there is no mention of __init__(). This is an example of Python’s use
of reserved names like __init__() to fill special roles such as object



constructors. When a class like Power is referenced using a function call syntax
—followed by a parenthesized list of arguments—Python builds a new instance
of the class and then invokes the __init__() method on it. The program in
Listing 1-2 makes two calls to Power() to make one object that produces
squares and one that produces square roots.

Underscores in Python names mean that the item being defined is either special
to the interpreter or to be treated as private, visible only in the block where it’s
defined. Python uses several special names like __init__ for customizing the
behavior of objects and programs. The special names start and end with double
underscores and enable the use of tools like using the class name as constructor
call.

In the example of Listing 1-2, both the default_exponent class attribute and
the exponent instance attribute are public because their names don’t start with
an underscore. If the name were changed to begin with an underscore, they are
expected to be accessed only by the class and its methods and not to be
accessed outside of the class or object. The restriction on access, however, is
only a convention; the Python interpreter does not enforce the privacy of any
attributes regardless of their name, nor does it provide other mechanisms to
enforce privacy. Python does have a mechanism to mangle the names of class
and object attributes that begin with a double underscore and end with at most
one underscore. The name mangling is designed to make class-specific
attributes that are not shared with subclasses, but they are still publicly
accessible through the mangled names.

You can run the program by giving the filename as an argument to the Python
interpreter program as follows (the colored text in blue italics is the text that
you type):
 
$ python3 Object_Oriented_Client.py 
Power: <class ’__main__.Power’> 
Power.default_exponent: 2 
square:  <__main__.Power object at 0x10715ad50> 
square.of(3) = 9 
root.of(3) = 1.7320508075688772 
root.of(-3) = (1.0605752387249068e-16+1.7320508075688772j) 
real_root.of(3) = 1.7320508075688772 
Traceback (most recent call last): 
  File "01_code/Object_Oriented_Client.py", line 32, in <module> 
    print(’real_root.of(-3) =’, real_root.of(-3)) 
  File "01_code/Object_Oriented_Client.py", line 20, in of 



    ’Fractional powers of negative numbers are imaginary’) 
ValueError: Fractional powers of negative numbers are imaginary

The transcript shows the output of the print statements. Power is a class, and
square is an object instance of that class. The square instance is created by the
call to Power() with no arguments provided, so the exponent defaults to 2. To
create a similar way to compute square roots, the object created by Power(0.5)
is assigned to root. The square of 3 printed by the program is the expected 9,
and the square root of 3 is the expected 1.732.

The next print statement is for the square root of −3, which may be a less
expected result. It returns a complex number where j stands for the square
root of −1. While that may be interesting for some engineering applications,
you might want a different behavior for other programs. The RealPower class is
a subclass of the Power class that raises an exception when raising negative
numbers to fractional powers.

In the class statement for RealPower, it is defined to inherit from the Power
class. That means that RealPower will have the same default_exponent
attribute and __init__ constructor as Power does. In the class definition for
RealPower, it replaces the of method with a new one that tests the values of the
exponent and the numeric argument. If they fall in the category that produces
imaginary numbers, it raises a ValueError exception.

The transcript shows how the Python interpreter handles exceptions. It prints a
traceback showing the function and method calls that were being evaluated
when the exception occurred. The traceback includes the line numbers and
copies of the lines from the input file. After encountering the exception, the
interpreter prints the traceback, quits, and does not evaluate the final print
statement in the file.

Summary
• Data can be arranged in the computer in different ways and using various

storage media. The data is organized and interpreted to represent
something.

• Algorithms are the procedures used to manipulate data.

• By coupling good data organization with appropriate algorithms, data
structures provide the fundamental building block of all programs.



• Examples of data structures are stacks, lists, queues, trees, and graphs.

• Data structures are often compared by how efficiently they perform
common operations.

• A database is a collection of many similar records, each of which
describes some entity.

• The records of a database are composed of fields, each of which has a
name and a value.

• A key field is used to search for and sort records.

• Data structures that act like databases support four core operations:
insertion, search, deletion, and traversal.

• Data structures are implemented as classes using object-oriented
programming.

• Python has rich support for object-oriented programming with classes to
implement data structures.

Questions
These questions are intended as a self-test for readers. The answers can be
found in Appendix C.

1. Data structures that allow programs to ______ a record, _______ for a
record, _______ a record, and _______ all the records are considered to
be databases in this book.

2. Data structures are
a. composed of names and values.
b. built with fields that have methods attached to them.
c. implemented with object classes.
d. records that don’t change in a database.

3. How can you tell if a def statement in Python defines a function or class
method?

4. What algorithms can help make searching more efficient?



5. What are constructors used for? What special name does Python use for
them?

6. What are some of the reasons for choosing one data structure over
another?

7. What is a key field used for?
8. Good data organization can help with the speed of an algorithm, but

what other benefits does it have?
9. For what purpose was object-oriented programming developed?

10. Which of the following are data structures used in programming?
a. traceback
b. heap
c. list comprehension
d. hash table
e. recipe
f. slices
g. binary tree

Experiments
Try the following experiments:

1-A Write a Python list comprehension that returns the individual characters
of a string that are not whitespace characters. Apply it to the string "4
and 20 blackbirds.\n”

1-B Take a deck of playing cards, pull out the 13 spade cards, set aside the
rest, and shuffle the spade cards. Devise an algorithm to sort them by
number under the constraints:
a. All the cards must be held in one hand. This is the “first” hand.
b. Initially, the shuffled cards are all stacked with faces in one direction

so that only one card is visible.
c. Initially, all the cards are held between the thumb and forefinger of

the first hand.



d. The visible card in the stack can be pulled out using the other hand
and placed in between any of the fingers of the first hand. It can only
be placed at the front or the back of the cards in the stack of cards
between those fingers.

e. The other hand can hold one card at a time and must place it
somewhere in the first hand before picking out another visible card
from one of the stacks.

f. The algorithm is done when all the cards are in sorted order in one
stack in the hand.

Compare the efficiency of your algorithm with that of classmates or friends.



2. Arrays

Arrays are the most commonly used data structure for many reasons. They are
straightforward to understand and match closely the underlying computer
hardware. Almost all CPUs make it very fast to access data at known offsets
from a base address. Almost every programming language supports them as
part of the core data structures. We study them first for their simplicity and
because many of the more complex data structures are built using them.

In This Chapter

• The Array Visualization Tool

• Using Python Lists to Implement the Array Class

• The Ordered Array Visualization Tool

• Binary Search

• Python Code for an Ordered Array Class

• Logarithms

• Storing Objects

• Big O Notation

• Why Not Use Arrays for Everything?

First, we look at the basics of how data is inserted, searched, and deleted from
arrays. Then, we look at how we can improve it by examining a special kind of
array, the ordered array, in which the data is stored in ascending (or
descending) key order. This arrangement makes possible a fast way of
searching for a data item: the binary search.



To improve a data structure’s performance requires a way of measuring
performance beyond just running it on sample data. Looking at examples of
how it handles particular kinds of data makes it easier to understand the
operations. We also take the first step to generalize the performance measure
by looking at linear and binary searches, and introducing Big O notation, the
most widely used measure of algorithm efficiency.

Suppose you’re coaching kids-league soccer, and you want to keep track of
which players are present at the practice field. What you need is an attendance-
monitoring program for your computer—a program that maintains a database
of the players who have shown up for practice. You can use a simple data
structure to hold this data. There are several actions you would like to be able
to perform:

• Insert a player into the data structure when the player arrives at the field.

• Check to see whether a particular player is present, by searching for the
player’s number in the structure.

• Delete a player from the data structure when that player leaves.

• List all the players present.

These four operations—insertion, searching, deletion, and enumeration
(traversal)—are the fundamental ones in most of the data storage structures
described in this book.

The Array Visualization Tool
We often begin the discussion of a particular data structure by demonstrating it
with a visualization tool—a program that animates the operations. This
approach gives you a feeling for what the structure and its algorithms do,
before we launch into a detailed explanation and demonstrate sample code. The
visualization tool called Array shows how an array can be used to implement
insertion, searching, and deletion.

Now start up the Array Visualization tool, as described in Appendix A,
“Running the Visualizations.” There are several ways to do this, as described in
the appendix. You can start it up separately or in conjunction with all the
visualizations. If you’ve downloaded Python and the source code to your
computer, you can launch it from the command line using



 
python3 Array.py 

Figure 2-1 shows the initial array with 10 elements, 9 of which have data items
in them. You can think of these items as representing your players. Imagine
that each player has been issued a team shirt with the player’s number on the
back. That’s really helpful because you have just met most of these people and
haven’t learned all their names yet. To make things visually interesting, the
shirts come in a variety of colors. You can see each player’s number and shirt
color in the array. The height of the colored rectangle is proportional to the
number.

Figure 2-1 The Array Visualization tool



This visualization demonstrates the four fundamental operations mentioned
earlier:

• The Insert button inserts a new data item.

• The Search button searches for specified data item.

• The Delete button deletes a specified data item.

• The Traverse button lists all the items in the array.

The buttons for the first three of those operations are on the left, grayed out and
disabled. The reason is that you haven’t entered a number in the small box to
their right. The hint below the box suggests that when there’s a number to
search, insert, or delete, the buttons will be enabled.

The Traverse button is on the right and enabled. That’s because it doesn’t
require an argument to start traversing. We explore that and the other buttons
on the right shortly.

On the left, there is also a button labeled New. It’s used to create a new array of
a given size. The size is taken from the text entry box like the other arguments.
(The initial hint shown in Figure 2-1 also mentioned that you can enter the
number of cells here.) Arrays must be created with a known size because they
place the contents in adjacent memory cells, and that memory must be
allocated for exclusive use by the array. We look at each of these operations in
turn.

Searching
Imagine that you just arrived at the playing field to start coaching, your
assistant hands you the computer that’s tracking attendance, and a player’s
parent asks if the goalies can start their special drills. You know that players 2,
5, and 17 are the ones who play as goalies, but are they all here? Although
answering this question is trivial for a real coach with paper and pencil, let’s
look at the details needed to do it with the computer.

You want to search to see whether all the players are present. The array
operations let you search for one item at a time. In the visualization tool, you
can select the text entry box near the Search button, the hint disappears, and
you enter the number 2. The button becomes enabled, and you can select it to



start the search. The tool animates the search process, which starts off looking
like Figure 2-2.

Figure 2-2 Starting a search for player 2

The visualization tool now shows several new things. A box in the lower right
shows a program being executed. Next to the array drawing, an arrow labeled
with a j points to the first cell. The j advances to each cell in turn, checking to
see whether it holds the number 2. When it reaches where the nItems arrow
points on the right, all the cells have been searched. The j arrow disappears,
and a message appears at the bottom: Value 2 not found.

This process mimics what humans would do—scan the list, perhaps with a
finger dragged along the numbers, confirming whether any of them match the
number being sought. The visualization tool shows how the computer
represents those same activities. The tool allows you to pause the animation of
the process if you want to look at the details. The three buttons at the bottom
right of the operations area, , control the animation. The leftmost one
plays or pauses the animation. The middle button plays until the next code step,
and the square shape on the right stops the operation. At the bottom, you can
slide the animation speed control left or right to slow down or speed up the
animation.

Try searching for the value 17 (or some other number present in the array). The
visualization tool starts with the j arrow pointing at the leftmost array cell.
After checking the value there, it moves to the next cell to the right. That
process repeats seven times in the array shown in Figure 2-2, and then the
value is circled. After a few more changes in the code box, the message Value
17 Found appears at the bottom (we return to the code in a moment).



What’s important to notice here is that the search went through seven steps
before finding the value. When you searched for 2, it went through all nine
items before stopping. Let’s call the number of items N (which is just a shorter
version of the nItems shown in the visualization). When you search for an item
that is in the array, it could take 1 to N steps before finding it. If there’s an
equal chance of being asked to search for each item, the average number of
search steps is (1 + 2 + 3 + … + N−1 + N) / N which works out to (N + 1) / 2.
Unsuccessful searches take N steps every time.

There’s another simple but still important thing to notice. What if there were
duplicate values in the array? That’s not supposed to happen on the team, of
course. Every player should have a distinct number. If one player lent one of
their shirts to a teammate who forgot theirs, however, it would not be
surprising to see the same number twice.

The search strategy must know whether to expect multiple copies of a number
to exist. The visualization tool stops when it finds the first matching number. If
multiple copies are allowed, and it’s important to find all of them, then the
search couldn’t stop after finding the first one. It would have to go through all
N items and identify how many matched. In that case, both successful and
unsuccessful searches would take N steps.

Insertion
We didn’t find player 2 when asked before, but now that player has just
arrived. You need to record that player 2 is at practice, so it’s time to insert
them in the array. Type 2 in the text entry box and select Insert. A new colored
rectangle with 2 in it appears at the bottom and moves into position at the
empty cell indicated by the nItems pointer. When it’s in position, the nItems
pointer moves to the right by one. It may now point beyond the last cell of the
array.

The animation of the arrival of the new item takes a little time, but in terms of
what the computer has to do, only two steps were needed: writing the new
value in the array at the position indicated by nItems and then incrementing
nItems by 1. It doesn’t matter if there were two, three, or a hundred items
already in the array; inserting the value always takes two steps. That makes the
insertion operation quite different from the search operation and almost always
faster.



More precisely, the number of steps for insertion doesn’t depend on how many
items are in the array as long as it is not full. If all the cells are filled, putting a
value outside of the array is an error. The visualization tool won’t let that
happen and will produce an error message if you try. (In the history of
programming, however, quite a few programmers did not put that check in in
the code, leading to buffer overflows and security problems.)

The visualization tool lets you insert duplicate values (if there are available
cells). It’s up to you to avoid them, possibly by using the Search operation, if
you don’t want to allow it.

Deletion
Player 17 has to leave (he wants to start on the homework assignment due
tomorrow). To delete an item in the array, you must first find it. After you type
in the number of the item to be deleted, a process like the search operation
begins in the visualization tool. A j arrow appears starting at the leftmost cell
and steps to the right as it checks values in the cells. When it finds and circles
the value as shown in the top left of Figure 2-3, however, it does something
different.

Figure 2-3 Deleting an item

The visualization tool starts by reducing nItems by 1, moving it to point at the
last item in the array. That behavior might seem odd at first, but the reason will
become clear when we look at the code. The next thing it does is move the
deleted value out of the array, as shown in the top right of Figure 2-3. That
doesn’t actually happen in the computer, but the empty space helps distinguish
that cell visually during what happens next.



A new arrow labeled k appears pointing to the same cell as j. Each of the items
to the right of the deleted item is copied into the cell to its left, and k is
advanced. So, for example, item 56 is copied into cell j, and then item 2 is
copied into where 56 was, as shown in the bottom left of the figure. When they
are all moved, the nItems arrow (and k) points at the empty cell just after the
last filled cell, as shown at the bottom right. That makes the array ready to
accept the next item to insert in just two steps. (The visualization tool clears the
last cell after copying its contents to the cell to its left. This behavior is not
strictly necessary but helps the visualization.)

Implicit in the deletion algorithm is the assumption that holes are not allowed
in the array. A hole is one or more empty cells that have filled cells above them
(at higher index numbers). If holes are allowed, the algorithms for all the
operations become more complicated because they must check to see whether a
cell is empty before doing something with its contents. Also, the algorithms
become less efficient because they waste time looking at unoccupied cells. For
these reasons, occupied cells must be arranged contiguously: no holes allowed.

Try deleting another item while carefully watching the changes to the different
arrows. You can slow down and pause the animation to see the details.

How many steps does each deletion take? Well, the j arrow had to move over a
certain number of times to find the item being deleted, let’s call that J. Then
you had to shift the items to the right of j. There were N − J of those items. In
total there were J + N − J steps, or simply N steps. The steps were different in
character: checking values versus copying values (we consider the difference
between making value comparisons and shifting items in memory later).

Traversal
Arrays are simple to traverse. The data is already in a linear order as specified
by the index to the array elements. The index is set to 0, and if it’s less than the
current number of items in the array, then the array item at index 0 is
processed. In the Array visualization tool, the item is copied to an output box,
which is similar to printing it. The index is incremented until it equals the
current number of items in the array, at which point the traversal is complete.
Each item with an index less than nItems is processed exactly once. It’s very
easy to traverse the array in reverse order by decrementing the index too.

The Duplicates Issue



When you design a data storage structure, you need to decide whether items
with duplicate keys will be allowed. If you’re working with a personnel file
and the key is an employee number, duplicates don’t make much sense; there’s
no point in assigning the same number to two employees. On the other hand, a
list of contacts might have several entries of people who have the same family
name. Two entries might even have the same given and family names.
Assuming the names are the key for looking up the contact, duplicate keys
should be allowed in a simple contacts list. Another example would be a data
structure designed to keep track of the food items in a pantry. There are likely
to be several identical items, such as cans of beans or bottles of milk. The key
could be the name of the item or the label code on its package. In this context,
it’s likely the program will not only want to search for the presence for an item
but also count how many identical items are in the store.

If you’re writing a data storage program in which duplicates are not allowed,
you may need to guard against human error during an insertion by checking all
the data items in the array to ensure that not one of them already has the same
key value as the item being inserted. This check reduces the efficiency,
however, by increasing the number of steps required for an insertion from one
to N. For this reason, the visualization tool does not perform this check.

Searching with Duplicates
Allowing duplicates complicates the search algorithm, as we noted. Even if the
search finds a match, it must continue looking for possible additional matches
until the last occupied cell. At least, this is one approach; you could also stop
after the first match and perform subsequent searches after that. How you
proceed depends on whether the question is “Find me everyone with the family
name of Smith,” “Find me someone with the family name of Smith,” or the
similar question “Find how many entries have the family name Smith.”

Finding all items matching a search key is an exhaustive search. Exhaustive
searches require N steps because the algorithm must go all the way to the last
occupied cell, regardless of what is being sought.

Insertion with Duplicates
Insertion is the same with duplicates allowed as when they’re not: a single step
inserts the new item. Remember, however, that if duplicates are prohibited, and



there’s a possibility the user will attempt to input the same key twice, the
algorithm must check every existing item before doing an insertion.

Deletion with Duplicates
Deletion may be more complicated when duplicates are allowed, depending on
exactly how “deletion” is defined. If it means to delete only the first item with
a specified value, then, on the average, only N/2 comparisons and N/2 moves
are necessary. This is the same as when no duplicates are allowed. This would
be the desired way to handle deleting an item such as a can of beans from a
kitchen pantry when it gets used. Any items with duplicate keys remain in the
pantry.

If, however, deletion means to delete every item with a specified key value, the
same operation may require multiple deletions. Such an operation requires
checking N cells and (probably) moving more than N/2 cells. The average
depends on how the duplicates are distributed throughout the array.

Traversal with Duplicates
Traversal means processing each of the stored items exactly once. If there are
duplicates, then each duplicate item is processed once. That means that the
algorithm doesn’t change if duplicates are present. Processing all the unique
keys in the data store exactly once is a different operation.

Table 2-1 shows the average number of comparisons and moves for the four
operations, first where no duplicates are allowed and then where they are
allowed. N is the number of items in the array. Inserting a new item counts as
one move.

Table 2-1 Duplicates OK Versus No Duplicates



The difference between N and N/2 is not usually considered very significant,
except when you’re fine-tuning a program. Of more importance, as we discuss
toward the end of this chapter, is whether an operation takes one step, N steps,
or N2 steps, which would be the case if you wanted to enumerate all the pairs
of items stored in a list. When there are only a handful items, the differences
are small, but as N gets bigger, the differences can become huge.

Not Too Swift
One of the significant things to notice when you’re using the Array
Visualization tool is the slow and methodical nature of the algorithms. Apart
from insertion, the algorithms involve stepping through some or all of the cells
in the array performing comparisons, moves, or other operations. Different data
structures offer much faster but slightly more complex algorithms. We examine
one, the search on an ordered array, later in this chapter, and others throughout
this book.

Deleting the Rightmost Item
Deletion is the slowest of the four core operations in an array. If you don’t care
what item is deleted, however, it’s easy to delete the last (rightmost) item in the
array. All that task requires is reducing the count of the number of items,
nItems, by one. It doesn’t matter whether duplicates are allowed or not;
deleting the last item doesn’t affect whether duplicates are present. The Array
Visualization tool provides a Delete Rightmost operation to see the effect of
this fast—one “move” or assignment no comparison—operation.

Using Python Lists to Implement the Array Class
The preceding section showed the primary algorithms used for arrays. Now
let’s look at how to write a Python class called Array that implements the array
abstraction and its algorithms. But first we want to cover a few of the
fundamentals of arrays in Python.

As mentioned in Chapter 1, “Overview,” Python has a built-in data structure
called list that has many of the characteristics of arrays in other languages. In
the first few chapters of this book, we stick with the simple, built-in Python
constructs for lists and use them as if they were arrays, while avoiding the use
of more advanced features of Python lists that might obscure the details of



what’s really happening in the code. In Chapter 5, “Linked Lists,” we introduce
linked lists and describe the differences. For those programmers who started
with Python lists, it may seem odd to initialize the size of the Array’s list at the
beginning, but this is a necessary step for true arrays in all programming
languages. The memory to hold all the array elements must be allocated at the
beginning so that the sequence of elements can be stored in a contiguous range
of memory and any array element can be accessed in any order.

Creating an Array
As we noted in Chapter 1, Python lists are constructed by enclosing either a list
of values or by using a list comprehension (loop) in square brackets. The list
comprehension really builds a new list based on an existing list or sequence.
To allocate lists with large numbers of values, you use either an iterator like
range() inside a list comprehension or the multiplication operator. Here are
some examples:
integerArray = [1, 1, 2, 3, 5]   # A list of 5 integers 
charArray = [’a’ for j in range(1000)]  # 1,000 letter ’a’ characters 
booleArray = [False] * 32768     # 32,768 binary False values

Each of these assignment statements creates a list with specific initial values.
Python is dynamically typed, and the items of a list do not all have to be of the
same type. This is one of the core differences between Python lists and the
arrays in statically typed languages, where all items must be of the same type.
Knowing the type of the items means that the amount of memory needed to
represent each one is known, and the memory for the entire array can be
allocated. In the case of charArray in the preceding example, Python runs a
small loop 1,000 times to create the list. Although all three sample lists start
with items of the same type, they could later be changed to hold values of any
type, and their names would no longer be accurate descriptions of their
contents.

Data structures are typically created empty, and then later insertions, updates,
and deletions determine the exact contents. Primitive arrays are allocated with
a given maximum size, but their contents could be anything initially. When
you’re using an array, some other variables must track which of the array
elements have been initialized properly. This is typically managed by an
integer that stores the current number of initialized elements.



In this book, we refer to the storage location in the array as an element or as a
cell, and the value that is stored inside it as an item. In Python, you could write
the initialization of an array like this:
maxSize = 10000 
myArray = [None] * maxSize 
myArraySize = 0

This code allocates a list of 10,000 elements each initialized to the special None
value. The myArraySize variable is intended to hold the current number of
inserted items, which is 0 at first. You might think that Python’s built-in len()
function would be useful to determine the current size, but this is where the
implementation of an array using a Python list breaks down. The len()
function returns the allocated size, not how many values have been inserted in
myArray. In other words, len(myArray) would always be 10,000 (if you only
change individual element values). We will track the number of items in our
data structures using other variables such as nItems or myArraySize, in the
same manner that must be done with other programming languages.

Accessing List Elements
Elements of a list are accessed using an integer index in square brackets. This
is similar to how other languages work:
temp = myArray[3]   # get contents of fourth element of array 
myArray[7] = 66     # insert 66 into the eighth cell

Remember that in Python—as in Java, C, and C++—the first element is
numbered 0, so the indices in an array of 10 elements run from 0 to 9. What’s
different in Python is that you can use negative indices to specify the count
from the end of the list. You can think of that as if the current size of the array
were added to the negative index. In the previous example, you could get the
last item by writing myArray[maxSize − 1] or, more simply, myArray[−1].

Python also supports slicing of lists, but that seemingly simple operation hides
many details that are important to the understanding of an Array class’s
behavior. As a result, we don’t use slices in showing how to implement an
Array class using lists.

Initialization



All the methods we’ve explored for creating lists in Python involve specifying
the initial value for the elements. In other languages, it’s easy to create or
allocate an array without specifying any initial value. As long as the array
elements have a known size and there is a known quantity of them, the memory
needed to hold the whole array can be allocated. Because computers and their
operating systems reuse memory that was released by other programs, the
element values in a newly allocated array could be anything. Programmers
must be careful not to write programs that use the array values before setting
them to some desired value because the uninitialized values can cause errors
and other unwanted behavior. Initializing Python list values to None or some
other known constant avoids that problem.

An Array Class Example
Let’s look at some sample programs that show how a list can be used. We start
with a basic, object-oriented implementation of an Array class that uses a
Python list as its underlying storage. As we experiment with it, we will make
changes to improve its performance and add features. Listing 2-1 shows the
class definition, called Array. It’s stored in a file called BadArray.py.

Listing 2-1 The BadArray.py Module

# Implement an Array data structure as a simplified type of list. 
 
class Array(object): 
 
   def __init__(self, initialSize):    # Constructor 
      self.__a = [None] * initialSize  # The array stored as a list 
      self.nItems = 0    # No items in array initially 
 
   def insert(self, item):      # Insert item at end 
      self.__a[self.__nItems] = item   # Item goes at current end 
      self.__nItems += 1        # Increment number of items 
 
   def search(self, item): 
      for j in range(self.nItems):     # Search among current 
  if self.__a[j] == item:       # If found, 
     return self.__a[j]  # then return item 
 
      return None        # Not found -> None 
 



   def delete(self, item):      # Delete first occurrence 
      for j in range(self.nItems):     # of an item 
  if self.__a[j] == item:       # Found item 
     for k in range(j, self.nItems):  # Move items from 
        self.__a[k] = self.__a[k+1]   # right over 1 
     self.nItems -= 1    # One fewer in array now 
     return True  # Return success flag 
 
      return False     # Made it here, so couldn’t find the item 
 
   def traverse(self, function=print): # Traverse all items 
      for j in range(self.nItems):     # and apply a function 
  function(self.__a[j])

The Array class has a constructor that initializes a fixed length list to hold the
array of items. The array items are stored in a private instance attribute, __a,
and the number of items stored in the array is kept in the public instance
attribute, nItems. The four methods define the four core operations.

Before we look at the implementation details, let’s use a program to test each
operation. A separate file, BadArrayClient.py, shown in Listing 2-2 uses the
Array class in the BadArray.py module. This program imports the class
definition, creates an Array called arr with a maxSize of 10, inserts 10 data
items (integers, strings, and floating-point numbers) in it, displays the contents
by traversing the Array, searches for a couple of items in it, tries to remove the
items with values 0 and 17, and then displays the remaining items.

Listing 2-2 The BadArrayClient.py Program

import BadArray 
maxSize = 10      # Max size of the Array 
arr = BadArray.Array(maxSize)   # Create an Array object 
 
arr.insert(77)    # Insert 10 items 
arr.insert(99) 
arr.insert("foo") 
arr.insert("bar") 
arr.insert(44) 
arr.insert(55) 
arr.insert(12.34) 
arr.insert(0) 
arr.insert("baz") 
arr.insert(-17) 



 
print("Array containing", arr.nItems, "items") 
arr.traverse() 
 
print("Search for 12 returns", arr.search(12)) 
 
print("Search for 12.34 returns", arr.search(12.34)) 
 
print("Deleting 0 returns", arr.delete(0)) 
print("Deleting 17 returns", arr.delete(17)) 
 
print("Array after deletions has", arr.nItems, "items") 
arr.traverse()

To run the program, you can use a command-line interpreter to navigate to a
folder where both files are present and run the following:
$ python3 BadArrayClient.py 
Array containing 10 items 
77 
99 
foo 
bar 
44 
55 
12.34 
0 
baz 
-17 
Search for 12 returns None 
Search for 12.34 returns 12.34 
Traceback (most recent call last): 
  File "BadArrayClient.py", line 23, in <module> 
    print("Deleting 0 returns", arr.delete(0)) 
  File "/Users/canning/chapters/02 code/BadArray.py", line 24, in 
delete 
    self.__a[k] = self.__a[k+1]   # right over 1 
IndexError: list index out of range

The results show that most of the methods work properly; this example
illustrates the use of the public instance attribute, nItems, to provide the
number of items in the Array. The Python traceback shows that there’s a
problem with the delete() method. The error is that the list index was out of
range. That means either k or k+1 was out of range in the line displayed in the
traceback. Going back to the code in BadArray.py, you can see that k lies in



the range of j up to but not including self.nItems. The index j can’t be out of
bounds because the method already accessed __a[j] and found that it matched
item in the line preceding the k loop. When k gets to be self.nItems − 1,
then k + 1 is self.nItems, and that is outside of the bounds of the maximum
size of the list initially allocated. So, we need to adjust the range that k takes
in the loop to move array items. Before fixing that, let’s look more at the
details of all the algorithms used.

Insertion
Inserting an item into the Array is easy; we already know the position where
the insertion should go because we have the number of current items that are
stored. Listing 2-1 shows that the item is placed in the internal list at the
self.nItems position. Afterward, the number of items attribute is increased so
that subsequent operations will know that that element is now filled. Note that
the method does not check whether the allocated space for the list is enough
to accommodate the new item.

Searching
The item variable holds the value being sought. The search method steps
through only those indices of the internal list within the current number of
items, comparing the item argument with each array item. If the loop variable
j passes the last occupied element with no match being found, the value isn’t in
the Array. Appropriate messages are displayed by the BadArrayClient.py
program: Search for 12 returns None or Search for 12.34 returns
12.34.

Deletion
Deletion begins with a search for the specified item. If found, all the items with
higher index values are moved down one element to fill in the hole in the list
left by the deleted item. The method decrements the instance’s nItems
attribute, but you’ve already seen an error happen before that point. Another
possibility to consider is what happens if the item isn’t found. In the
implementation of Listing 2-1, it returns False. Another approach would be to
raise an exception in that case.

Traversal



Traversing all the items is straightforward: We step through the Array,
accessing each one via the private instance variable __a[j] and apply the
(print) function to it.

Observations
In addition to the bug discovered, the BadArray.py module does not provide
methods for accessing or changing arbitrary items in the Array. That’s a
fundamental operation of arrays, so we need to include that. We will keep the
code simple and focus attention on operations that will be common across
many data structures.

The Array class demonstrates encapsulation (another aspect of object-oriented
programming) by providing the four methods and keeping the underlying data
stored in the __a list as private. Programs that use Array objects are able to
access the data only through those methods. The nItems attribute is public,
which makes it convenient for access by Array users. Being public, however,
opens that attribute to being manipulated by Array users, which could cause
errors to occur. We address these issues in the next version of the program.

A Better Array Class Implementation
The next sample program shows an improved interface for the array storage
structure class. The class is still called Array, and it’s in a file called Array.py,
as shown in Listing 2-3.

The constructor is almost the same except that the variable holding the number
of items in the Array is renamed __nItems. The double underscore prefix
marks this instance attribute as private. To make it easy to get the current
number of items in Array instances, this example introduces a new method
named __len__(). This is a special name to Python because objects that
implement a __len__() method can be passed as arguments to the built-in
Python len() function, like all other sequence types. By calling this function,
programs that use the Array class can get the value stored in __nItems but are
not allowed to set its value.

Listing 2-3 The Array.py Module

# Implement an Array data structure as a simplified type of list. 



 
class Array(object): 
   def __init__(self, initialSize):    # Constructor 
      self.__a = [None] * initialSize  # The array stored as a list 
      self.__nItems = 0  # No items in array initially 
 
   def __len__(self):    # Special def for len() func 
      return self.__nItems      # Return number of items 
 
   def get(self, n):     # Return the value at index n 
      if 0 <= n and n < self.__nItems: # Check if n is in bounds, and 
  return self.__a[n]     # only return item if in bounds 
 
   def set(self, n, value):     # Set the value at index n 
      if 0 <= n and n < self.__nItems: # Check if n is in bounds, and 
  self.__a[n] = value    # only set item if in bounds 
 
   def insert(self, item):      # Insert item at end 
      self.__a[self.__nItems] = item   # Item goes at current end 
      self.__nItems += 1        # Increment number of items 
 
   def find(self, item):        # Find index for item 
      for j in range(self.__nItems):   # Among current items 
  if self.__a[j] == item:       # If found, 
     return j     # then return index to item 
      return -1   # Not found -> return -1 
 
   def search(self, item):      # Search for item 
      return self.get(self.find(item)) # and return item if found 
 
   def delete(self, item):      # Delete first occurrence 
      for j in range(self.__nItems):   # of an item 
  if self.__a[j] == item:       # Found item 
     self.__nItems -= 1  # One fewer at end 
     for k in range(j, self.__nItems):  # Move items from 
        self.__a[k] = self.__a[k+1]     # right over 1 
     return True  # Return success flag 
 
      return False     # Made it here, so couldn’t find the item 
 
   def traverse(self, function=print): # Traverse all items 
      for j in range(self.__nItems):   # and apply a function 
  function(self.__a[j])

It’s important to know about Python’s mechanisms to manage “private”
attributes. The underscore prefix in a name indicates that the attribute should



be treated as private but does not guarantee it. Using a double underscore
prefix in an attribute like __nItems causes Python to use name mangling,
making it harder but not impossible to access the attribute. It also makes
accessing that attribute in subclasses more complex. To make private attributes
that can be easily accessed by the same name in subclasses, use a single
underscore prefix. For this example, we choose to keep the double underscore
name to illustrate how to control public access, such as using the __len__()
method.

The example in Listing 2-3 also introduces get() and set() methods that
allow Array users to read and write the values of individual elements based on
an index. This is the basic functionality of arrays in all languages. The get()
method checks that the desired index is within the current bounds and returns
the value if it is. Note that if the index is out of bounds, there is no explicit
return value. Python functions and methods return None if execution reaches
the end of the function body. The set() method checks that the index is in
bounds and sets that cell’s value, if so, returning None.

The insert() method remains the same, but we change the search() method
by breaking it up into two methods. We define a new find() method that finds
the index to the item being sought. This method loops through the current items
and returns the index of the item if it’s found, or −1 if it isn’t. We choose −1 for
the return value because it cannot possibly be confused with a valid index
value into the list and to guarantee the output of find() is always an integer
(not None). The output of the find() method can thus be passed to the get()
method to get the item after finding its index. If the item is not found, find()
returns −1, and get() and search() still return None.

We alter the delete() method to fix the index out-of-bounds error in
BadArray.py by moving the decrement of __nItems to occur before the loop
that moves items to the left in the list (see Listing 2-3). The traverse()
method remains the same.

Listing 2-4 The ArrayClient.py Program

import Array 
maxSize = 10      # Max size of the array 
arr = Array.Array(maxSize)      # Create an array object 
 
arr.insert(77)    # Insert 10 items 



arr.insert(99) 
arr.insert("foo") 
arr.insert("bar") 
arr.insert(44) 
arr.insert(55) 
arr.insert(12.34) 
arr.insert(0) 
arr.insert("baz") 
arr.insert(-17) 
 
print("Array containing", len(arr), "items") 
arr.traverse() 
 
print("Search for 12 returns", arr.search(12)) 
 
print("Search for 12.34 returns", arr.search(12.34)) 
 
print("Deleting 0 returns", arr.delete(0)) 
print("Deleting 17 returns", arr.delete(17)) 
 
print("Setting item at index 3 to 33") 
arr.set(3, 33) 
 
print("Array after deletions has", len(arr), "items") 
arr.traverse()

A new client program, ArrayClient.py, exercises the Array class, as shown in
Listing 2-4. This program is almost identical to BadArrayClient.py but uses
the new module name, Array, and tests the new features of the interface by
calling the len() function on the Array and the set() method. The tests that
call search() are also testing the new find() and get() methods.

You can confirm that the bug is fixed and no new bugs have shown up by
running ArrayClient.py to see the following:
$ python3 ArrayClient.py 
Array containing 10 items 
77 
99 
foo 
bar 
44 
55 
12.34 
0 
baz 



-17 
Search for 12 returns None 
Search for 12.34 returns 12.34 
Deleting 0 returns True 
Deleting 17 returns False 
Setting item at index 3 to 33 
Array after deletions has 9 items 
77 
99 
foo 
33 
44 
55 
12.34 
baz 
-17

We now have a functional Array class that implements the four core methods
for a data storage object. The code shown in the Array visualization tool is that
of the Array class in Listing 2-3. Try using the visualization tool to search for
an item and follow the highlights in the code. You will see that it calls the
search() method, which calls the find() method. Those both show up
separated by a gray line. When the find() method finishes, its local variables
are erased, and its source code disappears, leaving the search() method to use
its result and try to get the item. The visualization does not show the execution
of the get() method but does show a message indicating whether the item was
found or not.

You can also try out the allocation of a new array. The “New” operation
allocates an array of a size you provide (if the cells fit on the screen). If you ask
for a large number of cells, it makes them smaller, and the numbers may be
hidden. The code shown for the New operation is that of the __init__()
constructor for the Array class. The Random Fill operation fills any empty
cells of the current array with random keys. The Delete Rightmost removes the
last item from the array. These aren’t methods in the basic Array class, but they
are helpful for the visualization.

The Ordered Array Visualization Tool
Imagine an array in which the data items are arranged in order of ascending
values—that is, with the smallest value at index 0, and each cell holding a
value larger than the cell below. Such an array is called an ordered array.



When you insert an item into this array, the correct location must be found for
the insertion: just above a smaller value and just below a larger one. Then all
the larger values must be moved up to make room.

Why would you want to arrange data in order? One advantage is that you can
speed up search times dramatically using a binary search. At the same time,
you are making the insert operation more complex because it must find the
proper location for each new item.

To get a feel for what these changes bring, start the Ordered Array
Visualization tool, using the procedure described in Appendix A. You see an
array; it’s similar to the one in the Array Visualization tool, but the data is
ordered. Figure 2-4 shows what this tool looks like when it starts.

Figure 2-4 The Ordered Array Visualization tool



Linear Search
Before we describe how ordering the array helps, we need to elaborate on the
kinds of searches we’re discussing. The search algorithm used in the
(unordered) Array Visualization tool is called a linear search. A linear search
operates just like someone running a finger over a list of items to find a match.
In the visualization, a brown arrow steps along, until it finds a match or reaches
the nItems limit.

Binary Search
The payoff for using an ordered array comes when you use a binary search.
You use this for the Search operation because it is much faster than a linear
search, especially for large arrays.

The Guess-a-Number Game
Binary search is a classic approach to guessing games. In the Guess-a-Number
game, a friend asks you to guess a number between 1 and 100 (Figure 2-5).
When you guess a number, she tells you one of three things:

• Your guess is larger than the number she’s thinking of, or

• It’s smaller, or

• You guessed correctly.



Figure 2-5 The Guess-a-Number Game

To find the number in the fewest guesses, you should always start by guessing
50. If your friend says your guess is too low, you deduce the number is
between 51 and 100, so your next guess should be 75 (halfway between 51 and
100). If she says it’s too high, you deduce the number is between 1 and 49, so
your next guess should be 25.

Each guess allows you to divide the range of possible values in half. Finally, if
you haven’t already found it on an early guess, the range is only one number
long, and that’s the answer.

Notice how few guesses are required to find the number. If you used a linear
search, guessing first 1, then 2, then 3, and so on, finding the number would



take you, on the average, 50 guesses. In a binary search, each guess divides the
range of possible values in half, so the number of guesses required is far fewer.
Table 2-2 shows a game session when the number to be guessed is 33.

Table 2-2 Guessing a Number

The correct number is identified in only 7 guesses. This is the maximum
number of guesses, regardless of the number chosen by your friend. You might
get lucky and guess the number before you’ve worked your way all the way
down to a range of one. This would happen if the number to be guessed was
50, for example, or 34. The most important thing to remember is that you will
always find the number in 7 or fewer guesses, which compares well with the
maximum of 100 guesses and average of 50 guesses if you search linearly,
ignoring the too high and too low clues.

Binary Search in the Ordered Visualization Tool
If you change the Guess-a-Number game into a Where-is-a-Number game, you
can use the same strategy in searching the ordered array. It’s a subtle shift, but
the question is now asking, “What is the index of the cell holding number X?”
The indices range from 0 to N−1, so there is the same kind of range to be
searched. You can start with the middle array cell and then narrow the range
based on what you find there.



Try searching for the newly inserted 55 in ordered array by typing 55 in the
text entry box and selecting Search. The Ordered Array Visualization tool
shows the array and adds three arrows labeled lo, mid, and hi. The lo and hi
arrows point to the first and last cells of the array, respectively. The mid arrow
is placed at the midpoint between them, as shown in the top part in Figure 2-6.

Figure 2-6 Initial ranges in a binary search

When the range of lo to hi spans an odd number of cells, the midpoint is the
same number of cells from either end, but when it’s even, it must be closer to
one or the other end. The visualization tool always chooses mid to be closer to
lo, and you’ll see why when looking at the code.

After comparing the value at mid (59) with the value you’re trying to find, the
algorithm determines that 55 must lie in the range to the left of mid. It moves
the hi arrow to be one less than mid to narrow the range and leaves lo
unchanged. Then it updates mid to be at the midpoint of the narrowed range.
The bottom of Figure 2-6 shows this second step of the process.

Each step reduces the range by about half. With the initial 10-element array, the
ranges go from 10 to 5, to 2, to 1 at the very most (in Figure 2-6, it goes from
10 to 4 to 2, before finding 55 at index 2). If mid happens to point at the goal
item, the search can stop. Otherwise, it will continue until the range collapses
to nothing.

Try a few searches to see how quickly the visualization tool finds values. Try a
search for a value not in the array to see what happens. With a 10-element
array, it will take at most four values for mid to determine whether the value is
present in the array.



What about larger arrays? Use the New operation to find out. Select the text
entry box, enter 35, and then select New. If there’s enough room in the tool
window, it will draw 35 empty cells of a new array. Fill them with random
values by selecting Random Fill. The cells show colored rectangles, but the
numbers disappear when the cells are too skinny. You can try a variation of the
Guess-a-Number game here by typing in a value, selecting Search, and seeing
whether it ended up in the array. If you succeed, the tool will add an oval to the
cell and provide a success message at the end. You can also select a colored
rectangle with your pointer, and it will fill in its value in the text entry area.

Can you figure out how many steps the binary search algorithm will take to
find a number based on the size of the array you’re searching? We return to this
question in the last section of this chapter.

Duplicates in Ordered Arrays
We saw that the presence of duplicate values affected the number of
comparisons and shifts needed in searches and deletes on unordered arrays.
Does that change for ordered arrays? Yes, a little bit.

Let’s look at searching first because it affects insertion and deletion. If finding
only a single matching item is sufficient, then there’s no difference whether the
array has duplicates or not. When you find the first one, you’re done. If
searches must return all matching items, the binary search algorithm finds only
the first of them. After that, you would need to find any duplicates to the left or
right of the one discovered by binary search. That could be done with linear
searching, and it would need to search only the last lo to hi range explored by
the binary search. That would add extra steps, possibly up to visiting all N
items because the entire array could be duplicates of the same value. On
average, however, it would be much less.

Note that a successful binary search does not guarantee finding the item with
the lowest or highest index among those with duplicate keys. It guarantees
finding one of them, but finding the relative position of that item to the others
requires the extra linear searching.

Insertion remains the same for ordered arrays when duplicates are permitted. If
a duplicate key exists, the binary search will find one of the duplicates and
insert the new item beside it. If the new item has a unique key, it will be placed
in order as before. You still need to shift values over to correctly insert any new
value. The presence of duplicates might mean shifting fewer values, if the item



to insert matches the value of one or more existing items. The presence of a
few duplicates, however, does not significantly change the average number of
comparisons and shifts needed, which remain about N/2.

For deletions, the effect of duplicates is also a bit complicated. If deleting only
one of the matching items is sufficient, you can use binary search to find the
item and shift items to the right of it to fill the hole caused by its removal. If
there are many duplicates, you could save some shifts by shifting only the
rightmost duplicate to fill the hole, but finding the rightmost takes almost as
much time as shifting all the duplicates in between.

If deletion requires deleting all matching items, the complexity that we
discussed for the search operation applies to the deletion process too. There
would be fewer shifts needed after finding all the duplicates because you can
shift values over D cells as fast as shifting over 1 cell, where D is the number
of matching duplicate items. Overall, however, there is not much of a
difference compared to the no-duplicates case because the number of
operations is still proportional to N.

Python Code for an Ordered Array Class
Let’s examine some Python code that implements an ordered array. This
example uses the OrderedArray class to encapsulate the underlying list and
its algorithms. The heart of this class is the find() method, which uses a
binary search to locate a specified data item. We examine this method in detail
before showing the complete program.

Binary Search with the find() Method
The find() method searches for the index to a specified item by repeatedly
dividing in half the range of list items to be considered. The method looks like
this:
   def find(self, item):     # Find index at or just below 
      lo = 0   # item in ordered list 
      hi = self.__nItems-1   # Look between lo and hi 
 
      while lo <= hi: 
  mid = (lo + hi) // 2       # Select the midpoint 
  if self.__a[mid] == item:  # Did we find it at midpoint? 
     return mid       # Return location of item 



  elif self.__a[mid] < item: # Is item in upper half? 
     lo = mid + 1     # Yes, raise the lo boundary 
  else: 
     hi = mid - 1     # No, but could be in lower half 
 
      return lo   # Item not found, return insertion point instead

The method begins by setting the lo and hi variables to the first and last
indices in the array. Setting these variables specifies the range for where the
item may be found. Then, within the while loop, the index, mid, is set to the
middle of this range.

If you’re lucky, mid may already be pointing to the desired item, so you first
check if self.__a[mid] == item is true. If it is, you’ve found the item, and
you return with its index, mid.

If mid does not point to the item being sought, then you need to figure out
which half of the range it falls in. You check whether the item is bigger than
the one at the midpoint by testing self.__a[mid] < item. If the item is
bigger, then you can shrink the search range by setting the lo boundary to be 1
above the midpoint. Note that setting lo to be the same as mid would mean
including that midpoint item in the remaining search. You don’t want to
include it because the comparison with the item at mid already showed that its
value is too low. Finally, if the midpoint item is neither equal to nor less than
the item being sought, it must be bigger. In this case, you can shrink the search
range by setting hi to be 1 below the midpoint. Figure 2-7 shows how the
range is altered in these two situations.



Figure 2-7 Dividing the range in a binary search

Each time through the loop you divide the range in half. Eventually, the range
becomes so small that it can’t be divided any more. You check for this in the
loop condition: if lo is greater than hi, the range has ceased to exist. (When lo
equals hi, the range is one and you need one more pass through the loop.) You
can’t continue the search without a valid range, but you haven’t found the
desired item, so you return lo, the last lower bound of the search range. This
might seem odd because you’re returning an index that doesn’t point to the



item being sought. It still could be useful, however, because it specifies where
an item with that value would be placed in the ordered array.

The OrderedArray Class
In general, the OrderedArray.py program is similar to Array.py (refer to
Listing 2-3). The main difference is that the find() method is changed to do a
binary search, as we’ve discussed. Here, we show the class in two parts.
Listing 2-5 shows the basic class infrastructure including the constructor, utility
methods, and the traverse operation. Listing 2-6 shows the other three core
operations, including the find() method.

Listing 2-5 The Basic OrderedArray Class Definition

# Implement an Ordered Array data structure 
 
class OrderedArray(object): 
   def __init__(self, initialSize):    # Constructor 
      self.__a = [None] * initialSize  # The array stored as a list 
      self.__nItems = 0  # No items in array initially 
 
   def __len__(self):    # Special def for len() func 
      return self.__nItems      # Return number of items 
 
   def get(self, n):     # Return the value at index n 
      if 0 <= n and n < self.__nItems: # Check if n is in bounds, and 
  return self.__a[n]     # only return item if in bounds 
      raise IndexError("Index " + str(n) + " is out of range") 
 
   def traverse(self, function=print): # Traverse all items 
      for j in range(self.__nItems):   # and apply a function 
  function(self.__a[j]) 
 
   def __str__(self):    # Special def for str() func 
      ans = "["   # Surround with square brackets 
      for i in range(self.__nItems):   # Loop through items 
  if len(ans) > 1:       # Except next to left bracket, 
     ans += ", "  # separate items with comma 
  ans += str(self.__a[i])       # Add string form of item 
      ans += "]"         # Close with right bracket 
      return ans



The OrderedArray constructor is identical to that of the Array class; it
allocates a list of the specified initialSize and sets the item count to 0. The
__len__() and traverse() methods are identical too. In the get() method,
one change has been added: it raises an exception if called on an index outside
the range of active cells. The IndexError is a standard Python exception type
used for this condition. A customized string message explains the problem.

The OrderedArray class includes a new __str__() method in Listing 2-5,
which builds a string representation of the data items currently in the array.
This is more than just a convenient utility for these tests; a Python object’s
__str__() method is invoked by the built-in str() function to create a string
in contexts where one is needed, such as when the object is passed to the
print() function. It uses the same syntax that Python uses for a string version
of lists: a list of comma-separated values enclosed in square brackets.

Note that we intentionally leave out the set() method because that would
allow callers to change values in ways that might not keep the items in order.

Listing 2-6 The Core Operations of the OrderedArray Class

class OrderedArray(object): 
… 
   def find(self, item):     # Find index at or just below 
      lo = 0   # item in ordered list 
      hi = self.__nItems-1   # Look between lo and hi 
 
      while lo <= hi: 
  mid = (lo + hi) // 2       # Select the midpoint 
  if self.__a[mid] == item:  # Did we find it at midpoint? 
     return mid       # Return location of item 
  elif self.__a[mid] < item: # Is item in upper half? 
     lo = mid + 1     # Yes, raise the lo boundary 
  else: 
     hi = mid - 1     # No, but could be in lower half 
 
      return lo   # Item not found, return insertion point instead 
 
   def search(self, item): 
      index = self.find(item)       # Search for item 
      if index < self.__nItems and self.__a[index] == item: 
  return self.__a[index]     # and return item if found 
 
   def insert(self, item): # Insert item into correct position 



      if self.__nItems >= len(self.__a): # If array is full, 
  raise Exception("Array overflow") # raise exception 
 
      index = self.find(item)     # Find index where item should go 
      for j in range(self.__nItems, index, -1): # Move bigger items 
  self.__a[j] = self.__a[j-1]     # to the right 
 
      self.__a[index] = item      # Insert the item 
      self.__nItems += 1   # Increment the number of items 
 
   def delete(self, item):      # Delete any occurrence 
      j = self.find(item)       # Try to find the item 
      if j < self.__nItems and self.__a[j] == item:  # If found, 
  self.__nItems -= 1     # One fewer at end 
  for k in range(j, self.__nItems): # Move bigger items left 
     self.__a[k] = self.__a[k+1] 
  return True     # Return success flag 
 
      return False     # Made it here; item not found

Listing 2-6 starts with the find() method that implements the binary search
algorithm. The search() method changes a little from that of the Array. It first
calls find() and verifies that the index returned is in bounds. If not, or if the
indexed item doesn’t match the sought item, it returns None. That means
searching for an item not in the array will return None without raising an
exception.

A check at the beginning of the insert() method determines whether the array
is full. This is done by comparing the length of the Python list, __a, to the
number of items currently in the array, __nItems. If __nItems is equal to (or
somehow, larger than) the size of the list, inserting another item will overflow
it, so the method raises an exception.

Otherwise, the insert() method calls find() to locate where the new item
goes. Then it uses a loop over the indices to the right of the insertion index to
move those items one cell to the right. The loop uses range(self.__nItems,
index, -1) to go backward through the indices from __nItems to index + 1.
The number of items to be moved could be all N of them if the new item is the
smallest. On average, it will move half the current items.

The delete() method calls find() to figure out the location of the item to be
deleted and whether it is in the array. If it does find the item, it also must move



half the current items to the left on average. If not, it can return False without
moving anything.

Like before, we use a separate client program to test the operations of the class
and the utility methods. The OrderedArrayClient.py program appears in
Listing 2-7.

Listing 2-7 The OrderedArrayClient.py Program

from OrderedArray import * 
 
maxSize = 1000  # Max size of the array 
arr = OrderedArray(maxSize)   # Create the array object 
 
arr.insert(77)  # Insert 11 items 
arr.insert(99) 
arr.insert(44)  # Inserts not in order 
arr.insert(55) 
arr.insert(0) 
arr.insert(12) 
arr.insert(44) 
arr.insert(99) 
arr.insert(77) 
arr.insert(0) 
arr.insert(3) 
 
print("Array containing", len(arr), "items:", arr) 
 
arr.delete(0)   # Delete a few items 
arr.delete(99) 
arr.delete(0)   # Duplicate deletes 
arr.delete(0) 
arr.delete(3) 
 
print("Array after deletions has", len(arr), "items:", arr) 
 
print("find(44) returns", arr.find(44)) 
print("find(46) returns", arr.find(46)) 
print("find(77) returns", arr.find(77))

Note that you can pass the arr variable directly to print and expect a
reasonable output because of the __str__() method. We also use a different
form of the import statement in OrderedArrayClient.py. By importing the



module using the “from module import *” syntax, the definitions it contains
are added in the same namespace as the client program, not in a new
namespace for the module. That means you can create the object using the
expression OrderedArray(maxSize) instead of
OrderedArray.OrderedArray(maxSize). The output of the program looks like
this:
$ python3 OrderedArrayClient.py 
Array containing 11 items: [0, 0, 3, 12, 44, 44, 55, 77, 77, 99, 99] 
Array after deletions has 7 items: [12, 44, 44, 55, 77, 77, 99] 
find(44) returns 1 
find(46) returns 3 
find(77) returns 5

The last three print statements illustrate some particular cases of the binary
search with duplicate entries. The result of find(46) shows that even though
46 is not in arr, it should be inserted after the first three items to preserve
ordering. The find(44) finds the first occurrence of 44 at position 1. If
delete(44) were called at this point, it would delete the first of the 44s
currently in the array. By contrast, find(77) points at the second of the two 77s
in the array. The binary search stops after it finds the first matching item, which
could be any instance of an item that appears multiple times.

Advantages of Ordered Arrays
What have we gained by using an ordered array? The major advantage is that
search times are much faster than in an unordered array. The disadvantage is
that insertion takes longer because all the data items with a higher key value
must be moved up to make room. Even though it uses binary search to find
where the key belongs, it still must move most of the items in the array.

Deletions are slow in both ordered and unordered arrays because items must be
moved down to fill the hole left by the deleted item. There is a bit of speed-up
for requests to delete items not in the array. By using find(), you can quickly
discover whether any items need to be moved in the array. That benefit,
however, is reduced when the requested item is in the array. Finding the item
with a binary search replaces a linear search over the left side of the array. Both
linear and binary searching require shifting items to right of the deleted item.

Going back to insertion for a moment, would it be simpler to skip the binary
search of find() and just move items to the right until you reach an item



smaller than the item being inserted? That saves a function call to find() but
requires more comparisons. The binary search algorithm uses way fewer than
N comparisons to find the insertion point, and if it doesn’t call find(), the
insert code must compare values for all N items being shifted.

Ordered arrays are therefore useful in situations in which searches are frequent,
but insertions and deletions are not. An ordered array might be appropriate for
a database of a transport company that tracks the location of its vehicles, for
example. The need to add and delete the names of a fleet of vehicles happens
much less frequently than the events that require updates to their position, so
having fast search find the right vehicle for each position update would be
important and worth the increased time needed to add each new vehicle. On the
other hand, if the transport company keeps a log of the tasks assigned to each
vehicle or their actions in picking up and delivering cargo, there would be
frequent additions to the log, but perhaps little need to find a particular log
entry. The task log could benefit from the data structure with fast insertion time
at the expense of a longer search.

Logarithms
In this section we explain how you can use logarithms to calculate the number
of steps necessary in a binary search. If you’re a math fan, you can probably
skip this section. If thinking about math makes you nervous, give it a try, and
make sure to take a long, hard look at Table 2-3.

A binary search provides a significant speed increase over a linear search. In
the number-guessing game, with a range from 1 to 100, a maximum of seven
guesses is needed to identify any number using a binary search; just as in an
array of 100 records, a maximum of seven comparisons is needed to find a
record with a specified key value. How about other ranges? Table 2-3 shows
some representative ranges and the number of comparisons needed for a binary
search.

Table 2-3 Comparisons Needed in a Binary Search



Notice the differences between binary search times and linear search times. For
very small numbers of items, the difference isn’t dramatic. Searching 10 items
would take an average of 5 comparisons with a linear search (N/2) and a
maximum of 4 comparisons with a binary search. But the more items there are,
the bigger the difference. With 100 items, there are 50 comparisons in a linear
search, but only 7 in a binary search. For 1,000 items, the numbers are 500
versus 10, and for 1,000,000 items, they’re 500,000 versus 20. You can
conclude that for all but very small arrays, the binary search is greatly superior.

The Equation
You can verify the results of Table 2-3 by repeatedly dividing a range (from the
first column) in half until it’s too small to divide further. The number of
divisions this process requires is the number of comparisons shown in the
second column.

Repeatedly dividing the range by two is an algorithmic approach to finding the
number of comparisons. You might wonder if you could also find the number
using a simple equation. Of course, there is such an equation, and it’s worth
exploring here because it pops up from time to time in the study of data
structures. This formula involves logarithms. (Don’t panic yet.)



You have probably already experienced logarithms, without having recognized
them. Have you ever heard someone say “a six figure salary” or read about “a
deal worth eight figures”? Those simplified expressions tell you the
approximate amount of the salary or deal by telling you how many digits are
needed to write the number. The number of digits could be found by repeatedly
dividing the number by 10. When it’s less than 1, the number of divisions is the
number of digits.

The numbers in Table 2-3 leave out some interesting data. They don’t answer
such questions as “What is the exact size of the maximum range that can be
searched in five steps?” To solve this problem, you can create a similar table,
but one that starts at the beginning, with a range of one, and works up from
there by multiplying the range by two each time. Table 2-4 shows how this
looks for the first seven steps.

Table 2-4 Powers of Two

For the original problem with a range of 100, you can see that 6 steps don’t
produce a range quite big enough (64), whereas 7 steps cover it handily (128).



Thus, the 7 steps that are shown for 100 items in Table 2-3 are correct, as are
the 10 steps for a range of 1,000.

Doubling the range each time creates a series that’s the same as raising 2 to a
power, as shown in the third column of Table 2-4. We can express this power as
a formula. If s represents steps (the number of times you multiply by 2—that is,
the power to which 2 is raised) and r represents the range, then the equation is

r = 2s

If you know s, the number of steps, this tells you r, the range. For example, if s
is 6, the range is 26, or 64.

The Opposite of Raising 2 to a Power
The original question was the opposite of the one just described: Given the
range, you want to know how many comparisons are required to complete a
search. That is, given r, you want an equation that gives you s.

The inverse of raising something to a power is called a logarithm. Here’s the
formula you want, expressed with a logarithm:

s = log2(r)

This equation says that the number of steps (comparisons) is equal to the
logarithm to the base 2 of the range. What’s a logarithm? The base 2 logarithm
of a number r is the number of times you must multiply 2 by itself to get r. In
Table 2-4, the step numbers in the first column, s, are equal to log2(r).

How do you find the logarithm of a number without doing a lot of dividing?
Most calculators and computer languages have a log function. For those that
don’t, sometimes it can be added as option, such as with Python’s math
module. It might only provide a function for log to the base 10, but you can
convert easily to base 2 by multiplying by 3.322. For example, log10(100) = 2,
so log2(100) = 2 times 3.322, or 6.644. Rounded up to the whole number 7, this
is what appears in the column to the right of 100 in Table 2-3.

In any case, the point here isn’t to calculate logarithms. It’s more important to
understand the relationship between a number and its logarithm. Look again at
Table 2-3, which compares the number of items and the number of steps
needed to find a particular item. Every time you multiply the number of items



(the range) by a factor of 10, you add only three or four steps (actually 3.322,
before rounding off to whole numbers) to the number needed to find a
particular item. This is true because, as a number grows larger, its logarithm
doesn’t grow nearly as fast. We compare this logarithmic growth rate with that
of other mathematical functions when we talk about Big O notation later in this
chapter.

Storing Objects
In the examples we’ve shown so far, we’ve stored single values in array data
structures such as integers, floating-point numbers, and strings. Storing such
simple values simplifies the program examples, but it’s not representative of
how you use data storage structures in the real world. Usually, the data you
want to store comprises many values or fields, usually called a record. For a
personnel record, you might store the family name, given name, birth date, first
working date, identification number, and so forth. For a fleet of vehicles, you
might store the type of vehicle, the name, the date it entered service, a license
tag, and so forth. In object-oriented programs, you want to store the objects
themselves in data structures. The objects can represent records.

When storing objects or records in ordered data structures, like the
OrderedArray class, you need to define the way the records are ordered by
specifying a key that can be used on all of them. Let’s look at how that changes
the implementation.

The OrderedRecordArray Class
As shown in the previous examples, you can insert any data type into Python
arrays. It’s very convenient to allow complex data types to be inserted, deleted,
and managed in the arrays, along with the benefits of storing them in order,
which makes search faster. To distinguish them (and order them), you need a
key for each record. The best way to do that is to define a function that extracts
the key from a record and then use that function when comparing keys. By
using a function, the array data structure doesn’t need to know anything about
format or organization of the record. All it must do is pass one of the records,
let’s say record R, as the argument to the function, F, to get that record’s key,
F(R).



The function for the key could be provided to the array data structure in several
ways. The program needing the array could define a function with a known
name like array_key that fetches the key. That approach wouldn’t be very
portable, and it would make it impossible to have different arrays using
different key functions. The key function could also be passed as an argument
to the array’s methods like find and insert. That would allow different arrays
to use different key functions, but it has a potential problem. If the program
using the arrays accidentally passes the wrong key function to an array that
ordered its records by a different key, then the records could be out of order
using the new key. Instead, it’s better to define the key function when the array
is created and not allow it to change. That’s how we implement the
OrderedRecordArray class, as shown in Listing 2-8.

Listing 2-8 The Basic OrderedRecordArray Class

# Implement an Ordered Array of Records structure 
 
def identity(x):      # The identity function 
   return x 
 
class OrderedRecordArray(object): 
   def __init__(self, initialSize, key=identity):    # Constructor 
      self.__a = [None] * initialSize  # The array stored as a list 
      self.__nItems = 0  # No items in array initially 
      self.__key = key   # Key function gets record key 
 
   def __len__(self):    # Special def for len() func 
      return self.__nItems      # Return number of items 
 
   def get(self, n):     # Return the value at index n 
      if n >= 0 and n < self.__nItems: # Check if n is in bounds, and 
  return self.__a[n]     # only return item if in bounds 
      raise IndexError("Index " + str(n) + " is out of range") 
 
   def traverse(self, function=print): # Traverse all items 
      for j in range(self.__nItems):   # and apply a function 
  function(self.__a[j]) 
 
   def __str__(self):    # Special def for str() func 
      ans = "["   # Surround with square brackets 
      for i in range(self.__nItems):   # Loop through items 
  if len(ans) > 1:       # Except next to left bracket, 



     ans += ", "  # separate items with comma 
  ans += str(self.__a[i])       # Add string form of item 
      ans += "]"         # Close with right bracket 
      return ans

The constructor for OrderedRecordArray takes a new argument, key, which is
the key function. That function defaults to being the identity function, which
is defined in the module and simply returns the first argument as the result.
This makes the default behavior the same as the OrderedArray class shown in
Listings 2-5 and 2-6. The key function is stored in the private instance variable
__key so it should not be modified by the clients using OrderedRecordArrays.

Listing 2-9 shows that the find() and search() methods change to take a key
as an argument, instead of the item or record used in the OrderedArray class.
This key is a value, not a function, and is used to compare with the keys
extracted from the records in the array. The find and search methods use the
internal __key function on the records to get the right value to compare with
the key being sought. The insert and delete method signatures don’t change
—they still operate on item records—but internally they change the way they
pass the appropriate key to find().

Listing 2-9 The Item Operations of the OrderedRecordArray Class

class OrderedRecordArray(object): 
… 
   def find(self, key):      # Find index at or just below key 
      lo = 0   # in ordered list 
      hi = self.__nItems-1   # Look between lo and hi 
 
      while lo <= hi: 
  mid = (lo + hi) // 2       # Select the midpoint 
 
  if self.__key(self.__a[mid]) == key:  # Did we find it? 
     return mid       # Return location of item 
 
  elif self.__key(self.__a[mid]) < key: # Is key in upper half? 
     lo = mid + 1     # Yes, raise the lo boundary 
 
  else: 
     hi = mid - 1     # No, but could be in lower half 
 
      return lo   # Item not found, return insertion point instead 



 
   def search(self, key): 
      idx = self.find(key)   # Search for a record by its key 
      if idx < self.__nItems and self.__key(self.__a[idx]) == key: 
  return self.__a[idx]       # and return item if found 
 
   def insert(self, item):    # Insert item into the correct position 
      if self.__nItems >= len(self.__a): # If array is full, 
  raise Exception("Array overflow") # raise exception 
 
      j = self.find(self.__key(item))     # Find where item should go 
 
      for k in range(self.__nItems, j, -1): # Move bigger items right 
  self.__a[k] = self.__a[k-1] 
 
      self.__a[j] = item      # Insert the item 
      self.__nItems += 1      # Increment the number of items 
 
   def delete(self, item):       # Delete any occurrence 
      j = self.find(self.__key(item))   # Try to find the item 
      if j < self.__nItems and self.__a[j] == item:  # If found, 
  self.__nItems -= 1      # One fewer at end 
  for k in range(j, self.__nItems): # Move bigger items left 
     self.__a[k] = self.__a[k+1] 
  return True     # Return success flag 
 
      return False     # Made it here; item not found

The test program for this new class, OrderedRecordArrayClient.py shown in
Listing 2-10, uses records with two elements or fields. The key for the records
is set to be the second element of each record. Loops in this version perform
the insertions, deletions, and searches.

Listing 2-10 The OrderedRecordArrayClient.py Program

from OrderedRecordArray import * 
 
def second(x):  # Key on second element of record 
    return x[1] 
 
maxSize = 1000        # Max size of the array 
arr = OrderedRecordArray(maxSize, second)  # Create the array object 
 
# Insert 10 items



for rec in [(’a’, 3.1), (’b’, 7.5), (’c’, 6.0), (’d’, 3.1), 
     (’e’, 1.4), (’f’, -1.2), (’g’, 0.0), (’h’, 7.5), 
     (’i’, 7.5), (’j’, 6.0)]: 
    arr.insert(rec) 
 
print("Array containing", len(arr), "items:\n", arr) 
 
# Delete a few items, including some duplicates
for rec in [(’c’, 6.0), (’g’, 0.0), (’g’, 0.0), 
     (’b’, 7.5), (’i’, 7.5)]: 
    print("Deleting", rec, "returns", arr.delete(rec)) 
 
print("Array after deletions has", len(arr), "items:\n", arr) 
 
for key in [4.4, 6.0, 7.5]: 
    print("find(", key, ") returns", arr.find(key), 
   "and get(", arr.find(key), ") returns", 
   arr.get(arr.find(key)))

After putting 10 records in the array including some with duplicate keys, the
test program deletes a few records, showing the result of the deletion. It then
tries to find a few keys in the reduced array. The result of running the program
is
$ python3 OrderedRecordArrayClient.py 
Array containing 10 items: 
 [(’f’, -1.2), (’g’, 0.0), (’e’, 1.4), (’d’, 3.1), (’a’, 3.1), (’j’, 
6.0), (’c’, 6.0), (’i’, 7.5), (’h’, 7.5), (’b’, 7.5)] 
Deleting (’c’, 6.0) returns False 
Deleting (’g’, 0.0) returns True 
Deleting (’g’, 0.0) returns False 
Deleting (’b’, 7.5) returns False 
Deleting (’i’, 7.5) returns True 
Array after deletions has 8 items: 
 [(’f’, -1.2), (’e’, 1.4), (’d’, 3.1), (’a’, 3.1), (’j’, 6.0), (’c’, 
6.0), (’h’, 7.5), (’b’, 7.5)] 
find( 4.4 ) returns 4 and get( 4 ) returns (’j’, 6.0) 
find( 6.0 ) returns 5 and get( 5 ) returns (’c’, 6.0) 
find( 7.5 ) returns 6 and get( 6 ) returns (’h’, 7.5)

The program output shows that deleting the record (’c’, 6.0) fails. Why?
The next two deletions show that deleting (’g’, 0.0) succeeds the first time
but fails the second time because only one record has that key, 0.0. That’s what
is expected, but the next deletions are unexpected. The deletion of the record
(’b’, 7.5) fails, but the deletion of (’i’, 7.5) succeeds. What is going on?



The issue comes up because of the duplicate keys. The program inserts three
records that have the key 7.5. When the find() method runs, it uses binary
search to get the index to one of those records. The exact one it finds depends
on the sequence of values for the mid variable. You can see which one it finds
in the output of the find tests. Note that find(4.4) returns a valid index, 4,
and that points to the location where a record with that key should go. The
record at index 4 has the next higher key value, 6.0. When you call find(7.5)
on the final Array, it returns 6, which points to the (’h’, 7.5) record. That
isn’t equal to the(’b’, 7.5) record using Python’s == test. The delete()
method removes only items that pass the == test. You can also deduce that
find(7.5) did find the (’i’, 7.5) record on the earlier delete operation. This
example illustrates an important issue when duplicate keys are allowed in a
sorted data structure like OrderedRecordArray. One of the end-of-chapter
programming projects asks you to change the behavior of this class to correctly
delete records with duplicate keys.

Big O Notation
Which algorithms are faster than others? Everyone wants their results as soon
as possible, so you need to be able compare the different approaches. You can
certainly run experiments with each program on a particular computer and with
a particular set of data to see which is fastest. That capability is useful, but
when the computer changes or the data changes, you could get different results.
Computers generally get faster as better technologies are invented, and that
makes all algorithms run faster. The changes with the data, however, are harder
to predict. You’ve already seen that a binary search takes far fewer steps than a
linear search because the number of items to search increases. We’d like to be
able to extend that reasoning to help predict what will happen with other
algorithms.

People like to categorize things, especially by what they are capable of doing.
If you think about cutting grass, there are push lawn mowers, powered lawn
mowers, riding lawn mowers, and towed grass cutters. Each one of them is
good for different size jobs of grass cutting. Similarly for refrigeration, there
are personal refrigerators, household refrigerators, restaurant kitchen
refrigerators, walk-in refrigerators, and refrigerated warehouses for different
quantities of perishable items. In each case, choosing something too big or too
small for the job would be costly in time or money.



In computer science, a rough measure of performance called Big O notation is
used to describe algorithms. It’s primarily used to describe the speed of
algorithms but is also used to describe how much storage they need.
Algorithms with the same Big O speed are in the same category. The category
gives a rough idea of what amount of data they can process (or storage they
need). For example, the linear search Array class in Listing 2-3 should be
plenty fast for small jobs like keeping a list of contacts in a personal computer
or phone or watch. It would probably not be acceptable for the list of contacts
of a large corporation with tens of thousands of employees, and it certainly
would be too slow to manage all the contact information for a nation of tens of
millions of people. By using the OrderedRecordArray class in Listing 2-8, you
can get the benefit of binary search and drastically reduce the search time by
making it proportional to the logarithm of the number of items. Are there even
better algorithms? Big O notation helps answer that question.

Insertion in an Unordered Array: Constant
Insertion into an unordered array is the only algorithm we’ve discussed that
doesn’t depend on how many items are in the array. The new item is always
placed in the next available position, at __a[self.__nItems], and
self.__nItems is then incremented. Instead of using the variable names in a
particular program, Big O notation uses N to stand for the number of items
being managed. Insertion into an unordered array requires the same amount of
time no matter how big N is. You can say that the time, T, to insert an item into
an unsorted array is a constant, K:

T = K

In a real situation, the actual time required by the insertion is related to the
speed of the processor, how efficiently the compiler has generated the program
code, how much data is in the item being copied into the array, and other
factors. The constant K in the preceding equation is used to account for all such
factors. To find out what K is in a real situation, you need to measure how long
an insertion took. (Software exists for this very purpose.) K would then be
equal to that time.

Linear Search: Proportional to N



You’ve seen that, in a linear search of items in an array, the number of
comparisons that must be made to find a specified item is, on the average, half
of the total number of items. Thus, if N is the total number of items, the search
time T is proportional to half of N:

T = K × N / 2

As with insertions, discovering the value of K in this equation would require
timing searches for some (probably large) values of N and then using the
resulting values of T to calculate K. There is probably some time spent
launching the program and cleaning up when it’s done that would add a small
constant factor to the total time. By measuring the time taken for several
searches, you can account for the variations for where the item falls in the array
and for the extra constant factors added by the measurement. When you know
K and any additional constants, you can calculate T for any other value of N.

For a handier formula, you could lump the 2 into the K. The new K is equal to
the old K divided by 2. Now you have

T = K × N

This equation says that average linear search times are proportional to the size
of the array. If an array is twice as big, searching it will take twice as long. In
this case, we are less concerned with getting a precise estimate of the time it
will take as we are knowing how fast it will grow as N gets bigger.

Binary Search: Proportional to log(N)
Similarly, you can concoct a formula relating T and N for a binary search:

T = K × log2(N)

As you saw earlier, the search time is proportional to the base 2 logarithm of N.
Actually, because any logarithm is related to any other logarithm by a constant
(for example, multiplying by 3.322 to go from base 2 to base 10), you can lump
this constant into K as well. Then you don’t need to specify the base:

T = K × log(N)

Don’t Need the Constant



Big O notation looks like the formulas just described, but it dispenses with the
constant K. When comparing algorithms, you don’t really care about the
particular processor or compiler; all you want to compare is how T changes for
different values of N, not what the actual numbers are. Although the K might
be important for getting a precise estimate for small values of N, when N is
really large, it “dominates” the time calculation. Therefore, we drop the
constant in Big O notation.

Big O notation uses the uppercase letter O, which you can think of as meaning
“order of.” In Big O notation, you would say that a linear search takes O(N) or
“Order of N” or simply “Order N” time, and a binary search takes O(log(N))
time. A further simplification of the notation gets rid of the parentheses for the
log function, and you simply write O(log N). Insertion into an unordered array
takes O(1), or constant time. (That’s the numeral 1 in the parentheses.)

Table 2-5 summarizes the running times of the algorithms we’ve discussed so
far.

Table 2-5 Running Times in Big O Notation

You might ask why deletion in ordered arrays isn’t shown as O(log N) + O(N)
or maybe O(log N + N) because it uses binary search to find the location of the
item to delete. The reason is that the O(N) part needed for shifting the items of
the array is so much larger than the O(log N) part that it really doesn’t matter
when N gets big. Big O notation is intended to describe how the algorithm
behaves for very large numbers of items.

Figure 2-8 graphs some Big O relationships between time (in number of steps)
and number of items, N. Based on this graph, you might rate the various Big O
values (very subjectively) like this:

• O(1) is excellent,



• O(log N) is good,

• O(N) is fair,

• O(N × log N) is poor, and

• O(N2) is bad.

O(N × log N) occurs in many kinds of sorting. O(N2) occurs in simple sorting
and in certain graph algorithms, all of which we look at later in this book.

Figure 2-8 Graph of Big O times

The idea in Big O notation isn’t to give actual figures for running times but to
convey how the running time grows as the number of items increases. This is
the most meaningful way to compare algorithms, without actually measuring
running times in a real installation. This is often called the computational
complexity of algorithms, or the order of the function that characterizes the
running time (that’s where the “O” comes from). Algorithms that are more
complex for the computer to process have a higher order and are usually
avoided.

Why Not Use Arrays for Everything?
Arrays seem to get the job done, so why not use them for all data storage?
You’ve already seen some of their disadvantages. In an unordered array, you
can insert items quickly, in O(1) time, but searching takes slow O(N) time. In
an ordered array, you can search quickly, in O(log N) time, but insertion takes



O(N) time. For both kinds of arrays, deletion takes O(N) time because half the
items (on the average) must be moved to fill in the hole.

It would be nice if there were data structures that could do everything—
insertion, deletion, and searching—quickly, ideally in O(1) time, but if not that,
then in O(log N) time. Traversal, by definition, needs O(N) time, but in more
complex data structures, it could be larger. In the chapters ahead, we examine
how closely these ideals can be approached and the price that must be paid in
complexity.

Another problem with arrays is that their size is fixed when they are first
created. The reason for that is the compiler needs to know how much space to
set aside for the whole array and keep it separate from all the other data.
Usually, when the program first starts, you don’t know exactly how many items
will be placed in the array later, so you guess how big it should be. If the guess
is too large, you’ll waste memory by having cells in the array that are never
filled. If the guess is too small, you’ll overflow the array, causing at best a
message to the program’s user, and at worst a program crash.

Other data structures are more flexible and can expand to hold the number of
items inserted in them. The linked list, discussed in Chapter 5, is such a
structure. One of the programming projects in this chapter asks you to make an
expanding array data structure.

Summary
• Arrays are sequential groupings of data elements. Each element can store

a value called an item.

• Each element of the array can be accessed by knowing the start of the
array and an integer index to the element.

• Object-oriented programs are used to implement data structures to
encapsulate the algorithms that manipulate the data.

• Data structures use private instance variables to restrict access to
important values of the structure that could cause errors if changed by
the calling program.

• Unordered arrays offer fast insertion but slow searching and deletion.



• A binary search can be applied to an ordered array.

• The logarithm to the base B of a number A is (roughly) the number of
times you can divide A by B before the result is less than 1.

• Linear searches require time proportional to the number of items in an
array.

• Binary searches require time proportional to the logarithm of the number
of items.

• Data structures usually store complex data types like records.

• A key must be defined to order complex data types.

• If duplicate items or keys are allowed in a data structure, the algorithms
should have a predictable behavior for how they are managed.

• Big O notation provides a convenient way to compare the speed of
algorithms.

• An algorithm that runs in O(1) time is the best, O(log N) is good, O(N) is
fair, and O(N2) is bad.

Questions
These questions are intended as a self-test for readers. Answers may be found
in Appendix C.

1. Aside from the insert, delete, search, and traverse methods common to
all “database” data structures, array data structures should have
___________ method(s).

2. When constructing a new instance of an Array (Listing 2-3):
a. the initial value for at least one of the array cells must be set.
b. the data type of all the array cells must be set.
c. the key for each data item must be set.
d. the maximum number of cells the array can hold must be set.
e. none of the above.



3. Why is it important to use private instance attributes like __nItems in
the definition of the array data structure?

4. Inserting an item into an unordered array
a. takes time proportional to the size of the array.
b. requires multiple comparisons.
c. requires shifting other items to make room.
d. takes the same time no matter how many items there are.

5. True or False: When you delete an item from an unordered array, in
most cases you shift other items to fill in the gap.

6. In an unordered array, allowing duplicates
a. increases times for all operations.
b. increases search times in some situations.
c. always increases insertion times.
d. sometimes decreases insertion times.

7. True or False: In an unordered array, it’s generally faster to find out an
item is not in the array than to find out it is.

8. Ordered arrays, compared with unordered arrays, are
a. much quicker at deletion.
b. quicker at insertion.
c. quicker to create.
d. quicker at searching.

9. Keys are used with arrays
a. to provide a single value for each array item that can be used to order

the items.
b. to decrypt the values stored in the array cell.
c. to decrease the insertion time in unordered arrays.
d. to allow complex data types to be stored as a single key value in the

array.



10. The OrderedArray.py (Listing 2-6) and OrderedRecordArray.py
(Listing 2-9) modules have both a find() and a search() method. How
are the two methods the same and how do they differ?

11. A logarithm is the inverse of _____________.
12. The base 10 logarithm of 1,000 is _____.
13. The maximum number of items that must be examined to complete a

binary search in an array of 200 items is
a. 200.
b. 8.
c. 1.
d. 13.

14. The base 2 logarithm of 64 is ______.
15. True or False: The base 2 logarithm of 100 is 2.
16. Big O notation tells

a. how the speed of an algorithm relates to the number of items.
b. the running time of an algorithm for a given size data structure.
c. the running time of an algorithm for a given number of items.
d. how the size of a data structure relates to the speed of one of its

algorithms.
17. O(1) means a process operates in _________ time.
18. Advantages of using arrays include

a. the variable size of array cells.
b. the variable length of the array over the lifetime of the data structure.
c. the O(1) access time to read or write an array cell.
d. the O(1) time to traverse all the items in the array.
e. all of the above.

19. A colleague asks for your comments on a data structure using an
unordered array without duplicates and binary search. Which of the
following comments makes sense?



a. Because the array can store any data type, a binary search won’t be
efficient.

b. Because the array is unordered, a binary search cannot guarantee
finding the item being sought.

c. Because binary search takes O(N) time, it would be better to use an
ordered array.

d. Because the array doesn’t have duplicates, binary search doesn’t
really have an advantage over the simpler linear search.

20. You’ve been asked to adapt some code that maintains a record about
each planet and their moons in a solar system like ours into a system
that will store a record about every planet and moon in every known
galaxy. The record structure will be a little larger for each planet to hold
some new attributes. It’s likely that the records will be added and
updated “randomly” as telescopes and other sensors point at different
parts of the universe over time, filling in some initial attributes of the
records, and then updating others during frequent observations. The
current code uses an unordered array for the records. Would you
recommend any changes? If so, why?

Experiments
Carrying out these experiments will help to provide insights into the topics
covered in the chapter. No programming is involved.

2-A Use the Array Visualization tool to insert, search for, and delete items.
Make sure you can predict what it’s going to do. Do this both with
duplicate values present and without.

2-B Make sure you can predict in advance what indices the Ordered Array
Visualization tool will select at each step for lo, mid, and hi when you
search for the lowest, second lowest, one above middle, and highest
values in the array.

2-C In the Ordered Array Visualization tool, create an array of 12 cells and
then use the Random Fill button to fill them with values. Use the Delete
Rightmost button to remove the five highest values. Then insert five of
the same value, somewhere in the middle of the array. Note the colors
that are assigned to inserted values and the order they were inserted.



Can you predict the order they will be deleted? Try deleting the value
you chose several times to see if your prediction is right.

Programming Projects
Writing programs to solve the Programming Projects helps to solidify your
understanding of the material and demonstrates how the chapter’s concepts are
applied. (As noted in the Introduction, qualified instructors may obtain
completed solutions to the Programming Projects on the publisher’s website.)

2.1 To the Array class in the Array.py program (Listing 2-3), add a method
called getMaxNum() that returns the value of the highest number in the
array, or None if the array has no numbers. You can use the expression
isinstance(x, (int, float)) to test for numbers. Add some code to
ArrayClient.py (Listing 2-4) to exercise this method. You should try it
on arrays containing a variety of data types and some that contain zeros
and some that contain no numbers.

2.2 Modify the method in Programming Project 2.1 so that the item with the
highest numeric value is not only returned by the method but also
removed from the array. Call the method deleteMaxNum().

2.3 The deleteMaxNum() method in Programming Project 2.2 suggests a
way to create an array of numbers sorted by numeric value. Implement
a sorting scheme that does not require modifying the Array class from
Project 2.2, but only the code in ArrayClient.py (Listing 2-4).

2.4 Write a removeDupes() method for the Array.py program (Listing 2-3)
that removes any duplicate entries in the array. That is, if three items
with the value ’bar’ appear in the array, removeDupes() should remove
two of them. Don’t worry about maintaining the order of the items. One
approach is to make a new, empty list, move items one at a time into it
after first checking that they are not already in the new list, and then set
the array to be the new list. Of course, the array size will be reduced if
any duplicate entries exist. Write some tests to show it works on arrays
with and without duplicate values.

2.5 Add a merge() method to the OrderedRecordArray class (Listing 2-8
and Listing 2-9) so that you can merge one ordered source array into
that object’s existing ordered array. The merge should occur only if both
objects’ key functions are identical. Your solution should create a new



list big enough to hold the contents of the current (self) list and the
merging array list. Write tests for your class implementation that creates
two arrays, inserts some random numbers into them, invokes merge() to
add the contents of one to the other, and displays the contents of the
resulting array. The source arrays may hold different numbers of data
items. Your algorithm needs to compare the keys of the source arrays,
picking the smallest one to copy to the destination. You also need to
handle the situation when one source array exhausts its contents before
the other. Note that, in Python, you can access a parameter’s private
attributes in a manner similar to using self. If the parameter arr is an
OrderedRecordArray object, you can access its number of items as
arr.__nItems.

2.6 Modify the OrderedRecordArray class (Listing 2-8 and Listing 2-9) so
that requests to delete records that have duplicate keys correctly find the
target records and delete them if present. Make sure you test the
program thoroughly so that regardless of the number of records with
duplicate keys or their order within the internal list, your modified
version finds the matching record if it exists and leaves the list
unchanged if it is not present.

2.7 Modify the OrderedRecordArray class (Listing 2-8 and Listing 2-9) so
that it stores the maximum size of the array. When an insertion would
go beyond the current maximum size, create a new list capable of
holding more data and copy the existing list contents into it. The new
size can be a fixed increment or a multiple of the current size. Test your
new class by inserting data in a way that forces the object to expand the
list several times and determine which is the best strategy—growing the
list by adding a fixed amount of storage each time it fills up, or
multiplying the list’s storage by a fixed multiple each time it fills up.



3. Simple Sorting

In This Chapter

• How Would You Do It?

• Bubble Sort

• Selection Sort

• Insertion Sort

• Comparing the Simple Sorts

As soon as you create a significant database, you’ll probably think of reasons
to sort the records in various ways. You need to arrange names in alphabetical
order, students by grade, customers by postal code, home sales by price, cities
in order of population, countries by land mass, stars by magnitude, and so on.

Sorting data may also be a preliminary step to searching it. As you saw in
Chapter 2, “Arrays,” a binary search, which can be applied only to sorted data,
is much faster than a linear search.

Because sorting is so important and potentially so time-consuming, it has been
the subject of extensive research in computer science, and some very
sophisticated methods have been developed. In this chapter we look at three of
the simpler algorithms: the bubble sort, the selection sort, and the insertion
sort. Each is demonstrated in a Visualization tool. In Chapter 6, “Recursion,”
and Chapter 7, “Advanced Sorting,” we return to look at more sophisticated
approaches including Shellsort and quicksort.

The techniques described in this chapter, while unsophisticated and
comparatively slow, are nevertheless worth examining. Besides being easier to
understand, they are actually better in some circumstances than the more
sophisticated algorithms. The insertion sort, for example, is preferable to



quicksort for small arrays and for almost-sorted arrays. In fact, an insertion sort
is commonly used in the last stage of a quicksort implementation.

The sample programs in this chapter build on the array classes developed in the
preceding chapter. The sorting algorithms are implemented as methods of the
Array class.

Be sure to try out the algorithm visualizations provided with this chapter. They
are very effective in explaining how the sorting algorithms work in
combination with the descriptions and static pictures from the text.

How Would You Do It?
Imagine that a kids-league football team is lined up on the field, as shown in
Figure 3-1. You want to arrange the players in order of increasing height (with
the shortest player on the left) for the team picture. How would you go about
this sorting process?

Figure 3-1 The unordered football team

As a human being, you have advantages over a computer program. You can see
all the players at once, and you can pick out the tallest player almost instantly.
You don’t need to laboriously measure and compare everyone. The players are



intelligent too and can self-sort pretty well. Also, the players don’t need to
occupy particular places. They can jostle each other, push each other a little to
make room, and stand behind or in front of each other. After some ad hoc
rearranging, you would have no trouble in lining up all the players, as shown in
Figure 3-2.

Figure 3-2 The football team ordered by height

A computer program isn’t able to glance over the data in this way. It can
compare only two players at one time because that’s how the comparison
operators work. These operators expect players to be in exact positions,
moving only one or two players at a time. This tunnel vision on the part of
algorithms is a recurring theme. Things may seem simple to us humans, but the
computer can’t see the big picture and must, therefore, concentrate on the
details and follow strict rules.

The three algorithms in this chapter all involve two operations, executed over
and over until the data is sorted:

A. Compare two items.

B. Swap two items, or copy one item.

Each algorithm, of course, handles the details in a different way.



Bubble Sort
The bubble sort is notoriously slow, but it’s conceptually the simplest of the
sorting algorithms and for that reason is a good beginning for our exploration
of sorting techniques.

Bubble Sort on the Football Players
Imagine that you are wearing blinders or are near-sighted so that you can see
only two of the football players at the same time, if they’re next to each other
and if you stand very close to them. Given these constraints (like the computer
algorithm faces), how would you sort them? Let’s assume there are N players,
and the positions they’re standing in are numbered from 0 on the left to N−1 on
the right.

The bubble sort routine works like this: you start at the left end of the line and
compare the two players in positions 0 and 1. If the one on the left (in 0) is
taller, you swap them. If the one on the right is taller, you don’t do anything.
Then you move over one position and compare the players in positions 1 and 2.
Again, if the one on the left is taller, you swap them. This sorting process is
shown in Figure 3-3.





Figure 3-3 Bubble sort: swaps made during the first pass

Here are the rules you’re following:

1. Compare two players.

2. If the one on the left is taller, swap them.

3. Move one position right.

You continue down the line this way until you reach the right end. You have by
no means finished sorting the players, but you do know that the tallest player
now is on the right. This must be true because, as soon as you encounter the
tallest player, you end up swapping them every time you compare two players,
until eventually the tallest reaches the right end of the line. This is why it’s
called the bubble sort: as the algorithm progresses, the biggest items “bubble
up” to the top end of the array. Figure 3-4 shows the players at the end of the
first pass.





Figure 3-4 Bubble sort: the end of the first pass

After this first pass through all the players, you’ve made N−1 comparisons and
somewhere between 0 and N−1 swaps, depending on the initial arrangement of
the players. The player at the end of the line is sorted and won’t be moved
again.

Now you go back and start another pass from the left end of the line. Again,
you go toward the right, comparing and swapping when appropriate. This time,
however, you can stop one player short of the end of the line, at position N−2,
because you know the last position, at N−1, already contains the tallest player.
This rule could be stated as:

When you reach the first sorted player, start over at the left end of the line.

You continue this process until all the players are in order. Describing this
process is much harder than demonstrating it, so let’s watch its work in the
Simple Sorting Visualization tool.

The Simple Sorting Visualization Tool
Start the Simple Sorting Visualization tool (run python3 SimpleSorting.py as
described in Appendix A). This program shows an array of values and provides
multiple ways of sorting and manipulating it. Figure 3-5 shows the initial
display.

Figure 3-5 The Simple Sorting Visualization tool



The Insert, Search, Delete, New, Random Fill, and Delete Rightmost buttons
function like those we saw in the Array Visualization tool used in Chapter 2.
There are new buttons on the right relevant to sorting. Select the Bubble Sort
button to start sorting the items. As with the other visualization tools, you can
slow down or speed up the animation using the slider on the bottom. You can
pause and resume playing the animation with the play, pause, and skip buttons
( , , ).

When the bubble sort begins, it adds two arrows labeled “inner” and “last” next
to the array. These point to where the algorithm is doing its work. The inner
arrow walks from the leftmost cell to the right, swapping item pairs when it
finds a taller one to the left of a shorter one, just like the players on the team. It
stops when it reaches the last arrow, which marks the first item that is in the
final sorted order.

As each maximum item “bubbles” up to the far right, the last arrow moves to
the left by one cell, to keep track of which items are sorted. When the last
arrow moves all the way to the first cell on the left, the array is fully sorted. To
run a new sort operation, select Shuffle, and then Bubble Sort again.

Try going through the bubble sort process using the step ( ) or play/pause ( /
) buttons. At each step, think about what should happen next. Will a swap

occur? How will the two arrows change?

Try making a new array with many cells (30+) and filling it with random items.
The cells will become too narrow to show the numbers of each item. The
heights of the colored rectangles indicate their number, but it’s harder to see
which one is taller when they are nearly equal in height. Can you still predict
what will happen at each step?

The visualization tool also has buttons to fill empty cells with keys in
increasing order and decreasing order. It’s interesting to see what happens
when sorting algorithms encounter data that is already sorted or reverse sorted.
You can also scramble the data with the Shuffle button to try running a new
sort.

Note
The Stop ( ) button stops an animation and allows you to start other operations. The array
contents, however, may be different than what they were at the start of the animation. There
may be missing items or extra copies of items depending on when the operation was
interrupted. In this way, the visualization mimics what happens in computer memory if
something stops the execution.



Python Code for a Bubble Sort
The bubble sort algorithm is pretty straightforward to explain, but we need to
look at how to write the program. Listing 3-1 shows the bubbleSort() method
of an Array class. It is almost the same as the Array class introduced in
Chapter 2, and the full SortArray module is shown later in this chapter in
Listing 3-4.

Listing 3-1 The bubbleSort() method of the Array class

 
   def bubbleSort(self):               # Sort comparing adjacent vals 
      for last in range(self.__nItems-1, 0, -1):  # and bubble up 
         for inner in range(last):     # inner loop goes up to last 
            if self.__a[inner] > self.__a[inner+1]:  # If item less 
               self.swap(inner, inner+1) # than adjacent item, swap

In the Array class, each element of the array is assumed to be a simple value
that can be compared with any of the other values for the purposes of ordering
them. We reintroduce a key function to handle ordering records later.

The bubbleSort() method has two loops. The inner loop handles stepping
through the array and swapping elements that are out of order. The outer loop
handles the decreasing length of the unsorted part of the array. The outer loop
sets the last variable to point initially at the last element of the array. That’s
done by using Python’s range function to start at __nItems-1, and step down
to 1 in increments of −1. The inner loop starts each time with the inner
variable set to 0 and increments by 1 to reach last-1. The elements at indices
greater than last are always completely sorted. After each pass of the inner
loop, the last variable can be reduced by 1 because the maximum element
between 0 and last bubbled up to the last position.

The inner loop body performs the test to compare the elements at the inner
and inner+1 indices. If the value at inner is larger than the one to its right, you
have to swap the two array elements (we’ll see how swap() works when we
look at all the SortArray code in a later section).

Invariants



In many algorithms there are conditions that remain unchanged as the
algorithm proceeds. These conditions are called invariants. Recognizing
invariants can be useful in understanding the algorithm. In certain situations
they may help in debugging; you can repeatedly check that the invariant is true,
and signal an error if it isn’t.

In the bubbleSort() method, the invariant is that the array elements to the
right of last are sorted. This remains true throughout the running of the
algorithm. On the first pass, nothing has been sorted yet, and there are no items
to the right of last because it starts on the rightmost element.

Efficiency of the Bubble Sort
If you use bubble sort on an array with 11 cells, the inner arrow makes 10
comparisons on the first pass, nine on the second, and so on, down to one
comparison on the last pass. For 11 items, this is

10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 55

In general, where N is the number of items in the array, there are N−1
comparisons on the first pass, N−2 on the second, and so on. The formula for
the sum of such a series is

(N−1) + (N−2) + (N−3) + ... + 1 = N×(N−1)/2

N×(N−1)/2 is 55 (11×10/2) when N is 11.

Thus, the algorithm makes about N2/2 comparisons (ignoring the −1, which
doesn’t make much difference, especially if N is large).

There are fewer swaps than there are comparisons because two bars are
swapped only if they need to be. If the data is random, a swap is necessary
about half the time, so there would be about N2/4 swaps. (In the worst case,
with the initial data inversely sorted, a swap is necessary with every
comparison.)

Both swaps and comparisons are proportional to N2. Because constants don’t
count in Big O notation, you can ignore the 2 and the 4 in the divisor and say
that the bubble sort runs in O(N2) time. This is slow, as you can verify by
running the Bubble Sort in the Simple Sorting Visualization tool with arrays of
20+ cells.



Whenever you see one loop nested within another, such as those in the bubble
sort and the other sorting algorithms in this chapter, you can suspect that an
algorithm runs in O(N2) time. The outer loop executes N times, and the inner
loop executes N (or perhaps N divided by some constant) times for each cycle
of the outer loop. This means you’re doing something approximately N×N or
N2 times.

Selection Sort
How can you improve the efficiency of the sorting operation? You know that
O(N2) is pretty bad. Can you get to O(N) or maybe even O(log N)? We look
next at a method called selection sort, which reduces the number of swaps.
That could be significant when sorting large records by a key. Copying entire
records rather than just integers could take much more time than comparing
two keys. In Python as in other languages, the computer probably just copies
pointers or references to record objects rather than the entire record, but it’s
important to understand which operations are happening the most times.

Selection Sort on the Football Players
Let’s consider the football players again. In the selection sort, you don’t
compare players standing next to each other, but you still can look at only two
players and compare their heights. In this algorithm, you need to remember a
certain player’s height—perhaps by using a measuring stick and writing the
number in a notebook. A ball also comes in handy as a marker.

A Brief Description
What’s involved in the selection sort is making a pass through all the players
and picking (or selecting, hence the name of the sort) the shortest one. This
shortest player is then swapped with the player on the left end of the line, at
position 0. Now the leftmost player is sorted and doesn’t need to be moved
again. Notice that in this algorithm the sorted players accumulate on the left
(lower indices), whereas in the bubble sort they accumulated on the right.

The next time you pass down the row of players, you start at position 1, and,
finding the minimum, swap with position 1. This process continues until all the
players are sorted.



A More Detailed Description
Let’s start at the left end of the line of players. Record the leftmost player’s
height in your notebook and put a ball on the ground in front of this person.
Then compare the height of the next player to the right with the height in your
notebook. If this player is shorter, cross out the height of the first player and
record the second player’s height instead. Also move the ball, placing it in
front of this new “shortest” (for the time being) player. Continue down the row,
comparing each player with the minimum. Change the minimum value in your
notebook and move the ball whenever you find a shorter player. When you
reach the end of the line, the ball will be in front of the shortest player. For
example, the top of Figure 3-6 shows the ball being placed in front of the
fourth player from the left.





Figure 3-6 Selection sort on football players

Swap this shortest player with the player on the left end of the line. You’ve
now sorted one player. You’ve made N−1 comparisons, but only one swap.

On the next pass, you do exactly the same thing, except that you can skip the
player on the left because this player has already been sorted. Thus, the
algorithm starts the second pass at position 1, instead of 0. In the case of Figure
3-6, this second pass finds the shortest player at position 1, so no swap is
needed. With each succeeding pass, one more player is sorted and placed on
the left, and one fewer player needs to be considered when finding the new
minimum. The bottom of Figure 3-6 shows how this sort looks after the first
three passes.

The Selection Sort in the Simple Sorting
Visualization Tool
To see how the selection sort looks in action, try out the Selection Sort button
in the Simple Sorting Visualization tool. Use the New and Random Fill buttons
to create a new array of 11 randomly arranged items. When you select the
Selection Sort button, it adds arrows to the display that look something like
those shown in Figure 3-7. The arrow labeled “outer” starts on the left along
with a second arrow labeled “min.” The “inner” arrow starts one cell to the
right and marks where the first comparison happens.

Figure 3-7 The start of a selection sort in the Simple Sorting Visualization
tool



As inner moves right, each cell it points at is compared with the one at min. If
the value at min is lower, then the min arrow is moved to where inner is, just as
you moved the ball to lie in front of the shortest player.

When inner reaches the right end, the items at the outer and min arrows are
swapped. That means that one more cell has been sorted, so outer can be
moved one cell to the right. The next pass starts with min pointing to the new
position of outer and inner one cell to their right.

The outer arrow marks the position of the first unsorted item. All items from
outer to the right end are unsorted. Cells to the left of outer are fully sorted.
The sorting continues until outer reaches the last cell on the right. At that point,
the next possible comparison would have to be past the last cell, so the sorting
must stop.

Python Code for Selection Sort
As with the bubble sort, implementing a selection sort requires two nested
loops. The Python method is shown in Listing 3-2.

Listing 3-2 The selectionSort() Method of the Array Class

 
   def selectionSort(self):           # Sort by selecting min and 
      for outer in range(self.__nItems-1): # swapping min to leftmost 
         min = outer                  # Assume min is leftmost 
         for inner in range(outer+1, self.__nItems): # Hunt to right 
            if self.__a[inner] < self.__a[min]: # If we find new min, 
               min = inner            # update the min index 
 
         # __a[min] is smallest among __a[outer]...__a[__nItems-1] 
         self.swap(outer, min)       # Swap leftmost and min

The outer loop starts by setting the outer variable to point at the beginning of
the array (index 0) and proceeds right toward higher indices. The minimum
valued item is assumed to be the first one by setting min to be the same as
outer. The inner loop, with loop variable inner, begins at outer+1 and
likewise proceeds to the right.

At each new position of inner, the elements __a[inner] and __a[min] are
compared. If __a[inner] is smaller, then min is given the value of inner. At



the end of the inner loop, min points to the minimum value, and the array
elements pointed to by outer and min are swapped.

Invariant
In the selectionSort() method, the array elements with indices less than
outer are always sorted. This condition holds when outer reaches __nItems-
1, which means all but one item are sorted. At that point, you could try to run
the inner loop one more time, but it couldn’t change the min index from outer
because there is only one item left in the unsorted range. After doing nothing in
the inner loop, it would then swap the item at outer with itself—another do
nothing operation—and then outer would be incremented to __nItems.
Because that entire last pass does nothing, you can end when outer reaches
__nItems-1.

Efficiency of the Selection Sort
The comparisons performed by the selection sort are N×(N−1)/2, the same as
in the bubble sort. For 11 data items, this is 55 comparisons. That process
requires exactly 10 swaps. The number of swaps is always N−1 because the
outer loop does it for each iteration. That compares favorably with the
approximately N2/4 swaps needed in bubble sort, which works out to about 30
for 11 items. With 100 items, the selection sort makes 4,950 comparisons and
99 swaps. For large values of N, the comparison times dominate, so you would
have to say that the selection sort runs in O(N2) time, just as the bubble sort
did. It is, however, unquestionably faster because there are O(N) instead of
O(N2) swaps. Note that the number of swaps in bubble sort is dependent on the
initial ordering of the array elements, so in some special cases, they could
number fewer than those made by the selection sort.

Insertion Sort
In most cases the insertion sort is the best of the elementary sorts described in
this chapter. It still executes in O(N2) time, but it’s about twice as fast as the
bubble sort and somewhat faster than the selection sort in normal situations.
It’s also not too complex, although it’s slightly more involved than the bubble



and selection sorts. It’s often used as the final stage of more sophisticated sorts,
such as quicksort.

Insertion Sort on the Football Players
To begin the insertion sort, start with the football players lined up in random
order. (They wanted to play a game, but clearly they’ve got to wait until the
picture can be taken.) It’s easier to think about the insertion sort if you begin in
the middle of the process, when part of the team is sorted.

Partial Sorting
You can use your handy ball to mark a place in the middle of the line. The
players to the left of this marker are partially sorted. This means that they are
sorted among themselves; each one is taller than the person to their left. The
players, however, aren’t necessarily in their final positions because they may
still need to be moved when previously unsorted players are inserted between
them.

Note that partial sorting did not take place in the bubble sort and selection sort.
In these algorithms, a group of data items was completely sorted at any given
time; in the insertion sort, one group of items is only partially sorted.

The Marked Player
The player where the marker ball is, whom we call the “marked” player, and all
the players to the right are as yet unsorted. Figure 3-8 shows the process. At the
top, the players are unsorted. The next row in the figure shows the situation
three steps later. The marker ball is put in front of a player who has stepped
forward.





Figure 3-8 The insertion sort on football players

What you’re going to do is insert the marked player in the appropriate place in
the (partially) sorted group. To do this, you need to shift some of the sorted
players to the right to make room. To provide a space for this shift, the marked
player is taken out of line. (In the program this data item is stored in a
temporary variable.) This step is shown in the second row of Figure 3-8.

Now you shift the sorted players to make room. The tallest sorted player moves
into the marked player’s spot, the next-tallest player into the tallest player’s
spot, and so on as shown by the arrows in the third row of the figure.

When does this shifting process stop? Imagine that you and the marked player
are walking down the line to the left. At each position you shift another player
to the right, but you also compare the marked player with the player about to be
shifted. The shifting process stops when you’ve shifted the last player that’s
taller than the marked player. The last shift opens up the space where the
marked player, when inserted, will be in sorted order. This step is shown in the
bottom row of Figure 3-8.

Now the partially sorted group is one player bigger, and the unsorted group is
one player smaller. The marker ball is moved one space to the right, so it’s
again in front of the leftmost unsorted player. This process is repeated until all
the unsorted players have been inserted (hence the name insertion sort) into the
appropriate place in the partially sorted group.

The Insertion Sort in the Simple Sorting
Visualization Tool
Return to the Simple Sorting Visualization tool and create another 11-cell array
of random values. Then select the Insertion Sort button to start the sorting
process. As in the other sort operations, the algorithm puts up two arrows: one
for the outer and one for the inner loops. The arrow labeled “outer” is the
equivalent of the marker ball in sorting the players.

In the example shown in Figure 3-9, the outer arrow is pointing at the fifth cell
in the array. It already copied item 61 to the temp variable below the array. It
has also copied item 94 into the fifth cell and is starting to copy item 85 into
the fourth. The four cells to the left of the outer arrow are partially sorted; the
cells to its right are unsorted. Even while it decides where the marked player



should go and there are extra copies of one of them, the left-hand cells remain
partially sorted. This matches what happens in the computer memory when you
copy the array item to a temporary variable.





Figure 3-9 In the middle of an insertion sort in the Simple Sorting
Visualization tool

The inner arrow starts at same cell as outer and moves to the left, shifting items
taller than the marked temp item to the right. In Figure 3-9, item 85 is being
copied to where inner points because it is larger than item 61. After that copy is
completed, inner moves one cell to the left and finds that item 77 needs to be
moved too. On the next step for inner, it finds item 59 to its left. That item is
smaller than 61, and the marked item is copied from temp back to the inner
cell, where item 77 used to be.

Try creating a larger array filled with random values. Run the insertion sort and
watch the updates to the arrows and items. Everything to the left of the outer
arrow remains sorted by height. The inner arrow moves to the left, shifting
items until it finds the right cell to place the item that was marked (copied from
the outer cell).

Eventually, the outer arrow arrives at the right end of the array. The inner arrow
moves to the left from that right edge and stops wherever its appropriate to
insert the last item. It might finish anywhere in the array. That’s a little
different than the bubble and selection sorts where the outer and inner loop
variables finish together.

Notice that, occasionally, the item copied from outer to temp is copied right
back to where it started. That occurs when outer happens to point at an item
larger than every item to its left. A similar thing happens in the selection sort
when the outer arrow points at an item smaller than every item to its right; it
ends up doing a swap with itself. Doing these extra data moves might seem
inefficient, but adding tests for these conditions could add its own
inefficiencies. An experiment at the end of the chapter asks you to explore
when it might make sense to do so.

Python Code for Insertion Sort
Let’s now look at the insertionSort() method for the Array class as shown in
Listing 3-3. You still need two loops, but the inner loop hunts for the insertion
point using a while loop this time.

Listing 3-3 The insertionSort() method of the Array class



 
   def insertionSort(self):           # Sort by repeated inserts 
      for outer in range(1, self.__nItems): # Mark one element 
         temp = self.__a[outer]       # Store marked elem in temp 
         inner = outer                # Inner loop starts at mark 
         while inner > 0 and temp < self.__a[inner-1]: # If marked 
            self.__a[inner] = self.__a[inner-1] # elem smaller, then 
            inner -= 1                # shift elem to right 
         self.__a[inner] = temp       # Move marked elem to ’hole’

In the outer for loop, outer starts at 1 and moves right. It marks the leftmost
unsorted array element. In the inner while loop, inner starts at outer and
moves left to inner-1, until either temp is smaller than the array element there,
or it can’t go left any further. Each pass through the while loop shifts another
sorted item one space right.

Invariants in the Insertion Sort
The data items with smaller indices than outer are partially sorted. This is true
even at the beginning when outer is 1 because the single item in cell 0 forms a
one-element sequence that is always sorted. As items shift, there are multiple
copies of one of them, but they all remain in partially sorted order.

Efficiency of the Insertion Sort
How many comparisons and copies does this algorithm require? On the first
pass, it compares a maximum of one item. On the second pass, it’s a maximum
of two items, and so on, up to a maximum of N−1 comparisons on the last pass.
(We ignore the check for inner > 0 and count only the intra-element
comparisons). This adds up to

1 + 2 + 3 + … + N−1 = N×(N−1)/2

On each pass, however, the number of items actually compared before the
insertion point is found is, on average, half of the partially sorted items, so you
can divide by 2, which gives

N×(N−1)/4



The number of copies is approximately the same as the number of comparisons
because it makes one copy for each comparison but the last. Copying one item
is less time-consuming than a swap of two items, so for random data this
algorithm runs twice as fast as the bubble sort and faster than the selection sort,
on average.

In any case, like the other sort routines in this chapter, the insertion sort runs in
O(N2) time for random data.

For data that is already sorted or almost sorted, the insertion sort does much
better. When data is in order, the condition in the while loop is never true, so it
becomes a simple statement in the outer loop, which executes N−1 times. In
this case the algorithm runs in O(N) time. If the data is almost sorted, the
insertion sort runs in almost O(N) time, which makes it a simple and efficient
way to order an array that is only slightly out of order.

For data arranged in inverse sorted order, however, every possible comparison
and shift is carried out, so the insertion sort runs no faster than the bubble sort.
Try some experiments with the Simple Sorting Visualization tool. Sort an 8+
element array with the selection sort and then try sorting the result with the
selection sort again. Even though the second attempt doesn’t make any “real”
swaps, it takes the same number of steps to go through the process. Then
shuffle the array and sort it twice using the insertion sort. The second attempt
at the insertion sort is significantly shorter because the inner loop ends after
one comparison.

Python Code for Sorting Arrays
Now let’s combine the three sorting algorithms into a single object class to
compare them. Starting from the Array class introduced in Chapter 2, we add
the new methods for swapping and sorting plus the __str__() method for
displaying the contents of arrays as a string and put them in a module called
SortArray.py, as shown in Listing 3-4.

Listing 3-4 The SortArray.py module

# Implement a sortable Array data structure 
 
class Array(object): 



   def __init__(self, initialSize):    # Constructor 
      self.__a = [None] * initialSize  # The array stored as a list 
      self.__nItems = 0                # No items in array initially 
 
   def __len__(self):                  # Special def for len() func 
      return self.__nItems             # Return number of items 
 
   def get(self, n):                   # Return the value at index n 
      if 0 <= n and n < self.__nItems: # Check if n is in bounds, and 
         return self.__a[n]            # only return item if in bounds 
 
   def set(self, n, value):            # Set the value at index n 
      if 0 <= n and n < self.__nItems: # Check if n is in bounds, and 
         self.__a[n] = value           # only set item if in bounds 
 
   def swap(self, j, k):               # Swap the values at 2 indices 
      if (0 <= j and j < self.__nItems and # Check if indices are in 
          0 <= k and k < self.__nItems): # bounds, before processing 
         self.__a[j], self.__a[k] = self.__a[k], self.__a[j] 
 
   def insert(self, item):             # Insert item at end 
      self.__a[self.__nItems] = item   # Item goes at current end 
      self.__nItems += 1               # Increment number of items 
 
   def find(self, item):               # Find index for item 
      for j in range(self.__nItems):   # Among current items 
         if self.__a[j] == item:       # If found, 
            return j                   # then return index to element 
      return -1                        # Not found -> return -1 
 
   def search(self, item):             # Search for item 
      return self.get(self.find(item)) # and return item if found 
 
   def delete(self, item):             # Delete first occurrence 
      for j in range(self.__nItems):   # of an item 
         if self.__a[j] == item:       # Found item 
            self.__nItems -= 1         # One fewer at end 
            for k in range(j, self.__nItems):  # Move items from 
               self.__a[k] = self.__a[k+1]     # right over 1 
            return True                # Return success flag 
 
      return False     # Made it here, so couldn’t find the item 
 
   def traverse(self, function=print): # Traverse all items 
      for j in range(self.__nItems):   # and apply a function 
         function(self.__a[j]) 
 



   def __str__(self):                  # Special def for str() func 
      ans = "["                        # Surround with square brackets 
      for i in range(self.__nItems):   # Loop through items 
         if len(ans) > 1:              # Except next to left bracket, 
            ans += ", "                # separate items with comma 
         ans += str(self.__a[i])       # Add string form of item 
      ans += "]"                       # Close with right bracket 
      return ans 
 
   def bubbleSort(self):               # Sort comparing adjacent vals 
      for last in range(self.__nItems-1, 0, -1):  # and bubble up 
         for inner in range(last):     # inner loop goes up to last 
            if self.__a[inner] > self.__a[inner+1]:  # If elem less 
               self.swap(inner, inner+1) # than adjacent value, swap 
 
   def selectionSort(self):           # Sort by selecting min and 
      for outer in range(self.__nItems-1): # swapping min to leftmost 
         min = outer                  # Assume min is leftmost 
         for inner in range(outer+1, self.__nItems): # Hunt to right 
            if self.__a[inner] < self.__a[min]: # If we find new min, 
               min = inner            # update the min index 
 
         # __a[min] is smallest among __a[outer]...__a[__nItems-1] 
         self.swap(outer, min)       # Swap leftmost and min 
 
   def insertionSort(self):           # Sort by repeated inserts 
      for outer in range(1, self.__nItems): # Mark one element 
         temp = self.__a[outer]       # Store marked elem in temp 
         inner = outer                # Inner loop starts at mark 
         while inner > 0 and temp < self.__a[inner-1]: # If marked 
            self.__a[inner] = self.__a[inner-1] # elem smaller, then 
            inner -= 1                # shift elem to right 
         self.__a[inner] = temp       # Move marked elem to ’hole’

The swap() method swaps the values in two cells of the array. It ensures that
swaps happen only with items that have been inserted in the array and not with
allocated but uninitialized cells. Those tests may not be necessary with the
sorting methods in this module that already ensure proper indices, but they are
a good idea for a general-purpose routine.

We use a separate client program, SortArrayClient.py, to test this new
module and compare the performance of the different sorting methods. This
program uses some other Python modules and features to help in this process
and is shown in Listing 3-5.



Listing 3-5 The SortArrayClient.py program

from SortArray import * 
import random 
import timeit 
 
def initArray(size=100, maxValue=100, seed=3.14159): 
    """Create an Array of the specified size with a fixed sequence of 
       ’random’ elements""" 
    arr = Array(size)                   # Create the Array object 
    random.seed(seed)                   # Set random number generator 
    for i in range(size):               # to known state, then loop 
        arr.insert(random.randrange(maxValue)) # Insert random numbers 
    return arr                          # Return the filled Array 
 
arr = initArray() 
print("Array containing", len(arr), "items:\n", arr) 
 
for test in [’initArray().bubbleSort()’, 
             ’initArray().selectionSort()’, 
             ’initArray().insertionSort()’]: 
    elapsed = timeit.timeit(test, number=100, globals=globals()) 
    print(test, "took", elapsed, "seconds", flush=True) 
 
arr.insertionSort() 
print(’Sorted array contains:\n’, arr)

The SortArrayClient.py program starts by importing the SortArray module
to test the sorting methods, and the random and timeit modules to assist. The
random module provides pseudo-random number generators that can be used to
make test data. The timeit module provides a convenient way to measure the
execution times of Python code.

The test program first defines a function, initArray(), that generates an
unsorted array for testing. Right after the parameter list, it has a documentation
string that helps explain its purpose, creating arrays of a fixed size filled with a
sequence of random numbers. Because we’d like to test the different sort
operations on the exact same sequence of elements, we want initArray() to
return a fresh copy of the same array every time it runs, but conforming to the
parameters it is given. The function first creates an Array of the desired size.
Next, it initializes the random module to a known state by setting the seed



value. This means that pseudo-random functions produce the same sequence of
numbers when called in the same order.

Inside the following for loop, the random.randrange(maxValue) function
generates integers in the range [0, maxValue) that are inserted into the array
(the math notation [a, b) represents a range of numbers that includes a but
excludes b). Then the filled array is returned.

The test program uses the initArray() function to generate an array that is
stored in the arr variable. After printing the initial contents of arr, a for loop
is used to step through the three sort operations to be timed. The loop variable,
test, is bound to a string on each pass of the loop. The string has the Python
expression whose execution time is to be measured. Inside the loop body, the
timeit.timeit() function call measures the elapsed time of running the test
expression. It runs the expression a designated number of times and returns the
total elapsed time in seconds. Running it many times helps deal with the
variations in running times due to other operations happening on the computer
executing the Python interpreter. The last argument to timeit.timeit() is
globals, which is needed so that the interpreter has all the definitions that have
been loaded so far, including SortArray and initArray. The interpreter uses
those definitions when evaluating the Python expression in the test variable.

The result of timeit.timeit() is stored in the elapsed variable and then
printed out with flush=True so that it doesn’t wait until the output buffer is full
or input needs to be read before printing. After all three test times are printed, it
performs one more sort on the original arr array and prints its contents. The
results look like this:
$ python3 SortArrayClient.py 
Array containing 100 items: 
 [77, 94, 59, 85, 61, 46, 62, 17, 56, 37, 18, 45, 76, 21, 91, 7, 96, 
50, 
31, 69, 80, 69, 56, 60, 26, 25, 1, 2, 67, 46, 99, 57, 32, 26, 98, 51, 
77, 
34, 20, 81, 22, 40, 28, 23, 69, 39, 23, 6, 46, 1, 96, 51, 71, 61, 2, 
34, 
1, 55, 78, 91, 69, 23, 2, 8, 3, 78, 31, 25, 26, 73, 28, 88, 88, 38, 
22, 
97, 9, 18, 18, 66, 47, 16, 82, 9, 56, 45, 15, 76, 85, 52, 86, 5, 28, 
67, 
34, 20, 6, 33, 83, 68] 
initArray().bubbleSort() took 0.25465869531035423 seconds 
initArray().selectionSort() took 0.11350362841039896 seconds 



initArray().insertionSort() took 0.12348053976893425 seconds 
Sorted array contains: 
 [1, 1, 1, 2, 2, 2, 3, 5, 6, 6, 7, 8, 9, 9, 15, 16, 17, 18, 18, 18, 
20, 
20, 21, 22, 22, 23, 23, 23, 25, 25, 26, 26, 26, 28, 28, 28, 31, 31, 
32, 
33, 34, 34, 34, 37, 38, 39, 40, 45, 45, 46, 46, 46, 47, 50, 51, 51, 
52, 
55, 56, 56, 56, 57, 59, 60, 61, 61, 62, 66, 67, 67, 68, 69, 69, 69, 
69, 
71, 73, 76, 76, 77, 77, 78, 78, 80, 81, 82, 83, 85, 85, 86, 88, 88, 
91, 
91, 94, 96, 96, 97, 98, 99]

Looking at the output, you can see that the randrange() function provided a
broad variety of values for the array in a random order. The results of the
timing of the sort tests show the bubble sort taking at least twice as much time
as the selection and insertion sorts do. The final sorted version of the array
confirms that sorting works and shows that there are many duplicate elements
in the array.

Stability
Sometimes it matters what happens to data items that have equal keys when
sorting. The SortArrayClient.py test stored only integers in the array, and
equal integers are pretty much indistinguishable. If the array contained
complex records, however, it could be very important how records with the
same key are sorted. For example, you may have employee records arranged
alphabetically by family names. (That is, the family names were used as key
values in the sort.) Let’s say you want to sort the data by postal code too, but
you want all the items with the same postal code to continue to be sorted by
family names. This is called a secondary sort key. You want the sorting
algorithm to shift only what needs to be sorted by the current key and leave
everything else in its order after previous sorts using other keys. Some sorting
algorithms retain this secondary ordering; they’re said to be stable. Stable
sorting methods also minimize the number of swaps or copy operations.

Some of the algorithms in this chapter are stable. We have included an exercise
at the end of the chapter for you to decide which ones are. The answer is not
obvious from the output of their test programs, especially on simple integers.
You need to review the algorithms to see that swaps and copies only happen on



items that need to be moved to be in the right position for the final order. They
should also move items with equal keys the minimum number of array cells
necessary so that they remain in the same relative order in the final
arrangement.

Comparing the Simple Sorts
There’s probably no point in using the bubble sort, unless you don’t have your
algorithm book handy. The bubble sort is so simple that you can write it from
memory. Even so, it’s practical only if the amount of data is small. (For a
discussion of what “small” means and what trade-offs such decisions entail, see
Chapter 16, “What to Use and Why.”)

Table 3-1 summarizes the time efficiency of each of the sorting methods. We
looked at what the algorithms would do when presented with elements whose
keys are in random order to determine what they would do in the average case.
We also considered what would happen in the worst case when the keys were
in some order that would maximize the number of operations. The table
includes both the Big O notation followed by the detailed value in square
brackets [ ]. The Big O notation is what matters most; it gives the broad
classification of the algorithms and tells what will happen for very large N.
Typically, we are most interested in the average case behavior because we
cannot anticipate what data they will encounter, but sometimes the worst case
is the driving factor. For example, if the sort must be able to complete within a
specific amount of time for a particular size of data, we can use the best of the
worst-case values to choose the algorithm that will guarantee that completion
time.

Table 3-1 Time Order of the Sort Methods



The detailed values shown in the table can be somewhat useful in narrow
circumstances. For example, the relative number of comparisons in the average
case between the bubble sort and the insertion sort corresponds well with the
relative time measurements in the test program. That would also predict that
the selection sort average case should be closer to the bubble sort, but the one
measurement above doesn’t agree with that. Perhaps that means that the swaps
or copies were a bigger factor on running time with N around 100 on the test
platform.

Overall, the selection sort minimizes the number of swaps, but the number of
comparisons is still high. This sort might be useful when the amount of data is
small and swapping data items is very time-consuming relative to comparing
them. In real-world scenarios, there can be situations where keeping the swaps
to a minimum is more important than the number of comparisons. For example,
in moving patients between hospital rooms (in response to some other disaster),
it could be critical to displace as few patients as possible.

The insertion sort is the most versatile of the three sorting methods and is the
best bet in most situations, assuming the amount of data is small, or the data is
almost sorted. For larger amounts of data, quicksort and Timsort are generally
considered the fastest approach; we examine them in Chapter 7.

We’ve compared the sorting algorithms in terms of speed. Another
consideration for any algorithm is how much memory space it needs. All three
of the algorithms in this chapter carry out their sort in place, meaning that they
use the input array as the output array and very little extra memory is required.
All the sorts require an extra variable to store an item temporarily while it’s
being swapped or marked. Because that item can be quite large, you need to
consider it, but the local variables for indices into the array are typically
ignored.

Summary
• The sorting algorithms in this chapter all assume an array as a data

storage structure.

• Sorting involves comparing the keys of data items in the array and
moving the items (usually references to the items) around until they’re in
sorted order.



• All the algorithms in this chapter execute in O(N2) time. Nevertheless,
some can be substantially faster than others.

• An invariant is a condition that remains unchanged while an algorithm
runs.

• The bubble sort is the least efficient but the simplest sort.

• The insertion sort is the most commonly used of the O(N2) sorts
described in this chapter.

• The selection sort performs O(N2) comparisons and only O(N) swaps,
which can be important when swap time is much more significant than
comparison time.

• A sort is stable if the order of elements with the same key is retained.

• None of the sorts in this chapter require more than a single temporary
record variable, in addition to the original array.

Questions
These questions are intended as a self-test for readers. Answers may be found
in Appendix C.

1. Computer sorting algorithms are more limited than humans in that
a. the amount of data that computers can sort is much less than what

humans can.
b. humans can invent new sorting algorithms, whereas computers

cannot.
c. humans know what to sort, whereas computers need to be told.
d. computers can compare only two things at a time, whereas humans

can compare small groups.
2. The two basic operations in simple sorting are _________ items and

_________ them (or sometimes _________ them).
3. True or False: The bubble sort always ends up comparing every possible

pair of items in the initial array.



4. The bubble sort algorithm alternates between
a. comparing and swapping.
b. moving and copying.
c. moving and comparing.
d. copying and comparing.

5. True or False: If there are N items, the bubble sort makes exactly N×N
comparisons.

6. In the selection sort,
a. the largest keys accumulate on the left (low indices).
b. a minimum key is repeatedly discovered.
c. a number of items must be shifted to insert each item in its correctly

sorted position.
d. the sorted items accumulate on the right.

7. True or False: If, on a particular computing platform, swaps take much
longer than comparisons, the selection sort is about twice as fast as the
bubble sort for all values of N.

8. Ignoring the details of where the computer stores each piece of data,
what is a reasonable assumption about the ratio of the amounts of time
taken for a copy operation versus a swap operation?

9. What is the invariant in the selection sort?
10. In the insertion sort, the “marked player” described in the text

corresponds to which variable in the insertionSort() method?
a. inner
b. outer
c. temp
d. __a[outer]

11. In the insertion sort, the “partially sorted” group members are
a. the items that are already sorted but still need to be moved as a block.
b. the items that are in their final block position but may still need to be

sorted.



c. only partially sorted in order by their keys.
d. the items that are sorted among themselves, but items outside the

group may need to be inserted in the group.
12. Shifting a group of items left or right requires repeated __________.
13. In the insertion sort, after an item is inserted in the partially sorted

group, it
a. is never moved again.
b. is never shifted to the left.
c. is often moved out of this group.
d. finds that its group is steadily shrinking.

14. The invariant in the insertion sort is that ________.
15. Stability might refer to

a. items with secondary keys being excluded from a sort.
b. keeping cities sorted by increasing population within each state, in a

sort by state.
c. keeping the same given names matched with the same family names.
d. items keeping the same order of secondary keys without regard to

primary keys.

Experiments
Carrying out these experiments will help to provide insights into the topics
covered in the chapter. No programming is involved.

3-A The “Stability” section explains that stable sorting algorithms don’t
change the relative position within the array of items having equal
valued keys. For example, when you’re sorting an array containing
tuples by their first element such as
(elm, 1), (asp, 1), (elm, 2), (oak, 1)
the algorithm always produces
(asp, 1), (elm, 1), (elm, 2), (oak, 1)



and never
(asp, 1), (elm, 2), (elm, 1), (oak, 1)
Review each of the simple sorting algorithms in this chapter and
determine if they are always stable.
Determining whether a sorting algorithm is stable or not can be difficult.
Try walking through some sample inputs that include some equal-
valued keys to see when those items are moved. If you can think of even
one example where two items with equal keys are reordered from their
original relative order, then you have proven that the algorithm is
unstable. If you can’t think of an example where equal valued keys are
moved out of order, then the algorithm might be stable. To be sure, you
need to provide more proof. That’s usually done by finding invariant
conditions about a partial sequence of items as the algorithm progresses.
For example, if you can show that the output array after index i contains
only items in stable order, that condition stays valid at iteration j if it
held in iteration j − 1, and that i always ends at index 0, then the
algorithm must be stable.
Note that if you get stuck, we provide an answer for this exercise in
Appendix C.

3-B Sometimes the items in an array might have just a few distinct keys with
many copies. That creates a situation where there are many duplicates
of the same key. Use the Simple Sorting Visualization tool to create an
array with 15 cells and filled with only two distinct values, say 10 and
90. Try shuffling and sorting that kind of array with the three sorting
algorithms. Do any of them show advantages or disadvantages over the
others for this kind of data?

3-C In the selectionSort() method shown in Listing 3-2, the inner loop
makes a swap on every pass. It doesn’t need to swap them if the value
of the min and outer indices are the same. Would it make sense to add
an additional comparison of those indices and perform the swap only if
they are different? If so, under what conditions would that improve the
performance? If not, why not?

Programming Projects



Writing programs to solve the Programming Projects helps to solidify your
understanding of the material and demonstrates how the chapter’s concepts are
applied. (As noted in the Introduction, qualified instructors may obtain
completed solutions to the Programming Projects on the publisher’s website.)

3.1 In the bubbleSort() method (Listing 3-1) and the Visualization tool, the
inner index always goes from left to right, finding the largest item and
carrying it out on the right. Modify the bubbleSort() method so that
it’s bidirectional. This means the in index will first carry the largest
item from left to right as before, but when it reaches last, it will
reverse and carry the smallest item from right to left. You need two
outer indexes, one on the right (the old last) and another on the left.

3.2 Add a method called median() to the Array class in the SortArray.py
module (Listing 3-4). This method should return the median value in
the array. (Recall that in a group of numbers, half are larger than the
median and half are smaller.) Do it the easy way.

3.3 Add a method called deduplicate() to the Array class in the
SortArray.py module (Listing 3-4) that removes duplicates from a
previously sorted array without disrupting the order. You can use any of
the sort methods in your test program to sort the data. You can imagine
schemes in which all the items from the place where a duplicate was
discovered to the end of the array would be shifted down one space
every time a duplicate was discovered, but this would lead to slow
O(N2) time, at least when there were a lot of duplicates. In your
algorithm, make sure no item is moved more than once, no matter how
many duplicates there are. This will give you an algorithm with O(N)
time.

3.4 Another simple sort is the odd-even sort. The idea is to repeatedly make
two passes through the array. On the first pass, you look at all the pairs
of items, a[j] and a[j+1], where j is odd (j = 1, 3, 5, …). If their key
values are out of order, you swap them. On the second pass, you do the
same for all the even values (j = 0, 2, 4, …). You do these two passes
repeatedly until the array is sorted. Add an oddEvenSort() method to
the Array class in the SortArray.py module (Listing 3-4). Perform the
outer loop until no swaps occur to see how many passes are needed; one
pass includes both odd-pair and even-pair swapping. Make sure it works
for varying amounts of data and on good and bad initial orderings. After
testing how many passes are needed before no more swaps occur,



determine the maximum number of passes of the outer loop based on
the length of the input array.
The odd-even sort is actually useful in a multiprocessing environment,
where a separate processor can operate on each odd pair simultaneously
and then on each even pair. Because the odd pairs are independent of
each other, each pair can be checked—and swapped, if necessary—by a
different processor. This makes for a very fast sort.

3.5 Modify the insertionSort() method in SortArray.py (Listing 3-4) so
that it counts the number of copies and the number of item comparisons
it makes during a sort and displays the totals. You need to look at the
loop condition in the inner while loop and carefully count item
comparisons. Use this program to measure the number of copies and
comparisons for different amounts of inversely sorted data. Do the
results verify O(N2) efficiency? Do the same for almost-sorted data
(only a few items out of place). What can you deduce about the
efficiency of this algorithm for almost-sorted data?

3.6 Here’s an interesting way to remove items with duplicate keys from an
array. The insertion sort uses a loop-within-a-loop algorithm that
compares every item in the array with the partially sorted items so far.
One way to remove items with duplicate keys would be to modify the
algorithm in the Array class in the SortArray.py module (Listing 3-4)
so that it removes the duplicates as it sorts. Here’s one approach: When
a duplicate key is found, instead of copying the duplicate back into the
array cell at its sorted position, change the key for the marked item to be
a special value that is treated as lower than any other possible key. With
that low key value, it is automatically moved into place at the beginning
of the array. By keeping track of how many duplicates are found, you
know the end of duplicates and beginning of the remaining elements in
the array. When the outer loop ends, the algorithm would have to make
one more pass to shift the unique keys into the cells occupied by the
duplicates. Write an insertionSortAndDedupe() method that performs
this operation. Make sure to test that it works with all different kinds of
input array data.



4. Stacks and Queues

In This Chapter

• Different Structures for Different Use Cases

• Stacks

• Queues

• Priority Queues

• Parsing Arithmetic Expressions

This chapter examines three data storage structures widely used in all kinds of
applications: the stack, the queue, and the priority queue. We describe how
these structures differ from arrays, examining each one in turn. In the last
section, we look at an operation in which the stack plays a significant role:
parsing arithmetic expressions.

Different Structures for Different Use Cases
You choose data structures to use in programs based on their suitability for
particular tasks. The structures in this chapter differ from what you’ve already
seen in previous chapters in several ways. Those differences guide the decision
on when to apply them to a new task.

Storage and Retrieval Pattern
Arrays—the data storage structure examined thus far—as well as many other
structures you encounter later in this book (linked lists, trees, and so on) are
appropriate for all kinds of data storage. They are sometimes referred to as
low-level data structures because they are used in implementing many other
data structures. The organization of the data dictates what it takes to retrieve a



particular record or object that is stored inside them. Arrays are especially good
for applications where the items can be indexed by an integer because the
retrieval is fast and independent of the number of items stored. If the index
isn’t known, the array still can be searched to find the object. As you’ve seen,
sorting the objects made the search faster at the expense of other operations.
Insertion and deletion operations can either be constant time or have the same
Big O behavior as the search operation.

The structures and algorithms we examine in this chapter, on the other hand,
are used in situations where you are unlikely to need to search for a particular
object or item that is stored but rather where you want to process those objects
in a particular order.

Restricted Access
In an array, any item can be accessed, either immediately—if its index number
is known—or by searching through a sequence of cells until it’s found. In the
data structures in this chapter, however, access is restricted: only one item can
be read or removed at a time.

The interface of these structures is designed to enforce this restricted access.
Access to other items is (in theory) not allowed.

More Abstract
Stacks, queues, and priority queues are more abstract structures than arrays and
many other data storage structures. They’re defined primarily by their interface
—the permissible operations that can be carried out on them. The underlying
mechanism used to implement them is typically not visible to their user.

The underlying mechanism for a stack, for example, can be an array, as shown
in this chapter, or it can be a linked list. The underlying mechanism for a
priority queue can be an array or a special kind of tree called a heap. When one
data structure is used to implement a more abstract one, we often say that it is a
lower-level data structure by picturing the more abstract structure being
layered on top of it. We return to the topic of one data structure being
implemented by another when we discuss abstract data types (ADTs) in
Chapter 5, “Linked Lists.”



Stacks
A stack data structure allows access to only one data item in the collection: the
last item inserted. If you remove this item, you can access the next-to-last item
inserted, and so on. Although that constraint seems to be quite limiting, this
behavior occurs in many programming situations. In this section we show how
a stack can be used to check whether parentheses, braces, and brackets are
balanced in a computer program source file. At the end of this chapter, a stack
plays a vital role in parsing (analyzing) arithmetic expressions such as 3×(4+5).

A stack is also a handy aid for algorithms applied to certain complex data
structures. In Chapter 8, “Binary Trees,” you will see it used to help traverse
the nodes of a tree. In Chapter 14, “Graphs,” you will apply it to searching the
vertices of a graph (a technique that can be used to find your way out of a
maze).

Nearly all computers use a stack-based architecture. When a function or
method is called, the return address for where to resume execution and the
function arguments are pushed (inserted) onto a stack in a particular order.
When the function returns, they’re popped off. The stack operations are often
accelerated by the computer hardware.

The idea of having all the function arguments pushed on a stack makes very
clear what the operands are for a particular function or operator. This scheme is
used in some older pocket calculators and formal languages such as PostScript
and PDF content streams. Instead of entering arithmetic expressions using
parentheses to group operands, you insert (or push) those values onto a stack.
The operator comes after the operands and pops them off, leaving the
(intermediate) result on the stack. You will learn more about this approach
when we discuss parsing arithmetic expressions in the last section in this
chapter.

The Postal Analogy
To understand the idea of a stack, consider an analogy provided by postal, and
to a lesser extent, some email and messaging systems, especially ones where
you can see only one message at a time. Many people, when they get their
mail, toss it onto a stack on a table. If they’ve been away awhile, the stack
might be quite large. If they don’t open the mail, the following day, they may
add more messages on top of the stack. In messaging systems, a large number



of messages can accumulate since the last time people viewed them. Then,
when they have a spare moment, they start to process the accumulated mail or
messages from the top down, one at a time. First, they open the letter on the top
of the stack and take appropriate action—paying the bill, reading the holiday
newsletter, considering an advertisement, throwing it away, or whatever. After
disposing of the first message, they examine the next one down, which is now
the top of the stack, and deal with that. The idea is to start with the most
recently delivered letter or message first. Eventually, they work their way down
to the message on the bottom of the stack (which is now the topmost one).
Figure 4-1 shows a stack of mail.

Figure 4-1 A stack of letters



This “do the top one first” approach works all right as long as people can easily
process all the items in a reasonable time. If they can’t, there’s the danger that
messages on the bottom of the stack won’t be examined for months, and the
bills or other important requests for action are not handled soon enough. By
reviewing the most recent one first, however, they’re at least guaranteed to find
any updates to bills or messages that occurred after the earlier deliveries.

Of course, many people don’t rigorously follow this top-to-bottom approach.
They may, for example, take the mail off the bottom of the stack, to process the
oldest letter first. That way, they see the messages in chronological order of
arrival. Or they might shuffle through the messages before they begin
processing them and put higher-priority messages on top. In these cases, their
processing system is no longer a stack in the computer-science sense of the
word. If they take mail off the bottom, it’s a queue; and if they prioritize it, it’s
a priority queue. We’ll look at these possibilities later.

The tasks you perform every day can be seen as a stack. You typically have a
set of goals, often with different priorities. They might include things like
these: be happy, be with my family, or live a long life. Each of those goals can
have sub-goals. For instance, to be happy, you may have a sub-goal: to be
financially stable. A sub-goal of that could be: to have a job that pays enough.
The tasks that you perform each day are organized around these goals. So, if
“be with my family” is a main goal, you go to work to satisfy your other goal
of being financially stable. When work is done, you return to your main goal
by returning home. While at work, you might start the day by working on a
long-term project. When the manager asks you to handle some new task that
just popped up, you set aside the project and work the pop-up task. If a more
critical problem comes up, you set aside the pop-up task and solve the problem.
When each higher-priority activity is finished, you return to the next lower-
priority activity on your stack of tasks.

In data structures, placing a data item on the top of the stack is called pushing
it. Removing it from the top of the stack is called popping it. Looking at the top
item without popping it is called peeking. These are the primary stack
operations. A stack is said to be a last-in, first-out (LIFO) storage mechanism
because the last item inserted is the first one to be removed.

The Stack Visualization Tool



Let’s use the Stack Visualization tool to get an idea how stacks work. When
you launch this tool by following the guide in Appendix A, “Running the
Visualizations,” you see an empty stack with operations for Push, New, Pop,
Peek, and the animation controls shown in Figure 4-2.

Figure 4-2 The Stack Visualization tool

The Stack Visualization tool is based on an array, so you see an array of data
items, this time arranged in a column. Although it’s based on an array, a stack
restricts access, so you can’t access elements using an index (even though they
appear next to the cells in the visualization). In fact, the concept of a stack and
the underlying data structure used to implement it are quite separate. As we
noted earlier, stacks can also be implemented by other kinds of storage
structures, such as linked lists.

The Push Button
To insert a data item on the stack, use the button labeled Push. The item can be
any text string, and you simply type it in the text entry box next to Push. The
tool limits the number of characters in the string, so they fit in the array cells.

To the left of the stack is a reddish-brown arrow labeled “__top.” This is part
of the data structure, an attribute that tracks the last item inserted. Initially,
nothing has been inserted, so it points below the first array cell, the one labeled
with a small 0. When you push an item, it moves up to cell 0, and the item is
inserted in that cell. Notice that the top arrow is incremented before the item is
inserted. That’s important because copying the data before incrementing could
either cause an error by writing outside of the array bounds or overwriting the
last element in the array when there are multiple items.



Try pushing several items on the stack. The tool notes the last operation you
chose when typing an argument, so if you press Return or Enter while typing
the next one, it will run the push operation again. If the stack is full and you try
to push another item, you’ll get the Error! Stack is already full message.
(Theoretically, an ADT stack doesn’t become full, but any practical
implementation does.)

The New Button
As with all data structures, you create (and remove) stacks as needed for an
algorithm. Because this implementation is based on an array, it needs to know
how big the array should be. The Stack Visualization tool starts off with eight
cells allocated and none of them filled. To make a new, empty stack, type the
number of cells it should have in the text entry box and then select New. The
tool adjusts the height of the cells to fit them within the display window. If you
ask for a size that won’t fit, you’ll get an error message.

The Pop Button
To remove a data item from the top of the stack, use the Pop button. The value
popped is moved to the right as it is being copied to a variable named top. It is
stored there temporarily as the pop() method finishes its work.

Again, notice the steps involved. First, the item is copied from the cell pointed
to by __top. Then the cell is cleared, and then __top is decremented to point to
the highest occupied cell. The order of copying and changing the index pointer
is the reverse of the sequence used in the push operation.

The tool’s Pop operation shows the item actually being removed from the array
and the cell becoming empty. This is not strictly necessary because the value
could be left in the array and simply ignored. In programming languages like
Python, however, references to items left in an array like this can consume
memory. It’s important to remove those references so that the memory can be
reclaimed and reused. We show this in detail when looking at the code. Note
that you still have a reference to the item in the top variable so that it won’t be
lost.

After the topmost item is removed, the __top index decrements to the next
lower cell. After you pop the last item off the stack, it points to −1, below the
lowest cell. This position indicates that the stack is empty. If the stack is empty
and you try to pop an item, you’ll get the Error! Stack is empty message.



The Peek Button
Push and pop are the two primary stack operations. It’s sometimes useful,
however, to be able to read the value from the top of the stack without
removing it. The peek operation does this. By selecting the Peek button a few
times, you see the value of the item at the __top index copied to the output box
on the right, but the item is not removed from the stack, which remains
unchanged.

Notice that you can peek only at the top item. By design, all the other items are
invisible to the stack user. If the stack is empty in the visualization tool when
you select Peek, the output box is not created. We show how to implement the
empty test later in the code.

Stack Size
Stacks come in all sizes and are typically capped in size so that they can be
allocated in a single block of memory. The application allocates some initial
size based on the maximum number of items expected to be stacked. If the
application tries to push items beyond what the stack can hold, then either the
stack needs to increase in size, or an exception must occur. The visualization
tool limits the size to what fits conveniently on the screen, but stacks in many
applications can have thousands or millions of cells.

Python Code for a Stack
The Python list type is a natural choice for implementing stacks. As you saw
in Chapter 2, “Arrays,” the list type can act like an array (as opposed to a
linked list, as shown in Chapter 5, “Linked Lists”). Instead of using Python
slicing to get the last element in the list, we continue to use the list as a basic
array and keep a separate __top pointer for the topmost item, as shown in
Listing 4-1.

Listing 4-1 The SimpleStack.py Module

# Implement a Stack data structure using a Python list 
 
class Stack(object): 
   def __init__(self, max):            # Constructor 



      self.__stackList = [None] * max  # The stack stored as a list 
      self.__top = -1                  # No items initially 
 
   def push(self, item):               # Insert item at top of stack 
      self.__top += 1                  # Advance the pointer 
      self.__stackList[self.__top] = item  # Store item 
 
   def pop(self):                     # Remove top item from stack 
      top = self.__stackList[self.__top]   # Top item 
      self.__stackList[self.__top] = None  # Remove item reference 
      self.__top -= 1                  # Decrease the pointer 
      return top                       # Return top item 
 
   def peek(self):                    # Return top item 
      if not self.isEmpty():          # If stack is not empty 
         return self.__stackList[self.__top] # Return the top item 
 
   def isEmpty(self):                 # Check if stack is empty 
      return self.__top < 0 
 
   def isFull(self):                  # Check if stack is full 
      return self.__top >= len(self.__stackList) - 1 
 
   def __len__(self):                 # Return # of items on stack 
      return self.__top + 1 
 
   def __str__(self):                  # Convert stack to string 
      ans = "["                        # Start with left bracket 
      for i in range(self.__top + 1):  # Loop through current items 
         if len(ans) > 1:              # Except next to left bracket, 
            ans += ", "                # separate items with comma 
         ans += str(self.__stackList[i]) # Add string form of item 
      ans += "]"                       # Close with right bracket 
      return ans

The SimpleStack.py implementation has just the basic features needed for a
stack. Like the Array class you saw in Chapter 2, the constructor allocates an
array of known size, called __stackList, to hold the items with the __top
pointer as an index to the topmost item in the stack. Unlike the Array class,
__top points to the topmost item and not the next array cell to be filled. Instead
of insert(), it has a push() method that puts a new item on top of the stack.
The pop() method returns the top item on the stack, clears the array cell that
held it, and decreases the stack size. The peek() method returns the top item
without decreasing the stack size.



In this simple implementation, there is very little error checking. It does
include isEmpty() and isFull() methods that return Boolean values
indicating whether the stack has no items or is at capacity. The peek() method
checks for an empty stack and returns the top value only if there is one. To
avoid errors, a client program would need to use isEmpty() before calling
pop(). The class also includes methods to measure the stack depth and a string
conversion method for convenience in displaying stack contents.

To exercise this class, you can use the SimpleStackClient.py program shown
in Listing 4-2.

Listing 4-2 The SimpleStackClient.py Program

from SimpleStack import * 
 
stack = Stack(10) 
 
for word in [’May’, ’the’, ’force’, ’be’, ’with’, ’you’]: 
   stack.push(word) 
 
print(’After pushing’, len(stack), 
      ’words on the stack, it contains:\n’, stack) 
print(’Is stack full?’, stack.isFull()) 
 
print(’Popping items off the stack:’) 
while not stack.isEmpty(): 
   print(stack.pop(), end=’ ’) 
print()

The client creates a small stack, pushes some strings onto the stack, displays
the contents, then pops them off, printing them left to right separated by spaces.
The transcript of running the program shows the following:
$ python3 SimpleStackClient.py 
After pushing 6 words on the stack, it contains: 
 [May, the, force, be, with, you] 
Is stack full? False 
Popping items off the stack: 
you with be force the May

Notice how the program reverses the order of the data items. Because the last
item pushed is the first one popped, the you appears first in the output. Figure



4-3 shows how the data gets placed in the array cells of the stack and then
returned for push and pop operations. The array cells shown as empty in the
illustration still have the value None in them, but because only the values from
the bottom up through the __top pointer are occupied, the ones beyond __top
can be considered unfilled. The visualization tool uses the same pop() method
as in Listing 4-1, setting the popped cell to None.

Figure 4-3 Operation of the Stack class push() and pop() methods

Error Handling
There are different philosophies about how to handle stack errors. What should
happen if you try to push an item onto a stack that’s already full or pop an item
from a stack that’s empty?



In this implementation, the responsibility for avoiding or handling such errors
has been left up to the program using the class. That program should always
check to be sure the stack is not full before inserting an item, as in
if not stack.isFull(): 
   stack.push(item) 
else: 
   print("Can’t insert, stack is full")

The client program in Listing 4-2 checks for an empty stack before it calls
pop(). It does not, however, check for a full stack before calling push().
Alternatively, many stack classes check for these conditions internally, in the
push() and pop() methods. Typically, a stack class that discovers such
conditions either throws an exception, which can then be caught and processed
by the program using the class, or takes some predefined action, such as
returning None. By providing both the ability for users to query the internal
state and the possibility of raising exceptions when constraints are violated, the
data structure enables both proactive and reactive approaches.

Stack Example 1: Reversing a Word
For this first example of using a stack, we examine a simple task: reversing a
word. When you run the program, you type in a word or phrase, and the
program displays the reversed version.

A stack is used to reverse the letters. First, the characters are extracted one by
one from the input string and pushed onto the stack. Then they’re popped off
the stack and displayed. Because of its last-in, first-out characteristic, the stack
reverses the order of the characters. Listing 4-3 shows the code for the
ReverseWord.py program.

Listing 4-3 The ReverseWord.py Program

# A program to reverse the letters of a word 
 
from SimpleStack import * 
 
stack = Stack(100)          # Create a stack to hold letters 
 
word = input("Word to reverse: ") 
 



for letter in word:        # Loop over letters in word 
   if not stack.isFull():  # Push letters on stack if not full 
      stack.push(letter) 
 
reverse = ’’                # Build the reversed version
while not stack.isEmpty():  # by popping the stack until empty 
   reverse += stack.pop() 
 
print(’The reverse of’, word, ’is’, reverse)

The program makes use of Python’s input() function, which prints a prompt
string and then waits for a user to type a response string. The program
constructs a stack instance, gets the word to be reversed from the user, loops
over the letters in the word, and pushes them on the stack. Here the program
avoids pushing letters if the stack is already full. After all the letters are pushed
on the stack, the program creates the reversed version, starting with an empty
string and appending each character popped from the stack. The results look
like this:
$ python3 ReverseWord.py 
Word to reverse: draw 
The reverse of draw is ward 
$ python3 ReverseWord.py 
Word to reverse: racecar 
The reverse of racecar is racecar 
$ python3 ReverseWord.py 
Word to reverse: bolton 
The reverse of bolton is notlob 
$ python3 ReverseWord.py 
Word to reverse: A man a plan a canal Panama 
The reverse of A man a plan a canal Panama is amanaP lanac a nalp a 
nam A

The results show that single-word palindromes come out the same as the input.
If the input “word” has spaces, as in the last example, the spaces are treated
just as any other letter in the string.

Stack Example 2: Delimiter Matching
One common use for stacks is to parse certain kinds of text strings. Typically,
the strings are lines of code in a computer language, and the programs parsing
them are compilers or interpreters.



To give the flavor of what’s involved, let’s look at a program that checks the
delimiters in an expression. The text expression doesn’t need to be a line of
real code (although it could be), but it should use delimiters the same way most
programming languages do. The delimiters are the curly braces { and }, square
brackets [ and ], and parentheses ( and ). Each opening, or left, delimiter should
be matched by a closing, or right, delimiter; that is, every { should be followed
by a matching } and so on. Also, opening delimiters that occur later in the
string should be closed before those occurring earlier. Here are some examples:
c[d]        # correct 
a{b[c]d}e   # correct 
a{b(c]d}e   # not correct; ] doesn’t match ( 
a[b{c}d]e}  # not correct; nothing matches final } 
a{b(c)      # not correct; nothing matches opening {

Opening Delimiters on the Stack
This delimiter-matching program works by reading characters from the string
one at a time and placing opening delimiters when it finds them, on a stack.
When it reads a closing delimiter from the input, it pops the opening delimiter
from the top of the stack and attempts to match it with the closing delimiter. If
they’re not the same type (there’s an opening brace but a closing parenthesis,
for example), an error occurs. Also, if there is no opening delimiter on the
stack to match a closing one, or if a delimiter has not been matched, an error
occurs. It discovers unmatched delimiters because they remain on the stack
after all the characters in the string have been read.

Let’s see what happens on the stack for a typical correct string:
a{b(c[d]e)f}

Table 4-1 shows how the stack looks as each character is read from this string.
The entries in the second column show the stack contents, reading from the
bottom of the stack on the left to the top on the right.

Table 4-1 Stack Contents in Delimiter Matching



As the string is read, each opening delimiter is placed on the stack. Each
closing delimiter read from the input is matched with the opening delimiter
popped from the top of the stack. If they form a pair, all is well. Nondelimiter
characters are not inserted on the stack; they’re ignored.

This approach works because pairs of delimiters that are opened last should be
closed first. This matches the last-in, first-out property of the stack.

Python Code for DelimiterChecker.py
Listing 4-4 shows the code for the parsing program, DelimiterChecker.py.
Like ReverseWord.py, the program accepts an expression after prompting the
user using input() and prints out any errors found or a message saying the
delimiters are balanced.

Listing 4-4 The DelimiterChecker.py Program



# A program to check that delimiters are balanced in an expression 
 
from SimpleStack import * 
 
stack = Stack(100)          # Create a stack to hold delimiter tokens 
 
expr = input("Expression to check: ") 
 
errors = 0                  # Assume no errors in expression 
 
for pos, letter in enumerate(expr): # Loop over letters in expression 
   if letter in "{[(":      # Look for starting delimiter 
      if stack.isFull():    # A full stack means we can’t continue 
         raise Exception(’Stack overflow on expression’) 
      else: 
         stack.push(letter) # Put left delimiter on stack 
 
   elif letter in "}])":    # Look for closing delimiter 
      if stack.isEmpty():   # If stack is empty, no left delimiter 
         print("Error:", letter, "at position", pos, 
               "has no matching left delimiter") 
         errors += 1 
      else: 
         left = stack.pop() # Get left delimiter from stack 
         if not (left == "{" and letter == "}" or  # Do delimiters 
                 left == "[" and letter == "]" or  # match? 
                 left == "(" and letter == ")"): 
            print("Error:", letter, "at position", pos, 
                  "does not match left delimiter", left) 
            errors += 1 
 
# After going through entire expression, check if stack empty
if stack.isEmpty() and errors == 0: 
   print("Delimiters balance in expression", expr) 
 
elif not stack.isEmpty(): # Any delimiters on stack weren’t matched 
   print("Expression missing right delimiters for", stack)

The program doesn’t define any functions; it processes one expression from the
user and exits. It creates a Stack object to hold the delimiters as they are found.
The errors variable is used to track the number of errors found in parsing the
expression. It loops over the characters in the expression using Python’s
enumerate() sequencer, which gets both the index and the value of the string
at that index. As it finds starting (or left) delimiters, it pushes them on the



stack, avoiding overflowing the stack. When it finds ending (or closing or
right) delimiters, it checks whether there is a matching delimiter on the top of
the stack. If not, it prints the error and continues. Some sample outputs are
$ python3 DelimiterChecker.py 
Expression to check: a() 
Delimiters balance in expression a() 
$ python3 DelimiterChecker.py 
Expression to check: a( b[4]d ) 
Delimiters balance in expression a( b[4]d ) 
$ python3 DelimiterChecker.py 
Expression to check: a( b]4[d ) 
Error: ] at position 4 does not match left delimiter ( 
Error: ) at position 9 does not match left delimiter [ 
$ python3 DelimiterChecker.py 
Expression to check: {{a( b]4[d ) 
Error: ] at position 6 does not match left delimiter ( 
Error: ) at position 11 does not match left delimiter [ 
Expression missing right delimiters for [{, {]

The messages printed by DelimiterChecker.py show the position and value of
significant characters (delimiters) in the expression. After processing all the
characters, any remaining delimiters on the stack are unmatched. The program
prints an error for that using the Stack’s string conversion method, which
surrounds the list in square brackets, possibly leading to some confusion with
the input string delimiters.

The Stack as a Conceptual Aid
Notice how convenient the stack is in the DelimiterChecker.py program. You
could have set up an array to do what the stack does, but you would have had
to worry about keeping track of an index to the most recently added character,
as well as other bookkeeping tasks. The stack is conceptually easier to use. By
providing limited access to its contents, using the push() and pop() methods,
the stack has made the delimiter-checking program easier to understand and
less error prone. (As carpenters will tell you, it’s safer and faster to use the
right tool for the job.)

Efficiency of Stacks
Items can be both pushed and popped from the stack implemented in the Stack
class in constant O(1) time. That is, the time is not dependent on how many



items are in the stack and is therefore very quick. No comparisons or moves
within the stack are necessary.

Queues
In computer science, a queue is a data structure that is somewhat like a stack,
except that in a queue the first item inserted is the first to be removed (first-in,
first-out, or FIFO). In stacks, as you’ve seen, the last item inserted is the first to
be removed (LIFO). A queue models the way people wait for something, such
as tickets being sold at a window or a chance to greet the bride and groom at a
big wedding. The first person to arrive goes first, the next goes second, and so
forth. Americans call it a waiting line, whereas the British call it a queue. The
key aspect is that the first items to arrive are the first to be processed.

Queues are used as a programmer’s tool just like stacks are. They are found
everywhere in computer systems: the jobs waiting to run, the messages to be
passed over a network, the sequence of characters waiting to be printed on a
terminal. They’re used to model real-world situations such as people waiting in
line for tickets, airplanes waiting to take off, or students waiting to see whether
they get into a particular course. This ordering is sometimes called arrival
ordering because the time of arrival in the queue determines the order.

Various queues are quietly doing their job in your computer’s (or the
network’s) operating system. There’s a printer queue where print jobs wait for
the printer to be available. Queues also store user input events like keystrokes,
mouse clicks, touchscreen touches, and microphone inputs. They are really
important in multiprocessing systems so that each event can be processed in the
correct order even when the processor is busy doing something else when the
event occurs.

The two basic operations on the queue are called insert and remove. Insert
corresponds to a person inserting themself at the rear of a ticket line. When that
person makes their purchase, they remove themself from the front of the line.

The terms for insertion and removal in a stack are fairly standard; everyone
says push and pop. The terminology for queues is not quite as standardized.
Insert is also called put or add or enqueue, whereas remove may be called
delete or get or dequeue. The rear of the queue, where items are inserted, is
also called the back or tail or end. The front, where items are removed, may



also be called the head. In this book, we use the terms insert, remove, front, and
rear.

A Shifty Problem
In thinking about how to implement a queue using arrays, the first option
would be to handle inserts like a push on a stack. The first item goes at the last
position (first empty cell) of the array. Then when it’s time to remove an item
from the queue, you would take the first filled cell of the array. To avoid
hunting for the position of those cells, you could keep two indices, front and
rear, to track where the filled cells begin and end, as shown in Figure 4-4.
When Ken arrives, he’s placed in the cell indexed by rear. When you remove
the first item in the queue, you get Raj from the cell indexed by front.



Figure 4-4 Queue operations in a linear array

This operation works nicely because both insert and remove simply copy an
item and update an index pointer. It’s just as fast as the push and pop operations
of the stack and takes only one more variable to manage.

What happens when you get to the end of the array? If the rear index reaches
the end of the array, there’s no space to insert new items. That might be
acceptable because it’s no worse than when a stack runs out of room. If the



front index has moved past the beginning of the array, however, free cells
could be used for item storage. It seems wasteful not to take advantage of them.

One way to reclaim that unused storage space would be to shift all the items in
the array when an insertion would go past the end. Shifting is similar to what
happens with people standing in a line/queue; they all step forward as people
leave the front of the queue. In the array, you would move the item indexed by
front to cell 0 and move all the items up to rear the same number of cells;
then you would set front to 0 and rear to rear – front. Shifting items,
however, takes time, and doing so would make some insert operations take
O(N) time instead of O(1). Is there a way to avoid the shifts?

A Circular Queue
To avoid the problem of not being able to insert more items into a queue when
it’s not full, you let the front and rear pointers wrap around to the beginning
of the array. The result is a circular queue (sometimes called a ring buffer).
This is easy to visualize if you take a row of cells and bend them around in the
form of a circle so that the last cell and first cell are adjacent, as shown in
Figure 4-5. The array has N cells in it, and they are numbered 0, 1, 2, …, N−2,
N−1. When one of the pointers is at N−1 and needs to be incremented, you
simply set it to 0. You still need to be careful not to let the wraparound go too
far and start writing over cells that have valid items in them. To see how, let’s
look first at the Queue Visualization tool and then the code that implements it.



Figure 4-5 Operation of the Queue.insert() method on an empty queue

The Queue Visualization Tool
Let’s use the Queue Visualization tool to get an idea how queues and circular
arrays work. When you start the Queue tool, you see an empty queue that can
hold 10 items, as shown in Figure 4-6. The array cells are numbered from 0 to
9 starting from the right edge. (The indices increase in the counterclockwise



direction to match the convention in trigonometry where angles increase from
the horizontal, X-axis.)

Figure 4-6 The Queue Visualization tool

The _front and _rear indices are shown in the center (with underscore
prefixes to be somewhat like the attributes named in the code). There’s also an
_nItems counter at the top left. It might seem a little odd to have front point to
1 and rear point to 0, but the reason will become clearer shortly.

The Insert Button
After typing some text in the text entry box, select the Insert button. The tool
responds by incrementing the _rear index and copying the value to cell 1. As
with the stack, you can insert string values of limited length. Typing another
string followed by pressing Return advances _rear to cell 2 and copies the
value into it.

The Remove Button
When the queue has one or more items in it, selecting the Remove button
copies the item at the _front cell to a variable named front. The _front cell is
cleared and the index advances by one. The front variable holds the value
returned by the operation.

Note that the _front and _rear indices can appear in any order. In the initial,
empty queue, _rear was one less than _front. When the first item was
inserted, both _rear and_front pointed to the same cell. Additional inserts



advance _rear past _front. The remove operations advance _front past
_rear.

Keep inserting values until all the cells are filled. Note how the _rear index
wraps around from 9 to 0. When all the cells are filled, _rear is one less than
_front. That’s the same relationship as when the queue was empty, but now
the _nItems counter is 10, not 0.

The Peek Button
The peek operation returns the value of the item at the front of the queue
without removing the item. (Like insert and remove, peek, when applied to a
queue, is also called by a variety of other names.) If you select the Peek button,
you see the value at _front copied to an output box. The queue remains
unchanged.

Some queue implementations have a rearPeek() and a frontPeek() method,
but usually you want to know what you’re about to remove, not what you just
inserted.

The New Button
If you want to start with an empty queue, you can use the New button to create
one. Because it’s based on an array, the size of the array is the argument that’s
required. The Queue Visualization tool lets you choose a range of queue sizes
up to a limit that allows for values to be easily displayed. The animation shows
the steps taken in the call to the object constructor.

Empty and Full
If you try to remove an item when there are no items in the queue, you’ll get
the Queue is empty! message. You’ll also see that the code is highlighted in a
different color because this operation has raised an exception. Similarly, if you
try to insert an item when all the cells are already occupied, you’ll get the
Queue is full! message from a Queue overflow exception. These operations
are shown in detail in the next section.

Python Code for a Queue



Let’s look at how to implement a queue in Python using a circular array.
Listing 4-5 shows the code for the Queue class. The constructor is a bit more
complex than that of the stack because it must manage two index pointers for
the front and rear of the queue. We also choose to maintain an explicit count of
the number of items in this implementation, as explained later.

Listing 4-5 The Queue.py Module

# Implement a Queue data structure using a Python list 
 
class Queue(object): 
   def __init__(self, size):          # Constructor 
      self.__maxSize = size           # Size of [circular] array 
      self.__que = [None] * size      # Queue stored as a list 
      self.__front = 1                # Empty Queue has front 1 
      self.__rear = 0                 # after rear and 
      self.__nItems = 0               # No items in queue 
 
   def insert(self, item):            # Insert item at rear of queue 
      if self.isFull():               # if not full 
         raise Exception("Queue overflow") 
      self.__rear += 1                # Rear moves one to the right 
      if self.__rear == self.__maxSize: # Wrap around circular array 
         self.__rear = 0 
      self.__que[self.__rear] = item  # Store item at rear 
      self.__nItems += 1 
      return True 
 
   def remove(self):                  # Remove front item of queue 
      if self.isEmpty():              # and return it, if not empty 
         raise Exception("Queue underflow") 
      front = self.__que[self.__front] # get the value at front 
      self.__que[self.__front] = None # Remove item reference 
      self.__front += 1               # front moves one to the right 
      if self.__front == self.__maxSize: # Wrap around circular arr. 
         self.__front = 0 
      self.__nItems -= 1 
      return front 
 
   def peek(self):                   # Return frontmost item 
      return None if self.isEmpty() else self.__que[self.__front] 
 
   def isEmpty(self): return self.__nItems == 0 
 



   def isFull(self): return self.__nItems == self.__maxSize 
 
   def __len__(self): return self.__nItems 
 
   def __str__(self):                 # Convert queue to string 
      ans = "["                       # Start with left bracket 
      for i in range(self.__nItems):  # Loop through current items 
         if len(ans) > 1:             # Except next to left bracket, 
            ans += ", "               # separate items with comma 
         j = i + self.__front         # Offset from front 
         if j >= self.__maxSize:      # Wrap around circular array 
            j -= self.__maxSize 
         ans += str(self.__que[j])    # Add string form of item 
      ans += "]"                      # Close with right bracket 
      return ans 

The __front and __rear pointers point at the first and last items in the queue,
respectively. These and other attributes are named with double underscore
prefixes to indicate they are private. They should not be changed directly by
the object user.

When the queue is empty, where should __front and __rear point? We
typically set one of them to 0, and we choose to do that for __rear. If we also
set __front to be 0, we will have a problem inserting the first element. We set
__front to 1 initially, as shown in the empty queue of Figure 4-5, so that when
the first element is inserted and __rear is incremented, they both are 1. That’s
desirable because the first and last items in the queue are one and the same. So
__rear and __front are 1 for the first item, and __rear is increased for the
insertions that follow. That means the frontmost items in the queue are at lower
indices, and the rearmost are at higher indices, in general.

The insert() method adds a new item to the rear of the queue. It first checks
whether the queue is full. If it is, insert() raises an exception. This is the
preferred way to implement data structures: provide tests so that callers can
check the status in advance, but if they don’t, raise an exception for invalid
operations. Python’s most general-purpose Exception class is used here with a
custom reason string, “Queue overflow”. Many data structures define their
own exception classes so that they can be easily distinguished from exception
conditions like ValueError and IndexError.

You can avoid shifting items in the array during inserts by verifying that space
is available before incrementing the __rear pointer and placing the new item at
that empty cell of the array. The increment takes an extra step to handle the



circular array logic when the pointer would go beyond the maximum size of
the array by setting __rear back to zero. Finally, insert() increases the item
count to reflect the inserted item at the rear.

The remove() method is similar in operation but acts on the __front of the
queue. First, it checks whether the queue is empty and raises an “underflow”
exception if it is. Then it makes a copy of the first item, clears the array cell,
and increments the __front pointer to point at the next cell. The __front
pointer must wrap around, just like __rear did, returning to 0 when it gets to
the end of the array. The item count decreases because the front item was
removed from the array, and the copy of the item is returned.

The peek() method looks at the frontmost item of the queue. You could create
peekfront() and peekrear() methods to look at either end of the queue, but
it’s rare to need both in practice. The peek() method returns None when the
queue is empty, although it might be more consistent to use the same underflow
exception produced by remove().

The isEmpty() and isFull() methods are simple tests on the number of items
in the queue. Note that a slightly different Python syntax is used here. The
whole body of the method is a single return statement. In that case, Python
allows the statement to be placed after the colon ending the method signature.
The __len__() method also uses the shortened syntax. Note also that these
tests look at the __nItems value of the attribute rather than the __front and
__rear indices. That’s needed to distinguish the empty and full queues. We
look at how wrapping the indices around makes that choice harder in Figure 4-
9.

The last method for Queue is __str__(), which creates a string showing the
contents of the queue enclosed in brackets and separated by commas for
display. This method illustrates how circular array indices work. The beginning
of the string has the front of the queue, and the end of the string is the rearmost
item. The for loop uses the variable i to index all current items in the queue. A
separate variable, j, starts at the __front and increments toward the __rear
wrapping around if it passes the maximum size of the array.

Some simple tests of the Queue class are shown in Listing 4-6 and demonstrate
the basic operations. The program creates a queue and inserts some names in it.
The initial queue is empty, and Figure 4-5 shows how the first name, ’Don’, is
inserted. After that first insertion, both __front and __rear point at array cell 1
and the number of items is 1.



Listing 4-6 The QueueClient.py Program

from Queue import * 
 
queue = Queue(10) 
 
for person in [’Don’, ’Ken’, ’Ivan’, ’Raj’, ’Amir’, ’Adi’]: 
   queue.insert(person) 
 
print(’After inserting’, len(queue), 
      ’persons on the queue, it contains:\n’, queue) 
print(’Is queue full?’, queue.isFull()) 
 
print(’Removing items from the queue:’) 
while not queue.isEmpty(): 
   print(queue.remove(), end=’ ’) 
print()

The person names inserted into the queue keep advancing the __rear pointer
and increasing the __nItems count, as shown in Figure 4-7. After inserting all
the names, the QueueClient.py program uses the __str__() method
(implicitly) and prints the contents of the queue along with the status of
whether the queue is full or not. After that’s complete, the program removes
items one at a time from the queue until the queue is empty. The items are
printed separated by spaces (which is different from the way the __str__()
method displays them). The result looks like this:
$ python3 QueueClient.py 
After inserting 6 persons on the queue, it contains: 
 [Don, Ken, Ivan, Raj, Amir, Adi] 
Is queue full? False 
Removing items from the queue: 
Don Ken Ivan Raj Amir Adi



Figure 4-7 Inserting an item into a partially full queue

The printed result shows that items are deleted from the queue in the same
order they were inserted in the queue. The first step of the deletion process is
shown in Figure 4-8. When the first item, ’Don’, is deleted from the front of
the queue, the __front pointer is advanced to 2, and the number of items
decreases to 5. The __rear pointer stays the same.



Figure 4-8 Deleting an item from the queue

Let’s look at what happens when the queue wraps around the circular array. If
you delete only one name and then insert more names into the queue, you’ll
eventually get to the situation shown in Figure 4-9. The __rear pointer keeps
increasing with each insertion. After it gets to __maxSize – 1, the next
insertion forces __rear to point at cell 0.



Figure 4-9 The __rear pointer wraps around

The last item inserted, ’Tim’, is really placed at the beginning of the
underlying array. This behavior can be somewhat counterintuitive because the
sequence of items in the queue is no longer in one continuous array sequence
[__front, __rear]. The front of the queue starts at index 2 and goes up to the
max, and the rear is the single cell sequence [0, 0]. We say that these items are
in broken sequences, or noncontiguous sequences. It may seem backward that
__rear is now less than __front, but that’s how circular arrays work. The
design is to always start at __front and increment until you reach __rear,
wrapping around to 0 as you pass the maximum size.

Now consider what happens when one more item is inserted in the queue of
Figure 4-9. The item would go at cell 1, and __rear would point at an index 1
less than __front (which is 2). That is almost the same condition in which you
started the empty queue, except that you’ve increased both __rear and
__front by 1. To distinguish that condition from an empty queue, you need to
know the count of items it contains. If __rear were always greater than
__front, you could get the number of items from __rear - __front + 1. In
the case of broken sequences, you could simply add the length of the two
broken sequences, but you still need some information to distinguish an empty
from a full queue when __rear + 1 == __front. That’s why an explicit count
of the items in the queue in the data structure simplifies the implementation.

Efficiency of Queues
As with a stack, items can be inserted and removed from a queue in O(1) time.
This is based on avoiding shifts using a circular array.



Deques
There are several variations of a basic queue that you might find useful. A
deque is a double-ended queue. You can insert items at either end and delete
them from either end. The methods might be called insertLeft() and
insertRight(), and removeLeft() and removeRight(). You may also find
this structure called a dequeue, but that can be a problem because some
implementations like to call insert() as enqueue() and remove() as
dequeue(). The shorter deque is preferred and is pronounced “deck” to help
distinguish it from “dee cue.”

If you restrict yourself to insertLeft() and removeLeft() (or their
equivalents on the right), the deque acts like a stack. If you restrict yourself to
insertLeft() and removeRight() (or the opposite pair), it acts like a queue.

A deque provides a more versatile data structure than either a stack or a queue
and is sometimes used in container class libraries to serve both purposes. It’s
not used as often as stacks and queues, however, so we don’t explore it further
here.

Priority Queues
A priority queue is a more specialized data structure than a stack or a queue.
Despite being more specialized, it’s a useful tool in a surprising number of
situations. Like an ordinary queue, a priority queue has a front and a rear, and
items are removed from the front. In a priority queue, however, items are
ordered by a priority value so that the item with the highest priority (which in
many implementations is the lowest value of a key) is always at the front.
When multiple items have the same priority, they follow the queue ordering,
FIFO, so that the oldest inserted item comes first. As with both stacks and
queues, no access is provided to arbitrary items in the middle of a priority
queue.

Priority queues are useful for processing mail or messages. Faced with a big
inbox, a reader might choose to put the messages into piles based on priority.
All the messages requiring some kind of immediate action come first. There
might be piles for immediate response, near-term response, long-term response,
and no response. It might make sense to process some or all those piles in the
order they arrived. If the messages are correspondence from a friend, going
through the communications in chronological order would make the most



sense, especially if they refer to things the friend said in previous messages. If
the messages are purchase requests for tickets or some other scarce item,
typically the first requests are processed before later requests, possibly with
some different priority piles (for example, season ticket holders getting higher
priority than others for playoff tickets).

Like stacks and queues, priority queues are often used as programmer’s tools.
In nearly every computer operating system, the programs are placed in a
priority queue to be run. Many low-level operating system tasks get highest
priority, especially those that need to determine what job needs to run next and
how to respond to important input events. The operating system then takes the
frontmost job from the priority queue to run next for a certain slice of time.
When the time expires, the system puts that item back in the priority queue,
waiting behind other jobs of the same priority. It might also put the job back in
the priority queue after some delay in order to leave time open for other, lower-
priority jobs to run. Jobs that complete normally—not because their time slice
expired—do not get put back in the queue. We show another example of the
use of a priority queue in programming techniques when we describe how to
build a structure called a minimum spanning tree for a graph in Chapter 15,
“Weighted Graphs.”

Priority queues share aspects related to other data structures. They have the
FIFO ordering behavior of queues, along with the sorting behavior needed for
the different priority levels. As you saw in Chapter 3, “Simple Sorting,” you
can implement the sort algorithms in a various ways that lead to different time
performance. The stacks and queues you’ve seen have O(1) time performance
for insert and removal. We will see whether that can be preserved as we add the
prioritization behavior.

The PriorityQueue Visualization Tool
The PriorityQueue Visualization tool implements a priority queue with an
array, in which the items are kept in sorted order. It’s an ascending-priority
queue, in which the item with smallest key has the highest priority and is
accessed with remove(). (If the highest-key item has highest priority, then the
sequence of keys during removals decreases, and it would be a descending-
priority queue.)

The minimum-key item is always at the right (highest index) in the array, and
the largest item is always at index 0. Figure 4-10 shows the arrangement when



the tool is started. Initially, there are no items in the 12-element queue, as
indicated by the nItems index pointing to cell 0.

Figure 4-10 The PriorityQueue Visualization tool

The Insert Button
Try inserting an item by typing a number in the text entry box and selecting
Insert. You use numbers for the item key because priorities are often numeric,
and this approach makes it easy to draw the height of the item as proportional
to the key. The first item is inserted in the leftmost cell, and the nItems index is
advanced to 1.

Now try inserting another item. Because the priority queue must keep the items
ordered, it behaves like the OrderedArray you saw in Chapter 2. If the item you
insert has a lower key than the first, it will go to the right. If you insert a higher
key, the items with lower keys will be shifted to the right to make room for the
new item. The new item’s key is compared with each item in the priority
queue, starting with the one on the right. Items are shifted right until a cell
becomes available where the new item can be inserted while preserving the key
order.

Notice that there’s no wraparound in this implementation of the priority queue.
Insertion is slow out of necessity because the proper in-order position must be
found, but deletion is fast. A wraparound implementation wouldn’t improve the
situation. Because there’s no wraparound, all the items are in the leftmost,
lower index, cells of the array. There’s no need for two indices; all that’s
needed is an nItems index.



Try inserting the same key multiple times and observe the behavior. The
visualization tool gives the new item a different color to make it easier to
distinguish them. You can think of the colors as different data associated with
the numeric keys. Where does it insert the new key? It always goes to the left
of the other equal-valued keys. Putting it to the left preserves the FIFO queue
order of those items.

The Remove Button
When you use the Remove button, the item to be removed is always at the right
of the array, in the cell to the left of the nItems index, so removal is quick and
easy. The item is copied to a front variable, and the nItems index is
decremented, just like in a stack. No shifting or comparisons are necessary.

The Peek Button
You can peek at the minimum item (find its value without removing it) with the
Peek button. The value is copied to an output box like the stack and queue.

The New Button
You can create a new, empty, priority queue with the New button. Like the
other data structures, the size of the underlying array is the required argument
and is limited to what fits easily on the display. The visualization tool animates
the steps of recording the size, allocating the array, and setting the nItems
index to 0. There’s also a __pri attribute that we discuss later with the code.

Implementation Possibilities
The visualization program uses a particular implementation of priority queue
that uses a single array for all the queued items. There are other possibilities,
such as using separate queues for each priority or using a heap instead of an
array (as discussed in Chapter 13, “Heaps”). Each one of these choices has
different advantages.

The single array implementation has the advantage of simplicity at the cost of
slowing down the insert or remove time. If you keep the array of items sorted
by priority and arrival order, then time is needed to move items in the array
during insertions to preserve that order. If you leave the array of items unsorted
(but maintain the arrival order), then insertion can still be fast, but removal is



slow as you search for the highest-priority item to remove. After you remove
an item from the unsorted list, you must shift items within the array to close the
gap created by the removal. The movement of items in the array is expected to
move half of the items, on average. That happens for either insertion or
deletion, depending on whether you keep the array contents sorted. Knowing
the number of moves means that either insertion or removal will be an O(N)
operation. We examine a specific implementation to see how that works out.

Python Code for a Priority Queue
Listing 4-7 shows an implementation of a PriorityQueue class in Python that
uses a single, sorted array (Python list). The choice of maintaining the internal
array as sorted means that it won’t need to manage the front and rear pointers
of a circular array for the Queue as shown in 0. Instead, it keeps a single array
where the front of the queue is the last element, in order to quickly remove it.
That means the rear of the queue is always at index 0, and it only manages an
__nItems attribute somewhat like the Stack class.

Listing 4-7 The PriorityQueue.py Program

# Implement a Priority Queue data structure using a Python list 
 
def identity(x): return x            # Identity function 
 
class PriorityQueue(object): 
   def __init__(self, size, pri=identity): # Constructor 
      self.__maxSize = size           # Size of array 
      self.__que = [None] * size      # Queue stored as a list 
      self.__pri = pri                # Func. to get item priority 
      self.__nItems = 0               # no items in queue 
 
   def insert(self, item):           # Insert item at rear of 
      if self.isFull():              # priority queue if not full 
         raise Exception("Queue overflow") 
      j = self.__nItems - 1           # Start at front 
      while j >= 0 and (              # Look for place by priority 
            self.__pri(item) >= self.__pri(self.__que[j])): 
         self.__que[j+1] = self.__que[j] # Shift items to front 
         j -= 1                       # Step towards rear 
      self.__que[j+1] = item          # Insert new item at rear 
      self.__nItems += 1 



      return True 
 
   def remove(self):                 # Return front item of priority 
      if self.isEmpty():             # queue, if not empty, & remove 
         raise Exception("Queue underflow") 
      self.__nItems -= 1              # One fewer item in queue 
      front = self.__que[self.__nItems] # Store front most 
      self.__que[self.__nItems] = None # Remove item reference 
      return front 
 
   def peek(self):                   # Return frontmost item 
      return None if self.isEmpty() else self.__que[self.__nItems-1] 
 
   def isEmpty(self): return self.__nItems == 0 
 
   def isFull(self): return self.__nItems == self.__maxSize 
 
   def __len__(self): return self.__nItems 
 
   def __str__(self):                # Convert pri. queue to string 
      ans = "["                       # Start with left bracket 
      for i in range(self.__nItems - 1, -1, -1): # Loop from front 
         if len(ans) > 1:            # Except next to left bracket, 
            ans += ", "               # separate items with comma 
         ans += str(self.__que[i])    # Add string form of item 
      ans += "]"                      # Close with right bracket 
      return ans

This class keeps another attribute, __pri, that stores a function, which can be
called on any item in the queue to determine its priority. In the default case,
__pri is the identity() function, which merely returns the record element
itself. This is analogous to the key function used to get the keys of records
stored in the OrderedRecordArray structure of Chapter 2. Typically, the client
uses a particular field or set of fields to determine the priority among record
structures, as explained in Chapter 2.

The insert() method of the PriorityQueue verifies that the queue isn’t full
and then searches where the new item should go within the queue based on its
priority. It starts at the front of the queue and works toward the rear, by setting
index j to point at the last filled cell and decrementing it. The loop compares
the priority of the new item with that of item j. If item j has a higher or equal
priority (lower value) than that of the new item, it shifts item j one cell to the
right, like the InsertionSort algorithm in Chapter 3. After it finds an item



that’s lower in priority (a higher key) or the end of the queue, it can place the
new item in the gap created by the shifts.

You might wonder why the PriorityQueue doesn’t use binary search,
especially after seeing how much it sped up finding items in ordered arrays in
Chapter 2. We have chosen not to make that optimization here because it still
requires a linear search among equal priority items in the priority queue to
preserve FIFO order. The binary search could end on any of the equal priority
items. The resulting code for insert() is shorter at the expense of having to do
more key comparisons.

The remove() method verifies that the queue isn’t empty, decrements the count
of items in the queue, stores the frontmost item, clears the cell in the array, and
then returns the noted item. The peek() method is even simpler because it
doesn’t have to remove the item before returning it.

The empty and full tests and length methods are based on the __nItems
attribute (just like the Queue class). The __str__() method for converting the
queue contents to a string also walks through the array from the front (index
__nItems - 1) to the rear (index 0) to show the items in the same order used
for the Queue class, which had the front of the queue on the left.

The PriorityQueueClient.py program in Listing 4-8 performs some basic
tests on the priority queue implementation. It inserts tuples of the form
(priority, name) into the PriorityQueue object, defining the first element of
those tuples to be the priority.

Listing 4-8 The PriorityQueueClient.py Program

from PriorityQueue import * 
 
def first(x): return x[0]  # Use first element of item as priority 
 
queue = PriorityQueue(10, first) 
 
for record in [(0, ’Ada’), (1, ’Don’), (2, ’Tim’), 
               (0, ’Joe’), (1, ’Len’), (2, ’Sam’), 
               (0, ’Meg’), (0, ’Eva’), (1, ’Kai’)]: 
   queue.insert(record) 
 
print(’After inserting’, len(queue), 
      ’persons on the queue, it contains:\n’, queue) 



print(’Is queue full?’, queue.isFull()) 
 
print(’Removing items from the queue:’) 
while not queue.isEmpty(): 
   print(queue.remove(), end=’ ’) 
print()

Like the client program for queues, after inserting the items, it shows the queue
contents and then removes them one at a time, printing the results separated by
spaces. The output follows:
$ python3 PriorityQueueClient.py 
After inserting 9 persons on the queue, it contains: 
 [(0, ’Ada’), (0, ’Joe’), (0, ’Meg’), (0, ’Eva’), (1, ’Don’), 
  (1, ’Len’), (1, ’Kai’), (2, ’Tim’), (2, ’Sam’)] 
Is queue full? False 
Removing items from the queue: 
(0, ’Ada’) (0, ’Joe’) (0, ’Meg’) (0, ’Eva’) (1, ’Don’) (1, ’Len’) 
(1, ’Kai’) (2, ’Tim’) (2, ’Sam’)

Note that the PriorityQueueClient.py program inserted the items in a
different order than the way they came out. All the items with priority 0 came
out first, followed by the priority 1 and priority 2 items. Within each priority,
the items are ordered by their insertion/arrival order (for example, ’Joe’
moved ahead of ’Don’ and ’Tim’ in the queue, because its priority was 0 as
compared to 1 and 2, but remained after ’Ada’ because ’Joe’ arrived later).

Efficiency of Priority Queues
In the priority queue implementation we show here, insertion runs in O(N)
time, whereas deletion takes O(1) time. That’s a big performance difference.
Can you think of ways to implement it that would take only O(log N) or O(1)
time? We show how to improve insertion time with heaps in Chapter 13. In the
special case where the set of priority values is known in advance, separate
queues could be built for each one. Then the complexity of the overall priority
queue would depend only on the time it takes to decide on which queue to
apply the insert or remove method.

What About Search and Traversal?



We’ve discussed how to insert, remove, and look at one item in stacks, queues,
and priority queues. For arrays and many of the data structures described later,
the main concern is how they perform for the search operation. Shouldn’t we
examine how search and traversal work on stacks, queues, and priority queues?

The answer is: these structures are specifically designed for insertion and
removal only. If an application needs to search for an item within the structure,
then it’s likely that some other data structure is a better choice. Stacks and
(priority) queues serve to make specific orderings of items possible. At a
minimum, you could use an array or an ordered array if you needed search and
traversal operations. When you do use a stack or a queue and remove items
until it is empty, then the algorithm effectively performs traversal, and the
order of those items typically matches some requirement for the program. We
look at such algorithms in the next section.

Parsing Arithmetic Expressions
We’ve introduced three different data storage structures and examined their
characteristics. Let’s shift gears now and focus on an important application that
uses them. The application is parsing (that is, analyzing) arithmetic
expressions such as 2+3 or 2×(3+4) or (2+4)×7+3×(9−5). The main storage
structure you use is the stack. The DelimiterChecker.py program (Listing 4-
4) shows how a stack could be used to check whether delimiters were
formatted correctly. Stacks are used in a similar, although more complicated,
way for parsing arithmetic expressions.

In some sense, this section should be considered optional. It’s not a prerequisite
to the rest of the book, and writing code to parse arithmetic expressions is
probably not something you need to do every day, unless you are a compiler
writer or are designing domain-specific languages. Also, the coding details are
more complex than any you’ve seen so far. Seeing this important use of stacks
is educational, however, and raises interesting issues.

It’s fairly difficult, at least for a computer algorithm, to evaluate an arithmetic
expression in one pass through the string. It’s easier for the algorithm to use a
two-step process:

1. Transform the arithmetic expression into a different format, called postfix
notation.

2. Evaluate the postfix expression.



Step 1 is a bit involved, but step 2 is easy. In any case, this two-step approach
results in a simpler algorithm than trying to parse the arithmetic expression
directly. For most humans, of course, it’s easier to parse the ordinary arithmetic
expression. We return to the difference between the human and computer
approaches in a moment.

Before we delve into the details of steps 1 and 2, we introduce the new
notation.

Postfix Notation
Everyday arithmetic expressions are written with an operator (+, −, ×, or /)
placed between two operands (numbers, or symbols that stand for numbers).
This is called infix notation because the operator is written inside the operands.
Typical arithmetic expressions are things like 2+2 and 4/7, or, using letters to
stand for numbers, A+B and A/B.

In postfix notation (which is also called Reverse Polish Notation, or RPN,
because it was invented by a Polish mathematician), the operator follows the
two operands. Thus, A+B becomes AB+, and A/B becomes AB/. More
complex infix expressions can likewise be translated into postfix notation, as
shown in Table 4-2. One thing that might stand out in these translations is that
there are no parentheses in the postfix expressions. We explain how the postfix
expressions are generated in a moment.

Table 4-2 Infix and Postfix Expressions



Besides infix and postfix, there’s also a prefix notation, in which the operator
is written before the operands: +AB instead of AB+. This notation is
functionally like postfix but seldom used. The lambda calculus (λ calculus) and
the Lisp programming language use prefix notation and are very important
historically. For functional programming languages, prefix notation is very
convenient. The lambda calculus is also the origin of the lambda keyword used
for anonymous functions in Python.

Translating Infix to Postfix
The next several pages are devoted to explaining how to translate an expression
from infix notation into postfix. This algorithm is fairly involved, so don’t
worry if every detail isn’t clear at first. If you get bogged down, you may want
to skip ahead to the sections “The Infix Calculator Tool” and “Evaluating
Postfix Expressions”

To understand how to create a postfix expression, you might find it helpful to
see how a postfix expression is evaluated; for example, how the value 14 is
computed from the expression 234+×, which is the postfix equivalent of
2×(3+4). Notice that in this discussion, for ease of writing, we restrict
ourselves to expressions with single-digit numbers (and sometimes variable



names) for inputs. Later, we look at code to handle expressions with multidigit
numbers and multicharacter variable names.

How Humans Evaluate Infix
How do you translate infix to postfix? Let’s examine a slightly easier question
first: How does a human evaluate a normal infix expression? Although, as we
stated earlier, such evaluation is difficult for a computer, we humans do it fairly
easily because of countless hours looking at similar expressions in math class.
It’s not hard to find the answer to 3+4+5, or 3×(4+5). By analyzing how you
evaluate this expression, you can achieve some insight into the translation of
such expressions into postfix.

Roughly speaking, when you “solve” an arithmetic expression, you follow
rules something like this:

1. You read from left to right. (At least, we assume this is true. Sometimes
people skip ahead, but for purposes of this discussion, you should assume
you must read methodically, starting at the left.)

2. When you’ve read enough to evaluate two operands and an operator, you
do the calculation and substitute the answer for these two operands and
operator. (You may also need to solve other pending operations on the
left, as we see later.)

3. You continue this process—going from left to right and evaluating when
possible—until the end of the expression.

Table 4-3, Table 4-4, and Table 4-5 show three examples of how simple infix
expressions are evaluated. Later, Tables 4-6, 4-7, and 4-8, show how closely
these evaluations mirror the process of translating infix to postfix.

To evaluate 3+4−5, you would carry out the steps shown in Table 4-3.

Table 4-3 Evaluating 3+4−5



You can’t evaluate the 3+4 until you see whether an operator follows the 4 and
what operator it is. If it’s × or /, you need to wait before applying the + sign
until you’ve evaluated the × or /. In this example, however, the operator
following the 4 is a −, which has the same precedence (priority among
operators) as a +, so when you see the −, you know you can evaluate 3+4,
which is 7. The 7 then replaces the 3+4. You can evaluate the 7−5 when you
arrive at the end of the expression, knowing that there are no more operators.

Because of precedence relationships, evaluating 3+4×5 is a bit more
complicated, as shown in Table 4-4.

Table 4-4 Evaluating 3+4×5



Here, you can’t add the 3 until you know the result of 4×5. Why not? Because
multiplication has a higher precedence than addition. In fact, both × and / have
a higher precedence than + and −, so all multiplications and divisions must be
carried out before any additions or subtractions (unless parentheses dictate
otherwise; see the next example).

Often you can evaluate as you go from left to right, as in the preceding
example. You need to be sure, when you come to an operand-operator-operand
combination such as A+B, however, that the operator on the right side of the B
isn’t one with a higher precedence than the +. If it does have a higher
precedence, as in this example, you can’t do the addition yet. After you’ve read
the 5 and found nothing after it, however, you know the multiplication can be
carried out. Note that because multiplication has the highest priority among the
four operators in this sample language; it doesn’t matter whether a × or /
follows the 5, and the multiplication could proceed without looking at the next
input. You can’t do the addition, however, until you’ve found out what’s
beyond the 5. When you find there’s nothing more to read, you can go ahead
and perform any remaining operations, knowing the highest precedence
operators are on the right.



Parentheses are used to override the normal precedence of operators. Table 4-5
shows how you would evaluate 3×(4+5). Without the parentheses, you would
do the multiplication first; with them, you do the addition first.

Table 4-5 Evaluating 3×(4+5)

Here, you can’t evaluate anything until you’ve reached the closing parenthesis.
Multiplication has a higher or equal precedence compared to the other
operators, so ordinarily you could carry out 3×4 as soon as you see the 4.
Parentheses, however, have an even higher precedence than × and /.
Accordingly, you must evaluate anything in parentheses before using the result
as an operand in any other calculation. The closing parenthesis tells you that
you can go ahead and do the addition. You find that 4+5 is 9 and substitute it.
Finding that there are no more higher-precedence operators afterward, you can
evaluate 3×9 to obtain 27.

As you’ve seen in evaluating an infix arithmetic expression, you go both
forward and backward through the expression. You go forward (left to right)



reading operands and operators. When you have enough information to apply
an operator, you go backward, recalling two operands and an operator and
carrying out the arithmetic.

Sometimes you must defer applying operators if they’re followed by higher-
precedence operators or by parentheses. When this happens, you must apply
the later, higher-precedence, operator first; then go backward (to the left) and
apply earlier operators.

You could write an algorithm to carry out this kind of evaluation directly. As
we noted, however, it’s easier to translate into postfix notation first.

How Humans Translate Infix to Postfix
To translate infix to postfix notation, you follow a similar set of rules to those
for evaluating infix. There are, however, a few small changes. You don’t do
any arithmetic. The idea is not to evaluate the infix expression, but to rearrange
the operators and operands into a different format: postfix notation. The
resulting postfix expression will be evaluated later.

As before, you read the infix from left to right, looking at each character in
turn. As you go along, you copy these operands and operators to the postfix
output string. The trick is knowing when to copy what.

If the character in the infix string is an operand, you copy it immediately to the
postfix string. That is, if you see an A in the infix, you write an A to the
postfix. There’s never any delay: you copy the operands as you get to them, no
matter how long you must wait to copy their associated operators.

Knowing when to copy an operator is more complicated, but it’s the same as
the rule for evaluating infix expressions. Whenever you could have used the
operator to evaluate part of the infix expression (if you were evaluating instead
of translating to postfix), you instead copy it to the postfix string.

Table 4-6 shows how A+B−C is translated into postfix notation.

Table 4-6 Translating A+B−C into Postfix



Notice the similarity of this table to Table 4-3, which showed the evaluation of
the infix expression 3+4−5. At each point where you would have done an
evaluation in the earlier table, you instead simply write an operator to the
postfix output.

Table 4-7 shows the translation of A+B×C to postfix. This translation parallels
that of Table 4-4, which covered the evaluation of 3+4×5.

Table 4-7 Translating A+B×C into Postfix



As the final example, Table 4-8 shows how A×(B+C) is translated to postfix.
This process is similar to evaluating 3×(4+5) in Table 4-5. You can’t write any
postfix operators until you see the closing parenthesis in the input.

Table 4-8 Translating A×(B+C) into Postfix



As in the numerical evaluation process, you go both forward and backward
through the infix expression to complete the translation to postfix. You can’t
write an operator to the output (postfix) string if it’s followed by a higher-
precedence operator or a left parenthesis. If it is, the higher-precedence
operator or the operator in parentheses must be written to the postfix before the
lower-priority operator.

Saving Operators on a Stack
You’ll notice in both Table 4-7 and Table 4-8 that the order of the operators is
reversed going from infix to postfix. Because the first operator can’t be copied
to the output until the second one has been copied, the operators were output to
the postfix string in the opposite order they were read from the infix string.
That suggests a stack might be useful for handling the operators. A longer



example helps illustrate how that could work. Table 4-9 shows the translation
to postfix of the infix expression A+B×(C−D).

Table 4-9 Translating A+B×(C−D) into Postfix

Here you see the order of the operands is +×− in the original infix expression,
but the reverse order, −×+, in the final postfix expression. This happens
because × has higher precedence than +, and −, because it’s in parentheses, has
higher precedence than ×. We need to track operators with lower precedence on
the stack to be able to process them later. The last column in Table 4-9 shows
the stack contents at various stages in the translation process.



Popping items from the stack allows you to, in a sense, go backward (right to
left) through the input string. You’re not really examining the entire input
string, only the operators and parentheses. They were pushed on the stack when
reading the input, so now you can recall them in reverse order by popping them
off the stack.

The operands (A, B, and so on) appear in the same order in infix and postfix,
so you can write each one to the output as soon as you encounter it; they don’t
need to be stored on a stack or reversed. Changing their order would also cause
issues with operators that lack the commutative property like subtraction and
division; A − B ≠ B − A.

Translation Rules
Let’s make the rules for infix-to-postfix translation more explicit. You read
items from the infix input string and take the actions shown in Table 4-10.
These actions are described in pseudocode, a blend of programming syntax
and English.

In this table, the < and >= symbols are applied to the operator precedence, not
numerical values. The inputOp operator has just been read from the infix input,
while the top operator is popped off the stack. We use prec(inputOp) and
prec(top) to mean the operator precedence of inputOp and top, respectively.

Table 4-10 Infix to Postfix Translation Rules



Convincing yourself that these rules work may take some effort. Tables 4-11,
4-12, and 4-13 show how the rules apply to the three sample infix expressions,
similar to Tables 4-6, 4-7, and 4-8, except that the relevant rules for each step
have been added. Try creating similar tables by starting with other simple infix
expressions and using the rules to translate some of them to postfix.

Table 4-11 Translation Rules Applied to A+B−C



Table 4-12 Translation Rules Applied to A+B×C



Table 4-13 Translation Rules Applied to A×(B+C)



The Infix Calculator Tool
Before we look at the code, let’s put these words into action and watch the
process of converting infix expressions to postfix using a visualization tool.
Follow the instructions in Appendix A to launch the InfixCalculator tool. The
interface is simple: select the text entry box in the Operations area, type a
numeric expression using infix, and select the Evaluate button. The animation
of parsing the expression begins and looks something like Figure 4-11.



Figure 4-11 The Infix Calculator tool

The expression being parsed in the figure, 2 * (3 + 4), is copied in the box at
the top of the tool and then reduced as the characters are processed. (The full
expression still appears in the text entry box below.) The figure shows that the
first operand, 2, the multiplication operator, *, and the open parenthesis have
already been pulled out of the expression and placed in the stack or queue.
Each one of those strings is called a token. Looking at the “3” token
corresponds to the fourth step detailed in Table 4-13 when the B operand is
examined.

Because the current token “3” is a number, it’s not an operator or a delimiter
like those shown in the Operator Precedence table at the upper right. When the
tool looks in that table, it finds that numbers have no precedence and writes
prec = None and delim = False to indicate its status as an operand. The next
(nonblank) character in the expression is a plus (+). It does have a precedence
in the table, 4, and that means it’s an operator.

As the animation runs, the stack contents build up in the stack on the left.
Tokens that can be output as the postfix expression go in the queue to its right.
The contents of this queue are used to make the postfix string later in the
animation. Watch the stack grow as each operator is taken from the front of the
expression. Pause the infix calculator and see whether you can predict what
will happen next.

The Infix Calculator shows the translation into posftfix, followed by the
evaluation of the postfix. Before we look at how the evaluation works, let’s
look at the code for the parsing and translation. The visualization tool shows
this code during the processing.



Python Code to Convert Infix to Postfix
Listing 4-9 shows the beginning of the PostfixTranslate.py program, which
uses the rules from Table 4-10 to translate an infix expression to a postfix
expression. This is a long program file, so we show it in two parts. The first
part provides the processing of the input string, finding the individual tokens in
the expression and determining the precedence of operators.

Listing 4-9 Processing Tokens in PostfixTranslate.py

from SimpleStack import Stack 
from Queue import Queue 
 
# Define operators and their precedence
# We group single character operators of equal precedence in strings
# Lowest precedence is on the left; highest on the right
# Parentheses are treated as high precedence operators 
operators = ["|", "&", "+-", "*/%", "^", "()"] 
def precedence(operator): # Get the precedence of an operator 
   for p, ops in enumerate(operators):  # Loop through operators 
      if operator in ops:               # If found, 
         return p + 1                   # return precedence (low = 1) 
      # else not an operator, return None 
 
def delimiter(character):  # Determine if character is delimiter 
   return precedence(character) == len(operators) 
 
def nextToken(s):           # Parse next token from input string 
   token = ""               # Token is operator or operand 
   s = s.strip()            # Remove any leading & trailing space 
   if len(s) > 0:           # If not end of input 
      if precedence(s[0]):  # Check if first char. is operator 
         token = s[0]       # Token is a single char. operator 
         s = s[1:] 
      else:                 # its an operand, so take characters up 
         while len(s) > 0 and not (   # to next operator or space 
                precedence(s[0]) or s[0].isspace()): 
            token += s[0] 
            s = s[1:] 
   return token, s  # Return the token, and remaining input string

After importing the previous definitions of stacks and queues, the first
statement of PostfixTranslate.py defines the operators that the program



can process. We have expanded the number of operators that can be used. So
far, we’ve only shown examples using the four most common operators, +−×/.
This program adds several others available in Python. By putting these operator
characters into an array of strings, we have grouped together operators with the
same precedence and ordered the groups. Each array cell corresponds to a
precedence level. You can look up the precedence of an operator by stepping
through the array until you find the character in the string and returning the
string’s position in the array. Note that we used the asterisk * for the
multiplication symbol ×, to be consistent with Python and other programming
languages.

The precedence() function does the lookup, returning a number for the
precedence or None if the character is not an operator. The operators are all the
single-character operators that Python allows. Parentheses are included in the
array of operators for convenience. They act like operators when breaking an
expression up into tokens. A separate delimiter() function tests whether its
argument is one of these highest-precedence characters.

A function breaks the input string into tokens. A token is a substring that
corresponds to exactly one operator, operand, or delimiter in the input
expression.

The nextToken() function goes through the input string, skipping over any
whitespace, and finding the first token at the beginning of the string. It returns
that token along with the rest of the string after the token, which is used for the
subsequent call to nextToken(). The function checks whether a character is an
operator or a delimiter by checking whether the precedence function returns a
number for it (or None for operands). All the operators and delimiters in this
example are single characters.

For operands, this program allows multicharacter (multidigit) tokens. The
while loop steps through the input string, s, checking whether the first
character is an operator or whitespace. If it is not, the first character is added to
the output token and removed from the input string. After the loop finds either
an operator, delimiter, whitespace, or the end of the input string, the token is
complete.

The PostfixTranslate() function appears in Listing 4-10 and does the main
work by allocating a stack to hold the operators (and left parentheses) and a
queue to hold the postfix output. As you saw with the InfixCalculator
Visualization tool, the operators build up in the stack and are then popped and



moved to the queue. The queue holds the output postfix string with each
operand or operator in its own cell. That enables the program to add some
whitespace between elements in the output to make it more legible, especially
for operands with more than one digit or character.

PostfixTranslate() loops over the input expression/formula using a
fencepost loop—a loop that performs some work on the initial item before
entering the main loop body to perform work on all the remaining loop items.
In this case, it extracts the first token and then loops until there are no more
tokens in the input expression/formula.

After determining whether the current token is an operand, operator, or
delimiter, the PostfixTranslate() function applies the rules in Table 4-10.
The if delim … elif prec … else statement separates the processing of the
three types. The Python statements are very close to the pseudocode used to
describe the rules. This is the heart of the algorithm, so study it closely. The if
delim: … block handles the parentheses, pushing open parentheses on the stack
and then popping off operators between the opening and closing parentheses
after they are found.

Listing 4-10 The PostfixTranslate() Function

def PostfixTranslate(formula):  # Translate infix to Postfix 
   postfix = Queue(100)     # Store postfix in queue temporarily 
   s = Stack(100)           # Parser stack for operators 
 
   # For each token in the formula  (fencepost loop) 
   token, formula = nextToken(formula) 
   while token: 
      prec = precedence(token)  # Is it an operator? 
      delim = delimiter(token)  # Is it a delimiter? 
      if delim: 
         if token == ’(’:   # Open parenthesis 
            s.push(token)   # Push parenthesis on stack 
         else:              # Closing parenthesis 
            while not s.isEmpty():  # Pop items off stack 
               top = s.pop() 
               if top == ’(’:       # Until open paren found 
                  break 
               else:                # and put rest in output 
                  postfix.insert(top) 
 



      elif prec:           # Input token is an operator 
         while not s.isEmpty(): # Check top of stack 
            top = s.pop() 
            if (top == ’(’ or   # If open parenthesis, or a lower 
                precedence(top) < prec): # precedence operator 
                s.push(top)     # push it back on stack and 
                break           # stop loop 
            else:               # Else top is higher precedence 
                postfix.insert(top) # operator, so output it 
         s.push(token)          # Push input token (op) on stack 
 
      else:                     # Input token is an operand 
         postfix.insert(token)  # and goes straight to output 
 
      token, formula = nextToken(formula) # Fence post loop 
 
   while not s.isEmpty():       # At end of input, pop stack 
      postfix.insert(s.pop())   # operators and move to output 
 
   ans = "" 
   while not postfix.isEmpty(): # Move postfix items to string 
      if len(ans) > 0: 
         ans += " "             # Separate tokens with space 
      ans += postfix.remove() 
   return ans 
 
if __name__ == ’__main__’: 
   infix_expr = input("Infix expression to translate: ") 
   print("The postfix representation of", infix_expr, "is:", 
         PostfixTranslate(infix_expr))

In the elif prec: … block, new operators from the input string are processed.
It uses a loop to walk back through the stack looking for open parentheses or
lower-precedence operators. The code shows a bit of an optimization from the
loop’s pseudocode for new operators:

While stack is not empty:

        top = pop item from stack

           If top is (, then push ( back on stack and break

                 Else if top is an operator:

                           If prec(top) >= prec(inputOp), output top

                     Else push top and break loop



The two highlighted phrases in the pseudocode perform the same operation
because the open parenthesis is stored in the top variable. In the program, the
two conditions are checked in the if (top == ’(’ or precedence(top) <
prec): … statement. When top does not satisfy that condition, it must be an
operator whose precedence is greater than or equal to that of the input operator
in token. That’s the only condition where the top operator is output by
inserting it into the postfix queue.

After all the tokens have been processed in the first while loop, any remaining
operators on the stack are popped and output to the postfix queue, reversing
their order. That work happens in the final while not s.isEmpty() loop.

At the end, the while not postfix.isEmpty() loop creates the ans string, by
concatenating the operands and operators in the postfix output queue
separated by spaces. The spaces don’t change the value of the expression but
do make the string more readable.

After the function body of PostfixTranslate() is defined, the last section of
the program is an if statement that is used to detect whether this file is being
used as a program or as a module inside a bigger program. By testing whether
the special variable, __name__, is set to the string ’__main__’, the Python
interpreter can determine whether this file is being loaded as the main file to be
executed or as part of an import statement inside another file. When __name__
is ’__main__’ it’s the main file to be executed, and this program prompts for an
input infix expression to translate. It then prints that expression along with its
postfix translation. The output looks like this:
$ python3 PostfixTranslate.py 
Infix expression to translate: A+B-C 
The postfix representation of A+B-C is: A B + C - 
$ python3 PostfixTranslate.py 
Infix expression to translate: A+B*C 
The postfix representation of A+B*C is: A B C * + 
$ python3 PostfixTranslate.py 
Infix expression to translate: A*(B+C) 
The postfix representation of A*(B+C) is: A B C + * 
$ python3 PostfixTranslate.py 
Infix expression to translate: A | B*C^D % E - F/G + H & J 
The postfix representation of A | B*C^D % E - F/G + H & J is: A B C D 
^ * 
E % F G / - H + J & |



The last example uses all the operators the program knows about and shows
how it interprets their precedence and ignores whitespace. The
PostfixTranslate.py program doesn’t check the input for errors. If you type
an incorrect infix expression, such as one with consecutive operators or
unbalanced parentheses, the program will provide erroneous output.

Experiment with this program. Start with some simple infix expressions and
see whether you can predict what the postfix will be. Then run the program to
verify your answer. Pretty soon, “a postfix Jedi, you will become.” Note that
you can also use the InfixCalculator tool to practice these transformations, but
you won’t be able to use letters as variable names.

Evaluating Postfix Expressions
As you can see, converting infix expressions to postfix expressions is not
trivial. Is all this trouble really necessary? Yes, the payoff comes when you
evaluate a postfix expression. Before we show how simple the algorithm is,
let’s examine how a human might carry out such an evaluation.

How Humans Evaluate Postfix
Figure 4-12 shows how a human can evaluate a postfix expression using visual
inspection along with a pencil and paper. The postfix expression, 345+×612+/
−, is shown in the gray rectangle. In this simplified example, operands can be
only single-digit integers.



Figure 4-12 Visual approach to postfix evaluation of 345+×612+/−

Start with the first operator on the left and draw an oval around it plus the two
operands to its immediate left. This is marked as step ❶ in the figure. Then
apply the operator to these two operands—performing the actual arithmetic—
and write down the result inside the oval. In the figure, evaluating 4+5 gives 9,
which will be used step ❷.

Now go to the next operator to the right and draw an oval around it, the oval
you already drew, and the operand to the left of that. Apply the operator to the
previous oval and the new operand and write the result in the new oval, labeled
❷. Here 3×9 gives 27. Continue this process until all the operators have been
applied: 1+2 evaluates to 3 in step ❸, and 6/3 is 2, in step ❹. The answer is the
result in the largest oval at step ❺: 27−2 is 25.

Rules for Postfix Evaluation
How do you write a program to reproduce this evaluation process? As you can
see, each time you come to an operator, you apply it to the last two operands
you’ve seen. Remembering what the PostfixTranslate.py program does
(Listing 4-10), suggests that it might be appropriate to store the operands on a
stack. The approach for postfix evaluation, however, differs from the infix-to-



postfix translation algorithm, where operators were stored on the stack. You
can use the rules shown in Table 4-14 to evaluate postfix expressions.

Table 4-14 Evaluating a Postfix Expression

When you’re done, pop the stack to obtain the answer. That’s all there is to it.
This process is the computer equivalent of the human oval-drawing approach
of Figure 4-12.

Python Code to Evaluate Postfix Expressions
In the infix-to-postfix translation, symbols (A, B, and so on) were allowed to
stand for numbers. This approach worked because you weren’t performing
arithmetic operations on the operands but merely rewriting them in a different
format. Now say you want to evaluate a postfix expression, which means
carrying out the arithmetic and obtaining an answer. The input must consist of
actual numbers mixed with operators.

As shown in Listing 4-11, the PostfixEvaluate.py program imports the
PostfixTranslate module and uses its functions to translate an infix
expression to postfix before evaluating it. It makes use of the same
nextToken() function from that module, but this time it’s applied to the
translated postfix string. The fence post loop goes through each of the tokens in
the postfix string. For operators, the left and right operands are popped off the
stack, the operation is performed, and the result is pushed back on the stack.
For operands, the string version of the operand is converted to an integer and
pushed on the stack.

Listing 4-11 The PostfixEvaluate.py Program

from PostfixTranslate import * 
from SimpleStack import * 
 



def PostfixEvaluate(formula):  # Translate infix to Postfix and 
                               # evaluate the result 
 
   postfix = PostfixTranslate(formula) # Postfix string 
   s = Stack(100)                      # Operand stack 
 
   token, postfix = nextToken(postfix) 
   while token: 
      prec = precedence(token)  # Is it an operator? 
 
      if prec:                  # If input token is an operator 
         right = s.pop()        # Get left and right operands 
         left = s.pop()         # from stack 
         if token == ’|’:       # Perform operation and push 
            s.push(left | right) 
         elif token == ’&’: 
            s.push(left & right) 
         elif token == ’+’: 
            s.push(left + right) 
         elif token == ’-’: 
            s.push(left - right) 
         elif token == ’*’: 
            s.push(left * right) 
         elif token == ’/’: 
            s.push(left / right) 
         elif token == ’%’: 
            s.push(left % right) 
         elif token == ’^’: 
            s.push(left ^ right) 
 
      else:                     # Else token is operand 
         s.push(int(token))     # Convert to integer and push 
 
      print(’After processing’, token, ’stack holds:’, s) 
 
      token, postfix = nextToken(postfix) # Fence post loop 
 
   print(’Final result =’, s.pop()) # At end of input, print result 
 
if __name__ == ’__main__’: 
   infix_expr = input("Infix expression to evaluate: ") 
   print("The postfix representation of", infix_expr, "is", 
         PostfixTranslate(infix_expr)) 
   PostfixEvaluate(infix_expr)



The PostfixEvaluate() method includes a print statement that shows the
stack contents after each token is processed, plus a final print statement
showing the answer. The “main” part of the program (when __name__ ==
’__main__’) prompts the user for an infix expression, prints its postfix
representation, and then evaluates it. Running the program produces a result
like this:
$ python3 PostfixEvaluate.py 
Infix expression to evaluate: 3*(4+5)-6/(1+2) 
The postfix representation of 3*(4+5)-6/(1+2) is 3 4 5 + * 6 1 2 + / - 
After processing 3 stack holds: [3] 
After processing 4 stack holds: [3, 4] 
After processing 5 stack holds: [3, 4, 5] 
After processing + stack holds: [3, 9] 
After processing * stack holds: [27] 
After processing 6 stack holds: [27, 6] 
After processing 1 stack holds: [27, 6, 1] 
After processing 2 stack holds: [27, 6, 1, 2] 
After processing + stack holds: [27, 6, 3] 
After processing / stack holds: [27, 2.0] 
After processing - stack holds: [25.0] 
Final result = 25.0

Note this is the same calculation as shown in Figure 4-12 although the Python
interpreter produced a floating-point number when it performed the division
operation. The PostfixEvaluate.py program has not added any error checking
on the input, so if you give it invalid expressions or expressions that contain
names instead of numbers, the results will be wrong.

Experiment with the program and with the InfixCalculator tool. Try different
expressions and check to see that they translate into postfix as you expect and
verify the evaluation process. Use the animation controls to slow down or
pause the calculator to see how the steps are carried out. Trying out different
experiments can give you an understanding of the process faster than reading
about it. One difference between the code and the InfixCalculator tool is that
the tool creates floating-point numbers when division is used and pushes it on
the stack. If that floating-point number creates an error, however, the tool will
convert it to an integer and try again.

Summary



• Stacks, queues, and priority queues are data structures usually used to
simplify common programming operations.

• In these data structures, only one data item can be accessed. They are
designed to work for specific patterns in the order of access to the items.

• A stack allows access to the last item inserted: last-in, first-out (LIFO).

• The important stack operations are pushing (inserting) an item onto the
top of the stack and popping (removing) the item that’s on the top.

• A queue allows access to the first (oldest) item that was inserted: first-in,
first-out (FIFO).

• The important queue operations are inserting an item at the rear of the
queue and removing the item from the front of the queue.

• Stacks and queues typically do not have search or traverse operations
because they are not databases.

• Stacks and queues typically do support a peek operation to examine the
next item to be removed.

• A queue can be implemented using a circular array, which is based on a
linear array in which the indices wrap around from the end of the array
to the beginning.

• A deque is two-ended queue that allows insertion and removal operations
at both ends.

• The frontmost item in a priority queue is always the highest in priority
and is the oldest in the queue of that priority.

• The important priority queue operations are inserting an item in sorted
order based on priority and removing the oldest item within the highest-
priority items.

• These data structures can be implemented with arrays or with other
mechanisms such as linked lists.

• Ordinary arithmetic expressions are written in infix notation, so-called
because the operator is written between the two operands.



• In postfix notation, the operator follows the two operands.

• Arithmetic expressions can be evaluated by translating them to postfix
notation and then evaluating the postfix expression.

• A stack is a useful tool both for translating an infix to a postfix
expression and for evaluating a postfix expression.

Questions
These questions are intended as a self-test for readers. Answers may be found
in Appendix C.

1. Suppose you push the numbers 10, 20, 30, and 40 onto the stack in that
order. Then you pop three items. Which one is left on the stack?

2. Which of the following is true?
a. The Pop operation on a stack is considerably simpler than the

Remove operation on a queue.
b. The contents of a queue can wrap around, while those of a stack

cannot.
c. The top of a stack corresponds to the front of a queue.
d. In both the stack and the queue, items removed in sequence are taken

from increasingly higher index cells in the array.
3. What do LIFO and FIFO mean?
4. True or False: A stack or a queue often serves as the underlying

mechanism on which an array data type is based.
5. As other items are inserted and removed, does a particular item in a

queue move along the array from lower to higher indices, or higher to
lower?

6. Suppose you insert 15, 25, 35, and 45 into a queue. Then you remove
three items. Which one is left?

7. True or False: Pushing and popping items on a stack and inserting and
removing items in a queue all take O(N) time.

8. A queue might be used appropriately to hold



a. the items to be sorted in an insertion sort.
b. reports of a variety of imminent attacks on the star ship Enterprise.
c. keystrokes made by a computer user writing a letter.
d. symbols in an algebraic expression being evaluated.

9. Inserting an item into a priority queue takes what Big O time, on
average?

10. The term priority in a priority queue means that
a. the highest-priority items are inserted first.
b. the programmer must prioritize access to the underlying array.
c. the underlying array is sorted by the priority of the items.
d. the lowest-priority items are deleted first.

11. True or False: At least one of the methods in the PriorityQueue.py
program in Listing 4-7 uses a linear search.

12. One difference between a priority queue and an ordered array is that
a. the lowest-keyed item cannot be removed easily from the array as the

lowest-priority item can from the priority queue.
b. the array must be ordered while the priority queue need not be.
c. the highest-priority item can be removed easily from the priority

queue but the highest-keyed item in the array takes much more work
to remove.

d. All the above.
13. Suppose a priority queue class is based on the OrderedRecordArray

class from Chapter 2. This allows treating the priority as the key and
provides a binary search capability. Would you need to modify the
OrderedRecordArray class to maintain removals as an O(1) operation?

14. A priority queue might be used appropriately to hold
a. passengers to be picked up by a taxi from different parts of the city.
b. keystrokes made at a computer keyboard.
c. squares on a chessboard in a game program.
d. planets in a solar system simulation.



15. When parsing arithmetic expressions, it’s convenient to use
a. a stack for operators and a queue for operands and to evaluate postfix

using another stack.
b. a priority queue for the operators and operands and to evaluate postfix

using a stack.
c. a stack to transform infix expressions into prefix expressions that are

then evaluated with a queue.
d. a queue to transform the operators into postfix and then evaluate them

using a priority queue.

Experiments
Carrying out these experiments will help to provide insights into the topics
covered in the chapter. No programming is involved.

4-A Start with the initial configuration of the Queue Visualization tool.
Alternately insert and remove items. Notice how the front and rear
indices rotate around in the queue. Does the inserted item ever get
stored in the same cell twice?

4-B Think about how you remember the events in your life. Are there times
when they seem to be stored in your brain like a stack? Like a queue?
Like a priority queue?

4-C Consider various processing activities and decide which of the data
structures discussed in this chapter would be best to represent the
process. Some activities are

• Handling order requests on an e-commerce website

• Dealing with interruptions to the task you’re working on (like this
homework)

• Folding and putting away clothes to be worn next week

• Folding rags to be used in cleaning

• Triaging patients that arrive at hospitals or clinics during a disaster
with a limited number of treatment rooms and doctors

• Following the different paths in a maze at each decision point



4-D Using the InfixCalculator Visualization tool, try entering some valid
numeric expressions and some with errors. Try putting in unbalanced
parentheses and operators with missing operands. The tool doesn’t try
to find your errors, but if you were going to change it to report errors,
how would you do it? At what point in the processing are the errors
discoverable?

Programming Projects
Writing programs to solve the Programming Projects helps to solidify your
understanding of the material and demonstrates how the chapter’s concepts are
applied. (As noted in the Introduction, qualified instructors may obtain
completed solutions to the Programming Projects on the publisher’s website.)

4.1 Revise the Stack class in SimpleStack.py shown in Listing 4-1 to throw
exceptions if something is pushed on to a full stack, or popped off an
empty stack. Write a test program that demonstrates that the revised
class properly accepts items up to the original stack size and then
throws an exception when another item is pushed.

4.2 Create a program that determines whether an input string is a palindrome
or not, ignoring whitespace, digits, punctuation, and the case of letters.
Palindromes are words or phrases that have the same letter sequence
forward and backward. Show the output of your program on “A man, a
plan, a canal, Panama.” You should use a Stack as part of the
implementation as was shown in the ReverseWord.py program in
Listing 4-3.

4.3 Create a Deque class based on the discussion of deques (double-ended
queues) in this chapter. It should include insertLeft(),
insertRight(), removeLeft(), removeRight(), peekLeft(),
peekRight(), isEmpty(), and isFull() methods. It needs to support
wraparound at the end of the array, as queues do.

4.4 Write a program that implements a stack class that is based on the Deque
class in Programming Project 4.3. This stack class should have the same
methods and capabilities as the Stack class in the SimpleStack.py
module (Listing 4-1).

4.5 The priority queue shown in Listing 4-7 features fast removal of the
highest-priority item but slow insertion of new items. Write a program



with a revised PriorityQueue class that has fast, O(1), insertion time
but slower removal of the highest-priority item. Write a test program
that exercises all the methods of the PriorityQueue class. Include the
method that shows the PriorityQueue contents as a string and use it to
show the contents of some test examples that include cases where the
insertions do not occur in priority order.

4.6 Queues are often used to simulate the flow of people, cars, airplanes,
transactions, and so on. Write a program that models checkout
lines/queues at a store, using the Queue class (Listing 4-5). The system
should model four checkout lines that initially start empty, labeled A, B,
C, and D. Use a string to model the arrival and checkout completion
events by using a lowercase letter to indicate a new customer arriving in
one of the lines, and an uppercase letter to indicate a customer
completing checkout from the named line. For example, the string
“aababbAbA” shows three people going into the A checkout line with
two being processed, while four people enter the B checkout line and
none are processed. When a customer is added, put a “person” in the
queue by adding a string like “C1” to the queue where the number
increases for each new person. Any nonalphabetic character in the
string (such as a space or comma) signals that the current content of
each of the queues should be printed. Use an OrderedRecordArray from
Chapter 2 to store the Queues and their labels. Print error messages for
queues that overflow or underflow. Show the output of your program on
these strings:

       aaaa,AAbcd, 
       abababcabc,Adb,Adb,Ca, 
       dcbadcbaDCBA-dddAcccBbbbCaaaD-

4.7 Extend the capabilities of PostfixTranslate.py in Listing 4-9 and
PostfixEvaluate.py in Listing 4-11 to include the infix assignment
operator, A = B. When evaluating expressions on the stack that
reference variables, look up the assigned variable values before
performing numeric operations. The assignment operator has the lowest
precedence of any of the other operators. Unlike Python, the assignment
operator itself should return the right-hand side value as its result. In
other words, A=3*2 should return a value of 6 (in Python, it returns
None) with the side effect of binding A to 6. In this extended evaluator,
references to variables must occur after they have been set (in some



higher-precedence expression to the left of the reference). Your program
should print an error message if the expression references variables that
are not set. Variable values should be retrieved when an operator is
trying to use the value for a calculation (not when they are pushed on
the stack). Your program should display the contents of the stack as it
processes each token. For example:

       $ python3 project_4_7_solution.py 
       Infix expression to evaluate: (A = 3 * 2) * A 
       The postfix representation of (A = 3 * 2) * A is: A 3 2 * = A * 
       After processing A stack holds: [A] 
       After processing 3 stack holds: [A, 3] 
       After processing 2 stack holds: [A, 3, 2] 
       After processing * stack holds: [A, 6] 
       After processing = stack holds: [6] 
       After processing A stack holds: [6, A] 
       After processing * stack holds: [36] 
       Final result = 36

The first appearance of A defines the value for A as 6, and the second
appearance references that value. Use the OrderedRecordArray class
from Chapter 2 to store and retrieve records containing a variable
name and value to implement this. Show the result of running your
program on ’(A = 3 + 4 * 5) + (B = 7 * 6) + B/A’.



5. Linked Lists

In This Chapter

• Links

• A Simple Linked List

• Double-Ended Lists

• Linked List Efficiency

• Abstract Data Types and Objects

• Ordered Lists

• Doubly Linked Lists

• Circular Lists

• Iterators

In Chapter 2, “Arrays,” you saw that arrays had certain disadvantages as data
storage structures. In an unordered array, searching is slow, whereas in an
ordered array, insertion is slow. In both kinds of arrays, deletion is slow. Also,
the size of an array can’t be changed after it’s created. If a larger or smaller
array is needed, a new array can be created, but all the items it contains need to
be copied into the new structure, which is slow.

In this chapter we look at a data storage structure that solves some of these
problems: the linked list. Linked lists are probably the second most commonly
used general-purpose storage structures after arrays.

The versatile linked list mechanism suits many kinds of general-purpose
databases. It can also replace an array as the basis for other storage structures
such as stacks and queues. In fact, you can use a linked list in many cases in



which you use an array, unless you need frequent random access to individual
items using an index.

Linked lists aren’t the solution to all data storage problems, but they are
surprisingly useful and conceptually simpler than some other popular structures
such as trees. We investigate their strengths and weaknesses as we go along.

In this chapter we look at simple linked lists, double-ended lists, ordered lists,
doubly linked lists, and circular lists. We also examine the idea of abstract data
types (ADTs), see how stacks and queues can be viewed as ADTs, discuss how
they can be implemented as linked lists instead of arrays, and introduce
iterators as data structures for traversing other data structures.

Links
In a linked list, each data item is embedded in a link. A link represents one
element of the overall list. Each link holds some data and a way to get to the
next link in the list. This can be done in a couple of ways. Figure 5-1 shows the
two most common methods with a sample list of ingredients (used perhaps as a
shopping list). In both cases, the data for each link is a record. The example has
records with fields that could be named: ingredient type, subtype, amount, and
unit. The difference between the two styles of lists is in how the path to the
next link is stored. In both cases, the path is stored as a reference—a pointer
leading to another record. That reference can either be a field in the data record
itself or as field in a two-field structure designed as a general-purpose list.

Figure 5-1 Different methods of representing links in a list



In the first method where records are linked into a list as shown on the left of
Figure 5-1, each record has a field at the right called something like next. The
last record in the list doesn’t have a next link, so that field must get some
special value that cannot be confused with a reference to another record. The
figure shows it as an empty box. In Python, you typically use None to represent
no link. In Java, you use null. For all but the last record, the next field has a
reference to another link record, represented by a curving arrow in the figure.

The second method uses a separate, two-field record to represent each link. The
first field of each link record is a reference to the ingredient record, and the
second field is a reference to the next link record. Those different kinds of
references are shown as different colored arrows in Figure 5-1. One advantage
of this method is that the records used in the list don’t need to have their own
next link; that information is stored in the two-field link record. There are
disadvantages too: you must follow a reference from the link record to get to
the ingredient (data) record, and this method uses a little more memory to store
the full list. Those disadvantages usually are not significant. Another advantage
of the linked list of records shown on the right is that a single record could be
part of more than one list; in the records linked into a list method (at the left of
the figure), they can be part of only one list at any point in time.

With either method of representing the links, it’s a good idea to have a separate
object class for the linked list itself. Doing so allows the creation of empty lists
—a data structure that can be modified to expand and contract to become
empty—and enables utility functions like len() and str() in Python to be
applied to object instances. We choose to use a LinkedList class to represent
the overall list. The only thing to be stored in the LinkedList object is the
reference to the first Link object. We could also store other attributes of the
overall list, like its length, and we examine that topic later.

Let’s look at the Python definitions of the classes Link and LinkedList that
implement a linked list of records. Each Link has two fields: one for the data
and one for the next link. The LinkedList needs only one attribute, and we
name it __first because it points to the first Link object of the list, if there is
one. We use the double underscore prefix, as usual, to indicate these are private
fields. Listing 5-1 shows the constructor part of the definitions along with basic
tests to see whether they are empty or the last link in the list.

Listing 5-1 Constructors and Tests for Linked List Classes



class Link(object):             # One datum in a linked list 
   def __init__(self, data, next=None): # Constructor 
      self.__data = data        # The datum for this link 
      self.__next = next        # Reference to next Link 
 
   def isLast():                # Test if link is last in the chain 
      return self.__next is None  # True if & only if no next Link 
 
class LinkedList(object):       # A linked list of data elements 
   def __init__(self):          # Constructor 
      self.__first = None       # Reference to first Link 
 
   def isEmpty():               # Test for empty list 
      return self.__first is None # True if & only if no 1st Link

The tests for isLast() and isEmpty() are nearly identical. The difference is
their meaning in the context of the thing they represent—a link in the chain or
the overall chain, respectively.

Because they are defined in Python, you don’t have to specify the data types of
the attributes in the classes, but they are important. In statically typed
languages like Java, each attribute would need a declaration of its type. That’s
straightforward for the __first attribute of the LinkedList class because it is a
Link object or None. Inside the Link class, the type to use for the __next
attribute is more complicated. Here you need to refer to the very class that
you’re in the process of defining. This kind of class definition is sometimes
called self-referential because it contains an attribute of the same type as itself.

More precisely, you don’t want to store another entire Link object in the
__next attribute of the Link class. If you did, then the self-referential definition
would really become an endless nesting doll. We revisit that concept in the next
chapter, “Recursion,” but before we get there, we need to examine how
references are stored and managed.

One of the reasons for specifying data types is so that the overall memory size
of an object can be computed. The type information tells the compiler how
many bytes to allocate when creating a new instance of the object. Self-
referential class definitions would seem to need an infinite amount of memory
if they were to contain themselves. Instead, they store a reference to the object.
A reference is typically implemented by storing the address of the object in



memory. That way, the amount of memory needed for the attribute is a fixed
size because there is a maximum memory address.

The reference acts like the arrows in Figure 5-1, a path to find the referenced
object. In some languages, these are called pointers, and following a reference
or pointer is called dereferencing. There are some distinctions between
memory addresses, pointers, and references, but we don’t discuss those
subtleties here. The important concept is that the Link records are connected
into a chain by references that must be followed to traverse the whole structure.
Compare that to the arrays where all the elements of the array were placed next
to each other in memory so that you could find any of them by using an integer
index.

References and Basic Types
You can easily get confused about references in the context of linked lists. The
confusion can be compounded by dynamic typing in Python, which means you
don’t know whether a variable holds a value or a reference to a value. Let’s
review how references work.

Every programming language has a set of basic data types, sometimes called
primitive data types or primitives. These data types all have known, fixed sizes
and usually take up one or two “machine words” at most. Integers and Boolean
values are basic data types in almost every programming language. The
Booleans, of course, have only two possible values, and the integer’s range
depends on the number of bits in a machine word (and some languages provide
ways of specifying smaller or larger ranges than the standard machine word).
Floating-point numbers are also normally stored with a fixed number of bits,
based on the machine word size.

More complex data types like arrays, strings, records, and user-defined classes
usually take more than one or two machine words of storage. For these
structures, the programming language typically allocates memory for the size
of the structure in a section of memory set aside for such items. When the
structures are passed between functions, instead of copying the entire structure,
only references to the structure are passed. Even when the object will not be
passed to other functions, the programming language may still implement the
object with a reference and a separate data storage location. Data types that are
passed between functions as references are often called reference data types.
They are distinct from the basic data types.



In Python, it’s not obvious which data is stored as a primitive type and which is
stored as a reference type. In other languages, programmers must be explicit
about declaring whether a variable should be stored as primitive or as a
reference to some other data type. That’s one of the reasons why Python is
popular as both a first programming language and an easy-to-use language;
programmers don’t need to manage references explicitly. When you write code
that implements data structures, referencing and dereferencing become more of
an issue because you are concerned with how long it will take to perform
operations, how much space will be needed, and sometimes where the data will
be stored.

One quick test to see whether data is being passed as a reference instead of by
copying its value is to pass it to a function that modifies the value. For
example, consider this small Python program:
def increment(a, b): 
   a += 1 
   b[0] += 1 
 
x = 1 
y = [1] 
increment(x, y) 
print(x, y)

What will the program print? The value of the variable x is initialized to 1, and
the value of the variable y is a one-element list/array containing 1. When
increment() is called, it increments the value of a and the first element of b.
Will that change the values of the variables x and y? Do you think it will print 1
[1]? Or maybe 2 [2]? The answer is not obvious.

In the case of x, the answer is no; its value is not changed. The print()
function will print the value 1 for x, because when increment() was running,
the a variable stored a copy of 1, not the exact same 1 that was stored in x.
When 1 was added to the value of a, the resulting 2 was stored back in a and
did not change the copy stored in x.

In the case of y, however, the answer is different. The value of y is a Python
list. After increment() runs, the value printed for y is [2]. Python passes lists
as references. Any changes to the list by the increment() function affect the
value in the caller’s environment because both the function and the calling
environment share the object being referenced.



Why is passing arguments so complicated? The short answer is that there are
different situations where you’ll want the different behaviors. Operating on
copies of the data is quick when the data is small. It allows you to have
different contexts in the different functions that won’t interfere with one
another. It makes it easier to understand what will happen in a function because
nothing can change the values of its variables except the instructions in the
function itself. In other cases, it’s faster to just overwrite the existing data,
especially if it is very large and copying it would take a lot of time. Sharing the
data structure does, however, lead to many bugs (errors) when programmers
forget that some function can modify the data via a reference. As a general
rule, you want to avoid designs that change (or mutate) the values in data that
is shared by references. When you do design code to change values, make sure
that the changes that can happen are well documented.

Back to the linked list, we need to use references to link together the elements.
This approach solves the self-referential data structure paradox and enables the
use of data structures that grow and shrink as the program runs. You can add
Link objects as you need them, instead of trying to estimate how many are
needed at the beginning of the program and allocating space for all of them in
an array or some other structure.

When using references, you can think of them as their own data type. They are
not integers even though most languages implement them internally as a kind
of number. You can’t do operations on them such as add two references
together or check to see which one is larger. In general, there are no predefined
values for them (like False and True for the Boolean type). There are a few
special cases like the constant null in Java which indicates the absence of a
reference. The one operation you can do is check whether two references point
to the exact same object. In Python, you can compare references with the is
operator. Let’s look at some examples:
$ python3 
>>> x = 10 
>>> lx = [10] 
>>> ly = [5 + 5] 
>>> print(x, lx, ly) 
10 [10] [10] 
>>> x is lx 
False 
>>> lx is lx 
True 
>>> lx is ly 



False 
>>> lx == ly 
True 
>>> lx[0] is ly[0] 
True 
>>>

The preceding transcript shows storing the integer 10 in the variable x and in
two distinct one element lists, lx and ly. In the case of ly, the 10 is the result
of adding 5 and 5. The print function confirms these values. The program then
tries comparing the variables using the is operator. As you might expect, x and
lx do not reference the same object; one is an integer and the other is a list
after all. It’s unsurprising that lx refers to the same object as lx because they
are one and the same. Where it gets more interesting is where lx and ly are
shown to be different objects because lx is ly evaluates to False. When you
compare them using the equality operator, you find lx == ly to be True.
Python’s equality operator follows the references and compares the values they
refer to. Because it finds a one-element list stored in both, and the elements in
both lists are equal (both are 10), the result is True. The is operator, by
contrast, does not follow the references; it just checks whether the references
are the same.

If you look at how that data is stored in memory using references, the behavior
of is and == becomes clearer. Figure 5-2 shows the state of the Python
interpreter’s memory after the assignment statements finish. Each of the three
variables is shown with an arrow pointing to its value. There are clearly three
copies of the value 10. There are two copies of the list structure. The is
operator compares where the arrows point and returns True if and only if they
are identical. The == operator walks along the arrows and compares each pair
of elements, returning False on the first unequal pair or True otherwise.

Figure 5-2 Comparing values in reference data types

The last line of the preceding transcript compares the first elements of the lx
and ly lists using the is operator. They are both 10, so it may not seem



surprising that the operator says they are the same object. It seems reasonable
that two primitive data types with the same value compare as being the same
using the is operator. Be careful, however, because this is a special case in
Python. Small integers are stored with the exact same reference in Python, but
larger ones are not. For example:
>>> 32 == 32 
True 
>>> 32 is 32 
True 
>>> 2**32 == 2**32 
True 
>>> 2**32 is 2**32 
False 
>>>

Big integers can be compared numerically using the equality operator, ==.
When the is operator is used, however, the comparison is on the objects
created to represent those big integers, and Python creates those big integer
objects individually as needed. Big integers don’t fit in a machine word or two.
This means that it’s tricky using arrows to point to integers or other types like
in Figure 5-2. What may seem to be a simple primitive might be a more
complex structure.

Relationship, Not Position
Let’s examine one of the major ways in which linked lists differ from arrays. In
an array, each item occupies a particular position. This position can be directly
accessed using an index number. It’s like a row of houses with sequential
addresses: you can find a particular house using its numeric address. If the
houses are equally spaced apart and the numbering sequence is equally spaced,
you could know exactly how far to travel from the first house in the row to get
to a particular numbered house.

In a list, the only way to find a particular element is to follow along the chain
of elements. You must visit each of the first elements to get to the one you
want. There are two ways you might know which element you want: by its
position or by some key. An example of knowing its position is like saying,
“It’s the fifth house on the left.” You don’t know exactly how far down the
street it is, but you can count the houses as you go and turn left after reaching a
count of five. An example of knowing a house by a key would be by giving a



description that distinguishes it from the other houses, for example, the stone
house with a green door.

Another example of knowing something by its key is describing someone by
their face or name. Imagine that you are at a huge party with hundreds of
people. You are looking for an acquaintance, Zev, that you think is attending.
Maybe you ask Raj where Zev is. Raj doesn’t know, but he thinks Anna might
know, so you go and ask Anna. Anna saw Zev go outside with Dimitri. You
happen to have Dimitri’s phone number, so you call him. He answers but says
that Zev went back inside a few minutes ago, saying he was looking for Aoife.
So, you start to look for, … you get the idea. When you start down the chain,
you don’t even know whether the item you seek is going to be there.

These kinds of chains happen in computer applications too. If you’re trying to
trace the path a message followed through the network, you start at the node
where the message ended (or started) and find a record indicating where the
message came from (or went to). You then visit that node and look for the next
record showing the message’s origin (destination). You must follow all the
individual links to reconstruct the full path of the message. These kinds of
systems share the property that you can’t access a data item directly; you must
use relationships between the items to locate a specific item. You start with the
first item, go to the second, then the third, until you find what you’re looking
for, or the end of the relationships.

The Linked List Visualization Tool
Let’s look in more detail at how linkages are made in a list data structure. The
LinkedList Visualization tool shows all the basic operations. You can launch it
with the command python3 LinkedList.py, following the instructions in
Appendix A, “Running the Visualizations.” Figure 5-3 shows what the
LinkedList Visualization tool looks when it starts. Initially, the list is empty
with only a small red circle reserved for where the first link reference will go.
The box represents an instance of the LinkedList object with its one attribute,
as described in Listing 5-1.



Figure 5-3 The Linked List Visualization tool with an empty list

To make the first Link object, you type a word in the text entry area and select
the Insert button. That action creates a colored rectangle holding the word,
which represents the Link object and its data. The link is the only one in the
list, so its pointer is None, represented by the red dot. The LinkedList object
now has a reference to the Link stored in its first attribute.

Inserting a couple of words using the Insert button could make the start of a
shopping list like the one in Figure 5-4. Each Link except the last one has a
reference to the next Link. (The small link arrow at the top is left over from
the insert operation that just finished.)



Figure 5-4 A linked list after inserting some items

As you insert items, watch the animation closely. The new Link begins outside
of the list. Its next pointer points to the first item in the list (or nothing when
the LinkedList is empty). The insertion happens by changing the first
pointer of the LinkedList to point at the new Link. The visualization tool then
rearranges the linked items to make the familiar chain-like structure. There is
no change happening to the data structure in memory when the tool rearranges
the items; that just makes the structure easier to see in the visualization.

In this version of a linked list, new links are always inserted at the beginning of
the list. This is the simplest approach, although sometimes there are operations
that need to place items elsewhere in some variations on the basic list, as we
show later.



The Search Button
The Search button allows you to find a link with a specified key value. Type
the value of an existing link (or click it) and select Search. The operation
begins by placing a link pointer at the first Link. The link pointer advances
down the links until it points at a link whose key matches the goal key you
entered. The object is highlighted, and the data is copied to an output box. If
you search for a key that’s not in the list, the link pointer advances past the last
Link in the list and ends up pointing at nothing (None). The message at the
bottom informs you whether the key was found.

The Delete Button
You can also delete a Link with a specified key. Type in the value of an
existing link and then select Delete. This time, two arrows appear and move
along the list, somewhat like an inchworm, looking for the goal link. When the
link arrow arrives at the link with the goal key, the advancing stops, and the
previous Link’s pointer is reconnected to the goal link’s successor. After the
previous pointer is updated, the goal link is no longer in the list and is moved
away. If the goal link isn’t found, the animation stops with an exception.

The visualization tool moves the Links around on the display, sometimes
stretching and bending the arrows for the pointers. The length and shape of the
visualization arrows don’t correspond to anything in the program. They only
serve to show what objects reference other objects.

The New Button
As with the other data structures, you create a new, empty linked list by
selecting the New button. Unlike those other structures, you don’t need to
specify a size for the structure. The linked list is not based on an array; links
are allocated and discarded as needed.

The Other Buttons
The Delete First button deletes the first link in the list, regardless of its key.
This is somewhat like the Delete Rightmost operation that you saw with arrays.
A Get First button gets the data value stored in the first link, and a Traverse



button walks through all the links in the list, copying their values to an output
box.

A Simple Linked List
Let’s look at the methods needed to implement the basic operations in the Link
and LinkedList classes in Python.

We expand on the constructors and simple tests shown in Listing 5-1, add
methods to access the components and a helper method to display a Link as a
string in Listing 5-2. This listing introduces getData() and setData()
methods to access the data stored in the Link. Another alternative would be to
make the __data attribute (or field) a public attribute of the Link class that
calling programs could set. That would allow for direct access to the instance
attribute, which might not be desired in some cases, such as enforcing some
constraint on the kinds of data that can be added. The setNext() method
illustrates the idea of a constraint by enforcing that the __next attribute can be
set to only a reference to a Link object or the special “no next” value, None.
This listing retains the isLast() method that defines the convention that a
value of None in the __next field means there are no subsequent links. Lastly,
the listing defines a __str__() method for showing links as strings. It simply
applies the string conversion process to whatever datum is stored in the Link.

Listing 5-2 Basic Methods for Link Objects

class Link(object):            # One datum in a linked list 
   def __init__(self, datum, next=None): # Constructor 
      self.__data = datum      # The datum for this link 
      self.__next = next       # Reference to next Link 
 
   def getData(self):          # Return the datum stored in this link 
      return self.__data 
 
   def setData(self, datum):   # Change the datum in this Link 
      self.__data = datum 
 
   def getNext(self): return self.__next # Return the next link 
 
   def setNext(self, link):    # Change the next link to a new Link 
      if link is None or isinstance(link, Link): #Must be Link or None 



         self.__next = link 
      else: 
         raise Exception("Next link must be Link or None") 
 
   def isLast(self):           # Test if link is last in the chain 
      return self.getNext() is None  # True if & only if no next Link 
 
   def __str__(self):          # Make a string representation of link 
      return str(self.getData())

The Basic Linked List Methods
In Listing 5-3 the LinkedList class is updated with the same kind of accessor
methods for its one attribute, __first. Along with the get and set methods for
the first link, it defines getNext() and setNext() methods as synonyms whose
utility will show up a little later. A new method, first(), returns the first item
in the linked list. It’s analogous to the peek() method for queues. It raises an
exception if the list is empty. Note that to get to the data, it dereferences the
__next attribute to get a Link and then uses that to get that link’s data. This is a
common operation on linked lists.

Listing 5-3 Basic Methods for LinkedList Objects

class LinkedList(object):      # A linked list of data elements 
   def __init__(self):         # Constructor 
      self.__first = None      # Reference to first Link 
 
   def getFirst(self): return self.__first # Return the first link 
 
   def setFirst(self, link):   # Change the first link to a new Link 
      if link is None or isinstance(link, Link): # It must be None or 
         self.__first = link   # a Link object 
      else: 
         raise Exception("First link must be Link or None") 
 
   def getNext(self): return self.getFirst()    # First link is next 
   def setNext(self, link): self.setFirst(link) # First link is next 
 
   def isEmpty(self):          # Test for empty list 
      return self.getFirst() is None  # True iff no first Link 
 
   def first(self):            # Return the first item in the list 



      if self.isEmpty():       # as long as it is not empty 
         raise Exception(’No first item in empty list’) 
      return self.getFirst().getData() # Return data item (not Link)

Traversing Linked Lists
To make the linked list useful, you need to be able to insert, delete, search, and
traverse the elements it holds. Traversal is perhaps the easiest and is the
essence of helper methods, like getting the length of the list or creating a string
representation of its contents. Listing 5-4 shows the traversal methods.

Listing 5-4 Traversal Methods of LinkedList

class LinkedList(object):       # A linked list of data elements 
 
… (basic definitions shown before) … 
 
   def traverse(self,          # Apply a function to all items in list 
                func=print):   # with the default being to print 
      link = self.getFirst()   # Start with first link 
      while link is not None:  # Keep going until no more links 
         func(link.getData())  # Apply the function to the item 
         link = link.getNext() # Move on to next link 
 
   def __len__(self):          # Get length of list 
      l = 0 
      link = self.getFirst()   # Start with first link 
      while link is not None:  # Keep going until no more links 
         l += 1                # Count Link in chain 
         link = link.getNext() # Move on to next link 
      return l 
 
   def __str__(self):          # Build a string representation 
      result = "["             # Enclose list in square brackets 
      link = self.getFirst()   # Start with first link 
      while link is not None:  # Keep going until no more links 
         if len(result) > 1:   # After first link, 
            result += " > "    # separate links with right arrowhead 
         result += str(link)   # Append string version of link 
         link = link.getNext() # Move on to next link 
      return result + "]"      # Close with square bracket



The traverse() method applies a function to each element of the list. It starts
by setting a link variable to point at the first Link in the LinkedList. This is a
reference to an object. The while loop then steps through the list as long as that
next link is not None, which indicates the end of the list. If there is a Link
object, it applies the desired function (print by default) to the data in it and
then moves on to that Link’s next reference. Note the loop could make use of
the isLast() method to detect the end of the list. Because it still needs to apply
the function to the last Link, it’s shorter to write the loop by testing the link
variable.

The __len__() method (which enables Python’s len() function to work on
LinkedList objects) follows the same outline as traverse. It keeps the length
of the list in a variable, l, and increments that value in the body of the while
loop. As it sets the link to each subsequent Link object, the count of the
number of objects goes up by 1. When there are no more Link objects, it
returns the count stored in l.

Similarly, the __str__() method initializes a string variable called result with
a left bracket. The while loop is the same. On each pass through the loop body,
a separator string, ” > ”, is added if the Link object is not the first one. Then
the string representation of the Link is added to the result. At the end of the
list, a final closing right bracket is added to the result, and it is returned.

Insertion and Search in Linked Lists
The insertion and searching methods use similar loops when looking for an
item with a matching key in the list, as shown in Listing 5-5. To handle
complex data within the linked list, it’s convenient to use a function to extract
the key from each link’s data item. The code uses identity()as the default
function to get the key for each element of the list.

Listing 5-5 Insertion and Searching Methods for LinkedList

def identity(x): return x       # Identity function 
 
class LinkedList(object):       # A linked list of data elements 
 
… (other definitions shown before) … 
 



   def insert(self, datum):    # Insert a new datum at start of list 
      link = Link(datum,       # Make a new Link for the datum 
                  self.getFirst()) # What follows is the current list 
      self.setFirst(link)      # Update list to include new Link 
 
   def find(                   # Find the 1st Link whose key matches 
         self, goal, key=identity): # the goal 
      link = self.getFirst()   # Start at first link 
      while link is not None:  # Search until the end of the list 
         if key(link.getData()) == goal:  # Does this Link match? 
            return link        # If so, return the Link itself 
         link = link.getNext() # Else, continue on along list 
 
   def search(                 # Find 1st item whose key matches goal 
         self, goal, key=identity): 
      link = self.find(goal, key) # Look for Link object that matches 
      if link is not None:     # If found, 
         return link.getData() # return its datum 
 
   def insertAfter(            # Insert a new datum after the first 
         self, goal, newDatum, # Link with a matching key 
         key=identity): 
      link = self.find(goal, key)  # Find matching Link object 
      if link is None:         # If not found, 
         return False          # return failure 
      newLink = Link(          # Else build a new Link node with 
         newDatum, link.getNext()) # new datum and remainder of list 
      link.setNext(newLink)    # and insert after matching link 
      return True

For inserting values in the list, the simplest thing to do is insert them at the
front of the list. Like pushing a value on a stack, the value will become the first
item (in the first Link) of the list. The insert() method does that by creating a
new Link object whose data is set to the datum being inserted. The interesting,
and perhaps confusing, step is the initialization of the new Link object’s
__next pointer. It gets set to the value of the LinkedList’s first pointer. The
reason is that the original LinkedList has all the elements that are going to
come after the newly created Link. The final step is to overwrite the
LinkedList’s __first pointer so that it points to the newly created Link. The
processing steps are illustrated in Figure 5-5.



Figure 5-5 Execution of insert()

The example in Figure 5-5 shows the ingredient “oil” being added to a list that
already contains “eggs” and “milk”. The first panel shows the state of the
arguments to the method on entry into insert("oil"). The self variable is the
LinkedList to be modified, llist in this case. The LinkedList object has one
field, __first, that points to the first Link in the list. The first Link is the one
for “eggs” and it’s followed by the Link for “milk”. The second panel shows
the creation of the new Link object stored in the link variable. The data is set
to the input datum, and the __next pointer is set to the original LinkedList’s
__first value. The third panel shows how the original LinkedList’s __first
pointer is set to the newly created Link. The last panel shows the state right
before returning from the call to insert() with the Link for “oil” clearly
positioned at the front of the list, a simple rearrangement of the Link structures
in the third panel.

The example in Figure 5-5 can also be animated in the Linked List
Visualization tool. The figure is a bit more detailed about the state of all the
variables than the visualization is. The figure also shows the string data items
being referenced through a pointer from each Link. The string reference is used
in the computer but is difficult to see in the code. Try inserting the same items
in a list and using the step button to step through each line of the code for one
of the insertions.

If insertion and deletion to the linked list could only occur at the first position
in the list, the data structure would behave like a stack where the last element
put in is always the first element taken out. To be able to do things like insert
an element at a particular position within an ordered list, you need to be able to
specify and find positions within the list where the change should be made. For



that, you need to find elements with a particular key, which is what the find()
method does.

Just like the traversal operations, the find() method steps through the Links of
the list. For each link, the find() method shown in Listing 5-5 applies the
key() function to the data stored there. If the value of the extracted key
matches the goal key, then the Link containing that key is returned. If the
while loop ends, then none of the Links had a matching key, and the result is
None (because Python returns an implicit None when the body of the function
finishes). It’s important to note that find() always returns a Link (really a
reference to a Link) or None. It doesn’t return an integer index for where the
Link was found in the list like the find() method for arrays. Why not? If it
did, then a subsequent operation to insert or delete a Link at that position
would have to repeat stepping through the links to find the right spot.
Returning the reference saves many steps.

To get the data stored at the link with a particular key, you use the search()
method. This method takes the same arguments as the find() method but
returns the data in the Link rather than a reference to the Link. This subtle
difference is very important. Some operations need a position, and some need
the data at the position. The search() method simply calls the find() method,
and if it returns a pointer to a Link, it dereferences the pointer to get the value.
Otherwise, it too returns None.

The next method in Listing 5-5, insertAfter(), provides a way to insert a new
datum immediately after the first Link in the list that has a key matching a
particular goal key. It makes use of the find() method to discover whether
there’s a Link with a matching key. If none is found, it returns False to
indicate that. Otherwise, it creates a new Link to splice into the list right after
the one with the matching key.

Just like the insert() method, the new Link for insertAfter() contains the
provided datum, and its __next pointer is set to what should follow. In this
case, it’s the linked list that follows the Link with the matching key, as
illustrated in Figure 5-6. The figure shows the same datum, “oil”, being
inserted in a list, but this time it is to be inserted after “eggs”. The link
variable stores the output of the find() call. The newLink is created in the third
panel with “oil” for its data and the list after the “eggs” Link as the list that
follows. After the __next pointer for the insertion link is updated to point at
the newLink, the linked list is altered into its final form shown in the fourth
panel. The routine returns True to indicate that it found the goal key and



inserted the new Link. Note that the links have been rearranged in the bottom
right of the figure to better show the new list structure.

Figure 5-6 Inserting “oil” after “eggs” in a linked list

Deletion in Linked Lists
The final methods needed for a basic LinkedList structure are the ones for
deletion. Deleting the first item is another quick operation that simply changes
a couple of pointers. Deleting from the middle means finding an item by its
key.

The deleteFirst() method shown in Listing 5-6 deletes the first link in the
list, after checking that the list is not empty. The steps in the code are almost as
simple as those for the insert() method. It stores a pointer to the first Link in
the first variable. This is necessary to retain access to the data stored there
after taking that link out of the list. The second step performs the actual
deletion by changing the LinkedList’s __first attribute to point at the link
after the first one. The first link is now disconnected even though its
__next pointer points to the remainder of the list. The final step is to return the
data from that first link.

When you need to delete from somewhere else in the list, the delete() method
deletes an item with a matching goal key. Like the insertAfter() and
search() methods, you first identify the Link where the delete should happen
and then change the pointers. Although you could use the find() method to
identify the Link to delete, the code shown in Listing 5-6 doesn’t. Why do you
think that is?



Listing 5-6 The deleteFirst() and delete() Methods for LinkedLists

class LinkedList(object):       # A linked list of data elements 
 
… (other definitions shown before) … 
 
   def deleteFirst(self):      # Delete first Link 
      if self.isEmpty():       # Empty list? Raise an exception 
         raise Exception("Cannot delete first of empty list") 
 
      first = self.getFirst()  # Store first Link 
      self.setFirst(first.getNext()) # Remove first link from list 
      return first.getData()   # Return first Link’s data 
 
   def delete(self, goal,      # Delete the first Link from the 
              key=identity):   # list whose key matches the goal 
      if self.isEmpty():       # Empty list? Raise an exception 
         raise Exception("Cannot delete from empty linked list") 
 
      previous = self          # Link or LinkedList before Link 
      while previous.getNext() is not None: # to be deleted 
         link = previous.getNext()  # Next link after previous 
         if goal == key(link.getData()): # If next Link matches, 
            previous.setNext(  # change the previous’ next 
               link.getNext()) # to be Link’s next and return 
            return link.getData() # data since match was found 
         previous = link       # Advance previous to next Link 
 
      # Since loop ended without finding item, raise exception 
      raise Exception("No item with matching key found in list")

The reason for not using the find() method is that delete() must identify the
Link that precedes the one to be deleted, not the Link with the matching key
itself. By finding the preceding Link, it can modify that link’s __next pointer
to shorten the list and eliminate the desired Link. That means the method uses a
different kind of while loop where it updates a pointer called previous that
points at the Link preceding the one with the goal key, if one exists. After
checking for an empty list condition and raising an exception if it finds one, the
delete() method sets previous to point at the input LinkedList (self), not
the first Link in the chain. This is necessary if the Link to be deleted is the first
Link in the list. Let’s start by looking at that case, in particular.



The previous variable initially points to self, which is the LinkedList to be
modified. On a call to the delete() method where the goal key matches the
first Link in the linked list, the while loop is entered by first checking that the
next Link after previous exists. It makes that check by calling getNext().
This explains why getNext()was defined as a synonym for getFirst(); you
want to treat the first pointer of the LinkedList just like all the other next
pointers in the Links that follow.

The delete() method’s loop sets the link variable to point at the Link that
follows previous, which is the first Link of the list. When the loop body
checks that first Link’s key, it matches the goal in the first case, so now the
method can perform the deletion. The previous variable remains pointing at
self, the LinkedList to be modified. By setting the next link of previous
using setNext(), the delete() method modifies the input LinkedList’s
__first link. This is the other synonym method defined in Listing 5-3 so that
you can apply setNext() to modify either the __first attribute or the __next
attribute as appropriate. It sets __first to be the Link following the one whose
key matched the goal. That means the Link with the matching key has been
removed from the list. Then the method can return the link’s data because it
found the Link to delete.

The second case to examine is what happens when the first Link in the list
doesn’t match the goal key to be deleted. Figure 5-7 illustrates the two cases,
showing where previous is pointing right before the call to
previous.setNext(). The previous and link variables start off the same in
the second case, but this time, the first Link’s key doesn’t match the goal. It
skips the body of the inner if statement and sets previous to the value of link,
which is the next Link in the list. Now previous is the first Link in the list, and
the while loop checks whether there are any more Links after it. If there are
more, the link variable is assigned to the next one, and its key is checked
against the goal. When the key of link matches, the previous variable will
point to the Link that immediately precedes link. The body of the if statement
removes the goal Link in the same way as if it were the first Link in the list,
thanks to the setNext() method working on both LinkedLists and Links.



Figure 5-7 Two examples of deleting a Link from a LinkedList

In the first case we discussed, previous points to an object of type
LinkedList, and in the second case it points to a Link object. We designed
both classes to have getNext() and setNext() methods to make this kind of
while loop in delete() easier to write. This is an example of polymorphism
in object-oriented programming—where the same operation can be performed
on different object types with each type (class) having its own implementation.
The idea is to treat both the __first and __next pointers in the same way
across both classes. The reference that is about to be set is shown as a dashed
arrow in Figure 5-7.

Double-Ended Lists
A double-ended list is like an ordinary linked list, but it has one additional
feature: a reference to the __last link as well as to the first. Figure 5-8 shows
such a list.



Figure 5-8 A double-ended list

The reference to the __last link permits inserting new links directly at the end
of the list as well as at the beginning. Of course, you can insert a new link at
the end of an ordinary single-ended list by iterating through the entire list until
you reach the end. That approach, however, becomes quite inefficient when the
list is long.

Quick access to the end of the list as well as the beginning makes the double-
ended list suitable for certain situations that a single-ended list can’t handle
efficiently. One such situation is implementing a queue; we show how this
technique works in the next section. There is a small cost for that benefit—
maintaining the pointer to the other end—as shown in Listing 5-7.

Listing 5-7 The DoubleEndedList Class

from LinkedList import * 
 
class DoubleEndedList(LinkedList): # A linked list with access to both 
   def __init__(self):         # ends of the list 
      self.__first = None      # Reference to first Link, if any 



      self.__last = None       # Reference to last link, if any 
 
   def getFirst(self): return self.__first # Return the first link 
 
   def setFirst(self, link):   # Change the first link to a new Link 
      if link is None or isinstance(link, Link): #Must be Link or None 
         self.__first = link   # Update first link 
         if (link is None or   # When removing the first Link or 
             self.getLast() is None): # the last Link is not set, 
            self.__last = link # then update the last link, too. 
      else: 
         raise Exception("First link must be Link or None") 
 
   def getLast(self): return self.__last # Return the last link 
 
   def last(self):             # Return the last item in the list 
      if self.isEmpty():       # as long as it is not empty 
         raise Exception(’No last element in empty list’) 
      return self.__last.getData() 
 
   def insertLast(self, datum): # Insert a new datum at end of list 
      if self.isEmpty():        # For empty lists, end is the front, 
         return self.insert(datum) # so insert there 
      link = Link(datum, None)  # Else make a new end Link with datum 
      self.__last.setNext(link) # Add new Link after current last 
      self.__last = link        # Change last to new end Link 
 
   def insertAfter(            # Insert a new datum after the 1st 
         self, goal, newDatum, # Link with a matching key 
         key=identity): 
      link = self.find(goal, key)  # Find matching Link object 
      if link is None:         # If not found, 
         return False          # return failure 
      newLink = Link(          # Else build a new Link node with 
         newDatum, link.getNext()) # new datum and remainder of list 
      link.setNext(newLink)    # and insert after matching link 
      if link is self.__last:  # If the update was after the last, 
         self.__last = newLink # then update reference to last 
      return True 
 
   def delete(self, goal,      # Delete the first Link from the 
              key=identity):   # list whose key matches the goal 
      if self.isEmpty():       # Empty list? Raise an exception 
         raise Exception("Cannot delete from empty linked list") 
 
      previous = self          # Link or LinkedList before Link 
      while previous.getNext() is not None: # to be deleted 



         link = previous.getNext()  # Next link after previous 
         if goal == key(link.getData()): # If next Link matches, 
            if link is self.__last:   # and if it was the last Link, 
               self.__last = previous # then move last back 1 
            previous.setNext(      # Change the previous’ next 
               link.getNext())     # to be Link’s next and return 
            return link.getData()  # data since match was found 
         previous = link           # Advance previous to next Link 
 
      # Since loop ended without finding item exception 
      raise Exception("No item with matching key found in list")

We choose to implement a double-ended list by making a subclass of the
LinkedList that we’ve been studying. That’s done in the class statement,
which shows the DoubleEndedList inheriting the definition of LinkedList.
That means we only need to redefine methods that change from those that were
used in the parent, or “super,” class. The constructor method, __init__(),
differs only in that it sets the __last pointer to initially be empty, like the
__first pointer.

The next definitions in Listing 5-7 are the accessor methods for the first link of
the list. If you look carefully, you’ll notice that the getFirst() method is
identical to the definition in the parent class, LinkedList. That seems strange
because subclasses only need to redefine methods that have changed from the
definition in their super classes. The reason for redefining it is that Python has
a special way of handling private class fields like __first and __last. Python
treats those variables as being completely private to the class where they are
defined. If subclasses use private fields with the same name, they are distinct
fields from those of the parent class. So, the definition of the getFirst()
method is really making an accessor for the __first variable of the
DoubleEndedList class in Listing 5-7, and that is different from the
LinkedList.getFirst() method. The new definition replaces that of the
superclass so that all calls to getFirst() will get the DoubleEndedList
__first field.

The differences between the DoubleEndedList class and its parent begin to
show up in the setFirst() method. Like the definition in the super class, it
verifies that the new value is either an instance of the Link class or None. After
setting the __first field, it goes on to see whether an update to the __last
field is needed. The last Link needs to be updated when the first link is added
to an empty list, or when the last Link is being removed from the list. The if
statement checks for the removal of the last link by testing whether the new



link is None. It checks for the addition of a potential new Link by testing
whether the __last field is None. Note that it checks the status of the __last
field by using the accessor method, getLast(), which is defined later.
Avoiding references to the private attributes enables future subclassing of this
class.

The DoubleEndedList class defines a getLast() method but not a setLast()
method. That’s intentional because it is not wise to allow callers to change the
internal, private field in a way that could point that field somewhere other than
the last Link of the list. All changes should be managed by the code in the class
definition. (To further protect the DoubleEndedList class from corruption, the
setFirst(), method would need to be rewritten to ensure that the __first and
__last attributes always point to the beginning and end of the same linked
list.)

The definition also includes a last() method, which, like the first() method,
gets the indicated data rather than a reference to the Link object holding the
data. The first() method is inherited from the LinkedList class, as are the
synonym definitions for getNext() and setNext().

Continuing in Listing 5-7, you find the new insertLast() method, which
exploits the presence of the __last field to make adding a Link at the end of
the list very efficient. If the list is empty, then inserting at the end is the same as
inserting at the front of the list. Otherwise, a new terminal Link object is
created. The logic to insert it is the same as that used in insert(), except that
the __next field of the last Link is updated rather than the __first field of the
DoubleEndedList. Because a new Link is added, the __last field must also be
updated too.

The last two methods of the DoubleEndedList class are slight rewrites of the
same methods in LinkedList. The __last field must be updated appropriately
after insertions and deletions. In the insertAfter() method, a new if
statement is added at the end to check if the link that it modifies is the last
Link of the list. If it is the last one, then the __last field must be advanced to
point at the newly added Link. In the delete() method, another new if
statement is added just before modifying the previous Link’s __next (or
LinkedList’s __first) pointer. If the link to delete is the same as the last link,
then the __last field must be updated to point at the previous link.

There is one special case to consider during deletion: when previous points to
the DoubleEndedList and not a Link object, the final link is being deleted. By



changing __last to be previous before calling previous.setNext(), the test
in setNext()/setFirst() will find that the new value for __first is None and
set both __first and __last of the DoubleEndedList to be None.

Interestingly, the DoubleEndedList does not need to redefine the
deleteFirst() method inherited from LinkedList. When deleting the first
Link, the deleteFirst() method calls setFirst(), which has already been
customized in the DoubleEndedList to update its private __last pointer.

You can exercise the features of the DoubleEndedList class using the program
shown in Listing 5-8. The client program is a little fancier by using records for
the items instead of just strings. It builds an empty double-ended list, dlist,
and then inserts pairs of numbers with names into the list. It uses the second
element of each pair, the name, as the key for the data. The numbers in the
record help indicate the order that they were inserted. It puts several people
into the list, inserting the first one at the beginning, setting a variable called
after to the person in that first datum, and then inserting all the other pairs
after the first.

Listing 5-8 The DoubleEndedListClient.py Program

from DoubleEndedList import * 
 
def second(x): return x[1] 
 
dlist = DoubleEndedList() 
 
print(’Initial list has’, len(dlist), ’element(s) and empty =’, 
      dlist.isEmpty()) 
after = None 
people = [’Raj’, ’Amir’, ’Adi’, ’Don’, ’Ken’, ’Ivan’] 
for i, person in enumerate(people): 
   if after: 
      dlist.insertAfter(after, (i * i, person), key=second) 
   else: 
      dlist.insert((i * i, person)) 
      after = person 
 
print(’After inserting’, len(dlist) - 1, 
      ’persons into the linked list after,’, after, ’it contains:’) 
dlist.traverse() 
print(’First:’, dlist.first(), ’and Last:’, dlist.last()) 



 
next = (404, ’Tim’) 
dlist.insertLast(next) 
print(’After inserting’, next, ’at the end, the double-ended list’, 
      ’contains:\n’, dlist) 
 
dlist.insert(next) 
print(’After inserting’, next, ’at the front, the double-ended list’, 
      ’contains:\n’, dlist) 
print(’Deleting the first item returns’, dlist.deleteFirst(), 
      ’and leaves the double-ended list containing:\n’, dlist, 
      ’with first:’, dlist.first(), ’and Last:’, dlist.last()) 
print(’Deleting the last item returns’, 
      dlist.delete(second(dlist.last()), key=second), 
      ’and leaves the double-ended list containing:\n’, dlist, 
      ’with first:’, dlist.first(), ’and Last:’, dlist.last()) 
 
print(’Removing some items from the linked list by key:’) 
for person in people[0:5:2]: 
   dlist.delete(person, key=second) 
   print(’After deleting’, person, ’the list is’, dlist) 
   if not dlist.isEmpty(): 
      print(’The last item is’, dlist.last()) 
 
print(’Removing remaining items from the front of the linked list:’) 
while not dlist.isEmpty(): 
   print(’After deleting’, dlist.deleteFirst(), ’the list is’, dlist) 
   if not dlist.isEmpty(): 
      print(’The last item is’, dlist.last())

After the initial data is inserted, it displays the contents of the list using the
traverse() method. The specific first and last data are also printed. The
program adds another pair, next, at the end and beginning of the list, printing
the contents of the list using the string conversion capability after each
insertion. The next test deletes those first and last items, exercising the
deleteFirst() and delete() methods.

Finally, it removes some items based on their keys, using a few of the people
names. Then it removes the rest by deleting the first item in the list. After each
deletion, it shows the content of the list and the last data item. The output of the
program is
$ python3 DoubleEndedListClient.py 
Initial list has 0 element(s) and empty = True 
After inserting 5 persons into the linked list after, Raj it contains: 



(0, ’Raj’) 
(25, ’Ivan’) 
(16, ’Ken’) 
(9, ’Don’) 
(4, ’Adi’) 
(1, ’Amir’) 
First: (0, ’Raj’) and Last: (1, ’Amir’) 
After inserting (404, ’Tim’) at the end, the double-ended list 
contains: 
 [(0, ’Raj’) > (25, ’Ivan’) > (16, ’Ken’) > (9, ’Don’) > (4, ’Adi’) > 
(1, 
’Amir’) > (404, ’Tim’)] 
After inserting (404, ’Tim’) at the front, the double-ended list 
contains: 
 [(404, ’Tim’) > (0, ’Raj’) > (25, ’Ivan’) > (16, ’Ken’) > (9, ’Don’) 
> 
(4, ’Adi’) > (1, ’Amir’) > (404, ’Tim’)] 
Deleting the first item returns (404, ’Tim’) and leaves the double-
ended 
list containing: 
 [(0, ’Raj’) > (25, ’Ivan’) > (16, ’Ken’) > (9, ’Don’) > (4, ’Adi’) > 
(1, 
’Amir’) > (404, ’Tim’)] with first: (0, ’Raj’) and Last: (404, ’Tim’) 
Deleting the last item returns (404, ’Tim’) and leaves the double-
ended 
list containing: 
 [(0, ’Raj’) > (25, ’Ivan’) > (16, ’Ken’) > (9, ’Don’) > (4, ’Adi’) > 
(1, 
’Amir’)] with first: (0, ’Raj’) and Last: (1, ’Amir’) 
Removing some items from the linked list by key: 
After deleting Raj the list is [(25, ’Ivan’) > (16, ’Ken’) > (9, 
’Don’) > 
(4, ’Adi’) > (1, ’Amir’)] 
The last item is (1, ’Amir’) 
After deleting Adi the list is [(25, ’Ivan’) > (16, ’Ken’) > (9, 
’Don’) > 
(1, ’Amir’)] 
The last item is (1, ’Amir’) 
After deleting Ken the list is [(25, ’Ivan’) > (9, ’Don’) > (1, 
’Amir’)] 
The last item is (1, ’Amir’) 
Removing remaining items from the front of the linked list: 
After deleting (25, ’Ivan’) the list is [(9, ’Don’) > (1, ’Amir’)] 
The last item is (1, ’Amir’) 
After deleting (9, ’Don’) the list is [(1, ’Amir’)] 
The last item is (1, ’Amir’) 
After deleting (1, ’Amir’) the list is []



The initial pair, (0, ’Raj’), stays at the beginning of the list while the other
pairs are inserted after it. Their numeric values decrease, which shows that
their order in the completed list is the reverse of the order they were inserted.
This is not an ordered list. The insertion position is defined by the goal key
passed to insertAfter(). The insertion of (404, ’Tim’) is done with both
insertLast() and insert(), so it doesn’t even look at the keys of the list
items. As the items are deleted, the program prints the list and the last element,
just to verify that the __last pointer is being updated correctly.

The DoubleEndedList makes it easy to insert at both the front and end of the
list as well as after a Link having a particular key. The delete() method
always looks for a particular key, and it’s easy to delete the first and last keys
by using the first() and last() methods. Unfortunately, deleting the last link
is still time-consuming because the program still must walk through the Links
to find the last key. To make it fast, you could add a reference to the next-to-
last link, whose __next field would need to be changed to None when the last
link is deleted. You already saw what it takes to modify the LinkedList to
become the DoubleEndedList. Adding more and more fields like
second_to_last, third_to_last, and so on, would be a lot of work, and it’s
unclear how much more efficiency that would achieve because you could have
lists of arbitrary length. To conveniently delete the last link, a better approach
is a doubly linked list, which we look at soon.

Linked List Efficiency
Insertion and deletion at the beginning of a linked list are very fast. They
involve changing only one or two references, which takes O(1) time.

Finding, deleting, or inserting next to a specific item requires searching
through, on average, half the items in the list. This operation requires O(N)
comparisons. Arrays have the same complexity for these operations, O(N), but
the linked list is faster because nothing needs to be copied when an item is
inserted or deleted. The increased efficiency can be significant, especially if a
copy takes much longer than a comparison.

Of course, another important advantage of linked lists over arrays is that a
linked list uses exactly as much memory as it needs and can expand to fill all
available memory. The size of an array is fixed when it’s created; this could
lead to inefficiency when the initial array size is too large, or it could lead to
running out of room because the array is too small. Expandable arrays may



solve this problem to some extent, but they usually expand in fixed-sized
increments (such as doubling the size of the array whenever it’s about to
overflow). Typically, the data must be copied from the smaller to larger array
when they expand. This adaptive solution is still not as efficient a use of
memory as a linked list.

Abstract Data Types and Objects
In this section we shift gears and discuss a topic that’s more general than linked
lists: abstract data types (ADTs). What is an ADT? Is it the same as an object?
Roughly speaking, an ADT is a way of looking at a data structure—focusing
on what it does and ignoring how it does its job. Objects are a way of making
concrete implementations of ADTs.

Stacks and queues are examples of ADTs. You’ve already seen that both stacks
and queues can be implemented using arrays. Before we return to a discussion
of ADTs, let’s see how stacks and queues can be implemented using linked
lists. This discussion demonstrates the “abstract” nature of stacks and queues—
how they can be considered separately from their implementation.

A Stack Implemented by a Linked List
The implementation of the stack in Chapter 4, “Stacks and Queues,” used an
ordinary array to hold the stack’s data. The stack’s push() and pop()
operations were carried out by array operations such as
a[top] = item

and
top = a[j]

which put data into and returned it from an array.

You can also use a linked list to hold a stack’s data. In this case the push() and
pop() operations could be carried out by operations like
theList.insert(data)

and
data = theList.deleteFirst()



The user of the stack class calls push() and pop() to insert and delete items
without knowing, or needing to know, whether the stack is implemented as an
array or as a linked list. Listing 5-9 shows two ways of how a stack class can
be implemented using the LinkedList class instead of an array.

Listing 5-9 The LinkStack.py Module

from LinkedList import * 
 
class LinkStack(object): 
   def __init__(self):                 # Constructor for a 
      self.__sList = LinkedList()      # stack stored as a linked list 
 
   def push(self, item):               # Insert item at top of stack 
      self.__sList.insert(item)        # Store item 
 
   def pop(self):                      # Remove top item from stack 
      return self.__sList.deleteFirst() # Return first and delete it 
 
   def peek(self):                     # Return top item 
      if not self.__sList.isEmpty():   # If stack is not empty 
         return self.__sList.first()   # Return the top item 
 
   def isEmpty(self):                  # Check if stack is empty 
      return self.__sList.isEmpty() 
 
   def __len__(self):                  # Return # of items on stack 
      return len(self.__sList) 
 
   def __str__(self):                  # Convert stack to string 
      return str(self.__sList) 
 
class Stack(LinkedList):               # Define stack by renaming 
   push = LinkedList.insert            # Push is done by insert 
   pop = LinkedList.deleteFirst        # Pop is done by deleteFirst 
   peek = LinkedList.first             # Peek is done by first

The first thing to note about the LinkStack and Stack class definitions is how
short they are. The implementation of a stack using a linked list is
straightforward because they share so many common features. In LinkStack,
the constructor allocates an empty linked list, __sList, and the other methods
are basically translations of the common list methods. In the case of a stack, the
key function for the LinkedList find, search, and delete functions is never



used because stacks don’t need keyed access to elements. Another difference is
that the constructor doesn’t require a maximum size parameter like the
SimpleStack class does (in Chapter 4). The reason is that the implementation
is not using an array that needs an initial size.

The Stack class definition is only four lines in Python. Instead of creating a
LinkedList object as an internal attribute, it is defined as a subclass of
LinkedList, inheriting all its attributes and methods. All that is needed is to
provide the translations for those method names that differ between a stack and
a list.

The shorthand definition of the Stack class might seem incomplete to new
Python programmers. Normally, there would be some def statements for its
methods. Here you simply define some class attributes: push, pop, and peek.
This approach takes advantage of the way that Python represents class methods
as class attributes that are bound to functions instead of some other data type.
The statement push = LinkedList.insert takes the insert attribute (method)
of the LinkedList class and assigns it to the push attribute of the Stack class.
Because that attribute is executable (Python treats it as callable), the attribute
becomes a method. The three assignment statements take care of all the
changed method names. The remaining methods like isEmpty() and the
constructor are inherited from LinkedList.

To see how both stack implementations work, it’s a good idea to test them with
something like the LinkStackClient.py program shown in Listing 5-10. The
outer loop creates two empty stacks, one of each kind, and sets the stack
variable to each one in turn. The first statement in the loop body prints the data
type, shows the stack’s string representation, and tests its isEmpty() method.
The inner for loop pushes some squares on the stack. That’s followed by
printing the full stack contents and tests of the len() and peek() methods. The
final while loop then pops the items off, one by one, showing the stack
contents and length after each operation.

Listing 5-10 The LinkStackClient.py Program

from LinkStack import * 
 
for stack in (LinkStack(), Stack()): 
   print(’\nInitial stack of type’, type(stack), 
         ’holds:’, stack, ’is empty =’, stack.isEmpty()) 



 
   for i in range(5): 
      stack.push(i ** 2) 
 
   print(’After pushing’, len(stack), 
         ’squares on to the stack, it contains’, stack) 
   print(’The top of the stack is’, stack.peek()) 
 
   while not stack.isEmpty(): 
      print(’Popping’, stack.pop(), ’off of the stack leaves’, 
            len(stack), ’item(s):’, stack)

The results of running LinkStackClient.py are
$ python3 LinkStackClient.py 
 
Initial stack of type <class ’LinkStack.LinkStack’> holds: [] is empty 
= 
True 
After pushing 5 squares on to the stack, it contains [16 > 9 > 4 > 1 > 
0] 
The top of the stack is 16 
Popping 16 off of the stack leaves 4 item(s): [9 > 4 > 1 > 0] 
Popping 9 off of the stack leaves 3 item(s): [4 > 1 > 0] 
Popping 4 off of the stack leaves 2 item(s): [1 > 0] 
Popping 1 off of the stack leaves 1 item(s): [0] 
Popping 0 off of the stack leaves 0 item(s): [] 
 
Initial stack of type <class ’LinkStack.Stack’> holds: [] is empty = 
True 
After pushing 5 squares on to the stack, it contains [16 > 9 > 4 > 1 > 
0] 
The top of the stack is 16 
Popping 16 off of the stack leaves 4 item(s): [9 > 4 > 1 > 0] 
Popping 9 off of the stack leaves 3 item(s): [4 > 1 > 0] 
Popping 4 off of the stack leaves 2 item(s): [1 > 0] 
Popping 1 off of the stack leaves 1 item(s): [0] 
Popping 0 off of the stack leaves 0 item(s): []

Note that the LinkStackClient.py program doesn’t need to know how the
LinkStack or Stack classes are implemented. If you also imported the
SimpleStack module of Chapter 4 and added a call to the
SimpleStack.Stack(10) class constructor (where a maximum stack size is
required) to the values for stack in the outer loop, the rest of the
LinkStackClient.py program would work identically on that structure. To the



programmer writing LinkStackClient.py, there is no difference between
using the list-based LinkStack class and using the array-based Stack class
from the SimpleStack module of Chapter 4, except for providing a maximum
stack size and seeing a different string format for the stack contents.

A Queue Implemented by a Linked List
Here’s a similar example of an ADT implemented with a linked list. Listing 5-
11 shows a queue implemented as a double-ended linked list.

Listing 5-11 The LinkQueue.py Module

from DoubleEndedList import * 
 
class Queue(DoubleEndedList):          # Define queue by renaming 
   enqueue = DoubleEndedList.insertLast  # Enqueue/insert at end 
   dequeue = DoubleEndedList.deleteFirst # Dequeue/remove at first 
   peek = DoubleEndedList.first        # Front of queue is first

Similar to the stack, the queue ADT doesn’t need to access elements of the
queue based on a key, only by their position. It defines the method names
needed for a queue using the counterpart methods of the DoubleEndedList.
The very short 3-line definition looks very simple, but it somewhat hides a
fundamental name conflict.

The Queue class you saw in Chapter 4 used the insert() and remove()
methods for insertion and removal. If those same method names are used for
the Queue class based on the DoubleEndedList shown in Listing 5-11, a
problem would arise although it’s hard to see. If you review the definition of
insertLast() in Listing 5-7, it calls insert() when the list is empty to invoke
the LinkedList.insert() method. If the new Queue class definition redefines
the insert() method, however, then those calls would be redirected to the
DoubleEndedList.insertLast() method. That method would call the
insert() method again for an empty list and thus cause an infinite loop. A
simple way to avoid that problem is to use the enqueue() and dequeue()
method names for the queue’s primary operations.

You can use a similar client program to test the new implementation of the
queue with its enqueue() and dequeue() methods, as shown in Listing 5-12.



Listing 5-12 The LinkQueueClient.py Program

from LinkQueue import * 
 
queue = Queue() 
 
print(’Initial queue:’, queue, ’is empty =’, queue.isEmpty()) 
 
for i in range(5): 
   queue.enqueue(i ** 2) 
 
print(’After inserting’, len(queue), 
      ’squares on to the queue, it contains’, queue) 
print(’The front of the queue is’, queue.peek()) 
 
while not queue.isEmpty(): 
   print(’Removing’, queue.dequeue(), ’off of the queue leaves’, 
         len(queue), ’item(s):’, queue)

The program creates a queue using the Queue() constructor; shows its initial
state, which is empty; inserts five squares; displays the queue contents; peeks
at the front, and then removes items from the queue, displaying the contents
after each removal. Here’s the output:
$ python3 LinkQueueClient.py 
Initial queue: [] is empty = True 
After inserting 5 squares on to the queue, it contains [0 > 1 > 4 > 9 
> 
16] 
The front of the queue is 0 
Removing 0 off of the queue leaves 4 item(s): [1 > 4 > 9 > 16] 
Removing 1 off of the queue leaves 3 item(s): [4 > 9 > 16] 
Removing 4 off of the queue leaves 2 item(s): [9 > 16] 
Removing 9 off of the queue leaves 1 item(s): [16] 
Removing 16 off of the queue leaves 0 item(s): []

Here, the methods enqueue() and dequeue() in the Queue class are
implemented by the insertLast() and deleteFirst() methods of the
DoubleEndedList class. Compare this to the array used to implement the queue
in the Queue.py module of Chapter 4 and see how much shorter the definition
is.



The LinkStack.py and LinkQueue.py modules emphasize that stacks and
queues are conceptual entities, separate from their implementations. A stack
can be implemented equally well by an array or by a linked list. What’s
important about a stack is its push(), pop(), and peek() operations and how
they’re used, not the underlying mechanism used to implement them.

When would you use a linked list as opposed to an array as the implementation
of a stack or queue? One consideration is how accurately you can predict the
amount of data the stack or queue will need to hold. If this isn’t clear, the
linked list gives you more flexibility than an array. Both are fast, so speed is
probably not a major consideration.

Data Types and Abstraction
Where does the term abstract data type come from? Let’s look at the data type
part of it first and then return to abstract.

Data Types
The term data type can be used in many ways. It is often used to describe built-
in types such as int, float, and str in Python or equivalent types in other
programming languages. This might be what you first think of when you hear
the term.

When you talk about a primitive type, you’re actually referring to two things: a
data item represented as a collection of bits with certain characteristics, and the
permissible operations on that data. For example, a Boolean type variable in
Python can have two values—True or False—and the operators not, and, and
or can be applied to them. An int variable has whole-number values, and
operators like +, −, *, and / can be applied to them. The data type’s permissible
operations are an inseparable part of its identity; understanding the type means
understanding what operations can be performed on it.

Object-oriented programming allows programmers to create new data types
using classes. Some of these data types represent numerical quantities that are
used in ways similar to primitive types. You can, for example, define a class for
time duration (with fields for hours, minutes, seconds), and a class for fractions
(with numerator and denominator fields). All these classes can be added,
subtracted, multiplied, and divided like int and float. Typically, the new
object methods are defined with functional notation like add(), sub(), mul(),



and div(). That leads to expressions like a.sub(b).mul(c) that don’t look like
the math expressions we teach and use, but they still produce valid results.
Python and some other languages have ways that programmers can define
methods so that built-in operators like + and − can work with them. For
example, if you define a method named __add__(a, b) for a class in Python, it
can be used with the built-in + operator. These mechanisms give programmers
control over defining all the permissible operations of a data type.

The phrase data type seems to fit naturally with quantity-oriented classes. It
can, however, apply to classes that don’t have this quantitative aspect. In fact,
any class represents a data type, in the sense that a class is made up of data
(fields) and permissible operations on that data (methods). They are not,
however, one and the same. A class goes beyond defining a data type or types
and the permissible operations that can be performed on them because it also
supplies the implementation details.

When a data storage structure like a stack or queue is represented by a class, it
too can be referred to as a “data type.” That might sound odd at first, to
someone just learning about data storage structures. A stack is different in
many ways from an int, but they are both defined as a certain arrangement of
data and a set of operations on that data. When that new structure is not part of
the language or its standard libraries, it’s usually not called a “primitive” nor a
“built-in” data type. Instead, it might be called a “user-defined” or “program-
defined” data type, but it is still a data type.

Abstraction
The word abstract means “considered apart from detailed specifications or
implementation.” An abstraction is the essence or important characteristics of
something. For example, refrigeration is an abstraction. Its important
characteristic is keeping something or someplace colder than it would normally
be. It is distinct from a refrigerator, which is a device that makes things colder.
The legislature of a state or country is another example. The legislature can be
considered apart from the individual legislators who happen to perform that
duty. The powers and responsibilities of the office remain roughly the same
over time while individual officeholders come and go much more frequently.

In object-oriented programming, an abstract data type is a class considered
without regard to its implementation. It’s a description of the data in the class
(fields or attributes), the relationships of the fields, a list of operations



(methods) that can be carried out on that data, and instructions on how to use
these operations. Specifically excluded are the details of how the methods carry
out their tasks. As a class user, you’re told what the fields mean, what values
they can take, what methods to call, how to call them, and the results you can
expect, but not how they work.

The meaning of abstract data type is further extended when it’s applied to data
structures such as stacks and queues. As with any class, it means the data and
the operations that can be performed on it, but in this context even the
fundamentals of how the data is stored become invisible to the user. Users not
only don’t know how the methods work; they also don’t know what
structure(s) store the data. Although the exact mechanism isn’t known, users
usually do know the complexity of the methods, that is, whether they are O(1),
O(log N), O(N), and so on. When the insertion into a stack or a queue is O(1),
you expect all implementations regardless of their implementation to maintain
that efficiency.

For the stack, the user (programmer) knows that push(), pop(), and peek()
(and perhaps a few other methods like isEmpty()) exist and what they are
supposed to do. The user doesn’t (at least not usually) need to know how
push() and pop() work, or whether data is stored in an array, a linked list, or
some other data structure like a tree. In this book, we usually refer to the
abstract data type, like an array, without capitalization or a special font. For a
class like LinkStack, its methods, or a particular instance or object of that
class, we use capitalization and the font to distinguish it from the abstract data
type.

The Interface
An ADT specification is often called an interface. It’s what the class user sees
—usually its public methods and fields. In a stack class, push() and pop() and
similar methods form the interface. Public attributes like nItems are also part
of the interface.

ADT Lists
Now that you know what an abstract data type is, here’s another one: the list. A
list (sometimes called a linear list) is a group of items arranged in a linear
order. That is, they’re lined up in a certain way, like beads on a string or links
in a chain. Lists support certain fundamental operations. You can insert an



item, delete an item, and usually read an item from a specified location (the
first, the last, and perhaps an intermediate item specified by a key or an index).
The exact choice of which of those operations is possible is part of the
definition of the ADT.

Don’t confuse the ADT list with the linked list classes discussed in this chapter,
LinkedList and DoubleEndedList, nor Python’s list data type. An ADT list
is defined by its interface—the specific methods and attributes used to interact
with it. This interface can be implemented by various structures, including
arrays and linked lists. The list is an abstraction of such data structures. The
classes are objects, and objects are a way of implementing abstract data types.
When detailed information is added about storage and algorithms, it becomes a
concrete data type.

ADTs as a Design Tool
The ADT concept is a useful aid in the software design process. If you need to
store data, start by considering the operations that need to be performed on that
data. Do you need access to the last item inserted? The first one? An item with
a specified key? An item in a certain position? How frequently do you expect
each kind of access to occur? Answering such questions leads to the choice of
an appropriate ADT or the definition of new one. Only after the ADT is
completely defined should you worry about the details of how to represent the
data and how to code the methods that access the data.

By decoupling the specification of the ADT from the implementation details,
you can simplify the design process. You also make it easier to change the
implementation at some future time. If a programmer writes a design or even
develops some code using only the ADT interface, a second programmer
should be able to change the implementation of the ADT without “breaking”
the first programmer’s code.

Of course, after designing the ADT, the underlying data structure and
algorithm implementation must be carefully chosen to make the specified
operations as efficient as possible. If you need random access to the Nth
element, for example, the linked-list representation isn’t so good because
random access isn’t an efficient operation for a linked list. You’d be better off
with an array. If random access is needed only very rarely, and the extra time
needed to find the item is small compared to the time it could take to copy the



array contents several times when growing (and maybe shrinking) an
expandable array, then maybe the linked list representation is better.

Note
Remember that the ADT concept is only a conceptual tool. Data storage structures are not
divided cleanly into some that are ADTs and some that are used to implement ADTs. A
linked list, for example, doesn’t need to be wrapped in a list interface to be useful; it can act
as an ADT on its own, or it can be used to implement another data type such as a queue. A
linked list can be implemented using an array, and an array-type structure can be
implemented using a linked list. In fact, Python’s list data type is implemented using
arrays and acts like both an array and a list. This implementation is “invisible” to most
programmers, although it’s important to know that adding an element to the end of Python
list is usually an O(1) operation, not O(N).

Ordered Lists
In the linked lists you’ve seen thus far, there was no requirement that data be
stored in order. For many applications, however, it’s useful to maintain the data
in a particular order within the list. A list with this characteristic is called an
ordered list.

In an ordered list, the items are always arranged in order by a key value.
Deletion is often limited to the smallest (or the largest) item in the list, which is
at the start of the list, although sometimes find() and delete() methods,
which search through the list for specified links, are used as well.

In general, you can use an ordered list in most situations in which you use an
ordered array. The advantages of an ordered list over an ordered array are
speed of insertion (because elements don’t need to be moved) and the fact that
a list can expand to meet the minimum memory required, whereas an array is
limited to a fixed size that must be declared before using it. An ordered list
may, however, be more difficult to implement than an ordered array.

Later we look at one application for ordered lists: sorting data. An ordered list
can also be used to implement a priority queue, although a heap (see Chapter
13, “Heaps”) is a more common implementation. Note that it is very rare to
start with an unordered linked list and sort its contents. Doing so efficiently
takes extra work. We use the term ordered list, as opposed to sorted list, to
reinforce that the data is always kept in order, not mixed up and later
rearranged.



The Linked List Visualization tool introduced at the beginning of this chapter
demonstrated unordered lists. To see how ordered lists work, use the
OrderedList Visualization tool, launched with a command like python3
OrderedList.py. The operations on the two lists have the same names but
have different behaviors, of course, to maintain the ordering. Figure 5-9 shows
the tool with a list of ingredients already entered, ordered alphabetically.

Figure 5-9 The OrderedList Visualization tool

Type some words and insert them using the text entry box and the Insert
button. The first item always goes in the first position, but subsequent items get
placed after any items already in the list by their alphabetical order. Watch the
insertion animation after it finds the right place in the list. It’s nearly the same
as for the unordered list.

With several items in your list, try a search for an item. Search for both an
existing key and one that’s not in the list. The search stops as soon as it finds an
item with a key larger than that of the goal key. Next, try deleting a key that’s
early in the list. The deletion process is the same as the unordered one when the
key is in the list, but the search process for missing keys ends after it finds
higher valued keys.

Python Code for Ordered Lists
An ordered list is a special kind of linked list, so the OrderedList.py module
shown in Listing 5-13 defines the OrderedList class as a subclass of
LinkedList. It has one extra attribute, __key, which is a function that extracts
the sorting key from items in the list. The sort key is stored when the list is



created and cannot be changed because that would allow a list of existing items
to become unordered with respect to the key.

Listing 5-13 The Beginning of the OrderedList.py Module

from LinkedList import * 
 
class OrderedList(LinkedList): # An ordered linked list where items 
   def __init__(self,          # are in increasing order by key, which 
                key=identity): # is retrieved by a func. on each item 
      self.__first = None      # Reference to first Link, if any 
      self.__key = key         # Function to retrieve key 
 
   def getFirst(self): return self.__first # Return the first link 
 
   def setFirst(self, link):   # Change the first link to a new Link 
      if link is None or isinstance(link, Link): #Must be Link or None 
         self.__first = link 
      else: 
         raise Exception("First link must be Link or None") 
 
   def find(self, goal):       # Find the 1st Link whose key matches 
                               # or is after the goal 
      link = self.getFirst()   # Start at first link, and search 
      while (link is not None and         # while not end of the list 
             self.__key(link.getData()) < goal): # and before goal 
         link = link.getNext() # Advance to next in list 
      return link # Return Link at or just after goal or None for end 
 
   def search(self, goal):     # Find 1st datum whose key matches goal 
      link = self.find(goal)   # Look for Link object that matches 
      if (link is not None and     # If Link found, and its key 
          self.__key(link.getData()) == goal): # matches the goal 
         return link.getData()     # return its datum

Because OrderedList is a subclass of LinkedList, it inherits all the methods
defined in Listing 5-3 and Listing 5-4. The getFirst() and setFirst()
methods must be redefined here for the same reason we noted in the
DoubleEndedList subclass: Python’s name mangling of attributes that start
with double underscores prevents sharing the parent class’s attributes. The
other methods like getNext() and isEmpty() work without rewriting them.
Note that making OrderedList a subclass of LinkedList leaves setFirst() as



a public method, which is not advisable because callers could use it to place
items in the list out of order.

The find() method resembles what was used for the LinkedList, but there are
important changes. Because the list items are ordered, the methods that step
through the list looking for a particular key take advantage of the ascending
ordering. The method has a test in the while loop condition that checks that the
key of the current link is less than that of the goal. That means that the loop can
end when it

• Finds the link with the goal key

• Finds the next link immediately after where link with the goal key would
go or

• Hits the end of the list

Because the loop can end with link pointing at either the desired Link or the
one with the next higher key value, there’s a question on what value to return
when the goal is not found. This implementation returns either kind of Link
because the capability of finding the one immediately following a particular
key can be used for some operations (for example, splitting the list). This is
like the behavior of the find() method for ordered record arrays in Chapter 4,
which returned the index where a new item should be inserted. In other words,
the find() method returns a pointer to where a Link having the goal key
should be inserted in the list. If it goes before the first item in the list, the
pointer to the first Link is returned. If it goes somewhere before or at one of the
other items, the pointer to that item is returned. Only if it goes after the last
item is None returned.

The search() method calls find() and adds a test to its if statement checking
whether the Link returned from find() is valid, and it returns the item stored
in that Link only if its key matches.

The insert() method of the OrderedList.py module shown in Listing 5-14
does something similar. Ideally, it would just use find() to locate the insertion
point and modify the list there. In this case, however, it needs to modify the
__next pointer of the Link preceding the one returned by find(). So, like the
delete() method of LinkedList, it uses a loop to search for the previous Link
to the insertion point. More precisely, it looks for either the OrderedList or
Link that precedes the insertion point. The while loop condition changes to



also verify that the next Link’s key is less than the goal key; otherwise, the
loop can end.

Listing 5-14 The insert() and delete() Methods of OrderedList

class OrderedList(LinkedList): 
… 
 
   def insert(self, newDatum): # Insert a new datum based on key order 
      goal = self.__key(newDatum)  # Get target key 
      previous = self          # Link or OrderedList before goal Link 
      while (previous.getNext() is not None and  # Has next link and 
             self.__key(previous.getNext().getData()) 
             < goal):          # next link’s key is before the goal 
         previous = previous.getNext() # Advance to next link 
      newLink = Link(          # Build a new Link node with new 
         newDatum, previous.getNext()) # datum and remainder of list 
      previous.setNext(newLink) # Update previous’ first/next pointer 
 
   def delete(self, goal):     # Delete first Link with matching key 
      if self.isEmpty():       # Empty list? Raise an exception 
         raise Exception("Cannot delete from empty linked list") 
 
      previous = self          # Link or OrderedList before Link 
      while (previous.getNext() is not None and  # Has next link and 
             self.__key(previous.getNext().getData()) 
             < goal):          # next link’s key is before the goal 
         previous = previous.getNext()  # Advance to next link 
      if (previous.getNext() is None or # If goal key not in next 
          goal !=                       # Link after previous 
          self.__key(previous.getNext().getData())): 
         raise Exception("No datum with matching key found in list") 
 
      toDelete = previous.getNext() # Store Link to delete 
      previous.setNext(toDelete.getNext()) # Remove it from list 
 
      return toDelete.getData() # Return data in deleted Link

After the loop ends, insert() constructs the new Link with the provided
newDatum and the rest of the list after the previous pointer. The __next pointer
of previous is updated similarly to the other linked list classes. By inheriting
the definition of setNext() as a synonym for the setFirst() method, the



OrderedList.insert() method updates either the __first pointer or the
__next pointer depending on the data type of previous.

The delete() method uses a similar structure as the insert() method, after
first checking for an empty list and throwing an exception if one is found. It
uses the same style of while loop to get previous to point at the Link
immediately before the link where the goal key is or should be. To avoid
having the loop end with previous pointing to a position after where the goal
key would go, the loop condition looks ahead at the next link’s key, if there is
one. When the loop is done, it checks if the Link just after previous has the
goal key and raises an exception if it doesn’t. Having verified that the goal
key was found, it can note the link toDelete and remove it by modifying the
appropriate __next or __first field by calling setNext() on the previous link.
It replaces the old value by calling getNext() on the Link to be deleted. The
data stored in the toDelete link is returned.

The movement of the previous pointer and the addition/removal of the next
link is animated in the Insert/Delete operations of the Ordered List
Visualization tool. Look at the individual steps to see the operations in detail.

Listing 5-15 shows a client program to test the OrderedList class. It starts with
an empty ordered list using the default sorting key function, identity(). It
inserts an alternating sequence of positive and negative integers. It displays the
ordered list and then searches it for certain values to see what the find() and
search() methods return. Finally, it removes the numbers in the order they
were inserted, which means it first deletes items from the middle of the list and
finishes by deleting the ones on the ends.

Listing 5-15 The OrderedListClient.py Program

from OrderedList import * 
 
olist = OrderedList() 
print(’Initial list has’, len(olist), ’element(s) and empty =’, 
      olist.isEmpty()) 
 
for i in range(5): 
   olist.insert((-1 - i) ** i) 
print(’After inserting’, len(olist), 
      ’numbers into the ordered list, it contains:\n’, olist, 
      ’and empty =’, olist.isEmpty()) 



 
for value in [9, 999]: 
   for sign in [-1, 1]: 
      val = sign * value 
      print(’Trying to find’, val, ’in ordered list returns’, 
            olist.find(val), ’, search returns’, olist.search(val)) 
 
print(’Deleting items from the ordered list:’) 
for i in range(5): 
   number = (-1 - i) ** i 
   print(’After deleting’, olist.delete(number), 
         ’the list is’, olist)

The result of running this program is
$ python3 OrderedListClient.py 
Initial list has 0 element(s) and empty = True 
After inserting 5 numbers into the ordered list, it contains: 
 [-64 > -2 > 1 > 9 > 625] and empty = False 
Trying to find -9 in ordered list returns -2 , search returns None 
Trying to find 9 in ordered list returns 9 , search returns 9 
Trying to find -999 in ordered list returns -64 , search returns None 
Trying to find 999 in ordered list returns None , search returns None 
Deleting items from the ordered list: 
After deleting 1 the list is [-64 > -2 > 9 > 625] 
After deleting -2 the list is [-64 > 9 > 625] 
After deleting 9 the list is [-64 > 625] 
After deleting -64 the list is [625] 
After deleting 625 the list is []

Notice the result of the call to find(-9). It returns a pointer to the Link holding
−2. That might seem odd, but −9 falls between −64 and −2. The find()
method returns a pointer to a link immediately after where the given key
should be inserted. The call to find(9) does find the Link holding 9 in it, and
that is the only call to the search() method that returns something other than
None. The calls to find −999 and 999 show the results when the goal key would
land before or after all the list items, respectively.

Efficiency of Ordered Linked Lists
Insertion and deletion of arbitrary items in the ordered linked list require O(N)
comparisons (N/2 on the average) because the appropriate location must be
found by stepping through the list. The minimum value, however, can be
found, or deleted, in O(1) time because it’s at the beginning of the list. If an



application frequently accesses the minimum item, and fast insertion isn’t
critical, then an ordered linked list is an effective choice. Similarly, if the
maximum item is needed much more frequently than the minimum and the
same O(N) average insertion time is acceptable, the items could be ordered in
descending order. If both the minimum and maximum were needed, a double-
ended ordered list would be good. A priority queue might be implemented by a
double-ended ordered linked list, for example.

List Insertion Sort
An ordered list can be used as a fairly efficient sorting mechanism for data in
an array. Suppose you have an array of unordered data items. If you take the
items from the array and insert them one by one into the ordered list, they’ll be
placed in order automatically. If you then remove them from the list, always
deleting from the front and putting them back in the array by increasing
indices, the array will be ordered.

This type of sort turns out to be substantially more efficient than the more usual
insertion sort within an array, described in Chapter 3, “Simple Sorting,”
because fewer copies are necessary. It’s still an O(N2) process because
inserting each item into the ordered list involves comparing a new item with an
average of half the items already in the list. There are N items to insert, which
results in about N2/4 comparisons. Each item is copied only twice, however—
once from the array to the list and once from the list to the array. The 2×N
copies compare favorably with the insertion sort within an array, where there
are about N2 copies.

The downside of the list insertion sort, compared with an array-based insertion
sort, is that it takes somewhat more than twice as much memory: the array and
linked list must be in memory at the same time. If you have an ordered linked
list class handy, however, the list insertion sort is a convenient way to sort
arrays that aren’t too large.

Doubly Linked Lists
Let’s examine another variation on the linked list: the doubly linked list (not
to be confused with the double-ended list). What’s the advantage of a doubly
linked list? A potential problem with ordinary linked lists is that it’s difficult to
traverse backward along the list. A statement like



current = current.getNext()

steps conveniently to the next link, but there’s no corresponding way to return
to the previous link. Depending on the application, this limitation could pose
problems.

For example, imagine a text editor in which a linked list is used to store the
text. Each text line on the screen is stored as a String object referenced from a
link. When the user moves the cursor downward on the screen, the program
steps to the next link to manipulate or display the new line. What happens if the
user moves the cursor upward? In an ordinary linked list, you would need to
return current (or its equivalent) to the start of the list and then step all the
way down again to the new current link. This isn’t very efficient. You want to
make a single step upward.

The doubly linked list provides this capability. It allows programs to traverse
backward as well as forward through the list. The secret is that each link keeps
two references to other links instead of one. The first is to the next link, as in
ordinary lists. The second is to the previous link. Figure 5-10 shows a double-
ended version of this type of list.



Figure 5-10 A doubly linked (and double-ended) list

The chain of links ends with a null pointer (an empty box in the figure and a
value of None in Python) for both the forward and reverse chains. The
downside of doubly linked lists is that every time you insert or delete a link,
you must deal with four links instead of two—two attachments to the previous
link and two attachments to the following one. That will become clearer when
we look at the implementation a little later. It should be no surprise that each
link record is a little bigger because of the extra reference needed for the
reverse link.

Let’s look at how to manage the extra linkages. The specification for the Link
class in a doubly linked list (as a subclass of singly linked list) is shown in
Listing 5-16.



Listing 5-16 The Link Class of the DoublyLinkedList.py Module

import LinkedList 
 
class Link(LinkedList.Link):      # One datum in a linked list 
   def __init__(self, datum,      # Constructor with datum 
                next=None,        # and optional next and 
                previous=None):   # previous pointers 
      self.__data = datum 
      self.__next = next          # reference to next item in list 
      self.__previous = previous  # reference to previous item 
 
   def getData(self): return self.__data   # Accessors 
   def getNext(self): return self.__next 
   def getPrevious(self): return self.__previous 
   def setData(self, d): self.__data = d 
   def setNext(self, link):             # Accessor that enforces type 
      if link is None or isinstance(link, Link): 
         self.__next = link 
      else: 
         raise Exception("Next link must be Link or None") 
   def setPrevious(self, link):         # Accessor that enforces type 
      if link is None or isinstance(link, Link): 
         self.__previous = link 
      else: 
         raise Exception("Previous link must be Link or None") 
 
   def isFirst(self): return self.__previous is None

The definition for this Link class is only a little more complex than that for the
singly linked list shown in Listing 5-2. The class definition makes the doubly
linked version a subclass of the singly linked version and adds a private
__previous field, which means that new accessor methods need to be defined
for getting and setting its value. Just like for the __next pointer, the
setPrevious() method enforces the constraint about the type of reference
stored in that field. Most of the methods need to be rewritten in the subclass to
correctly access the private fields in Python. Only the isLast() and __str__()
methods remain the same in both Link classes. A new method for testing
whether this is the first Link in a list, isFirst(), is now easy with the addition
of the __previous field.



A doubly linked list doesn’t necessarily need to be a double-ended list (keeping
a reference to the last element on the list), but creating it this way is useful. The
implementation of DoublyLinkedList shown in Listing 5-17 uses both a
__first and __last pointer to make it easy to traverse the list in reverse order.
It has the usual accessor methods for getting and setting the fields. The
methods for setting the pointers enforce the type constraint on those fields and
perform special checks to update both ends of the list when adding the first or
deleting the last link.

Listing 5-17 The DoublyLinkedList Class Constructor and Accessors

class DoublyLinkedList(LinkedList.LinkedList): 
   def __init__(self):                 # Constructor 
       self.__first, self.__last = None, None 
 
   def getFirst(self): return self.__first # Accessors 
   def getLast(self): return self.__last 
 
   def setFirst(self, link):           # Set first link 
      if link is None or isinstance(link, Link): # Check type 
         self.__first = link 
         if (self.__last is None or    # If list was empty or 
             link is None):            # list is being truncated 
            self.__last = link         # update both ends 
      else: 
         raise Exception("First link must be Link or None") 
 
   def setLast(self, link):            # Set last link 
      if link is None or isinstance(link, Link): # Check type 
         self.__last = link 
         if (self.__first is None or   # If list was empty or 
             link is None):            # list is being truncated 
            self.__first = link        # update both ends 
      else: 
         raise Exception("Last link must be Link or None") 
 
   def traverseBackwards(      # Apply a function to all Links in list 
         self, func=print):    # backwards from last to first 
      link = self.getLast()    # Start with last link 
      while link is not None:  # Keep going until no more links 
         func(link)            # Apply the function to the link 
         link = link.getPrevious() # Move on to previous link



The DoublyLinkedList class inherits the methods defined for the LinkedList
class to traverse the list in the forward direction. More specifically, the
isEmpty(), first(), traverse(), __len__(), and _str() methods of
LinkedList all work without modification. A new traverseBackwards()
method applies a function to each list item in the reverse direction.

Insertion and Deletion at the Ends
The next methods to look at are the ones for inserting and deleting links at the
beginning and end of the doubly linked list. The insertFirst() method inserts
at the beginning of the list, and insertLast() inserts at the end. Similarly, the
deleteFirst() and deleteLast() methods delete the first and last Links in
the list. They are shown in Listing 5-18. Later we look at methods to insert and
delete links in the middle.

Listing 5-18 Methods to Insert and Delete the Ends of DoublyLinkedLists

class DoublyLinkedList(LinkedList.LinkedList): 
… (other definitions shown before) … 
 
   def insertFirst(self, datum): # Insert a new datum at start of list 
      link = Link(datum,         # New link has datum 
                  next=self.getFirst()) # and precedes current first 
      if self.isEmpty():         # If list is empty, 
         self.setLast(link)      # insert link as last (and first) 
      else:                      # Otherwise, first Link in list 
         self.getFirst().setPrevious(link) # now has new Link before 
         self.setFirst(link)     # Update first link 
 
   insert = insertFirst          # Override parent class insert 
 
   def insertLast(self, datum):  # Insert a new datum at end of list 
      link = Link(datum,         # New link has datum 
                  previous=self.getLast()) # and follows current last 
      if self.isEmpty():         # If list is empty, 
         self.setFirst(link)     # insert link as first (and last) 
      else:                      # Otherwise, last Link in list 
         self.getLast().setNext(link) # now has new Link after 
         self.setLast(link)      # Update last link 
 
   def deleteFirst(self):        # Delete and return first link’s data 
      if self.isEmpty():         # If list is empty, raise exception 



         raise Exception("Cannot delete first of empty list") 
      first = self.getFirst()    # Store the first link 
      self.setFirst(first.getNext()) # Remove first, advance to next 
      if self.getFirst():        # If that leaves a link in the list, 
         self.getFirst().setPrevious(None) # Update its predecessor 
      return first.getData()     # Return data from first link 
 
   def deleteLast(self):         # Delete and return last link’s data 
      if self.isEmpty():         # If list is empty, raise exception 
         raise Exception("Cannot delete last of empty list") 
      last = self.getLast()      # Store the last link 
      self.setLast(last.getPrevious()) # Remove last, advance to prev 
      if self.getLast():         # If that leaves a link in the list, 
         self.getLast().setNext(None) # Update its successor 
      return last.getData()      # Return data from last link

The insertFirst()method first creates the new Link holding the new datum.
The current first Link of the list is passed as the next link to follow the new
link. The __previous field of the new link is left empty because this will be
the first Link of the list. The next step is to update the __first (and possibly
the __last field) to be the new link. There are two cases:

• If the list is empty, the method updates both with a single call to
setLast().

• If there are already some links, then it must change the reverse pointer
from the current first link to point back at the new link. Then it replaces
the first link with the newly created Link.

The process for inserting the string "a” into a doubly linked list containing
["A", “B"] is shown in Figure 5-11.



Figure 5-11 Insertion at the beginning of a doubly linked list

After defining the insertFirst() method, Listing 5-18 also redefines
insert() to be synonymous with it. That redefinition is needed so that the



simpler name in the parent class, LinkedList, refers to the same operation. The
insertLast() follows the same structure but updates the __last field. It’s
something like a mirror image of insertFirst(), swapping first ⇄ last, and
previous ⇄ next.

Deleting a Link from one of the ends of the list also involves carefully
updating the pointers. The order of the updates is important so that you avoid
removing a reference that is needed later. The implementation of
deleteFirst() checks whether the list is empty and throws an exception if it
is. If not, it stores a pointer to the first Link. That first pointer is used to get
the data in that Link after it’s been removed from the list. Then it advances the
__first field to point at the second Link. The pointer to that second Link
might be None. If it is, the setFirst() method also updates the __last field to
be None. Otherwise, there is at least one more link in the list, and its
__previous field must be updated to be None because it just became the first
Link, as shown in Figure 5-12. Finally, the data from the deleted Link is
returned.



Figure 5-12 Deleting the first item of a doubly linked list

Insertion and Deletion in the Middle
Modifying Links in the middle of a doubly linked list is slightly more
complicated because all four pointers need to be considered (the forward-
reverse pointers both before and after). To specify where the operation should
happen, typically you identify a Link with a matching key. For that, you need a
find() method that returns a pointer to the link. Because the
DoublyLinkedList class is a subclass of the LinkedList and that has a find()
method, as shown in Listing 5-5, there’s no need to rewrite one for



DoublyLinkedList. The methods for inserting after and deleting target Links
are shown in Listing 5-19.

Listing 5-19 Methods to Insert and Delete Middle Links of DoublyLinkedLists

def identity(x): return x         # Identity function 
… 
class DoublyLinkedList(LinkedList.LinkedList): 
… (other definitions shown before) … 
 
   def insertAfter(                # Insert a new datum after the 
         self, goal, newDatum,     # first Link with a matching key 
         key=identity): 
      link = self.find(goal, key)  # Find matching Link object 
      if link is None:             # If not found, 
         return False              # return failure 
      if link.isLast():            # If matching Link is last, 
         self.insertLast(newDatum) # then insert at end 
      else: 
         newLink = Link(           # Else build a new Link node with 
            newDatum,              # the new datum that comes just 
            previous=link,         # after the matching link and 
            next=link.getNext())   # before the remaining list 
         link.getNext().setPrevious( # Splice in reverse link 
            newLink)               # from link after matching link 
         link.setNext(newLink)     # Add newLink to list 
      return True 
 
   def delete(self, goal,          # Delete the first Link from the 
              key=identity):       # list whose key matches the goal 
      link = self.find(goal, key)  # Find matching Link object 
      if link is None:             # If not found, raise exception 
         raise Exception("Cannot find link to delete in list") 
      if link.isLast():            # If matching Link is last, 
         return self.deleteLast()  # then delete from end 
      elif link.isFirst():         # If matching Link is first, 
         return self.deleteFirst() # then delete from front 
      else:                        # Otherwise it’s a middle link 
         link.getNext().setPrevious( # Set next link’s previous 
            link.getPrevious())    # to link preceding the match 
         link.getPrevious().setNext( # Set previous link’s next 
            link.getNext())        # to link following the match 
         return link.getData()     # Return deleted data item



The insertAfter() method starts by using the find() method to find a Link
whose key matches the given goal. If such a Link isn’t found, then the method
quits, returning False to indicate it failed. Alternatively, it could raise an
exception or insert the data at the first or last position, depending on what’s
needed. After a Link with a goal key is found, insertAfter() checks whether
it is the last link, and if so, uses insertLast() to place it after the last link.

After handling the special cases, insertAfter() can deal with the case of
inserting between two consecutive links of the list. It builds a new Link
holding the new data with the previous pointer set to the goal Link, and the
next pointer set to the following Link. This is shown in the third panel of
Figure 5-13. The fourth panel shows how it alters the __previous pointer of
the following Link and the __next pointer of the goal Link to point at the
newLink. The order of these steps is very important.



Figure 5-13 Insertion in the middle of a doubly linked list

The delete() method also starts by using the find() method to find a Link
whose key matches the given goal. If such a Link isn’t found, then it raises an



exception. Alternatively, it could return False to indicate it failed. Having
found the Link to delete, it checks whether it’s the last or first link of the list. If
it is, it uses the deletion methods for the ends. Otherwise, it needs to “snip” out
the goal Link by altering the __previous and __next pointers of the Links
after and before it, respectively. With the pointers modified, it returns the data
stored in the goal link.

Note that the doubly linked list avoids the need to search for the Link
preceding the goal for both insertion and deletion. The data structure stores
that pointer for every Link, unlike singly linked lists. Do you think that’s a
simplification in terms of how complicated it is to implement the insertion and
deletion methods? Opinions differ on that, but remember that this kind of
complexity is very different from the computational complexity of the
algorithm. Complexity for the programmer is a completely separate concept
from how efficiently the computer can perform the operations. Both are
important for different reasons.

To verify the implementation of the doubly linked list, you can use a program
like the DoublyLinkedListClient.py program shown in Listing 5-20. Note
that programs like this exercise the basic operations of a data structure but are
not truly comprehensive test programs.

Listing 5-20 The DoublyLinkedListClient.py Program

from DoublyLinkedList import * 
 
dlist = DoublyLinkedList() 
 
for data in [(1968, ’Richard’), (1967, ’Maurice’), (1966, ’Alan’)]: 
   dlist.insertFirst(data) 
for data in [(2015, ’Whitfield’), (2015, ’Martin’), 
             (2016, ’Tim’), 
             (2017, ’David’), (2017, ’John’)]: 
   dlist.insertLast(data) 
print(’After inserting’, len(dlist), 
      ’entries into the doubly linked list, it contains:\n’, dlist, 
      ’and empty =’, dlist.isEmpty()) 
 
print(’Traversing backwards through the list:’) 
dlist.traverseBackwards() 
 
print(’Deleting first entry returns:’, dlist.deleteFirst()) 



print(’Deleting last entry returns:’, dlist.deleteLast()) 
def year(x): return x[0] 
for date in [1967, 2015]: 
   print(’Deleting entry with key’, date, ’returns’, 
         dlist.delete(date, key=year)) 
print(’List after deletions contains:’, dlist) 
 
for date in [1968, 2015]: 
   data = (date + 1, ’?’) 
   print(’Inserting’, data, ’after’, date, ’returns’, 
         dlist.insertAfter(date, data, key=year)) 
print(’List after insertions contains:’, dlist) 
 
print(’Traversing backwards through the list:’) 
dlist.traverseBackwards()

The program in Listing 5-20 builds a doubly linked list holding pairs of a year
and a name. It shows the contents of the list both in the string format, which
steps through the list in the forward direction, and by calling the
traverseBackwards() method to print each data item in reverse order. It tests
deletion at both ends of the list, followed by deleting some entries by using the
year as a key (it defines a year() function that returns the first entry of each
pair). The items are printed as they are deleted, and the remaining list is printed
after that. Then it inserts some new pairs after items with specific dates and
prints the list both forward and backward to show that the linkages are
preserved after all the changes. The output is
$ python3 DoublyLinkedListClient.py 
After inserting 8 entries into the doubly linked list, it contains: 
 [(1966, ’Alan’) > (1967, ’Maurice’) > (1968, ’Richard’) > (2015, 
’Whitfield’) > (2015, ’Martin’) > (2016, ’Tim’) > (2017, ’David’) > 
(2017, 
’John’)] and empty = False 
Traversing backwards through the list: 
(2017, ’John’) 
(2017, ’David’) 
(2016, ’Tim’) 
(2015, ’Martin’) 
(2015, ’Whitfield’) 
(1968, ’Richard’) 
(1967, ’Maurice’) 
(1966, ’Alan’) 
Deleting first entry returns: (1966, ’Alan’) 
Deleting last entry returns: (2017, ’John’) 
Deleting entry with key 1967 returns (1967, ’Maurice’) 



Deleting entry with key 2015 returns (2015, ’Whitfield’) 
List after deletions contains: [(1968, ’Richard’) > (2015, ’Martin’) > 
(2016, ’Tim’) > (2017, ’David’)] 
Inserting (1969, ’?’) after 1968 returns True 
Inserting (2016, ’?’) after 2015 returns True 
List after insertions contains: [(1968, ’Richard’) > (1969, ’?’) > 
(2015, 
’Martin’) > (2016, ’?’) > (2016, ’Tim’) > (2017, ’David’)] 
Traversing backwards through the list: 
(2017, ’David’) 
(2016, ’Tim’) 
(2016, ’?’) 
(2015, ’Martin’) 
(1969, ’?’) 
(1968, ’Richard’)

Doubly Linked List as Basis for Deques
A doubly linked list can be used as the basis for a deque, mentioned in the
preceding chapter. In a deque, you can insert and delete at either end, and the
doubly linked list provides this capability. A programming project at the end of
this chapter has you implement this ADT.

Circular Lists
All the lists we’ve looked at so far have a defined beginning and end.
Occasionally, it’s useful to create a chain of links that forms a circle or loop.
For example, a chain of links could represent the players in a game where the
turn passes from one player to the next and returns to the first when all players
have had their turn. In some sports the players are organized in a rotation,
taking turns at serving or batting. In chemistry there are chains of molecules
that form rings. In biology there are organisms that depend on other organisms,
and the dependencies sometimes form loops. The obvious question then
becomes, “Where does the circular list end?” In each of these examples, there
really isn’t an end, but there’s a need for a marker, or sometimes multiple
markers, to designate a specific member of the list for various purposes.

Using a “circular” array to implement a queue is a convenient way to reuse
array cells for storage after they had been inserted at one end and removed
from the other. If the queue length was less than the size of the array, some
cells of the array were not used. Circular lists that are implemented using



references between objects avoid having unused elements. That design saves
space but introduces complications like determining the size of the list and
traversing each element of the list exactly once. The double-ended list is a
better design for a queue because it doesn’t have unused elements and is
simpler than circular lists. There can be other uses, however, where a circular
list might help.

Figure 5-14 shows a typical way to represent circular lists. The list is singly
linked, but it could be doubly linked if reversing the direction of traversal is
important. It needs a marker for one of the elements to designate it as the last
(or current or first), just like the LinkedList points at an individual Link
object. The figure doesn’t show any data stored in the links. Any data would be
stored using references, the same way as the other linked lists we’ve discussed.



Figure 5-14 A circular linked list (without data)

If the only thing stored for the marker is a pointer to one of the Links, then
traversal requires following the pointers until the loop revisits the marked Link.
That’s no more complicated than following the pointers until None is found. By
choosing to mark the last Link in the chain, you can find the first Link in two
steps, making both insert() (or insertFirst) and insertLast() methods
constant time operations.

The biggest problem with circular lists is ensuring they remain circular. The
individual Link objects would typically offer a setNext() method that would
be used by the CircularList class to insert and delete links from the structure.
If that setNext() method is public and callable by the code using the
CircularList class, then the caller could set a link pointer to some other Link,
or possibly set it to None, to form a noncircular, or linear, list. These can take
unusual shapes, like the ones shown in Figure 5-15.

Figure 5-15 Broken circular lists (without data)

Coping with anomalies in circular lists can be difficult. If None is allowed as a
value for the next pointer, then the traversal loop conditions must look for that
value in addition to finding the first visited link when determining the end of a
traversal loop. Even that, however, won’t help when the __last pointer is not
pointing to a Link in a loop, as shown on the right in Figure 5-15 where the
__last field points at a “spur” off the loop. Traversal would start on the spur
and progress onto the circular part. That means the loop condition must
compare the current pointer to not only the first pointer but to all Links visited
so far. That’s not much of a concern for a small circular list, but as the number
of links grows large, it becomes very time-consuming. Each of the N steps in



the traversal must compare the current link with up to N other links, so the total
number of comparisons is O(N2).

To avoid such problems, circular list implementations must avoid making the
setNext() method public and offer other methods for altering the list that
guarantee it remains a single loop with no spurs or breaks. Similarly, linked
lists of all kinds (simply linked, doubly linked, double-ended) must not allow
public setNext() methods to be used to create what is essentially a circularly
linked list. If they do, then the traversal methods that terminate when None is
found will never find it.

Iterators
All the linked lists and array structures you’ve studied have included a
traverse() method. That method applies a function on every item stored in
the data structure, in a known order. Visiting every item is very useful, for
instance, when you need to update all the personnel records to assign a new
identification code to every one of them or to print a mailing label for every
record. The function passed to traverse() takes a single argument, an item
stored in the list, and performs some operation.

Calling a function on every item works well when the operation to be
performed on each item is independent of the operations performed on all the
other items. On the other hand, operations that combine or have some
interaction between the items are not as easy to handle with a single function
on one item. For example, if you needed the average of some numeric field in
each record, the function would need to collect the sum somewhere and then
divide it by the number of items at the end. Another difficult example would be
to collect pairs of records where some fields in each pair don’t match one
another.

For combining data across all the items in a data structure, it’s more convenient
to have some way to traverse the items in a loop inside the calling program.
That allows the caller to keep track of sums, minimums, maximums, the last
value processed, and so on. What’s needed is a way to iterate over the items in
the context of another program. Iterating this way is straightforward for arrays
where the items are indexed by an integer and any item can be fetched in
constant time. Data structures like lists and some of the more complex ones we
study later don’t have a way to access arbitrary items in constant time but can



follow a defined order to step through all the items with constant time access
for each step.

An iterator is a data structure that provides methods to step through all the
items contained in another data structure, visiting each item exactly once. The
order of the items is fixed; each iterator for a particular object goes through the
sequence of items in the same order as long as the contents of the object don’t
change. The iterator must provide at least one method, usually called next(),
getNext(), or something similar, that is used to get the next item in the
sequence. The other methods it provides are somewhat dependent on the data
structure it steps through and the language used to implement it.

The object that the iterator steps through is sometimes called a collection, a
container, a sequence, or an iterable. The choice of which term to use is
somewhat dependent on the kind of data structure being sequenced. Python has
sequence data types, such as list and str. There is a natural order of the items
in those structures, so they are appropriately named. Other data structures like
hash tables (dictionaries), trees, and sets have less obvious orderings. The items
they contain, however, can still be put into a sequence that the iterator steps
through.

There’s another benefit to iterators: they can represent infinite sequences and
sequences of indefinite length. For interactive programs, the various inputs
coming in, like clicks, keystrokes, touches, sounds, camera images, and
network packets, can be handled by iterators. It’s usually unclear how many of
these inputs will happen. The program that consumes them only needs to know
that they come in order and that it should continue processing them until some
termination code is received. In math, there are infinite sequences, such as all
the integers or all the prime numbers. It’s impractical to make a data structure
that holds an infinite number of things, but in many cases, you can make one
that steps through that infinite sequence in a particular order.

Python calls any class that can produce an iterator as iterable. We use that term
in this book to describe any object being sequenced, although that term has a
more specific meaning in Python. Let’s examine how to construct iterators in
general and then look at the specifics of how to implement them in Python.

Basic Iterator Methods



An iterator is a data structure in its own right that references another data
structure. The iterator, however, is strongly dependent on the iterable, so they
are frequently implemented together in the same source code. Because the
iterator is a data structure, it is an object like other objects, and needs a
constructor. Instead of defining a public class like LinkedListIterator, you
often define the constructor for the iterator as a method of the iterable data
structure. That constructor method could be called iterator(). For example,
you could construct a linked list, fill it with some data, and create an iterator
for it by executing
llist = LinkedList() 
llist.insert(<some data>) 
 
   … 
it = llist.iterator() 

If you make a public class for LinkedListIterator, then the iterator would be
constructed using something like
it = LinkedListIterator(llist)

The choice is mostly stylistic. The advantage of using a method in the iterable
class is that it can be the same method name for every iterable class.
Programmers who use the data structure don’t need to hunt for what the iterator
class name is; they can just call iterator().

After it is constructed, the caller gets the items by calling the iterator’s next()
method. The caller typically does this in a loop until all the items have been
processed. Sometimes the iterator interface also has a method like current().
This is somewhat like the peek() method used in queues to look at the value at
the front of the queue without removing it from the queue. Calling next()is
like calling pop() from a stack; it changes the iterator to move on to the next
item and returns an item. If the iterator has a current() method, then it must
return the first item when the iterator is constructed (before any calls to next).

Finishing the Iteration: Using a Marker or Sentinel Value
Because the iterator is likely to be used in a loop, it needs a good interface for
handling the start and end of loops. If the iterable is empty, then the loop
shouldn’t be entered at all. If there are some items, then the loop must end after
the iterator reaches the last one. If there is a known value that could never be



an item stored inside the iterable, then the loop condition could test for that.
For example:

while it.current() is not None: 
   <loop body> 
   it.next()

This loop looks at the current value, and if it is not the marker for the end of
the iteration (None in this example), it executes the loop body and advances to
the next item. The question then becomes how to handle the end of a sequence
where current could take on any value, including None.

Finishing the Iteration: Using a Termination Test
Another strategy for loop termination is to define a method like hasMore() that
provides a Boolean value to say whether another call to next() will produce a
value. That means the loop would look like this:
while it.hasMore(): 
   current = it.next() 
   <loop body>

This termination test strategy eliminates the need for a known value as a
marker for the end of the sequence. That allows storing None—or any other
value—as one of the items in the list.

Finishing the Iteration: Using Exception Handling
Yet another strategy is to use exception handling. If the iterator has a
current() method, then calling it or next() when the iterable is empty could
cause an exception. If there is no current() method, then calling the next()
method will cause an exception when it reaches the end of the sequence. We
haven’t discussed file data structures yet, but this is a common way to handle
the end of a file or user input. In these cases, you need some exception
handling around the iteration loop to detect the end of the sequence. For
example, if the end of sequence causes a StopIteration exception to be
thrown, then the iteration loop takes the form:
try: 
    while True: 
       current = it.next() 
       <loop body> 



 
except StopIteration: 
    pass

This alternative is definitely longer in terms of number of lines of code. It’s
also a bit harder to follow the flow because the loop body is now two levels
deep and there is an exception handler at the end. Before dismissing it based on
that, however, note that it also shares the advantage that there is no special
known value for the end of the sequence, and it doesn’t require a hasMore()
method to check for more items. The program can try to get another item from
the iterable, perhaps pausing execution while waiting for new input to be added
to the iterable, and either return the new item or throw an exception to say no
more could be found.

Normally, next() returns the item stored in the object it sequences and not a
reference to the internal structure that holds a reference to the item. For
example, in a linked list, next() would return the item stored in the __data
field of a Link object, and not a reference to the Link object itself. That’s
important for preserving the integrity of the references between links.

Listing 5-21 shows a simple implementation for an iterator that handles two of
these alternatives for termination. It iterates over the singly linked list (whose
other definitions appeared in Listings 5-3, 5-4, 5-5, and 5-6). The iterator is a
class of its own. In this case, we’ve chosen to make it a private class called
__ListIterator that is defined within the LinkedList class. The rationale for
keeping it private is that there should be no need to make subclasses or perform
other operations on the iterator class.

Listing 5-21 Simple Iterator for a LinkedList

class LinkedList(object): 
 
… (other definitions shown before) … 
 
   class __ListIterator(object):  # Private iterator class 
      def __init__(self, llist):  # Construct an iterator over a 
         self._llist = llist      # linked list 
         self._next = llist.getNext() # Start at first Link 
 
      def next(self):             # Iterator’s next() method 
         if self._next is None:   # Check for end of list 



            raise StopIteration   # At end, raise exception 
         item = self._next.getData() # Store next data item 
         self._next = self._next.getNext() # Advance to following 
         return item 
 
      def hasMore(self):          # Is there more to iterate? 
         return self._next is not None  # Check for end of list 
 
   def iterator(self): 
      return LinkedList.__ListIterator(self)

The implementation of the __ListIterator class has a constructor that records
the linked list iterable in a field named _llist. It initializes a second field
called _next to point at the first Link of the linked list. If the list is empty, then
_next will be None. The constructor is used by the LinkedList’s iterator()
method at the end of Listing 5-21 to create the iterator object. It’s a little
unusual in that it passes the self variable explicitly to the constructor; that
approach is needed to distinguish the LinkedList object from the
__ListIterator object.

The iterator class’s next() method steps through the list and throws an
exception at the end. The next() method uses the information stored in the
iterator object to step through each of the items of the list. It first checks
whether the internal _next pointer is None. If so, then either the iterator started
on an empty list, or past calls to next() have advanced to the end of the list,
and it throws the StopIteration exception. This is a predefined exception in
Python, but it could just as easily be a user-defined exception class. If you
choose this particular exception, it operates like Python’s implementation of
iterators, as discussed in the later “Iterators in Python” section.

When _next points to a Link object, then the next() method stores the item
from that link; advances to the next link, which could be None; and returns the
stored item. To use this iterator, a calling program would use a loop like this:
it = llist.iterator() 
print(’Created an iterator’, it) 
try: 
   while True: 
      print(’The next item is:’, it.next()) 
except StopIteration: 
   print(’End of iterator’)

Executing that program on a list of squares would produce something like this:



Created an iterator <LinkedList.__ListIterator object at 0x1100d5668>

The next item is: 16

The next item is: 9

The next item is: 4

The next item is: 1

The next item is: 0

End of iterator

The implementation of __ListIterator in Listing 5-21 also defines a
hasMore() method. Thus, the termination test strategy can be used by writing
something like
it = llist.iterator() 
print(’Created an iterator’, it) 
while it.hasMore(): 
   print(’The next item is:’, it.next()) 
print(’End of iterator’)

This kind of multiple strategy iterator supports different programming styles.

Other Iterator Methods
The basic function of the iterator is to step through the sequence of items stored
in another data structure, but it’s sometimes convenient to add more
capabilities. As mentioned earlier, examining the next item without calling
next() (which advances the iterator to the following item) can be useful, such
as when merging two ordered lists. You could build iterators for both lists,
examine the first element from each one, and advance the iterator whose next
item comes first in the sort order. A method named getCurrent() or
current() or peek() is typically used for this purpose.

Another useful function is to point the iterator back at the beginning of the
sequence. This might be used when identifying items that should get awarded
labels in some priority order. Imagine handing out some delicious treats to the
top five finishers of a race. One iterator could loop through the treats while
another loops through the racers in the order they finished. Each racer is asked
if they would like the treat currently being offered. If they accept, the treat
iterator advances to the next treat, and the racer iterator resets back to the
beginning. That way, any racer who finished faster gets priority for the next
treat. (Of course, racers who already selected treats don’t get to select again.)



For this kind of reset operation to work, the iterator must maintain a reference
to the original iterable data structure. In the linked list example, that reference
is stored in the _llist field, so a definition like
      def reset(self):            # Reset iterator to first link 
         self._next = self._llist.getNext()

could be used to return to the beginning.

Altering Structures During Iteration
Some iterators provide methods to alter the iterable data structure. This
operation is very tricky because changing the data structure could change the
items it contains and/or the sequence those items should be visited. For
example, if the last item from a list were to be deleted, presumably the iterator
would skip over that item after iterating up to the second-to-last item. In the
example of assigning treats to racers, it would be convenient to remove a racer
from the iterator after they chose a treat. Taking them out of those subsequent
iterations, however, is difficult to do.

It’s somewhat easier to plan for such deletions by restricting them to be done
only by the iterator so that any references to the iterable data structure can be
updated appropriately. If alterations to the iterable happen somewhere else in
the code, however, it is impossible for the iterator to properly handle all the
conditions that might arise. For example, if, after creating an iterator on a
linked list using the iterator() method in Listing 5-21, some other part of the
code deletes the first item in the list, what should happen? The internal _next
pointer of the iterator points to a Link that is no longer part of the iterable
_llist, and the subsequent call to next() would return an item that’s not in
the list. It’s not clear where next() would advance the _next pointer to
because the deleted Link could have had its pointer altered by the outside code.

When changes to the data structure are allowed while stepping through the
iterable sequence, it’s best that all changes to the sequence of items are
performed through the iterator. Methods like insertAfter(), insertBefore(),
and deleteNext() can be defined to change the list in the vicinity of the next
item while still allowing for the rest of the sequence to be traversed. The
insertBefore() method can be efficiently implemented if the list is doubly
linked or the iterator maintains a reference to the previously visited Link. The
insertAfter() method can be implemented with a singly linked list. There are
two alternatives to handling the _next pointer after the insertion: include the



newly inserted item or skip over the newly inserted item in the remaining
sequence of the iterator. If the _next pointer is not advanced, then multiple
insertions could add several items that would then be visited in the reverse
order of their insertion. If the _next pointer is advanced, then multiple items
could be inserted and would retain the order of insertion (and be skipped by the
iterator sequence). The deleteNext() method would remove an item from the
iterable and from the iterator sequence.

As you can see, mixing iteration over an iterable sequence with alterations to
the iterable can cause horrendous problems. It’s best to prevent alterations
while iterating.

Iterators in Python
Python makes traversing data structures very easy with special support for
iterators. In fact, all the for x in [a, b, c]: style loops you’ve been using
are implemented using iterators. Much of the detail described previously for
implementing iterators is performed by Python without any visible (user)
source code. It’s important to learn about how that works as you implement
data structures in other languages with different syntaxes.

As you might expect, the built-in list type is iterable. Strings and tuples are
also iterable. The general syntax for a loop using an iterator is
    for var in <iterable>: 
       <body>

Looking under the hood, the way that Python executes a loop in this form is to
evaluate the <iterable> expression on entry into the loop. The <iterable>
expression produces an iterator object that is not directly available to the
program but is maintained by the Python interpreter. The interpreter then
creates a new local variable, var, and assigns it a value by calling the next()
method of the iterator. More precisely, the iterator is created by calling the
__iter__() method of the object returned by evaluating the <iterable>
expression.

With the iterator created, the interpreter then calls its __next__() method to
get the next item in the sequence. After the variable is assigned, it evaluates the
loop body. When the body finishes, the interpreter calls the __next__()
method to obtain the next item in the sequence. When the iterator goes past the
last item in the data structure, the __next__() method raises the



StopIteration exception. That exception could happen on the first attempt to
call the __next__() method, in which case the variable is not assigned, and the
loop body is not evaluated at all.

To be a little more concrete, let’s look at an example where var is v and the
<iterable> expression is expr. The Python interpreter essentially executes the
following:
it = expr.__iter__() 
try: 
    while True: 
       v = it.next() 
       <body> 
 
except StopIteration: 
    pass

This isn’t exactly the translation of the for var in <iterable>: loop; the it
variable is hidden, and the v variable is accessible only in the loop <body>,
just like local variables are accessible only within a function definition. The
rewritten version shows, however, the basic steps the interpreter takes. The
__iter__() method creates the iterator object, it, and its __next__() method
is called in each pass through the loop. The loop creates a hidden exception
handler for StopIteration. When that exception occurs, the “infinite” while
loop stops, and execution passes on to whatever comes after the loop.

If any other exceptions happen in the loop body, they are ignored by the hidden
exception handler and passed on to the next containing level of the program. If
there are nested loops in the <body>, they create their own exception handlers
that catch the end of the iteration for each of those loops without affecting the
end of this outer loop. Because the iterator and the exception handler that
catches its termination are not directly accessible in the source code, simple
Python loops provide an implicit iterator rather than an explicit one like in
Listing 5-21.

Generators
Any Python object class that implements an __iter__() method becomes an
iterable object. The iterator object it returns must implement both a
__next__() and an __iter__() method. These methods could be written using
a hidden class like the one shown in Listing 5-21, but there’s an easier way:
generators. Generators are functions that create iterators. Python has a special



statement, the yield statement, that takes care of creating the iterator class and
its required methods. Let’s look at an example using a mathematical sequence.

One of the most famous infinite sequences is the Fibonacci sequence. It occurs
in nature in the fruit sprouts of a pineapple, flowers of an artichoke, and bracts
(petals) of pinecones. It starts with the number 1, repeated twice. Each
subsequent number in the sequence is the sum of the previous two numbers.
The sequence begins

1, 1, 2, 3, 5, 8, 13, 21, …

You can write a function that prints out all the Fibonacci numbers like this:
def Fibonacci(): 
   previous = 0 
   current = 1 
   while True: 
      print(current) 
      next = previous + current 
      previous = current 
      current = next

This function never ends because it prints out each number in the sequence (so
be careful when executing it). You can convert this function into a generator
with a simple change, replacing the print statement with a yield statement, as
shown in Listing 5-22.

Listing 5-22 A Python Generator for the Fibonacci Sequence

def Fibonacci(): 
   previous = 0 
   current = 1 
   while True: 
      yield current 
      next = previous + current 
      previous = current 
      current = next

The yield statement is a little bit like the return statement of a function. It
causes the execution of the function to stop and return the value of the
expression to its caller. What’s very different from the return statement is that
the Python interpreter preserves the state of execution of the function so that



the next time it is called, execution resumes just after the yield statement and
continues the processing. Continuing the processing makes the yield statement
act more like the print statement it replaced. You might think of yield as
sending a message back to the caller without losing track of what happens next.

When the Python interpreter finds the yield statement inside the definition of
Fibonacci() in Listing 5-22, it changes the defined function to a special form
called a generator function. The presence of yield means that this function
shouldn’t execute like most functions. When the generator function is called, it
returns a generator object, which is a kind of iterator. That means you can use it
to step through the sequence using __next__(). You can try it out in the
Python interpreter using the definition in Listing 5-22:
>>> gen = Fibonacci() 
>>> gen 
<generator object Fibonacci at 0x1012386d0> 
>>> gen.__next__() 
1 
>>> gen.__next__() 
1 
>>> gen.__next__() 
2 
>>> gen.__next__() 
3

The call to Fibonacci() produces an object that is stored in the gen variable.
That object is a generator object. Because it’s an iterator as well, it must have a
__next__() method. The first call to __next__() produces (yields) the first
number in the sequence, 1. Inside the interpreter, that first call starts the
execution of the body of the Fibonacci() definition up to the first yield
statement. That operation yields the value of current, which is initially 1. The
second call to __next__() yields 1 again after the execution of the body
resumes just after the yield statement. Let’s look more carefully at how that
happens.

After yielding the first 1, the second call to __next__() causes execution to
resume in Fibonacci() after the yield statement. The current and previous
variables have the same values they had during the first call, 0 and 1, because
they are stored in the generator object. The next step in executing the loop
body stores a new value, 1, in the next variable. Then it updates the previous
and current values, returns to the top of the loop, and hits the yield statement
again. The third call to __next__() yields 2 as the process repeats. The



generator object always keeps the values of next, current, and previous
stored as part of the state of execution of the body so that it can resume right
after the yield statement.

Having defined Fibonacci() as a generator, you can use it where iterable
objects are expected like loops. The following example demonstrates that with
a loop and a counter to print the first 15 numbers in the Fibonacci sequence:
count = 15 
print(’The first’, count, ’numbers in the Fibonacci series are:’) 
for x in Fibonacci(): 
   if count < 1: 
      break 
   print(x) 
   count -= 1

Note that the variable x is not bound to the value of the call to Fibonacci().
That generator object gets stored in some inaccessible location. Instead, the
variable x gets bound to the values yielded by the successive calls to
__next__(). The program outputs
The first 15 numbers in the Fibonacci series are: 
1 
1 
2 
3 
5 
8 
13 
21 
34 
55 
89 
144 
233 
377 
610

This generator object could keep on producing Fibonacci sequence numbers
indefinitely, so it essentially represents the infinite series in a finite data
structure! The definition of Fibonacci()has a while True loop in it. That’s
what makes it go on forever. Using the break statement and decrementing the
count prevent an infinite loop. This can be a powerful combination.



Python accomplishes this feat by creating an iterator data structure that holds
the body of the function definition, the environment within that function (the
state of all its parameters and local variables), and a pointer to where execution
should resume in that function when __next__() is called. These combined
“housekeeping” features makes it easy to write generators that will implement
the iterators for data structures.

Listing 5-23 shows one way to create the iterator for the singly linked list data
structure using the yield statement in Python. It defines an __iter__()
method that looks a lot like the traverse() method (Listing 5-4). Compare this
definition of __iter__() to the iterator() method in Listing 5-21, which
involved defining an internal class for the iterator.

Listing 5-23 Using a Python Generator to Make the LinkedList Iterator

class LinkedList(object): 
 
… (other definitions shown before) … 
 
   def __iter__(self):         # Define an iterator for the list 
      next = self.getFirst()   # Start with first Link 
      while next is not None:  # As long as the link is not None, 
         yield next.getData()  # yield data for the link 
         next = next.getNext() # then move on to next link

Defining the __iter__() method as a generator function instead of a regular
function takes care of building the extra class needed for an iterator. The
iterator still needs to start with a pointer to the first Link, stored in its local
next variable, and follows the chain of references until a None is found. For
valid links, the iterator yields the data and moves on to the next link. When
there are no more links, the loop ends, and the generator exits, raising the
StopIteration exception. Then when the generator is invoked by a loop like
for item in myList: 
   print(item)

Python catches the StopIteration exception with an implicit handler to break
out of the for loop after printing each item.

It might seem a little unsettling that changing return statements to yield
statements in a Python function has such a big effect on the behavior of the



code. When you use generators, a lot of work is done by the compiler without
any explicit variables or control statements in the source code. When you’re
reading code that someone else wrote, it won’t be clear whether something is a
subroutine, function, or generator until you locate a specific return or yield
statement. If you find a return, then it’s a function, possibly with explicit
values to be returned. If you find yield, then it’s a generator that will first
return an iterator.

Every iterator can produce a sequence of values. When the iterator finishes the
sequence (assuming it has an end), it raises a StopIteration exception. Note
the source code of the generator doesn’t have an explicit raise
StopIteration statement. The exception is raised sort of like the implicit
return None when execution reaches the end of the body of a function. In fact,
in Python 3.7 and later, a generator that explicitly raises a StopIteration
exception causes a RuntimeError. Instead, you should use the implicit end of a
function or explicit return with no argument to signal the end of the sequence.

Using yield statements is a compact way to define iterators, although the
special behavior of the generator function can be a little hard to understand
initially. The Programming Projects in this chapter give you chance to practice
writing some.

Summary
• A linked list consists of one LinkedList object and a number of Link

objects.

• The LinkedList object contains a reference to the first link in the list.

• Each Link object contains two things: data and a reference to the next
link in the list. The data could be the data itself (like integers, characters,
or bytes) or some reference to another, possibly larger, structure.

• A special value (typically None in Python) in the reference to the first or
next Link signals the end of the list.

• Inserting an item at the beginning of a linked list involves creating a new
Link with its data field holding or pointing to the item, changing the new
Link’s next field to point to the old first link, and changing the
LinkedList’s first field to point to the new Link.



• Deleting an item at the beginning of a nonempty list involves setting the
first field to point to the first Link’s next field.

• To traverse a linked list, you start at first Link and then go from link to
link, using each link’s next field to find the next link.

• Some implementations use the same named field or accessor method for
the first reference of the LinkedList as is used for the next reference of
each Link. This makes the traversal code simpler.

• A link with a specified key value can be found by traversing the list.

• A new link can be inserted before or after a link with a specified key
value, following a traversal to find this link.

• A double-ended list maintains a pointer to the last link in the list as well
as to the first.

• A double-ended list allows insertion at the end of the list in constant time
rather than O(N) time for a singly linked list.

• An abstract data type (ADT) is a data storage class considered without
reference to its implementation.

• Stacks and queues are ADTs. They can be implemented using either
arrays or linked lists.

• In an ordered linked list, the links are arranged in order of ascending (or
sometimes descending) key value.

• Insertion in an ordered list takes O(N) time because the correct insertion
point must be found. Deletion of the smallest (or sometimes largest) link
takes O(1) time.

• In a doubly linked list, each link contains a reference to the previous link
as well as the next link.

• A doubly linked list permits backward traversal and deletion from the
end of the list.

• Circular lists are similar to singly linked lists, but there is no last item.
Instead of having a next pointer set to None for the last item, that item
points back to the first Link.



• Circular lists have one item designated as a marked item. It can be called
first, last, head, tail, mark, and so on. This is the Link pointed to by the
circular list object.

• Singly linked circular lists have the same efficiency as linear linked lists.
By marking the last item instead of the first, the insert() and
insertLast() methods on a circular list take O(1) time instead of O(N).

• Circular lists must be carefully updated to preserve the single loop
structure to avoid making it difficult to terminate loops through all the
items.

• An iterator is a reference, encapsulated in a class object, that points to
one item in another data structure. When the data structure is a linked
list, the iterator references a particular link in that list.

• Iterator methods allow the calling program to move the iterator
sequentially through all the items of the data structure. For linked lists,
this follows the next pointers in each link.

• The data structure being sequenced by the iterator is called an iterable or
a container.

• Iterators allow access to the data stored in the iterable without direct
access to iterable’s structures and references (Links in a linked list) to
avoid allowing the calling program to alter the internal structure.

• An iterator can be used to traverse through a list, performing some
operation on selected links (or all links).

• If the iterable changes while an iterator is stepping through its items, the
iteration sequence can be altered, sometimes to the point of causing bad
errors.

Questions
These questions are intended as a self-test for readers. Answers may be found
in Appendix C.

1. Which of the following is not true? A reference to a class object
a. can be stored in the data field of a singly linked list.



b. can be used to access public methods in the object.
c. has a size dependent on its class.
d. does not hold the object itself.

2. Access to the links in a linked list is usually through the _________
link.

3. Lists differ from arrays in that
a. lists have a fixed size per item, whereas arrays don’t.
b. the relationships between items are explicit in lists but not in arrays.
c. position is only explicit in arrays; the key of a list item determines its

position.
d. to get the Nth item in a list, a program must follow N links, whereas

in an array, the program can compute the position of the item from N.
4. How many references must be set or changed to insert a link in the

middle of a singly linked list?
5. How many references must be set or changed to insert a link at the end

of a singly linked list?
6. In the insert() method in the LinkedList.py program, Listing 5-5, the

statement link = Link(datum, self.getNext()) means that
a. the datum will be assigned to the __data field in the first Link of the

LinkedList.
b. the __next field of the new link will refer to the LinkedList’s first

Link.
c. link will be set to the first link whose data matches the given datum.
d. a new, two-item linked list with the datum and the next link will be

stored in link.
7. Assume you are writing a method of LinkedList and the variable x

holds the next-to-last Link. What statement will delete the last link
from the LinkedList?

8. When one function calls another function using a variable, as in
do_something(x), when can the value of x in the calling function be
changed by the called function?



9. A double-ended list
a. allows inserts to performed at either end in constant time.
b. has its last link connected to its first link.
c. is another name for a doubly linked list.
d. has pointers running both forward and backward between links.

10. An abstract data type
a. specifies the fields of the data type without defining any methods.
b. allows references to data to be stored instead of the data itself.
c. defines the kinds of data that are represented and the operations that

can be performed on them.
d. is used as a placeholder for a data collection inside a large program

while other modules are written.
11. Consider storing an unordered collection of records in an array or in a

linked list. Assuming copying a record takes longer than comparing
keys to find a record, is it faster to delete a record with a certain key
from a linked list or from an array?

12. How many times would you need to traverse an unordered doubly
linked list to delete the item with the largest key?

13. Of the lists discussed in this chapter, which one would be best for
implementing a queue?

14. Of the lists discussed in this chapter, which one would be best for
implementing a priority queue?

15. Which of the following is not true? Iterators could be useful if you
wanted to
a. do an insertion sort on a linked list.
b. delete all links with a certain key value.
c. swap two items with the keys A and B in a list.
d. insert a new link at the beginning of a list.

16. Which do you think would be a better choice to implement a stack: a
singly linked list or an array?



17. Which do you think would be a better choice to implement a collection
of objects where it must be fast to locate an object by a key: an ordered
doubly linked list or an ordered array?

18. Circular lists
a. can implement ordered lists more efficiently than doubly linked lists.
b. can more efficiently represent loop-like orderings such as turns in a

game than doubly linked lists.
c. can make finding an item with a matching key less efficient than

singly linked lists.
d. simplify the representation of lists by eliminating the need for a

special value indicating the end of a list.
19. What are the consequences of making the setNext() method of a Link

object public, assuming that it performs only the assignment if the
argument is a reference to a Link object or None?

20. Python generators
a. are useful for creating iterators.
b. can be used to make classes like circular lists from simpler classes.
c. are the only way to represent infinite sequences like the Fibonacci

sequence.
d. require the use of the yield statement and cannot contain loops.

Experiments
Carrying out these experiments will help to provide insights into the topics
covered in the chapter. No programming is involved.

5-A The OrderedList class shown in Listing 5-13 has a find() method that
steps through the list in increasing order to find the goal. Would it be
better to do a binary search instead of a linear one? Why or why not?

5-B Imagine that you gave a friend a gift last year, say a nice candle. This
year a different friend gives you a nice candle as a gift. You wonder if
the exact same candle, not just a similar one, has been returned to you.
How would you go about determining whether it’s the same one? How
does that process relate to the concepts in this chapter?



5-C Imagine a gift exchange among a group of people. Each person will
give a small gift to one other person in the group, and the receiver won’t
know who brought their gift. To set up this exchange, you put the names
of all the people in a box, and everyone takes turns drawing a name
from the box. If the name they draw is their own, they draw another
name from the box and put theirs back in. The name is the person who
will receive their gift. This selection process continues until everyone
has drawn a name. These are sort of like the links in lists.
Here’s how the exchange runs:

• One gift is given each day.

• Each person gives a gift the day after they receive their gift.

• The first person to draw a name gives their gift on day 1.

How long will the gift giving take if there were N uniquely named
people? Can you think of any problems that could affect the answer?
Can you think of ways to eliminate the problems?

5-D Iterators are great for stepping through data structures to find an item.
Would you use one if you want to delete that item? Specifically, if you
used one of the iterators shown in Listing 5-21 or Listing 5-23 to find
the item to delete, what would be the next step? How efficient would
that step be?

5-E Linked lists use memory more efficiently than expandable arrays, but by
how much? Imagine an application that starts with an array of 10
elements. It inserts items into the array and doubles the size of the array
every time an insertion would go past the end of the current array size.
When it doubles the size of the array, it allocates a new segment of
memory that is twice as long and copies all the contents of the first
array into the beginning half of the second array. How much more
memory is used by the expandable arrays if the number of items
inserted is 1,000? How about for 1,000,000? Assume that the smaller
arrays still take up space even when they are no longer used, and that
storing 1 item takes as much memory as storing 1 reference.

Programming Projects



Writing programs to solve the Programming Projects helps to solidify your
understanding of the material and demonstrates how the chapter’s concepts are
applied. (As noted in the Introduction, qualified instructors may obtain
completed solutions to the Programming Projects on the publisher’s website.)

5.1 Rewrite the traverse(), __str__(), and __len__() methods of the
LinkedList class shown in Listing 5-4 to use the iterator (created by the
generator) shown in Listing 5-23.

5.2 Implement a priority queue based on an ordered linked list. The items
stored in the queue can be passed to a function that extracts their
priority value (or key) as in the PriorityQueue.py module in Chapter
4. The remove operation on the priority queue should remove the item
with the smallest key.

5.3 Implement a deque based on a doubly linked list. (See Programming
Project 4.3 in the preceding chapter.) It should include insertLeft(),
insertRight(), removeLeft(), removeRight(), peekLeft(),
peekRight(), and isEmpty() methods.

5.4 Make a class for a singly linked circular list that has no end and no
beginning like the one shown in Figure 5-14. The only access to the list
is a single reference, __last, that can point to any link on the list. This
reference can move around the list as needed. Your data structure
should have methods to check if the list is empty and inspect the first
item. It should provide methods for insertFirst(), insertLast(),
deleteFirst(), and search() (but not deleteLast()), ensuring that
the list always remains circular. You should provide a __str__()
method to display the list from first to last (and you need to break the
loop before repeating any items). A step() method that moves __last
along to the next link and a seek() method that advances it to the next
link that matches a particular goal key might come in handy too.

5.5 Implement stack and queue classes based on the circular list of
Programming Project 5.4. The Stack class must have push(), pop(),
and peek() methods. The Queue class must have insert(), remove(),
and peek() methods. This exercise is not too difficult, although you
should be careful about maintaining the LIFO and FIFO orders.
(Implementing a deque can be harder, unless you make the circular list
doubly linked or allow deleting from one end to be O(N).)



5.6 Implement another priority queue class as a two-level structure. The top-
level list is a list of queues, one for each of the different priority values
stored so far. The second level queues hold all the items of the same
priority in a way that makes it easy to enforce the queue’s first-in, first-
out order. This time, the priority of an item is a separate argument to the
insert() method, not something that is computed by a function on the
item being inserted. This allows items to be reprioritized and placed at
the end of their new priority queue. The insert() method should
search the top-level list to find a queue with the matching priority or
create a new queue if none of them match. The remove() method
should take an optional argument, priority, which selects a priority
queue from which to remove the next item. If priority is None, then
remove() should find the highest priority queue that has at least one
item. The class should have an iterator to step through all items in all
the queues and a second iterator, priorities(), to iterate over the
priority keys that have at least one item in their queue. Use the full
iterator to get the item count for all priorities in the __len__() method
of the class you define.

5.7 Create an iterator with both a next() and a previous() method to step
through the Fibonacci sequence both forward and backward. Because
the series is not infinite in both directions, the previous() method
should raise StopIteration instead of returning 0 or a negative
number. Calling previous() right after next() should repeat the same
number in the sequence because the iterator has already passed that
number. Similarly, calling next() right after previous() should
produce a repeated number. Hint: You can’t implement this project with
a Python generator because it creates only a single directional iterator.



6. Recursion

In This Chapter

• Triangular Numbers

• Factorials

• Anagrams

• A Recursive Binary Search

• The Tower of Hanoi

• Sorting with mergesort

• Eliminating Recursion

• Some Interesting Recursive Applications

Recursion is a programming technique in which a function calls itself. This
behavior may sound strange, or even catastrophic. Recursion is, however, one
of the most interesting, and one of the most surprisingly effective, techniques
in programming. It’s been said, ”The definition of insanity is doing the same
thing over and over again, but expecting different results,” so how could a
function calling itself ever get a better result? It not only works but also
provides a unique conceptual framework for solving many problems.

The concept of recursion appears in the natural world and in art, such as the
label used on the early twentieth century Droste Cacao tin shown in Figure 6-1.
The image of the tin appears on the tray carried by the nurse. Presumably, that
smaller image would contain the entire image of the tin, and that tin’s label
would contain the entire image of the tin, and so on. This illustration was a
popular example of recursion in art, leading to the name Droste effect. Mirrors
placed facing each other and aligned to be parallel produce infinite recursive
images. Many patterns in nature repeat at smaller scales within their structures.



Figure 6-1 The Droste Effect—recursion in art

In this chapter we examine numerous examples to show the wide variety of
situations to which recursion can be applied in programming. We show you
how to calculate triangular numbers and factorials, generate anagrams, perform
a recursive binary search, solve the Tower of Hanoi puzzle, and investigate a
sorting technique called mergesort. Visualization tools are provided to
demonstrate the Tower of Hanoi and mergesort.

We also discuss the strengths and weaknesses of recursion and show how
recursive approaches can be transformed into stack-based approaches.

Triangular Numbers
It’s said that the Pythagoreans, a band of mathematicians in ancient Greece
who worked under Pythagoras (of Pythagorean theorem fame), felt a mystical
connection with the series of numbers 1, 3, 6, 10, 15, 21, 28, … (where the …
means the series continues indefinitely). Can you find the next member of this
series?

The nth term in the series is obtained by adding n to the previous term. For
example, the second term is found by adding 2 to the first term (which is 1),
giving 3. The third term is 3 added to the second term (which is 3) giving 6,
and so on. You can also consider the 0th term to be 0, because adding 1 to it
gives the first term. The numbers in this series are called triangular numbers
because they can be visualized as a triangular arrangement of objects, shown as
blue squares in Figure 6-2. The length of the shorter (equilateral) sides is n, the
term number.



Figure 6-2 The triangular numbers

Finding the nth Term Using a Loop
Suppose you wanted to find the value of some arbitrary nth term in the series—
say the fourth term (whose value is 10). How would you calculate it? Looking
at Figure 6-3, you might decide to determine the value of any term by adding
up the number of squares in the vertical columns.



Figure 6-3 Triangular number as columns

There are four squares in the fourth column. The value of the fourth term is 4
plus the value of the third term. The third term adds the three squares in its
column to the second term, and so on down to column #1 with one square.
Adding 4+3+2+1 gives 10.

The following triangular_loop() function uses this column-based technique
to find the nth triangular number. It sums all the columns, from a height of n to
a height of 1:
def triangular_loop(nth): # Get the nth triangular number using a loop 
  total = 0             # Keep a total of all the columns 
  for n in range(nth, 0, -1):  # Start at nth and go back to 1 
     total += n         # add n (column height) to total 
  return total          # Return the total of all the columns

Of course, the values could be added up in any order such as 1+2+3+4, which
would change the range iterator to range(1, nth + 1).

Finding the nth Term Using Recursion
The loop approach is straightforward, but there’s another way to look at this
problem. The value of the nth term can be thought of as the sum of only two
things, instead of a whole series. They are

1. The nth (tallest) column, which has the value n

2. The sum of all the remaining columns

This concept is shown in Figure 6-4.



Figure 6-4 Triangular number as column plus triangle

Finding the Remaining Columns
If we knew a method that found the sum of all the preceding columns, we
could write a triangular() method, which returns the value of the nth
triangular number, like this:
def triangular(nth):    # Get the nth triangular number (incomplete) 
   return (nth +        # Add this column to the preceding 
           sum_before(nth)) # column sum

But what have we gained here? It looks like writing the sum_before() method
is just as hard as writing the triangular() method in the first place.

Notice in Figure 6-4, however, that the sum of all the preceding columns for
term n is the same as the sum of all the columns for term n−1. Thus, if we
knew about a method that summed all the columns up to term n, we could call
it with an argument of n−1 to find the sum of all the remaining columns for
term n:
def triangular(nth):    # Get the nth triangular number (incomplete) 
   return (nth +        # Add this column to the preceding 
           sum_up_to(nth - 1)) # column sum

When you think about it, the sum_up_to() method does exactly the same thing
that the triangular() method does: sum all the columns for some number n
passed as an argument. So why not use the triangular() method itself,
instead of some other method? That would look like this:
def triangular(nth):    # Get the nth triangular number (incomplete) 
   return (nth +        # Otherwise add this column to the preceding 
           triangular(nth - 1)) # triangular number

The fact that a function can call itself might seem odd, but why shouldn’t it be
able to? A function call is, among other things, a transfer of control to the start
of the function. This transfer of control can take place from within the function
as well as from outside. The same is true, of course, for object methods.

Passing the Buck
All these approaches may seem like passing the buck. Someone asks you to
find the 9th triangular number. You know this is 9 plus the 8th triangular



number, so you call Harry and ask him to find the 8th triangular number. When
you hear back from him, you can add 9 to whatever he tells you, and that will
be the answer.

Harry knows the 8th triangular number is 8 plus the 7th triangular number, so
he calls Sally and asks her to find the 7th triangular number. This process
continues with each person passing the buck to another one.

Where does this buck-passing end? Someone at some point must be able to
figure out an answer that doesn’t involve asking another person to help. If this
didn’t happen, there would be an infinite chain of people asking other people
questions—a sort of arithmetic Ponzi scheme that would never end. In the case
of triangular(), this would mean the function calls itself over and over in an
infinite series that would eventually crash the program.

The Buck Stops Here
To prevent an infinite regress, the person who is asked to find the first
triangular number of the series, when n is 1 (or 0), must know, without asking
anyone else, that the answer is 1 (or 0). There are no smaller numbers to ask
anyone about, there’s nothing left to add to anything else, so the “buck” stops
there. In fact, we certainly don’t want anyone to make a mistake and ask about
negative numbers, which might throw off the total count. We can express this
by adding a condition to the triangular() method, as shown in Listing 6-1.

Listing 6-1 The Recursive triangular() Function

def triangular(nth):    # Get the nth triangular number recursively 
   if nth < 1: return 0 # For anything less than 1, it’s 0 
   return (nth +        # Otherwise add this column to the preceding 
           triangular(nth - 1)) # triangular number

The condition that leads to a recursive method returning without making
another recursive call is referred to as the base case. It’s critical that every
recursive method have a base case to prevent infinite recursion and the
consequent demise of the program.

Using the recursive definition described earlier, you can ask for large triangular
numbers like this:
>>> triangular(100) 
5050 



>>> triangular(200) 
20100 
>>> triangular(500) 
125250

What’s Really Happening?
Let’s modify the triangular() function to provide an insight into what’s
happening when it executes. We’ll insert some print statements to keep track of
the arguments and return values:
def show_triangular(nth): # Print the recursive execution steps of 
   print(’Computing triangular number #’, nth) # computing the nth 
   if nth < 1:            # triangular number. Base case 
      print(’Base case. Returning 0’) # Print the return information 
      return 0 
   value = nth + show_triangular(nth -1) # Non-base case, get value 
   print(’Returning’, value, ’for #’, nth) # Print the return info 
   return value

The print statements show the entry and exit information for each call to
show_triangular(). Here’s the result of calling show_triangular(5):
>>> show_triangular(5) 
Computing triangular number # 5 
Computing triangular number # 4 
Computing triangular number # 3 
Computing triangular number # 2 
Computing triangular number # 1 
Computing triangular number # 0 
Base case. Returning 0 
Returning 1 for # 1 
Returning 3 for # 2 
Returning 6 for # 3 
Returning 10 for # 4 
Returning 15 for # 5 
15

Each time the show_triangular() function calls itself, its argument is reduced
by 1. The function plunges down calling itself again and again until its
argument is reduced to 0. Then it returns. This process triggers an entire series
of returns. The control passes back up out of all the versions that were waiting
for a value. Each time the function returns, the caller adds its value of nth to
the return value of the function it called.



The return values reconstruct the series of triangular numbers, until the answer
is returned to the Python interpreter. Figure 6-5 shows how each invocation of
the triangular() function can be imagined as being ”inside” the previous one.

Figure 6-5 Execution of the recursive triangular(4) function

Notice that, just before the innermost version returns a 0, there are actually five
different incarnations of triangular() in existence at the same time. The outer
one was passed the argument 4; the inner one was passed the argument 0. The
top and bottom edges of each invocation correspond to the print statements in
show_triangular().

Characteristics of Recursive Routines
Although it’s short, the triangular() function possesses the key features
common to all recursive routines:

• It calls itself.

• When it calls itself, it does so to solve a smaller version of the same
problem, also called a subproblem.

• There’s some version of the problem that is simple enough that the
routine can solve it, and return, without calling itself.

In each successive call of a recursive method to itself, the argument becomes
smaller (or perhaps a range described by multiple arguments becomes smaller),
reflecting the fact that the problem has become ”smaller” or easier. Here we
explore how data structures holding fewer data elements can be the smaller



problem. When the argument or range reaches a certain minimum size, a
condition triggers and the method returns without calling itself.

Is Recursion Efficient?
Calling a function or method involves certain overhead. Control must be
transferred from the location of the call to the beginning of the function. In
addition, the arguments to the function and the address to which the function
should return must be pushed onto an internal stack so that the function can
access the argument values and know where to return.

In the case of the triangular() function, it’s probable that, as a result of this
overhead, the while loop approach executes more quickly than the recursive
approach. The penalty may not be significant, but if there are a large number of
function calls as a result of a recursive function, it might be desirable to
eliminate the recursion. We discuss this issue more at the end of this chapter.

Another inefficiency is that memory is used to store all the intermediate
arguments and return values on the system’s internal stack. This behavior may
cause problems if there is a large amount of data, leading to a stack overflow.

These efficiency concerns are especially relevant to triangular numbers and
other numeric computations. There are usually mathematical simplifications
that can avoid loops or recursion. As you might have guessed, the number of
little squares in the triangle is about equal to the area of the triangle, which is
half the area of the square formed by putting two of the triangles together,
sharing their longest edge. For a square of width n, its area is n2, so the area of
the triangle would be n2/2. The exact formula for the sum of all the integers
from 0 to a positive integer, n, is

This formula shows up again and again in the study of data structures. The
most efficient way to calculate it would be to implement the computation of
this formula because the addition, multiplication, and division are all O(1)
operations.

Recursion is usually used because it simplifies a problem conceptually, not
because it’s inherently more efficient.



Mathematical Induction
For those programmers with an interest in math, it’s important to see the
relationship between recursion and induction. Mathematical induction is a
way of defining something in terms of itself. (The term is also used to describe
a related approach to proving theorems, which is also a technique for proving
the correctness of programs.) Using induction, you could define the triangular
numbers mathematically by saying

tri(n) = 0                      if n <= 0

tri(n) = n + tri(n−1)      if n >= 1

Defining something in terms of itself may seem circular, but in fact it’s
perfectly valid (provided there’s a base case).

Factorials
Factorials are similar in concept to triangular numbers, except that
multiplication is used instead of addition. The triangular number corresponding
to n is found by adding n to the triangular number of n−1, while the factorial of
n is found by multiplying n by the factorial of n−1. In other words, the fifth
triangular number is 5+4+3+2+1, while the factorial of 5 is 5×4×3×2×1, which
equals 120.

Factorials are useful for finding the number of possible orderings or
combinations of things. Think of a race between three people. How many
different ways can the race end assuming no ties occur? The first person can
finish in first, second, or third position. The second person can finish in any
position other than the first, so two positions. The third person takes the final
position. So, there are 3×2×1, which equals 6, orderings. That same logic
extends to higher numbers. Table 6-1 shows the factorials of the first 10
numbers.

Table 6-1 Table Factorials



The factorial of 0 is defined to be 1. If you think about the example of the
orderings of a group of racers, there is exactly 1 ordering of an empty group of
racers. Factorial numbers grow large very rapidly, as you can see. In math, the
factorial of 5 is written with an exclamation mark, 5!, perhaps as a way to
remind us how big they are.

A recursive method similar to triangular() can be used to calculate
factorials. It looks like this:
def factorial(n):            # Get factorial of n 
   if n < 1: return 1        # It’s 1 for anything < 1 
   return (n *               # Otherwise, multiply n 
           factorial(n - 1)) # by preceding factorial

There are only a few differences between factorial() and triangular().
First, we changed the variable to n from nth because factorial is treated as a
function rather than a sequence. Second, factorial() uses a * instead of a + in
the expression
           n * factorial(n - 1)

Third, the base condition returns 1, not 0. It’s possible to eliminate one or more
recursive calls by adding more base cases for n = 1, n = 2, and so on, but doing



so only saves a little work. Again, the purpose of recursion is its conceptual
simplicity.

Here are some samples of what the function produces. Figure 6-6 shows how
the recursion creates a similar set of invocations of the function to produce the
last value.
>>> factorial(9) 
362880 
>>> factorial(40) 
815915283247897734345611269596115894272000000000 
 >>> factorial(4) 
24

Figure 6-6 Execution of the recursive factorial(4) function

Various other numeric entities lend themselves to calculation using recursion in
a similar way, such as finding the greatest common denominator of two
numbers (which is used to reduce a fraction to lowest terms), raising a number
to a power, and so on. The factorial function is somewhat more interesting
because it can’t be easily simplified into a formula using other math primitives
that can be computed in constant time. Even though this calculation is
interesting for demonstrating recursion, it probably wouldn’t be used in
practice because a loop-based approach is more efficient. Recursion can be
used to prototype an algorithm, which is later converted to a more efficient
implementation.

Anagrams



Here’s a different kind of situation in which recursion provides a neat solution
to a problem. A permutation is an arrangement of things in a definite order
(sometimes called an ordering). Suppose you want to list all the anagrams of a
specified word—that is, all possible permutations that can be made from the
letters of the original word (whether they make a real word or not). We call this
anagramming a word. Anagramming cat, for example, would produce
cat

cta

atc

act

tca

tac

Try anagramming some words yourself. Because this process is analogous to
ordering of the racers, the number of possibilities is the factorial of the number
of letters. For 3 letters, there are 6 possible words (permutations); for 4 letters
there are 24 words; for 5 letters, 120; and so on. These numbers assume that all
letters are distinct; if there are multiple instances of the same letter, there will
be fewer distinct words.

How would you write a program to find all the anagrams of a word? Think
about it with this new technique, recursion. Here’s where the simplifying
concept helps. adding n to the triangular number of n−1Assume you already
have a function for anagramming a string of n letters. Now all you need is a
way to handle adding another letter. If there are n+1 letters in the original
word, where can that extra letter go in each of the short anagrams of length n?
Well, it could go in between any of the other letters or at the beginning or at the
end. Is that all the anagrams with n+1 letters?

Think about the example with cat. The two anagrams of at are at and ta. If
you place c between the two characters, you get act and tca. If you add c to
the beginning, you get cat and cta. Adding c to the end produces atc and tac.
Altogether you have
act, tca, cat, cta, atc, tac

You have found all six orderings and haven’t introduced any duplicates (as
long as there were no duplicates in the list of anagrams at the start). So this
looks correct for producing all the possible anagrams when adding a single
character to a set of distinct anagrams. All that’s left to do is define the base
case (or cases).



If a string has one character in it, then there’s only one ordering, the string
itself. What about an empty string? Well, you should still return the sole
ordering of that too, the empty string itself. That corresponds to factorial(0)
returning 1 as discussed previously. So, you can set up a recursive anagrams()
function as follows:
def anagrams(word):            # Return a list of anagrams for word 
   if len(word) <= 1:          # Empty words and single letters 
      return [word]            # have a single anagram, themselves 
   result = []                 # Start with an empty list 
   for part in anagrams(word[1:]): # Loop over smaller anagrams 
      for i in range(len(part) + 1): # For each index in smaller word 
         result.append(        # Add a new anagram with 
            part[:i] +         # the smaller word up to the index 
            word[0] +          # plus the 1st character of this word 
            part[i:])          # plus the rest of the smaller word 
   return result               # Return the list of bigger anagrams

The function starts with the base case. Short words of 0 or 1 character are the
only possible anagram, so the function immediately returns a list of the word
itself. If the word is longer than 1 character, it gets all the anagrams of the last
part of word (all but the first character) by using the Python slice operator
(word[1:]). It then loops over each one of those shorter anagrams, storing it in
the part variable. Before entering the loop, it initializes a result list to be the
empty list.

Within each part, there are n, or len(part), characters. The first character of
the word to be anagrammed can go between any of them or at the beginning or
the end. That’s the same as inserting the first character before any character of
part plus inserting it at the n+1 position. The function uses another loop to set
i to each of those insertion indices, 0 up to n, inclusive. The body of the inner
loop appends a new n+1 character anagram to the result list. (In this case,
Python’s list type is being treated as a linked list rather than an array.) The
longer anagram starts with the (possibly empty) slice of the shorter anagram,
part, up to i, then the first letter of the word, and then the (possibly empty)
remaining slice of the shorter anagram starting at i.

Testing this implementation, you get
>>> anagrams(’’) 
[’’] 
>>> anagrams(’c’) 
[’c’] 



>>> anagrams(’cat’) 
[’cat’, ’act’, ’atc’, ’cta’, ’tca’, ’tac’]

The invocations of the anagram function on ”cat” are shown in Figure 6-7.
The innermost invocation is the base case, which returns the list of one string,
the last letter, ”t”. The invocation surrounding that innermost one inserts ”a”
into the ”t” string at the two possible locations, the beginning and the end, to
produce [”at”, ”ta”]. The outermost invocation inserts ”c” into each of the
two strings at one of three possible locations. The combination of two strings
and three possible locations produces six anagrams.

Figure 6-7 Anagramming a word

Anagramming short words is fine. For example:
>>> anagrams(’tire’) 
[’tire’, ’itre’, ’irte’, ’iret’, ’trie’, ’rtie’, ’rite’, ’riet’, 
’trei’, 
’rtei’, ’reti’, ’reit’, ’tier’, ’iter’, ’ietr’, ’iert’, ’teir’, 
’etir’, 
’eitr’, ’eirt’, ’teri’, ’etri’, ’erti’, ’erit’]

Anagramming longer words, however, is likely to become more of a nuisance.
The factorial of 6 is 720, and generating such long sequences may produce
more words than you want to know about.

A Recursive Binary Search
Remember the binary search we discussed in Chapter 2, ”Arrays”? The search
finds the index to a cell with a matching key in an ordered array using the



fewest number of comparisons. The solution kept dividing the array in half,
seeing which half contained the desired cell, dividing that half in half again,
and so on. Here’s the OrderedRecordArray.find() method:
   def find(self, key):             # Find index at or just below key 
      lo = 0                        # in ordered list 
      hi = self.__nItems-1          # Look between lo and hi 
      while lo <= hi: 
         mid = (lo + hi) // 2       # Select the midpoint 
 
         if self.__key(self.__a[mid]) == key:  # Did we find it? 
            return mid              # Return location of item 
 
         elif self.__key(self.__a[mid]) < key: # Is key in upper half? 
            lo = mid + 1            # Yes, raise the lo boundary 
 
         else: 
            hi = mid - 1            # No, but could be in lower half 
 
      return lo   # Item not found, return insertion point instead

You might want to reread the section on binary searches in ordered arrays in
Chapter 2, which describes how this method works or review the algorithm
visualization.

You can transform this loop-based method into a recursive method quite easily.
The loop-based method changes either lo or hi to specify a new range on each
iteration. Each time through the loop it divides the range (roughly) in half.

Recursion Replaces the Loop
In the recursive approach, instead of changing lo or hi inside a loop, you call
find() again with the new values of lo or hi as arguments. The loop
disappears, and its place is taken by the recursive calls. Here’s how that looks:
class OrderedRecordArray(object): 
… # other definitions as shown in Chapter 2 … 
   def find(self, key,              # Find index at or just below key 
            lo = 0,                 # in ordered list between lo 
            hi = None):             # and hi using recursion 
      if hi is None:                # If hi was not provided, 
         hi = self.__nItems - 1     # use upper bound of array 
      if lo > hi:                   # If range is empty, 
         return lo                  # return lo for base case 



      mid = (lo + hi) // 2          # Select the midpoint 
      if self.__key(self.__a[mid]) == key:  # Did we find it? 
         return mid                 # Return location of item 
 
      if self.__key(self.__a[mid]) < key: # Is key in upper half? 
         return self.find(          # then recursively search 
            key, mid + 1, hi)       # in upper half 
      else:                         # Otherwise, it must be in 
         return self.find(          # lower half so recursively 
            key, lo, mid - 1)       # search below mid

This recursive version defines default values for the lo and hi parameters to
find(). That allows callers to call the method without specifying the range of
indices to search. The first if statement fills in the value of hi as the last valid
index if the caller did not provide a value (or passed None as an argument). The
default value for lo is a constant, 0, so it can be specified in the parameter
definition.

Like the other recursive methods, the next test is for the base case. The second
if statement looks for an empty range of indices where lo > hi. That will
happen for empty arrays or when the key is not found among the items in the
array. In this case, find() returns lo because an item with that key would be
inserted at lo to maintain the ordering. Why not check if lo == hi as the base
case? If you did so, then you would still need to compare the key being sought
with the key of the item at lo. Depending on their relationship, the value to
return could be lo, lo − 1, or lo + 1. It’s easier to skip those checks and let
the recursion proceed until lo > hi. We show each of those cases in the rest of
the routine.

The next statement sets mid to be the midpoint of the range between lo and hi.
The third if statement compares the key at that index of the array with the key
being sought. If they are equal, the method can return mid as the result; no
more recursion is needed. If there were previous recursive calls to get to this
point, they all will pass the mid value as the result back to their callers.

After the third if statement compares the search key with the one at mid and
fails to find a match, the only thing left to try is searching the upper or lower
search ranges. By checking whether the search key is above or below the key at
mid, the method can determine the proper range and search it using the
recursive call to self.find(). These two calls handle the other two conditions
related to lo == hi == mid. The recursive call goes to lo + 1 if the key at mid
is less than the search key. The lo − 1 case is handled by reducing hi to mid −



1, which is only a possible return value if there were indices below mid to be
searched.

Here’s a small test of the recursive find() method. In this example, the
program places a small set of integers in an array and tries finding some that
are present and some that are not.
arr = OrderedRecordArray(10) 
for item in [3, 27, 14, 10, 88, 41, 67, 51, 95]: 
   arr.insert(item) 
 
print("Array containing", len(arr), "items:\n", arr) 
 
for goal in [0, 10, 11, 99]: 
   print("find(", goal, ") returns", arr.find(goal))

The output from this test is
Array containing 9 items: 
 [3, 10, 14, 27, 41, 51, 67, 88, 95] 
find( 0 ) returns 0 
find( 10 ) returns 1 
find( 11 ) returns 2 
find( 99 ) returns 9

Searching for 0 returns 0 because the value would go in the first cell of the
array if inserted, so it could be in front of 3. The call to find(10) returns 1,
which is the index of the cell holding 10. The next call to find(11) shows it
returning an index one before the next larger integer in the array, and the last
one is beyond the current end of the of the array because it is bigger than all the
items.

Figure 6-8 shows the recursive calls needed to find the index for 11 in the
preceding array. In the initial call, lo and hi are not specified, so their defaults
(shown in green inside the parentheses) are used. The internal recursive calls
don’t use the defaults.





Figure 6-8 Performing recursive binary search

The range of indices to search is initially all 9. In the first recursive call, the
range shrinks to 4, indices 0 through 3. The second recursive call reduces the
range to 2, indices 2 through 3. The last recursive call reduces the range to 0
after finding that the key at index 2, 14, is higher than the goal key of 11.
Because the range is empty, the base case causes 2 to be returned up the chain
of recursive calls.

The recursive binary search has the same Big O efficiency as the nonrecursive
version: O(log N). It is more elegant but may be slightly slower because
function calls and returns can take more time than updating loop variables.

Divide-and-Conquer Algorithms
The recursive binary search is an example of the divide-and-conquer approach.
You divide the big problem into two smaller problems and solve each one
separately. The solution to each smaller problem is the same: you divide it into
two even smaller problems and solve them. The process continues until you get
to the base case, which can be solved easily, with no further division.

The divide-and-conquer approach is commonly used with recursion, although,
as you saw in the binary search in Chapter 2, you can also use a nonrecursive
approach. It usually involves a method that contains two recursive calls to
itself, one for each half of the problem. In the binary search, there are two such
calls, but only one of them is actually executed. (Which one depends on the
value of the keys.) The mergesort, which is described later in this chapter,
actually executes both recursive calls (to sort two halves of an array).

The Tower of Hanoi
The Tower of Hanoi is a historic puzzle consisting of several disks placed on
three spindles or columns, as shown in Figure 6-9. The puzzle is also known as
the Tower of Brahma or Lucas’s Tower for Édouard Lucas, its inventor. Lucas
was a mathematician who studied the Fibonacci sequence and other recursively
defined sequences. The goal of the puzzle is to move all of the disks from one
spindle to another, following a set of specific rules.



Figure 6-9 The Tower of Hanoi puzzle

The disks all have different diameters. Each one has a hole in the middle that
fits over the spindles. All the disks start out on one spindle, stacked in order of
diameter, which gives the appearance of a tower. The object of the puzzle is to
transfer all the disks from the starting spindle, say the one on the left, to
another spindle, say the one on the right. Only one disk can be moved at a time,
and no disk may be placed on a disk that’s smaller than itself.

The legend that goes along with the puzzle is that in a distant temple, a group
of monks labor day and night to transfer 64 golden disks from one of three
diamond-studded towers to another. When they are finished, the world will
end. If that alarms you, wait until you see how long it takes to solve the puzzle
with 64 disks.

The Tower of Hanoi Visualization Tool



Start up the TowerOfHanoi Visualization tool. Create a new three-disk puzzle
by typing 3 in the text entry box and selecting New. You can attempt to solve
the puzzle yourself by using the mouse to drag the topmost disk to another
tower. The star by the spindle on the right indicates the goal tower. Figure 6-10
shows how the towers look after several moves have been made.

Figure 6-10 The Tower Of Hanoi Visualization tool

There are two ways to use the visualization tool:

• You can attempt to solve the puzzle manually, by dragging the disks from
tower to tower.

• You can select the Solve button and watch the algorithm solve the puzzle
with no intervention on your part. The disks zip back and forth between
the posts. Using the Pause/Play button, you can stop and resume the
animation to examine what happens at each step.

To restart the puzzle, type in the number of disks you want to use, from 1 to 6,
and select New. The specified number of disks will be arranged on the left
spindle. You can drag the top disk to either of the other two spindles. If you
pick up the next larger disk, the tool will allow you to place it only on a spindle
whose topmost disk has a larger diameter. If you release it away from a spindle
that can accept it, the disk returns to where you picked it up. When all the disks
form a tower on leftmost spindle, the Solve button is enabled. If you stop the
automated solver, you can resume manually solving the puzzle.

Try solving the puzzle manually with a small number of disks, say three or
four. Work up to higher numbers. The tool gives you the opportunity to learn



intuitively how the problem is solved.

Moving Pyramids
Let’s call the arrangement of disks on a spindle a ”pyramid” because they are
ordered by diameter. You could call them a ”stack,” but that would be
somewhat confusing with the stack data structure you’ve studied (although that
data structure will be useful to model the disks). Using this terminology, the
goal of the puzzle is to move the pyramid from the left spindle to the right. For
convenience, the spindles can be labeled L, M, and R for left, middle, and
right.

How do you solve the puzzle? Let’s start with the easy cases. If there’s only
one disk, the solution is trivial. Move the one disk from spindle L to spindle R.
In fact, even easier, if there are no disks, then there is nothing to move and the
puzzle is solved. Then what about two disks? That’s pretty easy, too. Move
disk 1 from L to M, move disk 2 from L to R, and then move disk 1 from M to
R. These moves are shown in the four panels of Figure 6-11.

Figure 6-11 Solution to the Tower of Hanoi with two disks

How do you solve problems with more disks? You’ve seen the base cases; can
recursion help with this? You might be surprised to know that you’ve already
figured out all the steps of the recursive algorithm by enumerating the cases up
to three disks.

To see how to get to a recursive solution, remember that you need to make
smaller versions of the same problem. The two strategies you’ve seen are
dividing the problem in half or reducing the number of things by one. Dividing



it in half doesn’t seem to fit, so let’s look at reducing the number of disks by
one. In particular, let’s look at the case of three disks.

If you perform the same steps that you took to solve the two-disk puzzle, then
the three-disk puzzle would end up with disk 3 still on the left spindle and
disks 1 and 2 on the right spindle, as shown in Figure 6-12. From here, it’s easy
to move disk 3 onto the middle spindle, but not easy to move it to the right-
hand one.

Figure 6-12 A Tower of Hanoi with three disks after moving two of them



If you changed the first moves to swap the middle and right spindles, then
disks 1 and 2 would end up on the middle spindle and leave the right one open,
as shown in Figure 6-13.

Figure 6-13 A Tower of Hanoi after moving two disks to the middle

With the right spindle empty, you can easily move disk 3 from the left to the
right. Now all that’s left is moving the two disks on the middle spindle over to
the right. And that’s a problem you’ve already solved. This example provides
the basic outline for the solution of the three-disk problem, namely:

1. Move the top two disks to the middle spindle (using the right one as the
spare).

2. Move disk 3 to the right spindle.

3. Move the top two disks on the middle spindle to the right spindle (using
the left one as the spare).

Steps 1 and 3 are solutions that have the same form as the three moves shown
in Figure 6-11. They are solutions to the two-disk problem, but with different
starting and ending positions. Now it’s time to recognize that you’ve solved the
three-disk problem by reducing it to two calls to the two-disk solution plus one
disk move in between. If you rephrased the preceding outline to solve an N
disk problem, it would be

1. Solve the N−1 disk problem by moving the N−1 disk pyramid from the
start spindle to the nongoal spindle (using the goal spindle as a spare).

2. Move the Nth disk to the goal spindle.



3. Solve the N−1 disk problem by moving the N−1 disk pyramid from step 1
on to the goal spindle (using the starting spindle as a spare).

Steps 1 and 3 look like recursive calls to the same solution routine. That
solution routine would need to know how many disks to move and the role of
each of the three spindles: start spindle, goal spindle, and spare spindle. In the
various recursive calls, the roles of the spindles change. If you think about the
difference between Figure 6-12 and Figure 6-13, they perform the same
solution but with the swapped roles of the right two spindles.

Is that it? Have you figured out all the steps? What about all the other, bigger
disks? Wouldn’t they prevent the solution from working because they were in
the way of one of the steps?

If you think about it, it doesn’t matter that there are more disks in the puzzle
because they are all larger than the topmost disks. The outlined solution applies
only to the top N disks, and disks N+1, N+2, and so on all must be larger. For
example, applying the two-disk solution to move from the left to right spindles
works equally well in all the situations shown in Figure 6-14, which has five
disks. You count on that fact in the outlined solution. In fact, you hope the
situation looks like the rightmost panel of Figure 6-14 at some point during the
N = 5 puzzle. If all five disks started on the left spindle, performing all the
outline steps for N = 5 and N = 4 and then steps 1 and 2 when N = 3 should
leave disk 3 on the right (goal) spindle with disks 4 and 5 underneath it. All
that remains is performing step 3 on the remaining N−1 (two) disks.





Figure 6-14 Possible states in a five-disk Tower of Hanoi

It still seems as though the algorithm might ask to move a larger disk on top of
a smaller one after all the swapping of roles of the spindles. How can you tell
that it won’t try to move a disk from the right spindle to the left in the
rightmost condition show in Figure 6-14? There are two ways: write a program
to test it and use mathematical induction to prove it. We tackle that program
next.

The Recursive Implementation
Before diving into the code, let’s look at what base cases are needed. As we
mentioned, if there are no disks, no moves are needed, and the solution is done.
That’s definitely a base case. Do you need a base case for a single disk? You
can check by seeing what happens if you apply the outline recursive solution to
the case where N is 1. Step 1 is to solve the movement of the N−1 disk
problem. Because N−1 is 0, you know that nothing will be moved. That’s
followed by moving the Nth disk to the goal spindle, which means the one disk
is moved to the final position. Then step 3 also does nothing (sometimes called
a ”no-op”), because N−1 is 0. Hence, there doesn’t seem to be a need to write
anything special for the case where N is 1. You only need the base case for 0
and the recursive outline.

Listing 6-2 shows the first part of a class, TowerOfHanoi, that solves the puzzle
for any number of disks. Each instance of the puzzle will have a specific
number of disks that is provided to the constructor. The puzzle needs to keep
track of what disks are on what spindles. For that, you could use the
SimpleStack class that was implemented in Chapter 4, ”Stacks and Queues.” A
stack is perfect for modeling each spindle because the only allowed disk
movements involve the top of the stack/spindle. You create a stack for each of
the three spindles and push integers on it to represent the diameters of the
disks. The diameters can be the numbers from 1 up to N, the number of disks.
The bigger numbers are the larger diameter disks.

Listing 6-2 The TowerOfHanoi.py Module—Puzzle Object

from SimpleStack import * 
 
class TowerOfHanoi(object):    # Model the tower on 3 spindles using 
                               # 3 stacks 



   def __init__(self, nDisks=3): # Constructor w/ starting number of 
      self.__stacks = [None] * 3 # Stacks of disks 
      self.__labels = [’L’, ’M’, ’R’] # Labels for stacks/spindles 
      self.__nDisks = nDisks   # Total number of disks 
      self.reset() 
 
   def reset(self):            # Initialize state of puzzle 
      for spindle in range(3): # Set up each of 3 spindles 
         self.__stacks[spindle] = Stack( # Start w/ empty stack 
            self.__nDisks)     # that can hold all the disks 
         if spindle == 0:      # On the first spindle, 
            for disk in range( # push the disks on the stack 
                  self.__nDisks, 0, -1): # in descending order of size 
               self.__stacks[spindle].push(disk) 
 
   def label(self, spindle):   # Get the label of spindle 
      return self.__labels[spindle] 
 
   def height(self, spindle):  # Get the number of disks on a spindle 
      return len(self.__stacks[spindle]) 
 
   def topDisk(self, spindle): # Get top disk number on a spindle or 
      if not self.__stacks[spindle].isEmpty(): # None if no disks 
         return self.__stacks[spindle].peek() # Peek at top disk 
 
   def __str__(self):          # Show puzzle state as a string 
      result = ""              # Start with empty string 
      for spindle in range(3): # Loop over spindles 
         if len(result) > 0:   # After first spindle, 
            result += "\n"     # separate stacks on new lines 
         result += ( 
            self.label(spindle) + ’: ’ + # Add spindle label 
            str(self.__stacks[spindle])) # and spindle contents 
      return result

The constructor for TowerOfHanoi initializes the private class attributes. The
stacks modeling the spindle contents go in a three-element array called
__stacks. A separate three-element array, __labels, holds the names for the
spindles—L, M, and R—as in the earlier figures. The total number of disks is
stored in __nDisks. A default value of 3 is provided for nDisks.

The constructor uses a separate method to set up the spindle contents. This
method allows the calling program to reset a puzzle object back to the
beginning state. The reset() method loops through all three spindles, creating
a stack that can hold all of the disks on each one (the SimpleStack



implementation uses an array that requires a maximum size). For the first
spindle (at index 0), it pushes the integer diameters of the disks on to the stack,
starting with the biggest disk first.

The next methods are accessor functions for key values of the spindles. The
label() method takes a spindle index and returns the label for the spindle in
the puzzle. The spindle indices are 0, 1, and 2 for the three spindles. Similarly,
the height() method takes a spindle index and returns the number of disks on
that spindle by returning the length of the stack representing its contents. The
topDisk() method also takes a spindle index and returns the diameter of the
topmost disk on it. If the spindle is empty, it returns None.

The __str__() method produces a string to show the puzzle state. It puts each
spindle on a different line of text showing the spindle label and the stack of
disk diameters. For example, the starting state of the three-disk puzzle looks
like this:
>>> print(TowerOfHanoi(3)) 
L: [3, 2, 1] 
M: [] 
R: []

The bottom of the stack/spindle is on the left of each line. This uses the
SimpleStack object’s __str__() method to show the spindle contents.

The move() method in Listing 6-3 handles the movement of disks. It enforces
the rules of the puzzle and throws exceptions if they are violated. The
parameters are the source and destination spindle numbers (source and to) and
a flag (show) indicating whether to print the movement information. The first
rule to check is that the source spindle is not empty. If the source spindle is
empty, it throws an exception. The second rule checks that the destination
spindle is either empty or has a disk larger than the topmost one on the source
spindle. In other words, if the destination spindle is not empty and has a top
disk smaller than that of the source spindle, it throws a different exception. If
both rule checks are satisfied, it performs the move by popping the top disk
from the source and pushing it onto the destination stack. Finally, if the show
flag is set, it prints the move information showing the source and destination
spindle labels and the disk diameter.

Listing 6-3 The TowerOfHanoi.py Module—Puzzle Movement and Solution



class TowerOfHanoi(object): 
 
… (other definitions shown before) … 
 
   def move(self, source, to,  # Move a single disk from source 
            show=False):       # spindle to another, possibly printing 
      if self.__stacks[source].isEmpty(): # Source spindle must have 
         raise Exception(      # a disk, or it’s an error 
            "Cannot move from empty spindle " + self.label(source)) 
      if (not self.__stacks[to].isEmpty() and # Destination cannot 
          self.topDisk(source) > # have a disk smaller than that of 
          self.topDisk(to)):   # source 
         raise Exception( 
            "Cannot move disk " + str(self.topDisk(source)) + 
            "on top of disk " + str(self.topDisk(to))) 
      self.__stacks[to].push(  # Push top disk of source spindle 
         self.__stacks[source].pop()) # on to the ’to’ spindle 
      if show: 
         print(’Move disk’, self.topDisk(to), 
               ’from spindle’, self.label(source), 
               ’to’, self.label(to)) 
 
   def solve(self,             # Solve the puzzle to move 
             nDisks=None,      # N disks from 
             start=0,          # starting spindle 
             goal=2,           # to goal spindle 
             spare=1,          # with spare spindle 
             show=False):      # and possibly showing steps 
      if nDisks is None:       # Default number of disks to move 
         nDisks = self.height(start) # is all the disks on start 
      if nDisks <= 0:          # If no request to move disks 
         return                # there’s nothing to do 
      if self.height(start) < nDisks: # Check if there are fewer 
         raise Exception(             # disks to move than requested 
            "Not enough disks (" + str(nDisks) + 
            ") on starting spindle " + self.label(start)) 
 
      self.solve(nDisks - 1,  # Move n - 1 from start to spare with 
                 start, spare, goal, show) # goal as spare 
      self.move(start, goal, show)  # Move nth from start to goal 
      if show: print(self)          # Show puzzle state after move 
      self.solve(nDisks - 1,  # Then move n - 1 from spare to goal 
                 spare, goal, start, show) # with start as spare 
      if (nDisks == self.__nDisks and   # Were all disks moved? 
          show):              # then puzzle is solved and can show 
         print("Puzzle complete") # conclusion if requested



Finally, the recursive solve() method in Listing 6-3 handles all of the
solutions to the puzzle. The solve method can take all default arguments to
solve the full puzzle, or it can take all the parameters needed to solve the
”subpuzzles” in the recursive steps. In particular, it needs an nDisks parameter
specifying how many disks are in the pyramid to be moved. This parameter
defaults to None and is filled in by the first if statement with the number of
disks on the starting spindle if no value is provided by the caller. The start,
goal, and spare parameters are the indices for the starting, goal, and spare
spindles. Because the reset() method puts all the disks on the first spindle,
index 0, label L, they default to 0, 2, and 1, respectively. The final parameter is
show, a flag to indicate whether to display the moves and intermediate states of
the puzzle.

The second if statement in the solve() method checks for the base case. If the
number of disks to move is zero (or somehow negative), there is nothing to be
done so it simply returns. The third if statement verifies that the number of
disks to be moved does not exceed the ones stacked on the starting spindle.

The remaining statements in the solve() method execute the recursive solution
algorithm outlined previously. The first step is to solve the problem of moving
N−1 disks from the starting spindle to the spare (nongoal) spindle. This is done
by reducing the value of nDisks and swapping the roles of the spare and goal
spindles. The next statement calls the move() method to move the Nth disk,
which is now on top of the starting spindle, to the goal spindle. If the show flag
is set, it then prints the state of the puzzle after the move. The next step is the
recursive solution to moving N−1 disks from the spare spindle on to the goal
spindle using the original starting spindle as the spare. The final if statement
checks whether the puzzle has been solved and prints a message if the show
flag is set.

You can test the solution by creating and solving puzzles of various sizes, as
shown here:
>>> TowerOfHanoi(3).solve(show=True) 
Move disk 1 from spindle L to R 
L: [3, 2] 
M: [] 
R: [1] 
Move disk 2 from spindle L to M 
L: [3] 
M: [2] 
R: [1] 



Move disk 1 from spindle R to M 
L: [3] 
M: [2, 1] 
R: [] 
Move disk 3 from spindle L to R 
L: [] 
M: [2, 1] 
R: [3] 
Move disk 1 from spindle M to L 
L: [1] 
M: [2] 
R: [3] 
Move disk 2 from spindle M to R 
L: [1] 
M: [] 
R: [3, 2] 
Move disk 1 from spindle L to R 
L: [] 
M: [] 
R: [3, 2, 1] 
Puzzle complete

If you run the program with more disks, you should find it dependably
enumerating all the steps needed to solve bigger problems. You can use the
visualization tool as well. It’s quite amazing to see what a few recursive lines
of code can produce.

Be careful, however, because the number of moves required to solve a puzzle
grows quite fast with the number of disks. How fast?

You can easily find the number of moves needed for the puzzles of size 1 to 10.
They’re shown in Table 6-2.

Table 6-2 Moves Required to Solve the Tower of Hanoi with N Disks

If you’ve worked with binary numbers, it should be clear that it takes 2N − 1
moves to solve the N-disk puzzle. This O(2N) complexity grows even faster



than the sorting algorithms that you saw in Chapter 3, ”Simple Sorting,” that
were O(N2). For example, 102 is 100, but 210 is 1,024. So, if the legend of the
monks solving the puzzle with 64 disks is true, they will have to make 264 − 1
moves to complete it. If they could complete 1 move every 10 seconds on
average, that would take over 5.8 × 1012 years. This is not likely to cause the
end of the world any time soon.

It’s also important to note that in order to find the 2N − 1 moves that solve the
puzzle, there will be a chain of only N + 1 recursive calls at any time during the
computation. This is called the recursive depth of the algorithm. It
corresponds to the number of nested calls like those shown in Figures 6-5, 6-6,
6-7, and 6-8. There are other algorithms where this recursive depth can grow
very large and cause an exception when the execution stack runs out of
memory.

Sorting with mergesort
Our final example of recursion is the mergesort. It is a much more efficient
sorting technique than those you saw in Chapter 3, at least in terms of speed.
The mergesort is also fairly easy to implement. It’s conceptually easier than
quicksort and the Shellshort, which are described in the next chapter.

The downside of the mergesort is that it requires an additional array in
memory, equal in size to the one being sorted. If your original array barely fits
in memory, the mergesort won’t work. If you have enough space, however, it’s
a good choice.

Merging Two Sorted Arrays
One of computing science’s famous pioneers, John von Neumann, invented the
mergesort algorithm by considering merging two already-sorted arrays, A and
B. Merging them creates a third array, C, that contains all the elements of A
and B, arranged in sorted order. We examine this merging process first.

The two sorted arrays don’t need to be the same size. Let’s say array A has 4
elements and array B has 6. They will be merged into an array C that starts
with 10 empty cells. Figure 6-15 shows these arrays just before the last value is
copied into array C.



Figure 6-15 Merging two arrays

In the figure, the values from arrays A and B are copied to C from top to
bottom. Choosing whether to copy from A or B is based on the lowest value
remaining to be copied. Table 6-3 shows the comparisons necessary to
determine which element will be copied. The steps in the table correspond to



the cells of array C in the figure. Following each comparison, the smaller
element is copied to C.

Table 6-3 Merging Comparisons and Copies

Notice that, because A is empty following step 8, no more comparisons are
necessary; all the remaining elements are simply copied from B into C.

Sorting by Merging
The idea in the mergesort is to divide the unsorted, input array in half, sort each
half, and then use the merge algorithm just outlined to merge the two halves
into a single sorted array. How do you sort each half? This chapter is about
recursion, so you probably already know the answer: you divide the half into
two quarters, sort each of the quarters, and merge them to make a sorted half.

Similarly, each pair of 8ths is merged to make a sorted quarter, each pair of 16ths

is merged to make a sorted 8th, and so on. You divide the array again and again
until you reach a subarray with only one element. This is the base case; an
array with one element is already sorted.



You’ve seen that something is reduced in size each time a recursive method
calls itself and built back up again each time the method returns. In mergesort,
the range of cells is divided in half each time this method calls itself, and each
time it returns it merges two smaller ranges into a larger one.

As the mergesort algorithm returns from processing two arrays of one element
each, it merges them into a sorted array of two elements. Each pair of resulting
two-element arrays is then merged into a four-element array. This process
continues with larger and larger arrays until the entire array is sorted. This sort
is easiest to see when the original array size is a power of 2, as shown in Figure
6-16. The input, unsorted array is shown at the left, with the first cell (index 0)
at the top. Time elapses moving toward the right. The recursive calls split the
eight-element array into halves of four, then quarters of two, and finally into
the base case call on a single element.



Figure 6-16 Mergesorting an eight-element array

Each recursive call works on a range of the array cells. You can use Python
slice notation to indicate the ranges being worked in each call. The full array is
[0:8], and the first quarter is [0:2]. Note the second index of the slice is one
past the last index of the range. Mathematicians might prefer the notation [0,8)



for the range of integers 0, 1, 2, 3, 4, 5, 6, and 7, but Python uses [0:8]. We use
both in different parts of this book.

Let’s assume you have a recursive implementation called mergesort() that
works on a range in the array. The first call to it is with the full array, [0:8].
Because it’s not the base case of a single cell, it makes a recursive call to
mergesort() the first half of the array, [0:4]. That too is not a base case, so it
makes a recursive call to mergesort() the first quarter, [0:2], and finally the
first eighth, [0:1]. That is a single cell range, which is already sorted, so that
call returns immediately. The same is true of the second eighth, the range [1:2].

The second column (numbered 1) in Figure 6-16 shows the merge step where
the first two eighths are merged into a sorted quarter, range [0:2], moving 21 to
precede 64. This quarter range is passed back to the recursive call to
mergesort() on the first half, [0:4]. That call now goes on to mergesort() the
second quarter, [2:4]. The third column (numbered 2) in Figure 6-16 shows the
merge step on the eighths that make up that quarter. There is no change in the
values because they were already in sorted order.

The fourth column in Figure 6-16 shows the merging of the first two sorted
quarters. The lowest values are chosen first in zipper-like order to make the
sorted half. The same process then repeats to dive into the second half of the
array, breaking it into quarters, then eighths, and merging the sorted results. In
the far-right column of Figure 6-16, the full array is sorted by merging the two
sorted halves.

When the array size is not a power of 2, arrays of different sizes must be
merged. For example, Figure 6-17 shows the situation when the array size is
10. Here an array of size 2 must be merged with an array of size 1 to form an
array of size 3.



Figure 6-17 Mergesort when the array size not a power of 2

As mergesort() makes its recursive calls to subdivide the range, it first divides
the 10 cells into two ranges of 5 cells each. Those are then subdivided into
arrays of size 2 and 3. The two-cell arrays are processed as above, but in the
case of the three-cell array, it must be split into unequal subranges. For
example, the first half, [0:5], is split into subranges [0:2] and [2:5]. The [2:5]



subrange is split into [2:3] and [3:5]. The [2:3] subrange has only one cell, so it
is handled as the base case where no sorting needs to be done. The fourth
column of Figure 6-17 shows the merge of the one- and two-cell arrays into the
three-cell array.

You may wonder how much memory is required to hold all these smaller arrays
during the mergesort. To merge two arrays of size M and N together, the
algorithm needs another M+N size array to hold the result. Reviewing the basic
algorithm:

1. Sort the first half of the array

2. Sort the second half of the array

3. Merge the two sorted halves together

only the third step requires temporary storage. The first two steps can be done
by putting the result back in the input array cells. So, if you expand step 3 to be

a. Merge the two sorted halves of the input arrayinto a temporary array

b. Copy the temporary array back into the input array

you will need a full copy of the input array, but nothing more, for all the
recursive steps. The implementation shown in Listing 6-4 uses a work array to
hold the temporary results.

Listing 6-4 The Mergesort.py Module

def identity(x): return x        # Identity function 
 
from Array import * 
 
class Mergesort(object):         # An object to mergesort Arrays 
   def __init__(self,            # Constructor takes the unordered 
                unordered,       # array and orders its items by using 
                key=identity):   # mergesort on their keys 
      self.__arr = unordered     # Array starts unordered 
      self.__key = key           # Key func. returns sort key of item 
      n = len(unordered)         # Get number of items 
      self.__work = Array(n)     # A work array of the same length 
      for i in range(n):         # is needed to rearrange the items 
         self.__work.insert(None) # Work array is filled with None 
      self.mergesort(0, n)       # Call recursive sort on full array 
 



   def mergesort(self, lo, hi):  # Perform mergesort on subrange 
      if lo + 1 >= hi:           # If subrange has 1 or fewer items, 
         return                  # then it is already sorted 
      mid = (lo + hi) // 2       # Otherwise, find middle index 
      self.mergesort(lo, mid)    # Sort the lower half of subrange, 
      self.mergesort(mid, hi)    # Sort the upper half of subrange, 
      self.merge(lo, mid, hi)    # Merge the 2 sorted halves

The Mergesort class is defined with a single purpose—to sort array objects.
This example reuses the Array class defined in Chapter 2 for the input and
output array. Each Mergesort object will be constructed from a single Array
object. The constructor method takes the unsorted array and a key function to
get the sort key from each item in the array. The default key function is the
identity function that returns the item itself, which can be used to sort an array
of primitive types like integers or characters.

The constructor adds private attributes for the __arr array and the sort __key
function. It allocates a __work array that is the same size as the input array. All
of the recursive calls will be able to use the same work array because they each
copy their result back into the input array. The work array is filled with the
None value to ensure all the cells are allocated. Finally, the constructor calls
mergesort() on the entire array range, [0:n]. There is no return statement
because the results will be stored in the input/output array by mergesort().

The recursive mergesort() method is defined to work on subranges of the
array between a lo and hi index (hi is one past the highest index). As usual,
the first step is to check for the base case, a 1-cell array subrange. It also looks
for a 0-cell or empty range just in case the input array was empty. In either of
those cases, the input subrange is already sorted, and the method can return
without any further action.

For subranges larger than 1, mergesort() computes a midpoint index between
lo and hi to divide the subrange into two approximately equal halves,
[lo:mid] and [mid:hi]. Recursive calls sort these subranges. Finally, the two
sorted subranges are merged together in the call to merge().

Merging Subranges
The mergesort() method calls merge() to merge the items from the sorted
subranges, making use of the work array as shown in Listing 6-5.



Listing 6-5 The Mergesort.py Module’s merge() Method

   def merge(self, lo, mid, hi): # Merge 2 sorted subranges of input 
      n = 0                      # into work array which starts empty 
      idxLo = lo                 # Use indices into lo and hi 
      idxHi = mid                # subranges to track next items 
      while (idxLo < mid and     # Loop until one of the subranges 
             idxHi < hi):        # is empty 
         itemLo = self.__arr.get(idxLo) # Get next items from the 
         itemHi = self.__arr.get(idxHi) # two subranges 
         if (self.__key(itemLo) <=   # Compare keys of those items 
             self.__key(itemHi)): 
            self.__work.set(n, itemLo) # Lo subrange is first so 
            idxLo += 1           # copy item and advance to next 
         else: 
            self.__work.set(n, itemHi) # Hi subrange is first so 
            idxHi += 1           # copy item and advance to next 
         n += 1                  # One more item now in work array 
 
      while idxLo < mid:         # Loop to copy remaining lo 
         self.__work.set(        # subrange items to work array 
            n, self.__arr.get(idxLo)) 
         idxLo += 1 
         n += 1 
 
      while n > 0:               # Copy sorted work array contents 
         n -= 1                  # back to input/output array in 
         self.__arr.set(         # reverse order 
            lo + n, self.__work.get(n))

The merge() method works with two, adjacent subranges of the array stored in
the __arr attribute of the object. It steps through the subranges, copying the
lowest value in each one to the __work array that was created by the
constructor. It uses n to count the number values that have been copied and
idxLo and idxHi to index the two subranges. The two indices start at the lowest
index of their respective ranges and work up.

The first while loop in merge() handles the case when there are values to
compare from both subranges. It checks that both indices are still within their
valid ranges and gets the items at those indices, itemLo and itemHi. It
compares the sort keys by applying the sort key function to each one.
Whichever item has the lower sort key is copied to the work array. The count



of copied items is advanced along with the index for the corresponding
subrange.

After one of the subranges becomes empty, no more comparisons are needed,
just copying values to their proper positions. The merge() method copies any
remaining items in the low subrange in the second while loop. Finally, the
entire __work array can be copied back into the subrange of the __arr array
starting at lo. The last while loop decrements n back to 0 instead of using
another index variable for this copying.

Does something look strange in merge()? In particular, what about copying
any remaining items in the high subrange to the __work array? In the previous
examples and in Figure 6-15, it shows copying all the items to the work array.
Why is that missing in merge()?

Because the input array is also the output array, copying the highest part of a
range into the work array and then back again accomplishes nothing. When the
first while loop is done, one of the two ranges has been fully copied to the
work array. If it’s the lower range, then the second while loop has nothing to
do. That leaves some or all of the higher range in the input array, idxHi < hi,
but all those items must have higher key values than what has already been
copied. You could copy them to the work array and increment n, but they
would just be copied back to the same cells by the third while loop. Thus, the
method skips the unneeded copying and leaves them unchanged.

Testing the Code
The MergesortClient() shown in Listing 6-6 tests the basic operation of
Mergesort().

Listing 6-6 The MergesortClient() Module

from Mergesort import * 
from Array import * 
 
values = [19, 49, 70, 72, 43, 80, 95, 46, 19, 18, 45, 6, 56, 85] 
array = Array(len(values)) 
for value in values: 
   array.insert(value) 
 
print(’Initial array contains’, len(array), ’items’) 



array.traverse() 
 
Mergesort(array) 
 
print(’After applying Mergesort, array contains’, len(array), ’items’) 
array.traverse()

Because the Array class introduced in Chapter 2 doesn’t have a __str__()
method, the test client uses the traverse() method to show its contents.
Running the test shows
$ python3 MergesortClient.py 
Initial array contains 14 items 
19 
49 
70 
72 
43 
80 
95 
46 
19 
18 
45 
6 
56 
85 
After applying Mergesort, array contains 14 items 
6 
18 
19 
19 
43 
45 
46 
49 
56 
70 
72 
80 
85 
95

The Mergesort Visualization Tool



This sorting process is easier to appreciate when you see it happening before
your very eyes. Start up the Mergesort Visualization tool. The tool starts with a
small array of random numbers. You can create a new array of a particular size
using the now-familiar New button and fill it with more random integers using
the Random Fill button. You start the mergesort process by selecting the
Mergesort button. The first thing it does is create the work array near the
bottom to hold the merged ranges. Then the mergesort algorithm starts dividing
the array into halves, quarters, and so on. The range of cells that it is working
on is moved down for each recursive level. When it reaches a merge step, it
copies items into the work array. Figure 6-18 shows an example as it merges a
two-cell range of the array.

Figure 6-18 The Mergesort Visualization tool

The range of cells is split at the mid index that’s calculated by mergesort(). As
it descends a level, the range from lo to mid is moved a little to the left, and the
range from mid to hi is moved a little to the right. The lo, mid, and hi indices
change at each level, and the visualization shows only the mid index to reduce
clutter. It leaves the mid index of higher levels in a fainter color and restores the
index when the recursion returns to that level.

The idxLo and idxHi indices show which cells the merge() method is
examining. The lower keyed item is copied to the work array. After one of the
ranges is fully copied, it copies anything remaining in the low range and then
copies all n items back into the input array cells. The cells move back up as the
recursive call ends.

As the algorithm runs, watch the code window. The recursive calls to
mergesort() stack up, each with different ranges to sort. At the end of each



call to mergesort(), it pushes the call to merge() on the stack to merge the two
subranges. You can step through or pause the animation to look at the details of
the call stack to see what the different loops do.

Efficiency of the mergesort
Although the bubble, insertion, and selection sorts described in Chapter 3 take
O(N2) time, the mergesort is O(N×log N). The graph at the end of Chapter 2
shows how much faster this is. For example, if N (the number of items to be
sorted) is 10,000, then N2 is 100,000,000, while N×log N is only 40,000 (using
log10). If sorting this many items required 40 seconds with the mergesort, it
would take almost 28 hours for the insertion sort.

How do you know the mergesort takes O(N×log N) time? That’s not easy to
see just by looking at the algorithm or the implementation, and it’s one of the
most challenging and interesting parts of computer science. To figure it out,
you can count the number of times a data item must be copied and the number
of times it must be compared with another data item during the course of the
algorithm. We assume that copying and comparing are the most time-
consuming operations and that the recursive calls and returns don’t add much
overhead.

Number of Copies
Consider Figure 6-16, which showed the sorting of an eight-cell array. Each
cell to the right of the left-hand column represents an element copied from the
input array into the work array. More accurately, they are cells that could have
been copied into the work array because, as we discussed previously, the items
left in the high range didn’t need to be copied. Let’s assume the worst case,
however, and count all the cells as being copied. (We’ll handle the copying
back to the input/output array shortly.)

Adding up all the cells in Figure 6-16 (the seven columns to the right) shows
there are 24 copies necessary to sort 8 items. Log2(8) is 3, so 8×log2(8) equals
24. This shows that, for the case of 8 items, the number of copies is
proportional to N×log2N.

Another way to look at this calculation is that to sort 8 items requires 3 levels,
each of which involves 8 copies. A level means all copies go into the same size



subrange of the array (or subarray). In the smallest subrange level, there are
four 2-cell subarrays; in the next larger level, there are two 4-cell subarrays;
and in the third level, there is one 8-cell subarray. Each level has 8 elements, so
again there are 3×8, or 24, copies. The levels correspond to the recursive calls
to mergesort() that divide the range in half.

You can use Figure 6-16 to figure out the number of copies needed for a four-
cell array by only considering the top four cells of the array. To sort those cells,
eight copies are needed. Checking the formula for that size shows 4×log2(4) =
4×2 = 8. Going one level lower, two copies are necessary for two items.
Similar calculations provide the number of copies necessary for larger arrays.
Table 6-4 summarizes this information.

Table 6-4 Number of Operations When N Is a Power of 2

The items are not only copied into the work array but are also copied back into
the original array. In the worst case, this process doubles the number of copies,
as shown in the Total Copies column. The final column of Table 6-4 shows
comparisons, which we cover in a moment.

It’s harder to calculate the number of copies and comparisons when N is not a
multiple of 2, but these numbers fall between those that are a power of 2. For
10 items, there are 34 cells in Figure 6-17, which means there are at most 34×2
= 68 total copy operations. That counts lies between the counts for N = 8 and N
= 16, that is, between 48 and 128.



Number of Comparisons
In the mergesort algorithm, the number of comparisons is always somewhat
less than the number of copies depending on the amount of sorting that’s
needed. How much less? Assuming the number of items is a power of 2, for
each individual merging operation, the maximum number of comparisons is
always one fewer than the number of items being merged, and the minimum is
half the number of items being merged. That minimum is called the best case,
and it happens when the input array is already in sorted order. The merge
copies all the items from the lower half of the array while doing the
comparisons. The second loop does nothing because all the lower items are in
the work array, and then the final loop copies the lower half back to the input
array. The maximum number is the worst case and happens when the item’s
sort keys interleave. The items are copied zipper-like into the work array, and
only the last item requires no comparisons. In the example of Figure 6-15,
eight comparisons were needed before the last two items could be merged into
the result.

Those cases tell us the range of possible comparisons. To get a specific count
for a specific input array, you have to add up all the comparisons at all the
levels. Referring to Figure 6-16, you can see that seven merge operations are
required to sort eight items. The number of items being merged and the
resulting number of comparisons are detailed in Table 6-5.

Table 6-5 Comparisons Involved in Sorting Eight Items

For each merge, the maximum number of comparisons is one fewer than the
number of items. Adding these figures for all the merges gives a total of 17.
The minimum number of comparisons is always half the number of items being
merged, and adding these figures for all the merges results in 12 comparisons.



Similar arithmetic results in the values shown in the Comparisons column of
Table 6-4.

The actual number of comparisons to sort a specific array depends on how the
input items are arranged, but it will be somewhere between the minimum and
maximum values. Because both the best and worst cases depend on N, the
average number does too. That means that at every recursion level, there will
be O(N) comparisons. Because there are O(log N) levels of recursion, there
will be O(N×log N) comparisons overall.

Eliminating Recursion
Some algorithms lend themselves to a recursive approach; some don’t. As
you’ve seen, the recursive triangular() and factorial() functions can be
implemented more efficiently using simple loops. Various divide-and-conquer
algorithms, however, work very well as recursive routines.

Often an algorithm is easy to conceptualize as a recursive method, but in
practice the recursive approach proves to be inefficient. In such cases, it’s
useful to transform the recursive approach into a nonrecursive approach. Such
transformations often make use of a stack.

Recursion and Stacks
There is a close relationship between recursion and stacks. In fact, most
compilers implement recursion by using stacks. As we noted, when a method is
called, the compiler pushes the arguments to the method and the return address
(where control will go when the method returns) on the stack, and then
transfers control to the method. When the method returns, it pops these values
off the stack. The arguments disappear, and control returns to the return
address.

Simulating a Recursive Function: Triangular
In this section we demonstrate how any recursive solution can be transformed
into a stack-based solution. Remember the recursive triangular() function
from the first section in this chapter? Here it is again renamed
triangular_recursive():



def triangular_recursive(nth): # Get the nth triangular number 
   if nth < 1: return 0 # For anything less than 1, it’s 0 
   return (nth +        # Otherwise add this column to the preceding 
           triangular_recursive(nth - 1)) # triangular number

We use this function to show the basic idea, even though we know that we
could really transform this function into one that doesn’t require recursion or
looping; for example,
def triangular(nth):    # Get the nth triangular number 
   return 0 if nth < 1 else nth * (nth + 1) / 2

If we didn’t know about that closed form solution, we could use a stack to
model the recursive calls. Let’s start with a stack that has one item on it that
defines the problem to be solved. Then we can iterate until the stack is either
empty or has one item with a solution to return. Here’s the basic idea:
def triangular_via_stack(nth): # Get the nth triangular number using 
   todo = LinkStack()          # a stack of problem descriptions 
   todo.push([nth, None])      # Description: nth and recursive result 
   while not todo.isEmpty():   # Loop until no more problems to solve 
      top = todo.peek()        # Look at topmost problem 
      if top[1] is None:       # If recursive result is not solved, 
         if top[0] < 1:        # check if top is base case 
            top[1] = 0         # If so, then no recursion needed 
         else:                 # Otherwise, solve smaller problem 
            todo.push([top[0] - 1, None]) 
      else:                    # Topmost is solved 
         top = todo.pop()      # Pop it off the stack 
         if todo.isEmpty():    # If it was the last one, 
            return top[1]      # then return the solution 
         else:                 # Else add recursive call result to 
            caller = todo.peek() # caller’s nth which is next on stack 
            caller[1] = caller[0] + top[1] 
   raise Exception("Stack empty without finding solution")

The todo variable holds a stack. We choose the LinkStack class defined in
Chapter 5, ”Linked Lists,” which does not require a maximum size for the
stack contents. The problem descriptions placed on the stack are simple lists of
two items: a number that is the value of nth from the recursive definition and
None, which is a placeholder for the result being sought. The algorithm will fill
in that value eventually.

After initializing the todo stack, the loop iterates until the stack is empty. In the
loop body, there must be at least one problem to solve, and that is copied to the



top variable. The remainder of the loop body performs one of the calls from
the recursive version of the function. In the recursive body, it looked first at
nth, but here we need to look to see if the result value has been filled in for the
topmost problem. The reason is that we need to know whether to execute the
part of the code before or after the recursive call. It’s kind of like the
instruction pointer that was pushed onto a call stack telling the interpreter
where to resume execution after a recursive call finishes.

When the topmost result is not filled in, which is the way the stack is
initialized, the loop body executes the part of the recursive function that comes
before the recursive call. That is where it checks whether the problem
description is a base case or requires recursion. The base case occurs when the
problem is to find the 0th or lower triangular number. That is 0 by definition, so
it puts the result in the topmost problem description by setting top[1]. If the
top problem description is for a number 1 or higher, then the recursive case
pushes a new, smaller problem description to be solved. That’s done by
pushing [top[0] - 1, None] on the todo stack. That’s effectively going to
perform the recursive call to triangular_recursive(nth - 1). The second
component being None leaves another placeholder on the stack for the result of
that call.

The else clause of the outer if statement handles when the topmost problem
has a solution. That’s the point after the recursive call on the smaller problem
has returned. This is where the recursive version adds the value nth to the
recursive result and returns that to its caller. In order to ”return” a result, the
function needs to store a value in the placeholder created by the caller to hold
it. First, it checks if there is a ”caller” by seeing whether the stack is empty or
not. An empty stack means that it has already popped off the original problem
description and can simply return the result that was computed for it—the
value in top[1].

When the stack is not empty, triangular_via_stack() function ”returns” the
result by adding the result of the recursive call, top[1], to the value of nth in
the caller. The caller’s problem description is at the top of the stack, so it
assigns that pair to the caller variable by calling todo.peek(). The value of
the caller’s nth variable is stored in caller[0]. The result of the caller,
caller[1], is updated to be the sum of its nth, (stored in caller[0]), and the
recursive call result, top[1].

The code also has an ending that checks whether the stack is ever completely
emptied. That should never happen for triangular numbers, so an exception is



thrown.

To summarize, writing a stack-based version of a recursive function involves

• Creating a stack to hold problem descriptions

• Pushing the original problem description on the stack

• Including all the parameters that would be passed to a recursive call in
each problem description

• Including one or more placeholders for the results of the recursive call (if
any are returned)

• Looping until the problem description stack is emptied

• Checking the topmost problem description and handling

• When the problem has not yet been solved, that is, the part before
recursive calls where the base cases are handled

• Adding any recursive calls to the stack

• When the recursive calls have been solved, combining their results
with other problem description parameters, and ”returning” results by
putting them in placeholders on the stack, if any

• Storing any local variables from the recursive function as items in the
problem description. (There aren’t any of these in the preceding
triangular_recursive() function, so you need only the nth function
parameter and the result placeholder).

This entire process of translating recursive functions into nonrecursive version
using stacks can be automated. Some compilers do it for you, but it’s important
to understand how this process happens. One of the trickiest parts is
remembering where all the data gets stored. All the arguments to the recursive
function and any local variables must be kept in the problem description on the
stack so that all the nested versions of the problem can keep track of their data
separately (see Figures 6-5, 6-6, 6-7, and 6-8 for examples). The return values
for each recursive call must also be stored there.

Rewriting a Recursive Procedure: mergesort



The process of converting a recursive procedure is almost identical to that of
converting a recursive function. Let’s convert the mergesort() method of
Listing 6-4 to look at the differences and similarities.

The mergesort() method is the only recursive method of the Mergesort class.
Because it is part of a class, you can allocate a stack when the object is created
to hold the recursive subproblem descriptions. Thus, the class constructor takes
care of the first two bullets of the conversion process.

The problem descriptions need to have all the parameters that are passed to the
recursive method—namely lo and hi, which define the subrange of array cells
to sort. There is also the mid variable that is a local variable of the mergesort()
method. You can include that in the problem description and put it in the
middle so that each description is a list in the form [lo, mid, hi]. Each
iteration of the loop will examine the topmost problem description on the stack
to perform part of the algorithm.

Each loop iteration must handle part of the original routine’s processing
between recursive calls. Listing 6-7 shows the different parts of the processing
using different colors.

Listing 6-7 Parts of the Recursive mergesort() Method

   def mergesort(self, lo, hi):  # Perform mergesort on subrange 
      if lo + 1 >= hi:           # Initial processing 
         return 
      mid = (lo + hi) // 2 
      self.mergesort(lo, mid)    # Processing after 1st recursive call 
      self.mergesort(mid, hi)    # Processing after 2nd recursive call 
      self.merge(lo, mid, hi)

The first part of the routine includes the processing steps up to the first
recursive call. The routine checks the base case and returns if it’s found or
creates the local variable, mid, in the initial part. The second part is the
processing done between the recursive calls, which is nothing (but is still
important because the subrange has been sorted). The third and last part
follows the second recursive call and involves merging the two sorted
subranges of the array.

Each iteration of the stack-based processing performs one of these three parts
of the routine. It has to decide which part to perform based on the problem



description record. You could put a field in the record called step or something
similar to keep track of what step to perform, but you can also look at the value
of the local variable mid. The mid variable starts off undefined and then is later
filled in with a value that is the average of the lo and hi variables. If you
initially create problem descriptions with mid as None and then set it to the
average or some third value, you can use this field of the problem description
to determine what step to perform. An easy test would be to check whether mid
is equal to lo. Having that value could indicate that the first recursive call has
completed on the [lo, mid) range, while a higher value indicates that the higher
subrange is done, and the last part of the processing is next.

The implementation of the MergesortViaStack.py module shown in Listing 6-
8 uses this approach of altering the mid value. It defines the Mergesort class in
the same fashion as that of Listing 6-4. Inside the constructor, it creates a
linked-list stack to hold the problem descriptions to be processed. The overall
problem description is pushed onto the __todo stack before calling the
mergesort() method to sort the unordered array. That initial problem
description is the list [0, None, n] to indicate that it should sort the whole
range [0, n) of the array, and the mid variable is initially undefined.

Listing 6-8 The MergesortViaStack.py Module

def identity(x): return x        # Identity function 
 
from Array import * 
from LinkStack import * 
 
class Mergesort(object):         # An object to mergesort Arrays 
   def __init__(self,            # Constructor, takes the unordered 
                unordered,       # array and orders its items by using 
                key=identity):   # mergesort on their keys 
      self.__arr = unordered     # Array starts unordered 
      self.__key = key           # Key func. returns sort key of item 
      n = len(unordered)         # Get number of items 
      self.__work = Array(n)     # A work array of the same length 
      for i in range(n):         # is needed to rearrange the items 
         self.__work.insert(None) # Work array is filled with None 
      self.__todo = LinkStack()  # Stack to manage subproblems 
      self.__todo.push([0, None, n]) # Add overall problem description 
      self.mergesort()           # Call mergesort on problem 
 
   def mergesort(self):          # Perform mergesort on subrange 
      while not self.__todo.isEmpty(): # Loop until no problems remain 



         lo, mid, hi = self.__todo.peek() # Get [lo, mid, hi] values 
         print(’Mergesort working on [lo, mid, hi] =’, # Show progress 
               self.__todo.peek(), ’at depth’, len(self.__todo)) 
         if lo + 1 >= hi:        # If subrange has 1 or fewer items, 
            self.__todo.pop()    # then done, and remove problem 
            if self.__todo.isEmpty(): # If that was 1st problem 
               return            # then everything is done 
            self.__todo.peek()[1] = lo # Otherwise, store lo index in 
                                 # caller’s problem description for 
                                 # ’mid’ to signal completion 
         elif mid is None:       # If mid is None, need to compute it 
            mid = (lo + hi) // 2 # Find middle index, and add subtask 
            self.__todo.push(    # for the lower half of subrange 
               [lo, None, mid]) 
         elif (mid == lo):       # If mid is lo, lower half is done 
            self.__todo.push(    # Add subtask for upper half of 
               [(lo + hi) // 2, None, hi])  # subrange 
         else:                   # Both lower half and upper half done 
            print(’Merging ranges [’, lo, ’,’, mid, ’) with [’, 
                  mid, ’,’, hi, ’)’) 
            self.merge(lo, mid, hi)  # Merge the 2 sorted halves 
            self.__todo.pop()    # Remove completed problem 
            if self.__todo.isEmpty(): # If that was the 1st problem, 
               return            # then everything is done 
            self.__todo.peek()[1] = lo # Otherwise, signal caller 
      raise Exception(’Empty stack in mergesort’)

As with the triangular_via_stack() function, the mergesort() method is a
loop that processes problem descriptions on the __todo stack until it is empty.
It takes the topmost problem description and copies the fields into the same
variable names used in the recursive version, lo, mid, and hi. After printing the
description record, it goes to the first part of the recursive process, checking the
base case. If it is a one-cell or shorter subrange, nothing needs sorting, so it
pops off the problem description. If the stack is now empty, then completing
this recursive call means everything is done and the stack-based procedure can
return. Otherwise, it must signal that it has completed the recursive call by
updating the mid variable of the caller’s problem description. It sets the middle
element of the caller’s problem description (stored on the top of the stack) to
the lo value of the subrange just processed. The “caller” had originally put
None for that field, and it is now updated to an integer within the subrange the
caller was processing.

Setting the mid value of the caller to the lo value of the problem just solved
may seem as though it’s going to cause an error in the caller due to that



unexpected change. Remember, however, that the stack-based approach is
going to use that value to determine what step is being performed, and the
caller can easily reconstruct mid from its lo and hi values, which do not
change. Note also that by setting this field to lo, the caller will be able to tell if
the first subrange or second subrange has just been processed.

The next step after handling the base case depends on the value of mid. If it’s
not set, then this is the first part of the processing and the range is bigger than 1
cell. It calculates what mid should be and pushes the lower half subrange on the
__todo stack. Note that mid must be at least 1 larger than lo because the base
case handled when lo and hi are separated by less than 2.

The next test looks to see if mid is the same as lo. That indicates the problem
description on the top of the stack just finished the recursive call on the lower
half, so it pushes a description of the upper half subrange onto the stack. Note
that mid was set to lo by the first recursive call, so the method must recompute
the higher subrange starting index as (lo + hi) // 2.

The final else clause handles the case after returning from the second
recursive call, the one that sorted the upper half subrange. The value of mid is
not None nor is it the same as lo, so it must have been set to something above
lo by the recursive call. Now the two subranges can be merged using the exact
same merge() method shown in Listing 6-5. When they’re merged, the
problem description can be popped off the stack. If the stack is empty,
everything is done. Otherwise, it updates the “caller” problem description on
top of the stack to mark the beginning of the range that was just finished. If the
“caller” shared the same value for lo, then this pass through the loop finished
its lower half. If the “caller” value for lo is different (lower) than this pass’s
value, then this pass mergesorted the upper half of the lo to hi range.

The final line of the mergesort() method raises an exception if the stack is
emptied unexpectedly. Normally, the return statements in the loop body handle
the end of processing.

The stack-based implementation of mergesort() in Listing 6-8 includes two
print statements to show what’s going on. Here’s a partial transcript of the end
of the execution on a 14-cell array.
Mergesort working on [lo, mid, hi] = [0, 0, 14] at depth 1 
Mergesort working on [lo, mid, hi] = [7, None, 14] at depth 2 
Mergesort working on [lo, mid, hi] = [7, None, 10] at depth 3 
Mergesort working on [lo, mid, hi] = [7, None, 8] at depth 4 



Mergesort working on [lo, mid, hi] = [7, 7, 10] at depth 3 
Mergesort working on [lo, mid, hi] = [8, None, 10] at depth 4 
Mergesort working on [lo, mid, hi] = [8, None, 9] at depth 5 
Mergesort working on [lo, mid, hi] = [8, 8, 10] at depth 4 
Mergesort working on [lo, mid, hi] = [9, None, 10] at depth 5 
Mergesort working on [lo, mid, hi] = [8, 9, 10] at depth 4 
Merging ranges [ 8 , 9 ) with [ 9 , 10 ) 
Mergesort working on [lo, mid, hi] = [7, 8, 10] at depth 3 
Merging ranges [ 7 , 8 ) with [ 8 , 10 ) 
Mergesort working on [lo, mid, hi] = [7, 7, 14] at depth 2 
Mergesort working on [lo, mid, hi] = [10, None, 14] at depth 3 
Mergesort working on [lo, mid, hi] = [10, None, 12] at depth 4 
Mergesort working on [lo, mid, hi] = [10, None, 11] at depth 5 
Mergesort working on [lo, mid, hi] = [10, 10, 12] at depth 4 
Mergesort working on [lo, mid, hi] = [11, None, 12] at depth 5 
Mergesort working on [lo, mid, hi] = [10, 11, 12] at depth 4 
Merging ranges [ 10 , 11 ) with [ 11 , 12 ) 
Mergesort working on [lo, mid, hi] = [10, 10, 14] at depth 3 
Mergesort working on [lo, mid, hi] = [12, None, 14] at depth 4 
Mergesort working on [lo, mid, hi] = [12, None, 13] at depth 5 
Mergesort working on [lo, mid, hi] = [12, 12, 14] at depth 4 
Mergesort working on [lo, mid, hi] = [13, None, 14] at depth 5 
Mergesort working on [lo, mid, hi] = [12, 13, 14] at depth 4 
Merging ranges [ 12 , 13 ) with [ 13 , 14 ) 
Mergesort working on [lo, mid, hi] = [10, 12, 14] at depth 3 
Merging ranges [ 10 , 12 ) with [ 12 , 14 ) 
Mergesort working on [lo, mid, hi] = [7, 10, 14] at depth 2 
Merging ranges [ 7 , 10 ) with [ 10 , 14 ) 
Mergesort working on [lo, mid, hi] = [0, 7, 14] at depth 1 
Merging ranges [ 0 , 7 ) with [ 7 , 14 ) 
After applying Mergesort, array contains 14 items 
6 
18 
19 
19 
43 
45 
46 
49 
56 
70 
72 
80 
85 
95



The transcript starts right after the lower half of the array has been sorted. The
top of the stack is [0, 0, 14]. That indicates that it should be sorting the range
[0, 14] and mid has been set to 0. That was done by processing the
”recursive” subproblem for the lower half, which isn’t shown but must have
processed the [0, 7) range. It now pushes on the next subproblem to solve [7,
None, 14], the upper half of the array. Because the size of that subrange is
larger than 1, it continues pushing on smaller subranges until it gets to [7,
None, 8] at a stack depth of 4. Because that is a subrange of one cell, it is
handled by the base case.

The single cell base case causes mergesort() to return to the problem at depth
3, but with the mid value of its caller now set to 7, so the full description is [7,
7, 10]. That is a three-cell subrange that must be recursively divided as
before. After several more subdivisions to get to the base cases, the transcript
has its first merges, [8, 9) with [9, 10). Those are both single cell subranges.
After being merged, the subrange [8, 10) is now sorted. The next merge
combines [7, 8) with [8, 10), to complete the three-cell subrange [7, 10).

The rest of the transcript continues handling the various subranges and merging
their results. The second-to-last merge merges [7, 10) with [10, 14), the upper
half of the entire array. The final merge combines the upper half with the lower
half (whose transcript is not shown) to produce the fully sorted array.

The key point to remember is that you can prototype a new function,
procedure, or method using recursion and later convert it to a stack-based or
simple loop form later. The recursive approach is conceptually simpler and can
be easier to write, whereas the stack or loop forms gain efficiency.

Some Interesting Recursive Applications
Let’s look briefly at some other situations in which recursion is useful. You
will see from the diversity of these examples that recursion can pop up in
unexpected places. Here, we examine three problems: raising a number to a
power, fitting items into a knapsack, and choosing members of a team. We
explain the concepts and leave the implementations as exercises.

Raising a Number to a Power



Most scientific calculators, programming languages, and math libraries allow
you to raise a number to an arbitrary power. They usually have a function like
power(x, y) or a key labeled something like xy or x^y. How would you do this
calculation if your programming language didn’t have this function or a math
library? You might assume you would need to multiply x by itself y times. That
is, if x was 2 and y was 8 (28), you would carry out the arithmetic for
2×2×2×2×2×2×2×2. For large values of y, however, this approach might prove
longer than necessary. Is there a quicker way?

One solution is to rearrange the problem so that you multiply by multiples of 2
whenever possible, instead of by 2 itself. Take 28 as an example. Eventually,
you must involve eight 2s in the multiplication process. Let’s say you start with
2×2=4. You’ve used up two of the 2s, but there are still six to go. You now
have a new number to work with: 4. So you try 4×4=16. This uses four 2s
(because each 4 is two 2s multiplied together). You need to use up four more
2s, but now you have 16 to work with, and 16×16=256 uses exactly eight 2s
(because each 16 used four 2s).

So, you’ve found the answer to 28 with only three multiplications instead of
seven. That’s O(log N) time instead O(N).

Can you make this process into an algorithm that a computer can execute? The
scheme is based on the mathematical equality xy = (x2)y/2. In this example, 28 =
(22)8/2, or 28 = (22)4. This is true because raising a power to another power is
the same as multiplying the powers.

Remember the assumption, however, that the computer can’t raise a number to
a power, so it can’t handle (22)4 directly. Let’s see if you can transform this into
an expression that involves only multiplication. The trick is to start by
substituting a new variable for 22.

Let’s say that 22=a. Then 28 equals (22)4, which is a4. According to the original
equality, however, a4 can be written (a2)2, so 28 = (a2)2.

Again, you can substitute a new variable for a2, say a2=c, then (c)2 can be
written (c2)1, which also equals 28, if you apply all the substitutions.

Now you have a problem you can handle with simple multiplication: c times c.

You can imbed this scheme in a recursive method—let’s call it power()—for
calculating powers. The arguments are b and p, and the method returns bp. You



don’t need to worry about variables like a and c anymore because b and p get
new values each time the method calls itself. The recursive call arguments are
b×b and p/2. For b=2 and p=8, the sequence of arguments and return values
would be
b=2, p=8 
b=4, p=4 
b=16, p=2 
b=256, p=1 
Returning 256, b=256, p=1 
Returning 256, b=16, p=2 
Returning 256, b=4, p=4 
Returning 256, b=2, p=8

When p is 1, you return b. The answer, 256, is passed unchanged back up the
sequence of methods.

We’ve shown an example in which p is an even number throughout the entire
sequence of divisions. This will not always be the case. Here’s how to revise
the algorithm to deal with the situation where p is odd. Use integer division on
the way down and don’t worry about a remainder when dividing p by 2.
However, during the return process, whenever p is an odd number, do an
additional multiplication by b. Here’s the sequence for 318:
b=3, p=18 
b=9, p=9 
b=81, p=4 
b=6561, p=2 
b=43046721, p=1 
Returning 43046721, b=43046721, p=1 
Returning 43046721, b=6561, p=2 
Returning 43046721, b=81, p=4 
Returning 387420489, b=9, p=9  # p is odd; so multiply by b 
Returning 387420489, b=3, p=18

The Knapsack Problem
The knapsack problem is a classic in computer science. In its simplest form, it
involves trying to fit items of different weights into a knapsack so that the
knapsack ends up with a specified total weight. You don’t need to fit in all the
items. It’s equivalent to the problem of coming up with exact change for a
particular value given a specific set of coins.



For example, suppose you want the knapsack to weigh exactly 20 kilograms,
and you have five items, with weights of 11, 8, 7, 6, and 5 kilograms. For small
numbers of items, humans are pretty good at solving this problem by
inspection. So, you can probably figure out that only the 8, 7, and 5
combination of items adds up to 20.

If you want a computer to solve this problem, you need to give it more detailed
instructions. Here’s the algorithm:

1. If at any point in this process the sum of the selected items adds up to the
target, you’re done.

2. Start by selecting the first item. The remaining items must add up to the
knapsack’s target weight minus the first item; this is a new target weight.

3. Try, one by one, each of the possible combinations of the remaining
items. Notice, however, that it doesn’t really need to try all the
combinations, because whenever the sum of the items is more than the
target weight, it can stop adding items.

4. If none of the combinations work, discard the first item, and start the
whole process again with the second item.

5. Continue this process with the third item and so on until all the
combinations have been tried, at which point it knows there is no
solution.

In the preceding example, the algorithm starts with the 11 kg weight. Now you
want the remaining items to add up to 9 (20 minus 11). Of these, you start with
8, which is too small. Now you want the remaining items to add up to 1 (9
minus 8). You start with 7, but that’s bigger than 1, so you try 6 and then 5,
which are also too big. You’ve run out of items, so you know that any
combination that includes 8 won’t add up to 9. Next, you try 7, so now you’re
looking for a target of 2 (9 minus 7). You continue in the same way, as
summarized here:
Items: 11, 8, 7, 6, 5 
========================================== 
11         // Target = 20, 11 is too small 
11, 8      // Target = 9, 8 is too small 
11, 8, 7   // Target = 1, 7 is too big 
11, 8, 6   // Target = 1, 6 is too big 
11, 8, 5   // Target = 1, 5 is too big. No more items 
11, 7      // Target = 9, 7 is too small 



11, 7, 6   // Target = 2, 6 is too big 
11, 7, 5   // Target = 2, 5 is too big. No more items 
11, 6      // Target = 9, 6 is too small 
11, 6, 5   // Target = 3, 5 is too big. No more items 
11, 5      // Target = 9, 5 is too small. No more items 
8,         // Target = 20, 8 is too small 
8, 7       // Target = 12, 7 is too small 
8, 7, 6    // Target = 5, 6 is too big 
8, 7, 5    // Target = 5, 5 is just right. Success!

As you may recognize, a recursive routine can pick the first item, and, if the
item is smaller than the target, the routine can call itself with a new target to
investigate the sums of all the remaining items.

Combinations: Picking a Team
In mathematics, a combination is a selection of things in which their order
doesn’t matter. For example, suppose there is a group of five candidate
astronauts from which you want to select a team of three to go on a multiyear
journey through the solar system. There is concern, however, about how the
team members will get along and handle all the important tasks, so you decide
to list all the possible teams; that is, all the possible combinations of three
people. You can name the candidates A, B, C, D, and E. You want a program
that would show the 10 possible combinations:

ABC, ABD, ABE, ACD, ACE, ADE, BCD, BCE, BDE, CDE

How would you write such a program? It turns out there’s an elegant recursive
solution. It involves dividing these combinations into two groups: those that
begin with A and those that don’t. Suppose you abbreviate the idea of 3 people
selected from a group of 5 as C(5, 3). The C() function produces a set of teams.
Let’s say n is the size of the group of candidates and k is the size of a team, that
is C(n, k). A theorem says that if A is the first of the n candidates, then

C(n, k) = A ⨂ C(n − 1, k − 1) + C(n − 1, k)

where A ⨂ C(e) means add (cross) A to all the combinations produced by C(e)
and C(n − 1, j) means find all combinations of size j from the candidates other
than A, which is one of the n candidates. For the example of 3 people selected
from a group of 5, you have

C(5, 3) = A ⨂ C(4, 2) + C(4, 3)



This example breaks a large problem into two smaller ones. Instead of
selecting from a group of 5, you’re selecting twice from a group of 4, the
candidates other than A. First, all the ways to select 2 people from 4
candidates, then all the ways to select 3 people from 4 candidates.

There are 6 ways to select 2 people from a group of 4. In the C(4, 2) term—
which you can call the left term—these 6 combinations are

BC, BD, BE, CD, CE, DE

The theorem tells you to add (cross) A to all of these 2-person combinations:

ABC, ABD, ABE, ACD, ACE, ADE

There are four ways to select 3 people from a group of 4. In the C(4, 3) term—
the right term—you have

BCD, BCE, BDE, CDE

When these 4 combinations from the right term are added to the 6 from the left
term, you get the 10 combinations for C(5, 3).

You can apply the same decomposition process to each of the groups of 4. For
example, C(4, 2) is B × C(3, 1) added to C(3, 2), where both A and B have
been taken out of the candidates. As you can see, this is a natural place to apply
recursion.

You can think of this problem visually with C(5, 3) as a single node on the top
row, C(4, 2) and (4, 3) as nodes on the next row, and so on, where the nodes
correspond to recursive function calls. Figure 6-19 shows what this looks like
for the C(5, 3) example.



Figure 6-19 Picking a team of 3 from a group of 5

The base cases are combinations that make no sense: those with a 0 for the
team size and those where the team size is greater than the number of
candidates. The combination C(1, 1) is valid, but there’s no point trying to
break it down further. In the figure, grayed-out boxes show the base cases
where recursion ends.

The recursion depth corresponds to the candidates: the node on the top row
represents candidate A with its two choices of whether to include A or not in
the team. The two nodes on the next row represent candidate B, and so on. If
there are 5 candidates, you’ll have 5 levels.

As the algorithm descends the rows, it needs to remember the sequence of
candidates visited. Here’s how to do that: Whenever it makes a call to a left
term, it records the node it’s leaving by adding its letter to a sequence. These
left calls and the letters to add to the sequence are shown by the darker and
thicker lines in the figure. The sequence needs to be passed back up on the
returns.

To record all the combinations, the algorithm can add them to a list or display
them as they are found. After a complete team is assembled, it’s either added to
the list or printed (or both).

Summary
• A recursive method calls itself repeatedly, with different argument values

each time.

• Some value(s) of its arguments causes a recursive method to return
without calling itself. This is called a base case.

• When the innermost instance of a recursive method returns, the process
”unwinds” by completing pending instances of the method, going from
the latest back to the original call.

• The nth triangular number is the sum of all the numbers from 1 to n.
(Number means integer in this context.) For example, the triangular
number of 4 is 10, because 4+3+2+1 = 10.



• The factorial of an integer number is the product of itself and all numbers
smaller than itself. For example, the factorial of 4 is 4×3×2×1 = 24.

• Both triangular numbers and factorials can be calculated using either a
recursive method or a simple loop.

• The anagrams of a word (all possible permutations of its N letters) can be
found recursively by placing the leftmost letter at every position within
all the anagrams of the rightmost N−1 letters.

• A binary search can be carried out recursively by checking which half of
a sorted range the search key is in, and then doing the same kind of
search within that half.

• The Tower of Hanoi puzzle consists of three spindles and an arbitrary
number of disks stacked in a tower on one of the spindles.

• Solving the Tower of Hanoi involves moving disks one at a time between
spindles until they are all stacked on the goal spindle, without ever
placing a larger disk on top of a smaller disk.

• The Tower of Hanoi puzzle can be solved recursively by moving all but
the bottom disk of a pyramid to an intermediate tower, moving the
bottom disk to the destination tower, and finally moving the remaining
pyramid to the destination.

• The number of steps needed to solve a Tower of Hanoi puzzle with N
disks is O(2N).

• O(2N) is significantly worse than O(N2) complexity.

• Merging two sorted arrays means creating a third array that contains all
the elements from both arrays in sorted order.

• In mergesort, one-element subarrays of a larger array are merged into
two-element subarrays, two-element subarrays are merged into four-
element subarrays, and so on until the entire array is sorted.

• mergesort requires O(N×log N) time for both comparisons and copies.

• mergesort requires a workspace equal in size to the original array.



• For triangular numbers, factorials, anagrams, and the binary search, the
recursive method contains only one call to itself. (There are two shown
in the code for the binary search, but only one is used on any given pass
through the method’s code.)

• For the Tower of Hanoi and mergesort, the recursive method contains
two calls to itself.

• Any operation that can be carried out with recursion can be carried out
with a stack.

• There is a process to convert recursive functions and procedures into
stack-based algorithms.

• A recursive approach may be inefficient. If so, it can sometimes be
replaced with a simple loop, a stack-based approach, and very
occasionally without iteration.

• Prototyping in recursive form is simpler conceptually and can be useful
to test an algorithm’s accuracy and correctness.

Questions
These questions are intended as a self-test for readers. Answers may be found
in Appendix C.

1. Which of the following is not a characteristic of recursive routines?
a. They call themselves.
b. Each call performs its work on a smaller version of the same problem.
c. When a smaller version of the problem is too complex, control passes

back to the caller to try a different approach.
d. Some versions of the problem don’t require calling the recursive

routine.
2. If a program calls triangular(100) using the definition in Listing 6-1,

what is the maximum number of ”copies” of the triangular() function
in execution that exist at any one time?

3. Where are the copies of the argument passed to the triangular()
function, mentioned in question 2, stored?



a. in a variable in the triangular() function
b. in a field of the Triangular class
c. in a placeholder variable of the problem description record
d. on a stack

4. Assume a call to triangular(100) as in question 2. What is the value
of nth right after the triangular() function first returns a nonbase
case value?

5. True or False: In the triangular() function of Listing 6-1, the return
values are stored on the stack.

6. In the anagrams() function, at a certain depth of recursion, assume a
version of the function is working with the string ”que”. When this
method calls a new version of itself, what letters will the new version
be working with?

7. In the section ”A Recursive Binary Search,” the original, loop-based
form was compared with a recursive form of the find() method. Which
of the following is not true?
a. The search range starts with the whole array, and only the recursive

version can work on a subrange passed through arguments.
b. Both forms of the program divide the search range repeatedly in half.
c. If the key is not found, the loop version returns when the range

bounds cross, but the recursive version finishes when the recursive
depth is more than half the initial search range.

d. If the key is found, the loop version returns from the entire method,
whereas the recursive version returns from one level of recursion.

8. What kind of subproblem is solved in the recursive calls of the
TowerOfHanoi.solve() method (Listing 6-3) as compared to the
overall problem?

9. The algorithm in the TowerOfHanoi.solve() method involves
a. dividing the number of disks on the source spindle in half.
b. changing which spindles are the source and destination.
c. removing the small disks from all the spindles to move the large

disks.



d. moving one small disk and then a stack of larger disks.
10. Which is not true about the Mergesort.merge() method in Listing 6-5?

a. Its algorithm can handle arrays of different sizes.
b. It must search the target array to find where to put the next item.
c. It is not recursive.
d. It continuously copies the smallest item irrespective of what input

array it’s in.
11. The disadvantage of mergesort is that

a. it is not recursive.
b. it uses more memory.
c. although faster than the insertion sort, it is much slower than bubble

sort.
d. it is complicated to implement.

12. Using the recursive version of mergesort() in Listing 6-4, what
recursive depth will be reached in a call to sort an array of 1,024 cells?

13. In addition to a loop, a ___________ can often be used instead of
recursion.

14. In the procedure outlined for converting a recursive function to a
nonrecursive algorithm, how are function arguments and local variables
of the recursive version stored?

15. In the procedure outlined for converting a recursive function to a
nonrecursive function, what test is used to decide when the function
should return?

Experiments
Carrying out these experiments will help to provide insights into the topics
covered in the chapter. No programming is involved.

6-A Use a Python interpreter to load the definitions for triangular_loop()
and triangular() shown in the ”Triangular Numbers” section. Run
both routines to get the results for the 100th, 1,000th, and 10,000th



triangular number. What’s different about the results? Does one routine
take noticeably longer?

6-B This chapter discussed triangular numbers and factorials. It showed
recursive algorithms to generate them and a recursive algorithm to
generate anagrams. How are anagrams related to one or both of those
numeric sequences?

6-C The mergesort algorithm is another sorting algorithm like the ones
introduced in Chapter 3. Do you think it is stable? In other words, will
any two items in the input array with equal keys remain in the same
relative ordering in the resulting array? Why or why not? Thinking
about the simple base cases first can be helpful. The recursive nature of
the algorithm determines the rest.

6-D In Chapter 3, you saw that in the best case, an insertion sort would take
O(N) time. Can you think of what the best case input array would be for
mergesort? Would sorting that best case array take less than its worst
case time, O(N×log N)?

Programming Projects
Writing programs to solve the Programming Projects helps to solidify your
understanding of the material and demonstrates how the chapter’s concepts are
applied. (As noted in the Introduction, qualified instructors may obtain
completed solutions to the Programming Projects on the publisher’s website.)

6.1 Suppose you are asked to write a program on an embedded processor
that has very limited processing capability. This particular processor’s
Python interpreter can only do addition and subtraction, not
multiplication, and that’s needed for this project. You program your way
out of this quandary by writing a recursive function, mult(), that
performs multiplication of x and y by adding x to itself y times. Its
arguments are integers, and its return value is the product of x and y.
Write such a method and a test program to call it. Does the addition take
place when the function calls itself or when it returns?

6.2 Every positive integer can be divided into a set of integer factors. The
minimum set of factors must be a collection of prime numbers, where a
prime number is one that is only evenly divisible by 1 and itself. Write a
recursive function, factor(), that returns the list of integer factors of x.



If you haven’t worked with factoring before, it is helpful to know that
only the factors between 2 and the square root of x need to be tested.
Instead of doing those with a loop, add a second, optional parameter to
factor(x, lowest) that is the lowest possible integer factor of x. The
recursive function should check for the base case(s), and make recursive
calls based on whether lowest evenly divides x (x % lowest == 0). If
it does, then add lowest to the factors of x divided by lowest. If lowest
doesn’t evenly divide x, then look for factors with the next higher
possible factor. Ideally, the next higher factor would always be the next
higher prime number. There are algorithms for that, but for this
exercise, it’s sufficient to try the next higher integer. You may use
Python’s built-in list structure to assemble the factors or the
LinkedList structure of Chapter 5. Note that a factor can appear more
than once in the final list. For extra utility, handle requests for the
factors of negative integers by returning the factors of the positive
version but with the factor 1 replaced by −1. Test your function on some
compound (nonprime) and prime numbers and the special cases of 0
and 1.

6.3 Implement the recursive approach to raising a number to a power, as
described in the ”Raising a Number to a Power” section near the end of
this chapter. Write the recursive power() function. For extra utility,
make use of this transformation to handle negative integer exponents:

Test your function on several combinations including positive and
negative integers and the special cases where the exponent is 0 and 1
(x0 = 1 and x1 = x).

6.4 Write a program that solves the knapsack problem for an arbitrary
knapsack capacity and series of weights. Assume the weights are stored
in an array. Hint: The arguments to the recursive knapsack() function
are the target weight, the array or weights, and the index into that array
where the remaining items start. The knapsack() function should either
return a list of weights or print each list of weights that add up to the
target weight. You may use Python’s built-in list structure to assemble
the lists or the LinkedList structure of Chapter 5.



6.5 Implement a recursive approach to showing all the teams of size k that
can be created from a group of n people. For this exercise, represent the
n people with a single character, for example, A, B, T, Z. The list of all
possible candidates can be represented as a string, for example,
‘ABTZ’. The recursive teams() function should take the candidates
string and k as parameters and generate a list of strings that are the
different teams. Teams are formed by concatenating character strings.



7. Advanced Sorting

In This Chapter

• Shellsort

• Partitioning

• Quicksort

• Radix Sort

• Timsort

We started discussing sorting in the aptly titled Chapter 3, “Simple Sorting.”
The sorts described there—the bubble, selection, and insertion sorts—are easy
to implement but rather slow. In Chapter 6, “Recursion,” we described the
mergesort. It runs much faster than the simple sorts but requires twice as much
space as the original array; this is often a serious drawback.

This chapter covers two advanced approaches to sorting in detail: Shellsort and
quicksort. These sorts both operate much faster than the simple sorts: the
Shellsort in about O(N×(log N)2) time, and quicksort in O(N×log N) time.
Neither of these sorts requires a large amount of extra space, as mergesort does.
The Shellsort is almost as easy to implement as mergesort although quicksort is
the fastest of all the general-purpose sorts that don’t require a lot of memory.

We examine the Shellsort first. Quicksort is based on the idea of partitioning,
so we examine that separately, before examining quicksort itself. We conclude
the chapter with short descriptions of radix sort and Timsort, which are quite
different approaches to fast sorting.

Shellsort



The Shellsort is named for Donald L. Shell, the computer scientist who
discovered it in 1959. It’s based on the insertion sort but adds a new feature
that dramatically improves the insertion sort’s performance.

The Shellsort is good for medium-sized arrays, depending on the particular
implementation. It’s not quite as fast as quicksort and other O(N×log N) sorts,
so it’s not optimum for very large collections. Shellsort, however, is much
faster than the O(N2) sorts like the selection sort and the insertion sort, and it’s
very easy to implement. The code is short and simple.

Shellsort’s worst-case performance is not significantly worse than its average
performance. (Later in this chapter we look into that the worst-case
performance for quicksort, which can be much worse unless precautions are
taken.) Some experts (see Sedgewick in Appendix B, “Further Reading”)
recommend starting with a Shellsort for almost any sorting project and
changing to a more advanced sort, like quicksort, only if Shellsort proves too
slow in practice.

Insertion Sort: Too Many Copies
Because Shellsort is based on the insertion sort, you might want to review the
“Insertion Sort” section in Chapter 3. Recall that partway through the insertion
sort the items to the left of a marker are partially sorted (sorted among
themselves), and the items to the right are not. The algorithm removes the item
at the marker and stores it in a temporary variable. Then, beginning with the
item to the left of the newly vacated cell, it shifts the sorted items right one cell
at a time, until the item in the temporary variable can be reinserted in sorted
order.

Here’s the problem with the insertion sort. Suppose a small item is on the far
right, where the large items should be. To move this small item to its proper
place on the left, all the intervening items (between the place where it is and
where it should be) must be shifted one space right. This step takes close to N
copies, just for one item. Not all the items must be moved a full N spaces, but
the average item must be moved N/2 spaces, which mean the full process takes
N times N/2 shifts for a total of N2/2 copies. Thus, the performance of insertion
sort is O(N2).

This performance could be improved if you could somehow move a smaller
item many spaces to the left without shifting all the intermediate items



individually.

N-Sorting
The Shellsort achieves these large shifts by insertion-sorting widely spaced
elements. After they are sorted, Shellsort sorts somewhat less widely spaced
elements, and so on. The spacing between elements for these sorts is called the
increment and is traditionally represented by the letter h. Figure 7-1 shows the
first step in the process of sorting a 10-element peg board (array) with an
increment of 4. Here the elements at indices 0, 4, and 8 are sorted.





Figure 7-1 4-sorting at 0, 4, and 8

After the pegs at 0, 4, and 8 are sorted, the algorithm shifts over one cell and
sorts the pegs at locations 1, 5, and 9. This process continues until all the pegs
have been 4-sorted, which means that all items spaced four cells apart are
sorted among themselves. Figure 7-2 illustrates the process with different
panels showing the state after each subset is sorted.

Figure 7-2 A complete 4-sort

After the complete 4-sort, the array can be thought of as comprising four
subarrays with heights: [3,6,9], [2,5,6], [4,7], and [6,8], each of which is
completely sorted. These subarrays are interleaved at locations [0,4,8], [1,5,9],
[2,6], and [3,7] respectively—as shown by the colors of the pegs in the figure
—but otherwise independent.

What has been gained? Well, the h-sorts have reduced the size of the number of
items to be sorted in a single group. Instead of sorting N items, you’ve sorted
N/h items h times. Because the insertion sort is an algorithm that is O(N2), that
makes h-sorting O((N/h)2×h) = O(N2/h), so that’s an improvement. If h were
big, say N/2, then the overall complexity would get down to O(N). Of course,
the array isn’t fully sorted yet, but note that the items are closer to their final
positions.

In the example of sorting 10 items in Figure 7-2, at the end of the 4-sort, no
item is more than three cells from where it would be if the array were
completely sorted. This is what is meant by an array being “almost” sorted and
is the secret of the Shellsort. By creating interleaved, internally sorted sets of



items using “inexpensive” h-sorts, you minimize the amount of work that must
be done to complete the sort.

Now, as we noted in Chapter 3, the insertion sort is very efficient when
operating on an array that’s almost sorted. In fact, for an already-sorted array,
it’s O(N). If it needs to move items only one or two cells to sort the array, it can
operate in almost O(N) time. Thus, after the array has been 4-sorted, you can 1-
sort it using the ordinary insertion sort. The combination of the 4-sort and the
1-sort is much faster than simply applying the ordinary insertion sort without
the preliminary 4-sort.

Diminishing Gaps
We’ve shown an initial interval—or gap—of 4 cells for sorting a 10-cell array.
For larger arrays, the interval should start out much larger. The interval is then
repeatedly reduced until it becomes 1.

For instance, an array of 1,000 items might be 364-sorted, then 121-sorted,
then 40-sorted, then 13-sorted, then 4-sorted, and finally 1-sorted. The
sequence of numbers used to generate the intervals (in this example, 364, 121,
40, 13, 4, 1) is called the interval sequence or gap sequence. The particular
interval sequence shown here, attributed to Knuth (see Appendix B), is a
popular one. In reversed form, starting from 1, it’s generated by the expression

hi = 3×hi−1 + 1

where the initial value of h0 is 1. Table 7-1 shows how this formula generates
the sequence.

Table 7-1 Knuth’s Interval Sequence



There are other approaches to generating the interval sequence; we return to
this issue later. First, let’s explore how the Shellsort works using Knuth’s
sequence.

In the sorting algorithm, the sequence-generating formula is first used in a
short loop to figure out the initial gap. A value of 1 is used for the first value of
h, and the hi = 3×hi−1 + 1 formula is applied to generate the sequence 1, 4, 13,
40, 121, 364, and so on. This process ends when the gap is larger than the
array. For a 1,000-element array, the seventh number in the sequence, 1,093, is
too large. Thus, Shellsort begin the sorting process with the sixth-largest
number, creating a 364-sort. Then, each time through the outer loop of the
sorting routine, it reduces the interval using the inverse of the formula
previously given

hi−1 = (hi − 1) / 3

This sequence is shown in the last column of Table 7-1. This inverse formula
generates the reverse sequence 364, 121, 40, 13, 4, 1. Starting with 364, each
of these numbers is used to h-sort the array. When the array has been 1-sorted,
the algorithm is done.

The AdvancedSorting Visualization Tool
You can use the AdvancedSorting Visualization tool to see how Shellsort
works. Figure 7-3 shows the tool as the Shellsort begins and determines what h



value to use.

Figure 7-3 The Advanced Sorting Visualization tool

Like the Simple Sorting Visualization tool introduced in Chapter 3, this tool
provides the common operations for inserting, searching, and deleting single
items. It also allows you to create new arrays of empty cells and fill empty cells
with random keys or keys that increase or decrease.

As you watch the Shellsort, you’ll notice that the explanation we gave in the
preceding discussion is slightly simplified. The sequence of indices processed
by the 4-sort is not actually [0, 4, 8], [1, 5, 9], [2, 6], and [3, 7]. Instead, the
first two elements of the first group of three are sorted, then the first two
elements of the second group, and so on. After the first two elements of all the
groups are sorted, the algorithm returns and sorts the last element of the three-
element groups. This is what happens in the insertion sort; the actual sequence
is [0, 4], [1, 5], [2, 6], [3, 7], [0, 4, 8], [1, 5, 9].

It might seem more obvious for the algorithm to 4-sort each complete subarray
first, that is, [0, 4], [0, 4, 8], [1, 5], [1, 5, 9], [2, 6], [3, 7], but the algorithm
handles the array indices more efficiently using the first scheme.

The Shellsort is actually not very efficient with only 10 items, making almost
as many swaps and comparisons as the insertion sort. With larger arrays,
however, the improvement becomes significant.

Figure 7-4 shows the AdvancedSorting Visualization tool starting with a 90-
cell array of inversely sorted bars. (Creating such a large array in the
visualization tool requires making the window much wider before using the
New button.) The Decreasing Fill button fills the empty cells with the values in



the top row of the figure. The second row shows the array after it has been
completely 40-sorted. On the left, the outer and inner indices are set to their
values for the beginning of the 13-sort. The first two cells to be compared in
13-sort are lowered from their normal position to show what cells are being
checked. The third row shows the beginning of the 4-sort.

Figure 7-4 After the 40-sort and 13-sort in a 90-cell array

With each new value of h, the array becomes more nearly sorted. The groups of
40 are clear in the second row of Figure 7-4. The first 10 items are the shortest
of the whole array. They came from the top 10 items of the initial array during
the 40-sort. The next groups of 40 cells have runs of 30 and 10 decreasing keys
each. The runs of 30 came from the 40 sorts on subarrays like indices [11, 51,
81]. They keep the overall trend of decreasing keys, but each subarray is now
in increasing order. When you get to the 4-sort starting in the last row of the
figure, the overall trend now looks to be generally increasing. Every item is
now within 13 cells of its final position. After the 4-sort, every item will be
within 4 cells of its final position.

Why is the Shellsort so much faster than the insertion sort, on which it’s based?
As mentioned previously, when h is large, the number of items per pass is
small, and items move long distances. This sort is very efficient. As h grows
smaller, the number of items per pass increases, but the items are already closer
to their final sorted positions, which is more efficient for the insertion sort. It’s
the combination of these trends that makes the Shellsort so effective.

Notice that later sorts (small values of h) don’t undo the work of earlier sorts
(large values of h). An array that has been 40-sorted remains 40-sorted after a
13-sort, for example. If this wasn’t so, the Shellsort couldn’t work.



Python Code for the Shellsort
The Python code for the Shellsort is scarcely more complicated than for the
insertion sort shown in Chapter 3. The key difference, of course, is the addition
of the h interval and ensuring that the program takes steps of h elements instead
of 1. Here, we add a ShellSort() method to the Array class (that was defined
in the SortArray.py module) and put it into the ShellSort.py module shown
in Listing 7-1.

Listing 7-1 The ShellSort.py Module

import SortArray 
 
class Array(SortArray.Array):  # Base new Array class on SortArray 
 
   def ShellSort(self):        # Sort using Shell’s method: 
      h = 1                    # Choose h to sort every h items 
      while 3 * h + 1 < len(self): # Use Knuth’s h sequence, find 
         h = 3 * h + 1         # largest h less than array length 
      nShifts = 0              # Count number of shifts 
      while h > 0:             # Loop over decreasing h values 
         for outer in range(h, len(self)): # Mark one item 
            temp = self.get(outer)       # Store marked item in temp 
            inner = outer                # Inner loop starts at mark 
            while inner >= h and temp < self.get(inner-h): # If marked 
               self.set(inner, self.get(inner-h)) # item smaller, then 
               inner -= h                # shift item to right 
               nShifts += 1              # Count shift 
            if inner < outer:  # If inner loop advanced a step, then 
               self.set(inner, temp)     # Move marked item to ’hole’ 
               nShifts += 1    # and count the shift 
         h = (h - 1) // 3      # Reduce h to sort smaller intervals 
      return nShifts           # Return number of shifts

The first part sets the initial h value. Starting at 1, it follows Knuth’s sequence
to increment h, as long as it stays below about a third of the array size. A
variable, nshifts, has been added to count the number of shift operations
performed during the sorting. It’s not really necessary but helps to illustrate and
instrument the actual complexity on specific arrays.

The main loop iterates over the h value, decreasing it through Knuth’s
sequence until it gets below 1. The revised insertion sort algorithm appears
inside the main loop. This time, outer starts at h. That is the index of the first



cell that is not yet sorted (remember every cell below outer—stepping in
increments of h—is already sorted). The value at outer is stored in temp as the
marked item. The inner loop then sets its index, inner, to start at outer and
work backward to lower indices stepping by h. After the inner loop finds that
inner has reached the last possible index for this h-sort or the marked item,
temp, is bigger than or equal to what is in the cell at inner - h, it stops. As the
inner loop steps backward, it shifts the contents of the cells it passes (where the
marked item is less than the value at inner − h). It increments the nshifts
counter accordingly and does so once more at the end of the inner loop, if
moving the marked item from temp back to the array is warranted.

After completing the first pass, the outer variable is incremented by 1 to move
on to the next h-sort group. In terms of the first example, this means going
from the [0, 4] subsequence to the [1, 5] subsequence. Incrementing outer by 1
all the way up to the length of the array eventually covers the longer
subsequences like [0, 4, 8], [1, 5, 9], and so on. The outermost, main loop
decreases h following Knuth’s formula to perform the h-sort on smaller
increments.

The Shellsort algorithm, although it’s implemented in just a few lines, is not
simple to follow. Here’s a sample output from running it with some print
statements:
$ python3 ShellSortClient.py 
Array containing 100 items: 
 [77, 94, 59, 85, 61, 46, 62, 17, 56, 37, 18, 45, 76, 21, 91, 7, 96, 
50, 
31, 69, 80, 69, 56, 60, 26, 25, 1, 2, 67, 46, 99, 57, 32, 26, 98, 51, 
77, 
34, 20, 81, 22, 40, 28, 23, 69, 39, 23, 6, 46, 1, 96, 51, 71, 61, 2, 
34, 
1, 55, 78, 91, 69, 23, 2, 8, 3, 78, 31, 25, 26, 73, 28, 88, 88, 38, 
22, 
97, 9, 18, 18, 66, 47, 16, 82, 9, 56, 45, 15, 76, 85, 52, 86, 5, 28, 
67, 
34, 20, 6, 33, 83, 68] 
initArray().ShellSort() took 0.1190280788578093 seconds 
Sorted array contains: 
 [1, 1, 1, 2, 2, 2, 3, 5, 6, 6, 7, 8, 9, 9, 15, 16, 17, 18, 18, 18, 
20, 
20, 21, 22, 22, 23, 23, 23, 25, 25, 26, 26, 26, 28, 28, 28, 31, 31, 
32, 
33, 34, 34, 34, 37, 38, 39, 40, 45, 45, 46, 46, 46, 47, 50, 51, 51, 
52, 



55, 56, 56, 56, 57, 59, 60, 61, 61, 62, 66, 67, 67, 68, 69, 69, 69, 
69, 
71, 73, 76, 76, 77, 77, 78, 78, 80, 81, 82, 83, 85, 85, 86, 88, 88, 
91, 
91, 94, 96, 96, 97, 98, 99] and took 565 cell shifts

Now that you’ve looked at the code, go back to the AdvancedSorting
Visualization tool and follow the details of its operation, stepping through the
process of Shellsorting a 10-item array. The visualization makes it easier to see
the insertion sort happening on the subarrays.

Other Interval Sequences
Picking an interval sequence is a bit of a black art. Our discussion so far has
used the formula hi+1 = hi×3 + 1 to generate the interval sequence, but other
interval sequences have been used with varying degrees of success. The only
absolute requirement is that the diminishing sequence ends with 1, so the last
pass is a normal insertion sort.

Shell originally suggested an initial gap of N/2, which was simply divided in
half for each pass. Thus, the descending sequence for N=100 is 50, 25, 12, 6, 3,
1. This approach has the advantage of simplicity, where both the initial gap and
subsequent gaps can be found by dividing by 2. This sequence turns out not to
be the best one. Although it’s still better than the insertion sort for most data, it
sometimes degenerates to O(N2) running time, which is no better than the
insertion sort.

A variation of this approach is to divide each interval by 2.2 instead of 2 and
truncate the result. For n=100, this leads to 45, 20, 9, 4, 1. This approach is
considerably better than dividing by 2 because it avoids some worst-case
circumstances that lead to O(N2) behavior. Some extra code is needed to ensure
that the last value in the sequence is 1, no matter what N is. This variation
gives results comparable to Knuth’s sequence shown in the code.

Another possibility for a descending sequence suggested by Bryan Flamig is
if h < 5: 
   h = 1 
else: 
   h = (5*h-1) // 11



It’s generally considered important that the numbers in the interval sequence
are relatively prime; that is, they have no common divisors except 1. This
constraint makes it more likely that each pass will intermingle all the items
sorted on the previous pass. The inefficiency of Shell’s original N/2 sequence
is due to its failure to adhere to this rule.

You may be able to invent a gap sequence of your own that does just as well
(or possibly even better) than those shown. Whatever it is, it should be quick to
calculate so as not to slow down the algorithm.

Efficiency of the Shellsort
No one so far has been able to analyze the Shellsort’s average efficiency
theoretically, except in special cases. Based on experiments, there are various
estimates, which range from O(N3/2) down to O(N7/6). For Knuth’s gap
sequence, the worst-case performance is O(N3/2).

Table 7-2 shows some of these estimated O() values, compared with the slower
insertion sort and the faster quicksort. The theoretical times corresponding to
various values of N are shown. Note that Nx/y means the yth root of N raised to
the x power. Thus, if N is 100, N3/2 is the square root of 1003, which is 1,000.
We used log10 in instead of log2 because it’s a little easier to show how it
applies to values like 1,000 and 10,000. Also, (log N)2 means the log of N,
squared. This is often written log2N, but that’s easy to confuse with log2N, the
logarithm to the base 2 of N.

Table 7-2 Estimates of Shellsort Running Time



For most applications, planning for the worst-case of N3/2 is the best approach.

You might also wonder about the efficiency of the loop that finds the initial gap
value, h. If that loop took a long time, it would affect the overall complexity of
Shellsort. Note that the loop goes faster than O(N) because it has to try fewer
than N values to find the initial h. Because O(N) is lower in complexity than
O(N×(log N)2), O(N3/2), and O(N7/6), it doesn’t affect the overall complexity.
Because the trial h values grow approximately as 3S, where S is the step in the
initial loop, the total number of steps is approximately log3 S. The initial value
can also be computed from the formula hS = (3S − 1) / 2 and solving it where
hS <= N/3.

Partitioning
Partitioning is the underlying mechanism of quicksort, which we explore next,
but it’s also a useful operation on its own, so we cover it here in its own
section.

To partition data is to divide it into groups. In the case of sorting, the result is
two groups, so that all the items with a key value higher than a specified
amount are in one group, and all the items with a lower key value are in
another.

You can easily imagine situations in which you would want to partition data.
Maybe you want to divide your team members into two groups: those who are



taller than 1.75 meters and those who are shorter. A medical test might need to
divide cell colonies into two groups by their size from data like that shown in
Figure 7-5. The relative number of colonies could indicate the presence or
absence of a disorder or disease.





Figure 7-5 Partitioning cell colonies by size

The Partition Process
The AdvancedSorting Visualization tool has a Partition button that rearranges
the array items into two groups. You provide the value that distinguishes the
groups.

Figure 7-6 shows an example of partitioning a 10-element array. The top row
shows the initial array contents. After 50 is entered in the text entry box and
Partition is selected, the tool animates the process of partitioning the items. The
key that was entered, 50, is called the pivot value. The tool illustrates that
value by showing a dashed line across the rectangles in the array, as in the
second row of the figure. The pivot line is also labeled with [0, 9] to indicate
that it is partitioning all the cells from cell 0 through cell 9.

Figure 7-6 Partitioning a 10-element array in the AdvancedSorting
Visualization tool

The animation starts with a couple of index pointers at the two ends of the
range. These indices are moved toward the center, searching for array items
that are not in partition order—that is, with a value below the pivot to the left
and a value above the pivot to the right. When it finds such a pair, it swaps
them. When the two indices eventually meet, the process is done.

In Figure 7-6, items 77 and 37 at the ends were swapped first because they are
both on the wrong side of the pivot. Then the lo index advanced to item 94 and
the hi index moved left, skipping 56 because it’s above the pivot, and stopped
at 17. Items 94 and 17 swap positions, leaving 56 in its original location. The



indices move one closer to the middle and continue looking for a pair of items
in the wrong partitions. The lo index stops at item 59, and the hi index stops at
46. This pair is swapped and the hunt resumes.

The 59-46 pair turns out to be the last needed to partition them all. Now the
first three items of the array are all below the pivot (50), and the last seven
items are above it. The tool draws an arrow pointing to item 85 (index 3) to
show where the higher partition begins.

It’s not easy to see where the partition will land when you look at the initial
array. It depends, of course, on what pivot was chosen and only becomes
obvious by going through the swap process. For example, if 90 were the pivot,
only item 94 would need to be in the high partition, and the process would be
done after 37 and 94 were swapped. Indeed, if you happened to choose certain
pivot values, there might not be any items that need to be swapped at all. Even
when that happens, however, you still need to find the lowest index of the
higher partition. That is an output of this process.

If the pivot were some extreme value, like −10 or 212, then the entire array
would be in the same partition. If it were too low, then the result index would
be at 0; if it were too high, it would end up at nItems. Let’s look at how to
choose the pivot value because it drastically affects the outcome.

After being partitioned, the data is by no means sorted; it has simply been
divided into two groups. It’s more sorted, however, than it was before. You can
use that improvement to completely sort it with different partitionings, in a
manner similar to the way Shellsort used h-sorting. Try running a couple more
partitionings using different pivots in the AdvancedSorting Visualization tool.
Eventually, the entire array will be sorted. When the data is sorted, partitioning
can still be run, but it doesn’t swap any items (except under some rare
circumstances we discuss shortly).

Notice that partitioning is not stable. That is, each group is not in the same
order it was originally. In fact, partitioning tends to reverse the order of some
of the data with equal valued keys in each group. Try inserting some items with
duplicate keys into the array and shuffling their positions. Can you find a pivot
value that changes their ordering after a partitioning?

The General Partitioning Algorithm



How is the partitioning process carried out? We discuss it in general because
it’s useful outside of quicksort. The example shown in the AdvancedSorting
Visualization tool is just one kind. The example, however, helps illustrate some
important characteristics.

First, note that the partitioning was done within an array by rearranging the
items. This means you don’t need to allocate memory for another copy of all
the data, which is very useful for large collections.

There must be some test that can be carried out on an item that determines the
partition to which it belongs. In the general case, it could be any test such as
whether the item’s name contains the letter e. For sorting, you use a pivot value
and put everything with a key value less than the pivot in one partition and
everything else in the other partition. The pivot doesn’t have to be numeric; it
could be any value as long as two values can be compared to see if one is less
than the other. The general case of using a partition test function that returns 0
for one partition and 1 for the other is sometimes useful.

As with the insertion sort, which became O(N) when applied to an array that’s
already sorted, it’s advantageous to design the algorithm to be fast if the array
is already partitioned. For that, we can have a pointer into the array where all
the cells to the left are known to be in the lower partition. It would start at
index 0 to indicate that none are initially known to be in that partition.
Similarly, we set up a second pointer where all the cells to the right are in the
higher partition. We initialize it to the last element of the array because none
are known to be in that partition either. The idea is to shrink the range between
the left and right pointers while moving items into their proper partition.

The core of the algorithm is as follows:

• Increment the left pointer until either we find a cell belonging to the
upper partition, or it meets the right index.

• Decrement the right pointer until either we find a cell belonging to the
lower partition, or it meets the left index.

• If the left index is at or above the right, the array is already partitioned,
so we can return the left index as the end of lower partition.

• Otherwise, swap items at the left and right indices and partition the range
between left and right.



As discussed in Chapter 6, this algorithm can be set up as a recursive algorithm
that works on smaller and smaller subranges of the array. Listing 7-2 shows the
implementation as a recursive method of the Array class. Like the other sorting
algorithms that work on records, you can use a key function to extract the key
from the items in the array and partition based on that value’s relationship to
the pivot value. Unlike some other algorithms, it allows items whose key
exactly matches the pivot to be in either partition. We explain the advantages of
that choice after the listing.

Listing 7-2 The Recursive Partitioning Method of the Quicksort.py Module

def identity(x): return x      # Identity function
import SortArray 
 
class Array(SortArray.Array):  # Base new Array class on SortArray 
 
   def partition_rec(          # Recursively partition array moving 
         self,                 # items whose keys are below or equal 
         pivot,                # a pivot value to the left/low side 
         lo=0,                 # the rest to the right/high side 
         hi=None,              # within the [lo, hi] range (inclusive) 
         key=identity):        # Use key function to extract keys 
      if hi is None:           # Default hi value is last index 
         hi = len(self) - 1    # Everything above hi is in upper part 
      while (lo <= hi and      # Increment lo until it goes past hi 
             key(self.get(lo)) < pivot): # or we find a key that’s not 
         lo += 1               # in the lower partition 
      while (lo < hi and       # Decrement hi until it matches lo 
             pivot < key(self.get(hi))): # or we find the pivot or 
         hi -= 1               # a key not in the upper partition 
      if lo >= hi:             # If lo is at or above hi, then the 
         return lo             # lower partition ends at lo 
      self.swap(lo, hi)        # Otherwise, swap the items at lo & hi 
      return self.partition_rec( # and recursively partition remaining 
         pivot, lo + 1, hi - 1, key) # items in the array

The partition_rec() method starts by filling in the default value for hi, the
index into the array that’s just before the upper partition. At the start, that’s the
last index into the array. The lower index, lo, starts at 0, indicating that no cells
of the array have been found to have keys below the pivot. The cells between
lo and hi need to be partitioned and form the range to be shrunk.



The first while loop implements the first step of the core algorithm. It
increments lo until either lo > hi or the cell at lo has a key that is greater than
or equal to the pivot, which means it belongs in the upper partition. The
second while loop implements the second step of decrementing hi until it
either goes past lo or the cell at hi has a key indicating it should be in the
lower partition.

Note that the comparisons are slightly different in the two while loops. The
first loop must use lo <= hi rather than lo < hi to ensure that the value at lo
is checked against the pivot and lo is incremented if there is only 1 cell in the
range, that is, lo == hi. It’s important to increment lo to point past hi if the
entire array belongs in the lower partition. Using lo < hi in the first loop
condition would mean the loop body is not entered, and lo could end up
pointing to a cell with a key below the pivot. The second loop, however, uses
lo < hi in its loop condition because when lo == hi, you know that the cell
at that index must belong in the upper partition.

After lo and hi have been moved to narrow the range of unchecked cells, the
if statement checks whether the range is one or fewer cells in length. If so,
there’s nothing to swap, and it can return lo as the index that is just above the
lower partition. This is the base case for this recursive algorithm. If the range is
bigger than one, then the values at lo and hi are swapped (using the swap()
method defined in the SortArray class of Chapter 3). The recursive call
partitions the range between the two swapped values.

Converting the recursive version of the partitioning algorithm to a loop version
is easier than the general case. The reasons that it’s simpler are

• The program doesn’t do anything with the returned value of the recursive
call other than return it to its caller, and

• The values of the parameters—pivot, lo, and hi—don’t need to be
saved and restored between calls.

With these two conditions, you don’t need a stack of problem descriptions; you
only need to update the lo and hi variables as the range of cells to check is
reduced. Listing 7-3 shows the loop version of the method, partition().

Listing 7-3 The Loop-Based Partitioning Method of the Quicksort.py Module



def identity(x): return x      # Identity function
import SortArray 
 
class Array(SortArray.Array):  # Base new Array class on SortArray 
 
   def partition(              # Loop to partition array, moving 
         self,                 # items whose keys are below or equal 
         pivot,                # a pivot value to the left/low side 
         lo=0,                 # the rest to the right/high side 
         hi=None,              # within the [lo, hi] range (inclusive) 
         key=identity):        # Use key function to extract keys 
      if hi is None:           # Default hi value is last index 
         hi = len(self) - 1    # Everything above hi is in upper part 
      while lo <= hi:          # Loop until no more items to inspect 
         while (lo <= hi and   # Increment lo until it goes past hi 
                key(self.get(lo)) < pivot): # or we find a key that’s 
            lo += 1            # not in the lower partition 
         while (lo < hi and    # Decrement hi until it matches lo 
                pivot < key(self.get(hi))): # or we find the pivot or 
            hi -= 1            # a key not in the upper partition 
         if lo >= hi:          # If lo is at or above hi, then the 
            return lo          # lower partition ends at lo 
         self.swap(lo, hi)     # Otherwise, swap the items at lo & hi 
         lo, hi = lo + 1, hi - 1 # Continue partitioning in between 
      return lo                # Range to partition is now empty

In the loop-based method, the lo and hi parameters become local variables that
are initialized at the beginning. Instead of recursive calls, a new outer while
loop is added that iterates until the [lo, hi] range becomes empty. Inside that
loop, the logic is nearly identical to the recursive version. The lo and hi
indices move up and down like before. The next three lines of code—checking
on the size of the remaining range, returning lo if the range is too small, and
swapping the values at lo and hi—are identical to the recursive version. The
difference comes at the end where lo and hi are updated (the way they would
have been changed in the recursive call), and there is a return lo statement if
the outer loop completes with an empty range.

Testing the partitioning method on a 10-element array with two different pivots
shows:
Initialized array contains [77, 94, 59, 85, 61, 46, 62, 17, 56, 37] 
Partitioning an array of size 10 around 61 returns 5 
                                                V 
Partitioned array contains [37, 56, 59, 17, 46, 61, 62, 85, 94, 77] 



 
Initialized array contains [37, 56, 59, 17, 46, 61, 62, 85, 94, 77] 
Partitioning an array of size 10 around 46 returns 2 
                                    V 
Partitioned array contains [37, 17, 59, 56, 46, 61, 62, 85, 94, 77]

The V in the output is pointing to the index of the first cell in the upper
partition, that is, the index returned by the partition() method. You can see
that the partitions are successful: the numbers to the left of the returned index
are all smaller than the pivot values of 61 and 46, respectively. Note that the
sizes of the partitions depend on the choice of pivot. Only those array cells that
had to be swapped were affected, for example, only the values of 17 and 56 in
the second example that pivoted around 46. The first partition had already
swapped 77 and 37, 94 and 56, 85 and 17, and 61 and 46.

Equal Keys
Somewhat surprisingly, it doesn’t matter if items whose key matches the pivot
go in the lower or higher partition. The pivot value is the dividing line between
the two partitions. Items that have a key equal to the pivot could be considered
to belong to either one.

In the partition() method in Listing 7-3, both loops that increment the lo and
decrement the hi indices stop when they find an item with the pivot as its key
(in addition to finding an item belonging in the opposite partition). If the
indices differ after going through both loops, then the items they index are
swapped. If both items have a key equal to the pivot, there is no need to swap
them. So shouldn’t the algorithm skip the swap if it checks and finds equal
keys? The answer is not so straightforward.

To add such a test would put another comparison in the loop that would be run
once for every iteration of the outer loop. It would save the expense of a swap,
but only if the data has keys of equal value, and both are equal to the pivot.
That’s not likely to happen, in general. Furthermore, it would save significant
time only if the cost of swapping two items in the array were much more than
comparing the keys.

There’s another, more subtle reason to swap the items even when one or both
has a key equal to the pivot. If the algorithm always puts items whose keys
match the pivot in one partition, say the higher one, then it can decrement the
hi index past those items as it looks for items to swap. Doing so moves the
eventual partition index to the lowest possible value and minimizes swaps. As



discussed later in the section on quicksort, it’s good for the partition indices to
end up in the middle of the array and very bad for them to end up at the ends.
The idea is somewhat similar to binary search: dividing the range in half is
most efficient because it limits the maximum size of the remaining ranges to
search.

Efficiency of the Partition Algorithm
The partition algorithm runs in O(N) time. It’s easy to see why this is so when
running the Partition operation in the Visualization tool: the two pointers start
at opposite ends of the array and move toward each other, stopping and
swapping as they go. When they meet, the partition is complete. Each cell of
the array is visited at most one time, either by the lo or the hi pointer. If there
were twice as many items to partition, the pointers would move at the same
rate, but they would have twice as many items to compare and swap, so the
process would take twice as long. Thus, the running time is proportional to N.

More specifically, partitioning an N-cell array makes exactly N comparisons
between keys and the pivot value. You can see that by looking at the code
where the key() function is called and its value compared with the pivot.
There’s one test with the item at the lo pointer and one with the hi pointer.
Because lo and hi are checked prior to those comparisons, you know that
either lo < hi or that the comparison with the pivot and the key at hi doesn’t
happen. The lo and hi values range over all N cells.

The lo and hi pointers are compared with each other N + 2 times because that
comparison must succeed for each of the pivot comparisons to happen, and
they must each fail when they find either a pair to swap or find each other. The
number of comparisons is independent of how the data is arranged (except for
the uncertainty between one or two extra comparisons at the end of the
process).

The number of swaps, however, does depend on how the input data is arranged.
If it’s inversely ordered, and the pivot value divides the items in half, then
every pair of values must be swapped, which is N/2 swaps.

For random data, there are fewer than N/2 swaps in a partition, even if the
pivot value is such that half the items are shorter and half are taller. The reason
is that some items are already in the right place (short bars on the left, tall bars
on the right in the visualization). If the pivot value is higher (or lower) than



most of the items, there will be even fewer swaps because only those few items
that are higher (or lower) than the pivot will need to be swapped. On average,
for random data with random pivots, about half the maximum number of swaps
take place.

Although there are fewer swaps than comparisons, they are both proportional
to N. Thus, the whole partitioning process runs in O(N) time.

Quicksort
Quicksort is a popular sorting algorithm, and for good reason: in the majority
of situations, it’s the fastest, operating in O(N×log N) time, and only needs
O(log N) extra memory. C. A. R. (Tony) Hoare discovered quicksort in 1962.

To understand quicksort, you should be familiar with the partitioning algorithm
described in the preceding section. Basically, the quicksort algorithm operates
by partitioning an array into two subarrays and then calling itself recursively to
quicksort each of these subarrays. There are some embellishments, however, to
be made to this basic scheme. They have to do with the selection of the pivot
and the sorting of small partitions. We examine these refinements after we look
at a simple version of the main algorithm.

It’s difficult to understand what quicksort is doing before you understand how
it does it, so we reverse our usual presentation and show the Python code for
quicksort before presenting the visualization tool.

The Basic Quicksort Algorithm
The code for a basic recursive quicksort method is fairly simple. Listing 7-4
shows a sketch of the algorithm.

Listing 7-4 A Sketch of the Quicksort Algorithm in Python

   def quicksort_sketch(       # Sort items in an array between lo 
         self, lo=0, hi=None,  # and hi indices using Hoare’s 
         key=identity):        # quicksort algorithm on the keys 
      if hi is None:           # Fill in hi value if not specified 
         hi = len(self) - 1 
      if lo >= hi:             # If range has 1 or fewer cells, 
         return                # then no sorting is needed 



 
      pivot = self.choosePivot(lo, hi) # Choose a pivot 
 
      hipart = self.partition( # Partition array around the key 
         key(pivot),           # of the item at the pivot index and 
         lo, hi, key)          # record where high part starts 
 
      self.quicksort_sketch(lo, hipart - 1, key) # Sort lower part 
      self.quicksort_sketch(hipart, hi, key) # Sort higher part

As you can see, there are five basic steps:

1. Check the base case and return if the [sub]array is small enough.

2. Choose a pivot.

3. Partition the subarray into lower and higher parts around the pivot.

4. Make a recursive call to sort the lower part.

5. Make another recursive call to sort the higher part.

The first lines should look familiar from other recursive routines. Like the
partition_rec() method in Listing 7-2, the lo and hi indices are the leftmost
and rightmost cells of the array to be sorted. If not provided by the caller, they
are set to be the first and last cells of the full array. Testing for the base case
involves seeing whether there are two or more cells to be sorted. If there are
one or zero, then no sorting is needed, and the method returns immediately.

The sketch shows a call to choosePivot() to select a pivot item in the
subarray. We return to that choice in a moment, but for now, assume that it
randomly chooses one of the items between lo and hi cells. After the partition,
all the items in the left subarray, below hipart, are smaller than all those on
the right. If you then sort the left subarray and the right subarray, the entire
array will be sorted. How do you sort these subarrays? By calling this very
method recursively.

When quicksort_sketch() is called on something other than the base case,
the algorithm chooses a pivot value and calls the partition() method,
described in the preceding section, to partition it. This method returns the index
number of the first cell in the higher partition. That index gets stored in the
hipart variable and used to determine the subarrays to be recursively sorted.
The situation is shown in Figure 7-7 with a “randomly” chosen pivot of 38.



Figure 7-7 Partitioning in one call to quicksort_sketch()

Note that the pivot doesn’t necessarily end up being moved to the beginning or
end of its partition. Nor does it always stay where it started. After the subarray
is partitioned, quicksort_sketch() calls itself recursively, once for the lower
part of its array, from lo to hipart - 1, and once for the higher part, from
hipart to hi. These calls move the pivot item (and all other items) into their
sorted positions.

Choosing a Pivot Value



What pivot value should the quicksort algorithm use? Here are some relevant
ideas:

• The pivot value should be the key value of an actual data item; this item
is also called the pivot. At a minimum, avoiding an extreme value
outside the range of keys prevents making empty partitions, but it also
allows for some other optimizations.

• You can pick a data item to be the pivot somewhat arbitrarily. For
simplicity, you could always pick the item on the right end of the
subarray being partitioned.

• After the partition, if the pivot is inserted at the boundary between the
lower and upper subarrays, it will be in its final sorted position.

This last point may sound unlikely, but remember that, because the pivot’s key
value is used to partition the array, following the call to partition() the lower
subarray holds items with keys equal or smaller than the pivot, and the right
subarray holds items with keys equal or larger. If the pivot could somehow be
placed between these two subarrays, it would be in the correct place—that is,
in its final sorted position. Figure 7-8 shows how this looks with the pivot
example value of 38.



Figure 7-8 Moving the pivot between the subarrays

This figure is somewhat fanciful because you can’t actually slice up the array
as shown, at least not without copying a lot of cells. So how do you move the
pivot to its proper place?

You could shift all the items in the left subarray to the left one cell to make
room for the pivot. This approach is inefficient, however, and unnecessary. You
can select the pivot to be any item from the array. If you select the rightmost
one and partition everything to the left of it, then you can simply swap the
pivot with the item indexed by hipart—the leftmost of the higher part as
shown in Figure 7-9. In fact, doing so brings the array one step closer to being
fully sorted. This swap places the pivot in its proper position between the left
and right groups. The 75 is switched to where the pivot was, and because it



remains in the right (higher) group, the partitioning is undisturbed. Note that in
choosing the rightmost cell of the subarray—the one at the hi index—it must
be excluded from the range that the partition() method reorganizes because
it shouldn’t be swapped for any other item.



Figure 7-9 Swapping the pivot from the right

Similarly, the pivot could be chosen as the leftmost cell and then swapped into
position just to the left of hipart. In either case, the swap might not be needed
if the partitioning left only one cell in the higher or lower partition,
respectively. Because the pivot can be placed in either partition, these methods
can be used to guarantee that there will be at least one cell in the higher or
lower partition, respectively.

Swapping the pivot with the value at the start of the higher partition ensures the
pivot ends up in its final resting place. All subsequent activity will take place
on one side of it or on the other, but the pivot itself won’t be moved again. In
fact, you can exclude it from the subrange in the recursive call to sort the
higher range—for example:
      self.quicksort_sketch(lo, hipart - 1, key) # Sort lower part 
      self.quicksort_sketch(hipart + 1, hi, key) # Sort higher part

By removing that one cell from subsequent processing, the algorithm
guarantees that the subranges are always diminishing. To see that, think about
the range for hipart. It could have any value from lo to hi (but not hi + 1
because you chose the pivot to be equal to the key at hi). At those extreme
values, one of the recursive subranges will be empty while the other will have
one fewer cell than the original lo to hi range—either [lo, hi − 1] or [lo + 1,
hi].

We can make an optimization to the partitioning algorithm by taking advantage
of the constraint that there will always be at least one item that belongs in the
high partition. That constraint means the test for the end of the first loop—the
one that advances lo to find a higher partition item—can be simplified. It no
longer needs to check that lo <= hi because the second part of the test
checking the key at lo versus the pivot must fail when lo == hi. Although this
comparison test might seem trivial, it occurs in the innermost loop of what
could be a very long calculation, so saving a few operations here can have a
large impact. There are a few more improvements in the full implementation in
the following sections.

A First Quicksort Implementation
To flesh out the embellishments to the sketch shown earlier, we provide a
working version, called the qsort() method, in Listing 7-5. This method



captures the algorithm described just described, along with its revised
partitioning method.

Listing 7-5 The qsort() Method with Improved Partitioning

def identity(x): return x      # Identity function
import SortArray 
 
class Array(SortArray.Array):  # Base new Array class on SortArray 
   def __partition(            # Private function partitions array by 
         self,                 # items whose keys are below or equal 
         pivot,                # a pivot value to the left/low side 
         lo,                   # the rest to the right/high side 
         hi,                   # within the [lo, hi] range (inclusive) 
         key=identity):        # knowing at least one key == pivot 
      while lo <= hi:          # Loop until no more items to inspect 
         while (key(self.get(lo)) # Increment lo until we find a key 
                < pivot):      # that’s not in the lower partition 
            lo += 1            # Knowing pivot == one key in [lo,hi+1] 
         while (lo < hi and    # Decrement hi until it matches lo 
                pivot < key(self.get(hi))): # or we find the pivot or 
            hi -= 1            # a key not in the upper partition 
         if lo >= hi:          # If lo is at or above hi, then the 
            return lo          # lower partition ends at lo 
         self.swap(lo, hi)     # Otherwise, swap the items at lo & hi 
         lo, hi = lo + 1, hi - 1 # Continue partitioning in between 
      return lo                # Range to partition is now empty 
 
   def qsort(                  # Sort items in an array between lo 
         self, lo=0, hi=None,  # and hi indices using Hoare’s 
         key=identity):        # quicksort algorithm on the keys 
      if hi is None:           # Fill in hi value if not specified 
         hi = len(self) - 1 
      if lo >= hi:             # If range has 1 or fewer cells, 
         return                # then no sorting is needed 
      pivot_i = hi             # Choose pivot index to be rightmost 
      pivotItem = self.get(pivot_i) # Get item at pivot index 
      hipart = self.__partition( # Partition array around the key 
         key(pivotItem),       # of the item at the pivot index and 
         lo, hi - 1, key)      # record where high part starts 
      if hipart < pivot_i:     # If pivot index is above high 
         self.swap(            # part start, then swap pivot item 
            hipart, pivot_i)   # with high part start 
      self.qsort(lo, hipart - 1, key) # Sort lower part 
      self.qsort(hipart + 1, hi, key) # Sort higher part



Because the partitioning method now relies on the pivot value always being a
key of one of the cells between lo and hi, we have made it a private method,
__partition(), so that it cannot be called by the users of this Array class
using some other pivot value. The enhancement comes in the second while
loop of __partition(), by getting rid of the test for lo <= hi. It still needs the
test for lo < hi in the third while loop because there is no guarantee that it
will find an item in the lower partition before running in to lo. If the pivot
value was the lowest key in the whole array and distinct, all the items would
satisfy the pivot < key(self.get(hi)) test. Because this is a private method
that is only called by qsort(), we can also remove the default values for the lo
and hi parameters since the qsort() method always provides them.

The qsort() method remains recursive (although it could be converted to a
loop-based algorithm as you’ve seen). It tracks both the index to the pivot item
and the item itself in different variables, pivot_i and pivotItem. It replaces
the call to choosePivot() with a simple assignment to improve efficiency
slightly. Because the pivot is the rightmost item, it calls the private
__partition() method with the range [lo, hi − 1] to prevent the pivot from
being swapped. After partitioning, it swaps the pivot item and the item at the
start of the higher partition. That swap needs to be done only if the pivot index
is higher than the first index of that part, hipart. The method ends with the
recursive calls on the lower and higher parts, excluding the pivot item that was
moved to the cell at hipart.

You can add a print statement to the qsort() method right after the
partitioning to see what’s happening. By adding the line
      print(’Partitioning’, lo, ’to’, hi, ’leaves’, self)

you can see the ranges being partitioned and the changes in the values of the
array. Placing this print statement after the partitioning and swapping of the
pivot are done (just before the recursive calls to sort the lower and higher
parts), along with an initial printing of the array contents, produces the output
in Listing 7-6.

Listing 7-6 Output of qsort() with a print Statement

Quicksorting [77, 94, 59, 85, 61, 46, 62, 17, 56, 37] : 
Partitioning 0 to 9 leaves [17, 37, 59, 85, 61, 46, 62, 77, 56, 94] 
Partitioning 2 to 9 leaves [17, 37, 59, 85, 61, 46, 62, 77, 56, 94] 
Partitioning 2 to 8 leaves [17, 37, 46, 56, 61, 59, 62, 77, 85, 94] 



Partitioning 4 to 8 leaves [17, 37, 46, 56, 61, 59, 62, 77, 85, 94] 
Partitioning 4 to 7 leaves [17, 37, 46, 56, 61, 59, 62, 77, 85, 94] 
Partitioning 4 to 6 leaves [17, 37, 46, 56, 61, 59, 62, 77, 85, 94] 
Partitioning 4 to 5 leaves [17, 37, 46, 56, 59, 61, 62, 77, 85, 94]

The first call to the qsort() method operates on the full array, the range [0, 9].
The pivot is the rightmost item whose value is 37. The only item lower than
that is item 17 at index 7. The partitioning swaps the 77 from the leftmost cell
with the 17 and then swaps the pivot value 37 with the item at index 1 (the
value of hipart after partitioning) which is item 94. Now the array has items
equal and below 37 in the range [0, 0] and the items equal and higher in the
range [1, 9] (the hipart starts at index 1 and includes the pivot).

The recursive call to sort the lower range ends up being a base case requiring
no action. The call to sort the higher range [2, 9] is the next output line. Note
that the pivot from the first call, 37, has been removed from the range because
it’s known to be in the correct position, index 1. In the range [2, 9], the pivot is
94. Because that is the maximum value of the range, the partitioning makes no
changes. The pivot remains at the right end, and the lower partition is sorted
next.

The third Partitioning output line shows sorting the range below the pivot,
94, which spans [2, 8]. This time the pivot is 56. There is one item less than the
pivot, and that is 46 at index 5. That value gets swapped with the leftmost
value, 59, at index 2. Then the pivot is swapped with the leftmost item of the
higher partition, 85. That leaves the lower partition as [2, 2] and the higher
partition as [3, 8].

The fourth Partitioning output line in Listing 7-6 shows sorting the higher
range [4, 8], ignoring the pivot of the previous call. The pivot at index 8 is 85;
the value that was swapped with the pivot of the previous call. Because 85 is
the maximum value of that range, no swaps are made, and only the lower
partition is a non-base case.

The fifth Partitioning output line sorts the lower partition range, [4, 7]. The
pivot is 77 for that range, which again is a maximum, so no swaps are made.
The sixth output line sorts the next lower partition range [4, 6]. Here the pivot
is 62, and again it’s the maximum of that range, so it’s on to sort the lower
partition.

The seventh call works on the lower partition of the sixth call, the range [4, 5].
The pivot for that range is 59, which is less than the only other item, 61. That



pivot gets swapped with the 61 because that is where hipart starts. Because
the range has only two cells, the recursive calls are base cases that make no
more changes.

Was that approach efficient? The particular array processed in Listing 7-6
generated seven calls to the __partition() method. That’s quite a few when
compared to the 10 elements in the array. This is close to the worst-case
behavior, which we analyze a little later. In general, however, the pivots are
likely to split long ranges in approximately equal subranges, making the
algorithm very fast.

Running Quicksort in the AdvancedSorting
Visualization Tool
At this point you know enough about the quicksort algorithm to run some
examples in the Visualization tool. The code in Visualization tool runs a
version of the algorithm with some optimizations that we haven’t discussed
yet. The first thing to do is to ensure the check box labeled “Use median of 3”
below the Quicksort button is unchecked. We get to that optimization a little
later, along with some others.

With the Median of 3 option turned off, run the Quicksort on an array. Figure
7-10 shows the final result after the quicksort finishes. As the quicksort process
runs, you see the partition lines appear as it processes the subarrays. The first
call to quicksort runs on the full range of the array, cells 0 through 9 in the 10-
element array of Figure 7-10. If you look carefully, you can see that it chooses
the rightmost item in each subarray as the pivot. The pivot line for each
partition shows during the partitioning but then disappears.





Figure 7-10 The result of quicksort in the Advanced Sorting Visualization
tool

At the end of each partitioning, a triangle is placed below the first cell of the
higher partition, similar to the arrow that the Partition button left. These
triangles remain after the sort is complete to show where each partition landed.

In Figure 7-10, the last item of the initial array, 37, was the first pivot value,
and led to placing the triangle below cell 1. Only item 17 is lower, and the
other nine items were placed in the higher partition. The quicksort runs the
partitioning four more times, placing the other triangles to show where it split
the subarrays. You can hide or show the triangles by selecting the check box
labeled “Show pivot partitions.”

As you watch the animation of the quicksort process, you can easily see how
the ranges are split at the hipart index, followed by processing of the left and
right partitions. When the size of partitions grows small, it does some special
processing that we describe a little later.

One of the key things to watch is how many partitions are made. The number
of triangles showing at the end provides the count. You want to make as few
partitions as possible to make the sorting process efficient. Try making a larger
array, filled with random values and quicksorting it (with the Median of 3
option still turned off). Figure 7-11 shows an example with a 77-element array
that led to 29 partitions.

Figure 7-11 Running quicksort on a 77-element array choosing the
rightmost as pivot



While you watch the sorting animation, compare it to what you saw with the
Shellsort. Does it appear to be generally “more sorted” with each partitioning?

The Details
Figure 7-12 shows all the steps involved in sorting a 12-element array using
qsort(). The horizontal brackets under the arrays show which subarray is
being partitioned at each recursive call, along with a call number. Some calls
are on single element or empty ranges; these are the base cases that return
immediately and have no arrow indicating a pivot was chosen. The pivots are
highlighted as they are placed in their final positions.

Figure 7-12 The qsort process

Sometimes, as in calls 6, 9, and 12, the pivot ends up in its original position on
the right side of the subarray being sorted. In this situation, after sorting the
subarray to the left of the pivot, the subarray to the right doesn’t need to be
sorted because it is empty. There still is a call to the qsort() method, as
indicated by the call numbers in the figure that have no bracketed range—calls
8, 14, and 15.

The different calls in Figure 7-12 occur at different levels (or depths) of
recursion, as shown in the table on the right. The first call to qsort() is at the
first level. It makes two recursive calls to sort the subarrays to the left and the
right of its pivot, 56. Those calls are at level 2, and they make calls for the
lower and higher partitions that they create. The level 1 call to sort its lower
partition is call 2 and covers indices 0 through 5. The call to sort its higher
partition ends up being call 9 on indices 7 through 11. The intervening calls are
all the deeper recursive calls to finish sorting the lower partition.



The order in which the partitions are created, corresponding to the call
numbers, does not correspond with depth. It’s not the case that all the first-level
partitions are done first, then all the second-level ones, and so on. Instead, the
left group at every level is handled before any of the right groups.

The number of levels in the table shows that with 12 data items, the machine
stack needs enough space for five sets of arguments and return values—one for
each recursion level. This is, as you see later, somewhat greater than the
logarithm to the base 2 of the number of items: log2N. The size limit of the
machine stack varies between systems. Sorting very large numbers of data
items using recursive procedures may cause this stack to overflow.

Degenerates to O(N2) Performance
Try the following example using the AdvancedSorting Visualization tool.
Make an empty array of 10 to 20 cells and use the Increasing Fill button to fill
them with a sequence of increasing keys. Then run the quicksort with the
Median of 3 option turned off. You’ll see that it seems to create more triangles
for the partitions. A 10-item array creates 7 triangles, and a 20-item array
creates 17. What’s happening here?

The problem is in the selection of the pivot. Ideally, the pivot should be the
median of the items being sorted. That is, half the items should be larger than
the pivot, and half smaller. That choice would result in the array being
partitioned into two subarrays of equal size. Having two equal subarrays is the
optimum situation for the quicksort algorithm. If it sorts one large and one
small array, the quicksort is less efficient because the larger subarray must be
subdivided more times. That also requires more recursive levels.

The worst situation results when a subarray with N cells is divided into one
subarray with 1 cell and the other with N−1 cells. This division into 1 cell and
N−1 cells can be seen in calls 6, 9, and 12 of Figure 7-12. In the visualization
tool, it happens in every partition (except that the first three cells don’t get
partitioned; which we explain in a moment).

If this 1 and N−1 division happens with every partition, then every cell requires
a separate partition step. This is, in fact, what takes place when the input data is
already sorted (or inversely sorted). In all the subarrays, the pivot is the largest
(or smallest) item. If it’s the largest item, the partitions are of size N−1 and 1,
the pivot (assuming no duplicate keys). If the pivot is the smallest item, all the



cells go in the larger partition, and the recursive calls are made on an empty
subarray and one of size N−1, and the pivot must be swapped into final
position (leading to the largest remaining item being the pivot on the next call).

As you can see in the visualization tool, the triangles for the pivot points are
next to one another, which means one partition ended up being a single cell. In
this situation, the advantage gained by the partitioning process is lost, and the
performance of the algorithm degenerates to O(N2).

Besides being slow, there’s another potential problem when quicksort operates
in O(N2) time. When the number of partitions increases, the number of
recursive method calls also increases. In the ideal case, the number of method
calls is O(log2 N), but in this worst situation, it becomes O(N). Every function
or method call takes up room on the machine stack. If there are too many calls,
the machine stack may overflow and paralyze the system. Even if you convert
the recursive procedure to an explicit stack approach, O(N) memory will be
consumed to hold the information needed to correctly process the subranges.

To summarize: the qsort() method chooses the rightmost item’s key as the
pivot. If the data is truly random, this choice isn’t too bad because usually the
pivot isn’t too close to either extreme value of the keys. When the input data is
(inversely) sorted, however, choosing the pivot from one end or the other is a
bad idea. How can we improve on this approach to selecting the pivot?

Median-of-Three Partitioning
Many schemes have been devised for picking a better pivot. The method of
choosing an item at random is simple, but—as you’ve seen—doesn’t always
result in a good selection. Choosing items with keys at or near the extreme
ends of the range of keys leads to unbalanced partitions. Alternatively, you
could examine all the items and actually calculate which of their keys was the
median. This pivot choice would be ideal, but doing so isn’t practical because
it could take more time than the sort itself.

A compromise solution is to examine the first, last, and middle items of the
subarray, and use the median of their keys for the pivot. Picking the median of
the first, last, and middle elements is called the median-of-three approach and
is shown in Figure 7-13.



Figure 7-13 The median of three

Finding the median of three items is obviously much faster than finding the
median of all the items, and yet it successfully avoids picking the largest or
smallest item in cases where the input data is already sorted or inversely sorted.
There are probably some pathological arrangements of data where the median-
of-three scheme works poorly, but normally it’s a fast and effective technique
for finding the pivot.

Besides picking the pivot more effectively, the median-of-three approach has
an additional benefit: you can dispense with the lo < hi test in the second
inner while loop, leading to a small increase in the algorithm’s speed. How is
this possible?

You can eliminate this test because you can use the median-of-three approach
to not only select the pivot but also to sort the three elements used in the
selection process. Figure 7-14 shows this operation.



Figure 7-14 Sorting the left, center, and right elements

When these three elements are sorted, and the median item is selected as the
pivot, you are guaranteed that the element at the left end of the subarray is less
than (or equal to) the pivot, and the element at the right end is greater than (or
equal to) the pivot. This means that the lo and hi indices can’t step beyond the
right or left ends of the array, respectively, even if you remove the lo < hi test
(and the lo <= hi test that was previously removed from the first inner loop).

Removing that test may not seem like a wise idea, especially with the swaps
that happen during the partitioning algorithm. On closer inspection, however,
those swaps only move lower items to the left and higher items to the right, so
there will always be a key that causes the two loops to stop. These items are
called sentinels because they guard against going out of bounds. The hi index
will stop decrementing, thinking it needs to swap the item, only to find that it
may have already crossed the lo index and the partition is complete.

Another small benefit to median-of-three partitioning is that after the left,
middle, and right elements are sorted, and the median is swapped with the
rightmost item, the partition process doesn’t need to examine the lowest and
median elements again. The partition can begin at lo +1 and hi-1 as shown in
the last row of Figure 7-14 because lo and hi have, in effect, already been
partitioned. You know that lo is in the correct partition because it’s on the left
and it’s less than or equal to the pivot, and hi is in the correct place because it’s
on the right and it is the pivot. Neither one may be in its final, sorted position,
but all that matters is that they are partitioned correctly at this point.

Thus, median-of-three partitioning not only avoids O(N2) performance for
already-sorted data but also allows you to speed up the inner loops of the



partitioning algorithm and slightly reduces the number of items that must be
partitioned.

Handling Small Partitions
Using the median-of-three pivot selection method, it follows that the quicksort
algorithm won’t work for partitions with fewer than three items. With exactly
three items, the median-of-three would fully sort the items and then perform
two unnecessary swaps of the median and high items. Performing these extra
swaps seems wasteful, so finding another method for processing three or fewer
items seems appropriate. The number 3 in this case is called a cutoff point.
What is the best way to process these small subarrays? Would it be wise to
apply the nonmedian choice of pivot as we did before in qsort()? Are there
other sorting methods that might do better with small subarrays?

Using an Insertion Sort for Small Partitions
One option for dealing with small partitions is to use the insertion sort. That
approach works for any size subarray and has the added benefit of being O(N)
for already-sorted subarrays. In fact, you aren’t restricted to a cutoff of 3. You
could set the cutoff to 10, 20, or any other number 3 or higher, expecting to
find some optimum value. It’s interesting to experiment with different values of
the cutoff to see where the best performance lies. Knuth (see Appendix B)
recommended a cutoff of 9. The optimum number is usually more than 3 and
depends on a variety of factors: the kinds of input data distributions that
happen frequently, the computer, the operating system, the compiler (or
interpreter), and so on.

The Full Quicksort Implementation
Combining all these improvements into the implementation results in the full
quicksort() method shown in Listing 7-7. It has its own private partitioning
method, __part(), that includes the optimizations in the loop conditions based
on the sentinel values from the median-of-three algorithm.

Listing 7-7 The full quicksort() Method for Sorting Arrays

def identity(x): return x      # Identity function
import SortArray 



 
class Array(SortArray.Array):  # Base new Array class on SortArray 
   def __part(                 # Private function partitions array by 
         self,                 # items whose keys are below or equal 
         pivot,                # a pivot value to the left/low side 
         lo,                   # the rest to the right/high side 
         hi,                   # within [lo, hi] knowing there is 1 
         key=identity):        # key below pivot & pivot at hi+1 
      while lo <= hi:          # Loop until no more items to inspect 
         while (key(self.get(lo)) # Increment lo until we find a key 
                < pivot):      # that’s not in the lower partition 
            lo += 1            # Knowing pivot == one key in [lo,hi+1] 
         while (pivot <        # Decrement hi until it points to key 
                key(self.get(hi))): # in lower partition 
            hi -= 1            # a key not in the upper partition 
         if lo >= hi:          # If lo is at or above hi, then the 
            return lo          # lower partition ends at lo 
         self.swap(lo, hi)     # Otherwise, swap the items at lo & hi 
         lo, hi = lo + 1, hi - 1 # Continue partitioning in between 
      return lo                # Range to partition is now empty 
 
   def quicksort(              # Sort items in an array between lo 
         self,                 # and hi indices using Hoare’s 
         lo=0,                 # quicksort algorithm. For short 
         hi=None,              # subarrays, use insertion sort. 
         short=3,              # Short must be 3 or more to enable 
         key=identity):        # median of three choice of pivot 
      if hi is None:           # Fill in hi value if not specified 
         hi = len(self) - 1    # as last item in array 
      short = max(3, short)    # Enforce short limit >= 3 
      if hi - lo + 1 <= short: # If subarray is short, then use 
         return self.insertionSort(lo, hi, key) # insertion sort 
      pivotItem = self.medianOfThree( # Else find median key of lo, 
         lo, hi, key)          # mid, hi and place item at hi index 
      hipart = self.__part(    # Partition array around the key of 
         key(pivotItem),       # the pivot item and 
         lo + 1, hi - 1, key)  # record where high part starts 
      self.swap(hipart, hi)    # Swap pivot with high part start 
      self.quicksort(lo, hipart - 1, short, key) # Sort lower part 
      self.quicksort(hipart + 1, hi, short, key) # Sort higher part

The quicksort() method has a new, optional parameter, short, which
determines the cutoff for using insertion sort on short subarrays. It defaults to 3
but can be set higher. (The AdvancedSorting Visualization tool uses the default
value of 3.) The base case test is modified to look for subarrays that have



short or fewer cells in them. They are processed by the insertionSort()
method shown in Listing 7-8.

If you compare these two methods to their counterparts in the earlier
implementation shown in Listing 7-5, they are similar. The small changes do
not reduce (nor significantly increase) the complexity of the program. They do,
however, result in a big impact on the performance.

Listing 7-8 shows the helper methods used by quicksort(). The
medianOfThree() method performs a three-element sort at the low, middle, and
high indices of the subarray. Because the number of items to sort is known and
small, it’s better to write a few if statements to swap values than to make a
loop-based sorting routine. After computing the index of the middle item, mid,
the first two if statements swap items to place the item with the lowest key at
the lo position. Normally for a sort, the next step would be to compare the
other two items and ensure the item with the highest key is placed at hi.
Because this method is preparing the data for partitioning, however, the item
with the middle key is placed at hi. It returns that item because it is the median
of the three keys.

Listing 7-8 The Helper Methods for quicksort()

   def medianOfThree(          # Find median of lo, middle, and hi 
         self, lo, hi,         # keys in subarray and put median 
         key=identity):        # in hi position for partition 
      mid = (lo + hi) // 2     # Compute middle index 
      if key(self.get(lo)) > key(self.get(mid)): # Compare 1st pair 
         self.swap(lo, mid)    # of keys and swap if lo > mid 
      if key(self.get(lo)) > key(self.get(hi)): # Compare 2nd pair 
         self.swap(lo, hi)     # of keys and swap if hi is lowest 
      # At this point lo has the minimum of the 3 keys 
      if key(self.get(hi)) > key(self.get(mid)): # Compare 3rd pair 
         self.swap(hi, mid)    # of keys again and swap if hi > mid 
      return self.get(hi)      # Return item with median key (@ hi) 
 
   def insertionSort(          # Sort subarray by repeated inserts 
         self,                 # This insertion sort will be used 
         lo=0,                 # on small subarrays by quicksort 
         hi=None, 
         key=identity): 
      if hi is None:           # Fill in hi value if not specified 
         hi = len(self) - 1    # as last item in array 
      for outer in range(lo + 1, hi + 1): # Mark one item 



         temp = self.get(outer) # Store marked item in temp 
         temp_key = key(temp) 
         inner = outer         # Inner loop starts at mark at right 
         while (inner > lo and # If inner hasn’t reached lo and next 
                temp_key < key(self.get(inner-1))): # item’s key is 
            self.set(inner, self.get(inner-1)) # smaller, then shift 
            inner -= 1         # next item to right & move inner left 
         self.set(inner, temp) # Move marked item to ’hole’

For subarrays longer than short, the median-of-three algorithm is used to
select the pivot item. As before, the pivot value (with the median key) is placed
in the array at the hi index so that the subarray below it can be partitioned. The
call to __part() inside quicksort() (refer to Listing 7-7) runs on the subarray
from lo + 1 to hi − 1 because the item with the lowest key from the median-
of-three algorithm is stored at lo and, hence, does not need to be swapped with
any other items during partitioning.

After partitioning, the pivot is swapped into its final position at the lowest
index of the higher partition. The recursive calls sort the lower and higher
partitions. These include the cells at both ends, lo and hi, because they now
contain items that are in the correct partition but may not be in their final sorted
position.

The other helper method is insertionSort(). This is the same as the method
presented in Chapter 3 but has been adapted to work on subarrays. The now-
familiar lo and hi indices become new parameters and default to the beginning
and ending cells of the array. There is a small change in handling the hi limit
because it indexes the last cell of the subarray instead of one past the last cell.

Quicksort in the AdvancedSorting Visualization Tool
The AdvancedSorting Visualization tool demonstrates the quicksort algorithm
using median-of-three pivot selection when the check box is selected. Before,
you ran quicksort without checking that box, and it selected the rightmost key
as the pivot value. For three or fewer cells, the tool simply sorts the subarray
using the insertion sort, regardless of whether pivots are chosen by the median-
of-three.

Repeat the experiment of sorting a new 10- to 20-element array filled with
increasing keys, but this time check the “Use median of 3” box. Using the
rightmost cell’s key caused quicksort to make 17 calls to __part() for the 20-
element array, but when you use the median-of-three, that drops to 7. No longer



is every subarray partitioned into 1 cell and N−1 cells; instead, the subarrays
are partitioned roughly in half until they reach three or fewer cells.

Other than this improvement for ordered data, the difference in choosing the
pivot produces similar results. It is no faster when sorting random data; its
advantages become evident only when sorting ordered data.

Removing Recursion
Another embellishment recommended by many writers is removing recursion
from the quicksort algorithm. This task involves rewriting the algorithm to
store deferred subarray bounds (lo and hi) on a stack, and using a loop instead
of recursion to oversee the partitioning of smaller and smaller subarrays. The
idea in doing this is to speed up the program by removing method calls. This
idea, however, arose with older compilers and computer architectures, which
imposed a large time penalty for each method call. It’s not clear that removing
recursion is much of an improvement for modern systems, which handle
method calls more efficiently. The depth of recursion could be an issue on
systems that limit the size of the call stack. Those systems might allow a larger
data stack than the call stack, so the loop-based approach managing the
subarray bounds could be able to handle larger arrays without running out of
space.

Efficiency of Quicksort
We’ve said that quicksort operates in O(N×log N) time. As you saw in the
discussion of mergesort in Chapter 6, this is generally true of the divide-and-
conquer algorithms, in which a recursive method divides a range of items into
two groups and then calls itself to handle each group. In this situation the
logarithm actually has a base of 2: the running time is proportional to N×log2N.

To see why this running time is a good model, let’s look at the sequence of
subarrays (or partitions) processed by quicksort() as visualized in Figure 7-
15. The first call is shown as the thickest middle line of the figure and spans all
N items in the array. That middle line is numbered 1 at the left to show it is the
first call. After partitioning, that subarray is split in two partitions. The index of
the partition’s pivot is represented by the dotted vertical line. That line
connects to two thinner horizontal lines in a different color representing the
work done on the lower and higher partitions. The lower one is processed first



in call #2 (lower in terms of array indices and key values; higher in the figure).
The higher partition is processed after all the recursive calls needed to handle
the lower partition are completed; that is call #9. The process repeats for each
recursive level (or depth), splitting the subarray into two smaller subarrays.
The partitions at a particular depth all have the same color, while the different
depths have different colors in the figure.

Figure 7-15 Lines corresponding to partitions in quicksort

The first call to quicksort() can be considered depth 1 of the recursive calls.
It operates on the full N item array. The two calls at depth 2 also process a total
of N items; dealing with them in two separate subarrays. Technically, they only
process N − 1 items because the pivot of call #1 is not included in either of the
depth 2 call’s subarrays. Determining the pivot, however, requires three
comparisons and zero to three swaps, which is close to the amount of work
done if the pivot item were included (one more comparison and perhaps a
swap). For determining the total amount of work performed at a particular
depth, it’s a simplification to say it processes N items.

At depth 3 there are four calls: two from each of the two subarrays at depth 2.
Again, the combined items from all four calls totals N (technically N − 3 items
due to the removed pivots). Similarly, depth 4 has 8 subarrays that cover all N
items (technically N − 7). The pattern is that at depth D, 2D-1 calls cover N
items (technically N − (2D-1 − 1)).

How deep is the recursion? If the choice of pivot were perfect every time, it
would split each subarray into equal-sized partitions. That would mean there
would be log2 N depths (rounded up to the next integer). As we’ve pointed out,
the median-of-three algorithm is only a guess at the true median key value. In



the worst case, the median-of-three could end up putting N − 2 items in one
partition and 1 item in the other, excluding the pivot item. If all the pivot
choices were that bad, the recursive depth would go up to N/2 calls, because
only 2 items would be excluded at each depth. It’s the recursive depth that
drives how much memory quicksort uses. It needs to record the subarray
ranges for each recursive call on the stack. That means it will need O(log N)
space in the best case and O(N) in the worst.

At each recursive depth, N items are processed, and you saw in the discussion
of the partitioning algorithm that it performs O(N) comparisons and a smaller
number of swaps (at most N/2). Multiplying the work done at each depth with
total number of depths shows that the quicksort is O(N×log N) in the best case
and O(N×N) = O(N2) in the worst case.

To keep the quicksort fast, near the optimal O(N×log N) complexity, the choice
of pivot and the other optimizations are essential. Going back to the
partitioning algorithm, this includes the choice of how to handle items with
keys equal to the pivot. By choosing to stop advancing lo and hi when they
reach an item with key equal to the pivot and then swapping those items, you
increase the chance of some unnecessary swaps but improve the chance of
balancing the sizes of the two partitions. In the special case (also called
degenerate case) of an array of items all having equal keys, this algorithm
divides the subarray in half. Keeping the partition sizes close to the optimum of
half the subarray lowers the chance of getting the worst-case O(N2)
performance.

Radix Sort
We close this chapter by briefly mentioning a few other different approaches to
sorting. The sorts we’ve looked at so far treat the key as a simple value that is
compared with other values to sort the data. The comparison works with
multiple data types for the keys such as numbers and strings. The radix sort
decomposes the key into digits or characters and arranges the data items
according to the value of the digits. Amazingly, no comparisons are necessary.
All that’s needed is a finite set of possible values for each digit or character.
Note that the radix sort is different than the similar but somewhat more
complex radix-exchange sort.



Algorithm for the Radix Sort
We introduce the radix sort in terms of normal base-10 arithmetic on numeric
keys, which is easy to visualize. Efficient implementations of the radix sort
using integer keys, however, would use base-2 arithmetic to take advantage of
the computer’s speed in bit manipulation.

The word radix means the base of a system of numbers. Ten is the radix of the
decimal system, and two is the radix of the binary system. The radix sort
involves examining each digit of the key separately, starting with the 1s (least
significant) digit.

1. All the data items are divided into 10 groups, according to the value of
the 1s digit of their key.

2. These 10 groups are then reassembled into a single group: All the items
with keys ending with 0 go first, followed by all the items with keys
ending in 1, and so on, up to 9. These reassembled groups are called a
sub-sort.

3. In the second sub-sort, all data is divided into 10 groups again, but this
time according to the value of the 10s digit of their keys. This must be
done without changing the order of the previous sort. That is, within each
of the 10 groups, the ordering of the items remains the same as it was
after step 2. In other words, the sub-sorts must be stable.

4. Again the 10 groups are recombined, those with a key whose 10s digit is
0 first, then those with a 10s digit of 1, and so on up to 9.

5. This process is repeated for the remaining digits of the keys. If some keys
have fewer digits than others, their higher-order digits are considered to
be 0.

Here’s an example, using seven data items, each with three digits. Leading
zeros are shown for clarity.
421 240 035 532 305 430 124                 // unsorted array 
(240 430) (421) (532) (124) (035 305)       // sorted on 1s digit 
(305) (421 124) (430 532 035) (240)         // sorted on 10s digit 
(035) (124) (240) (305) (421 430) (532)     // sorted on 100s digit 
035 124 240 305 421 430 532                 // sorted array

The parentheses delineate the groups. Within each group, the digits in the
appropriate position are the same. To convince yourself that this approach



really works, try it on a piece of paper with some numbers you make up.

Designing a Radix Sort Program
In practice, the original data probably starts out in an ordinary array. Where
should the 10 groups go? There’s a problem with using another array or an
array of 10 arrays. It’s not likely there will be exactly the same number of items
that have 0 for the first digit as the items having 1 for the first digit, 2 for the
first digit, and so on. That makes it hard to know how big to make the arrays
for each radix value. The brute-force approach would be to allocate 10 arrays
of size N so that all the items would fit in one of them. That could be a very
large amount of memory, so another way to solve the problem is to use 10
linked lists instead of 10 arrays. Linked lists expand and contract as needed.
You can use this approach here.

Regardless of what structure is used to hold the 10 groups, the groups can be
reused for each sub-sort. The data copied into them will be copied back to the
original array after each digit of the keys is processed. There’s no need to
allocate more memory for each pass.

An outer loop looks at each digit of the keys in turn. There are two inner loops:
the first takes the data from the array and puts it on the lists; the second copies
it from the lists back to the array. Choosing the right kind of linked list will
make this efficient. To keep the sub-sorts stable, you need the data to come out
of each list in the same order it went in. Which kind of linked list makes this
easy? We leave the coding details as an exercise.

Efficiency of the Radix Sort
At first glance, the efficiency of the radix sort seems too good to be true. All
you do is copy the original data from the array to the lists and back again.
That’s two copies per item. If there are 10 data items, this is 20 copies for the
first digit. You repeat this procedure once for each digit in the keys. If you
assume, say, 5-digit keys, then you’ll have 20×5 equals 100 copies. If you have
100 data items, there are 200×5 equals 1,000 copies. The number of copies is
proportional to the number of data items, which is O(N), the most efficient
sorting algorithm we’ve seen in this book.

Unfortunately, it’s generally true that the more data items needing to be sorted,
the longer the keys need to be to distinguish them. If you have 10 times as



much data, you may need to add another digit to the key. The number of copies
is proportional to the number of data items times the number of digits in the
key. The number of digits is proportional to the log of the range of key values,
so in most situations you’re back to O(N×log N) efficiency, the same as
quicksort.

There are no comparisons, although it takes time to extract each digit from the
number. This must be done once for every two copies. It may be, however, that
a given computer can do the digit-extraction in binary more quickly than it can
do a comparison. Of course, like mergesort, the radix sort uses O(N) memory
to hold all the items in the different linked lists. Compare this to quicksort,
which performs all of its swapping in the input array, and needs O(log N)
memory for the stack of calls (and O(N) in the degenerate cases).

Generalizing the Radix Sort
If the keys are strings or sequences of values (for example tuples in Python),
the radix sort can still be applied under some conditions:

• Each element in the sequence has a known, limited number of possible
values.

• There is a fast way to convert each possible value in the sequence to an
integer.

For the decimal radix sort, the sequence is of digits and the number of possible
values is 10. Call the radix R for short. For characters in a string key, the radix
depends on the character set being used. For Latin alphabets, this can be
limited to 256 possible characters or even 128 ignoring accented characters (for
example, limiting the possibilities to just the ASCII characters). For Unicode
character sets, R can grow quite large. If only a subset of the full character set
can appear in a key, then R is the size of that subset, but the second condition
becomes important. There must be a fast way to convert each character to an
integer in the range 0 to R−1. That’s required to be able to find the right linked
list in which to place the items based on a character in their key.

As you might guess, the efficiency of a generalized radix sort depends heavily
on the size of R and the length of the keys. Having lots of possible values for
each element of a key means maintaining lots of storage structures to hold the
items during each pass through the N array elements. There are some



techniques to minimize the number of storage structures to just those that
appear in the input keys, and we describe some in later chapters. Having long
keys adds a lot of passes through N array elements. Suffice it to say that, the
radix sort is only really appropriate in a narrow set of circumstances.

Using a Counting Sort
One variation on implementing the radix sort avoids the use of linked list
structures. The counting sort uses an array of integer values to count how
many item keys match a particular digit of the radix. The counting array starts
with all its R elements set to 0. A loop through the N input items increments
the appropriate cell in the counting array for a particular digit/element of the
sort key. The first two rows of Figure 7-16 show this process for the 10s digit
of a 15-element array.

Figure 7-16 Applying the counting sort on the 10s digit

At the end of the loop, the counting array holds the number of matching keys
for the different values of that particular digit. Some elements of the counting
array may be zero, meaning that value of the digit did not appear in any key. A
second loop through all but the first element of the counting array adds the
count to the count on its left. That makes the rth element of the counting array
contain the count of all keys that match r or less. In other words, it has the
cumulative count of matching keys. The third row of Figure 7-16 shows the
result of adding the counts. Note the final value in the array is always the total
count of all the keys in the input.



The next step in the counting sort makes use of the cumulative counting array
to move items from the input array to an output array. The process starts from
the right (highest index) cell. In the data of Figure 7-16, the rightmost key is 64
and its 10s digit is a 6. The algorithm looks at the cumulative counting array at
index 6, which is 12. That means there were 12 keys whose 10s digit was 6 or
less. All those items must go in the first 12 cells of the output array. It
decrements the count of the cumulative array at index 6 by 1. That is 11, and it
moves the item from the input array, 64, into the output array at index 11.

The process repeats for each remaining item in the input array. The next one in
Figure 7-16 is an item with a key of 90. It looks up 9 in the cumulative
counting array, finds 15 stored there, decrements it to 14, and places the item at
index 14 in the output, which is the final position. The third item to move is
one with a key of 50, whose 10s digit is 5, so it is moved to index 7. When it
gets to the fourth item to move, the key is 65. The 10s digit is 6, so it looks at
index 6 in the cumulative counting array. This time it finds 11 there because it
was decremented once before, so it decrements it again and places item 65 at
index 10 of the output array. The last row of Figure 7-16 shows the state of the
output array after moving the four items.

The counting sort “knows” where to put the items in the output array based on
cumulative counting array values. These items are updated with each move so
that every item goes to a unique position. After processing the 10s digit, the
entire process would need to be repeated on the 1s digit of all the keys. That
process would use the output array from the 10s digit process and put its results
back in the input array. That’s when items 65 and 64 of Figure 7-16 would be
placed in their correct positions. When all of the digits of all of the keys have
been processed, the output array holds the sorted items. If there were an odd
number of digits in the keys, one more copy operation would be needed to
copy the result back to the input array.

The counting sort has the same complexity as the radix sort. Both run in
O(N×log N) time and takes O(N) memory. More precisely, both algorithms
require O(N + R) memory and run in O(N × L), where R is the radix and L is
the length of the keys, and L must generally be log N or greater. The difference
is in what kind of structure is used for the intermediate results.

Timsort



In Chapter 3, you saw that the simple sorting algorithms could get O(N2)
performance using O(1) memory. In Chapter 6, you saw that mergesort could
get O(N×log N) performance using O(N) memory. Quicksort can get O(N×log
N) performance using O(log N) memory in most cases but can degrade to
O(N2) in some cases. Timsort is a balance between some of these extremes.

Tim Peters implemented Timsort for the Python sort() method in 2002 based
on the mergesort, insertion sort, and some clever ideas to control the memory
usage and guarantee O(N×log N) performance. Timsort uses half the memory
that mergesort needs and has the side benefit of running in O(N) time on sorted
input data, like the insertion sort. It is widely used outside of Python as well
because of these characteristics.

Timsort is based around finding runs of items in the original array where the
keys are either nondecreasing or strictly decreasing. The idea is to iterate over
the items in the array until it finds a key that is lower than the key of its
predecessor. That marks the end of a nondecreasing run and the beginning of a
new run. Then it can look for the next key that is equal to or higher than its
predecessor to find the end of the decreasing run. If it finds a decreasing run of
two or more items, it swaps pairs of items from the ends like the quicksort
partitioning algorithm to make it a nondecreasing run.

Figure 7-17 illustrates the runs that Timsort identifies. The height of each
rectangle represents the key for that item. The array starts with an increasing
sequence of four items. This group forms run 1, which is a nondecreasing run.
The next four items form run 2, where the keys strictly decrease. After that, the
next two items form run 3, which is nondecreasing. Adjacent keys with equal
values are treated as nondecreasing, which leads to the next three runs being
only two items each. Run 11 illustrates where adjacent equal-valued keys are
grouped together in the same run.



Figure 7-17 Runs in Timsort



The bottom panel of Figure 7-17 shows how Timsort reverses all the
decreasing runs into nondecreasing ones. Now every run has nondecreasing
key values.

It’s straightforward to create a generator that yields these runs as it walks along
the sequence, converting any decreasing runs into nondecreasing runs, all in
O(N) time. A loop in Timsort uses the generator to push the runs on a stack as
they are produced. After adding a new run, it checks the conditions of the top 3
or 4 runs on the stack. Under certain conditions, it starts to combine the runs
using mergesort. These collapse the small runs into bigger ones. Because the
runs have keys that are nondecreasing, they are already sorted. Because it runs
mergesort only on adjacent runs, the sorting can be done in place in the input
array, leaving a larger sorted run where the two smaller runs were.

By mergesorting the top two runs on the stack repeatedly, the entire stack of
runs could be sorted into a single run. Timsort uses several techniques to
reduce the amount of extra space needed for those mergesorts. First, it can
reduce subarray lengths by finding where in the first run the second run begins
and only mergesorting the remainder of the first run. Likewise, items with keys
higher than the last key of the first run can be excluded from the second run.
When you use binary search, finding where these keys land in the sorted runs is
quick, O(log N).

To keep memory down and maximize the efficiency, Timsort needs to balance
the sizes of the runs that it merges. The merge algorithm needs temporary
space for a copy of the smaller run, but not for the larger run on the stack.
Figure 7-18 illustrates a case where runs K and K+1 within the larger input
array have been selected for merging. First, Timsort identifies the left index,
which is the first key higher than the lowest key in run K+1 (20). Similarly, the
right index is the last key lower than the highest key in run K (59). Only the
subarray between left and right needs to be merged because the other items
in the full runs are already in their sorted positions.



Figure 7-18 Merging adjacent runs in Timsort

Knowing left, right, and the boundary index of the two runs, Timsort finds
the length of the sub-runs that need to be merged. In the case shown in the
figure, the higher sub-run is shorter, with only four cells. Those items must be
copied to a temporary array, as shown in the lower part of the figure. That
“empties” the cells in the input array to allow for a merge taking the highest
key from the highlighted sub-runs and moving that item to the rightmost empty
cell. If the lower sub-run were shorter, then the merge process would move the
lowest keyed item into the empty cells at the left (lower) side. The merge
process ends when all the items in the copied sub-run have been copied back to
the input array.



Efficiency of Timsort
The Timsort algorithm is quite a bit more complex and intricate (perhaps even
more beautiful) than quicksort and mergesort. We’ve left out a few more
details, such as using the insertion sort to combine and sort short, adjacent runs
and “galloping mode.” The benefit of all these techniques is that, overall, it has
been shown to operate in O(N×log N) time, even in the worst case. In the best
case of a forward- or reverse-sorted array, it runs in O(N) time. That extra
speed comes at the cost of needing temporary storage for at most N/2 cells plus
O(log N) storage for the stack of runs. In certain conditions, such as when the
input data is already sorted, no merging of runs is needed, so the memory usage
is O(1) in the best case. It ends up needing about half the memory of mergesort
to cap the worst-case runtime, delivering the benefit of O(N) time for sorted
data.

Summary
• The Shellsort applies the insertion sort to widely spaced elements of an

array, then less widely spaced elements, and so on.

• The expression n-sorting means sorting every nth array element.

• A sequence of numbers, called the interval sequence, or gap sequence, is
used to determine the sorting intervals in the Shellsort.

• A widely used interval sequence is generated by the recursive expression
hi = 3 × hi−1 + 1, where the initial value, h0, is 1.

• If an array holding 1,000 items were first to be 364-sorted, then 121-
sorted, then 40-sorted, then 13-sorted, then 4-sorted, and finally 1-sorted,
it would be sorted more efficiently than by simply 1-sorting it.

• The Shellsort is hard to analyze, but runs in approximately O(N×(log
N)2) time. This is much faster than the O(N2) algorithms like the
insertion sort, but slower than the O(N×log N) algorithms like the
quicksort and Timsort.

• To partition an array is to divide it into two subarrays, based on a key
value of each item.



• The pivot value is the value that determines into which group an item
will go during partitioning. Items with keys smaller than the pivot value
go in the lower group; larger keyed items in the higher group.

• Items with keys equal to the pivot may go in either partition.

• Items in the lower partition have lower indices than those of the higher
partition.

• In the partitioning algorithm, two array indices, each in its own while
loop, start at opposite ends of the array and step toward each other,
looking for items that need to be swapped.

• When an array index points to an item that needs to be swapped, its
while loop exits.

• When both while loops exit and the indices have met or passed each
other, the partition is complete.

• When both while loops exit and the indices have not yet met, the items
are swapped.

• Partitioning operates in linear O(N) time, making N plus 1 or 2
comparisons and at most N/2 swaps.

• The partitioning algorithm may require extra tests in its inner while
loops to prevent the indices running off the ends of the array.

• Quicksort partitions an array and then calls itself twice recursively to sort
the two resulting partitions (stored in subarrays).

• Subarrays of one or fewer elements are already sorted; this is the base
case for quicksort.

• The pivot value in quicksort is the key value of a specific item in the
partition, called the pivot.

• In a simple version of quicksort, the pivot can be the item at the right end
of the subarray.

• During the partitioning, the pivot is placed out of the way on the right
and is not moved while the rest of the subarray is partitioned.



• Later the pivot is swapped into the space between the two partitions. This
is its final sorted position.

• In the simple version of quicksort, performance is O(N2) for already
sorted (or inversely sorted) data.

• An enhanced version of quicksort selects the pivot as the median of the
first, middle, and last items in the subarray. This is called median-of-
three partitioning.

• Median-of-three partitioning effectively eliminates the problem of O(N2)
performance for already sorted data.

• In median-of-three partitioning, the first, middle, and last items are sorted
at the same time the median is determined.

• This three-element sort eliminates the need for the end-of-array tests in
the inner while loops of the partitioning algorithm.

• Quicksort operates in O(N×log N) time (except in degenerate cases such
as when the simpler version is applied to already-sorted data).

• Subarrays smaller than a certain size (the cutoff) can be sorted by a
method other than quicksort.

• The insertion sort is commonly used to sort subarrays smaller than the
cutoff.

• The radix sort is about as fast as quicksort but uses at least O(N) memory
to store copies of the data.

• Generalized radix sort can be used to sort items whose keys are
sequences of values, such as strings or tuples.

• The efficiency of a radix sort depends on how many values each
sequence element can take, which is the radix value, and the maximum
length of the key sequences.

• Timsort is a hybrid sorting technique that finds and merges runs in the
input data.



• The runs in Timsort are adjacent items in the input array with either
nondecreasing or decreasing key values.

• Timsort merges adjacent runs using an enhanced version of mergesort.

• Timsort runs in O(N×log N) time in the worst case and O(N) time for
forward- or reverse-sorted input data.

• Timsort uses O(N) memory in the worst case.

Questions
These questions are intended as a self-test for readers. Answers may be found
in Appendix C.

1. The Shellsort works by
a. partitioning the array into two parts.
b. swapping adjacent elements.
c. dealing with widely separated elements.
d. forming increasingly larger shells of elements that are already sorted.

2. If an array has 100 elements, then Knuth’s interval sequence algorithm
would start with an interval of ________.

3. To transform the insertion sort into the Shellsort, which of the following
do you not do?
a. Substitute h for 1.
b. Insert an algorithm for creating gaps of decreasing width.
c. Enclose the normal insertion sort in a loop.
d. Change the direction of the indices in the inner loop.

4. What could happen when using the Shellsort with an interval sequence
created by repeatedly dividing the array size in half?

5. Fill in the Big O values: The speed of the Shellsort is more than
_______ but less than ________.

6. Partitioning is



a. putting all elements larger than a certain value on one end of the
array.

b. dividing an array into (almost) equal sized halves.
c. partially sorting parts of an array.
d. sorting each half of an array separately.

7. During partitioning, each array element is compared to the _______.
8. In partitioning, if an array element is equal to the answer to question 7,

a. it is passed over.
b. it is passed over or not, depending on the other array element.
c. it is placed next to the array element at the right end.
d. it is swapped.

9. True or False: In quicksort, the pivot can be an arbitrary element of the
array.

10. Assuming larger keys on the right, the value returned by the
__partition() method is
a. the element between the left and right subarrays.
b. the key value of the element between the left and right subarrays.
c. the index of the leftmost element in the right subarray.
d. the key value of the leftmost element in the right subarray.

11. Quicksort involves partitioning the original input array and then
_________.

12. In the simple version of quicksort, after partitioning, the pivot may be
a. used to find the median of the array.
b. exchanged with an element of the right subarray.
c. used as the starting point of the next partition.
d. discarded.

13. Median-of-three partitioning is a way of choosing the _______.
14. In quicksort, for an array of N elements, the __partition() method

will examine each element approximately ______ times.



15. What unfortunate outcome could happen when using quicksort and
always choosing the rightmost element of subarrays as the input to the
__partition() method?

16. True or False: You may speed up quicksort if you stop partitioning when
the partition size is 5 or less and finish by using a different sort.

17. Radix sort
a. uses linked lists to hold elements whose keys have certain digits.
b. divides each element by 10 recursively to find its final sorted

position.
c. first partitions the array in 10 parts, then rearranges elements in each

partition by digits in their keys.
d. runs faster than quicksort because it doesn’t have to compare entire

keys.
18. The memory needed for decimal radix sort of an array of N elements is

O(_______).
19. The Timsort algorithm starts by

a. h-sorting the original array.
b. finding the median key of the input array.
c. merging the first and second halves of the array until keys start

descending.
d. finding runs of elements with nondecreasing and decreasing keys.

20. What other sorting methods are used as part of Timsort?
a. Shellsort
b. mergesort
c. quicksort
d. h-sort

Experiments
Carrying out these experiments will help to provide insights into the topics
covered in the chapter. No programming is involved.



7-A In the ShellSort() implementation of Listing 7-1, the number of shifts
is counted and returned. Would adding a count of the number of key
comparisons be helpful in measuring performance? If so, what would it
show? If not, why not?

7-B Moving the pivot in quicksort by slicing the array and reinserting it
between the subarrays as shown in Figure 7-8 would require a lot of
copying of cells. Is there another data structure to use in place of the
array that would allow slicing and splicing in constant—O(1)—time? If
so, which one and why?

7-C The partitioning algorithm can put items with keys equal to that of the
pivot in either partition. That means that using partitioning in a sort
algorithm like quicksort cannot be stable. Try experimenting with
partitioning arrays that have many duplicate keys. Using the
AdvancedSorting Visualization tool, make a new array of 10 cells and
fill it with random values. Delete the rightmost item five times to clear
space. Then choose a value somewhere between the minimum and
maximum, insert it five times, and shuffle the array. Before running the
partitioning using the repeated key value, predict which partition each
copy will end up in. Now run the partitioning to check your prediction.
Reshuffle the array and try again. Can you generate a situation that
demonstrates that the sort will not be stable? Can you generate an initial
situation where the repeated key values are stable after the sort?

7-D Judicious choice of the pivot value speeds up the quicksort. Using the
AdvancedSorting Visualization tool, make a new array of 10 cells and
fill it with random values. Try to sort it using only a sequence of
Partition operations where you choose the pivot. A very poor choice of
the pivot might require 10 partitions to sort 10 items. How few
partitions does it take you? Can you beat the quicksort? Of course, the
initial ordering affects the number of partitions that will be needed. If
the initial order happens to be increasing order, you don’t need any
partitioning. You can always get the same order of 10 items by
restarting the visualization tool.

7-E Consider using the quicksort algorithm to rank order teams in a
tournament. One team is chosen at random as the “pivot” team. It plays
each of the other N−1 teams. The teams that beat the pivot team go into
bracket A and those that lose go into bracket B. Teams that tie the pivot
team would go in alternating brackets (first A, then B, then A, then B).



The pivot team is then placed into the bracket with the fewest teams.
Then each bracket conducts its own rank ordering using the same
algorithm except that the choice of the pivot team for a bracket must be
a team with the fewest number of previous selections as pivot within
that bracket. The brackets would get smaller with each iteration until
they reach size 1, and the sequence of bracket placements would
determine the overall ranking of a team with A-A-A-A being highest,
B-B-B-B being lowest, A-B-B-B being in the middle, and so on.
How many games would take place for a whole tournament of 16
teams? How many games would each team play? How does that
compare with other tournament competition ladders that you’re familiar
with? If the exact numbers of games is variable or hard to determine,
find the best and worst case numbers.

Programming Projects
Writing programs to solve the Programming Projects helps to solidify your
understanding of the material and demonstrates how the chapter’s concepts are
applied. (As noted in the Introduction, qualified instructors may obtain
completed solutions to the Programming Projects on the publisher’s website.)

7.1 Extend the ShellSort.py module of Listing 7-1 to include the two other
interval sequences described in the text, namely dividing the interval by
2.2 and truncating, and Flamig’s formula. For both methods the first
interval, h, should be calculated as if the preceding value of h was the
number of array elements. Set up a program that creates an input array
and passes copies of that array to the three Shellsort methods (Knuth’s
sequence, divide by 2.2, and Flamig’s sequence). Compare the number
of shifts performed on (a) an array that is already sorted, (b) an array
that inversely sorted, and (c) a random ordering. Use a loop to perform
the test with arrays of length 95 to 100 elements. Is there a clear method
that performs fewer shifts?

7.2 Modify the quicksort() and helper methods in Listings 7-7 and 7-8 to
count the number of item copies and key comparisons they make during
a sort and return the counts to the caller (using Python’s ability to return
multiple values). For the copies, a swap counts as 3 copies. For the
comparisons, only count comparisons of key values (not array indices).
Use the modified method to show how many copies and comparisons



are made when sorting (a) a forward-sorted array of 50 items, (b) a
reverse-sorted array of 50 items, (c) a constant value for all 50 items,
and (d) an array of 50 random items. For each of those array styles,
show the counts when short is 3, 7, and 11 to see the effect of using
insertion sort for the shorter subarrays. Use the same random array for
all variations of the short parameter to make a fair comparison.

7.3 In Exercise 3.2 in Chapter 3, we suggested finding the median of a set of
data by sorting the data and picking the middle element. You might
think using quicksort and picking the middle element would be the
fastest way to find the median, but there’s an even faster way. The
quickselect algorithm uses partitioning to find the median without
completely sorting the data.
To see how this works, imagine that you partition the data choosing the
rightmost item as the pivot, and, by chance, the pivot happens to end up
at the middle element. You’re done! All the items to the right of the
pivot are larger (or equal), and all the items to the left are smaller (or
equal), so if the pivot falls in the exact center of the array, then it’s the
median. The pivot won’t end up in the center very often, but you can
end up getting the median by solving a smaller problem: repartitioning
the partition that contains the middle element.
Suppose your array has seven elements numbered from 0 to 6. The
middle is the element at index 3. If you partition this array and the pivot
ends up at 4, then you need to partition again from 0 to 4 (the partition
that contains index 3), not 5 to 6. If the next pivot ends up at 2, you
need to partition from 2 to 6, not 0 to 1. You continue partitioning the
appropriate parts recursively, always checking if the pivot falls on the
original middle element at index 3. Eventually, it will, and you’re done.
Because you need fewer partitions than in quicksort, this algorithm is
faster.
The quickselect algorithm generalizes the goal a little more by letting
the caller ask for any index in the subarray. So, for example, if you
wanted the 90th item among an array of 100 numbers, you would call
quickselect() with a goal index of 90 (or maybe 89, depending on
what exactly is needed). If you choose 90, quickselect() would return
whatever item would get sorted into the cell at that index by
quicksort(), while only partially sorting the array. To get the median,
the goal index would be 50 for the 100-element array. Extend your



solution to Programming Project 7.2 to implement the quickselect()
method and make another method, median(), to get the middle element
of an array. Your implementation should make recursive calls somewhat
like those in quicksort, but they will only partition each subarray, not
completely sort it. Use the rightmost element of the subarray as the
pivot, as was done in qsort(). The process stops when the goal index is
found, not when the array is sorted. As an extension of Programming
Project 7.2, your method should also return the number of copies and
comparisons made. Use your method to show the median found, the
number of copies, and the number of comparisons for the same kinds of
inputs as the previous project, namely, (a) a forward-sorted array of 50
items, (b) a reverse-sorted array of 50 items, (c) a constant value for all
50 items, and (d) an array of 50 random items.

7.4 Implement a decimal radix sort for arrays as described in the “Designing
a Radix Sort Program” section. It should handle variable amounts of
data and variable numbers of digits in the key. You could make the
radix a parameter as well (so it can be something other than 10), but it
will be hard to see what’s happening unless you develop a routine to
print values in different bases. Count the number of item copies made
by the program. Show the results for arrays of 50 items whose
maximum key is 99 and 999 to see the differences key length makes.
Your program will need to determine how many digits are in the keys
by examining the inputs and the radix (typically as the first pass through
all the items is completed).

7.5 Implement a simplified version of the Timsort algorithm described in the
“Timsort” section. Specifically, make a generator that looks for runs in
an input array that are either nondecreasing or decreasing. The
generator should reverse decreasing runs into increasing runs before it
yields the lo, hi index pair that represents the run. Write a mergerun()
method that takes two adjacent runs in the input array, uses a binary
search to find the positions within the runs that need to be merged,
copies the shorter section to a temporary array or other structure, and
then merges the items back into the input array. The Timsort() method
should use the generator to identify runs, one at a time, merging the
second run into the first until the entire array is sorted. Show the
program working on (a) a forward-sorted array of 50 items, (b) a
reverse-sorted array of 50 items, (c) a constant value for all 50 items,
and (d) an array of 50 random items.
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In this chapter we switch from algorithms, the focus of Chapter 7, “Advanced
Sorting,” to data structures. Binary trees are one of the fundamental data
storage structures used in programming. They provide advantages that the data



structures you’ve seen so far cannot. In this chapter you learn why you would
want to use trees, how they work, and how to go about creating them.

Why Use Binary Trees?
Why might you want to use a tree? Usually, because it combines the
advantages of two other structures: an ordered array and a linked list. You can
search a tree quickly, as you can an ordered array, and you can also insert and
delete items quickly, as you can with a linked list. Let’s explore these topics a
bit before delving into the details of trees.

Slow Insertion in an Ordered Array
Imagine an array in which all the elements are arranged in order—that is, an
ordered array—such as you saw in Chapter 2, “Arrays.” As you learned, you
can quickly search such an array for a particular value, using a binary search.
You check in the center of the array; if the object you’re looking for is greater
than what you find there, you narrow your search to the top half of the array; if
it’s less, you narrow your search to the bottom half. Applying this process
repeatedly finds the object in O(log N) time. You can also quickly traverse an
ordered array, visiting each object in sorted order.

On the other hand, if you want to insert a new object into an ordered array, you
first need to find where the object will go and then move all the objects with
greater keys up one space in the array to make room for it. These multiple
moves are time-consuming, requiring, on average, moving half the items (N/2
moves). Deletion involves the same multiple moves and is thus equally slow.

If you’re going to be doing a lot of insertions and deletions, an ordered array is
a bad choice.

Slow Searching in a Linked List
As you saw in Chapter 5, “Linked Lists,” you can quickly perform insertions
and deletions on a linked list. You can accomplish these operations simply by
changing a few references. These two operations require O(1) time (the fastest
Big O time).



Unfortunately, however, finding a specified element in a linked list is not as
fast. You must start at the beginning of the list and visit each element until you
find the one you’re looking for. Thus, you need to visit an average of N/2
objects, comparing each one’s key with the desired value. This process is slow,
requiring O(N) time. (Notice that times considered fast for a sort are slow for
the basic data structure operations of insertion, deletion, and search.)

You might think you could speed things up by using an ordered linked list, in
which the elements are arranged in order, but this doesn’t help. You still must
start at the beginning and visit the elements in order because there’s no way to
access a given element without following the chain of references to it. You
could abandon the search for an element after finding a gap in the ordered
sequence where it should have been, so it would save a little time in identifying
missing items. Using an ordered list only helps make traversing the nodes in
order quicker and doesn’t help in finding an arbitrary object.

Trees to the Rescue
It would be nice if there were a data structure with the quick insertion and
deletion of a linked list, along with the quick searching of an ordered array.
Trees provide both of these characteristics and are also one of the most
interesting data structures.

What Is a Tree?
A tree consists of nodes connected by edges. Figure 8-1 shows a tree. In such a
picture of a tree the nodes are represented as circles, and the edges as lines
connecting the circles.



Figure 8-1 A general (nonbinary) tree

Trees have been studied extensively as abstract mathematical entities, so
there’s a large amount of theoretical knowledge about them. A tree is actually
an instance of a more general category called a graph. The types and
arrangement of edges connecting the nodes distinguish trees and graphs, but
you don’t need to worry about the extra issues graphs present. We discuss
graphs in Chapter 14, “Graphs,” and Chapter 15, “Weighted Graphs.”

In computer programs, nodes often represent entities such as file folders, files,
departments, people, and so on—in other words, the typical records and items



stored in any kind of data structure. In an object-oriented programming
language, the nodes are objects that represent entities, sometimes in the real
world.

The lines (edges) between the nodes represent the way the nodes are related.
Roughly speaking, the lines represent convenience: it’s easy (and fast) for a
program to get from one node to another if a line connects them. In fact, the
only way to get from node to node is to follow a path along the lines. These are
essentially the same as the references you saw in linked lists; each node can
have some references to other nodes. Algorithms are restricted to going in one
direction along edges: from the node with the reference to some other node.
Doubly linked nodes are sometimes used to go both directions.

Typically, one node is designated as the root of the tree. Just like the head of a
linked list, all the other nodes are reached by following edges from the root.
The root node is typically drawn at the top of a diagram, like the one in Figure
8-1. The other nodes are shown below it, and the further down in the diagram,
the more edges need to be followed to get to another node. Thus, tree diagrams
are small on the top and large on the bottom. This configuration may seem
upside-down compared with real trees, at least compared to the parts of real
trees above ground; the diagrams are more like tree root systems in a visual
sense. This arrangement makes them more like charts used to show family
trees with ancestors at the top and descendants below. Generally, programs
start an operation at the small part of the tree, the root, and follow the edges out
to the broader fringe. It’s (arguably) more natural to think about going from top
to bottom, as in reading text, so having the other nodes below the root helps
indicate the relative order of the nodes.

There are different kinds of trees, distinguished by the number and type of
edges. The tree shown in Figure 8-1 has more than two children per node. (We
explain what “children” means in a moment.) In this chapter we discuss a
specialized form of tree called a binary tree. Each node in a binary tree has a
maximum of two children. More general trees, in which nodes can have more
than two children, are called multiway trees. We show examples of multiway
trees in Chapter 9, “2-3-4 Trees and External Storage.”

Tree Terminology
Many terms are used to describe particular aspects of trees. You need to know
them so that this discussion is comprehensible. Fortunately, most of these terms



are related to real-world trees or to family relationships, so they’re not hard to
remember. Figure 8-2 shows many of these terms applied to a binary tree.

Figure 8-2 Tree terms

Root
The node at the top of the tree is called the root. There is only one root in a
tree, labeled A in the figure.

Path
Think of someone walking from node to node along the edges that connect
them. The resulting sequence of nodes is called a path. For a collection of
nodes and edges to be defined as a tree, there must be one (and only one!) path
from the root to any other node. Figure 8-3 shows a nontree. You can see that it
violates this rule because there are multiple paths from A to nodes E and F.
This is an example of a graph that is not a tree.



Figure 8-3 A nontree

Parent
Any node (except the root) has exactly one edge running upward to another
node. The node above it is called the parent of the node. The root node must
not have a parent.

Child
Any node may have one or more lines running downward to other nodes. These
nodes below a given node are called its children, or sometimes, branches.

Sibling
Any node other than the root node may have sibling nodes. These nodes have a
common parent node.

Leaf
A node that has no children is called a leaf node or simply a leaf. There can be
only one root in a tree, but there can be many leaves. In contrast, a node that
has children is an internal node.

Subtree



Any node (other than the root) may be considered to be the root of a subtree,
which consists of its children, and its children’s children, and so on. If you
think in terms of families, a node’s subtree contains all its descendants.

Visiting
A node is visited when program control arrives at the node, usually for the
purpose of carrying out some operation on the node, such as checking the value
of one of its data fields or displaying it. Merely passing over a node on the path
from one node to another is not considered to be visiting the node.

Traversing
To traverse a tree means to visit all the nodes in some specified order. For
example, you might visit all the nodes in order of ascending key value. There
are other ways to traverse a tree, as we’ll describe later.

Levels
The level of a particular node refers to how many generations the node is from
the root. If you assume the root is Level 0, then its children are at Level 1, its
grandchildren are at Level 2, and so on. This is also sometimes called the
depth of a node.

Keys
You’ve seen that one data field in an object is usually designated as a key
value, or simply a key. This value is used to search for the item or perform
other operations on it. In tree diagrams, when a circle represents a node holding
a data item, the key value of the item is typically shown in the circle.

Binary Trees
If every node in a tree has at most two children, the tree is called a binary tree.
In this chapter we focus on binary trees because they are the simplest and the
most common.



The two children of each node in a binary tree are called the left child and the
right child, corresponding to their positions when you draw a picture of a tree,
as shown in Figure 8-2. A node in a binary tree doesn’t necessarily have the
maximum of two children; it may have only a left child or only a right child, or
it can have no children at all (in which case it’s a leaf).

Binary Search Trees
The kind of binary tree we discuss at the beginning of this chapter is
technically called a binary search tree. The keys of the nodes have a
particular ordering in search trees. Figure 8-4 shows a binary search tree.



Figure 8-4 A binary search tree

Note
The defining characteristic of a binary search tree is this: a node’s left child must have a
key less than its parent’s key, and a node’s right child must have a key greater than or equal
to that of its parent.

An Analogy



One commonly encountered tree is the hierarchical file system on desktop
computers. This system was modeled on the prevailing document storage
technology used by businesses in the twentieth century: filing cabinets
containing folders that in turn contained subfolders, down to individual
documents. Computer operating systems mimic that by having files stored in a
hierarchy. At the top of the hierarchy is the root directory. That directory
contains “folders,” which are subdirectories, and files, which are like the paper
documents. Each subdirectory can have subdirectories of its own and more
files. These all have analogies in the tree: the root directory is the root node,
subdirectories are nodes with children, and files are leaf nodes.

To specify a particular file in a file system, you use the full path from the root
directory down to the file. This is the same as the path to a node of a tree.
Uniform resource locators (URLs) use a similar construction to show a path to
a resource on the Internet. Both file system pathnames and URLs allow for
many levels of subdirectories. The last name in a file system path is either a
subdirectory or a file. Files represent leaves; they have no children of their
own.

Clearly, a hierarchical file system is not a binary tree because a directory may
have many children. A hierarchical file system differs in another significant
way from the trees that we discuss here. In the file system, subdirectories
contain no data other than attributes like their name; they contain only
references to other subdirectories or to files. Only files contain data. In a tree,
every node contains data. The exact type of data depends on what’s being
represented: records about personnel, records about components used to
construct a vehicle, and so forth. In addition to the data, all nodes except leaves
contain references to other nodes.

Hierarchical file systems differ from binary search trees in other aspects, too.
The purpose of the file system is to organize files; the purpose of a binary
search tree is more general and abstract. It’s a data structure that provides the
common operations of insertion, deletion, search, and traversal on a collection
of items, organizing them by their keys to speed up the operations. The analogy
between the two is meant to show another familiar system that shares some
important characteristics, but not all.

How Do Binary Search Trees Work?



Let’s see how to carry out the common binary tree operations of finding a node
with a given key, inserting a new node, traversing the tree, and deleting a node.
For each of these operations, we first show how to use the Binary Search Tree
Visualization tool to carry it out; then we look at the corresponding Python
code.

The Binary Search Tree Visualization Tool
For this example, start the Binary Search Tree Visualization tool (the program
is called BinaryTree.py). You should see a screen something like that shown
in Figure 8-5.

Figure 8-5 The Binary Search Tree Visualization tool

Using the Visualization Tool
The key values shown in the nodes range from 0 to 99. Of course, in a real tree,
there would probably be a larger range of key values. For example, if telephone
numbers were used for key values, they could range up to 999,999,999,999,999
(15 digits including country codes in the International Telecommunication
Union standard). We focus on a simpler set of possible keys.

Another difference between the visualization tool and a real tree is that the
visualization tool limits its tree to a depth of five; that is, there can be no more
than five levels from the root to the bottom (level 0 through level 4). This
restriction ensures that all the nodes in the tree will be visible on the screen. In
a real tree the number of levels is unlimited (until the computer runs out of
memory).



Using the visualization tool, you can create a new tree whenever you want. To
do this, enter a number of items and click the Erase & Random Fill button. You
can ask to fill with 0 to 99 items. If you choose 0, you will create an empty
tree. Using larger numbers will fill in more nodes, but some of the requested
nodes may not appear. That’s due to the limit on the depth of the tree and the
random order the items are inserted. You can experiment by creating trees with
different numbers of nodes to see the variety of trees that come out of the
random sequencing.

The nodes are created with different colors. The color represents the data stored
with the key. We show a little later how that data is updated in some operations.

Constructing Trees
As shown in the visualization tool, the tree’s shape depends both on the items it
contains as well as the order the items are inserted into the tree. That might
seem strange at first. If items are inserted into a sorted array, they always end
up in the same order, regardless of their sequencing. Why are binary search
trees different?

One of the key features of the binary search tree is that it does not have to fully
order the items as they are inserted. When it adds a new item to an existing
tree, it decides where to place the new leaf node by comparing its key with that
of the nodes already stored in the tree. It follows a path from the root down to a
missing child where the new node “belongs.” By choosing the left child when
the new node’s key is less than the key of an internal node and the right child
for other values, there will always be a unique path for the new node. That
unique path means you can easily find that node by its key later, but it also
means that the previously inserted items affect the path to any new item.

For example, if you start with an empty binary search tree and insert nodes in
increasing key order, the unique path for each one will always be the rightmost
path. Each insertion adds one more node at the bottom right. If you reverse the
order of the nodes and insert them into an empty tree, each insertion will add
the node at the bottom left because the key is lower than any other in the tree
so far. Figure 8-6 shows what happens if you insert nodes with keys 44, 65, 87,
and 87 in forward or reverse order.



Figure 8.6 Trees made by inserting nodes in sorted order

Unbalanced Trees
The trees shown in Figure 8-6, don’t look like trees. In fact, they look more
like linked lists. One of the goals for a binary search tree is to speed up search
for a particular node, so having to step through a linked list to find the node
would not be an improvement. To get the benefit of the tree, the nodes should
be roughly balanced on both sides of the root. Ideally, each step along the path
to find a node should cut the number of nodes to search in half, just like in
binary searches of arrays and the guess-a-number game described in Chapter 2.

We can call some trees unbalanced; that is, they have most of their nodes on
one side of the root or the other, as shown in Figure 8-7. Any subtree may also
be unbalanced like the outlined one on the lower left of the figure. Of course,
only a fully balanced tree will have equal numbers of nodes on the left and
right subtrees (and being fully balanced, every node’s subtree will be fully
balanced too). Inserting nodes one at a time on randomly chosen items means
most trees will be unbalanced by one or more nodes as they are constructed, so
you typically cannot expect to find fully balanced trees. In the following
chapters, we look more carefully at ways to balance them as nodes are inserted
and deleted.



Figure 8-7 An unbalanced tree (with an unbalanced subtree)

Trees become unbalanced because of the order in which the data items are
inserted. If these key values are inserted randomly, the tree will be more or less
balanced. When an ascending sequence (like 11, 18, 33, 42, 65) or a
descending sequence is encountered, all the values will be right children (if
ascending) or left children (if descending), and the tree will be unbalanced. The
key values in the visualization tool are generated randomly, but of course some
short ascending or descending sequences will be created anyway, which will
lead to local imbalances.

If a tree is created by data items whose key values arrive in random order, the
problem of unbalanced trees may not be too much of a problem for larger trees
because the chances of a long run of numbers in a sequence is small.
Sometimes, however, key values will arrive in strict sequence; for example,
when someone doing data entry arranges a stack of forms into alphabetical
order by name before entering the data. When this happens, tree efficiency can
be seriously degraded. We discuss unbalanced trees and what to do about them
in Chapters 9 and 10.

Representing the Tree in Python Code
Let’s start implementing a binary search tree in Python. As with other data
structures, there are several approaches to representing a tree in the computer’s
memory. The most common is to store the nodes at (unrelated) locations in
memory and connect them using references in each node that point to its
children.



You can also represent a tree in memory as an array, with nodes in specific
positions stored in corresponding positions in the array. We return to this
possibility at the end of this chapter. For our sample Python code we’ll use the
approach of connecting the nodes using references, similar to the way linked
lists were implemented in Chapter 5.

The BinarySearchTree Class
We need a class for the overall tree object: the object that holds, or at least
leads to, all the nodes. We’ll call this class BinarySearchTree. It has only one
field, __root, that holds the reference to the root node, as shown in Listing 8-1.
This is very similar to the LinkedList class that was used in Chapter 5 to
represent linked lists. The BinarySearchTree class doesn’t need fields for the
other nodes because they are all accessed from the root node by following
other references.

Listing 8-1 The Constructor for the BinarySearchTree Class

class BinarySearchTree(object): # A binary search tree class 
 
 def __init__(self):          # The tree organizes nodes by their 
      self.__root = None      # keys. Initially, it is empty.

The constructor initializes the reference to the root node as None to start with
an empty tree. When the first node is inserted, __root will point to it as shown
in the visualization tool example of Figure 8-5. There are, of course, many
methods that operate on BinarySearchTree objects, but first, you need to
define the nodes inside them.

The __Node Class
The nodes of the tree contain the data representing the objects being stored
(contact information in an address book, for example), a key to identify those
objects (and to order them), and the references to each of the node’s two
children. Because callers that create BinarySearchTree objects should not
directly alter the nodes, we make a private __Node class inside that class.
Listing 8-2 shows how an internal class can be defined inside the
BinarySearchTree class.



Listing 8-2 The Constructors for the __Node and BinarySearchTree Classes

class BinarySearchTree(object):  # A binary search tree class 
… 
 
   class __Node(object):         # A node in a binary search tree 
      def __init__(              # Constructor takes a key that is 
            self,                # used to determine the position 
            key,                 # inside the search tree, 
            data,                # the data associated with the key 
            left=None,           # and a left and right child node 
            right=None):         # if known 
         self.key  = key         # Copy parameters to instance 
         self.data = data        # attributes of the object 
         self.leftChild = left 
         self.rightChild = right 
 
      def __str__(self):         # Represent a node as a string 
         return “{” + str(self.key) + “, “ + str(self.data) + “}" 
 
   def __init__(self):        # The tree organizes nodes by their 
      self.__root = None      # keys. Initially, it is empty. 
 
   def isEmpty(self):         # Check for empty tree 
      return self.__root is None 
 
   def root(self):            # Get the data and key of the root node 
      if self.isEmpty():      # If the tree is empty, raise exception 
         raise Exception("No root node in empty tree”) 
      return (                # Otherwise return root data and its key 
         self.__root.data, self.__root.key)

The __Node objects are created and manipulated by the BinarySearchTree’s
methods. The fields inside __Node can be declared as public attributes because
the class is private within the BinarySearchTree. This declaration allows for
direct reading and writing without making accessor methods like getKey() or
setData(). The __Node constructor simply populates the fields from the
arguments provided. If the child nodes are not provided, the fields for their
references are filled with None.

We add a __str__() method for __Node objects to aid in displaying the
contents while debugging. Notably, it does not show the child nodes. We



discuss how to display full trees a little later. That’s all the methods needed for
__Node objects; all the rest of the methods you define are for
BinarySearchTree objects.

Listing 8-2 shows an isEmpty() method for BinarySearchTree objects that
checks whether the tree has any nodes in it. The root() method extracts the
root node’s data and key. It’s like peek() for a queue and throws an exception
if the tree is empty.

Some programmers also include a reference to a node’s parent in the __Node
class. Doing so simplifies some operations but complicates others, so we don’t
include it here. Adding a parent reference achieves something similar to the
DoublyLinkedList class described in Chapter 5, “Linked Lists”; it’s useful in
certain contexts but adds complexity.

We’ve made another design choice by storing the key for each node in its own
field. For the data structures based on arrays, we chose to use a key function
that extracts the key from each array item. That approach was more convenient
for arrays because storing the keys separately from the data would require the
equivalent of a key array along with the data array. In the case of node class
with named fields, adding a key field makes the code perhaps more readable
and somewhat more efficient by avoiding some function calls. It also makes
the key more independent of the data, which adds flexibility and can be used to
enforce constraints like immutable keys even when data changes. The
BinarySearchTree class has several methods. They are used for finding,
inserting, deleting, and traversing nodes; and for displaying the tree. We
investigate them each separately.

Finding a Node
Finding a node with a specific key is the simplest of the major tree operations.
It’s also the most important because it is essential to the binary search tree’s
purpose.

The visualization tool shows only the key for each node and a color for its data.
Keep in mind that the purpose of the data structure is to store a collection of
records, not just the key or a simple color. The keys can be more than simple
integers; any data type that can be ordered could be used. The visualization and
examples shown here use integers for brevity. After a node is discovered by its
key, it’s the data that’s returned to the caller, not the node itself.



Using the Visualization Tool to Find a Node
Look at the visualization tool and pick a node, preferably one near the bottom
of the tree (as far from the root as possible). The number shown in this node is
its key value. We’re going to demonstrate how the visualization tool finds the
node, given the key value.

For purposes of this discussion, we choose to find the node holding the item
with key value 50, as shown in Figure 8-8. Of course, when you run the
visualization tool, you may get a different tree and may need to pick a different
key value.

Figure 8-8 Finding the node with key 50

Enter the key value in the text entry box, hold down the Shift key, and select
the Search button, and then the Step button, . By repeatedly pressing the Step
button, you can see all the individual steps taken to find key 50. On the second
press, the current pointer shows up at the root of the tree, as seen in Figure 8-
8. On the next click, a parent pointer shows up that will follow the current
pointer. Ignore that pointer and the code display for a moment; we describe
them in detail shortly.

As the visualization tool looks for the specified node, it makes a decision at the
current node. It compares the desired key with the one found at the current



node. If it’s the same, it’s found the desired node and can quit. If not, it must
decide where to look next.

In Figure 8-8 the current arrow starts at the root. The program compares the
goal key value 50 with the value at the root, which is 77. The goal key is less,
so the program knows the desired node must be on the left side of the tree—
either the root’s left child or one of this child’s descendants. The left child of
the root has the value 59, so the comparison of 50 and 59 will show that the
desired node is in the left subtree of 59. The current arrow goes to 46, the root
of this subtree. This time, 50 is greater than the 46 node, so it goes to the right,
to node 56, as shown in Figure 8-9. A few steps later, comparing 50 with 56
leads the program to the left child. The comparison at that leaf node shows that
50 equals the node’s key value, so it has found the node we sought.

Figure 8-9 The second to last step in finding key 50

The visualization tool changes a little after it finds the desired node. The
current arrow changes into the node arrow (and parent changes into p).
That’s because of the way variables are named in the code, which we show in
the next section. The tool doesn’t do anything with the node after finding it,
except to encircle it and display a message saying it has been found. A serious
program would perform some operation on the found node, such as displaying
its contents or changing one of its fields.

Python Code for Finding a Node
Listing 8-3 shows the code for the __find() and search() methods. The
__find() method is private because it can return a node object. Callers of the



BinarySearchTree class use the search() method to get the data stored in a
node.

Listing 8-3 The Methods to Find a Binary Search Tree Node Based on Its Key

class BinarySearchTree(object):  # A binary search tree class 
… 
   def __find(self, goal):    # Find an internal node whose key 
      current = self.__root   # matches goal and its parent. Start at 
      parent = self           # root and track parent of current node 
      while (current and      # While there is a tree left to explore 
             goal != current.key): # and current key isn’t the goal 
         parent = current     # Prepare to move one level down 
         current = (          # Advance current to left subtree when 
            current.leftChild if goal < current.key else # goal is 
            current.rightChild) # less than current key, else right 
 
      # If the loop ended on a node, it must have the goal key 
      return (current, parent) # Return the node or None and parent 
 
   def search(self, goal):    # Public method to get data associated 
      node, p = self.__find(goal) # with a goal key. First, find node 
      return node.data if node else None # w/ goal & return any data

The only argument to __find() is goal, the key value to be found. This routine
creates the variable current to hold the node currently being examined. The
routine starts at the root – the only node it can access directly. That is, it sets
current to the root. It also sets a parent variable to self, which is the tree
object. In the visualization tool, parent starts off pointing at the tree object.
Because parent links are not stored in the nodes, the __find() method tracks
the parent node of current so that it can return it to the caller along with the
goal node. This capability will be very useful in other methods. The parent
variable is always either the BinarySearchTree being searched or one of its
__Node objects.

In the while loop, __find() first confirms that current is not None and
references some existing node. If it doesn’t, the search has gone beyond a leaf
node (or started with an empty tree), and the goal node isn’t in the tree. The
second part of the while test compares the value to be found, goal, with the
value of the current node’s key field. If the key matches, then the loop is
done. If it doesn’t, then current needs to advance to the appropriate subtree.



First, it updates parent to be the current node and then updates current. If
goal is less than current’s key, current advances to its left child. If goal is
greater than current’s key, current advances to its right child.

Can’t Find the Node
If current becomes equal to None, you’ve reached the end of the line without
finding the node you were looking for, so it can’t be in the tree. That could
happen if the root node was None or if foll owing the child links led to a node
without a child (on the side where the goal key would go). Both the current
node (None) and its parent are returned to the caller to indicate the result. In the
visualization tool, try entering a key that doesn’t appear in the tree and select
Search. You then see the current pointer descend through the existing nodes
and land on a spot where the key should be found but no node exists. Pointing
to “empty space” indicates that the variable’s value is None.

Found the Node
If the condition of the while loop is not satisfied while current references
some node in the tree, then the loop exits, and the current key must be the
goal. That is, it has found the node being sought and current references it. It
returns the node reference along with the parent reference so that the routine
that called __find() can access any of the node’s (or its parent’s) data. Note
that it returns the value of current for both success and failure of finding the
key; it is None when the goal isn’t found.

The search() method calls the __find() method to set its node and parent (p)
variables. That’s what you see in the visualization tool after the __find()
method returns. If a non-None reference was found, search() returns the data
for that node. In this case, the method assumes that data items stored in the
nodes can never be None; otherwise, the caller would not be able to distinguish
them.

Tree Efficiency
As you can see, the time required to find a node depends on its depth in the
tree, the number of levels below the root. If the tree is balanced, this is O(log
N) time, or more specifically O(log2 N) time, the logarithm to base 2, where N
is the number of nodes. It’s just like the binary search done in arrays where half



the nodes were eliminated after each comparison. A fully balanced tree is the
best case. In the worst case, the tree is completely unbalanced, like the
examples shown in Figure 8-6, and the time required is O(N). We discuss the
efficiency of __find() and other operations toward the end of this chapter.

Inserting a Node
To insert a node, you must first find the place to insert it. This is the same
process as trying to find a node that turns out not to exist, as described in the
earlier “Can’t Find the Node” section. You follow the path from the root
toward the appropriate node. This is either a node with the same key as the
node to be inserted or None, if this is a new key. If it’s the same key, you could
try to insert it in the right subtree, but doing so adds some complexity. Another
option is to replace the data for that node with the new data. For now, we allow
only unique keys to be inserted; we discuss duplicate keys later.

If the key to insert is not in the tree, then __find() returns None for the
reference to the node along with a parent reference. The new node is connected
as the parent’s left or right child, depending on whether the new node’s key is
less or greater than that of the parent. If the parent reference returned by
__find() is self, the BinarySearchTree itself, then the node becomes the root
node.

Figure 8-10 illustrates the process of inserting a node, with key 31, into a tree.
The __find(31) method starts walking the path from the root node. Because
31 is less than the root node key, 44, it follows the left child link. That child’s
key is 27, so it follows that child’s right child link. There it encounters key 33,
so it again follows the left child link. That is None, so __find(31) stops with
the parent pointing at the leaf node with key 33. The new leaf node with key 31
is created, and the parent’s left child link is set to reference it.



Figure 8-10 Inserting a node in binary search tree

Using the Visualization Tool to Insert a Node
To insert a new node with the visualization tool, enter a key value that’s not in
the tree and select the Insert button. The first step for the program is to find
where it should be inserted. For example, inserting 81 into the tree from an
earlier example calls the __find() method of Listing 8-3, which causes the
search to follow the path shown in Figure 8-11.



Figure 8-11 Steps for inserting a node with key 81 using the visualization
tool

The current pointer starts at the root node with key 77. Finding 81 to be
larger, it goes to the right child, node 94. Now the key to insert is less than the
current key, so it descends to node 85. The parent pointer follows the
current pointer at each of these steps. When current reaches node 85, it goes
to its left child and finds it missing. The call to __find() returns None and the
parent pointer.

After locating the parent node with the empty child where the new key should
go, the visualization tool creates a new node with the key 81, some data
represented by a color, and sets the left child pointer of node 85, the parent, to
point at it. The node pointer returned by __find() is moved away because it
still is None.

Python Code for Inserting a Node
The insert() method takes parameters for the key and data to insert, as shown
in Listing 8-4. It calls the __find() method with the new node’s key to
determine whether that key already exists and where its parent node should be.
This implementation allows only unique keys in the tree, so if it finds a node
with the same key, insert() updates the data for that key and returns False to
indicate that no new node was created.

Listing 8-4 The insert() Method of BinarySearchTree



class BinarySearchTree(object):  # A binary search tree class 
… 
   def insert(self,           # Insert a new node in a binary 
              key,            # search tree finding where its key 
              data):          # places it and storing its data 
      node, parent = self.__find( # Try finding the key in the tree 
         key)                 # and getting its parent node 
      if node:                # If we find a node with this key, 
         node.data = data     # then update the node’s data 
         return False         # and return flag for no insertion 
 
      if parent is self:      # For empty trees, insert new node at 
         self.__root = self.__Node(key, data) # root of tree 
      elif key < parent.key:  # If new key is less than parent’s key, 
         parent.leftChild = self.__Node( # insert new node as left 
            key, data, right=node)  # child of parent 
      else:                   # Otherwise insert new node as right 
         parent.rightChild = self.__Node( # child of parent 
            key, data, right=node) 
      return True             # Return flag for valid insertion

If a matching node was not found, then insertion depends on what kind of
parent reference was returned from __find(). If it’s self, the
BinarySearchTree must be empty, so the new node becomes the root node of
the tree. Otherwise, the parent is a node, so insert() decides which child will
get the new node by comparing the new node’s key with that of the parent. If
the new key is lower, then the new node becomes the left child; otherwise, it
becomes the right child. Finally, insert() returns True to indicate the insertion
succeeded.

When insert() creates the new node, it sets the new node’s right child to the
node returned from __find(). You might wonder why that’s there, especially
because node can only be None at that point (if it were not None, insert()
would have returned False before reaching that point). The reason goes back
to what to do with duplicate keys. If you allow nodes with duplicate keys, then
you must put them somewhere. The binary search tree definition says that a
node’s key is less than or equal to that of its right child. So, if you allow
duplicate keys, the duplicate node cannot go in the left child. By specifying
something other than None as the right child of the new node, other nodes with
the same key can be retained. We leave as an exercise how to insert (and
delete) nodes with duplicate keys.



Traversing the Tree
Traversing a tree means visiting each node in a specified order. Traversing a
tree is useful in some circumstances such as going through all the records to
look for ones that need some action (for example, parts of a vehicle that are
sourced from a particular country). This process may not be as commonly used
as finding, inserting, and deleting nodes but it is important nevertheless.

You can traverse a tree in three simple ways. They’re called pre-order, in-
order, and post-order. The most commonly used order for binary search trees
is in-order, so let’s look at that first and then return briefly to the other two.

In-order Traversal
An in-order traversal of a binary search tree causes all the nodes to be visited in
ascending order of their key values. If you want to create a list of the data in a
binary tree sorted by their keys, this is one way to do it.

The simplest way to carry out a traversal is the use of recursion (discussed in
Chapter 6). A recursive method to traverse the entire tree is called with a node
as an argument. Initially, this node is the root. The method needs to do only
three things:

1. Call itself to traverse the node’s left subtree.

2. Visit the node.

3. Call itself to traverse the node’s right subtree.

Remember that visiting a node means doing something to it: displaying it,
updating a field, adding it to a queue, writing it to a file, or whatever.

The three traversal orders work with any binary tree, not just with binary
search trees. The traversal mechanism doesn’t pay any attention to the key
values of the nodes; it only concerns itself with the node’s children and data. In
other words, in-order traversal means “in order of increasing key values” only
when the binary search tree criteria are used to place the nodes in the tree. The
in of in-order refers to a node being visited in between the left and right
subtrees. The pre of pre-order means visiting the node before visiting its
children, and post-order visits the node after visiting the children. This
distinction is like the differences between infix and postfix notation for
arithmetic expressions described in Chapter 4, “Stacks and Queues.”



To see how this recursive traversal works, Figure 8-12 shows the calls that
happen during an in-order traversal of a small binary tree. The tree variable
references a four-node binary search tree. The figure shows the invocation of
an inOrderTraverse() method on the tree that will call the print function on
each of its nodes.

Figure 8-12 In-order traversal of a small tree

The blue rounded rectangles show the recursive calls on each subtree. The
name of the recursive method has been abbreviated as i_o_trav() to fit all the
calls in the figure. The first (outermost) call is on the root node (key 45). Each
recursive call performs the three steps outlined previously. First, it makes a



recursive call on the left subtree, rooted at key 27. That shows up as another
blue rounded rectangle on the left of the figure.

Processing the subtree rooted at key 27 starts by making a recursive call on its
left subtree, rooted at key 16. Another rectangle shows that call in the lower
left. As before, its first task is to make a recursive call on its left subtree. That
subtree is empty because it is a leaf node and is shown in the figure as a call to
i_o_trav() with no arguments. Because the subtree is empty, nothing happens
and the recursive call returns.

Back in the call to i_o_trav(16), it now reaches step 2 and “visits” the node
by executing the function, print, on the node itself. This is shown in the figure
as print(16) in black. In general, visiting a node would do more than just print
the node’s key; it would take some action on the data stored at the node. The
figure doesn’t show that action, but it would occur when the print(16) is
executed.

After visiting the node with key 16, it’s time for step 3: call itself on the right
subtree. The node with key 16 has no right child, which shows up as the
smallest-sized rectangle because it is a call on an empty subtree. That
completes the execution for the subtree rooted at key 16. Control passes back
to the caller, the call on the subtree rooted at key 27.

The rest of the processing progresses similarly. The visit to the node with key
27 executes print(27) and then makes a call on its empty right subtree. That
finishes the call on node 27 and control passes back to the call on the root of
the tree, node 45. After executing print(45), it makes a call to traverse its
right (nonempty) subtree. This is the fourth and final node in the tree, node 62.
It makes a call on its empty left subtree, executes print(62), and finishes with
a call on its empty right subtree. Control passes back up through the call on the
root node, 45, and that ends the full tree traversal.

Pre-order and Post-order Traversals
The other two traversal orders are similar: only the timing of visiting the node
changes. For pre-order traversal, the node is visited first, and for post-order, it’s
visited last. The two subtrees are always visited in the same order: left and then
right. Figure 8-13 shows the execution of a pre-order traversal on the same
four-node tree as in Figure 8-12. The execution of the print() function
happens before visiting the two subtrees. That means that the pre-order



traversal would print 45, 27, 16, 62 compared to the in-order traversal’s 16, 27,
45, 62. As the figures show, the differences between the orders are small, but
the overall effect is large.

Figure 8-13 Pre-order traversal of a small tree

Python Code for Traversing
Let’s look at simple way of implementing the in-order traversal now. As you
saw in stacks, queues, linked lists, and other data structures, it’s straightforward
to define the traversal using a function passed as an argument that gets applied



to each item stored in the structure. The interesting difference with trees is that
recursion makes it very compact.

Because these trees are represented using two classes, BinarySearchTree and
__Node, you need methods that can operate on both types of object. In Listing
8-5, the inOrderTraverse() method handles the traversal on
BinarySearchTree objects. It serves as the public interface to the traversal and
calls a private method __inOrderTraverse() to do the actual work on
subtrees. It passes the root node to the private method and returns.

Listing 8-5 Recursive Implementation of inOrderTraverse()

class BinarySearchTree(object):  # A binary search tree class 
… 
   def inOrderTraverse(       # Visit all nodes of the tree in-order 
         self, function=print): # and apply a function to each node 
      self.__inOrderTraverse( # Call recursive version starting at 
         self.__root, function=function) # root node 
 
   def __inOrderTraverse(     # Visit a subtree in-order, recursively 
         self, node, function): # The subtree’s root is node 
      if node:                # Check that this is real subtree 
         self.__inOrderTraverse( # Traverse the left subtree 
            node.leftChild, function) 
         function(node)       # Visit this node 
         self.__inOrderTraverse( # Traverse the right subtree 
            node.rightChild, function)

The private method expects a __Node object (or None) for its node parameter
and performs the three steps on the subtree rooted at the node. First, it checks
node and returns immediately if it is None because that signifies an empty
subtree. For legitimate nodes, it first makes a recursive call to itself to process
the left child of the node. Second, it visits the node by invoking the function
on it. Third, it makes a recursive call to process the node’s right child. That’s
all there is to it.

Using a Generator for Traversal
The inOrderTraverse() method is straightforward, but it has at least three
shortcomings. First, to implement the other orderings, you would either need to
write more methods or add a parameter that specifies the ordering to perform.



Second, the function passed as an argument to “visit” each node needs to take
a __Node object as argument. That’s a private class inside the
BinarySearchTree that protects the nodes from being manipulated by the
caller. One alternative that avoids passing a reference to a __Node object would
be to pass in only the data field (and maybe the key field) of each node as
arguments to the visit function. That approach would minimize what the caller
could do to the node and prevent it from altering the other node references.

Third, using a function to describe the action to perform on each node has its
limitations. Typically functions perform the same operation each time they are
invoked and don’t know about the history of previous calls. During the
traversal of a data structure like a tree, being able to make use of the results of
previous node visits dramatically expands the possible operations. Here are
some examples that you might want to do:

• Add up all the values in a particular field at every node.

• Get a list of all the unique strings in a field from every node.

• Add the node’s key to some list if none of the previously visited nodes
have a bigger value in some field.

In all these traversals, it’s very convenient to be able to accumulate results
somewhere during the traversal. That’s possible to do with functions, but
generators make it easier. We introduced generators in Chapter 5, and because
trees share many similarities with those structures, they are very useful for
traversing trees.

We address these shortcomings in a recursive generator version of the traverse
method, traverse_rec(), shown in Listing 8-6. This version adds some
complexity to the code but makes using traversal much easier. First, we add a
parameter, traverseType, to the traverse_rec() method so that we don’t
need three separate traverse routines. The first if statement verifies that this
parameter is one of the three supported orderings: pre, in, and post. If not, it
raises an exception. Otherwise, it launches the recursive private method,
__traverse(), starting with the root node, just like inOrderTraverse() does.

Listing 8-6 The Recursive Generator for Traversal

class BinarySearchTree(object):  # A binary search tree class 



… 
   def traverse_rec(self,         # Traverse the tree recursively in 
                traverseType="in”): # pre, in, or post order 
      if traverseType in [    # Verify type is an accepted value and 
            ’pre’, ’in’, ’post’]: # use generator to walk the tree 
         return self.__traverse(  # yielding (key, data) pairs 
            self.__root, traverseType) # starting at root 
 
      raise ValueError("Unknown traversal type: “ + str(traverseType)) 
 
   def __traverse(self,       # Recursive generator to traverse 
                  node,       # subtree rooted at node in pre, in, or 
                  traverseType): # post order 
      if node is None:        # If subtree is empty, 
         return               # traversal is done 
      if traverseType == “pre": # For pre-order, yield the current 
         yield (node.key, node.data) # node before all the others 
      for childKey, childData in self.__traverse( # Recursively 
            node.leftChild, traverseType): # traverse the left subtree 
         yield (childKey, childData)       # yielding its nodes 
      if traverseType == “in": # If in-order, now yield the current 
         yield (node.key, node.data) # node 
      for childKey, childData in self.__traverse( # Recursively 
            node.rightChild, traverseType): # traverse right subtree 
         yield (childKey, childData)        # yielding its nodes 
      if traverseType == “post": # If post-order, yield the current 
         yield (node.key, node.data) # node after all the others

There is an important but subtle point to note in calling the __traverse()
method. The public traverse_rec() method returns the result of calling the
private __traverse() method and does not just simply call it as a subroutine.
The reason is that the traverse() method itself is not the generator; it has no
yield statements. It must return the iterator produced by the call to
__traverse(), which will be used by the traverse_rec()caller to iterate over
the nodes.

Inside the __traverse() method, there are a series of if statements. The first
one tests the base case. If node is None, then this is an empty tree (or subtree).
It returns to indicate the iterator has hit the end (which Python converts to a
StopIteration exception). The next if statement checks whether the traversal
type is pre-order, and if it is, it yields the node’s key and data. Remember that
the iterator will be paused at this point while control passes back to its caller.
That is where the node will be “visited.” After the processing is done, the



caller’s loop invokes this iterator to get the next node. The iterator resumes
processing right after the yield statement, remembering all the context.

When the iterator resumes (or if the order was something other than pre-order),
the next step is a for loop. This is a recursive generator to perform the traversal
of the left subtree. It calls the __traverse() method on the node’s leftChild
using the same traverseType. That creates its own iterator to process the
nodes in that subtree. As nodes are yielded back as key, data pairs, this higher-
level iterator yields them back to its caller. This loop construction produces a
nested stack of iterators, just like the nested invocations of i_o_trav() shown
in Figure 8-12. When each iterator returns at the end of its work, it raises a
StopIteration. The enclosing iterator catches each exception, so the various
levels don’t interfere with one another.

The rest of the __traverse() method is straightforward. After finishing the
loop over all the nodes in the left subtree, the next if statement checks for the
in-order traversal type and yields the node’s key and data, if that’s the ordering.
The node gets processed between the left and right subtrees for an in-order
traversal. After that, the right subtree is processed in its own loop, yielding
each of the visited nodes back to its caller. After the right subtree is done, a
check for post-order traversal determines whether the node should be yielded at
this stage or not. After that, the __traverse() generator is done, ending its
caller’s loop.

Making the Generator Efficient
The recursive generator has the advantage of structural simplicity. The base
cases and recursive calls follow the node and child structure of the tree.
Developing the prototype and proving its correct behavior flow naturally from
this structure.

The generator does, however, suffer some inefficiency in execution. Each
invocation of the __traverse() method invokes two loops: one for the left and
one for the right child. Each of those loops creates a new iterator to yield the
items from their subtrees back through the iterator created by this invocation of
the __traverse() method itself. That layering of iterators extends from the
root down to each leaf node.

Traversing the N items in the tree should take O(N) time, but creating a stack
of iterators from the root down to each leaf adds complexity that’s proportional



to the depth of the leaves. The leaves are at O(log N) depth, in the best case.
That means the overall traversal of N items will take O(N×log N) time.

To achieve O(N) time, you need to apply the method discussed at the end of
Chapter 6 and use a stack to hold the items being processed. The items include
both Node structures and the (key, data) pairs stored at the nodes to be traversed
in a particular order. Listing 8-7 shows the code.

Listing 8-7 The Nonrecursive traverse() Generator

from LinkStack import * 
 
class BinarySearchTree(object):  # A binary search tree class 
… 
   def traverse(self,         # Non-recursive generator to traverse 
                traverseType=’in’): # tree in pre, in, or post order 
      if traverseType not in [ # Verify traversal type is an 
            ’pre’, ’in’, ’post’]: # accepted value 
         raise ValueError( 
            “Unknown traversal type: “ + str(traverseType)) 
 
      stack = Stack()         # Create a stack 
      stack.push(self.__root) # Put root node in stack 
 
      while not stack.isEmpty(): # While there is work in the stack 
         item = stack.pop() # Get next item 
         if isinstance(item, self.__Node): # If it’s a tree node 
            if traverseType == ’post’: # For post-order, put it last 
               stack.push((item.key, item.data)) 
            stack.push(item.rightChild) # Traverse right child 
            if traverseType == ’in’: # For pre-order, put item 2nd 
               stack.push((item.key, item.data)) 
            stack.push(item.leftChild) # Traverse left child 
            if traverseType == ’pre’: # For pre-order, put item 1st 
               stack.push((item.key, item.data)) 
         elif item:           # Every other non-None item is a 
            yield item        # (key, value) pair to be yielded

The nonrecursive method combines the two parts of the recursive approach
into a single traverse() method. The same check for the validity of the
traversal type happens at the beginning. The next step creates a stack, using the
Stack class built on a linked list from Chapter 5 (defined in the LinkStack
module).



Initially, the method pushes the root node of the tree on the stack. That means
the remaining work to do is the entire tree starting at the root. The while loop
that follows works its way through the remaining work until the stack is empty.

At each pass through the while loop, the top item of the stack is popped off.
Three kinds of items could be on the stack: a Node item, a (key, data) tuple, or
None. The latter happens if the tree is empty and when it processes the leaf
nodes (and finds their children are None).

If the top of the stack is a Node item, the traverse() method determines how
to process the node’s data and its children based on the requested traversal
order. It pushes items onto the stack to be processed on subsequent passes
through the while loop. Because the items will be popped off the stack in the
reverse order from the way they were pushed onto it, it starts by handling the
case for post-order traversal.

In post-order, the first item pushed is the node’s (key, data) tuple. Because it is
pushed first, it will be processed last overall. The next item pushed is the
node’s right child. In post-order, this is traversed just before processing the
node’s data. For the other orders, the right child is always the last node
processed.

After pushing on the right child, the next if statement checks whether the in-
order traversal was requested. If so, it pushes the node’s (key, data) tuple on the
stack to be processed in-between the two child nodes. That’s followed by
pushing the left child on the stack for processing.

Finally, the last if statement checks whether the pre-order traversal was
requested and then pushes the node’s data on the stack for processing before
the left and right children. It will be popped off during the next pass through
the while loop. That completes all the work for a Node item.

The final elif statement checks for a non-None item on the stack, which must
be a (key, data) tuple. When the loop finds such a tuple, it yields it back to the
caller. The yield statement ensures that the traverse() method becomes a
generator, not a function.

The loop doesn’t have any explicit handling of the None values that get pushed
on the stack for empty root and child links. The reason is that there’s nothing to
do for them: just pop them off the stack and continue on to the remaining work.

Using the stack, you have now made an O(N) generator. Each node of the tree
is visited exactly once, pushed on the stack, and later popped off. Its key-data



pairs and child links are also pushed on and popped off exactly once. The
ordering of the node visits and child links follows the requested traversal
ordering. Using the stack and carefully reversing the items pushed onto it make
the code slightly more complex to understand but improve the performance.

Using the Generator for Traversing
The generator approach (both recursive and stack-based) makes the caller’s
loops easy. For example, if you want to collect all the items in a tree whose
data is below the average data value, you could use two loops:
 
total, count = 0, 0 
for key, data in random_tree.traverse(’pre’): 
   total += data 
   count += 1 
average = total / count 
below_average = [] 
for key, data in random_tree.traverse(’in’): 
   if data <= average: 
      below_average.append((key, data))

The first loop counts the number of items in random_tree and sums up their
data values. The second loop finds all the items whose data is below the
average and appends the key and data pair to the below_average list. Because
the second loop is done in in-order, the keys in below_average are in
ascending order. Being able to reference the variables that accumulate results—
total, count, and below_average—without defining some global (or
nonlocal) variables outside a function body, makes using the generator very
convenient for traversal.

Traversing with the Visualization Tool
The Binary Search Tree Visualization tool allows you to explore the details of
traversal using generators. You can launch any of the three kinds of traversals
by selecting the Pre-order Traverse, In-order Traverse, or Post-order Traverse
buttons. In each case, the tool executes a simple loop of the form
for key, data in tree.traverse("pre”): 
   print(key)



To see the details, use the Step button (you can launch an operation in step
mode by holding down the Shift key when selecting the button). In the code
window, you first see the short traversal loop. The example calls the
traverse() method to visit all the keys and data in a loop using one of the
orders such as pre.

Figure 8-14 shows a snapshot near the beginning of a pre-order traversal. The
code for the traverse() method appears at the lower right. To the right of the
tree above the code, the stack is shown. The nodes containing keys 59 and 94
are on the stack. The top of the stack was already popped off and moved to the
top right under the item label. It shows the key, 77, with a comma separating it
from its colored rectangle to represent the (key, data) tuple that was pushed on
the stack. The yield statement is highlighted, showing that the traverse()
iterator is about to yield the key and data back to caller. The loop that called
traverse() has scrolled off the code display but will be shown on the next
step.

Figure 8-14 Traversing a tree in pre-order using the traverse() iterator

When control returns to the calling loop, the traverse() iterator disappears
from the code window and so does the stack, as shown in Figure 8-15. The key
and data variables are now bound to 77 and the root node’s data. The print
statement is highlighted because the program is about to print the key in the
output box along the bottom of the tree. The next step shows key 77 being
copied to the output box.



Figure 8-15 The loop calling the traverse() iterator

After printing, control returns to the for key, data in
tree.traverse(’pre’) loop. That pushes the traverse() iterator back on the
code display, along with its stack similar to Figure 8-14. The while loop in the
iterator finds that the stack is not empty, so it pops off the top item. That item is
node 59, the left child of node 77. The process repeats by pushing on node 59’s
children and the node’s key, data pair on the stack. On the next loop iteration,
that tuple is popped off the stack, and it is yielded back to the print loop.

The processing of iterators is complex to describe, and the visualization tool
makes it easier to follow the different levels and steps than reading a written
description. Try stepping through the processing of several nodes, including
when the iterator reaches a leaf node and pushes None on the stack. The stack
guides the iterator to return to nodes that remain to be processed.

Traversal Order
What’s the point of having three traversal orders? One advantage is that in-
order traversal guarantees an ascending order of the keys in binary search trees.
There’s a separate motivation for pre- and post-order traversals. They are very
useful if you’re writing programs that parse or analyze algebraic expressions.
Let’s see why that is the case.

A binary tree (not a binary search tree) can be used to represent an algebraic
expression that involves binary arithmetic operators such as +, −, /, and *. The
root node and every nonleaf node hold an operator. The leaf nodes hold either a
variable name (like A, B, or C) or a number. Each subtree is a valid algebraic
expression.



For example, the binary tree shown in Figure 8-16 represents the algebraic
expression

(A+B) * C − D / E

This is called infix notation; it’s the notation normally used in algebra. (For
more on infix and postfix, see the section “Parsing Arithmetic Expressions” in
Chapter 4.) Traversing the tree in order generates the correct in-order sequence
A+B*C−D/E, but you need to insert the parentheses yourself to get the
expected order of operations. Note that subtrees form their own subexpressions
like the (A+B) * C outlined in the figure.

Figure 8-16 Binary tree representing an algebraic expression

What does all this have to do with pre-order and post-order traversals? Let’s
see what’s involved in performing a pre-order traversal. The steps are

1. Visit the node.

2. Call itself to traverse the node’s left subtree.

3. Call itself to traverse the node’s right subtree.

Traversing the tree shown in Figure 8-16 using pre-order and printing the
node’s value would generate the expression

−*+ABC/DE



This is called prefix notation. It may look strange the first time you encounter
it, but one of its nice features is that parentheses are never required; the
expression is unambiguous without them. Starting on the left, each operator is
applied to the next two things to its right in the expression, called the
operands. For the first operator, −, these two things are a product expression,
*+ABC, and a division expression, /DE. For the second operator, *, the two
things are a sum expression, +AB, and a single variable, C. For the third
operator, +, the two things it operates on are the variables, A and B, so this last
expression would be A+B in in-order notation. Finally, the fourth operator, /,
operates on the two variables D and E.

The third kind of traversal, post-order, contains the three steps arranged in yet
another way:

1. Call itself to traverse the node’s left subtree.

2. Call itself to traverse the node’s right subtree.

3. Visit the node.

For the tree in Figure 8-16, visiting the nodes with a post-order traversal
generates the expression

AB+C*DE/−

This is called postfix notation. It means “apply the last operator in the
expression, −, to the two things immediately to the left of it.” The first thing is
AB+C*, and the second thing is DE/. Analyzing the first thing, AB+C*, shows
its meaning to be “apply the * operator to the two things immediately to the left
of it, AB+ and C.” Analyzing the first thing of that expression, AB+, shows its
meaning to be “apply the + operator to the two things immediately to the left of
it, A and B.” It’s hard to see initially, but the “things” are always one of three
kinds: a single variable, a single number, or an expression ending in a binary
operator.

To process the meaning of a postfix expression, you start from the last
character on the right and interpret it as follows. If it’s a binary operator, then
you repeat the process to interpret two subexpressions on its left, which
become the operands of the operator. If it’s a letter, then it’s a simple variable,
and if it’s a number, then it’s a constant. For both variables and numbers, you
“pop” them off the right side of the expression and return them to the process
of the enclosing expression.



We don’t show the details here, but you can easily construct a tree like that in
Figure 8-16 by using a postfix expression as input. The approach is analogous
to that of evaluating a postfix expression, which you saw in the
PostfixTranslate.py program in Chapter 4 and its corresponding
InfixCalculator Visualization tool. Instead of storing operands on the stack,
however, you store entire subtrees. You read along the postfix string as you did
in the PostfixEvaluate() method. Here are the steps when you encounter an
operand (a variable or a number):

1. Make a tree with one node that holds the operand.

2. Push this tree onto the stack.

Here are the steps when you encounter an operator, O:

1. Pop two operand trees R and L off the stack (the top of the stack has the
rightmost operand, R).

2. Create a new tree T with the operator, O, in its root.

3. Attach R as the right child of T.

4. Attach L as the left child of T.

5. Push the resulting tree, T, back on the stack.

When you’re done evaluating the postfix string, you pop the one remaining
item off the stack. Somewhat amazingly, this item is a complete tree depicting
the algebraic expression. You can then see the prefix and infix representations
of the original postfix notation (and recover the postfix expression) by
traversing the tree in one of the three orderings we described. We leave an
implementation of this process as an exercise.

Finding Minimum and Maximum Key Values
Incidentally, you should note how easy it is to find the minimum and maximum
key values in a binary search tree. In fact, this process is so easy that we don’t
include it as an option in the visualization tool. Still, understanding how it
works is important.

For the minimum, go to the left child of the root; then go to the left child of
that child, and so on, until you come to a node that has no left child. This node
is the minimum. Similarly, for the maximum, start at the root and follow the



right child links until they end. That will be the maximum key in the tree, as
shown in Figure 8-17.

Figure 8-17 Minimum and maximum key values of a binary search tree

Here’s some code that returns the minimum node’s data and key values:
 
   def minNode(self):         # Find and return node with minimum key 
      if self.isEmpty():      # If the tree is empty, raise exception 
         raise Exception("No minimum node in empty tree”) 
      node = self.__root      # Start at root 
      while node.leftChild:   # While node has a left child, 
         node = node.leftChild # follow left child reference 
      return (node.data, node.key) # return final node data and key

Finding the maximum is similar; just swap the right for the left child. You learn
about an important use of finding the minimum value in the next section about
deleting nodes.

Deleting a Node
Deleting a node is the most complicated common operation required for binary
search trees. The fundamental operation of deletion can’t be ignored, however,
and studying the details builds character.

You start by verifying the tree isn’t empty and then finding the node you want
to delete, using the same approach you saw in __find() and insert(). If the
node isn’t found, then you’re done. When you’ve found the node and its parent,
there are three cases to consider:



1. The node to be deleted is a leaf (has no children).

2. The node to be deleted has one child.

3. The node to be deleted has two children.

Let’s look at these three cases in turn. The first is easy; the second, almost as
easy; and the third, quite complicated.

Case 1: The Node to Be Deleted Has No Children
To delete a leaf node, you simply change the appropriate child field in the
node’s parent to None instead of to the node. The node object still exists, but it
is no longer part of the tree, as shown when deleting node 17 in Figure 8-18.

Figure 8-18 Deleting a node with no children

If you’re using a language like Python or Java that has garbage collection, the
deleted node’s memory will eventually be reclaimed for other uses (if you
eliminate all references to it in the program). In languages that require explicit
allocation and deallocation of memory, the deleted node should be released for
reuse.

Using the Visualization Tool to Delete a Node with No Children
Try deleting a leaf node using the Binary Search Tree Visualization tool. You
can either type the key of a node in the text entry box or select a leaf with your
pointer device and then select Delete. You see the program use __find() to
locate the node by its key, copy it to a temporary variable, set the parent link to



None, and then “return” the deleted key and data (in the form of its colored
background).

Case 2: The Node to Be Deleted Has One Child
This second case isn’t very difficult either. The node has only two edges: one to
its parent and one to its only child. You want to “cut” the node out of this
sequence by connecting its parent directly to its child. This process involves
changing the appropriate reference in the parent (leftChild or rightChild or
__root) to point to the deleted node’s child. Figure 8-19 shows the deletion of
node 16, which has only one child.

Figure 8-19 Deleting a node with one child

After finding the node and its parent, the delete method has to change only one
reference. The deleted node, key 16 in the figure, becomes disconnected from
the tree (although it may still have a child pointer to the node that was
promoted up (key 20). Garbage collectors are sophisticated enough to know
that they can reclaim the deleted node without following its links to other
nodes that might still be needed.



Now let’s go back to the case of deleting a node with no children. In that case,
the delete method also made a single change to replace one of the parent’s child
pointers. That pointer was set to None because there was no replacement child
node. That’s a similar operation to Case 2, so you can treat Case 1 and Case 2
together by saying, “If the node to be deleted, D, has 0 or 1 children, replace
the appropriate link in its parent with either the left child of D, if it isn’t empty,
or the right child of D.” If both child links from D are None, then you’ve
covered Case 1. If only one of D’s child links is non-None, then the appropriate
child will be selected as the parent’s new child, covering Case 2. You promote
either the single child or None into the parent’s child (or possibly __root)
reference.

Using the Visualization Tool to Delete a Node with One Child
Let’s assume you’re using the visualization tool on the tree in Figure 8-5 and
deleting node 61, which has a right child but no left child. Click node 61 and
the key should appear in the text entry area, enabling the Delete button.
Selecting the button starts another call to __find() that stops with current
pointing to the node and parent pointing to node 59.

After making a copy of node 61, the animation shows the right child link from
node 59 being set to node 61’s right child, node 62. The original copy of node
61 goes away, and the tree is adjusted to put the subtree rooted at node 62 into
its new position. Finally, the copy of node 61 is moved to the output box at the
bottom.

Use the visualization tool to generate new trees with single child nodes and see
what happens when you delete them. Look for the subtree whose root is the
deleted node’s child. No matter how complicated this subtree is, it’s simply
moved up and plugged in as the new child of the deleted node’s parent.

Python Code to Delete a Node
Let’s now look at the code for at least Cases 1 and 2. Listing 8-8 shows the
code for the delete() method, which takes one argument, the key of the node
to delete. It returns either the data of the node that was deleted or None, to
indicate the node was not found. That makes it behave somewhat like the
methods for popping an item off a stack or deleting an item from a queue. The
difference is that the node must be found inside the tree instead of being at a
known position in the data structure.



Listing 8-8 The delete() Method of BinarySearchTree

class BinarySearchTree(object):  # A binary search tree class 
… 
   def delete(self, goal):    # Delete a node whose key matches goal 
      node, parent = self.__find(goal) # Find goal and its parent 
      if node is not None:    # If node was found, 
         return self.__delete( # then perform deletion at node 
            parent, node)      # under the parent 
 
   def __delete(self,         # Delete the specified node in the tree 
                parent, node): # modifying the parent node/tree 
      deleted = node.data     # Save the data that’s to be deleted 
      if node.leftChild:      # Determine number of subtrees 
         if node.rightChild:  # If both subtrees exist, 
            self.__promote_successor( # Then promote successor to 
               node)          # replace deleted node 
         else:                # If no right child, move left child up 
            if parent is self: # If parent is the whole tree, 
               self.__root = node.leftChild # update root 
            elif parent.leftChild is node: # If node is parent’s left, 
               parent.leftChild = node.leftChild # child, update left 
            else:             # else update right child 
               parent.rightChild = node.leftChild 
      else:                   # No left child; so promote right child 
         if parent is self:   # If parent is the whole tree, 
            self.__root = node.rightChild # update root 
         elif parent.leftChild is node: # If node is parent’s left 
            parent.leftChild = node.rightChild # child, then update 
         else:                # left child link else update 
            parent.rightChild = node.rightChild # right child 
      return deleted          # Return the deleted node’s data

Just like for insertion, the first step is to find the node to delete and its parent. If
that search does not find the goal node, then there’s nothing to delete from the
tree, and delete() returns None. If the node to delete is found, the node and its
parent are passed to the private __delete() method to modify the nodes in the
tree.

Inside the __delete() method, the first step is to store a reference to the node
data being deleted. This step enables retrieval of the node’s data after the
references to it are removed from the tree. The next step checks how many
subtrees the node has. That determines what case is being processed. If both a



left and a right child are present, that’s Case 3, and it hands off the deletion to
another private method, __promote_successor(), which we describe a little
later.

If there is only a left subtree of the node to delete, then the next thing to look at
is its parent node. If the parent is the BinarySearchTree object (self), then the
node to delete must be the root node, so the left child is promoted into the root
node slot. If the parent’s left child is the node to delete, then the parent’s left
child link is replaced with the node’s left child to remove the node. Otherwise,
the parent’s right child link is updated to remove the node.

Notice that working with references makes it easy to move an entire subtree.
When the parent’s reference to the node is updated, the child that gets
promoted could be a single node or an immense subtree. Only one reference
needs to change. Although there may be lots of nodes in the subtree, you don’t
need to worry about moving them individually. In fact, they “move” only in the
sense of being conceptually in different positions relative to the other nodes.
As far as the program is concerned, only the parent’s reference to the root of
the subtree has changed, and the rest of the contents in memory remain the
same.

The final else clause of the __delete() method deals with the case when the
node has no left child. Whether or not the node has a right child, __delete()
only needs to update the parent’s reference to point at the node’s right child.
That handles both Case 1 and Case 2. It still must determine which field of the
parent object gets the reference to the node’s right child, just as in the earlier
lines when only the left child was present. It puts the node.rightChild in
either the __root, leftChild, or rightChild field of the parent, accordingly.
Finally, it returns the data of the node that was deleted.

Case 3: The Node to Be Deleted Has Two Children
Now the fun begins. If the deleted node has two children, you can’t just replace
it with one of these children, at least if the child has its own (grand) children.
Why not? Examine Figure 8-20 and imagine deleting node 27 and replacing it
with its right subtree, whose root is 33. You are promoting the right subtree, but
it has its own children. Which left child would node 33 have in its new
position, the deleted node’s left child, 16, or node 33’s left child, 28? And what
do you do with the other left child? You can’t just throw it away.



Figure 8-20 Options for deleting a node with two subtrees

The middle option in Figure 8-20 shows potentially allowing three children.
That would bring a whole host of other problems because the tree is no longer
binary (see Chapter 9 for more on that idea). The right-hand option in the
figure shows pushing the deleted node’s left child, 16, down and splicing in the
new node’s left child, 28, above it. That approach looks plausible. The tree is
still a binary search tree, at least. The problem, however, is what to do if the
promoted node’s left child has a complicated subtree of its own (for example, if
node 28 in the figure had a whole subtree below it). That could mean following
a long path to figure out where to splice the left subtrees together.

We need another approach. The good news is that there’s a trick. The bad news
is that, even with the trick, there are special cases to consider. Remember that,
in a binary search tree, the nodes are arranged in order of ascending keys. For
each node, the node with the next-highest key is called its in-order successor,
or simply its successor. In the original tree of Figure 8-20, node 28 is the in-
order successor of node 27.

Here’s the trick: To delete a node with two children, replace the node with its
in-order successor. Figure 8-21 shows a deleted node being replaced by its
successor. Notice that the nodes are still in order. All it took was a simple
replacement. It’s going to be a little more complicated if the successor itself has
children; we look at that possibility in a moment.



Figure 8-21 Node replaced by its successor

Finding the Successor
How do you find the successor of a node? Human beings can do this quickly
(for small trees, anyway). Just take a quick glance at the tree and find the next-
largest number following the key of the node to be deleted. In Figure 8-21 it
doesn’t take long to see that the successor of 27 is 28, or that the successor of
35 is 44. The computer, however, can’t do things “at a glance”; it needs an
algorithm.

Remember finding the node with the minimum or maximum key? In this case
you’re looking for the minimum key larger than the key to be deleted. The node
to be deleted has both a left and right subtree because you’re working on Case
3. So, you can just look for the minimum key in the right subtree, as illustrated
in Figure 8-22. All you need to do is follow the left child links until you find a
node with no left child.



Figure 8-22 Finding the successor

What about potential nodes in the trees rooted above the node to be deleted?
Couldn’t the successor be somewhere in there? Let’s think it through. Imagine
you seek the successor of node 27 in Figure 8-22. The successor would have to
be greater than 27 and less than 33, the key of its right child. Any node with a
key between those two values would be inserted somewhere in the left subtree
of node 33. Remember that you always search down the binary search tree
choosing the path based on the key’s relative order to the keys already in the
tree. Furthermore, node 33 was placed as the right child of node 27 because it
was less than the root node, 44. Any node’s right child key must be less than its
parent’s key if it is the left child of that parent. So going up to parent,
grandparent, or beyond (following left child links) only leads to larger keys,
and those keys can’t be the successor.

There are a couple of other things to note about the successor. If the right child
of the original node to delete has no left children, this right child is itself the
successor, as shown in the example of Figure 8-23. Because the successor
always has an empty left child link, it has at most one child.



Figure 8-23 The right child is the successor

Replacing with the Successor
Having found the successor, you can easily copy its key and data values into
the node to be deleted, but what do you do with the subtree rooted at the
successor node? You can’t leave a copy of the successor node in the tree there
because the data would be stored in two places, create duplicate keys, and
make deleting the successor a problem in the future. So, what’s the easiest way
to get it out of the tree?

Hopefully, reading Chapter 6 makes the answer jump right out. You can now
delete the successor from the tree using a recursive call. You want to do the
same operation on the successor that you’ve been doing on the original node to
delete—the one with the goal key. What’s different is that you only need to do
the deletion in a smaller tree, the right subtree where you found the successor.
If you tried to do it starting from the root of the tree after replacing the goal
node, the __find() method would follow the same path and end at the node
you just replaced. You could get around that problem by delaying the
replacement of the key until after deleting the successor, but it’s much easier—
and more importantly, faster—if you start a new delete operation in the right
subtree. There will be much less tree to search, and you can’t accidentally end
up at the previous goal node.

In fact, when you searched for the successor, you followed child links to
determine the path, and that gave you both the successor and the successor’s
parent node. With those two references available, you now have everything
needed to call the private __delete() method shown in Listing 8-8. You can
now define the __promote_successor() method, as shown in Listing 8-9.



Remember, this is the method used to handle Case 3—when the node to delete
has two children.

Listing 8-9 The __promote_successor() Method of BinarySearchTree

class BinarySearchTree(object):  # A binary search tree class 
… 
   def __promote_successor( # When deleting a node with both subtrees, 
         self,              # find successor on the right subtree, put 
                            # its data in this node, and delete the 
         node):             # successor from the right subtree 
      successor = node.rightChild # Start search for successor in 
      parent = node         # right subtree and track its parent 
      while successor.leftChild: # Descend left child links until 
         parent = successor # no more left links, tracking parent 
         successor = successor.leftChild 
      node.key = successor.key    # Replace node to delete with 
      node.data = successor.data  # successor’s key and data 
      self.__delete(parent, successor) # Remove successor node

The __promote_successor() method takes as its lone parameter the node to
delete. Because it is going to replace that node’s data and key and then delete
the successor, it’s easier to refer to it as the node to be replaced in this context.
To start, it points a successor variable at the right child of the node to be
replaced. Just like the __find() method, it tracks the parent of the successor
node, which is initialized to be the node to be replaced. Then it acts like the
minNode() method, using a while loop to update successor with its left child
if there is a left child. When the loop exits, successor points at the successor
node and parent to its parent node.

All that’s left to do is update the key and data of the node to be replaced and
delete the successor node using a recursive call to __delete(). Unlike previous
recursive methods you’ve seen, this isn’t a call to the same routine where the
call occurs. In this case, the __promote_successor() method calls
__delete(), which in turn, could call __promote_successor(). This is called
mutual recursion—where two or more routines call each other.

Your senses should be tingling now. How do you know this mutual recursion
will end? Where’s the base case that you saw with the “simple” recursion
routines? Could you get into an infinite loop of mutually recursive calls? That’s
a good thing to worry about, but it’s not going to happen here. Remember that



deleting a node broke down into three cases. Cases 1 and 2 were for deleting
leaf nodes and nodes with one child. Those two cases did not lead to
__promote_successor() calls, so they are the base cases. When you do call
__promote_successor() for Case 3, it operates on the subtree rooted at the
node to delete, so the only chance that the tree being processed recursively isn’t
smaller than the original is if the node to delete is the root node. The clincher,
however, is that __promote_successor()calls __delete() only on successor
nodes—nodes that are guaranteed to have at most one child and at least one
level lower in the tree than the node they started on. Those always lead to a
base case and never to infinite recursion.

Using the Visualization Tool to Delete a Node with Two Children
Generate a tree with the visualization tool and pick a node with two children.
Now mentally figure out which node is its successor, by going to its right child
and then following down the line of this right child’s left children (if it has
any). For your first try, you may want to make sure the successor has no
children of its own. On later attempts, try looking at the more complicated
situation where entire subtrees of the successor are moved around, rather than a
single node.

After you’ve chosen a node to delete, click the Delete button. You may want to
use the Step or Pause/Play buttons to track the individual steps. Each of the
methods we’ve described will appear in the code window, so you can see how
it decides the node to delete has two children, locates the successor, copies the
successor key and data, and then deletes the successor node.

Is Deletion Necessary?
If you’ve come this far, you can see that deletion is fairly involved. In fact, it’s
so complicated that some programmers try to sidestep it altogether. They add a
new Boolean field to the __Node class, called something like isDeleted. To
delete a node, they simply set this field to True. This is a sort of a “soft” delete,
like moving a file to a trash folder without truly deleting it. Then other
operations, like __find(), check this field to be sure the node isn’t marked as
deleted before working with it. This way, deleting a node doesn’t change the
structure of the tree. Of course, it also means that memory can fill up with
previously “deleted” nodes.



This approach is a bit of a cop-out, but it may be appropriate where there won’t
be many deletions in a tree. Be very careful. Assumptions like that tend to
come back to haunt you. For example, assuming that deletions might not be
frequent for a company’s personnel records might encourage a programmer to
use the isDeleted field. If the company ends up lasting for hundreds of years,
there are likely to be more deletions than active employees at some point in the
future. The same is true if the company experiences high turnover rates, even
over a short time frame. That will significantly affect the performance of the
tree operations.

The Efficiency of Binary Search Trees
As you’ve seen, most operations with trees involve descending the tree from
level to level to find a particular node. How long does this operation take? We
mentioned earlier that the efficiency of finding a node could range from O(log
N) to O(N), but let’s look at the details.

In a full, balanced tree, about half the nodes are on the bottom level. More
accurately, in a full, balanced tree, there’s exactly one more node on the bottom
row than in the rest of the tree. Thus, about half of all searches or insertions or
deletions require finding a node on the lowest level. (About a quarter of all
search operations require finding the node on the next-to-lowest level, and so
on.)

During a search, you need to visit one node on each level. This way, you can
get a good idea how long it takes to carry out these operations by knowing how
many levels there are. Assuming a full, balanced tree, Table 8-1 shows how
many levels are necessary to hold a given number of nodes.

Table 8-1 Number of Levels for Specified Number of Nodes



This situation is very much like the ordered array discussed in Chapter 2. In
that case, the number of comparisons for a binary search was approximately
equal to the base 2 logarithm of the number of cells in the array. Here, if you
call the number of nodes in the first column N, and the number of levels in the
second column L, you can say that N is 1 less than 2 raised to the power L, or

N = 2L − 1

Adding 1 to both sides of the equation, you have

N + 1 = 2L

Using what you learned in Chapter 2 about logarithms being the inverse of
raising a number to a power, you can take the logarithm of both sides and
rearrange the terms to get

log2(N + 1) = log2(2L) = L



L = log2(N + 1)

Thus, the time needed to carry out the common tree operations is proportional
to the base 2 log of N. In Big O notation, you say such operations take O(log
N) time.

If the tree isn’t full or balanced, the analysis is difficult. You can say that for a
tree with a given number of levels, average search times will be shorter for the
nonfull tree than the full tree because fewer searches will proceed to lower
levels.

Compare the tree to the other data storage structures we’ve discussed so far. In
an unordered array or a linked list containing 1,000,000 items, finding the item
you want takes, on average, 500,000 comparisons, basically O(N). In a
balanced tree of 1,000,000 items, only 20 (or fewer) comparisons are required
because it’s O(log N).

In an ordered array, you can find an item equally quickly, but inserting an item
requires, on average, moving 500,000 items. Inserting an item in a tree with
1,000,000 items requires 20 or fewer comparisons, plus a small amount of time
to connect the item. The extra time is constant and doesn’t depend on the
number of items.

Similarly, deleting an item from a 1,000,000-item array requires moving an
average of 500,000 items, while deleting an item from a 1,000,000-node tree
requires 20 or fewer comparisons to find the item, plus a few more
comparisons to find its successor, plus a short time to disconnect the item and
connect its successor. Because the successor is somewhere lower in the tree
than the node to delete, the total number of comparisons to find both the node
and its successor will be 20 or fewer.

Thus, a tree provides high efficiency for all the common data storage
operations: searches, insertions, and deletions. Traversing is not as fast as the
other operations, but it must be O(N) to cover all N items, by definition. In all
the data structures you’ve seen, it has been O(N), but we show some other data
structures later where it could be greater. There is a little more memory needed
for traversing a tree compared to arrays or lists because you need to store the
recursive calls or use a stack. That memory will be O(log N). That contrasts
with the arrays and lists that need only O(1) memory during traversal.



Trees Represented as Arrays
Up to now, we’ve represented the binary tree nodes using objects with
references for the left and right children. There’s a completely different way to
represent a tree: with an array.

In the array approach, the nodes are stored in an array and are not linked by
references. The position of the node in the array corresponds to its position in
the tree. We put the root node at index 0. The root’s left child is placed at index
1, and its right child at index 2, and so on, progressing from left to right along
each level of the tree. This approach is shown in Figure 8-24, which is a binary
search tree with letters for the keys.



Figure 8-24 A binary tree represented by an array

Every position in the tree, whether it represents an existing node or not,
corresponds to a cell in the array. Adding a node at a given position in the tree
means inserting the node into the equivalent cell in the array. Cells representing
tree positions with no nodes are filled with 0, None, or some other special value
that cannot be confused with a node. In the figure, the ° symbol is used in the
array for empty nodes.

With this scheme, a node’s children and parent can be found by applying some
simple arithmetic to the node’s index number in the array. If a node’s index
number is index, this node’s left child is
2 * index + 1

its right child is
2 * index + 2

and its parent is
(index – 1) // 2

(where the // indicates integer division with no remainder). You can verify
these formulas work by looking at the indices in Figure 8-24. Any algorithm
that follows links between nodes can easily determine where to check for the
next node. The scheme works for any binary tree, not just binary search trees.
It has the nice feature that links between nodes are just as easy to travel up as
they are going down (without the double linking needed for lists). Even better,
it can be generalized to any tree with a fixed number of children.

In most situations, however, representing a tree with an array isn’t very
efficient. Unfilled nodes leave holes in the array, wasting memory. Even worse,
when deletion of a node involves moving subtrees, every node in the subtree
must be moved to its new location in the array, which is time-consuming in
large trees. For insertions that insert nodes beyond the current maximum depth
of the tree, the array may need to be resized.

If deletions aren’t allowed or are very rare and the maximum depth of the tree
can be predicted, the array representation may be useful, especially if obtaining
memory for each node dynamically is, for some reason, too time-consuming.
That might be the case when programming in assembly language or a very
limited operating system, or a system with no garbage collection.



Tree Levels and Size
When trees are represented as arrays, the maximum level and number of nodes
is constrained by the size of the array. For linked trees, there’s no specific
maximum. For both representations, the current maximum level and number of
nodes can be determined only by traversing the tree. If there will be frequent
calls to request these metrics, the BinarySearchTree object can maintain
values for them, but the insert() and delete() methods must be modified to
update the values as nodes are added and removed.

To count nodes in a linked tree, you can use the traverse() method to iterate
over all the nodes and increment a count, as shown earlier in the example to
find the average key value and again in the nodes() method of Listing 8-10. To
find the maximum level, you cannot use the same technique because the level
of each node during the traversal is not provided (although it could be added by
modifying the generator). Instead, the recursive definition shown in Listing 8-
10 gets the job done in a few lines of code.

Listing 8-10 The levels() and nodes() Methods of BinarySearchTree

class BinarySearchTree(object):  # A binary search tree class 
… 
   def levels(self):          # Count the levels in the tree 
      return self.__levels(self.__root) # Count starting at root 
 
   def __levels(self, node):  # Recursively count levels in subtree 
      if node:                # If a node is provided, then level is 1 
         return 1 + max(self.__levels(node.leftChild),  # more than 
                        self.__levels(node.rightChild)) # max child 
      else: return 0          # Empty subtree has no levels 
 
   def nodes(self):           # Count the tree nodes, using iterator 
      count = 0               # Assume an empty tree 
      for key, data in self.traverse(): # Iterate over all keys in any 
         count += 1           # order and increment count 
      return count

Counting the levels of a subtree is somewhat different than what you’ve seen
before in that each node takes the maximum level of each of its subtrees and
adds one to it for the node itself. It might seem as if there should be a shortcut
by looking at the depth of the minimum or maximum key so that you don’t



need to visit every node. If you think about it, however, even finding the
minimum and maximum keys shows the depth only on the left and right
“flanks” of the tree. There could be longer paths somewhere in the middle, and
the only way to find them is to visit all the nodes.

Printing Trees
You’ve seen how to traverse trees in different orders. You could always use the
traversal to print all the nodes in the tree, as shown in the visualization tool.
Using the in-order traversal would show the items in increasing order of their
keys. On a two-dimensional output, you could use the in-order sequence to
position the nodes along the horizontal axis and the level of each node to
determine its vertical position. That could produce tree diagrams like the ones
shown in the previous figures.

On a simple command-line output, it’s easier to print one node per line. The
problem then becomes positioning the node on the line to indicate the shape of
the tree. If you want the root node at the top, then you must compute the width
of the full tree and place that node in the middle of the full width. More
accurately, you would have to compute the width of the left and right subtrees
and use that to position the root in order to show balanced and unbalanced trees
accurately.

On the other hand, if you place the root at the left side of an output line and
show the level of nodes as indentation from the leftmost column, it’s easy to
print the tree on a terminal. Doing so essentially rotates the tree 90° to the left.
Each node of the tree appears on its own line of the output. That allows you to
forget about determining the width of subtrees and write a simple recursive
method, as shown in Listing 8-11.

Listing 8-11 Methods to Print Trees with One Node per Line

class BinarySearchTree(object):  # A binary search tree class 
… 
   def print(self,            # Print the tree sideways with 1 node 
             indentBy=4):     # on each line and indenting each level 
      self.__pTree(self.__root, # by some blanks. Start at root node 
                   “ROOT:   “, “", indentBy) # with no indent 
 



   def __pTree(self,          # Recursively print a subtree, sideways 
               node,          # with the root node left justified 
               nodeType,      # nodeType shows the relation to its 
               indent,        # parent and the indent shows its level 
               indentBy=4):   # Increase indent level for subtrees 
      if node:                # Only print if there is a node 
         self.__pTree(node.rightChild, “RIGHT:  “, # Print the right 
                      indent + “ “ * indentBy, indentBy) # subtree 
         print(indent + nodeType, node) # Print this node 
         self.__pTree(node.leftChild,  “LEFT:   “, # Print the left 
                      indent + “ “ * indentBy, indentBy) # subtree

The public print() method calls the private __pTree() method to recursively
print the nodes starting at the root node. It takes a parameter, indentBy, to
control how many spaces are used to indent each level of the tree. It labels the
nodes to show their relationship with their parent (if it wasn’t already clear
from their indentation and relative positions). The recursive method
implementation starts by checking the base case, an empty node, in which case
nothing needs to be printed. For every other node, it first recursively prints the
right subtree because that is the top of the printed version. It adds spaces to the
indent so that subtree is printed further to the right. Then it prints the current
node prefixed with its indentation and nodeType label. Lastly, it prints the left
subtree recursively with the extended indentation. This produces an output
such as that shown in Figure 8-25. The nodes are printed as {key, data} pairs
and the figure example has no data stored with it.



Figure 8-25 Tree printed with indentation for node depth

In printing the tree like this, you use a different traversal order from the three
standard ones. The print order uses a reverse in-order traversal of the tree.

Duplicate Keys
As in other data structures, the problem of duplicate keys must be addressed. In
the code shown for insert() and in the visualization tool, a node with a
duplicate key will not be inserted. The visualization tool shows the data for the
node being updated by moving a new colored circle to fill the node.

To allow for duplicate keys, you must make several choices. The duplicates go
in the right subtree based on the fundamental binary search tree rule. They
form a chain of nodes with only right child links, as shown in Figure 8-26. One
of the design choices is where to put any left child link. It should go only at the
first or last duplicate in the chain so that the algorithms know where to find it.
The figure illustrates the two choices. New duplicate keys should be inserted at
the opposite end of the chain.



Figure 8-26 Duplicate keys in binary search trees

Another choice is what to return from the __find() and search() methods for
a key that has duplicates. Should it return the first or the last? The choice
should also be consistent with what node is deleted and returned by the
delete() method. If they are inserted at the first and removed from the first,
then delete() will act like a mini stack for the duplicate nodes.

The delete operation is complicated by the fact that different data values could
be stored at each of the duplicate nodes. The caller may need to delete a node
with specific data, rather than just any node with the duplicate key. Whichever
scheme is selected, the deletion routine will need to ensure that the left subtree,
if any, remains attached to the appropriate place.

With any kind of duplicate keys, balancing the tree becomes difficult or
impossible. The chains of duplicates add extra levels that cannot be rearranged
to help with balance. That means the efficiency of finding an item moves away
from best case of O(log N) toward O(N).

As you can see, allowing duplicate keys is not a simple enhancement to the
data structure. In other data structures, duplicate keys present challenges, but



not all of them are as tricky as the binary search tree.

The BinarySearchTreeTester.py Program
It’s always a good idea to test the functioning of a code module by writing tests
that exercise each operation. Writing a comprehensive set of tests is an art in
itself. Another useful strategy is to write an interactive test program that allows
you to try a series of operations in different orders and with different
arguments. To test all the BinarySearchTree class methods shown, you can
use a program like BinarySearchTreeTester.py shown in Listing 8-12.

Listing 8-12 The BinarySearchTreeTester.py Program

# Test the BinarySearchTree class interactively
from BinarySearchTree import * 
 
theTree = BinarySearchTree()  # Start with an empty tree 
 
theTree.insert("Don",  “1974 1”)  # Insert some data 
theTree.insert("Herb", “1975 2”) 
theTree.insert("Ken",  “1979 1”) 
theTree.insert("Ivan", “1988 1”) 
theTree.insert("Raj",  “1994 1”) 
theTree.insert("Amir", “1996 1”) 
theTree.insert("Adi",  “2002 3”) 
theTree.insert("Ron",  “2002 3”) 
theTree.insert("Fran", “2006 1”) 
theTree.insert("Vint", “2006 2”) 
theTree.insert("Tim",  “2016 1”) 
 
def print_commands(names):    # Print a list of possible commands 
   print(’The possible commands are’, names) 
 
def clearTree():              # Remove all the nodes in the tree 
   while not theTree.isEmpty(): 
      data, key = theTree.root() 
      theTree.delete(key) 
 
def traverseTree(traverseType="in”):  # Traverse & print all nodes 
   for key, data in theTree.traverse(traverseType): 
      print(’{’, str(key), ’, ’, str(data), ’}’, end=’ ’) 
   print() 



 
commands = [  # Command names, functions, and their parameters 
   [’print’, theTree.print, []], 
   [’insert’, theTree.insert, (’key’, ’data’)], 
   [’delete’, theTree.delete, (’key’, )], 
   [’search’, theTree.search, (’key’, )], 
   [’traverse’, traverseTree, (’type’, )], 
   [’clear’, clearTree, []], 
   [’help’, print_commands, []], 
   [’?’, print_commands, []], 
   [’quit’, None, []], 
] 
# Collect all the command names in a list 
command_names = “, “.join(c[0] for c in commands) 
for i in range(len(commands)): # Put command names in argument list 
   if commands[i][1] == print_commands: # of print_commands 
      commands[i][2] = [command_names] 
# Create a dictionary mapping first character of command name to
# command specification (name, function, parameters/args) 
command_dict = dict((c[0][0], c) for c in commands) 
 
# Print information for interactive loop 
theTree.print() 
print_commands(command_names) 
ans = ’ ’ 
 
# Loop to get a command from the user and execute it
while ans[0] != ’q’: 
   print(’The tree has’, theTree.nodes(), ’nodes across’, 
         theTree.levels(), ’levels’) 
   ans = input("Enter first letter of command: “).lower() 
   if len(ans) == 0: 
      ans = ’ ’ 
   if ans[0] in command_dict: 
      name, function, parameters = command_dict[ans[0]] 
      if function is not None: 
         print(name) 
         if isinstance(parameters, list): 
            arguments = parameters 
         else: 
            arguments = [] 
            for param in parameters: 
               arg = input("Enter “ + param + “ for “ + name + “ “ + 
                           “command: “) 
               arguments.append(arg) 
         try: 
            result = function(*arguments) 



            print(’Result:’, result) 
         except Exception as e: 
            print(’Exception occurred’) 
            print(e) 
   else: 
      print("Invalid command: ’", ans, “’”)

This program allows users to enter commands by typing them in a terminal
interface. It first imports the BinarySearchTree module and creates an empty
tree with it. Then it puts some data to it, using insert() to associate names
with some strings. The names are the keys used to place the nodes within the
tree.

The tester defines several utility functions to print all the possible commands,
clear all the nodes from the tree, and traverse the tree to print each node. These
functions handle commands in the command loop below.

The next part of the tester program defines a list of commands. For each one, it
has a name, a function to execute the command, and a list or tuple of
arguments or parameters. This is more advanced Python code than we’ve
shown so far, so it might look a little strange. The names are what the user will
type (or at least their first letter), and the functions are either methods of the
tree or the utility functions defined in the tester. The arguments and parameters
will be processed after the user chooses a command.

To provide a little command-line help, the tester concatenates the list of
command names into a string, separating them with commas. This operation is
accomplished with the join() method of strings. The text to place between
each command name is the string (a comma and a space), and the argument to
join() is the list of names. The program uses a list comprehension to iterate
through the command specifications in commands and pull out the first element,
which is the command name: ", “.join(c[0] for c in commands). The
result is stored in the command_names variable.

Then the concatenated string of command names needs to get inserted in the
argument list for the print_commands function. That’s done in the for loop.
Two entries have the print_commands function: the help and ? commands.

The last bit of preparation for the command loop creates a dictionary,
command_dict, that maps the first character of each command to the command
specification. You haven’t used this Python data structure yet. In Chapter 11,
“Hash Tables,” you see how they work, so if you’re not familiar with them,



think of them as an associative array—an array indexed by a string instead of
integer. You can assign values in the array and then look them up quickly. In
the tester program, evaluating command_dict[’p’] would return the
specification for the print command, namely [’print’, theTree.print, []].
Those specifications get stored in the dictionary using the compact (but
cryptic) comprehension: dict((c[0][0], c) for c in commands).

The rest of the tester implements the command loop. It first prints the tree on
the terminal, followed by the list of commands. The ans variable holds the
input typed by the user. It gets initialized to a space so that the command loop
starts and prompts for a new command.

The command loop continues until the user invokes the quit command, which
starts with q. Inside the loop body, the number of nodes and levels in the tree is
printed, and then the user is asked for a command. The string that is returned
by input() is converted to lowercase to simplify the command lookup. If the
user just pressed Return, there would be no first character in the string, so you
would fill in a ? to make the default response be to print all the command
names again.

In the next statement—if ans[0] in command_dict:—the tester checks
whether the first character in the user’s response is one of the known
commands. If the character is recognized, it extracts the name, function, and
parameters from the specification stored in the command_dict. If there’s a
function to execute, then it will be processed. If not, then the user asked to quit,
and the while loop will exit. When the first character of the user’s response
does not match a command, an error message is printed, and the loop prompts
for a new command.

After the command specification is found, it either needs to prompt the user for
the arguments to use when calling the function or get them from the
specification. This choice is based on whether the parameters were specified as
Python tuple or list. If it’s a tuple, the elements of the tuple are the names of the
parameters. If it’s a list, then the list contains the arguments of the function.
For tuples, the user is prompted to enter each argument by name, and the
answers are stored in the arguments list. After the arguments are determined,
the command loop tries calling the function with the arguments list using
result = function(*arguments). The asterisk (*) before the arguments is
not a multiplication operator. It means that the arguments list should be used as
the list of positional arguments for the function. If the function raises any



exceptions, they are caught and displayed. Otherwise, the result of the function
is printed before looping to get another command.

Try using the tester to run the four main operations: search, insert, traverse, and
delete. For the deletion, try deleting nodes with 0, 1, and 2 child nodes to see
the effect. When you delete a node with 2 children, predict which successor
node will replace the deleted node and see whether you’re right.

The Huffman Code
You shouldn’t get the idea that binary trees are always search trees. Many
binary trees are used in other ways. Figure 8-16 shows an example where a
binary tree represents an algebraic expression. We now discuss an algorithm
that uses a binary tree in a surprising way to compress data. It’s called the
Huffman code, after David Huffman who discovered it in 1952. Data
compression is important in many situations. An example is sending data over
the Internet or via digital broadcasts, where it’s important to send the
information in its shortest form. Compressing the data means more data can be
sent in the same time under the bandwidth limits.

Character Codes
Each character in an uncompressed text file is represented in the computer by
one to four bytes, depending on the way characters are encoded. For the
venerable ASCII code, only one byte is used, but that limits the range of
characters that can be expressed to fewer than 128. To account for all the
world’s languages plus other symbols like emojis , the various Unicode
standards use up to four bytes per character. For this discussion, we assume
that only the ASCII characters are needed, and each character takes one byte
(or eight bits). Table 8-2 shows how some characters are represented in binary
using the ASCII code.

Table 8-2 Some ASCII Codes



There are several approaches to compressing data. For text, the most common
approach is to reduce the number of bits that represent the most-used
characters. As a consequence, each character takes a variable number of bits in
the “stream” of bits that represents the full text.

In English, E and T are very common letters, when examining prose and other
person-to-person communication and ignoring things like spaces and
punctuation. If you choose a scheme that uses only a few bits to write E, T, and
other common letters, it should be more compact than if you use the same
number of bits for every letter. On the other end of the spectrum, Q and Z
seldom appear, so using a large number of bits occasionally for those letters is
not so bad.

Suppose you use just two bits for E—say 01. You can’t encode every letter of
the English alphabet in two bits because there are only four 2-bit combinations:
00, 01, 10, and 11. Can you use these four combinations for the four most-used
characters? Well, if you did, and you still wanted to have some encoding for
the lesser-used characters, you would have trouble. The algorithm that
interprets the bits would have to somehow guess whether a pair of bits is a
single character or part of some longer character code.

One of the key ideas in encoding is that we must set aside some of the code
values as indicators that a longer bit string follows to encode a lesser-used
character. The algorithm needs a way to look at a bit string of a particular
length and determine if that is the full code for one of the characters or just a
prefix for a longer code value. You must be careful that no character is



represented by the same bit combination that appears at the beginning of a
longer code used for some other character. For example, if E is 01, and Z is
01011000, then an algorithm decoding 01011000 wouldn’t know whether the
initial 01 represented an E or the beginning of a Z. This leads to a rule: No code
can be the prefix of any other code.

Consider also that in some messages, E might not be the most-used character.
If the text is a program source file, for example, punctuation characters such as
the colon (:), semicolon (;), and underscore (_) might appear more often than E
does. Here’s a solution to that problem: for each message, you make up a new
code tailored to that particular message. Suppose you want to send the message
SPAM SPAM SPAM EGG + SPAM. The letter S appears a lot, and so does the space
character. You might want to make up a table showing how many times each
letter appears. This is called a frequency table, as shown in Table 8-3.

Table 8-3 Frequency Table for the SPAM Message

The characters with the highest counts should be coded with a small number of
bits. Table 8-4 shows one way how you might encode the characters in the
SPAM message.

Table 8-4 Huffman Code for the SPAM Message

You can use 01 for the space because it is the most frequent. The next most
frequent characters are S, P, A, and M, each one appearing four times. You use
the code 00 for the last one, M. The remaining codes can’t start with 00 or 01



because that would break the rule that no code can be a prefix of another code.
That leaves 10 and 11 to use as prefixes for the other characters.

What about 3-bit code combinations? There are eight possibilities: 000, 001,
010, 011, 100, 101, 110, and 111, but you already know you can’t use anything
starting with 00 or 01. That eliminates four possibilities. You can assign some
of those 3-bit codes to the next most frequent characters, S as 101, P as 110,
and A as 111. That leaves the prefix 100 to use for the remaining characters.
You use a 4-bit code, 1001, for the next most frequent character, G, which
appears twice. There are two characters that appear only once, E and +. They
are encoded with 5-bit codes, 10000 and 10001.

Thus, the entire message is coded as
101 110 111 00 01 101 110 111 00 01 101 110 111 00 01 10000 1001 1001 
01 10001 01 101 110 111 00

For legibility, we show this message broken into the codes for individual
characters. Of course, all the bits would run together because there is no space
character in a binary message, only 0s and 1s. That makes it more challenging
to find which bits correspond to a character. The main point, however, is that
the 25 characters in the input message, which would typically be stored in 200
bits in memory (8 × 25), require only 72 bits in the Huffman coding.

Decoding with the Huffman Tree
We show later how to create Huffman codes. First, let’s examine the somewhat
easier process of decoding. Suppose you received the string of bits shown in
the preceding section. How would you transform it back into characters? You
could use a kind of binary tree called a Huffman tree. Figure 8-27 shows the
Huffman tree for the SPAM message just discussed.



Figure 8-27 Huffman tree for the SPAM message

The characters in the message appear in the tree as leaf nodes. The higher their
frequency in the message, the higher up they appear in the tree. The number
outside each leaf node is its frequency. That puts the space character (sp) at the
second level, and the S, P, A, and M characters at the second or third level. The
least frequent, E and +, are on the lowest level, 5.

How do you use this tree to decode the message? You start by looking at the
first bit of the message and set a pointer to the root node of the tree. If you see
a 0 bit, you move the pointer to the left child of the node, and if you see a 1 bit,
you move it right. If the identified node does not have an associated character,
then you advance to the next bit in the message. Try it with the code for S,



which is 101. You go right, left, then right again, and voila, you find yourself
on the S node. This is shown by the blue arrows in Figure 8-27.

You can do the same with the other characters. After you’ve arrived at a leaf
node, you can add its character to the decoded string and move the pointer back
to the root node. If you have the patience, you can decode the entire bit string
this way.

Creating the Huffman Tree
You’ve seen how to use a Huffman tree for decoding, but how do you create
this tree? There are many ways to handle this problem. You need a Huffman
tree object, and that is somewhat like the BinarySearchTree described
previously in that it has nodes that have up to two child nodes. It’s quite
different, however, because routines that are specific to search trees, like
find(), insert(), and delete(), are not relevant. The constraint that a node’s
key be larger than any key of its left child and equal to or less than any key of
its right child doesn’t apply to a Huffman tree. Let’s call the new class
HuffmanTree, and like the search tree, store a key and a value at each node.

Here is the algorithm for constructing a Huffman tree from a message string:

Preparation

1. Count how many times each character appears in the message string.

2. Make a HuffmanTree object for each character used in the message. For
the SPAM message example, that would be eight trees. Each tree has a
single node whose key is a character and whose value is that character’s
frequency in the message. Those values can be found in Table 8-3 or
Table 8-4 for the SPAM message.

3. Insert these trees in a priority queue (as described in Chapter 4). They are
ordered by the frequency (stored as the value of each root node) and the
number of levels in the tree. The tree with the smallest frequency has the
highest priority. Among trees with equal frequency, the one with more
levels is the highest priority. In other words, when you remove a tree
from the priority queue, it’s always the one with the deepest tree of the
least-used character. (Breaking ties using the tree depth, improves the
balance of the final Huffman tree.)

That completes the preparation, as shown in Step 0 of Figure 8-28.



Figure 8-28 Growing the Huffman tree, first six steps

Then do the following:

Tree consolidation



1. Remove two trees from the priority queue and make them into children of
a new node. The new node has a frequency value that is the sum of the
children’s frequencies; its character key can be left blank.

2. Insert this new, deeper tree back into the priority queue.

3. Keep repeating steps 1 and 2. The trees will get larger and larger, and
there will be fewer and fewer of them. When there is only one tree left in
the priority queue, it is the Huffman tree and you’re done.

Figure 8-28 and Figure 8-29 show how the Huffman tree is constructed for the
SPAM message.



Figure 8-29 Growing the Huffman tree, final step

Coding the Message
Now that you have the Huffman tree, how do you encode a message? You start
by creating a code table, which lists the Huffman code alongside each
character. To simplify the discussion, we continue to assume that only ASCII
characters are possible, so we need a table with 128 cells. The index of each



cell would be the numerical value of the ASCII character: 65 for A, 66 for B,
and so on. The contents of the cell would be the Huffman code for the
corresponding character. Initially, you could fill in some special value for
indicating “no code” like None or an empty string in Python to check for errors
where you failed to make a code for some character.

Such a code table makes it easy to generate the coded message: for each
character in the original message, you use its code as an index into the code
table. You then repeatedly append the Huffman codes to the end of the coded
message until it’s complete.

To fill in the codes in the table, you traverse the Huffman tree, keeping track of
the path to each node as it is visited. When you visit a leaf node, you use the
key for that node as the index to the table and insert the path as a binary string
into the cell’s value. Not every cell contains a code—only those appearing in
the message. Figure 8-30 shows how this looks for the SPAM message. The
table is abbreviated to show only the significant rows. The path to the leaf node
for character G is shown as the tree is being traversed.

The full code table can be built by calling a method that starts at the root and
then calls itself recursively for each child. Eventually, the paths to all the leaf
nodes will be explored, and the code table will be complete.



Figure 8-30 Building the code table

One more thing to consider: if you receive a binary message that’s been
compressed with a Huffman code, how do you know what Huffman tree to use
for decoding it? The answer is that the Huffman tree must be sent first, before
the binary message, in some format that doesn’t require knowledge of the
message content. Remember that Huffman codes are for compressing the data,
not encrypting it. Sending a short description of the Huffman tree followed by
a compressed version of a long message saves many bits.

Summary



• Trees consist of nodes connected by edges.

• The root is the topmost node in a tree; it has no parent.

• All nodes but the root in a tree have exactly one parent.

• In a binary tree, a node has at most two children.

• Leaf nodes in a tree have no child nodes and exactly one path to the root.

• An unbalanced tree is one whose root has many more left descendants
than right descendants, or vice versa.

• Each node of a tree stores some data. The data typically has a key value
used to identify it.

• Edges are most commonly represented by references to a node’s
children; less common are references from a node to its parent.

• Traversing a tree means visiting all its nodes in some predefined order.

• The simplest traversals are pre-order, in-order, and post-order.

• Pre-order and post-order traversals are useful for parsing algebraic
expressions.

• Binary Search Trees

• In a binary search tree, all the nodes that are left descendants of node
A have key values less than that of A; all the nodes that are A’s right
descendants have key values greater than (or equal to) that of A.

• Binary search trees perform searches, insertions, and deletions in
O(log N) time.

• Searching for a node in a binary search tree involves comparing the
goal key to be found with the key value of a node and going to that
node’s left child if the goal key is less or to the node’s right child if the
goal key is greater.

• Insertion involves finding the place to insert the new node and then
changing a child field in its new parent to refer to it.

• An in-order traversal visits nodes in order of ascending keys.



• When a node has no children, you can delete it by clearing the child
field in its parent (for example, setting it to None in Python).

• When a node has one child, you can delete it by setting the child field
in its parent to point to its child.

• When a node has two children, you can delete it by replacing it with its
successor and deleting the successor from the subtree.

• You can find the successor to a node A by finding the minimum node
in A’s right subtree.

• Nodes with duplicate key values require extra coding because typically
only one of them (the first) is found in a search, and managing their
children complicates insertions and deletions.

• Trees can be represented in the computer’s memory as an array, although
the reference-based approach is more common and memory efficient.

• A Huffman tree is a binary tree (but not a search tree) used in a data-
compression algorithm called Huffman coding.

• In the Huffman code, the characters that appear most frequently are
coded with the fewest bits, and those that appear rarely are coded with
the most bits.

• The paths in the Huffman tree provide the codes for each of the leaf
nodes.

• The level of a leaf node indicates the number of bits used in the code for
its key.

• The characters appearing the least frequently in a Huffman coded
message are placed in leaf nodes at the deepest levels of the Huffman
tree.

Questions
These questions are intended as a self-test for readers. Answers may be found
in Appendix C.

1. Insertion and deletion in a binary search tree require what Big O time?



2. A binary tree is a search tree if
a. every nonleaf node has children whose key values are less than or

equal to the parent.
b. the key values of every nonleaf node are the sum or concatenation of

the keys of its children
c. every left child has a key less than its parent and every right child has

a key greater than or equal to its parent.
d. in the path from the root to every leaf node, the key of each node is

greater than or equal to the key of its parent.
3. True or False: If you traverse a tree and print the path to each node as a

series of the letters L and R for whether the path followed the left or
right child at each step, there could be some duplicate paths.

4. When compared to storing data in an ordered array, the main benefit of
storing it in a binary search tree is
a. having the same search time as traversal time in Big O notation.
b. not having to copy data when inserting or deleting items.
c. being able to search for an item in O(log N) time.
d. having a key that is separate from the value identified by the key.

5. In a complete, balanced binary tree with 20 nodes, and the root
considered to be at level 0, how many nodes are there at level 4?

6. A subtree of a binary tree always has
a. a root that is a child of the main tree’s root.
b. a root unconnected to the main tree’s root.
c. fewer nodes than the main tree.
d. a sibling with an equal or larger number of nodes.

7. When implementing trees as objects, the ______ and the _______ are
generally separate classes.

8. Finding a node in a binary search tree involves going from node to
node, asking
a. how big the node’s key is in relation to the search key.



b. how big the node’s key is compared to its right or left child’s key.
c. what leaf node you want to reach.
d. whether the level you are on is above or below the search key.

9. An unbalanced tree is one
a. in which most of the keys have values greater than the average.
b. where there are more nodes above the central node than below.
c. where the leaf nodes appear much more frequently as the left child of

their parents than as the right child, or vice versa.
d. in which the root or some other node has many more left descendants

than right descendants, or vice versa.
10. True or False: A hierarchical file system is essentially a binary search

tree, although it can be unbalanced.
11. Inserting a node starts with the same steps as _______ a node.
12. Traversing tree data structures

a. requires multiple methods to handle the different traversal orders.
b. can be implemented using recursive functions or generators.
c. is much faster than traversing array data structures.
d. is a way to make soft deletion of items practical.

13. When a tree is extremely unbalanced, it begins to behave like the
______ data structure.

14. Suppose a node A has a successor node S in a binary search tree with no
duplicate keys. Then S must have a key that is larger than _____ but
smaller than or equal to _______.

15. Deleting nodes in a binary search tree is complex because
a. copying subtrees below the successor requires another traversal.
b. finding the successor is difficult to do, especially when the tree is

unbalanced.
c. the tree can split into multiple trees, a forest, if it’s not done properly.
d. the operation is very different for the different number of child nodes

of the node to be deleted, 0, 1, or 2.



16. In a binary tree used to represent a mathematical expression,
a. both children of an operator node must be operands.
b. following a post-order traversal, parentheses must be added.
c. following a pre-order traversal, parentheses must be added.
d. in pre-order traversal, a node is visited before either of its children.

17. When a tree is represented by an array, the right child of a node at index
n has an index of _______.

18. True or False: Deleting a node with one child from a binary search tree
involves finding that node’s successor.

19. A Huffman tree is typically used to _______ text data.
20. Which of the following is not true about a Huffman tree?

a. The most frequently used characters always appear near the top of the
tree.

b. Normally, decoding a message involves repeatedly following a path
from the root to a leaf.

c. In coding a character, you typically start at a leaf and work upward.
d. The tree can be generated by removal and insertion operations on a

priority queue of small trees.

Experiments
Carrying out these experiments will help to provide insights into the topics
covered in the chapter. No programming is involved.

8-A Use the Binary Search Tree Visualization tool to create 20 random trees
using 20 as the requested number of items. What percentage would you
say are seriously unbalanced?

8-B Use the BinarySearchTreeTester.py program shown in Listing 8-12
and provided with the code examples from the publisher’s website to do
the following experiments:
a. Delete a node that has no children.
b. Delete a node that has 1 child node.



c. Delete a node that has 2 child nodes.
d. Pick a key for a new node to insert. Determine where you think it will

be inserted in the tree, and then insert it with the program. Is it easy to
determine where it will go?

e. Repeat the previous step with another key but try to put it in the other
child branch. For example, if your first node was inserted as the left
child, try to put one as the right child or in the right subtree.

8-C The BinarySearchTreeTester.py program shown in Listing 8-12 prints
an initial tree of 11 nodes across 7 levels, based on the insertion order of
the items. A fully balanced version of the tree would have the same
nodes stored on 4 levels. Use the program to clear the tree, and then
determine what order to insert the same keys to make a balanced tree.
Try your ordering and see whether the tree comes out balanced. If not,
try another ordering. Can you describe in a few sentences the insertion
ordering that will always create a balanced binary search tree from a
particular set of keys?

8-D Use the Binary Search Tree Visualization tool to delete a node in every
possible situation.

Programming Projects
Writing programs to solve the Programming Projects helps to solidify your
understanding of the material and demonstrates how the chapter’s concepts are
applied. (As noted in the Introduction, qualified instructors may obtain
completed solutions to the Programming Projects on the publisher’s website.)

8.1 Alter the BinarySearchTree class described in this chapter to allow
nodes with duplicate keys. Three methods are affected: __find(),
insert(), and delete(). Choose to insert new left children at the
shallowest level among equal keys, as shown on the left side of Figure
8-26, and always find and delete the deepest among equal keys. More
specifically, the __find() and search() methods should return the
deepest among equal keys that it encounters but should allow an
optional parameter to specify finding the shallowest. The insert()
method must handle the case when the item to be inserted duplicates an
existing node, by inserting a new node with an empty left child below
the deepest duplicate key. The delete() method must delete the deepest



node among duplicate keys, thus providing a LIFO or stack-like
behavior among duplicate keys. Think carefully about the deletion cases
and whether the choice of successor nodes changes. Demonstrate how
your implementation works on a tree inserting several duplicate keys
associated with different values. Then delete those keys and show their
values to make it clear that the last duplicate inserted is the first
duplicate deleted.

8.2 Write a program that takes a string containing a postfix expression and
builds a binary tree to represent the algebraic expression like that shown
in Figure 8-16. You need a BinaryTree class, like that of
BinarySearchTree, but without any keys or ordering of the nodes.
Instead of find(), insert(), and delete() methods, you need the
ability to make single node BinaryTrees containing a single operand
and a method to combine two binary trees to make a third with an
operator as the root node. The syntax of the operators and operands is
the same as what was used in the PostfixTranslate.py module from
Chapter 4. You can use the nextToken() function in that module to
parse the input string into operator and operand tokens. You don’t need
the parentheses as delimiters because postfix expressions don’t use
them. Verify that the input expression produces a single algebraic
expression and raise an exception if it does not. For valid algebraic
binary trees, use pre-, in-, and post-order traversals of the tree to
translate the input into the output forms. Include parentheses for the in-
order traversal to make the operator precedence clear in the output
translation. Run your program on at least the following expressions:
a. 91 95 + 15 + 19 + 4 *
b. B B * A C 4 * * −
c. 42
d. A 57 # this should produce an exception
e. + / # this should produce an exception

8.3 Write a program to implement Huffman coding and decoding. It should
do the following:

• Accept a text message (string).

• Create a Huffman tree for this message.



• Create a code table.

• Encode the text message into binary.

• Decode the binary message back to text.

• Show the number of bits in the binary message and the number of
characters in the input message.

If the message is short, the program should be able to display the
Huffman tree after creating it. You can use Python string variables to
store binary messages as arrangements of the characters 1 and 0. Don’t
worry about doing actual bit manipulation using bytearray unless you
really want to. The easiest way to create the code table in Python is to
use the dictionary (dict) data type. If that is unfamiliar, it’s essentially
an array that can be indexed by a string or a single character. It’s used in
the BinarySearchTreeTester.py module shown in Listing 8-12 to map
command letters to command records. If you choose to use an integer
indexed array, you can use Python’s ord() function to convert a
character to an integer but be aware that you will need a large array if
you allow arbitrary Unicode characters such as emojis ( ) in the
message.

8.4 Measuring tree balance can be tricky. You can apply two simple
measures: node balance and level (or height) balance. As mentioned
previously, balanced trees have an approximately equal number of
nodes in their left and right subtrees. Similarly, the left and right
subtrees must have an approximately equal number of levels (or height).
Extend the BinarySearchTree class by writing the following methods:
a. nodeBalance()—Computes the number of nodes in the right subtree

minus the number of nodes in the left subtree
b. levelBalance()—Computes the number of levels in the right subtree

minus the number of levels in the left subtree
c. unbalancedNodes(by=1)— Returns a list of node keys where the

absolute value of either of the balance metrics exceeds the by
threshold, which defaults to 1

These three methods all require (recursive) helper methods that traverse
subtrees rooted at nodes inside the tree. In a balanced tree, the list of
unbalanced nodes would be empty. Try your measures by inserting the



following four lists of keys into an empty BinarySearchTree (in order,
left to right), printing the resulting 15-node tree, printing the node and
level balance of the resulting root node, and then printing the list of
unbalanced keys with by=1 and by=2.
[7, 6, 5, 4, 3, 2, 1, 8, 12, 10, 9, 11, 14, 13, 15], 
[8, 4, 5, 6, 7, 3, 2, 1, 12, 10, 9, 11, 14, 13, 15], 
[8, 4, 2, 3, 1, 6, 5, 7, 12, 10, 9, 11, 14, 13, 15], 
[8, 4, 2, 3, 1, 6, 5, 7, 12, 10, 9, 11, 14, 13, 8.5]

8.5 Every binary tree can be represented as an array, as described in the
section titled “Trees Represented as Arrays.” The reverse of
representing an array as a tree, however, works only for some arrays.
The missing nodes of the tree are represented in the array cells as some
predefined value—such as None—that cannot be a value stored at a tree
node. If the root node is missing in the array, then the corresponding
tree cannot be built. Write a function that takes an array as input and
tries to make a binary tree from its contents. Every cell that is not None
is a value to store at a tree node. When you come across a node without
a parent node (other than the root node), the function should raise an
exception indicating that the tree cannot be built. Note that the result
won’t necessarily be a binary search tree, just a binary tree. Hint: It’s
easier to work from the leaf nodes to the root, building nodes for each
cell that is not None and storing the resulting node back in the same cell
of the input array for retrieval when it is used as a subtree of a node on
another level. Print the result of running the function on the following
arrays where n = None. The values in the array can be stored as either
the key or the value of the node because the tree won’t be interpreted as
a binary search tree.
[], 
[n, n, n], 
[55, 12, 71], 
[55, 12, n, 4], 
[55, 12, n, 4, n, n, n, n, 8, n, n, n, n, n, n, n, n, 6, n], 
[55, 12, n, n, n, n, 4, n, 8, n, n, n, n, n, n, n, n, 6, n]



9. 2-3-4 Trees and External Storage

In This Chapter

• Introduction to 2-3-4 Trees

• The Tree234 Visualization Tool

• Python Code for a 2-3-4 Tree

• Efficiency of 2-3-4 Trees

• 2-3 Trees

• External Storage

In a binary tree, each node has one data item and can have up to two children.
If you allow more data items and children per node, the result is a multiway
tree. A 2-3-4 tree, to which we devote the first part of this chapter, is a
multiway tree that can have up to four children and three data items per node.

These 2-3-4 trees are interesting for several reasons. First, they’re balanced
trees designed to avoid the problems that come from having too many nodes
along some of the paths in the tree. Second, there’s an interesting way to
convert them into binary trees that we describe in a later chapter. Third, and
most important, they serve as an easy-to-understand introduction to B-trees.

A B-tree is another kind of multiway tree that’s particularly useful for
organizing data in external storage. In this case, external means external to
main memory, usually a disk drive. A node in a B-tree can have dozens or
hundreds of children. We discuss external storage and B-trees at the end of this
chapter.

Introduction to 2-3-4 Trees



In this section we look at the characteristics of 2-3-4 trees. Later we show how
a Visualization tool models a 2-3-4 tree and how to program a 2-3-4 tree in
Python. Figure 9-1 shows a small 2-3-4 tree. Each lozenge-shaped node can
hold one, two, or three data items, making it a kind of multiway tree.

Figure 9-1 A 2-3-4 tree

Here, the top three nodes have children, and the seven nodes on the bottom row
are all leaf nodes, which have no children, by definition. In a 2-3-4 tree, all the
leaf nodes are always on the same level. Having all the leaves at the same level
ensures the balance.

What’s in a Name?
The 2, 3, and 4 in the name 2-3-4 tree refer to how many links to child nodes
can potentially be referenced by a given node. For nonleaf nodes, three



arrangements are possible:

• A node with one data item always has two children.

• A node with two data items always has three children.

• A node with three data items always has four children.

In short, nonleaf nodes must always have one more child than they have data
items. Or, to put it symbolically, if the number of child links is L and the
number of data items is D, then

D = 1       or        D = 2        or        D = 3

L = 0        or        L = D + 1

This critical relationship determines the structure of 2-3-4 trees. A leaf node
has no children, but it can nevertheless contain one, two, or three data items.
Empty nodes are not allowed. Figure 9-1 shows an example of each kind of
node. There’s a node with one data item and two children at the root. Below
that, there is a node with two data items and three children on the left, and a
node with three data items and four children on the right. The rest are leaf
nodes with one, two, or three data items.

Because a 2-3-4 tree can have nodes with up to four children, it’s called a
multiway tree of order 4.

You may wonder why a 2-3-4 tree isn’t called a 1-2-3-4 tree. Can’t a node have
only one child, as some nodes do in binary trees? A binary tree—described in
Chapter 8, “Binary Trees”—might be thought of as a multiway tree of order 2
because each node can have up to two children. There are two important
differences, however, between binary trees and 2-3-4 trees. The obvious one is
the maximum number of children—four in the case of 2-3-4 trees. In a binary
tree, a node can have up to two child links. A single link, to its left or to its
right child, is also perfectly permissible. The other link has an empty or None
value.

In a 2-3-4 tree, on the other hand, there is a minimum number of two children
for nonleaf nodes; internal nodes with a single link are not permitted. A node
with one data item must either have two links or be a leaf, in which case it has
no links.



2-3-4 Tree Terminology
The nodes in 2-3-4 trees are named for their number of child links. You might
be tempted to call them by the number of data items they contain, but that
could leave some doubt as to whether they are leaf nodes or not. Instead, you
call the root node of Figure 9-1 a 2-node because it has two children (and, by
rule, one data item, 54). The child to the left of the root is a 3-node because it
has three children (and two data items, 15 and 30). The final internal node is a
4-node with three data items: 75, 83, and 91. The bottom nodes are still called
leaf nodes, not 0-nodes.

For convenience, we number the data items in a node from 0 to 2, and the child
links from 0 to 3. The data items in a node are arranged in ascending key order,
by convention from left to right (lower to higher numbers). So, instead of left,
middle, and right, we refer to data (or key) 0, data 1, data 2, child 0, child 1,
child 2, and child 3.

2-3-4 Tree Organization
An important aspect of any tree’s structure is the relationship of its links to the
key values of its data items. In a binary search tree, all children with keys less
than the node’s key are in a subtree rooted in the node’s left child, and all
children with keys larger than or equal to the node’s key are rooted in the
node’s right child. In a 2-3-4 tree, the principle is the same because they are
always used for searching, but there’s more to it:

• All children in the subtree rooted at child 0 have key values less than key
0.

• All children in the subtree rooted at child 1 have key values greater than
key 0 but less than key 1.

• All children in the subtree rooted at child 2 have key values greater than
key 1 but less than key 2.

• All children in the subtree rooted at child 3 have key values greater than
key 2.

The keys are stored in ascending order within a node, usually inside an array.
They are named by the indices to the array, not by labels such as “left,”



“middle,” and “right.” This relationship is shown in Figure 9-2. Duplicate
values are not usually permitted in 2-3-4 trees, so you don’t need to worry
about comparing equal keys.

Figure 9-2 Keys and children

Look again at the tree in Figure 9-1. As in all 2-3-4 trees, the leaves are all on
the same level (the bottom row). Upper-level nodes are often not full; that is,
they may contain only one or two data items instead of three. Also, notice that
the tree is balanced. It retains its balance even if you insert a sequence of data
in ascending (or descending) order. The 2-3-4 tree’s self-balancing capability
results from the way new data items are inserted, as we’ll describe in a
moment.

Searching a 2-3-4 Tree
Finding a data item with a particular key is like the search routine in a binary
tree. You start at the root and, unless the search key is found there, select the
link that leads to the subtree with the appropriate range of values.

For example, to search for the data item with key 89 in the tree in Figure 9-1,
you start at the root. You search the root but don’t find 89 among its keys.
Because 89 is larger than 54, you go to child 1, which is represented as 75-83-
91. (Remember that child 1 is on the right because the numbering of children
and links starts at 0 on the left.) You don’t find the key in this node either, so
you must go to the next child. Here, because 89 is greater than 83 but less than
91, you go to child 2. This time, you find the specified item in the 85-89 node.



Insertion
New data items are always inserted in leaves, which are on the bottom row of
the tree. If items were inserted in nodes with children, the number of children
would need to be changed to maintain the structure of the tree, which stipulates
that there should be one more child than data items in a node.

Insertion into a 2-3-4 tree is sometimes quite easy and sometimes rather
complicated. In any case, the process begins by searching for the appropriate
leaf node.

If there is space in all the nodes encountered during the search, insertion is
easy. When the appropriate leaf node is reached, the new data item is simply
inserted into it. Figure 9-3 shows a data item with key 46 being inserted into
the 2-3-4 tree from Figure 9-1. The path to the leaf node where 46 belongs is
shown.

Figure 9-3 Insertion with no splits



Insertion may involve moving one or two other items in a node so that the keys
will be in the correct order after the new item is inserted. In this example, the
48 had to be shifted right to make room for the 46.

Node Splits
Insertion becomes more complicated if a full node is encountered on the path
down to the insertion point. A full node is one that contains three data items.
When this happens, the node must be split. The splitting process keeps the tree
balanced. The kind of 2-3-4 tree we’re discussing here is often called a top-
down 2-3-4 tree because nodes are split on the way down to the insertion point.

Here’s what happens when the insertion process splits a nonroot node. (We
examine splitting the root later.)

• A new, empty node is created. It’s a sibling of the node being split and
will be placed to its right.

• Data item 2 is moved into the new node.

• Data item 1 is moved into the parent of the node being split.

• Data item 0 remains where it is in the node being split.

• The rightmost two children are disconnected from the node being split
and connected to the new node.

Figure 9-4 shows an example of a node split. Another way of describing a node
split is to say that a 4-node has been transformed into two 2-nodes.



Figure 9-4 Splitting a nonroot node

Notice that the effect of the node split is to move data up or to the right. Key 1
from the split node moved up to the parent as circled in the figure. The 75 and
91 keys go into their own nodes as the children on either side of the promoted
key. This rearrangement keeps the tree balanced.

Here, the insertion required only one node split, but more than one full node
may be encountered along the path to the insertion point. When this is the case,
there will be multiple splits.

Full nodes can occur anywhere in the tree. When the full node is a leaf, it has
no children, such as nodes 19-22-26 and 64-68-71 in Figure 9-4. If it’s an
internal node, then it must have four children, as node 75-83-91 did before it
was split.

Splitting the Root
When a full root node is encountered at the beginning of the search for the
insertion point, the resulting split is slightly more complicated:



• A new root node is created. It holds data item 1 of the node being split
and becomes the parent of the old root node.

• A second new node is created. It becomes a sibling of the node being
split.

• Data item 2 of the split root is moved into the new sibling.

• The old root maintains data item 0 (discarding its references to data items
1 and 2).

• The two rightmost children of the old root node being split are
disconnected from it and connected to the new sibling node.

Figure 9-5 shows the root being split. This process creates a new root that’s at a
higher level than the old one. Thus, the overall height of the tree is increased
by one. Another way to describe splitting the root is to say that a 4-node is split
into three 2-nodes.

Figure 9-5 Splitting the root



As mentioned before, the node splits happen during the search for an insertion
node. After each split, the search for the insertion point continues down the
tree, possibly finding more full nodes that need to be split. In Figure 9-5, if the
data item to be inserted had a key between 21 and 64, the search for the
insertion node would lead to the node containing 28-34-37. That node would
have to be split because it is full. Inserting in any other leaf node would not
require another split.

Splitting on the Way Down
Notice that, because all full nodes are split on the way down, a split can’t cause
an effect that ripples back up through the tree. The parent of any node that’s
being split is guaranteed not to be full and can therefore accept data item 1
without itself needing to be split. Of course, if this parent already had two
children when its child was split, it will become full with the addition of data
item 1. Becoming full means that it will split when the next insertion search
encounters it.

Figure 9-6 shows a series of insertions starting with an empty tree and building
up to a three-level tree. There are five node splits: two of the root and three of
leaves. After 79 is inserted, the tree is the same as in the top of Figure 9-5.
Unlike that example, the next insertion of 49 in Figure 9-6 causes two splits:
the one at the root and the one at the leaf node containing 28-34-37. Splitting
the root adds the third level, and splitting the leaf node enables the insertion of
49 after 37. The tree remains balanced at every stage, and the number of levels
increases whenever the root node is split.

Figure 9-6 Insertions into a 2-3-4 tree



The Tree234 Visualization Tool
Operating the Tree234 Visualization tool provides a way to see the details of
how 2-3-4 trees work. When you start the visualization tool, you see a screen
like Figure 9-7.

Figure 9-7 The Tree234 Visualization tool

The tree is initially empty when you start the tool. The Tree234 label at the top
is for the tree object itself, with an empty pointer to the root node. This
matches the structure you saw for binary search trees in Chapter 8.



The Random Fill and New Tree Buttons
You can use the Random Fill button to add items to the tree. You type the
number of data items to add in the text entry box and select Random Fill. Try
adding a few items (up to three) to an empty tree to see the creation of the first
node. As with the binary search tree, each item has a numeric key and a
colored background to represent the data stored with the key.

Filling in many items (the maximum allowed is 99) will create a large 2-3-4
tree. Because 2-3-4 trees can be very “bushy” (wide), they are difficult to fit
easily on the screen. The visualization provides tools for zooming and scrolling
over the larger trees, but it is easier to learn how 2-3-4 trees operate by
focusing on smaller trees. To keep all the nodes visible, fill empty trees with 10
or fewer data items.

If you create a large tree and want to return to smaller ones, use the New Tree
button to return to the empty tree. You can then add new items either randomly
or using the Insert button that we describe shortly.

The Search Button
You can watch the visualization tool locate a data item by typing its key into
the text entry box and selecting the Search button. Clicking an existing data
item with your pointer device enters its key in the text entry box. You can use
the Step and Pause/Play buttons to stop the animation to observe the individual
steps.

A search involves examining one node on each level. Within each nonleaf
node, the algorithm examines each data item, starting on the left, to see if it
matches the search key or, if not, which child it should go to next. In a leaf
node, it examines each data item to see whether it matches the search key. If it
can’t find the specified item in the leaf node, the search fails.

The Insert Button
The Insert button causes a new data item, with a key specified in the text box,
to be inserted in the tree. The algorithm first searches for the appropriate leaf
node. If it encounters a full node along the way, it splits that node before
continuing. Splitting nodes widens the tree, so parts of the expanded tree may



be placed outside the visible region. Splitting the root node makes the tree
grow taller and narrower. For tall trees, the root node may appear far to the
right, in anticipation of further splits at level 1 that broaden the tree.

Experiment with the insertion process. Watch what happens when there are no
full nodes on the path to the insertion point. This process is straightforward.
Then try inserting at the end of a path that includes a full node, either at the
root, at the leaf, or somewhere in between. Watch how new nodes are formed
and the contents of the node being split are distributed among three different
nodes.

Zooming and Scrolling
One of the problems with viewing 2-3-4 trees is that there are a great many
nodes and data items just a few levels down. Keeping the number of levels to a
minimum benefits the search speed, of course, but makes it hard to see all the
items on a particular level when displayed horizontally. Levels 0, 1, and 2 are
fairly easy to see, but when the tree grows to level 3 and deeper, the leaf nodes
become spread over a long distance.

You can move around the tree using the scrollbars that appear when tree size is
larger than what can be displayed in the window. You can also zoom in and out
to focus on a particular part of the tree or try to see the overall shape. The
Zoom In and Zoom Out buttons let you narrow or broaden the focus around
what is in the center of the view.

You also can zoom by double-clicking the tree or its background. Each double-
click zooms in a step while keeping the clicked point in the same place on the
screen. Holding down the Shift key or using the second mouse button when
double-clicking zooms out a step around the clicked point. When one or both
scrollbars disappear, centering around the clicked point may no longer be
possible. Scroll wheels should also work to change the zoom factor. Returning
to an empty (New) tree restores the zoom factor and removes the scrollbars.

For example, if you start with an empty tree and insert 55 random data items,
you produce a view something like Figure 9-8 where only 11 of the items are
visible.



Figure 9-8 The zoomed-in view on a tree with 55 data items

If you zoom out five steps, the view becomes what’s shown in Figure 9-9. You
can see data items at all four levels now, but the individual items become
illegible. The gaps exist to accommodate new nodes at the leaf level.

Figure 9-9 The zoomed-out view on the same 55 data item tree

Using the zoom and scrolling controls allows you to see both the big picture
and the details and, we hope, put the two together in your mind.

During animated operations, the code keeps pointers to one or two nodes in the
tree. The visualization tool attempts to keep those active pointers visible on the
screen by changing the scrollbars. The program’s manipulation of the
scrollbars can lead to big jumps in viewpoint when you’re zoomed in to a few
nodes of large trees. The tool does not change the zoom factor, leaving that to
you. Changing the zoom while the animation is paused is possible if you
double-click but may leave some pointers in the wrong locations.



Experiments
The Tree234 Visualization tool offers a quick way to learn about 2-3-4 trees.
Try inserting items into the tree. Watch for node splits. Stop before one is about
to happen and figure out where the three data items from the split node are
going to go. Then resume the animation to see whether you’re right. As the tree
gets larger, you’ll need to move around it to see all the nodes.

How many data items can you insert in the tree? There’s a limit because only
keys with values 0 to 99 are allowed. Those hundred items could be packed
into as few as 34 nodes because each node can hold 3 items.

How many levels can there be? At level 0, there is exactly 1 node. At level 1,
there are 4, and at level 2, 16. A maximum-sized tree occupies at least 34
nodes, so it would have to have some nodes at level 3. Depending on the order
the items are inserted, however, some splits could cause the tree to reach level
4. Are there cases when it could go to 5? to 6?

You can insert the most items in the fewest levels by deliberately inserting
them into nodes that lie on paths with no full nodes, so that no splits are
necessary. Of course, there is no way to guarantee such an ordering with real
data.

Python Code for a 2-3-4 Tree
In this section we examine a Python program that implements a 2-3-4 tree. We
introduce the code in sections. You can get the full Tree234.py program in the
supplemental files with this text, and you can see most of it in the code window
of the visualization tool. The program is relatively complex, although it’s
similar in some ways to the BinarySearchTree that was described in Chapter
8. It’s often best to peruse the entire program in an editor to see how it works.

Like the BinarySearchTree, this data structure uses two classes: Tree234 and
__Node. Tree234 is the public class, and __Node is a private class defined
within it. Let’s start with the __Node class.

The __Node Class
Objects of the __Node class represent the individual nodes of the tree. They
manage the items stored at the node as well as the references to any child



subtrees. We define the __Node class as a private class within the Tree234 class
to keep calling programs from making changes to the tree’s internal
relationships.

As shown in Listing 9-1, the Tree234 class defines relevant constants for the
maximum number of child links and key-value pairs it can store. The __Node
class uses these constants in allocating arrays for data. In this implementation,
the keys, their corresponding values, and related children are kept in separate
arrays. This arrangement contrasts with other data structures that store a single
object for each data item and use a key function to extract the key value from
the object. Both styles have advantages.

Listing 9-1 The __Node Class Within the Tree234 Class

class Tree234(object):        # A 2-3-4 multiway tree class 
 
   maxLinks = 4               # Maximum number of child links 
   maxKeys = maxLinks - 1     # Maximum number of key-value pairs 
 
   class __Node(object):      # A node in a 2-3-4 tree 
      def __init__(           # Constructor takes a key-data pair 
            self,             # since every node must have 1 item 
            key,              # It also takes a list of children, 
            data,             # either empty or a pair that must 
            *children):       # both be of __Node type. 
         valid = [x for x in children # Extract valid child links 
                  if isinstance(x, type(self))] 
         if len(children) not in (0, 2): # Check number of children 
            raise ValueError( 
               “2-3-4 tree nodes must be created with 0 or 2 
children”) 
         self.nKeys = 1       # Exactly 1 key-data pair is kept 
         self.keys = [key] * Tree234.maxKeys # Store array of keys 
         self.data = [data] * Tree234.maxKeys # Store array of values 
         self.nChild = len(valid) # Store number of valid children 
         self.children = (    # Store list of child links 
            valid + [None] * (Tree234.maxLinks - len(valid))) 
 
      def __str__(self):      # Represent a node as a string of keys 
         return ’<Node234 ’ + ’-’.join( # joined by hyphens w/ prefix 
            str(k) for k in self.keys[:self.nKeys]) + ’>’ 
 



      def isLeaf(self):       # Test for leaf nodes 
         return self.nChild == 0

The constructor for __Node objects takes a single key and data value as input.
The reason is that nodes in the 2-3-4 must always have at least one item stored
in them; there’s never an empty node. The node may be a leaf node or an
internal node holding one item. Nodes are created when other nodes split (other
than the first root). Depending on whether the node being split is the root, an
internal node, or a leaf node, the node being constructed will have either two or
no children. The asterisk before the children parameter of the constructor
means that Python will interpret any arguments after the data argument as
child nodes.

The children arguments that are the same type as the __Node object are placed
in the valid list. That filtering is done by using a list comprehension—[x for

x in children if isinstance(x, type(self))]—which uses x as a
variable to go through all the children items and test that they are instances of
this object’s type. The first if statement checks whether the caller passed an
appropriate number of valid child nodes to the constructor. More than two is
not allowed because the node will have only one item. A single child is never
allowed in 2-3-4 trees. When the number of children isn’t zero or two, the
constructor raises an exception to report the problem.

After the number and type of children provided are verified, the constructor
initializes the fields of the object. The number of key-value pairs, nKeys, is set
to 1. The key and data are put into arrays of size maxKeys. The constructor
allocates the full array to enable shifting keys and values later when more items
are added or removed. Note the arrays are initialized to have three copies of the
key and data in them, but the extra copies are ignored because nKeys is 1.
Similarly, the child links are stored in the children array, and the quantity is
kept in the nChild field. The children array is padded with None to ensure
maxLinks cells are allocated.

We provide a __str__() method to enable inspection of nodes and printing
trees. This function converts a node containing the keys 27 and 48 to the string
’<Node234 27-48>’ by joining the list of keys with the hyphen character. The
keys put in the string are limited by the node’s nKeys attribute. The isLeaf()
method checks whether the node is a leaf with no children or an internal node.

After constructing a 2-3-4 node, you need to be able to insert other data items
into it. In contrast to binary search trees, 2-3-4 nodes hold more than one key



and datum. Insertion occurs after splitting any full 2-3-4 nodes and finding a
leaf node where the new item’s key belongs. Insertion can also occur when
splitting a node and inserting key 1 in a parent node. The insertKeyValue()
method shown in Listing 9-2 takes a key, a data value, and an optional
subtree to perform this action. The subtree is needed when inserting the item
in an internal node during a split.

Listing 9-2 The insertKeyValue() Method of __Node Objects

class Tree234(object):        # A 2-3-4 multiway tree class 
… 
   class __Node(object):      # A node in a binary search tree 
… 
      def insertKeyValue(     # Insert a key value pair into the 
            self,             # sorted list of keys. If key is already 
            key,              # in list, its value will be updated. 
            data,             # If key is not in list, add new subtree 
            subtree=None):    # if provided, just after the new key 
         i = 0                # Start looking at lowest key 
         while (i < self.nKeys and # Loop until i points to a key 
                self.keys[i] < key): # equal or greater than goal 
            i += 1            # Advance to next key 
         if i == Tree234.maxKeys: # Check if goal is beyond capacity 
            raise Exception( 
               ’Cannot insert key into full 2-3-4 node’) 
         if self.keys[i] == key: # If the key is already in keys 
            self.data[i] = data # then update value of this key 
            return False      # Return flag: no new key added 
         j = self.nKeys       # Otherwise point j at highest key 
         if j == Tree234.maxKeys: # Before shifting keys, 
            raise Exception(  # raise exception if keys are maxed out 
               ’Cannot insert key into full 2-3-4 node’) 
         while i < j:         # Loop over keys higher than key i 
            self.keys[j] = self.keys[j-1] # and shift keys, values 
            self.data[j] = self.data[j-1] # and children to right 
            self.children[j+1] = self.children[j] 
            j -= 1            # Advance to lower key 
         self.keys[i] = key   # Put new key and value in hole created 
         self.data[i] = data  # by shifting array contents 
         self.nKeys += 1      # Increment number of keys 
         if subtree:          # If a subtree was provided, store it 
            self.children[i + 1] = subtree # in hole created 
            self.nChild += 1  # This node now has one more child 
         return True          # Return flag: a new key was added



Inserting a key in a sorted array is the same process the insertion sort used in
Chapter 3, “Simple Sorting.” Because we’ve chosen to store keys, values, and
child trees in separate arrays with a related index, it’s a little complex to reuse
the SortArray class. Instead, we implement a simple while loop to find the
insertion index of the new key. Because the maximum array is only three
elements long, we can use a linear search rather than a binary search with little
effect on performance. After i is set to the index where the key should be
inserted, the loop exits, and the method raises an exception if the insertion
would overflow the array.

The next if statement checks whether the key to insert duplicates an existing
key. In that case, it simply updates the data value associated with that key and
returns a Boolean flag to indicate that no new key was inserted. Alternatively,
the method could raise an exception to disallow duplicate keys.

The next section of insertKeyValue() uses index j to index the highest key
that must be stored in the node. If that value for j shows that the node is
already full, j == Tree234.maxKeys, an exception is raised, instead of
overflowing the storage. The j variable points at the cell just after the last
active key. The while loop shifts keys, data values and child links to higher
indices to make room for the insertion at index i. The references in the
children array are offset by one from the keys and data arrays. After shifting
all the cell values, the new key and data can be inserted at index i. The new
subtree is also inserted, if provided.

The insertKeyValue() method finishes by returning True to indicate the
insertion added a key and value. You see how that return value benefits the
caller for different kinds of 2-3-4 tree inserts in the next section.

The Tree234 Class
An object of the Tree234 class represents the entire tree. The class has only one
field, root, which is either a __Node object or None. All public operations start
at the root, but several methods can benefit from having private, recursive
methods that operate on subtrees specified by a particular __Node object.

The constructor for Tree234 objects shown in Listing 9-3 simply creates an
empty tree by setting the root field to None. The isEmpty() method checks
whether any items have been inserted in the tree by comparing root with None.



The root() method uses it to raise an exception on empty trees. For trees
containing nodes, it returns arrays of the data and keys that the root node
contains. The Python array lengths tell whether the root node contains one,
two, or three items.

Searching
Searching for a data item with a specified goal key, possibly for insertion, is
carried out by the __find() routine. The one shown in Listing 9-3 is a private
method that will return __Node objects for both the target node and its parent.
This will be used for search() and insert() operations, which differ in
whether full nodes should be split during the search process. The prepare
parameter tells the method whether or not to split those nodes during the
search.

Listing 9-3 Constructor, Basic, and __find() Methods of the Tree234 Class

class Tree234(object):        # A 2-3-4 multiway tree class 
… 
   def __init__(              # The 2-3-4 tree organizes items in 
         self):               # nodes by their keys. 
      self.__root = None      # Tree starts empty. 
 
   def isEmpty(self):         # Check for empty tree 
      return self.__root is None 
 
   def root(self):            # Get the data and keys of the root node 
      if self.isEmpty():      # If the tree is empty, raise exception 
         raise Exception("No root node in empty tree”) 
      nKeys = self.__root.nKeys # Get active key count 
      return (                # Otherwise return root data and key 
         self.__root.data[:nKeys], # arrays shortened to current 
         self.__root.keys[:nKeys]) # active keys 
 
   def __find(self,           # Find a node with a key that matches 
              goal,           # the goal and its parent node. 
              current, parent, # Start at current and track its parent 
              prepare=True):  # Prepare nodes for insertion, if asked 
      if current is None:     # If there is no tree left to explore, 
         return (current, parent) # then return without finding node 
      i = 0                   # Index to keys of current node 
      while (i < current.nKeys and # Loop through keys in current 



             current.keys[i] < goal): # node to find goal 
         i += 1 
      if (i < current.nKeys and   # If key i is valid and matches goal 
          goal == current.keys[i]): 
         return (current, parent) # return current node & parent 
      if (prepare and         # If asked to prepare for insertion and 
          current.nKeys == Tree234.maxKeys): # node is full, 
         current, parent = self.__splitNode( # then split node, update 
            current, parent, goal) # current and parent, and adjust i 
         i = 0 if goal < current.keys[0] else 1 # for new current 
      return ((prepare and current, parent) # Return current if 
              if current.isLeaf() else # it’s a leaf being prepared 
              self.__find(    # Otherwise continue search recursively 
                 goal,        # to find goal 
                 current.children[i], # in the ith child of current 
                 current, prepare))   # and current as parent

By using the same routine to perform both searching and inserting,
__find()must perform differently on duplicate keys depending on the
operation. Searching for an existing key and inserting a duplicate key both call
__find() with a goal that matches some key in the tree. For a search,
__find() should locate the node with the key and return its associated data
value. It doesn’t need to split any full nodes because the tree isn’t being altered.

For inserts, __find() should split the full nodes as the search descends the tree.
As noted earlier, splitting full nodes while descending from the root maintains
the tree’s balance. If __find() starts an insert operation but ends up finding a
duplicate of the goal key, it will update the data for that key. This makes the 2-
3-4 tree behave as an associative key store for duplicate keys.

The __find() routine recursively descends the 2-3-4 nodes. It starts at the
current node and tracks its parent. The caller normally passes the root node
with parent pointing at the Tree234 object itself. If current is None, __find()
immediately returns it and the parent pointer, handling the base recursion case.
When there is a current node, the first step is to determine where among the
existing keys the goal key lies.

After setting index i to 0, the lowest key index, the while loop goes through all
the valid keys, stopping when the ith key is equal to or greater than the goal.
Because the sorted array contains at most three keys, using a binary search for
the goal key wouldn’t save more than one comparison. After the loop, if the
goal was found as a valid key, it can return the current node and its parent.
Note that even if this node is full and __find() is preparing for an insert,



there’s no need to split it. Updating the data for a duplicate key doesn’t require
a split.

The next if statement handles splitting up the full nodes. When the prepare
flag is true and the number of keys is the maximum allowed, it calls the
__splitNode() method to redistribute those key-data pairs into separate nodes.
Performing that split can change where the current and parent pointers
should be, so __find() updates those variables from the multiple results of the
call. Remember that splitting the root requires creating a new parent of the
node being split, and that parent becomes the new root. Because the key-data
pairs get moved, it also needs to update the i index in the current node. That
current node will have only one key left in it (when split by the
__splitNode() method, as you see shortly), so it only needs to check whether
the goal is before or after the first key. When the goal is before, the i index is
set to 0; otherwise, it is set to 1.

At this point, __find() hasn’t found the goal, and it has performed any
requested split. The search should continue in one of the child nodes if they
exist. There are several cases here. If the current node is a leaf, then there are
no children, and this is the node where the insertion should occur or the search
should terminate. The complex return statement first checks if
current.isLeaf() returns true. If so, it returns the current and parent nodes
with one additional check. By returning prepare and current as the first
result, __find() ends up returning False when the call is part of a search
operation and returning current as part of an insert. Checking the prepare flag
and conditionally returning current handles both kinds of operations on leaf
nodes.

If the current node is not a leaf, then both searches and inserts must continue
in a child node. The exact child depends on where the while loop finished. If
the goal is less than the lowest key, i will be 0 and the lowest indexed child
will be the next to explore. Every other key that was checked has incremented
i and moved on to the next link in the children array. If all three keys were
checked, i ends on the last child. The __find() method recursively calls itself
with the ith child. The parent pointer for that child is the current node as it
descends the tree. If it had to split the current node, then it adjusted the i index
to point at the appropriate child before making the recursive call.

Splitting Full Nodes



The method for splitting nodes containing three items, __splitNode(), is
shown in Listing 9-4. The parameters are a reference to the node to be split,
toSplit, its parent node, and the goal key that is being inserted in the tree. It
handles splits for all three situations: the root node, an internal node, and a leaf
node. All situations require making at least one new node that contains key
(and data) 2. That newNode is a leaf node if the node toSplit is also a leaf
node. The first if statement checks the node’s position in the tree and passes
the highest two child links to the __Node() constructor if they exist. These are
the child links just below and above key 2.

Listing 9-4 The __splitNode() method of Tree234

class Tree234(object):        # A 2-3-4 multiway tree class 
… 
   def __splitNode(           # Split a full node during top-down 
         self,                # find operation. 
         toSplit,             # Node to split (current) 
         parent,              # Parent of node to split (or tree) 
         goal):               # Goal key to find 
      if toSplit.isLeaf():    # Make new node for Key 2, either as a 
         newNode = self.__Node( # leaf node 
            toSplit.keys[2],  # with key 2 and value 2 as its 
            toSplit.data[2])  # sole key-value pair 
      else: 
         newNode = self.__Node( # or as an internal node 
            toSplit.keys[2],  # with key 2 and value 2 as its 
            toSplit.data[2],  # sole key-value pair and the highest 
            *toSplit.children[2:toSplit.nChild]) # 2 child links 
      toSplit.nKeys = 1       # Only key 0 and data 0 are kept in 
      toSplit.nChild = max(   # node to split and child count is 
         0, toSplit.nChild - 2) # either 0 or 2 
      if parent is self:      # If parent is empty (top of 2-3-4 tree) 
         self.__root = self.__Node( # make a new root node 
            toSplit.keys[1],  # with key 1 and value 1 
            toSplit.data[1],  # and the node to split plus new node 
            toSplit, newNode) # as child nodes 
         parent = self.__root # New root becomes parent 
      else:                   # For existing parent node, 
         parent.insertKeyValue( # insert key 1 in parent with 
            toSplit.keys[1],  # new node as its higher subtree 
            toSplit.data[1], newNode) 
      return (toSplit         # Find resumes at node to split if goal 
              if goal < toSplit.keys[1] # is less than key 1 



              else newNode,   # else new node 
              parent)         # Parent is either new root or same

After __splitNode() creates the newNode, the next statements update the
number of keys and children of the node toSplit. That node will contain only
key (and data) 0 after the split. The method leaves the references to the other
keys, data, and child links in the arrays because it needs to reference key 1
shortly. Ideally, the array cells should be set to None to erase the extra
references. Keeping only key 0 means the toSplit node now has either two or
no child links, depending on whether it is a leaf node.

After __splitNode() alters the number of keys and child links, the next if
statement checks whether the node toSplit is the root node by testing if its
parent is the Tree234 object itself. Splitting the root node requires making a
second new node to serve as the root of the tree. The new root holds key (and
data) 1 of the node toSplit. The new node becomes the parent of the node
toSplit, which contains key 0, and the newNode containing key 2.

With the creation of the new root, the parent reference passed from the
__find() method is set to that root. That parent pointer will be returned
shortly, so the caller can recognize the new parent node.

If the node toSplit is not the root node, then it must be an internal or leaf node
and __splitNode() should insert its key (and data) 1 into the existing parent
node by calling insertKeyValue(). Remember that the parent cannot be full
because it would have been split on the previous call to the __find() method,
which was the call on the parent node. You also know that the subtree holding
keys just above key 1 is rooted at the newNode created earlier, holding only key
2.

At this point, after the second if statement, all the data items that were stored
at the node toSplit have been placed in their new nodes, and those nodes have
been linked to one another. It’s time to return to the __find() method and
update its current and parent pointers to where the search should continue.
The current pointer should point to the subtree that contains the goal. That
means the subtree to return is based on the relationship of the goal to the keys
that were split. If the goal key is less than key 1 of the node toSplit, then the
search resumes with that same node because it contains key 0 and any subtrees
below it. Similarly, if the goal key is greater than key 1, the search should
continue with the newNode that was created containing key 2 and its child links,
if any. The goal key cannot match key 1 because that would mean it’s a



duplicate handled by the __find() method. The return value of parent is
simple because it is always the variable, parent, although that could have been
modified if the node toSplit was the root node.

Listing 9-5 The search() and insert() Methods of Tree234

class Tree234(object):        # A 2-3-4 multiway tree class 
… 
   def search(self, goal):    # Public method to get data associated 
      node, p = self.__find(  # with a goal key. First, find node 
         goal, self.__root,   # starting at root with self as parent 
         self, prepare=False) # without splitting any nodes 
      if node:                # If node was found, find key in node 
         return node.data[    # data. It’s the first data (index 0) if 
            0 if node.nKeys < 2 or # there’s only 1 key or 
            goal < node.keys[1] else  # if the goal < key 1, else it’s 
            1 if goal == node.keys[1] # the 2nd data if goal == key 1 
            else 2]                   # Otherwise it’s the 3rd data 
 
   def insert(self,           # Insert a new key-value pair in a 
              key,            # 2-3-4 tree by finding the node where 
              value):         # it belongs, possibly splitting nodes 
      node, p = self.__find(  # First, find insertion node for key 
         key, self.__root,    # starting at root with self as parent 
         self, prepare=True)  # and splitting full nodes 
      if node is None:        # If no node was found for insertion 
         if p is self:        # Check if this the root 
            self.__root = self.__Node( # Make a root node with just 
               key, value)    # 1 key value pair 
            return True       # and return True for node creation 
         raise Exception(     # If not root, then something is wrong 
            ’__find did not find 2-3-4 node for insertion’) 
      return node.insertKeyValue( # Otherwise, insert key in node 
         key, value)          # with no subtree, returning insert flag

You now have all the modules needed to define the public search() and
insert() methods as shown in Listing 9-5. Both start by calling __find() on
the root to get a pointer to the node that either holds or should hold the goal
key. The search() method passes False for the prepare flag to avoid splitting
nodes and allowing __find() to return None or False if the goal isn’t found. If
a node is returned, then one of its keys must match the goal. The return
statement of search() selects one of the three node.data items by checking



the quantity of keys in the node and the relationship of its key 1 to the goal. If
no node was returned from __find(), then search() also returns None.

The insert() method is almost as simple. If no node was returned from
__find(), then the tree should have no leaf (or other) nodes. That’s different
from the find methods you’ve seen in other data structures, but remember, the
__find() method will split nodes to make room for the key to insert. The
second if statement checks the parent, p. If it is the Tree234 object, then this is
the first key being added to an empty tree. The root node of the tree is set to be
a new __Node holding the key and value to insert with no children. It returns
True to indicate that a new item was inserted. If the parent was something other
than the Tree234 object and node is None, then a bug has occurred, and it raises
an exception. This could only happen if the __find() method started
descending through some 2-3-4 nodes and ended up returning None for the
insertion node.

When __find() returns a nonempty 2-3-4 node, the insert() method inserts
the key-value pair in that node. The insertKeyValue() method returns True if
a new key is inserted and False if an existing key is updated. The insert()
method returns that flag to its caller.

As you can see, insertion in 2-3-4 trees is quite a bit more complicated than in
binary search trees or ordered linked lists. If the code confuses you in spots,
use the Visualization tool and step slowly through the confusing spots. Seeing
the code alongside the data structure as it is updated can help clarify the
algorithm and purpose of each line of code.

Traversal
Traversing a 2-3-4 tree adds some new wrinkles to the possible tree traversal
orders. The in-order traversal ought to visit each of the data items in order of
ascending keys, similar to binary search trees. That’s easy to do by first
traversing child 0, and then alternating between the keys in the node and their
corresponding “right” child. In terms of the child and key names for a node,
that would be child 0, key 0, child 1, key 1, child 2, key 2, and child 3.

It’s less clear what a pre-order or post-order traversal should do. One option for
pre-order traversal would be to visit all the key-value pairs stored in a node
before visiting any of its children. Another would be to visit the smallest key
before visiting the first two children to mimic the behavior of a binary tree, and



then visit key 1 before child 2 and key 2 before child 3. That approach
somewhat preserves the in-order behavior for keys 1 and 2. A third pre-
ordering would visit the first key and the first child, then the second key and
the second child, followed by the third key and the third and fourth child. That
last ordering is shown in Figure 9-10 along with the symmetrical ordering for
post-order traversal.

Figure 9-10 Traversing 2-3-4 trees

The exact ordering to implement depends on the planned uses of the data
structure. An implementation of the traversal orders of Figure 9-10 in the
traverse() generator is shown in Listing 9-6. Like with the binary search
trees, implementing this using a nonrecursive generator is the most efficient
way to yield keys paired with their data.

At the start, the traverse() method raises an exception if the requested
traverseType is not one of the expected values: pre, in, or post. Next it creates
a stack, using the linked list stack defined in LinkStack from Chapter 5,
“Linked Lists.” The stack is initialized to hold the 2-3-4 tree’s root node. These
are the same steps as in the traverse() method used in binary search trees.

Listing 9-6 The traverse() Generator for Tree234

from LinkStack import *
 
class Tree234(object):        # A 2-3-4 multiway tree class 
… 
 
   def traverse(self,         # Traverse the tree in pre, in, or post 
                traverseType="in”): # order based on type 
      if traverseType not in [ # Verify traversal type is an 



            ’pre’, ’in’, ’post’]: # accepted value 
         raise ValueError( 
            “Unknown traversal type: “ + str(traverseType)) 
 
      stack = Stack()         # Create a stack 
      stack.push(self.__root) # Put root node in stack 
 
      while not stack.isEmpty(): # While there is work in the stack 
         item = stack.pop()   # Get next item 
         if isinstance(item, self.__Node): # If it’s a tree node 
            last = max(       # Find last child or last key index 
               item.nChild,   # going 1 past last key for post order 
               item.nKeys + (1 if traverseType == ’post’ else 0)) 
            for c in range(last - 1, -1, -1): # Loop in reverse 
               if (traverseType == ’post’ and # For post-order, push 
                   0 < c and c - 1 < item.nKeys): # last data item 
                  stack.push((item.keys[c - 1], item.data[c - 1])) 
               if (traverseType == ’in’ and # For in-order, push 
                   c < item.nKeys): # valid data items to yield 
                  stack.push((item.keys[c], item.data[c])) 
               if c < item.nChild: # For valid child links, 
                  stack.push(item.children[c]) # traverse child 
               if (traverseType == ’pre’ and # For pre-order, push 
                   c < item.nKeys): # valid data items to yield 
                  stack.push((item.keys[c], item.data[c])) 
         elif item:           # Every other non-None item is a 
            yield item        # (key, data) pair to be yielded

The while loop processes items from the stack until it is empty. It pops the top
item off the stack and looks at its type to determine what to do next. Like the
traverse() method for binary search trees, there can be three types of items—
a 2-3-4 node, a (key, data) tuple, or a None value—which occur for empty 2-3-4
trees or when leaf nodes push their child links on the stack.

When the item to process is a 2-3-4 node, the various keys and child links must
be pushed onto the stack in an order that depends on the traverse type. The
number of keys and child links is different for each node, and leaf nodes differ
from internal nodes in the number relationship. The method determines the
last index of either a child node or key that it will need to process using the
maximum of the number of children and the number of keys. For an internal
node, the loop must cover all the child nodes. For a leaf node, the loop must
cover all the stored items. In the case of post-order traversal, the last index
could be as high as the number of keys plus one, which is the same as the



number of child links for internal nodes but not for leaf nodes. Adding one
helps simplify the loop that comes next.

The for loop increments a variable, c, over the range 0 through last - 1 in
reverse order. This loop differs from what you’ve seen in other data structures,
but it’s needed to handle all the different types of nodes and traversal orders.
The reverse ordering makes the items pushed on the stack come out in the
desired order when they are popped by the outer while loop.

Inside the loop, four if statements control the order of visiting the keys and
child links. The first one handles post-order traversal. This is the most complex
of the three orders because you want to process the last key after the last child.
In this case you want to push the c – 1 key on the stack so it is visited after
child c. For instance, in a full 2-3-4 node, the last key, key 2, must be pushed
on the stack before pushing on the last child, child 3. The stack items are
processed in the reverse order, yielding key 2 after processing child 3. Theif
statement verifies that c – 1 refers to a valid key before pushing a tuple with
that key and its corresponding data onto the stack.

The second if statement handles the case of in-order traversal. In this case, the
c key should be visited immediately after child c. If c refers to a valid key in
the node, the c key and c data are pushed as tuple on the stack.

The third if statement handles the processing of child c. Depending on the
traversal type, you could have already pushed on the (key, data) pair for either
the c – 1 key or the c key. When the method pushes child c on the stack now,
that child is processed immediately before that key. This if statement checks
that c refers to a valid child before pushing it on the stack (although it would be
acceptable to push a None value). The type of this item is always a 2-3-4 node,
which can be distinguished from the (key, data) tuples.

The fourth and final if statement handles the case of pre-order traversal. In this
case, child c was just pushed on the stack, so the method pushes key c and its
data to be processed before that child.

Traversal is usually the simplest operation of a data structure, but the various
types of nodes and numbers of items within them complicate the process for 2-
3-4 trees. The visualization tool shows the execution of the three orderings
along with the stack contents described here to help clarify the details.

Deletion



We showed how the insertion method can maintain a balance as items are
inserted in the 2-3-4 tree. It would be nice if deleting a node did the same.
Unfortunately, deleting while maintaining balance is quite a bit more complex
than insertion. We review how you can accomplish this task but skip the
detailed implementation for the sake of brevity.

Deleting at Leaf Nodes
Let’s first consider the easy case. If you delete an item from a leaf node with
more than one item in it, nothing needs to be done other than shifting items in
the arrays of keys and data. There is still at least one item in the node, and its
key remains in proper relation with the keys in the parent and sibling nodes.
More importantly the number of nodes and their levels are identical, so balance
is maintained.

There’s one more easy case for a leaf node. When you delete the only item in
the root node and the root is also a leaf node, then it must be the last item in the
tree. Deleting it means the tree is now empty. Deleting leaf nodes elsewhere in
the tree might cause imbalances and we shall soon see.

Deleting at Internal Nodes
Now let’s consider a deletion from an internal node. Deleting an item from the
node would mean reducing the number of child nodes. That’s possible in some
circumstances but not always easy. You might be able to combine the two
subtrees on either “side” of the key being deleted, but that could be messy. Is
there another way? Remember deletion in binary search trees? We saw some
simple cases and the more difficult case when the node had two children. Do
you remember the “trick” for that case?

The idea is that you could replace the item to be deleted by promoting its
successor. The successor item has the next higher key in the tree. There must
be one because you’re deleting from an internal node that has at least two child
nodes. Finding the successor item is almost as simple as it was in the binary
search tree. Start in the child node just to the “right” of the key being deleted. If
you’re deleting the ith key of a node, you start looking for the successor in child
i + 1. This is the subtree containing keys larger than the ith key. Then you
follow any child 0 links until you reach a leaf node. The lowest key in the leaf
node identifies the successor.



Figure 9-11 shows an example of deleting the item with key 15 from a 2-3-4
tree. After locating the node holding keys 15 and 30, you find that 15 is key 0
and it’s an internal node. That means the successor must be the smallest key in
the subtree that is child 1 of that node. The child, node 19-22-26, is a leaf node
so you don’t have to descend any more levels (through the child 0 links), and
the successor is the smallest key in that leaf node, 19. If you put item 19 in the
node that was holding items 15 and 30, then you can delete item 19 from the
leaf node. That’s the simple case you already know how to handle. The bottom
of Figure 9-11 shows the tree after deleting item 15. Item 19 was promoted to
fill the hole created by deleting item 15, and items 22 and 26 were shifted left
in the leaf node.

Figure 9-11 Deleting from an internal node by promoting the successor

To delete an item from an internal node whose successor lies in a leaf node
with other items, you can now replace the item followed by the simple deletion
of the item in the leaf. The tree maintains the same number of nodes and levels,



so balance is maintained. Does this strategy work for all items in all internal
nodes?

Consider deleting item 30 in the initial tree of Figure 9-11. This time you need
to hunt for the successor in child 2 of node 15-30. The successor is 48, but
there’s a problem. Item 48 is the only item in the leaf node. If you promote it to
replace 30, and then delete it from the child node, you will have an empty 2-3-
4 node, and that’s not allowed. Is there another way?

In this case, yes, there is. Just as there is a successor item, there is also a
predecessor item for every item in an internal 2-3-4 node. Finding the
predecessor is the mirror of finding the successor. The search starts in the ith
child and then follows the maximum child links in that subtree, if any, until it
reaches a leaf node. In the leaf node, the maximum key identifies the
predecessor item. If the predecessor is not the only item in the leaf node, you
can promote it to replace the target item—key i—and delete the predecessor. In
the example of deleting item 30, this ends up being a promotion of item 26
followed by the easy case of deleting 26 from leaf node 19-22-26.

Deleting from 2-Nodes
The technique of promoting a successor or predecessor is pretty powerful. All
six of the items in internal nodes of the initial tree of Figure 9-11 have a
successor or a predecessor that lies in a leaf node with more than one item.
Unfortunately, you cannot count on the predecessor or successor to always lie
in a node with other items. You need some other techniques to deal with nodes
with only one item, also called 2-nodes because they have two child links, and
with leaf nodes holding a single item.

There are two techniques to solve this problem. Consider deleting item 54 from
the tree shown in Figure 9-12. By following the links, you can see that both the
predecessor and successor contain only one item (and can be considered 2-
nodes). Now you can’t simply choose one of them to replace item 54 because
deleting the single item in the leaf would break the rules of 2-3-4 trees.



Figure 9-12 Deleting an item by rotating items into the predecessor node

To change the situation for the predecessor, we can look at its relationship to its
sibling nodes. The predecessor in this case has one sibling holding three items
(which can be considered a 4-node). Can we “borrow” one of them to make the
predecessor have two? Well, not exactly, but we can shift the sibling’s item up
and move an item down from the predecessor’s parent. This is shown in the
bottom tree of Figure 9-12. You move item 26 from the sibling to the parent
and item 30 from the parent to predecessor. The circles show where items
changed.

Moving these two items is called a rotation. The rotation reconfigures the tree
without breaking any of the rules of 2-3-4 trees. You still have the items stored
in sorted order, and the tree is still balanced. By rotating item 26 up and item
30 down, you’ve created a tree where you can do the simple deletion: remove



predecessor item 48 from the leaf node and replace item 54 with item 48. That
final step is not shown in Figure 9-12.

Rotations can be performed whenever the predecessor or successor has a
sibling that is either a 3-node or a 4-node (when it has two or three items stored
in it). Depending on which side the sibling lies, the rotation is either to the left
or the right (shifting higher keys to the lower sibling or lower keys to the
higher sibling). The parent can be any kind of node, 2-node, 3-node, or 4-node,
because you are simply changing one item in it.

What if neither the predecessor nor the successor has a 3-node or 4-node
sibling? That’s what happens with the successor of item 54 in Figure 9-12; the
successor item has key 69 and its only sibling is a 2-node containing item 79.
Figure 9-13 shows the second technique that applies to this situation.

Figure 9-13 Deleting an item by fusing items into the successor node

When the 2-node that you’re trying to fix only has siblings that are also 2-
nodes, you can fuse the single item of the successor with that of a sibling and
an item from their common parent, as long as the parent has two or three items
(is a 3-node or 4-node). In the figure, the successor to item 54 is item 69, a 2-
node. The only sibling to the successor is also a 2-node containing the single
item 79. Because their common parent, node 75-83-91, is a 4-node, you can
steal the item that separates the two siblings, item 75, and put it together with
the single items to form a new 4-node, node 69-75-79, as shown in the lower
tree. This is called a fusion operation.

As Figure 9-13 shows, fusing the two single item siblings with an item from
their parent eliminates a node from the tree. That sounds like it might affect the



balance, but if you look closely, it doesn’t. The items remain in sorted order,
and the number of levels hasn’t changed on any path. The path to the deleted
node went away, so it doesn’t matter anymore. One item was removed from the
parent of the successor, but that’s fine because the corresponding child link was
removed.

Using both rotation and fusion, you can make either a successor or a
predecessor node into a multi-item node and then perform the deletion after
replacing the item to delete higher in the tree. Although we’ve shown rotation
on the predecessor and fusion on the successor, they really can be applied on
either side. What matters is the number of items stored at the nodes and their
parent.

Extending Fusion
Is that all the cases? Will rotation and fusion solve everything? The answer is
almost. We need to address a few more special cases, but they turn out to be
variations on what you’ve already seen. An exception that doesn’t fit any of the
rules you’ve seen is a full binary tree. If every node in a 2-3-4 tree has exactly
one item, then every node is a 2-node, like the top example shown in Figure 9-
14.



Figure 9-14 Deleting from a 2-3-4 tree with only 2-nodes

When every node is a 2-node, you can’t use rotation or fusion as described
earlier because both need a sibling or parent node to be either a 3-node or a 4-
node. You obviously need some other technique to deal with this situation.
There’s another limitation of the operations described so far: the tree never
shrinks. Each of the cases you’ve seen so far keeps the height of the tree
(number of levels in a path to a leaf) the same. Replacing the item to delete
with its successor and then deleting the successor from the leaf node leaves the
same number of levels. Rotation and fusion also leave the same number of
levels. Even deleting the last item from the root node that is also a leaf node
technically changes the number of levels from zero to zero. How can the tree
ever shrink from having two levels to one level with these techniques?

You can solve both limitations with a simple change to the fusion operation. If
you allow fusion to occur when the parent is a 2-node that is also the root node



and replace the root node by the fused node, then the tree shrinks by one level.
Fusion already eliminates a node; now you are extending it to eliminating a
whole level. By limiting this fusion to only happen on the root node, it
guarantees that all paths in the tree shrink by one level and preserves balance.

In the example in Figure 9-14, the top tree is transformed into the middle tree
by fusing the top three nodes and their single items into one 4-node. The item
at the root with key 62 becomes the middle item of the new 4-node. The items
at the root’s two children become item 0 and item 2 of the new 4-node. Child 0
and 1 of node 30 become child 0 and 1 of the 4-node. Child 0 and 1 of node 83
become child 2 and 3 of the 4-node. In other words, extended fusion collapses
the top three 2-nodes into a single 4-node, removing one level of the tree.

From the middle tree in Figure 9-14, you can now delete item 62 using the
operations you’ve already seen. Let’s now focus on item 62’s predecessor or
successor. Both are 2-nodes, and both have only 2-nodes as siblings. Their
parent, the new root, is a 4-node, so you can apply the fusion operation. The
lowest tree in the figure shows the application of fusion to nodes 46 and 71 to
make a new 4-node containing 46-62-71. This is one more special aspect of the
fusion operation: it may move the item to be deleted into a lower position,
possibly a leaf node to be deleted easily. In this case, item 62 started at level 0.
The first fusion left it as item 1 of the new root, which is still level 0. The
second fusion moved it to level 1, from which it can be deleted without
reconfiguring nodes.

Applying Rotation and Fusion on Descent
It looks as though you now have all the rules to transform the tree and use
simple deletion from leaf nodes. There is, however, one more thing to add in
how to apply these operations. Consider what would happen if you asked to
delete item 83 from the top tree in Figure 9-14. If you simply skip past the root,
node 62, and then try to delete item 83 from the right subtree, you’ll get stuck
again because both the successor and predecessor are 2-nodes with a 2-node for
a parent. Because the parent of the predecessor and successor isn’t the root,
you can’t use the extended fusion operation (if you did, it would shorten the
paths for only the leaves of this subtree without shortening the paths of all leaf
nodes equally). Now what?

The problem here is that you didn’t recognize at the root that you would need
to apply a fusion operation below. If you had, you would end up with the



middle tree in Figure 9-14, which makes it possible to delete 83 after another
fusion operation. How can you know whether that fusion will be needed or
not? The answer resembles what we did for insertion into the tree. Remember
that as we followed the path to the insertion point, we split nodes that were full.
That approach ensured that when we arrived at the insertion point, the parent
node was not full and could accept another item. For insertion, we assumed we
would need the full nodes to be split. What happens if you assume that you
need 2-nodes to be collapsed as you descend the tree to hunt for the node to be
deleted and its successor or predecessor?

When deletion is implemented for 2-3-4 trees, it requires an algorithm like the
__find() method with the prepare flag that looks at every node encountered
along the path and applies rotation or fusion to change any 2-node into a 3-
node or a 4-node. In other words, you simply assume that nearly empty 2-
nodes need to be collapsed. This algorithm also must track both the item to find
and delete and the successor item as nodes are rearranged. All these extra
details make it quite a bit more complicated than the insertion routine. There
are many cases to examine with sibling nodes and the parent node, and a lot of
rearranging of items and child links. In the rotation example we showed, the
items being rotated were all at the leaf level and one above. When you apply
rotation on internal nodes, the subtrees associated with the two deeper items
being rearranged must follow those items. We look at that topic in more detail
when we discuss rotation in red-black trees in Chapter 10, “AVL and Red-
Black Trees.”

The key points to remember about deletion in 2-3-4 trees are

• The tree can remain balanced as items are deleted.

• Deletion uses a modified version of the __find() method to locate the
item to delete by descending through the tree comparing keys.

• After you find the item to delete, a similar descent of the tree is used to
find the predecessor and successor of the item.

• Both descents apply rotation and fusion operations to 2-nodes
encountered along the way to ensure that when the item to delete or the
predecessor/successor is located, it’s in a node with more than one item
(or it’s the root node with a single item).



Efficiency of 2-3-4 Trees
Fully analyzing the efficiency of 2-3-4 trees is hard, but they bear a lot of
similarities to the binary trees. We can certainly determine the Big O
complexity of operations and memory usage, and that’s what’s most important.

Speed
With the binary trees you saw in Chapter 8, one node on each level must be
visited during a search, whether to find an existing node, insert a new one, or
delete one. The number of levels in a balanced binary tree is about log2(N), so
search times are proportional to this.

One node must be visited at each level in a 2-3-4 tree as well, but the 2-3-4 tree
is shorter (has fewer levels) than a binary tree with the same number of data
items. To see this, compare the transformed trees in Figure 9-5 and Figure 9-
14. In both cases, a 2-3-4 tree has been split or collapsed into a (partial) binary
tree.

More specifically, in 2-3-4 trees there are up to four children per node. A full,
single-node 2-3-4 tree has 3 items and height 0. A full 2-3-4 tree of height 1
has 5 nodes and 15 items. If every node were full, the height of the tree would
be proportional to log4(N), where N is the number of items (not nodes).
Logarithms to the base 2 and to the base 4 differ by a constant factor, 2 ×
log4(x) = log2(x) or log4(x) = ½ log2(x). Thus, the height of a 2-3-4 tree would
be about half that of a binary tree, provided that all the nodes were full.
Because they aren’t all full, the height of the 2-3-4 tree is somewhere between
log2(N) and log2(N)/2. The reduced height of the 2-3-4 tree somewhat
decreases the path to search compared with binary trees.

On the other hand, there are more items to examine in each node along the
path, which increases the search time. Examining the data items in the node
using a linear search multiplies the search time by an amount proportional to
M, the average number of items per node. Even if a binary search is used on
the sorted keys in a node, you end up with a search time proportional to M ×
log4(N) because a binary search only saves one comparison compared to a
linear search and only when there are three keys to compare.



Some nodes contain one item, some two, and some three. If you estimate that
the average is two, search times will be proportional to 2×log4(N). If you
convert that to logarithms of base 2, you get 2×log4(N) = 2 × ½ log2(N) =
log2(N). Thus, for 2-3-4 trees, the increased number of items per node tends to
cancel out the decreased height of the tree. The search times for a 2-3-4 tree
and for a balanced binary tree are approximately equal, and are both O(log N).

The story is similar for insertions and deletions. They each descend through the
log4(N) levels. Both insertions and deletions need to reach the leaf level to do
their work. As they descend, the insertion process splits full 4-nodes and the
deletion process collapses 2-nodes into 3-nodes or 4-nodes. These operations
consume time, but the amount of time does not depend on the number of nodes
in the tree; it’s roughly constant for each node along the path. It does depend on
the number of items per node, M. The node modification operations can be
thought of as another constant factor, C, which ends up making the time to
insert or delete C × M × log4(N). That’s still O(log N).

Traversal, of course, must visit every node, so its overall time is O(N).

Storage Requirements
Each node in a 2-3-4 tree contains storage for three keys and references to data
items and four references to its children. This space may be in the form of
arrays, as shown in Tree234.py, or of individual variables. Most 2-3-4 trees,
however, do not use all this storage. A 2-node with only one data item will
waste 2/3 of the space for data and 1/2 the space for children. A 3-node with
two data items will waste 1/3 of the space for data and 1/4 of the space for
children. If the spaces taken for a key, data, and child reference are identical
and there are two data items per node as the average utilization, then 4 of the 6
cells for keys and data are used and 3 of 4 cells for child links are used, on
average. That’s 7 of 10 in use and 3 of 10 (30%) wasted.

You might consider using linked lists instead of arrays to hold the child and
data references, but the time overhead of the linked list compared with an
array, for only three or four items, would probably not make this a worthwhile
approach.

The number of nodes is not the same as the number of items in a 2-3-4 tree.
The number of nodes could be as low as 1/3 the number items if all the nodes



are full (4-nodes). At the other extreme, there can be only one item per node
(2-nodes), so the number of nodes ranges from N/3 to N, with the average
expected to be N/2 items. In Big O notation, you treat all of those as O(N).
That also means that the average amount of unused memory is O(N).

As traversals are performed, the algorithm needs to store information for each
level of the descent of the tree. This storage can either take the form of
recursive calls or an explicit stack of nodes that need to be visited. That stack
will grow to the number of levels of the tree, so the memory needed is O(log
N). Note that search, insertion, and deletion don’t need recursion (although the
implementation of __find() in Tree234 did use it); they can be written to
follow the chain of pointers without storing the full path back to the root. That
means they need only O(1) space.

2-3 Trees
We discuss 2-3 trees here because they are historically important. Also, some
of the techniques used with 2-3 trees are applicable to B-trees, which we
examine in the next section. Finally, it’s interesting to see how a small change
in the number of children per node can cause a large change in the tree’s
algorithms.

There are many similarities between 2-3 trees and 2-3-4 trees except that, as
you might have guessed from the name, they hold one fewer data item and
have one fewer child. They were the first multiway tree, invented by J. E.
Hopcroft in 1970. B-trees (of which the 2-3-4 tree is a special case) were not
invented until 1972.

In many respects, the operation of 2-3 trees resembles that of 2-3-4 trees.
Nodes can hold one or two data items and can have zero, two, or three children.
Otherwise, the arrangement of the key values of the parent and its children is
the same. The process of inserting a data item into a node is potentially
simplified because fewer comparisons and moves are potentially necessary. As
in 2-3-4 trees, all insertions are made into leaf nodes, and all leaf nodes are on
the same level, as in the sample 2-3 tree shown in Figure 9-15.



Figure 9-15 A 2-3 tree

Node Splits
You search for an existing data item in a 2-3 tree just as you do in a 2-3-4 tree,
except for the number of data items and children. You might guess that
insertion is also like that of a 2-3-4 tree, but there is a surprising difference in
the way splits are handled.

Here’s why the splits are so different. In either kind of tree, a node split
requires three data items: one to be kept in the node being split, one to move
right into the new node, and one to move up to the parent node. A full node in a
2-3-4 tree has three data items, which are moved to these three destinations. A
full node in a 2-3 tree, however, has only two data items. Where can you get a
third item? You must use the new item—the one being inserted in the tree.

In a 2-3-4 tree the new item is inserted after all the splits have taken place. In
the 2-3 tree it must participate in the split. It must be inserted in a leaf, so no
splits are possible on the way down. If the leaf node where the new item should
be inserted is not full, the new item can be inserted immediately, but if the leaf
node is full, it must be split. Its two items and the new item are distributed
among these three nodes: the existing node, the new node, and the parent node.
The three cases for how the items are distributed are shown in Figure 9-16.



Figure 9-16 Insertion into leaf nodes that are full causing splits

In cases 0 and 2 the new item to insert goes into a leaf holding a single item. In
case 1, when the new key falls between the two items that were in the leaf node
being split, it must be passed to the parent node for insertion there. In all the
cases, one item gets passed (or “promoted”) to the parent node, as shown in the
right part of the figure with the dashed black arrow pointing up. If the parent
node has only a single item, the promoted item can be inserted in the node, a
new child link attached, and the insertion is complete. If the parent node is full,
the process must repeat, possibly continuing all the way up to the root node.



For example, inserting an item with key 47 in the 2-3 tree of Figure 9-15 would
add the item to leaf node 51, moving item 51 over to the right to keep the items
in the node ordered. Because the leaf node could accept the new item, nothing
is promoted to its parent.

If you try inserting item 67 into the same tree, you find leaf node 62-70 to be
full. This is an example of Case 1 because the new item’s key is larger than 1
of the keys already stored there. Items 62 and 70 would be separated and item
67 would be promoted to the parent, node 56. Because the parent is not full, it
can accept item 67 and the insertion is finished. Item 70 would be in the new
split node while item 62 would remain in the leaf node that was split.

Promoting Splits to Internal Nodes
If you tried to insert a new item 27 in the 2-3 tree of Figure 9-15, the leaf node
28-31 would split and promote item 28 to its parent. That node 22-36 would
split as well, and item 28 would be promoted again to its parent, the root node
45-71. The root node would also split, putting item 45 in the new root and
making all paths to leaf nodes one level longer.

As you can see, the effects of promoting items up through internal nodes are
complex. There’s the item being promoted, and there’s also the child links that
need to be rearranged to keep the tree structure intact. The split cases shown in
Figure 9-16 all show one item being promoted with two child links to the
parent. The left-hand child link is the one that came from the parent when
searching down for the leaf node to split. The right-hand link leads to the new
node that was created by the split. It always contains a key that is larger than
the key being promoted. That enables the parent node to insert the promoted
item as item j and the promoted right-hand child link as child j+1. The original
link to the node being split remains just to the left of the promoted item at child
j.

Handling the child links gets a bit more confusing as the splits and promotions
ripple up the tree. Figure 9-17 shows the cases that can occur when promotion
finds an internal node that is already full. In each case, one item and one
subtree are being promoted.



Figure 9-17 Splitting internal nodes

Just as for the leaf nodes, there are three cases, depending on which child link
is the source of the split. What’s tricky is that the child links and items all need
different handling in the different cases. The examples in Figure 9-17 all show
items 28 and 39 being split into different nodes but with different
arrangements. Let’s look at each case.



In Case 0, the split came from child 0, the lowest subtree. The promoted key,
22, must be lower than the lowest key of the node being split. To maintain the
key order, the promoted key must replace key 0, and that key, 28, will be
promoted next to its parent. After replacing key 0, you also must replace child
1 of the node being split with the right subtree that was being promoted from
below, the blue link in Figure 9-17. The blue link could lead to a simple leaf
node or a large subtree, depending on the split operation that happened below.
All that this part of the algorithm needs to know, however, is that the blue link
belongs to the right of the item that just replaced item 0.

What about the old values of child links 1 and 2 of the node being split? Child
link 1 of the node being split is shown in yellow in Figure 9-17. In case 0, child
1’s keys are above that of the item being promoted (28) and below that of the
item moved to the new split node 39. Thus, the only place that child link 1
(yellow) can go is as child 0 of the new split node. Child link 2 of the node
being split goes to child link 1 of the new split node.

In case 1, the promoted item and subtree come from child link 1 of the node
about to be split. In this case the promoted item 30 continues to be promoted to
the next parent. The promoted (blue) subtree, however, doesn’t follow it up the
tree. Instead, it becomes child 0 of the new split node because its keys are
larger than item 30 (going up to the next parent) and less than the key of the
new split node, 39. Child links 0 and 1 of the node being split remain as before,
and child 2 moves over to become child 1 of the new split node because it
holds all the keys above 39.

Case 2 is perhaps the easiest of the three. The promoted item key, 43, goes into
the new split node, and the promoted (blue) subtree becomes child 1 of that
split node. Item 39 gets promoted from the node being split to the next parent
along with a link to the new split node 43. Child 2 of the node being split
moves over to become child 0 of the new split node because all its keys are
greater than 39 and less than 43.

Implementation
We leave a complete Python implementation of insertion in a 2-3 tree as an
exercise. We finish with some hints on how to handle splits.

On the way down, the insertion routine doesn’t notice whether the nodes it
encounters are full or not. It searches down through the tree until it finds the



appropriate leaf. If the leaf is not full, it inserts the new value and the insertion
is done. If the leaf is full, however, the routine must rearrange the tree to make
room. To do this, there are a couple of options. It could call a split() method.
Parameters to this method would include the full leaf node and the new item to
insert. It would be the responsibility of split() to make the split and insert the
new item in the new leaf, and then promote an item to the parent.

If split() finds that the leaf’s parent is full, it would call itself recursively to
split the parent. It keeps calling itself until a non-full node or the root is found.
The return value of split() is the new right node, which can be used by the
previous incarnation of split().

How would split() know the parent node? If split() is called on a leaf node
along with an item to insert, it doesn’t have a direct link to the leaf node’s
parent, at least not if you follow the tree and node structure that we used for the
2-3-4 trees. There are several ways to address that. First, you could add a
parent field to each Node object to have an explicit link in every node. The
root node would have None or possibly the 2-3 tree object for its parent value.
When creating nodes, the constructor would need a parent parameter. Then
when you rearrange the child links while promoting items from splits, you
would rearrange the parent links at the same time. This is about the same
amount of effort needed to make doubly linked lists from singly linked ones, as
discussed in Chapter 5.

The second option would be to keep a stack of node objects that represents the
path to the node being split. The bottom of the stack would be the root node of
the tree, and the top would initially be the leaf node to split. This stack could
replace the node parameter to split(), and finding the parent would mean
popping the top item off the stack. This process is fairly straightforward,
although the insert() method would need to build the stack, or you could
modify the __find() method to return it as a secondary return value.

The third option is to use the recursion that is naturally part of the __find()
process in the insert() implementation. Each call to insert() would try to
insert the new item if the node is a leaf and return an item to promote if the
node was full. In other words, as insert() recursively calls itself on child
nodes, it would check the return values to see whether it was done (no
promoted item requiring more splits), or whether there is an item to promote
that must be inserted on the current node. If a promoted item is received from a
recursive call and the node is not full, then the promoted item can be inserted,
and no further splits or promotions are needed above that node in the tree. If



the node is full, it makes the new split node, rearranges the items and child
links, and returns the item to promote according to the cases described in
Figure 9-17. The recursive changes ripple back up to the root, and if the root is
full, it would be split too.

Coding the splitting process using any of these options is complicated by the
case logic for the promoted items and their accompanying subtrees. We’ve
mentioned the promoted item as a parameter for the split() method or as a
return value for insert() method. There is both the key and data value for that
item as well as the accompanying subtree that must be passed or returned.

Efficiency of 2-3 Trees
We haven’t shown the deletion operation for 2-3 trees, but as you might
imagine, it involves rotation and fusion operations like what was done for 2-3-
4 trees. That means that 2-3 trees have largely the same efficiency as 2-3-4
trees. Search time is proportional to the height of the tree. If every node is full,
each internal node has three children, and the height is log3(N), where N is the
number of items. With the same analysis as for 2-3-4 trees, you end up with a
search being an O(log N) operation.

Insertion also descends the height of the tree but sometimes must go back up
the path to the root, splitting full nodes to make room for the inserted item.
That means insertion takes somewhere between log3(N) and 2× log3(N) steps.
That’s less efficient than the 2-3-4 tree, but only in terms of a constant
multiplier. Overall both are still O(log N) operations.

In terms of memory usage, because it stores at most two items and three child
links at each node, the amount of unused memory will be less for a 2-3 tree
than for a 2-3-4 tree.

External Storage
Remember that 2-3-4 trees are examples of multiway trees, which can have
more than two children and more than one data item. Another kind of multiway
tree, the B-tree, is useful when data resides in external storage. External
storage typically refers to some kind of disk system containing files, such as
the hard disk found in many desktop computers and servers. For cloud
computing, chunks of data are stored together and can be part of a dataset



spread across many servers. In general, external storage could mean any
storage system that is slower to access than main memory and addressable by
some integer. The file systems used on external storage devices can be quite
complex. For now, just think of them as a very large storage space.

In this section we begin by describing various aspects of external data
handling. We talk about a simple approach to organizing external data:
sequential ordering. Finally, we discuss B-trees and explain why they work so
well with disk files. We finish with another approach to external storage,
indexing, which can be used alone or with a B-tree. We also touch on other
aspects of external storage, such as searching techniques.

The details of external storage techniques are dependent on the operating
system, language, and even the hardware used in a particular installation. Here,
we stick with a general discussion to get the concepts across.

Accessing External Data
The data structures discussed so far are all based on the assumption that data is
stored entirely in memory (sometimes called main memory or RAM, for
random-access memory). Every element in RAM is accessible in the same
amount of time if you have its address. In many situations, however, the
amount of data to be processed is too large to fit in memory all at once. In this
case a different kind of storage is necessary. External storage generally has a
much larger capacity than main memory—made possible by a lower cost per
byte of storage.

Of course, disk files have another advantage over most RAM: their
permanence. When you turn off your computer (or the power fails), the data in
main memory is lost. Disk files and other nonvolatile data storage devices
can retain data indefinitely with the power off. RAM is a volatile data store
because its contents can be easily lost.

The disadvantage of external storage is its speed; it’s much slower than main
memory. This speed difference means that different techniques must be used to
handle it efficiently. All-important data must be kept on some kind of device
where it won’t be lost. Moving the data efficiently between slower permanent
stores to faster volatile stores like RAM motivates the need for different kinds
of data structures.



As an example of external storage, imagine that you’re writing a database
program to handle the basic contact data for everyone living in a particular
state or country—perhaps 1 to 100 million entries. Each entry includes a
surname, given name, phone number, address, and various other data. Let’s say
an entry is stored as a record requiring 1,024 bytes, a kilobyte. The result is a
database size of at least 1,000,000 × 1,024, which is 1,024,000,000 bytes, or
close to 1 gigabyte. There was a day when no computer on earth had a gigabyte
of memory. Now gigabyte storage is commonplace, and machines can have
terabytes of memory. We’ll assume that there is some collection of data that is
too large to fit in main memory but small enough to fit on the disk drive of
some target machine. This could be for a larger collection of data, like all the
credit card transactions in the world for a year.

Thus, we have a large amount of data on a disk or other slow drive. How do
you organize it to provide the usual desirable characteristics of data structures:
quick search, insertion, and deletion?

In investigating the answers, keep in mind two constraints. First, accessing
external data is much slower than accessing it in main memory. Second,
external data access typically reads or writes many records at once. Let’s
explore these points.

Very Slow Access
A computer’s main memory works electronically. Any byte can be accessed
just as fast as any other byte. The access time depends on the technology being
used, but let’s assume it takes something like 10 nanoseconds (10 billionths of
a second). How much slower does it take to get a byte from external storage?

Let’s first consider disk drives. Data is arranged in circular tracks on a spinning
disk. To access a particular piece of data on a disk drive, the read-write head
must first be moved to the correct track. This is done with a stepping motor or
similar device; it’s a mechanical activity that requires several milliseconds
(thousandths of a second).

After the correct track is found, the read-write head must wait for the data to
rotate into position. On average, it takes half a revolution for the head to be
over the data. Even if the disk is spinning at 15,000 revolutions per minute,
about 2 more milliseconds pass before the data can be read. After the read-
write head is positioned, the actual reading (or writing) process begins; this
might take a few more milliseconds.



Thus, disk access times of around 10 milliseconds are common. This is
something like 1,000,000 times slower than a main memory that could access a
cell in 10 nanoseconds. The ratio varies considerably with the devices, but it’s
always large, say above 100,000.

Next, let’s consider flash memory, another form of external storage. Like disks,
it retains its data even when power is turned off. Flash is faster to access than
spinning disks but still slower than main memory. A flash memory device
might take something like 10 to 100 microseconds (millionths of a second) to
access a particular part of the data. Although that’s much faster than the time to
get the disk head positioned, it still is 1,000 or 10,000 times more than reading
a cell from main memory.

In cloud computing environments, blocks of data are distributed over
networked servers. Accessing a particular block stored on server A to be
processed on server B means copying the data over the network. Network
speeds grow faster every few years but can vary considerably with the traffic
load. The network access speed compared to the speed of access to main
memory is likely to be millions or billions of times slower.

The technology changes quickly, and speeds and costs of both main memory
and external storage will change. What is likely not to change is that the fastest
memory remains costly, either in terms of the money needed to buy it or the
energy it consumes, compared with the slower external memory systems. The
difference in speed is likely to remain on the order of thousands or millions to
one. Hence, we will always need effective ways of accessing the higher-
capacity, lower-cost external storage.

One Block at a Time
For disk storage, when the read-write head is correctly positioned and the
reading (or writing) process begins, the drive can transfer a large amount of
data to (or from) main memory quickly. For this reason, and to simplify the
drive control mechanism, data is stored on the disk in chunks called blocks,
pages, allocation units, segments, or some other name, depending on the
system. Flash memory also provides access in terms of pages or blocks even
though it doesn’t involve a spinning disk. We call the chunks of data blocks in
this discussion. Notably, the chunks of storage do not correspond directly to
files in external memory; files typically take many blocks.



The disk drive always reads or writes a minimum of one block of data at a
time. Block size varies depending on the device and is usually a power of 2.
For our contact database example, let’s assume a block size of 8,192 bytes
(213). That means a database of a million (1 kilobyte) records will require
1,024,000,000 bytes divided by 8,192 bytes per block, which is 125,000
blocks.

External memory accesses are most efficient when they read or write a multiple
of the block size. If you ask to read 100 bytes, the system will read one block,
8,192 bytes, and ignore all but 100 of them. If you ask to read 8,200 bytes, it
will read two blocks, or 16,384 bytes, and throw away almost half of them. The
device must still spend time fetching the full block(s), regardless of the request
size. By organizing your software so that it works with a full block or blocks of
data at a time, you can optimize its performance.

Assuming the contact database record size is 1,024 bytes, you can store eight
records in a block (8,192 divided by 1,024), as shown in Figure 9-18. Thus, for
maximum efficiency, it’s important to read eight records at a time (or multiples
of this number).



Figure 9-18 Blocks and records in a file

Notice that it’s also useful to make your record size a power of 2 because that
evenly divides the block size, which is typically a power of 2. In any case, it’s
best to have an integral number of records fit in a single block without any
wasted space.

Of course, the sizes shown in the example for records, blocks, and so on are
only illustrative; they will vary widely depending on the type, number, and size
of records and other software and hardware constraints. Blocks containing
hundreds of records are common, and records may be much larger or smaller
than 1,024 bytes.



After the read-write head of a disk is positioned as described earlier, reading a
block is fast, requiring only milliseconds. Thus, a disk access to read or write a
block is not very dependent on the size of the block. It follows that the larger
the block, the more efficiently you can read or write a single record (assuming
you use all the records in the block).

Sequential Ordering
One way to arrange the database in a file on the disk would be to order all the
records according to some key, say alphabetically by surname. Maybe the
record for a person named Aaron Aardvark would come first, and so on. This
scenario is illustrated in Figure 9-19.

Figure 9-19 Sequential ordering of records

Searching
To search a sequentially ordered file for a particular surname such as Turing,
you could use a binary search. You would start by reading a block of records
from the middle of the file. Let’s simplify the discussion and assume all the
blocks of the file are in sequentially ordered blocks on the disk, so it’s easy to
find the middle block by knowing the first and last block numbers (this is
rarely the case in actual file systems, but there are often ways to get the block



numbers almost as quickly). The eight records in the block are all read at once
into an 8,192-byte array (or buffer) in main memory.

If the keys of these middle records were too early in the alphabet (ending with
Kahn, for example), you would go to the 3/4 point in the file and read a block
there, perhaps finding Pearl; if the keys in the middle records came after search
key, you’d go to the 1/4 point, perhaps finding Englebart. By continually
dividing the range in half, you would eventually find the target record.

As you saw in Chapter 3, a binary search in main memory takes log2 N
comparisons, which for 1,000,000 items would be about 20. If every
comparison took, say 1 microsecond, this would be 20 microseconds, or about
1/50,000 of a second, much less than an eye blink.

In this section, however, we’re dealing with data stored on a disk. Because
each disk access is so time-consuming, it’s more important to focus on how
many disk accesses are necessary than on how many individual records there
are. The time to read a block of records will be very much larger than the time
to search the eight records in the block once they’re in memory.

Disk accesses are much slower than memory accesses, but on the other hand,
you access the disk a block at a time, and there are far fewer blocks than
records. In our example, there are 125,000 blocks. Log2 of this number is about
17, so in theory, you need about 17 disk accesses to find the record you want.

In practice this number is reduced somewhat because you read eight records at
once. In the beginning stages of a binary search, it doesn’t help to have
multiple records in memory because the next access will be in a distant part of
the file. When you get close to the desired record, however, the next record you
want may already be in memory because it’s part of the same block of 8
records. Having the next record in memory may reduce the number of disk
accesses by two or so. Thus, you need about 15 disk accesses (17 − 2), which
at 10 milliseconds per access requires about 150 milliseconds, or 0.15 seconds
to complete the binary search of sequentially stored records. This is much
slower than in-memory access of about 1/50,000 of a second, but still not too
bad.

Insertion
Unfortunately, the picture is much worse if you want to insert (or delete) an
item (a record) from a sequentially ordered file. Because the data is ordered,



both operations require moving half the records on average and, therefore,
about half the blocks.

Updating each block requires two disk accesses: one read and one write. When
the insertion point is found, the block containing it is read into a memory
buffer. The last record in the block is saved, and the appropriate number of
records are shifted up to make room for the new one, which is inserted. Then
the buffer contents are written back to the disk file as a block.

Next, the block following the insertion block is read into the buffer. Its last
record is saved in main memory, all the other records are shifted up, and the
last record from the previous block is inserted at the beginning of the buffer.
Then the buffer contents are again written back to disk. This process continues
until all the blocks beyond the insertion point have been rewritten.

Assuming there are 125,000 blocks, you must read and write (on average)
62,500 of them, which at 10 milliseconds per read and write requires more than
20 minutes to insert a single entry (20 ms × 62,500 = 1,250 seconds = 20.83
minutes). This isn’t satisfactory by today’s standards, especially if you have
more than a few records to add.

Another problem with the sequential ordering is that it works quickly for only
one key. Our example contact database is arranged by surnames. Suppose you
wanted to search for a particular phone number or city. You can’t use a binary
search because the data is ordered by name. You would need to go through the
entire file, block by block, using sequential access. This search would require
reading an average of half the blocks, which would require about 10 minutes,
which is very poor performance for a simple search. We obviously need a more
efficient way to store large amounts of data in external memory.

B-Trees
How can the records kept in external memory be arranged to provide fast
search, insertion, and deletion times? You’ve seen that trees are a good
approach to organizing in-memory data. Do trees work with external memory
such as files on a disk?

They do, but a different kind of tree must be used for external data than for in-
memory data. The appropriate tree is a multiway tree somewhat like a 2-3-4
tree, but with many more data items per node; it’s called a B-tree. B-trees were
first conceived as appropriate structures for external storage by R. Bayer and E.



M. McCreight in 1972. (Strictly speaking, 2-3 trees and 2-3-4 trees are B-trees
of order 3 and 4, respectively, but the term B-tree is often taken to mean many
more children per node.) Notably, B-trees are not binary trees, despite the
similarity in their names.

One Block Per Node
Why would one need so many items per node? You’ve seen that disk access is
most efficient when data is read or written one block at a time. In a tree, the
structure containing data is the node (whether it be a node in a B-tree, a 2-3-4
tree, a binary search tree, or other). It makes sense then to store an entire block
of data in each node of the tree. This way, reading a node accesses a maximum
amount of data in the shortest time.

How much data can be put in a node? The answer depends on the size of the
items, of course. In the contact database example using sequential records, you
could fit 8 1-kilobyte data records into an 8,192-byte block.

In a tree, however, you also need to store the links to other nodes (which means
links to other blocks because a node corresponds to a block). In an in-memory
tree, such as those discussed in previous chapters, these links are references to
nodes in other parts of memory. For a tree stored in a disk file, the links are to
block numbers in the file (from 0 to 124,999, in the million record database
example). For block numbers, you can use an integer field. If the integer takes
4 bytes (32 bits), it can reference a little more than 2 billion possible blocks,
which might be enough. Bigger databases and external memory devices with
even more addressable blocks would need even larger block numbers.

Organizing the data as tree nodes means that you can no longer squeeze eight
1,024-byte records into a block because you need room for the links to child
nodes. You could reduce the number of records to 7 to make room for the links
that take 8 × 4-bytes, for example, but it’s most efficient to have an even
number of records per node and fill up the block. Perhaps the record size
doesn’t need to be the full 1,024 bytes; maybe a field or two can be reduced in
size. Let’s assume that the database designers would accept records of 1,010
bytes by shortening some of the fields. That means a node can still contain 8
records along with 9 child links (one more than the number of data items)
requiring 36 bytes (9 × 4). The node would have 8 × 1,010-byte records plus 36
bytes of links and a couple more 4-byte integers that hold the number of keys
and child links (nKeys and nChlld), leaving 68 bytes unused (8,192 − 8,080 −



36 − 8). A block in such a tree (and the corresponding full node representation)
is shown in Figure 9-20.

Figure 9-20 A node in a B-tree of order 9 with its block structure

Within each node the data is ordered sequentially by key, as in a 2-3-4 tree. In
fact, the structure of a B-tree is like that of a 2-3-4 tree, except that there are



more data items per node and more links to children. The order of a B-tree is
the number of children each node can potentially have. In the example this is 9,
so the tree is an order 9 B-tree.

If the full tree structure will be stored in external memory, which is what is
typically done for a database, you also need to store the object that represents
the tree. The Tree234 object is used to hold that information in the in-memory
implementation. All that must be stored in the corresponding B-tree object is
the reference to the block of the root node. There probably would be other
attributes stored for a large database that would go in this object. That
information would probably be stored in a block all by itself, or perhaps in
place of the first record of a block. Even though there would likely be a lot of
unused bytes in the block, it’s much more efficient in terms of disk accesses to
keep it in a separate block and treat all tree nodes identically.

Searching
A search for a B-tree record with a specified key is carried out in much the
same way it is in an in-memory 2-3-4 tree. Let’s assume the tree object is
already in memory with its reference to the block containing the root node.
First, the block containing that root is read into memory. The search algorithm
then starts examining each of the eight records (or, if it’s not full, as many as
the node holds), starting at 0. When it finds a record with a greater key, it
knows to go to the child whose link lies between this record and the preceding
one. Note that you could use a binary search within the keys of a node, and it
makes more sense to do so for large numbers of keys. Using binary search
saves some in-memory comparisons, which is only a small savings compared
to the time needed to read the external node/block.

This process continues until the correct node is found. If a leaf is reached
without finding the specified key, the search is unsuccessful.

Insertion
The insertion process in a B-tree is more like an insertion in a 2-3 tree than in a
2-3-4 tree. Recall that in a 2-3-4 tree many nodes are not full and, in fact,
contain only one data item. A 2-3-4 node split always produces two nodes with
one item in each. This is not an optimum approach in a B-tree, even though
splits don’t have to create nodes with a single item.



In a B-tree it’s important to keep the nodes as full as possible so that each disk
access, which reads an entire node, can acquire the maximum amount of data.
To help achieve this end, the insertion process differs from that of 2-3-4 trees in
three ways:

• A node split divides the data items equally: half go to the newly created
node, and half remain in the old one.

• Node splits are performed from the bottom up, as in a 2-3 tree, rather
than from the top down.

• Again, as in a 2-3 tree, it’s not the middle item in a node that’s promoted
upward, but the middle item in the sequence formed from the items in
the node plus the new item.

We demonstrate these features of the insertion process by building a small B-
tree, as shown in Figure 9-21. There isn’t room to show a realistic number of
records per node, so we show only eight; thus, the tree is an order 9 B-tree. We
also switch to using integer keys to fit them all in the figure.



Figure 9-21 Building a B-tree

At the top left of Figure 9-21 is a panel labeled Insertion 1. It shows a root
node after the first item, with key 60, has been inserted. The blue circle
indicates the item that was just inserted. Below that is Insertion 8, where the



eighth item, with key 40, has been inserted. This fills all the item slots in the
root node. As usual, all the items are stored in sorted order.

In the next panel, Insertion 9, a new data item with a key of 75 is inserted,
resulting in a node split. Here’s how the split is accomplished. Because the root
is being split, two new nodes are created (as in a 2-3-4 tree): a new root and a
new node to the right of the one being split.

To decide where the data items go, the insertion algorithm arranges their nine
keys in order, in an internal buffer. Eight of these keys are from the node being
split, and the ninth is from the new item being inserted. This would go between
item 70 and 80, leaving 60 as the middle item with four others on either side.

The middle item 60 is placed in the new root node. All the items to the left of it
remain in the node being split, and all the items to the right go into the new
right-hand node. In Insertion 9, the inserted item 75 ends up in the split leaf
node, but that’s not always the case, as you can see in later examples.

The number of items in a split node is always half that of a full node. So, if this
were an order 31 B-tree, 15 items would go in the new split node. The single
middle item would be promoted to the parent, and the original leaf node would
be reduced to 15 items too.

It’s clear after Insertion 9 that the B-tree has capacity to store many more items
in the existing three nodes. Depending on their keys, newly inserted items go in
one of the two leaf nodes. Let’s insert six more items with keys 35, 65, 83, 55,
92, and 77. Two of those items, 35 and 55, go in the left leaf and the other four
go in right leaf. That brings the right leaf to full capacity with 8 items, and the
overall B-tree has 15 items in it.

On Insertion 16, item 71 arrives, and it must go in the right leaf. Because that
leaf is full, it must be split. Item 71 lands before the middle of the eight items
in that right leaf (65, 70, 75, 77, 80, 83, 90, 92). That means item 71 won’t go
into the new split node; it will stay with the “current” node being split. The
four items with higher keys are split from the current node to form the new
node. Item 77 is taken out of the current node and promoted to its parent, the
root. The current node becomes child 1 of the root, and the new split node is
child 2. In this case, the inserted item ends up in the left part of the split. The
resulting B-tree is shown in the upper right panel of Figure 9-21. It has four
nodes, and the 16th inserted item 71 ended up in the central leaf.



Promoting item 77 from the leaf to the root doesn’t cause more splits because
the root only had a single item in it. Note that the three leaf nodes after
Insertion 16 are all at the same level of the tree, level 1, even though we show
them at different vertical positions in the figure.

The next insertions continue to add items to the leaves according to their keys.
It takes at least five more inserts to split the newest leaves because they start
off with four items each. As the splits occur, one item gets promoted to the
parent, the root node. After at least 28 more inserts, the root can have 9 child
nodes each holding 4 items (44 items total = 9 × 4 + 8). After adding at least 4
more items, one of child nodes can grow to holding 8 items and become full.
That brings the total to 48 items spread over the 10 nodes.

Insertion 49 of Figure 9-21 shows how a split could happen that expands the B-
tree to two levels. For this to happen, the inserted item must go in a full leaf
under a full root. Let’s assume, somewhat coincidentally, that an item with key
49 is inserted. This item lands in a full leaf containing items 43, 44, 45, 47, 50,
51, 53, and 55. That node must split and, in this case, because 49 lands in the
middle of the nine items, item 49 is promoted instead of one of the previously
inserted items. That splits the full leaf node into two 4-item leaf nodes shown
at the bottom of the panel labeled Insertion 49 in Figure 9-21.

The promoted item 49 goes up to the root node, but because that is also full, the
node must be split. Looking at the promoted item in relation to the items in the
root, 17, 23, 35, 41, 60, 65, 77, and 84, shows that it again lands in the middle.
Thus, item 49 gets promoted again, and the full root node is split in two. That
is how you end up at Insertion 49 of Figure 9-21. Item 49 is promoted out of
the root node so that it forms a new single item node. The old root is split into
nodes 17-23-35-41 and 60-65-77-84. This (contrived) example shows how the
inserted node could end up at an internal node or even in a new root. All the
leaves remain at the same level in the tree, despite their positions in the figure.

Notice that throughout the insertion process no node (except the root) is ever
less than half full, and many are more than half full. As we noted, keeping
nodes as full as possible promotes efficiency because a file access that reads a
node always acquires a substantial amount of data. The nodes are not split on
the downward search to the node where the item should be inserted; they are
only split as the insertion encounters a full leaf node and promotes the
overflow back up toward the root. Thus, no unneeded splits cause expensive
disk accesses.



Efficiency of B-Trees
Because there are so many records per node, and so many nodes per level,
operations on B-trees are very fast, considering that the data is stored on slower
storage like a disk. In the contact database example, there are a million records.
All the nodes in the B-tree other than the root are at least half full, so they
contain at least 4 records and 5 links to children. The height of the tree is thus
somewhat less than log5 N (logarithm to the base 5 of N), where N is
1,000,000. This is about 8.58, so there will be 9 levels in the tree (height 8).

Thus, using a B-tree, only nine disk accesses are necessary to find any record
in a file of 1,000,000 records. At 10 milliseconds per access, this takes about
90 milliseconds, or 9/100 of a second. This is dramatically faster than the
binary search of a sequentially ordered file.

The more records there are in a node, the fewer levels there are in the tree.
You’ve seen that there are 9 levels in our example B-tree, with the nodes
holding only 8 records each. In contrast, a binary tree with 1,000,000 items
would have about 20 levels, and a 2-3-4 tree would have 10. If you use blocks
with hundreds of records, you can reduce the number of levels in the tree and
further improve access times, although this is an option only for devices that
support blocks large enough to hold all those records.

Although searching is faster in B-trees than in sequentially ordered disk files,
it’s insertion and deletion that demonstrate B-trees greatest advantages.

Let’s first consider a B-tree insertion in which no nodes need to be split. This is
the most likely scenario because of the large number of records per node. In
our contact database example, at most 9 block accesses are required to find the
insertion point. Then one more access can write the block containing the newly
inserted record back to the disk, for a total of 10 accesses.

Next let’s see how things look if a node must be split. The node being split
must be read, have half its records removed, and be written back to disk. That’s
the same as what was needed for an insertion with no split, 10 accesses. The
newly created node must be written to the disk, and the parent must be read
and, following the insertion of the promoted record, written back to disk. This
adds 3 accesses to the 10 of the simpler case, for a total of 13 (although the
parent node might remain in main memory after being read on the search for
the insertion point, so the total could be 12). This number is a major
improvement over the 500,000 accesses required for insertion in a sequential



file. As splits are promoted up the B-tree, they each add 3 more accesses per
level, so at most 7 × 3 = 21 more accesses in an 8-level tree.

In some versions of the B-tree, only leaf nodes contain records. Nonleaf nodes
contain only keys and block numbers. This strategy may result in faster
operation because each block can hold many more block numbers. The
resulting higher-order tree will have fewer levels, and access speed will be
increased. On the other hand, programming may be complicated because there
are two kinds of nodes, leaves with values and nonleaves without them, and the
need to find a leaf node corresponding to an internal node’s key to access the
value.

Indexing
A different approach to speeding up external memory access is to store records
in sequential order but use a file index along with the data itself. A file index is
a list of key/block pairs, arranged with the keys in order. Recall that our
original contact database example had 1,000,000 records of 1,024 bytes each,
stored 8 records to a block, in 125,000 blocks. To make a file index using
surnames as the key, every entry in the index contains two items:

• The key, a string like Jones.

• The number of the block where the Jones record is located within the
file. These numbers run from 0 to 124,999.

Let’s say you use a string 59 bytes long for the key (big enough for most
surnames including Unicode characters), 4 bytes for the block number (an
integer), and a byte for the record number within the block. Each entry in such
an index would require 64 bytes. This is only 1/16 the amount necessary for
each record.

The entries in the index are arranged sequentially by surname. There could be
multiple entries for common surnames. The original records on the disk can be
arranged in any convenient order. This usually means that new records are
simply appended to the end of the sequence, so the records are ordered by time
of insertion. This arrangement is shown in Figure 9-22.



Figure 9-22 A file index example

File Index in Memory
The file index is much smaller than the file containing actual records. It may
even be small enough to fit entirely in main memory. In this example there are



1,000,000 records. Each one has a 64-byte entry in the index, so the index will
be 64 × 1,000,000, or 64,000,000, bytes long (a little less than 64 megabytes).
In modern computers there’s no problem fitting this index in memory (although
it could be too big for a very tiny computer in some miniature device).

The file index can be stored in external memory and read into main memory
whenever the database program is started up. From then on, operations on the
index can take place in memory. At the end of each day (or whenever the
database is shut down), the index can be written back to disk for permanent
storage. The 64,000,000-byte index would take up 7,813 blocks on the disk.
That might require several seconds to read or write, but only at startup and
shutdown.

Searching
The index-in-memory approach allows much faster operations on databases
than are possible with records arranged sequentially in external memory. For
example, a binary search could require 20 index accesses. Even at 0.1
microsecond (100 nanoseconds) per access, that’s only about 2/1,000,000 of a
second. There’s inevitably the time needed to read the actual record from
external memory, after its block number has been found in the index. On a
disk, that read operation might take one block access or about 10 milliseconds
(1/100 of a second).

Insertion
To insert a new item in an indexed file, two steps are necessary. You first insert
the item’s full record into the main file; then you insert an entry, consisting of
the key and the block number where the new record is stored, into the file
index.

Because the file index is in sequential order, to insert a new item, you need to
move half the index entries, on average. Figuring about 3 nanoseconds to move
a byte in memory (one read and one write of 8 bytes takes about 20
nanoseconds), you have 500,000 entries times 64 bytes per entry times 3
nanoseconds per byte, or about .096 (1/10th) seconds to insert a new entry. This
compares with 20 minutes for updating the unindexed sequential file. Note that
you don’t need to move any records in the main file; you simply append the
new record at the end of the file. You would eventually need to write the file



index to external memory, which would take about 72 seconds, writing another
7,182 (= 1,000,000 × 64 / 8,192) blocks at 1/100th of a second per block.

Of course, you can use a more sophisticated approach to storing the file index
in memory. You could store it as a binary tree, 2-3-4 tree, or another multiway
tree, for example. Any of these would significantly reduce insertion and
deletion times. In any case the index-in-memory approach is much faster than
the sequential-file approach. In some cases, it is also faster than a B-tree.

The only actual disk accesses necessary for an insertion into an indexed file
involve the new record itself and eventually storing the file index. Usually, the
last block in the file is read into memory, the new record is appended, and the
block is written back out. This process involves only two file accesses. Storing
the file index means writing thousands of blocks, but that is needed only when
the database service is being shut down. The time spent preserving the file
index is spread out over the hundreds, thousands, or perhaps millions of
insertions and searches.

Multiple Indexes
An advantage of the indexed approach is that multiple indexes, each with a
different key, can be created for the same set of records (database). In one
index the keys can be last names; in another, telephone numbers; in another,
addresses. Because the indexes are small compared with the data file, this
doesn’t increase the total data storage very much. Of course, it does present
more of a challenge when items are inserted or deleted from the file because
entries must be added to or deleted from all the indexes, but we don’t get into
that here.

Index Too Large for Memory
If the index is too large to fit in memory, it too must be broken into blocks and
stored on the disk. For large files, storing the index itself as a B-tree may then
be profitable. In the main file, the records are stored in any convenient order.

This arrangement can be very efficient. Appending records to the end of the
main file is a fast operation, and inserting the index entry for the new record is
also quick because the index is a tree. The result is very fast searching and
insertion for large files.



Note that when a file index is arranged as a B-tree, each node contains n child
pointers and n−1 data items. The child pointers are the block numbers of other
nodes in the file index. The data items consist of a key value and a pointer to a
block and record in the main file. Don’t confuse these two kinds of block
pointers.

Complex Search Criteria
In complex database searches, the only practical approach may be to read every
block in a file sequentially. Suppose in our contact database example you
wanted a list of all entries with first name Kristen, who lived in Sao Paolo, and
who had a phone number with the digits 284 in it. Imagine the name and phone
number were found on a scrap of paper in a bag with a lot of money
somewhere in Sao Paolo, and it’s important to locate the full record for the
person.

A file organized by last names would be no help at all. Even if there were
index files ordered by first names and cities, there would be no convenient way
to find which files contained both Kristen and Sao Paolo. Even less likely are
indexes for three-digit subsequences of phone numbers (although they are
sometimes created). In such cases the fastest approach is probably to use one of
the indexes, if it exists, and read every record it references for the particular
name, block by block, checking each record to see whether it meets the rest of
the criteria.

Sorting External Files
You’ve seen how to use B-trees to manage a database stored in external
memory. The data for each node, and hence each block, is sorted by a key. The
sorting happens as items are inserted. What about when some other process
wrote data to files, and you want to sort that data? Imagine a bunch of log files
written by some process on a computer. Each record in the log probably has a
date and time, along with other information that was relevant to the process
such as the phase of the operations, the type of event that occurred, the size of
some internal data structure, the account numbers for transactions, and so on. If
you want to sort the log files by some field other than date and time (assuming
they were recorded chronologically), and they don’t all fit into internal
memory, what’s the best way to sort them?



Mergesort is the preferred algorithm for sorting large amounts of external data.
The reason is that, more so than most sorting techniques, disk accesses tend to
occur in adjacent records rather than random parts of the file.

Recall from Chapter 6, “Recursion,” that mergesort works recursively by
calling itself to sort smaller and smaller sequences. After two of the smallest
sequences (one element each in the internal-memory version) have been sorted,
they are then merged into a sorted sequence twice as long. Larger and larger
sequences are merged, until eventually the entire file is sorted.

The approach for external storage is similar. However, the smallest sequence
that can be read from the disk is a block of records. Thus, a two-stage process
is necessary.

In the first phase, a block is read, its records are sorted internally, and the
resulting sorted block is written back to disk. The next block is similarly sorted
and written back to disk. This process continues until all the blocks are
internally sorted.

In the second phase, two sorted blocks are read, merged into a two-block
sequence, and written back to disk. This process continues until all pairs of
blocks have been merged. Next, each pair of two-block sequences is merged
into a four-block sequence. In each step, the size of the sorted sequences
doubles, until the entire file is sorted.

Figure 9-23 shows the mergesort process on an external file. The file consists
of eight blocks of 16 records each, for a total of 128 records. Instead of
showing a record with a key in the figure, the records are shown as colored
rectangles. The color and height of each rectangle are its key. Even though they
are of different heights in the figure, the records on the disks have the same
length in terms of bytes.



Figure 9-23 Mergesort on an external file

Let’s assume that only three blocks can fit in internal memory, so you can’t
simply read all the records at once, sort them, and write them all out. Of
course, all these sizes would be much larger in a real situation. The first row of
Figure 9-23 shows the original, unsorted file data.

Internal Sort of Blocks
In the first phase all the blocks in the file are sorted internally. Each block is
read into memory and then its records are sorted with any appropriate internal
sorting algorithm, such as quicksort (or, for smaller numbers of records,



Shellsort or insertion sort). The internal sort could also be done with mergesort
because the main disadvantage of mergesort is not an issue here. Remember
that mergesort needs a second array the size of the original but that buffer must
be available because mergesort needs it to merge two blocks later in memory.
Whatever sorting algorithm is used, the sorted blocks of 16 records each are
written back to external memory as shown in row 2 of Figure 9-23.

A second file, File 2, may be used to hold the sorted blocks, under the
assumption that the availability of external storage is not a problem. It’s often
desirable to avoid modifying the original file.

Merging
In the second phase, the sorted blocks are merged. The first pass merges every
pair of 16-record blocks into a sorted two-block sequence. Thus, the leftmost
two blocks, 0 and 1, are merged into the leftmost 32 records in merge pass 1.
Also, blocks 2 and 3, blocks 4 and 5, and blocks 6 and 7 are merged into their
respective sequences of 32 records. The result is shown in the merge pass 1
row of Figure 9-23. Let’s assume that the process writes a third file, file 3, to
hold the result of this merge step (although that may not always be necessary).

In merge pass 2, two 32-record sequences are merged into a 64-record
sequence, which can be written back to file 2. There are four of these
sequences that get merged into two larger sequences. The last row of Figure 9-
23 shows the result of merge pass 3 where the two 64-record sequences are
merged into a 128-record file, file 3. Now the sort is complete. Of course, more
merge steps would be required to sort larger files; the number of such steps is
proportional to log2 N. The merge steps can alternate between two files, with
one being discarded at the end.

Internal Arrays
Because the computer’s internal memory has room for only three blocks, the
merging process must take place in stages. Let’s say there are three arrays,
called arr0, arr1, and arr2, each of which can hold a block.

In merge pass 1, block 0 is read into arr0, and block 1 is read into arr1. These
two arrays are then mergesorted into arr2. Because arr2 holds only one block,
it becomes full before the sort is completed. When it becomes full, its contents
are written to disk in file 3. The sort then continues, filling up arr2 again. This
completes the sort, and arr2 is again written to disk. The process moves on to



blocks 2 and 3, reading them into arr0 and arr1 and merging their contents
into arr2. As arr2 becomes full, the results are written to the end of file 3.

In merge pass 2, you can continue using the three arrays, arr0, arr1, and arr2,
even though the lengths of the sorted sequences have exceeded the array size.
The input arrays, arr0 and arr1, are initially filled with the first block of the
sequence. After all the records from, say, arr0 have been merged into the
output array, arr2, the next block from that sequence can be read to refill arr0.
You use arrays that are the size of a block (or perhaps a few blocks depending
on how much memory is available) to efficiently read and write the external
memory. Their size doesn’t depend on the full amount of data to sort. This
scheme works for all the merge passes.

We can make another important simplification to the external mergesort
algorithm. In the first phase, it wrote the sorted blocks back to external
memory. Because the first step of merge pass 1 is reading those blocks back
into arr0 and arr1, we can eliminate the first phase by performing the in-
memory sort right after reading the unsorted block. The sort only happens on
merge pass 1, and all the other merge passes only perform merges.

Efficiency of External Mergesort
The overall efficiency of mergesort remains O(N×log N), even when the data is
in external memory. Due to the slow access to external data, however, the
running time is much longer than if all the data could fit in internal memory.
The number of external data accesses becomes the controlling factor. In the
second phase, every block of the File 2 is read, sorted if it’s merge pass 1,
merged appropriately, and then written back to the external store. Thus, there
are two accesses (a read and write) for every block in every merge pass. That
brings the total to two times the number of merge passes. The number of merge
passes is proportional to log2 N but is reduced by the fact that blocks contain
multiple records, say B records per block. That makes the number of merge
passes log2 N/B, or due to the way logarithms work, log2 N − log2 B. With the
external memory accesses taking thousands or millions of times longer than the
in-memory operations, they dominate the overall time.

Summary
• A multiway tree has more items and children per node than a binary tree.



• A 2-3-4 tree is a multiway tree with up to three items and four children
per node.

• In a multiway tree, the items in a node are arranged in ascending order by
their keys.

• In a 2-3-4 tree, all insertions are made in leaf nodes, and all leaf nodes
are on the same level.

• Three kinds of internal nodes are possible in a 2-3-4 tree: A 2-node has
one item and two children, a 3-node has two items and three children,
and a 4-node has three items and four children.

• There is no 1-node in a 2-3-4 tree.

• In a search of a 2-3-4 tree, at each node the keys are examined. If the
search key is not found, the next node will be child 0 if the search key is
less than key 0; child 1 if the search key is between key 0 and key 1;
child 2 if the search key is between key 1 and key 2; and child 3 if the
search key is greater than key 2.

• Insertion into a 2-3-4 tree requires that any full node be split on the way
down the tree, during the search for the insertion point.

• Splitting the root creates two new nodes; splitting any other node creates
one new node.

• The height of a 2-3-4 and a 2-3 tree can increase only when the root is
split.

• The heights of 2-3-4 and 2-3 trees are less than log2(N).

• Search times are proportional to the tree height.

• The 2-3-4 tree wastes space because many nodes might not even be half
full.

• A 2-3 tree is like a 2-3-4 tree, except that it can have only one or two
data items and zero, two, or three children.

• Insertion in a 2-3 tree involves finding the appropriate leaf and then
performing splits from the leaf upward, until a non-full node is found.



• Both 2-3 and 2-3-4 trees maintain balance during inserts and deletes by
keeping all leaf nodes on the same level.

• External storage means storing data outside of main memory, such as on
a disk.

• External storage is larger, cheaper (per byte), and slower than main
memory.

• Data in external storage is typically transferred to and from main
memory a block at a time.

• Blocks can be different sizes but are typically hundreds to tens of
thousands of bytes.

• Accessing an arbitrary block of external memory is thousands or millions
of times slower than accessing arbitrary internal memory.

• Although accessing an arbitrary block is slow, accessing consecutive
blocks is typically much faster.

• Data can be arranged in external storage in sequential key order. This
gives fast search times but slow insertion (and deletion) times.

• A B-tree is a multiway tree in which each node may have dozens or
hundreds of keys and children. The number of possible children is the
order of the B-tree.

• There is always one more child than there are items in a B-tree, 2-3 tree,
or 2-3-4 tree internal node. Leaf nodes have no child links.

• For the best performance with external memory, a B-tree is typically
organized so that a node holds one block of data.

• Indexes to data stored in external memory provide fast search times and
allow for multiple keys to be used in searches.

• If the search criteria involve many keys, a sequential search of all the
records in a file may be the most practical approach.

• External mergesort is an efficient way to sort data stored in external
memory.



• By using three arrays sized as (a small multiple of) the block size in
external memory, mergesort can sort more data than can fit in internal
memory.

Questions
These questions are intended as a self-test for readers. Answers may be found
in Appendix C.

1. A 2-3-4 tree is so named because a node can have
a. three children and four data items.
b. zero, two, three, or four children.
c. two parents, zero or three children, and four items.
d. two parents, three items, and zero or four children.

2. A 2-3-4 tree is superior to a binary search tree in that it is ________.
3. Imagine a parent 2-3-4 node with item keys 25, 50, and 75. If one of its

child nodes had items with values 60 and 70, it would be the child
numbered __________.

4. True or False: Data items in a 2-3-4 tree are located exclusively in leaf
nodes.

5. Which of the following is not true every time a node below the root in a
2-3-4 tree is split?
a. Exactly one new node is created.
b. Exactly one new data item is added to the tree.
c. One data item moves from the split node to its parent.
d. One data item moves from the split node to its new sibling.

6. A 2-3-4 tree increases its number of levels when ________.
7. Searching a 2-3-4 tree does not involve

a. splitting nodes on the way down if necessary.
b. picking the appropriate child to go to, based on the keys of items in a

node.



c. ending up at a leaf node if the search key is not found.
d. examining at least one key in any node visited.

8. After a nonroot node of a 2-3-4 tree is split, which item does its new
right child contain, the item previously numbered 0, 1, or 2?

9. Which of the following statements about a node-splitting operation
below the root of a 2-3 tree (not a 2-3-4 tree) is not true?
a. The parent of a split node must also be split if it is full.
b. The item with the smallest key in the node being split always stays in

that node.
c. The item being inserted at a leaf or the item promoted from a lower

split must be compared with the other items of the node being split.
d. The splitting process starts at a leaf and works upward.

10. What is the Big O efficiency of inserting and deleting an item in a 2-3
tree?

11. In accessing data on a disk drive,
a. merging sorted records is not always possibly because at least half the

records must be in RAM to do so efficiently.
b. moving data to make room to insert records is fast because so many

items can be accessed at once.
c. deleting a record is fast because it can be marked as available for use

by other programs.
d. reading two consecutive records could be 10,000 times faster than

reading two random records in a large file.
12. In a B-tree for external storage, each node contains _______ data items.
13. Node splits in a B-tree are most like node splits in a _______ tree.
14. In external storage, indexing means keeping a file of

a. keys and their corresponding blocks and records.
b. records and their corresponding blocks.
c. keys and their corresponding records.
d. last names and their corresponding keys.



15. When sorting data in external storage that is too large to fit in memory,
the most efficient way is
a. creating a 2-3-4 tree for each block and traversing it in order.
b. copying half the data in memory, sorting it, and then merging in the

rest a block at a time.
c. using block size arrays and mergesorting.
d. quicksorting each block first and then using an insertion sort on

blocks.

Experiments
Carrying out these experiments will help to provide insights into the topics
covered in the chapter. No programming is involved.

9-A Draw by hand what a 2-3-4 tree looks like after inserting each of the
following keys: elm, asp, oak, fig, bay, fir, gum, yew, and ash. Which
item insertions cause splits? Don’t use the Tree234 Visualization tool.

9-B Draw by hand what a 2-3 tree looks like after inserting the same
sequence of values as in Experiment 9-A.

9-C Think about how you would remove a node from a 2-3 tree. What are
all the cases that need to be handled?

Programming Projects
Writing programs to solve the Programming Projects helps to solidify your
understanding of the material and demonstrates how the chapter’s concepts are
applied. (As noted in the Introduction, qualified instructors may obtain
completed solutions to the Programming Projects on the publisher’s website.)

9.1 Extend the definition of the Tree234 class to include the following
methods. Show how they operate on trees with 0, 1, and at least 10
items. Three of these methods don’t need to explore all nodes, and at
most only one of them should use the traverse() generator to be the
most efficient.
a. levels()—Count the number of levels in the tree. An empty tree and

a tree with a single node and no children have zero levels.



b. nodes()—Count the number of nodes in the tree. An empty tree has
zero nodes. A single root node has one node.

c. items()—Count the number of items in the tree. An empty tree has
zero items. A single root node can have one, two, or three items.

d. minItem()—Return the key and data of the item with the minimum
key in the tree. Calling this on an empty tree should raise an
exception.

e. maxItem()—Return the key and data of the item with the maximum
key in the tree. Calling this on an empty tree should raise an
exception.

9.2 Two things are needed to build an index file as shown in Figure 9-22: an
assignment of records to blocks in external storage, and a sorted array
of record keys. When you build a 2-3-4 tree, each of the records goes in
a 2-3-4 node. You can assign to each 2-3-4 node a “block” number by
writing a traversal method that returns each key and data along with a
block number for the node it’s in and the index number of the data
within the block. Block numbers can start at 1 and increment by 1.
For the second part, write a SortedArray class that maintains a set of
records in sorted order. The SortedArray constructor should take a
parameter that is a function to extract the sorting key from each record.
The function can be called on each record to get the sorting key. The
SortedArray class should have
a. a __len__() method so that the number of records it holds can be

found with the len() function.

b. a get(i) method that returns the ith record in the array
c. a find_index() method that returns the index of a record containing

a particular key, or if the key is not in the sorted array, the index
where the new key would be inserted. This method should use binary
search to find the index and stop when the first of multiple duplicate
keys is found.

d. a search() method that returns a record associated with a goal key or
None if no record has such a key.

e. an insert() method to add a new record to the sorted array (and
should allow duplicate keys in records).



f. a delete() method to delete a record from the sorted array that takes
a full record as a parameter so that the exact record can be deleted
from the array even when there are other records with the same key
present.

Use the SortedArray and the block traversal method to create an index
of a 2-3-4 tree built using the Tree234 class described earlier. Insert the
following key-value pairs into the 2-3-4 tree and then build the sorted
index using the value (a year) as the sorting key. The 2-3-4 tree uses the
first element of the following tuples as the record key and the second
element as the data. Your SortedArray should then sort them by the
second element (a year).
("Fran", 2006), ("Amir", 1996), ("Herb", 1975), ("Ken", 1979), 
("Ivan", 1988), ("Raj", 1994), ("Don", 1974), ("Ron", 2002), 
("Adi", 2002), ("Len", 2002), ("Vint", 2004), ("Tim", 2016)

Show the contents of the 2-3-4 tree and all the records in the
SortedArray in sorted order. Print a file index for the years in the
records. Each entry in the file index has a key (year), block number (2-
3-4 node number), and record index. After printing the full index, delete
a couple of items with duplicate year keys and show what records
remain in the SortedArray.
9.3 A 2-3-4 tree can be used as a sorting machine. Write a sortarray()
function that’s passed an array of values and writes them back to the
array in sorted order.
This project is somewhat complicated by the issue of duplicate values
because the 2-3-4 tree expects unique keys. You can handle them,
however, by taking advantage of the value associated with each key in
the 2-3-4 tree. By making the value be the count of the number of times
the key appears in the array, the correct number of duplicate values can
be placed in the output array.
The sortarray() function should start by creating an empty 2-3-4 tree,
loop through all the keys checking whether the key is already in the
tree. If a key is already in the tree, increment its count and reinsert it in
the tree with the correct count. Next, the function should traverse the
tree in order to copy the keys back to the array, making any needed
copies of duplicate keys. Show the input and output array contents,
including some duplicate values.



An interesting “array” to sort is your source program. You can put each
line of your source code into a Python array with an expression like

[line for line in open(’my_source_code.py’)]

A few blank lines in the source code will likely be duplicate values.
9.4 Modify the Tree234.py program to make a Tree23 class so that it

creates and works with 2-3 trees instead. It should display the tree and
allow searches. It should also allow items to be inserted, but only if the
parent of the leaf node (which is being split) does not also need to be
split. In other words, it will allow insertions only at level 0 and level 1
of the tree and only when one or the other node on the insertion path is
not full. It must handle the split cases for leaf nodes shown in Figure 9-
16. The next Programming Project explores how to insert items into
deeper nodes. The delete() method is not required. If insert() is
called on an existing key, the key’s value should be updated (and the
node should not be split). Show how the tree grows as you add items.
Try adding 10 different items and then searching the tree for both items
it contains and items it does not contain to show its performance.
If you plan to solve both this Programming Project and the next one, it
helps to set up the insert() method as follows. The insert() method
should call a recursive method, __insert(), that takes a node object as
a parameter, along with the key and value to insert. The insert()
method calls __insert() on the root node and looks to see if a split
happened on the root. If it does, insert()should make a new root node
to hold the promoted item with the old root node and the split node as
children.
To make this work, the __insert() method should return three items: a
key, the key’s value, and a split node, all bundled as a Python tuple.
When a split occurs, the key and value together are the item to promote,
and the split is the new node that is the top of a subtree containing items
having higher keys than the promoted item. If the key in the returned
tuple is None, then no split occurred. The __insert() method is called
recursively to descend the tree, but only one level down. If its node
argument is None, that’s the base case of an empty tree (no root node),
so it returns a simulated split with a tuple containing the item being
inserted and None for the split node. The insert() method turns that
into a new root node that is also a leaf node.



If the __insert() method gets a valid leaf node, it should determine
where the new key would go, insert it, and determine whether that
causes a split, returning a tuple of three Nones if no split is needed. If
the __insert() method gets a valid internal node, it should check if
either the internal node or the child where the insert should take place is
not full and make the recursive call on the child. If the recursive call
causes a split, the promoted item should be inserted in the internal node.
If both nodes are full, it should raise an exception saying that kind of
insertion is not allowed.

9.5 Extend the program in Programming Project 9.4 so that the __insert()
routine is fully recursive and can handle situations with a full parent of
a full child following the cases presented in Figure 9-17. This allows
insertion of an unlimited number of items. The base cases of
__insert() are the same as before, but without the check that either the
current node or the child where the insertion will take place is full, the
split can continue propagating up the tree in the recursive calls. As
before, show how the tree grows as you add items. Try adding 10
different items and then searching the tree for both items it contains and
items it does not contain to show its performance.



10. AVL and Red-Black Trees
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As you learned in Chapter 8, “Binary Trees,” ordinary binary search trees offer
important advantages as data storage structures. They enable quick search for
an item with a given key, and quick insertion or deletion of an item. Other data
storage structures, such as arrays, sorted arrays, linked lists, and sorted linked
lists, perform one or the other of these activities slowly. Thus, binary search
trees might appear to be the ideal data storage structure.



In Chapter 9, “2-3-4 Trees and External Storage,” you learned how storing
multiple items per node and carefully controlling them during insertions could
produce balanced trees. Maintaining balance in the trees keeps the time needed
to find, insert, or delete an item consistent and quick. Unbalanced trees can be
much slower by comparison. Ordinary binary search trees can become
unbalanced depending on the order items are inserted.

This chapter explores ways to keep binary search trees balanced using AVL
trees and red-black trees. Binary trees are simpler, in general, with a single
item per node, and in some ways, easier to implement than multiway trees.
They also are slightly easier to analyze because the number of items per node is
a constant.

Surprisingly, there’s a direct correspondence between the multiway 2-3-4 tree
and binary red-black tree, as you will learn.

Our Approach to the Discussion
We’re going to start with a simple approach to balancing binary trees: measure
and correct. We add an extra field to every node to keep track of the height of
the tree and keep updating it as items are inserted, moved, and removed. From
that, it will be easy to see when the tree’s balance needs to be corrected. Later,
we show a different approach that labels the nodes as either red or black. With
just those two labels and some rules about how the labels are manipulated, it’s
also possible to determine when the tree is balanced or not.

The AVL tree is the earliest kind of balanced tree. It’s named after its
inventors: Adelson-Velskii and Landis. In AVL trees each node stores an
additional piece of data: its height from the deepest leaf node in that subtree.
This data is the easiest to understand conceptually and perhaps to implement
too. The red-black tree is a bit more complicated conceptually, so we discuss
how it works without showing an implementation. We also investigate its
connection to the 2-3-4 tree of Chapter 9.

Balanced and Unbalanced Trees
Let’s review how binary trees become unbalanced. When a group of keys is
inserted in either ascending or descending order, the tree grows on only one
side, like in the example shown in Figure 10-1.



Figure 10-1 Unbalanced tree resulting from items inserted in ascending
order

As mentioned in Chapter 8, the nodes arrange themselves in a line with no
forked branches. Because each node is larger than the previously inserted one,
every node is a right child, so all the nodes are on one side of the root. The tree
is maximally unbalanced. If you were to insert items in descending order, every
node would be the left child of its parent, and the tree would be unbalanced on
the other side. When the insertion order is only partly increasing or decreasing,
every run of increasing or decreasing keys can make a linear string of nodes
like this.

Degenerates to O(N)
When there are no branches, the tree becomes effectively a sorted linked list.
The arrangement of data is one-dimensional instead of two-dimensional.
Unfortunately, as with linked lists, you must now search through (on average)
half the items to find the one with a particular key. In this degenerate situation,
the speed of searching is reduced to O(N), compared with the O(log N) of a
balanced tree. Searching through 1,000,000 items in such an unbalanced tree
would require an average of 500,000 comparisons, whereas for a balanced tree
it requires only 20.

Data that’s only partly sorted generates trees that are only partly unbalanced. If
you use the Binary Search Tree Visualization tool from Chapter 8 to attempt to
generate trees with 31 nodes, some of them are more unbalanced than others.
For example, the tree shown in Figure 10-2 has 14 items, even though the
request was to fill it with 31 items (the maximum that can be shown). The



Visualization tool prevents insertions below level 4, so the items that would
have been inserted at level 5 or below were discarded.

Figure 10-2 A partially unbalanced tree

Although not as bad as a maximally unbalanced tree, this situation is not
optimal for searching. Searching partially unbalanced trees takes time
somewhere between O(N) and O(log N), depending on how badly the tree is
unbalanced.

Measuring Tree Balance
To know when a tree is unbalanced, we should have a way of measuring
balance. With a metric, we can define some value or values as being
“balanced,” and everything else can be considered unbalanced.

What should we measure? As mentioned in Chapter 8, balanced trees should
have an approximately equal number of nodes in their left and right sides. We
could simply count the nodes on the left and the right. In Figure 10-1 the root,
node 44, has zero nodes to the left and three nodes to the right. That’s clearly
unbalanced, but how about the root, node 49, in Figure 10-3? It has five nodes
on the left and five nodes on the right. It’s more balanced but still has long
sequences of nodes with only a single child.



Figure 10-3 A symmetric binary tree

There are two difficulties with simply counting the nodes to the left and the
right of the root. The first is that you’re looking only at the root. If you only
measure the tree at the top, you could miss problems further down. It’s better to
apply the metric to every subtree. That way, you can achieve two things: you
get a measure over the entire tree, and you can measure each subtree
separately. Being able to measure subtrees allows you to note things like nodes
19 and 75 in Figure 10-3 being fully balanced, whereas nodes 27 and 65 are
quite unbalanced.

If you apply the node count technique to each subtree, you can certainly
identify balanced and unbalanced nodes by subtracting the number of children
on the right from the number on the left. Using those differences, zero means
balanced, a positive value means there are more nodes on the left, and a
negative value means there are more on the right.

To get a measure for the overall tree, you could try to combine the subtree
measures into a single metric. If you were to add up all the left-right node
count differences, you would get an overall metric, but that would still result in
a value of zero for the tree in Figure 10-3 because every node with a negative
value has a matching positive value on the other side. That might be an
interesting measure of symmetry, but it doesn’t help decide when the tree is
balanced to minimize searching.

Adding up the absolute values of the differences would be one way to measure
the full tree’s imbalance. That would total 14 for the tree in Figure 10-3 (four
each for nodes 27 and 65, three each for nodes 16 and 83, and zero for all the
others because they are balanced). If you rearrange the nodes into the nearly



symmetric and balanced tree shown in Figure 10-4, the overall metric goes
down to 4 (one each for the nodes at level 2 with the keys 17, 21, 65, and 80).

Figure 10-4 A nearly symmetric, balanced binary tree

That’s definitely an improvement. The biggest impact to search performance,
however, lies in the length of the path to the deepest leaf node. That becomes
the longest path that a search must follow. In the degenerate case of insertion in
ascending order of keys shown in Figure 10-1, the longest path has length N−1.
Counting nodes on both subtrees sort of captures the imbalance, but summing
the absolute difference in node counts produces a metric of four for the tree in



Figure 10-4 where the length of the path to every leaf is the same. It would be
better to measure the heights directly.

Say you’d like to measure the difference in depth of the two sides of each tree.
Because you want to measure it at every subtree, it makes more sense to
measure from the subtree root down to its leaf nodes. That way, you can ignore
where the subtree lies within the overall tree; its position with respect to the
overall tree’s root doesn’t change the metric.

The number of nodes on the longest path from a particular node X to a leaf
node is called the height of the subtree rooted at node X, or more simply, the
height of X. Figure 10-5 shows the distinction between the level (or depth) of a
node and the height of the subtree rooted at a node. In the sample tree, each
subtree’s height is shown in orange next to the root node of the subtree. All the
leaf nodes are at height 1 regardless of their depth. The height measures the
longest path below the node (to an empty child), and the level measures the
distance to the tree root.



Figure 10-5 Node levels and subtree heights

For balance, you want to measure the difference in height between the two
child branches of a node. You can subtract the right child’s height from the left
child’s height to get the difference. When a node has only one child like nodes
17, 21, 65, and 80 do in Figure 10-4, the height of the empty child is
considered zero. That way the height difference is either +1 or −1 for a node
having a single leaf node as a child, like nodes 17 and 21. You want to ensure
that the imbalance of those nodes is counted.

Totaling up the absolute values of the height differences gives a different
overall tree metric. For the unbalanced tree in Figure 10-3, the total is 10 (three
each for nodes 27 and 65 at level 1, two each for nodes 16 and 93 at level 2,
and zero for all the others). The tree in Figure 10-4 would have a total of 4 (one
for each of nodes 17, 21, 65, and 80). This overall metric is the same as the
total of node count differences. Both find that there are 4 nodes with imbalance
of one between their left and right sides.

How Much Is Unbalanced?
With the overall metrics we’ve described so far, a tree with a metric of zero
would certainly be balanced. If you demand that every tree with a nonzero
metric be considered unbalanced, then you could only have balanced trees with
node counts of 1, 3, 7, 15, …, 2N − 1. The reason is that the only way to be
perfectly balanced is to have every node link to exactly two (or no) children
and completely fill all the lowest levels of the tree (the ones nearest the root).

Defining balance to be metric = 0 is not a very practical definition because
you’d like the binary trees to behave something like the 2-3-4 trees, which can
contain any number of nodes and still be considered balanced. Balancing
binary trees is about keeping the maximum height of any node to a minimum
so that the longest search path is no longer than necessary. That’s exactly the
case in Figure 10-4, so that tree’s metric should come out balanced. Let’s see
how far we need to extend the definition of balanced.

Consider the smallest binary trees. An empty tree and a tree with a single node
are balanced. When a tree has two nodes, one node must be at a different height
than the other. That means the root node must have at least a height difference
of one. So, you must allow at least one node to have height difference of +/− 1
in a balanced tree.



When you add a third node, there are five possible tree shapes, as shown in
Figure 10-6. The middle one is obviously balanced. In all the others, the root
node has a height difference of two, and the midlevel node has a height
difference of one.

Figure 10-6 The possible shapes for 3-node binary search trees

Because a balanced 3-node configuration exists, you don’t need to extend the
definition for balanced to include anything but the middle tree in Figure 10-6.
You saw that the 2-3-4 trees in Chapter 9 could be transformed into new
configurations without violating any of the rules for constructing those trees.
The same is true among these 3-node binary trees; they differ by simple
rotations of the nodes. Ideally, the balancing algorithm could rotate the
unbalanced versions into the balanced one. We come back to those rotations in
a moment.

What happens when you add a fourth, fifth, sixth… node to the tree? When you
add the fourth to a balanced 3-node tree, it becomes a leaf node at level 2, like
the leftmost tree in Figure 10-7. Its parent has a height difference of one
because it has only one child. So does the root node because it has one side
with height 2 and the other with height 1. It doesn’t matter which child at level



2 is the fourth node. The figure shows it being the leftmost child, but the height
differences would remain for both the root and the leaf node at level 1, just
with changes in sign.

Figure 10-7 Balanced 4-, 5-, 6-, and 7-node binary search trees

As you add the fifth and sixth nodes, if they go at level 2 like the examples in
Figure 10-7, the maximum absolute height difference of any node is one. The
example shows keys that would make that happen, but even if a node were
inserted at a lower level, there would be rotations that could transform the tree
back into one of the shapes like those in Figure 10-7 as long as the node count
was 4 through 6. Adding the seventh node means the tree can be put into the
balanced shape on the right.

This same pattern repeats at every level of the tree. Newly inserted nodes go at
the leaf level. That either places them in a position where no node has a height



difference of more than one, or it puts them at a level one lower than the lowest
leaf, and rotations can raise them up to restore balance. This is the core idea of
all self-balancing trees. We can now define balance as

A balanced, binary tree is one where all nodes have an absolute height difference of one or zero.

AVL Trees
The AVL tree is a modified binary search tree that adds a height field to each
node. The height differences between the left and right children of a node can
be used to measure its balance. When the absolute height difference at any
subtree becomes larger than one, rotations are used to correct the imbalance.
Let’s look first at those rotations.

You saw the five possible configurations of 3-node binary search trees in
Figure 10-6. What may not have been clear is that each of those configurations
is one rotation away from another. Figure 10-8 shows those configurations in a
slightly different order. To transform the tree on the far left to the next tree on
its right requires a rotation around the mid-level node—the one with key 27.
That rotation moves node 27 down to the left and raises node 49 to the mid-
level. The next transformation in the figure shows rotating around the root,
node 65, in the opposite direction. That raises node 49 to the root and lowers
node 65 to the right, producing the balanced tree in the middle.

Figure 10-8 Rotations on 3-node binary search trees

The right side of Figure 10-8 shows the mirror image of the operations.
Starting at the tree on the far right and rotating right around the mid-level node
65 produces the tree that’s second from the right with node 49 at the mid-level.
Rotating that tree’s root to the left produces the balanced tree in the middle
with node 49 at the root. You can also reverse the transform directions to go the



other way in the figure. In other words, starting from the balanced tree in the
middle, rotating right around the root, produces the tree that’s second from the
right in the figure.

The basic idea of the AVL tree is to use the additional height field in every
node to determine the balance of its parent node. When an imbalance of more
than one is created by an insertion or deletion, it will be corrected by using
rotations.

The AVLTree Visualization Tool
Let’s explore how AVL trees work using the AVLTree Visualization tool. When
you launch the tool, it starts out like the 2-3-4 Tree Visualization tool, except
that the empty tree object at the top is labeled AVLTree. As with the other tree
visualizations, only numeric keys from 0 to 99 are allowed. You can insert and
search for individual keys using the Insert and Search buttons as before. There
are also operation buttons for deleting, randomly filling, emptying, and
traversing the nodes in order.

To start, try randomly filling the empty tree with 31 items. The tree that
appears should look something like the one Figure 10-9. The heights appear
above and to the right of each node in the tree.

Figure 10-9 The AVLTree Visualization tool with a randomly filled tree

The tree in Figure 10-9 is balanced; the height difference at all nodes is −1 , +1,
or 0. That’s very different from what happened when you inserted 31 randomly
chosen keys into the binary search tree of Figure 10-2. Was it just luck that it



came out balanced? No, the AVL tree keeps the tree balanced with every
insertion.

Try erasing the tree with the New Tree button and refilling it with 31 random
nodes. The result is again a balanced tree. If you repeat the experiment many
times and compare the results to the same experiment using binary search trees,
you will also see that the resulting AVL trees have many more nodes, on
average. Why is that?

The randomly generated AVL trees have more nodes than similarly generated
binary search trees due to two factors. The first is the depth limit that the
Visualization tools impose. Because insertions are not allowed at level 5 or
below in either tool, some of the inserted keys are discarded. The second factor
is that a balanced tree has more available nodes to fill within the depth limit.
Because the AVL tree adjusts the balance on every insertion, the leaves of the
tree are kept as close as possible to the root. That leaves room for later
insertions. Eventually, even the AVLTree Visualization tool will run out of
room at the lower levels, so it’s very rare that all 31 randomly chosen values
can be placed in the tree.

Inserting Items with the AVLTree Visualization Tool
Let’s look at how the AVL tree maintains its balance. If you create a New Tree
with the Visualization tool and then insert the keys 10 and 20 into it, you will
see a tree like the one in Figure 10-10. The flag = True on the left indicates
that the insert operation was successful (that is, it did not go past the depth
limit and did not find an existing node with the same key). The 2 next to the
root node indicates that it lies at height 2 in the tree.



Figure 10-10 The first two items inserted in an AVL tree

If you try to insert a node with key 30 in the tree, it first attempts to insert the
item as the right child of node 20, following the same procedure as binary
search trees do. The top panel of Figure 10-11 shows the process just after
completing the insertion, before updating the height of node 20 and node 10.
The procedure then returns up the path that led to the insertion point, checking
the height difference of each internal node and updating its own height.

In panel 2 of Figure 10-11, the process has returned to the root node (now with
the top arrow pointing to it) and discovered that node 10 has a height
difference of −2 (a height of 0 for its empty left child and 2 for its right, node
20). Note it has not yet updated the height of node 10 at this point. Finding the
absolute value of the height difference to be larger than 1, it must rebalance the
tree. For that, it chooses toRaise node 20 as indicated by the arrow.

Figure 10-11 Steps in the insertion of node 30 into the AVL tree

The three nodes are rotated left, bringing node 20 to the root, as shown in the
last panel of Figure 10-11. The heights of the top and toRaise nodes have
been carried along in the rotation and need to be updated. Note, however, that
node 30’s height of 1 remains correct because height is measured relative to the
leaf level.

This simplified example shows the basic operation of insertion but hides many
details. In particular, this is the simplest form of rotation, where the node to
raise has no children on the side between it and the top node. Let’s turn now to
the code and investigate all that goes on within the structure.



Python Code for the AVL Tree
The AVLtree class shares much of its code with that of the BinarySearchTree
of Chapter 8 and the Tree234 of Chapter 9. We explain the key components
that differ here and leave out some of the common implementation. You can
refer to the code in the previous chapters or look at the accompanying source
code for the rest of the implementation.

The AVLtree defines its __Node class as private for the same reasons as in the
BinarySearchTree and Tree234 classes. The main difference from the __Node
constructor for the BinarySearchTree is the addition of the call to the
updateHeight() method, which creates an instance field called height, if it
doesn’t exist, and determines its value from the height of the left and right
child, as shown in Listing 10-1. Because AVL trees always create new nodes as
leaf nodes, the constructor doesn’t take a left and right parameter for the new
node. The constructor could simply set height to 1 without calling
updateHeight() because the new node’s left and right child are always empty.
We’ve left that call in the code to show how the calculation is made to get the
initial value of 1.

Listing 10-1 The __Node Class for AVLtrees

class AVLtree(object): 
 
   class __Node(object):      # A node in an AVL tree 
      def __init__(           # Constructor takes a key-data pair 
            self,             # since every node must have 1 item 
            key, data): 
         self.key, self.data = key, data # Store item key & data 
         self.left = self.right = None   # Empty child links 
         self.updateHeight()  # Set initial height of node 
 
      def updateHeight(self): # Update height of node from children 
         self.height = max(   # Get maximum child height using 0 for 
            child.height if child else 0 # empty child links 
            for child in (self.left, self.right) 
         ) + 1                # Add 1 for this node 
 
      def heightDiff(self):   # Return difference in child heights 
         left  = self.left.height  if self.left  else 0 



         right = self.right.height if self.right else 0 
         return left - right  # Return difference in heights

The updateHeight() method makes explicit the treatment of empty child links.
It uses a Python list comprehension—for child in (self.left,

self.right)—to examine both children. For links that are None, the child
height is treated as 0, otherwise it gets the height from the child’s height
attribute. The child heights are passed to the max() function as arguments.
Finally, it adds 1 to the maximum height of the children, so that leaf nodes get
a height of 1.

The decision metric, heightDiff(), comes next. The height of a node’s right
subtree is subtracted from the height of its left subtree. Because those subtrees
might be empty, it substitutes a default value of zero for the child’s height if the
child link is None. Thus, a node with only one child produces a height
difference that is plus or minus the height of the child.

Inserting into AVL Trees
Inserting new items into an AVL tree starts off like insertion in binary search
trees; the key of the item to insert is compared with the existing keys in the tree
until the leaf node is found where it should be inserted. In the
BinarySearchTree class, insertion needed to alter only one child link, in the
parent of the new node, to do its work. Because AVL trees need to check the
balance after each insertion and possibly make rotations all the way up to the
root, it’s going to need to follow the parent links back up the tree after inserting
at the leaf level. Returning up the path that was followed is easy with a
recursive implementation, so that’s what’s shown in Listing 10-2. Keeping an
explicit stack of nodes visited on the path could also do the same thing.

Listing 10-2 The AVLtree insert() Method

class AVLtree(object): 
… 
   def insert(self, key, data): # Insert an item into the AVL tree 
      self.__root, flag = self.__insert( # Reset the root to be the 
         self.__root, key, data) # modified tree and return the 
      return flag             # the insert vs. update flag 
 
   def __insert(self,         # Insert an item into an AVL subtree 



                node,         # rooted a particular node, returning 
                key, data):   # the modified node & insertion flag 
      if node is None:        # For an empty subtree, return a new 
         return self.__Node(key, data), True # node in the tree 
 
      if key == node.key:     # If node already has the insert key, 
         node.data = data     # then update it with the new data 
         return node, False   # Return the node and False for flag 
 
      elif key < node.key:    # Does the key belong in left subtree? 
         node.left, flag = self.__insert( # If so, insert on left and 
            node.left, key, data) # update the left link 
         if node.heightDiff() > 1: # If insert made node left heavy 
 
            if node.left.key < key: # If inside grandchild inserted, 
               node.left = self.rotateLeft( # then raise grandchild 
                  node.left) 
 
            node = self.rotateRight( # Correct left heavy tree by 
               node)          # rotating right around this node 
 
      else:                   # Otherwise key belongs in right subtree 
         node.right, flag = self.__insert( # Insert it on right and 
            node.right, key, data) # update the right link 
         if node.heightDiff() < -1: # If insert made node right heavy 
 
            if key < node.right.key: # If inside grandchild inserted, 
               node.right = self.rotateRight( # then raise grandchild 
                  node.right) 
 
            node = self.rotateLeft( # Correct right heavy tree by 
               node)          # rotating left around this node 
 
      node.updateHeight()     # Update this node’s height 
      return node, flag       # Return the updated node & insert flag

The insert() method is simple. It calls the recursive, private __insert()
method starting at the root node to do the work. Note that it sets the __root
field to the result of that call. This is how the recursive algorithm updates the
tree; it calls a method operating on a subtree and then replaces the subtree with
whatever modifications occurred. In this way, for instance, the empty root field
gets filled with a newly created node on the first insertion. The insert()
method returns a Boolean flag indicating whether a new node was inserted in
the tree (as opposed to updating an existing key). The flag is the second value
returned by __insert().



Inside the __insert() method, the first checks are for base case conditions. If
__insert() was called on an empty tree (or subtree), the node parameter is
None, and it simply returns a new node holding the key and data of the item to
be inserted. The return of that new object handles inserting the first node of the
tree. It also returns the insertion flag as True to tell the caller that another node
was added.

If the key of the node to insert matches an existing key in the tree, the
__insert() method faces the choice of what to do with duplicate keys. Like
the 2-3-4 tree, this implementation updates the existing node’s data field with
the new data to insert. That means that duplicate keys are not allowed, and the
AVL tree behaves like an associative array. The caller can know this by seeing
the returned insertion flag is False. After the data field is changed, the
modified node must be returned so its parent can store the same node back in
the root or other child link.

After the base cases are handled, what remains are the recursive ones. (In the
AVLTree Visualization tool, one other “base” case is checked: does the
insertion go past the depth limit). There are two options; the item to insert
belongs in either the left or right subtree of the node. If the key to insert is less
than this node’s key, it belongs in the left side, and otherwise the right. These
two choices are handled in the next two blocks of code.

For the left side, the first step is to update the left link with the result of
recursively inserting the item in the left subtree (and record the insertion flag
result). For programmers just getting used to recursion, that may seem like silly
thing to do because it looks like setting a variable to itself. As you saw in
Chapter 6, “Recursion,” it can be quite powerful. You’ve already seen that if
the node.left link were None, __insert() would return a new leaf node to
replace it, and that’s exactly what’s needed. If that left link points to some
subtree, you can assume it’s going to return the node on top of that subtree after
any insertions and rotations that might happen inside it to maintain the
subtree’s balance. Having made that assumption, all that’s left to do is complete
the work after the balanced subtree is returned. Of course, you have to return
the revised subtree from this call to __insert() to ensure the assumption
remains accurate.

What work must be done after the left subtree is updated? Well, it’s possible
that the insertion on the left caused the balance of this subtree to become left
heavy; that is, the left subtree has a height that is now greater than that of the
right subtree by more than one. It cannot have made this node right heavy



because the insertion was made in the left subtree and you started off with a
balanced subtree (because AVL trees are designed to always maintain self-
balance). Another way of saying that is the height difference of node must have
been either −1 , 0, or +1 when the __insert() method was called.

The __insert() method checks the node’s balance by seeing whether
node.heightDiff() now exceeds 1. As shown in Listing 10-1, heightDiff()
computes the difference of the (newly modified) height of node’s left subtree
with that of node’s right subtree. If the left node’s height was updated properly
in the recursive call, this will work. If you look ahead in the code, that update
happens right before the __insert() method returns the modified node.

When node is left heavy after the insertion in its left child, the __insert()
method needs to correct it by performing one or two rotations. To decide which
ones are needed, it looks to see where the key was inserted relative to the node.
Back in Figure 10-8, you saw how to rotate 3-node trees until they were
balanced. The same logic applies here, under the assumption that the item just
inserted was the third node.

When the insertion goes in the left child of node, then the shape of the tree is
either the leftmost tree in Figure 10-8 or the second to leftmost. The insertion
must have produced a grandchild; otherwise, it couldn’t have made node left
heavy. The question then becomes, Was the item inserted in the inside or
outside grandchild of the node? The leftmost tree of Figure 10-8 shows an
insertion at the inside grandchild of the top node. That requires two rotations to
get the balanced form in the middle tree of Figure 10-8. If the insertion was to
the outside grandchild, the situation requires only one rotation.

The __insert() code in Listing 10-2 checks whether the key that was inserted
is larger than node’s left child key. If it is, then the insertion was an inside
grandchild because the insertion path went left and then right on the way down.
To correct the imbalance, it performs a left rotation around node’s left child.
Otherwise, it performs the only one rotation—a right rotation around the top of
the subtree, node. That’s what’s needed if the insertion went to the outside
grandchild, going left and left again on the way down. The right rotation
corrects the left heaviness of the tree. The rotation operations are performed by
methods we describe in a moment. They use the same style as the recursive
__insert() method and set the node at the top of the rotation to whatever node
is moved up.



The preceding steps handle the rotations for insertions in node’s left subtree.
The next else clause handles the rotations for insertions in node’s right
subtree. These are the mirror image of the steps in the left-hand rotations,
swapping right and left and changing the sign of the height difference. The
inside grandchild is the one following a right and then a left child link, and the
outside follows a right-right link.

After either kind of subtree insertion, the __insert() method calls
updateHeight() on the node, followed by returning the modified node and the
insertion flag from the recursive call. The height could be different than the
node’s height on entry to the __insert() method because there is one more
item in a subtree below. Updating the height at this point ensures that the node
returned to the caller has proper information about its position relative to the
leaves of the subtree.

Rotations are performed by changing the links between the nodes in the
subtree. The top of the subtree is sometimes called the center of rotation or the
pivot (although that latter term might be confused with the pivot used in
quicksort). For rotateRight(), the top’s left child is raised up. The code of
Listing 10-3 shows top.left being stored in the variable toRaise.

Listing 10-3 The rotateRight() and rotateLeft() Methods of AVLtree

class AVLtree(object): 
… 
   def rotateRight(self, top): # Rotate a subtree to the right 
      toRaise = top.left      # The node to raise is top’s left child 
      top.left = toRaise.right # The raised node’s right crosses over 
      toRaise.right = top     # to be the left subtree under the old 
      top.updateHeight()      # top. Then the heights must be updated 
      toRaise.updateHeight() 
      return toRaise          # Return raised node to update parent 
 
   def rotateLeft(self, top): # Rotate a subtree to the left 
      toRaise = top.right     # The node to raise is top’s right child 
      top.right = toRaise.left # The raised node’s left crosses over 
      toRaise.left = top      # to be the right subtree under the old 
      top.updateHeight()      # top. Then the heights must be updated 
      toRaise.updateHeight() 
      return toRaise          # Return raised node to update parent



The next step is perhaps the most confusing. This is where the node being
raised has its right child moved over to become top’s left child. The moving
child is the crossover subtree. The right child is empty in the 3-node tree
example of Figure 10-8, so it appears to be just a way to initialize the left child
of top to be empty in its new position. We discuss what happens when the
crossover contains a subtree in a moment.

After the crossover link is moved, top becomes the right child of the node
toRaise, completing the restructuring of the nodes. The heights of both
changed nodes need to be updated because their relative positions changed.
You change the height of top first because it moved lower in the tree, and the
height of toRaise now depends on it. When both heights are updated, then the
new top of the subtree, toRaise, is returned to be stored in the parent’s link to
the rotated subtree.

The code for rotateLeft() in Listing 10-3 is another mirror image of the code
for rotateRight(), swapping the roles of left and right.

The Crossover Subtree in Rotations
What happens during rotations of more complex trees when rotations bubble
up the tree after inserts at lower levels? There could be child links all around
the nodes being rotated. Where do they go? To answer that question, let’s look
at a right rotation in the middle of a tree.

When you rotate right about some node, you are trying to raise its left child up.
Let’s call the node at the top, T, and the node to raise, R. In general, three
subtrees appear below T and R, as shown in Figure 10-12. R’s left child has all
the nodes with keys less than R’s key, and R’s right child has all the keys
greater than R’s key. More specifically, it has all the keys between R’s key and
T’s key. The reason is that you had to follow the left child link of T when
inserting those keys. The third subtree that’s involved is T’s right child, which
has nodes with keys greater than T’s key.



Figure 10-12 Right rotation and the crossover subtree

The left side of Figure 10-12 shows the relationships of T, R, and its three
subtrees before the rotation. T sits at the top with R as its left child. T may or
may not have a parent node, indicated by the fading line leading upward.
Hanging below T and R are the three subtrees, containing the keys less than R
(k < R), the keys between R and T (R < k < T), and the keys greater than T (T <
k). The green arrows show the planned movement direction of the nodes. R
moves up and to the right, while T moves down and to the right.

The outer two subtrees are obviously still in the correct position after the
rotation produces the configuration on the right of the figure. What about the
crossover subtree? It holds the keys higher than R’s and less than T’s key.
Because it now is the left child of T, any search that gets to T will correctly
choose the left link to find the keys it contains. Because T became the right
child of R, any search for a key larger than R’s will correctly choose its right
link to T, and hence reach the crossover subtree.

The right rotation preserves the items in the correct subtrees relative to the keys
being rotated. Also, the heights of the subtrees do not change during the



rotation, so the call to updateHeight() in rotateRight() only needs to check
the height of the topmost node of each subtree to correctly update the heights
of T and R (top and toRaise). The rotateLeft() method performs the mirror
image set of operations, preserving the subtree relationships.

The visualization tool animates the movements of the various subtrees during
rotations. Figure 10-11 showed the simple example of a left rotation with an
empty crossover subtree. Try creating situations where subtrees cross over
from left to right (or vice versa). A simple example happens when you insert
the sequence of keys: 10, 20, 30, 40, 50, 60. After node 60 is inserted, use the
stepping capabilities to watch the updates to top and toRaise in the
rotateLeft method when it is called to rotate the root node. This shows how
the crossover subtree (rooted at node 30) gets put in place. Another example
that shows the double rotation of an inside grandchild is to add keys 25 and 27
to the six just inserted. Then add keys 29, 28, and 22 to see a 3-node crossover
subtree movement. Watch these animations several times until you can easily
anticipate what will happen before the nodes are moved.

Deleting from AVL Trees
Deletion from an AVL tree is somewhat more complex and follows the strategy
used for the binary search trees described in Chapter 8. Deleting leaf nodes is
easy, although you must check the tree’s balance afterward. Deleting an
internal node is not much harder if it has a single child link; the child replaces
the node in the tree. Only deletion of internal nodes with two child links poses
significant challenges. Even then, you know that you can replace the item
stored at that node with that of its successor, which always lies at one of the
simpler deletion positions.

As was the case for insertions, each deletion in a subtree could cause the height
to change enough that the tree is no longer balanced. Correcting the imbalance
will involve rotations—in fact, the same kinds of rotations used for insertions.
The implementation can use the same kind of recursive method to find the
node to delete and then to hunt for the successor, updating the child links and
heights after each recursive call completes.

The main delete() method shown in Listing 10-4 serves the same role as the
insert() method; it calls the private recursive __delete() method on the root
node, updates the root with the returned value, and returns a flag indicating
whether the goal node was found and deleted.



Listing 10-4 The delete() method of AVLtree

class AVLtree(object): 
… 
   def delete(self, goal):    # Delete a node whose key matches goal 
      self.__root, flag = self.__delete( # Delete starting at root and 
         self.__root, goal)   # update root link 
      return flag             # Return flag indicating goal node found 
 
   def __delete(self,         # Delete matching goal key from subtree 
                node, goal):  # rooted at node. Return modified node 
      if node is None:        # If subtree is empty, 
         return None, False   # then no matching goal key 
 
      if goal < node.key:     # Is node to delete in left subtree? 
         node.left, flag = self.__delete( # If so, delete from left 
            node.left, goal)  # update the left link and store flag 
         node = self.__balanceLeft(node) # Correct any imbalance 
 
      elif goal > node.key:   # Is node to delete in right subtree? 
         node.right, flag = self.__delete( # If so, delete from right 
            node.right, goal) # update the right link and store flag 
         node = self.__balanceRight(node) # Correct any imbalance 
 
      # Else node’s key matches goal, so determine deletion case 
      elif node.left is None: # If no left child, return right child 
         return node.right, True # as remainder, flagging deletion 
      elif node.right is None: # If no right child, return left child 
         return node.left, True # as remainder, flagging deletion 
      # Deleted node has two children so find successor in right 
      else:                   # subtree and replace this item 
         node.key, node.data, node.right= self.__deleteMin(node.right) 
         node = self.__balanceRight(node) # Correct any imbalance 
         flag = True          # The goal was found and deleted 
 
      node.updateHeight()     # Update height of node after deletion 
      return node, flag       # Return modified node and delete flag

The __delete() method works on a subtree rooted at a node in the tree. First it
checks the base cases. If node is None, the subtree is empty, so nothing can be
deleted. The empty subtree is returned along with False to indicate no deletion
occurred.



For subtrees with some items, the next checks determine where the goal lies
relative to the root of the subtree, node. If the goal key is less than that of node,
the item to delete must be in its left subtree. It updates that left subtree with the
result of the recursive call to __delete() on node.left. Then it rebalances the
node knowing that the left side has been reduced by calling balanceLeft().
Similarly, if the goal key is greater than that of node, the item to delete must be
in its right subtree. It performs the delete on the right and rebalances
accordingly. For both branches, it stores the flag indicating whether a deletion
actually happened.

If neither of those if statement conditions applied, then __delete() knows the
goal key matches the node’s key. Now it can look to see what deletion case it
has. If the node has no left child, then deleting this node is simply a matter of
promoting its right child to replace it in the tree. If both the left and right child
links are empty, then node is a leaf, and returning node.right, which is None,
will prune it from its parent. The next elif statement checks if the right child
link is empty. If so, it simply promotes the left child to replace the node.

After all the simple deletion cases have been checked, you know you are
deleting an item from a node that has two subtrees. You must find the successor
for this node, store its item in this node’s key and data fields, delete the
successor from the tree, correct any balance issues that causes, update this
node’s height, and return the modified node. That’s quite a bit of work to do,
and it’s broken out into a couple of helper methods.

The __delete() method calls the __deleteMin() method to delete the item
with the minimum key in the node’s right subtree. That minimum is the
successor to this node, as you learned in Chapter 8. Then it calls the
__balanceRight() method to correct any imbalance caused by removing the
successor from the right subtree. It also sets flag to True indicating a deletion
happened.

After any of the different types of deletion are performed, the node’s height
could have changed, so it calls node.updateHeight(). Finally, it returns the
modified node and the deletion flag. We look at each of those new methods to
see how they do their work.

The __deleteMin() method returns three values using a Python tuple. The first
two are the key and data of the successor node. They must replace the item
being deleted in the node that __delete() found. The third returned value is
the modified node for the right child of the node that __delete() found. It’s



possible that the right child is a leaf node (making it the successor), and that
would mean returning None for the third value.

The __deleteMin() method shown in Listing 10-5 operates like __delete() in
that it recursively descends the subtree to find and delete an item. The item to
find is not known by a specific key; it’s the item with the smallest key, so the
recursion always follows the left link until a node with an empty left child is
found. That’s the base case, which is tested first. After that minimum node is
found, its key and data can be returned as the successor. It returns the right
child of the successor, which might be empty, as the subtree to replace the
minimum node. After that’s returned to its caller, the minimum node has been
removed from the tree. (There’s no need for a recursive call to __delete()
here like there was for deleting the successor in binary search trees because the
assignment to node.left from the result of the recursive call eliminates the
node from the tree.)

Listing 10-5 The __deleteMin() and Rebalance Methods of AVLtree

class AVLtree(object): 
… 
   def __deleteMin(           # Find minimum node of subtree, delete 
         self,                # it, return minimum key, data pair and 
         node):               # updated link to parent 
      if node.left is None:   # If left child link is empty, then 
         return (node.key, node.data, # this node is minimum and its 
                 node.right)  # right subtree, if any, replaces it 
      key, data, node.left = self.__deleteMin( # Else, delete minimum 
         node.left)           # from left subtree 
      node = self.__balanceLeft(node) # Correct any imbalance 
      node.updateHeight()     # Update height of node 
      return (key, data, node) 
 
   def __balanceLeft(self, node): # Rebalance after left deletion 
      if node.heightDiff() < -1: # If node is right heavy, then 
         if node.right.heightDiff() > 0: # If the right child is left 
            node.right = self.rotateRight( # heavy, then rotate 
               node.right)    # it to the right first 
 
         node = self.rotateLeft( # Correct right heavy tree by 
            node)             # rotating left around this node 
      return node             # Return top node 
 



   def __balanceRight(self, node): # Rebalance after right deletion 
      if node.heightDiff() > 1: # If node is left heavy, then 
         if node.left.heightDiff() < 0: # If the left child is right 
            node.left = self.rotateLeft( # heavy, then rotate 
               node.left)     # it to the left first 
 
         node = self.rotateRight( # Correct left heavy tree by 
            node)             # rotating right around this node 
      return node             # Return top node

The rest of the __deleteMin() method handles the recursive work of
descending the left subtree, storing the successor key and data that were found,
adjusting any balance problems the lower deletion in the left subtree causes,
and updating the height of node after the deletion and possible rotations. These
actions are like those for insertions, although the call to the __balanceLeft()
method is different. Before we describe how that works, let’s first look
carefully at which subtrees get rebalanced by __deleteMin().

Because the call to __balanceLeft() occurs immediately after every recursive
descent down the left child links, it is applied to every node visited that has a
left child. The successor node, by definition, does not have a left child. Could
not calling __balanceLeft() on the successor cause a problem?

To answer that question, think about two possibilities for the successor node: a
leaf node, or a node with a right subtree and no left subtree. In the first case,
the leaf node is being deleted, so there really isn’t anything that could be
balanced. In the second case, the successor is replaced by its right subtree. The
right subtree, call it S, must have been balanced before the call to __delete()
because AVL trees preserve balance for insertions and deletions. The balance
measure of S depends solely on the height of S’s subtrees, which don’t depend
on their position in the overall tree. So, you can safely skip rebalancing the
successor node after updating it with an already-balanced subtree rooted at S.
The successor’s parent node, however, may need rebalancing because S will
have a height that is one less than the successor that is being moved. The caller
will take care of balancing the parent of the successor.

The __balanceLeft() method might not be called in one other case. That
happens when the first call to __deleteMin() lands on a node with no left
child. The node in that case is the right child of the node that matched the goal
key (which will be updated with the successor key shortly). With
__deleteMin() immediately returning its node’s item and right subtree in its
base case, no call to the __balanceLeft() method occurs. Using the same



reasoning as earlier, however, you know that the right subtree being returned
must have been balanced before the call to __delete(). The already-balanced
subtree is being promoted up to replace the node in the call to __deleteMin()
and doesn’t need rebalancing. When __deleteMin() returns, the __delete()
method calls __balanceRight() to rebalance the shortened right subtree.

Rebalancing all the nodes that need it is a little tricky. The recursive structure
in the delete routines follows every link and applies the __balanceLeft() or
__balanceRight() method at every level. That should give you confidence
that you can’t have missed any nodes along the way.

Now it’s time to look at the __balanceLeft() and __balanceRight() methods
themselves in Listing 10-5. They use the __heightDiff() method to determine
if the subtree rooted at the node is right heavy or left heavy, respectively. If the
subtree is not heavy on one side, it does nothing and returns the unmodified
node (and hence its subtree).

In __balanceRight() when the subtree to rebalance is left heavy, it’s almost
the same situation as when the __insert() method had to deal with adding a
new item in the left subtree. This time, however, you don’t have an insert key
to know where the extra height was added (because a node was deleted from
the right subtree). Instead, you need to look at the balance—the height
difference—of the left subtree, the one that needs to be raised to restore
balance. If that left subtree is perfectly balanced or has a left height one greater
than its right (a height difference of 0 or +1), then you will need only one right
rotation to bring it up to the top. Note that the left subtree’s height difference
can take on only three possible values: −1, 0, or +1. Any other value would
mean the subtree was unbalanced, and you’ve balanced every subtree before
passing it up the recursive chain.

What happens when the left subtree of the node to rebalance in
__balanceRight() has a height difference of −1? That difference indicates that
its right subtree’s height is one more than its left. That situation is shown on the
left of Figure 10-13. The __balanceRight() method was called on node T and
found that it is left heavy due to the deletion in its right subtree. That means it
found a height difference of +2 at T. Furthermore, T’s left subtree, rooted at
node R, has a height difference of −1. That means the right subtree has a height
that is one more than that of the left. In the figure they are shown with heights
of H and H + 1. It’s that right side with height H + 1 that is going to cross over
when the __balanceRight() method rotates T to the right.



Figure 10-13 Balancing a left-heavy subtree

In this situation, the right subtree of T must have a height of H. You know that
because the height difference at T is exactly +2, and R’s height is H + 2. If you
execute a right rotation around T, you will get the situation on the right of
Figure 10-13. The right subtree of R with height H + 1 crosses over to become
the left subtree of T. The height of T would then be H + 2 because it is one
more than the height of its maximum child. Comparing the height difference at
R, now the top node after the right rotation, you find −2, meaning it is a right-
heavy tree. That’s a problem, but you can solve it with another rotation.

The solution is to use the same operation used when handling the inside
grandchild after an insertion on the left subtree (see Figure 10-8). If you first
use a left rotation on the left subtree, R, that will reduce the height of the
crossover subtree to H. By raising the inside grandchild of T up one (rotating
left around R), you have evened up the left side prior to raising the left child of
T up to be the new top of the tree (in the rotation right around T).

Thus, the __balanceRight() method performs one or two rotations to correct
an unbalanced subtree. It checks the height differences at the root of the subtree
and at its left child to determine which rotations are needed. The



__balanceLeft() method performs the mirror image operations to correct a
left deletion that caused a right-heavy subtree. Note that it does not need to
recursively descend into the subtrees. The reason is that you’ve ensured they
all have an absolute height difference of one or less in previous rebalancing
operations.

The visualization tool shows how all these methods operate. Try deleting nodes
from a tree: first a few leaves, then some internal nodes with one and two
children to see all the cases. You can click a node with your pointer device to
enter its key in the text entry box or type the key number before selecting the
Delete button. After several deletions on one side, the AVL tree will eventually
perform a rotation using the __balanceLeft() or __balanceRight() method.
Use the stepping controls to carefully follow any of the calls that cause
confusion.

We’ve now covered insertion and deletion in AVL trees. The remaining
methods of AVL trees such as search() and traverse() are the same as for
binary search trees, as you can see if you look carefully at the visualization
tool’s code. The added height field of nodes might not be exposed to callers
because it is only used to maintain the balance of the tree, but it can be a useful
metric for some applications.

The Efficiency of AVL Trees
Because AVL trees are similar to binary search trees, their efficiency is similar.
There is the added storage cost of keeping the height field with each node and
the added time it takes to update that field and rebalance subtrees during
insertions and deletions. That extra work produces balanced, binary trees,
which you know have a search time of O(log N). Best of all, the search time
doesn’t degrade to O(N) for degenerate cases.

How much do you have to pay to get the benefits of balance? On the insertion,
there are the calls to updateHeight() at every level of recursion. There are
log2(N + 1) levels in the tree and the same number of recursion levels. There
are also calls to heightDiff() at every level to check the tree’s balance. Some
of those lead to more key comparisons and rotations. In the worst case, every
level would call heightDiff() once and make two rotations (which call
updateHeight() twice each). That’s quite a bit, but it’s still a fixed amount of
work that doesn’t depend on the number of nodes in the tree. All the added
manipulations increase the amount of work done per recursive level by a



constant amount. In Big O notation, you can ignore the constant amount and
conclude that insertion is O(log N) because the only thing that grows with N is
the number of levels.

The analysis of deletion follows that of insertion. There are still log2(N + 1)
levels to visit, and each one involves calls to updateHeight()and
heightDiff() inside of __balanceLeft() or __balanceRight(), and one or
two rotations when imbalances are found. Those calls all add to the constant
that multiplies the number of levels, and that constant doesn’t change as the
number of items grows larger. That leaves deletion as an O(log N) operation.

Thinking about the amount of memory used, it is O(N) because you need a
fixed amount of memory for every node, and there is exactly one node for
every item stored. The constant that multiplies the number of items, however,
has grown because you added the height field to the tree. Somewhat harder to
see is that the height field needs to be big enough to accurately count the height
of each subtree. If you used a single byte for the height field, then it could only
count up to a height of 255. That limitation could become a problem for a huge
number of items. A full machine word could be used to store the height, which
would be 64 (or possibly 32) bits, allowing for extremely deep trees.

There’s also the O(log N) memory that will be used for the recursive stack
because there is at least one call per level of the tree. There are, of course,
many other procedure calls, but the total number that are active at any one time
will be proportional to the number of levels. Because the O(log N) memory
will be much smaller than the O(N) memory needed to store the nodes, it is
usually ignored.

Red-Black Trees
Are there other ways to balance binary trees? Yes, of course there are, but are
there any that are just as efficient but don’t add as much extra work as the AVL
tree does? That’s a bigger challenge, but a structure called the red-black tree
provides an interesting answer. Instead of relying on a measure of a node’s
height, all the red-black tree requires is 1 bit more of information about each
node. The bit encodes whether the node is labeled as red or black. How can a
single bit help balance the tree? Let’s find out.

Red-black trees are not trivial to understand. Because of this, the actual code is
more lengthy and complex than you might expect. It’s therefore hard to learn



about the algorithm by examining code. You’ve seen many of the
implementations of key operations like rotations and determining inside and
outside grandchildren in the binary search tree and AVL tree. So, we don’t
describe the red-black tree source code in this text. Instead, we discuss the
structure and algorithms, and help you understand the operations using another
visualization tool.

Conceptual
For a conceptual understanding of red-black trees, we are aided by the
RedBlackTree Visualization tool. We describe how you can work in
partnership with the tool to insert new nodes into a tree. Including a human into
the insertion routine certainly slows it down but also makes it easier for the
human to understand how the process works.

Searching works the same way in a red-black tree as it does in an AVL or
ordinary binary search tree. As you might expect, insertion and deletion are
where the differences emerge. Accordingly, in this chapter we concentrate on
the insertion process.

Top-Down Insertion
Red-black trees use top-down insertion. This means that some structural
changes may be made to the tree as the search routine descends the tree looking
for the place to insert the node. This approach was used in the 2-3-4 trees in
Chapter 9 when full nodes were split as the algorithm searched for an insertion
point.

Bottom-Up Insertion
Another approach is bottom-up insertion. This type involves finding the place
to insert the node and then working back up through the tree making structural
changes. Bottom-up insertion is less efficient because two passes must be made
through the levels of the tree. The 2-3 tree in Chapter 9 used a bottom-up
approach, splitting full leaf nodes and promoting the overflow up toward the
top (root). The AVL tree also rebalances the tree in a bottom-up fashion. In a
red-black tree, balance is maintained during insertion and deletion, as was done
for all the self-balancing trees. When an item is inserted, the insertion routine



checks that certain characteristics of the tree are not violated. If they are, it
takes corrective action, restructuring the tree as necessary. Because the routine
maintains these characteristics, the tree is kept balanced.

Red-Black Tree Characteristics
In a red-black tree, every node is marked as either black or red. These are
arbitrary colors; blue and yellow would do just as well. In fact, the whole
concept of saying that nodes have colors is somewhat arbitrary. Some other
analogy could have been used instead. You could say that every node is either
heavy or light, or yin or yang. Colors, however, are convenient labels and help
programmers use a consistent vocabulary. A Boolean data field, such as isRed,
is added to the node class to embody this color information.

In the RedBlackTree Visualization tool, the red-black characteristic of a node is
shown by its border color. The center color, as it was in all the tree
visualization tools, is simply an indication of the data field of the node. When
we speak of a node’s color in this chapter, we are almost always referring to the
solid red or black border color shown in the figures.

Red-Black Rules
When inserting (or deleting) a new node, you check for certain conditions,
which are called the red-black rules. If they’re all followed, the tree is called
red-black correct, and it will be balanced.

Rule 1. Every node is either red or black.
Rule 2. The root is always black.
Rule 3. If a node is red, its child nodes must be black (although the
converse isn’t necessarily true).
Rule 4. Every path from the root to a leaf, or to a null child, must contain
the same number of black nodes.

The “null child” referred to in Rule 4 is a place where a child could be attached
to a nonleaf node. In other words, it’s the potential left child of a node with
only a right child or the potential right child of a node with only a left child.
This description will make more sense as we go along.

The number of black nodes on a path from the root to a leaf is called the black
height. Another way to state Rule 4 is that the black height must be the same



for all paths from the root to a leaf or a null child. Note that the black height is
defined for a path, while the height metric used for AVL trees is for a whole
subtree (and doesn’t care about node colors).

These rules might seem completely mysterious. It’s not obvious how they will
lead to a balanced tree, but they do; some very clever people invented them.
Copy them down somewhere and keep them handy. You’ll need to refer to
them often as you learn about red-black trees.

Aside from the basic rules, red-black trees are as flexible as binary search trees.
They allow any kind of key, as long as they can be compared to determine an
ordering. They don’t allow duplicate keys and act as an associative key store.
People familiar with the red and black coloring of roulette wheels might infer
those keys must be odd or even numbered in some way, but that is wrong. You
won’t always see alternating colors along every path; rule 3 only prevents red
nodes from having child nodes that are also red. The black nodes can have
black or red child nodes.

Fixing Rule Violations
Suppose you see (or are told by the visualization tool which we introduce
shortly) that the color rules are violated. How can you fix your tree so that it
complies? There are two, and only two, possible actions you can take:

• You can change the colors of nodes.

• You can perform rotations.

In the tool, changing the color of a node means changing its red-black border
color (not the center color). Changing the color means setting the Boolean flag
to a different value for one or more nodes. Because it’s a Boolean, you can call
this “flipping” the color between one of the two values, akin to flipping a coin.
Rotations, as you have seen, rearrange some nodes in a way that, one hopes,
leaves the tree more balanced. They always preserve the search relationships of
the keys. The colors of the nodes stay with them as they rotate, and that
“stickiness” can cause (or fix) rule violations.

At this point such concepts probably seem very abstract, so let’s become
familiar with the RedBlackTree Visualization tool, which can help to clarify
things.



Using the Red-Black Tree Visualization Tool
To launch the Visualization tool, follow the instructions in Appendix A,
“Running the Visualizations,” and either run the RedBlackTree.py program or
select it from the menu of visualizations. Figure 10-14 shows what the
RedBlackTree Visualization tool looks like when it starts with two nodes
inserted.

Figure 10-14 The RedBlackTree Visualization tool



Like the other trees you’ve studied, a RedBlackTree object has a single pointer
to the root node of the tree. In the figure, node 77 is the root and is colored
black. It has one child on the right, node 94, that is colored red.

In the upper left, three messages about the red-black rules appear (the first rule
—that all nodes are colored red or black—is always enforced by the tool). Rule
2 is either true or false, depending on the color of the root. For Rule 3, the
message counts the number of red nodes linked to other red nodes. For Rule 4,
the message shows all the different black heights that can be found in the tree.
In other words, it computes the black height for every leaf and null child in the
tree and shows the set of unique heights inside of curly braces. In the case of
Figure 10-14, node 94 is a leaf with a black height of 1, and the root node has a
null left child that also has a black height or 1.

The red-black rules are all satisfied for this tree, so the messages are shown in
green, and the last message says ” RED-BLACK CORRECT!” That message
disappears when any of the rules are violated.

Flipping a Node’s Color
You can change a node’s color by either clicking it with a pointer device or
entering its key in the text entry box and selecting the Flip Color button. Try
changing the color of node 94 to black. The ring color changes, and the
messages change to show that one of the rules is violated, as shown in Figure
10-15. With exactly two black nodes in the tree, there are now two different
black heights: 1 for the null left child of the root and 2 for leaf node 94. Flip
node 94 back to red, and the rules are satisfied again.



Figure 10-15 A tree with exactly two nodes, both black

One side effect of clicking a node to flip its color is that the node’s key is
entered into the text entry box for use in subsequent operations. This is a little
different from other operations you’ve seen where the text entry box is cleared
after an operation completes.

With node 94 red again, flip the color of root node 77 to red. Now two of the
rules are violated, as shown in Figure 10-16. The root node is not black,
violating Rule 2, and the one parent-child link is between two red nodes,
violating Rule 3. The link is highlighted in red to indicate the problem. The two
red nodes, however, satisfy Rule 4 because all the black heights are now 0.

Figure 10-16 A tree with exactly two nodes, both red

Rotating Nodes
As you saw with AVL trees (and discussed for 2-3-4 trees), rotating around a
node can change the balance of a tree. In the RedBlackTree Visualization tool,
you select a top node of the subtree to rotate and then select either the Rotate
Left or Rotate Right button to perform the rotation. You can select the top node
by either typing its key in the text entry box or by clicking it with the pointer
device to copy the key. The single click also changes its color, and if that is not
desirable, you can click it a second time to revert the color.

Double-clicking a node also rotates that node to its right. The messages about
the rules temporarily disappear. After the nodes are repositioned, the red-black
rules are rechecked. If you hold down the Shift key or use the second mouse
button when double-clicking, the rotation goes to the left. If you ask to rotate a



node without a subtree to raise into its place, a message appears below the
operations area explaining the problem.

The Insert Button
The Insert button causes a new node to be created, with the key that was typed
into the text entry box (assuming there is space for it in the Visualization tool
tree). Although the code isn’t shown, it performs the familiar binary search tree
algorithm to find where the key should be located. If the key already exists, it
updates the data for that key by giving the data circle a new color. If the key
doesn’t exist but would go in a node at level 0 through 4, it inserts the new
node with the key and data. Attempts to insert keys at level 5 or below fail with
an error message. (Note also that rotations that move nodes to level 5 will
delete those nodes.)

We discuss the choice of the red-black ring color of the new node in the next
section. The color, of course, affects the red-black rules, so changes may be
needed to keep the tree balanced.

The Search Button
The Search button acts like the one you’ve seen in the other tree visualization
tools. It follows the binary search tree algorithm from the root (without
animation) and reports whether the key was found or not. When the key is
found, the node is encircled to highlight it.

The Delete Button
The Delete button acts like the one for the Binary Search Tree. First, it locates
the requested key (without animation). If it’s found, the number of children the
node has determines how the deletion proceeds. With zero or one child, the
parent’s link to the node is adjusted. With two children, the successor node is
found, copied to the node being deleted, and then the successor node is
removed. The red-black rules are checked on the reduced tree to update the
summary.

The Erase & Random Fill Button



When you want to start from an empty tree, type 0 in the text entry box and
select the Erase & Random fill button. You can also create bigger (and more
complex) trees by typing a larger number, up to 99. As the Binary Search Tree
Visualization tool showed, you may not be able to insert keys in a sequence
that fills all possible 31 nodes.

The red and black colors assigned to the nodes are not really random; their
assignment follows the logic of individual insertions. Frequently, that will lead
to at least one violation of a red-black rules when the tree size is three or more.
Occasionally, the random filling satisfies all the rules.

Experimenting with the Visualization Tool
Now that you’re familiar with the RedBlackTree operations, let’s do some
simple experiments to get a feel for what the tool does. The idea here is to learn
to manipulate the tool’s controls. Later you use these skills to balance the tree.

Experiment 1: Inserting Two Red Nodes
If there’s already a tree, clear it by typing 0 in the text entry box and selecting
Erase & Random Fill. Next, type 50 and select Insert. It’s convenient to
experiment with a root key of 50 because that number provides maximum
flexibility to insert keys on either side. Not surprisingly, all the red-black rules
are satisfied for this single node tree because the insert operation chooses black
for root nodes.

Insert a second node with a value smaller than the root, say 20. The insert
operation makes this node red, preventing any rule violations.

Insert a third node that’s larger than the root, say 71. The new node is also red,
and the tree remains red-black correct. It’s also balanced. The result is shown
in Figure 10-17.



Figure 10-17 A balanced tree

Notice that newly inserted nodes are always colored red (except for the root).
This color is not an accident. Inserting a red node is less likely to violate the
red-black rules than inserting a black one. The reason is that, if the new red
node is attached to a black one, no rule is broken. The first insertion doesn’t
create a situation in which there are two red nodes together (Rule 3), and it
doesn’t change the black height in any of the paths (Rule 4). Of course, if you
insert a new red node below a red node, Rule 3 will be violated. With any luck,
however, this will happen only half the time. On the other hand, adding a new
black node always changes the black height for its path, violating Rule 4 if the
tree already satisfied that rule.

Also, it’s easier to fix violations of Rule 3 (parent and child are both red) than
Rule 4 (black heights differ), as you see later.

Experiment 2: Rotations
Let’s try some rotations. Start with the three nodes shown on the left in Figure
10-18. Select node 50 as the top node in the rotation (by either typing the key
in the text entry box or clicking it twice to select it without changing its color).
Now perform a right rotation by selecting the Rotate right button. The nodes all
shift to new positions, as shown in the right of Figure 10-18.



Figure 10-18 The right rotation operation

In this right rotation, the parent, or top, node moves into the place of its right
child, the left child moves up and takes the place of the parent, and the right
child moves down to become the grandchild of the new top node.

Notice that the tree is now unbalanced; the height of the right subtree is two
more than that of the left. Also, the status messages indicate that the red-black
rules are violated, specifically Rule 2 (the root is always black) and Rule 4
(black heights must be the same).

It’s easy to get back to balance by rotating the other way. This time, you must
select node 20 as the rotation top. Use the Rotate left button or hold the Shift
key while double-clicking node 20 to rotate left. The nodes return to the
position of Figure 10-17.

Experiment 3: Color Swaps
Start with the situation of Figure 10-17, with nodes 20 and 71 inserted in
addition to 50 in the root position. Note that the parent (the root) is black, and
both its children are red. Now try to insert another node, say with key value 12.
No matter what value you use, you’ll see a new kind of change. The animation
shows the black color of the root being copied to the two red children. What’s
going on?

A color swap is necessary in the following situation: when you’re searching for
the insertion point and encounter a black node with two red children. If the two
red children are leaves, it’s clear why the colors must be flipped. Inserting a



new red node as a child of a red node would violate Rule 3. Flipping the color
of the parent and both of its children avoids that problem.

Or course, if you swap the black root’s color with its two red children, the root
becomes red and violates Rule 2. When performing color swaps, we make an
exception for the root node and leave it black.

Figure 10-19 shows the steps that happen while inserting a node with key value
12. As the internal __find() method descends the tree to locate the insertion
point, it checks the current node’s color and that of its children. In this case, it
finds the black-red-red pattern at root node 50 and performs a swap (but keeps
the root black). After it descends to node 20, it doesn’t find the black-red-red
pattern. The insertion goes in node 20’s left child slot.

Figure 10-19 Inserting a node with a color swap

The tree remains red-black correct throughout the process. The root is black,
there’s no situation in which a parent and child are both red, and all the paths
have the same number of black nodes (two). Adding the new red node doesn’t
change the red-black correctness.

Experiment 4: An Unbalanced Tree
Now let’s see what happens when you try to do something that leads to an
unbalanced tree. In the final tree of Figure 10-19, one path has one more node
than the other. This example isn’t very unbalanced and satisfies the definition
of balance used with the AVL tree. No red-black rules are violated, so neither
you nor the red-black algorithms need to worry about making changes.



Let’s create an unbalanced tree. For this example, insert a node with key 6 into
the final tree of Figure 10-19. You’ll see the situation shown in Figure 10-20.
Node 6 is red and lies beneath a red node 20. The red-red link is highlighted,
and the status message shows the count of 1 for such links.

Figure 10-20 Parent and child are both red

How can you fix the tree so that Rule 3 isn’t violated? An obvious approach is
to change one of the indicated nodes to black. Try changing the child node 6 to
black by clicking it.

The good news is you fixed the problem of both parent and child being red.
The bad news is that now the status message for Rule 4 says Black heights: {2,
3}. The path from the root to node 6 has three black nodes in it, while the path
from the root to node 71 has only two. It seems you can’t win.

This problem, however, can be fixed with a rotation and some color changes.
How to do this is the topic of later sections.

More Experiments
Experiment with the RedBlackTree Visualization tool on your own. Insert more
nodes and see what happens. See whether you can use rotations and color
changes to achieve a balanced tree. Does keeping the tree red-black correct
seem to guarantee an (almost) balanced tree?

Try inserting five ascending keys (50, 60, 70, 80, 90) in an empty starting tree.
Ignore the status messages until all the keys are inserted; then try flipping
colors and rotating nodes. Can you balance the tree? If so, how many



operations did it take? Restart with an empty tree and try five descending keys
(50, 40, 30, 20, 10). Can you balance this tree with fewer operations?

The Red-Black Rules and Balanced Trees
Try to create a tree that is unbalanced by two or more levels but is red-black
correct. In other words, try to create a tree where at least one node has height
difference of 3 or more. As it turns out, this is impossible. That’s why the red-
black rules keep the tree balanced. If one path is more than one node longer
than another, it must either have more black nodes, violating Rule 4, or it must
have two adjacent red nodes, violating Rule 3. Convince yourself that this is
true by experimenting with the tool.

Null Children
Remember Rule 4, which specifies that all paths that go from the root to any
leaf or to any null children must have the same number of black nodes. A null
child is a child that a nonleaf (internal) node might have but doesn’t. In other
words, it’s a missing left child if the internal node has a right child, or vice
versa. In Figure 10-21 the path from 50 to 20 to the right child of 20 (its null
child) has two black nodes in the tree on top. The path from 50 to 20 to 12 has
three, which violates Rule 4. The paths to both leaf nodes have the same
number of black nodes, but it’s the null children higher up that cause the
problem. Even if those internal nodes are red, as shown in the tree on the
bottom, the number of black nodes in the four paths don’t match.



Figure 10-21 Paths to null children

Rotations in Red-Black Trees
To balance a tree, some algorithm must rearrange the nodes. If too many nodes
are on the left of the root, as in Figure 10-20 for example, you need to move
some of them over to the right side. As with the other binary trees, this is done
using rotations. In this section you learn how rotations interact with the red-
black rules.

Note that red-black rules and node colors are used only to help decide when to
perform a rotation. Fiddling with the colors doesn’t accomplish anything by
itself; it’s the rotation that’s the heavy hitter. It’s something like making
improvements to your house or apartment. Changing the colors of walls and
adding plants can change the mood of the room, while moving walls and
adding doorways changes the whole structure.

Subtrees on the Move
You’ve seen individual nodes changing position during a rotation, but as you
saw with AVL trees, entire subtrees can move as well. To see this movement,
start with an empty tree (by entering 0 and selecting Erase & Random Fill), and



then insert the following sequence of nodes in order: 50, 25, 75, 12, 37, 62, 87,
6, 18, 31, 43. You will see color swaps occur when you insert nodes 12 and 6.
The resulting arrangement is shown on the left of Figure 10-22.

Figure 10-22 Subtree movement during rotation

Now rotate around root node 50 by double-clicking it or typing 50 and
selecting the Rotate Right button. A lot of nodes have changed position. The
result is shown on the right of Figure 10-22. Here’s what happens:

• The top node (50) goes to its right child.

• The top node’s left child (25) goes to the top (root).



• The entire subtree rooted at node 12 moves up.

• The entire subtree rooted at 37 crosses over to become the left child of
50.

• The entire subtree rooted at 75 moves down as the right child of node 50.

The status messages indicate that the root node isn’t black and the black
heights differ. You can ignore these messages for the moment. Try rotating
back and forth around the root by double-clicking the node and holding down
the Shift key or using the second mouse button when rotating left. Do this
(perhaps with the animation speed slowed down) and watch what happens to
the subtrees, especially the one with 37 as its root.

In Figure 10-22, the subtrees are enclosed in dotted triangles. Note that the
rotation doesn’t affect relations of the nodes within each subtree. The entire
subtree moves as a unit. The subtrees can be larger (have more descendants)
than the three nodes shown in this example. No matter how many nodes there
are in a subtree, they will all move together during a rotation. Even when a
subtree is empty, the movement is the same. The empty subtree goes to the
same position it would have moved to if it had some nodes.

Inserting a New Node
Now you have enough background to see how a red-black tree’s insertion
routine could use rotations and the color rules to maintain the tree’s balance.
The remaining discussion describes the little details of exactly what conditions
trigger what color changes and rotations to preserve balance.

Preview of the Insertion Process
Here, we briefly preview our approach to describing the insertion process.
Don’t worry if things aren’t completely clear in the preview; we discuss this
process in more detail in a moment.

The discussion that follows uses X, P, and G to designate a pattern of related
nodes. X is a node that has caused a rule violation. Sometimes X refers to a
newly inserted node, and sometimes to the child node when a parent and child
have a red-red conflict.



• X is a particular node.

• P is the parent of X.

• G is the grandparent of X (the parent of P).

On the way down the tree to find the insertion point, you perform a color swap
whenever you find a black node with two red children. Sometimes the swap
causes a red-red conflict (a violation of Rule 3). Call the red child X and the
red parent P. The conflict can be fixed with a single rotation or a double
rotation, depending on whether X is an outside or inside grandchild of G.
Following some color flips and rotations, you continue down to the insertion
point and insert the new node.

After you’ve inserted the new node X, if P is black, you simply attach the new
red node. If P is red, there are two possibilities: X is an outside or inside
grandchild of G. You perform two color changes (we show what they are in a
moment). If X is an outside grandchild, you perform one rotation, and if it’s an
inside grandchild, you perform two. This process restores the tree to a balanced
state.

Now let’s recapitulate this preview in more detail. We divide the discussion
into three parts, arranged in order of complexity:

1. Color swaps on the way down

2. Rotations after the node is inserted

3. Rotations on the way down

If we were discussing these three parts in strict chronological order, we would
examine part 3 before part 2. It’s easier, however, to talk about rotations at the
bottom of the tree than in the middle, and operations 1 and 2 are encountered
more frequently than operation 3, so we discuss 2 before 3.

Color Swaps on the Way Down
The insertion routine in a red-black tree starts off doing essentially the same
thing it does in an ordinary binary search tree: it follows a path from the root to
the place where the node should be inserted, going left or right at each node,
depending on the relative size of the node’s key and the key to insert.



In a red-black tree, however, getting to the insertion point is complicated by
color swaps and rotations. In the earlier “Experiment 3: Color Swaps” section,
you learned the effects of changing colors; now let’s look at them in more
detail.

Imagine the insertion routine proceeding down the tree, going left or right at
each node, searching for the place to insert a new node. To make sure the color
rules aren’t broken in the upcoming insertion, it needs to perform color swaps
when necessary. Here’s the rule: every time the insertion routine encounters a
black node that has two red children, it changes the children to black and the
parent to red (unless the parent is the root, which always remains black).

How does a color swap affect the red-black rules? For convenience, let’s call
the node at the top of the triangle, the one that’s red before the swap, P for
parent. You can call P’s left and right children X1 and X2. This arrangement is
shown on the left of Figure 10-23.



Figure 10-23 Color swap

Black Heights Unchanged
Figure 10-23 shows the nodes after the color swap on the right. The swap
preserves the number of black nodes on the path from the root on down
through P to any leaf or null node. All such paths go through P, and then
through either X1 or X2. Before the swap (on the left of the figure), only P is
black, so the triangle (consisting of P, X1, and X2) adds one black node to each
of these paths.

After the swap, P is no longer black, but both X1 and X2 are, so again the
triangle contributes one black node to every path that passes through it. In the
exception where P is the root of the tree and the color swap leaves it black, one
black node is added to every path in the tree. Thus, all the paths have the same
black height, and a color swap can’t cause Rule 4 to be violated.

Color swaps are helpful because they turn red leaf nodes into black leaf nodes.
This design makes it easier to attach new red nodes without violating Rule 3.

Violation of Rule 3
Although Rule 4 is not violated by a color swap, Rule 3 (a node and its parent
can’t both be red) may be. If the parent of P is a black node, there’s no problem
when P is changed from black to red. If the parent of P is red, however, the
color change creates two linked red nodes.

This problem must be fixed before you continue down the path to insert the
new node. You can correct the situation with a rotation, as we’ll soon see.

Inserting at a Leaf
After you’ve worked your way down to the appropriate place in the tree,
performing color swaps (and rotations) if necessary, on the way down, you can
then insert the new node as described in Chapter 8 for an ordinary binary
search tree. That’s not, however, the end of the story.

Rotations After the Node Is Inserted
The insertion of the new node may cause the red-black rules to be violated.
Figure 10-20 showed the example of inserting a node with key 6 that violates



Rule 3. Therefore, following the insertion, you must check for rule violations
and take appropriate steps.

Remember that, as described earlier, the newly inserted node, which is called
X, is always red. X may be located in exactly four positions relative to P and
G, as shown in Figure 10-24.

Figure 10-24 Handed variations of node being inserted

Remember that a node X is an outside grandchild if it’s on the same side of its
parent, P, that P is of its parent, G. That is, X is an outside grandchild if either it
is a left child of P and P is a left child of G, or it is a right child of P and P is a
right child of G (as in the two outermost relations of Figure 10-24).
Conversely, X is an inside grandchild if it’s on the opposite side of its parent, P,
that P is of its parent, G (as in the inner relations of Figure 10-24).

The multiplicity of what might be called “handed” (left or right) relationships
between the inserted node and its ancestors is one reason the red-black
insertion routine is so complex to program.

The action needed to conform to the red-black rules is determined by the colors
and configuration of X and its relatives. Perhaps surprisingly, nodes can be
arranged in only three major ways (not counting the handed variations already
mentioned). Each possibility must be dealt with in a different way to preserve
red-black correctness and thereby lead to a balanced tree. We list the three
possibilities briefly and then discuss each one in detail in its own section.
Figure 10-25 shows what they look like. Remember that X is always red.

1. P is black.



2. P is red and X is an outside grandchild of G.

3. P is red and X is an inside grandchild of G.

You might think that this list doesn’t cover all the possibilities. We return to
this question after we explored these three.

Figure 10-25 Three post-insertion possibilities

Possibility 1: P Is Black
If P is black, you get a free ride. The node you’ve just inserted is always red. If
its parent is black, there’s no red-to-red conflict (Rule 3) and no addition to the
number of black nodes (Rule 4). Thus, no color rules are violated. You don’t
need to do anything else. The insertion is complete.

Possibility 2: P Is Red and X Is Outside
If P is red and X is an outside grandchild, you need a single rotation and some
color changes. The single rotation is the same as what was needed in an AVL
tree, but the color changes are new. Let’s return to the example in Figure 10-20,
which was set up in the RedBlackTree Visualization tool by inserting 50, 20,
71, 12, and 6 in an empty tree. Figure 10-26 shows the situation along with the
X, P, and G labels. The status in the Visualization tool says there is 1 red-red
link, so you know you need to take some action.



Figure 10-26 P is red and X is an outside grandchild

In this situation, you can take three steps to restore red-black correctness and
thereby balance the tree. Here are the steps:

1. Switch the color of X’s grandparent G (20 in this example).

2. Switch the color of X’s parent, P (12).

3. Rotate with X’s grandparent, G (20), at the top, in the direction that raises
X (6). This is a right rotation in the example.

As you’ve learned, to flip colors in the Visualization tool, single-click the node
with a pointer device. To rotate right, double-click the top node. (Alternatively,
single click the parent, 12, then single click the grandparent, 20, and then select
the Rotate Right button while 20 has already been filled in as the rotation
point). After you’ve completed the three steps, the Visualization tool will
inform you that the tree is red-black correct. It’s also balanced, as shown at the
right of Figure 10-26.

In this example, X was an outside grandchild and a left child. There’s a
symmetrical situation when the X is an outside grandchild but a right child. Try
this by creating the tree 50, 25, 75, 87, 93. Fix it by changing the colors of 87
and 75, and rotating left at node 75. Again, the tree becomes balanced.

Possibility 3: P Is Red and X Is Inside
If P is red and X is an inside grandchild, you need two rotations and some color
changes. To see this one in action, use the Visualization tool to create the tree
with keys 50, 20, 71, 12, 17. The result is the tree on the left of Figure 10-27.



Figure 10-27 P is red and X is an inside grandchild

Note that node 17 is an inside grandchild. Both it and its parent are red, so
again you see the status message that there is one red-red link.

Fixing this arrangement is slightly more complicated. If you try to rotate right
with the grandparent node, G (20), at the top, as you did in Possibility 2, the
inside grandchild, X (17), moves across rather than up, so the tree is no more
balanced than before. (Try this; then rotate back left, with 12 at the top, to
restore it.) A different solution is needed.

The trick when X is an inside grandchild is to perform two rotations rather than
one, just as was needed for AVL trees. Rotation 1 changes X from an inside
grandchild to an outside grandchild, as shown in middle of Figure 10-27. Now
the situation is like Possibility 1, and you can apply the same rotation, with the
grandparent at the top, as you did before. The result is shown on the right.

You must also recolor the nodes. You do this before doing any rotations. The
order of these operations doesn’t really matter, but if you wait until after the
rotations to recolor the nodes, it’s hard to know what to call them. Here are the
steps:

1. Switch the color of X’s grandparent (20 in this example).

2. Switch the color of X (not its parent; X is 17 here).

3. Rotate with X’s parent, P, at the top (not the grandparent; the parent is
12), in the direction that raises X (a left rotation in this example).

4. Rotate again with X’s grandparent, G (20), at the top, in the direction that
raises X (a right rotation).



The rotations and recoloring restore the tree to red-black correctness and
balance it. As with Possibility 2, there is a mirror image case in which P is the
right child of G rather than the left.

What About Other Possibilities?
Do the three Post-Insertion Possibilities just discussed really cover all
situations?

Suppose, for example, that X has a sibling, S, the other child of P. This scenario
might complicate the rotations necessary to insert X and would be as if the
bottom dashed nodes in each of the possibilities of Figure 10-25 were filled in.
If P is black, then there’s still no problem inserting X, which is red (that’s
Possibility 1).

What about when P is red? Well, you know that the tree was balanced just
before the insertion, so G must be black when P is red (to avoid violating Rule
3). If there were a sibling of X, it too would have to be black (to avoid
violating Rule 3). That would mean, just before the insertion, P had only one
child, the sibling, and it was black. That’s not balanced because P’s null child
would have a different number of black nodes in its path, violating Rule 4. You
can conclude that it’s impossible for X to have a sibling when P is red.

Another case to explore is that G, the grandparent of P, has a child, U, the
sibling of P and the uncle of X (the top dashed nodes in Figure 10-25). Again,
this scenario might complicate any necessary rotations. If P were black, there
would be no need for rotations when inserting X, as you’ve seen. Let’s assume
P is red and G is black (as in Possibilities 2 and 3 of Figure 10-25). Then U
must also be red; otherwise, the black height going from G to P’s null child
would be different from that going from G to U. Because a black parent, G,
with two red children, P and U, would be swapped on the way down, you
conclude that this situation can’t exist either.

Thus, the three possibilities just discussed are the only ones that can exist
(except for the mirror cases of Possibilities 2 and 3, X can be a right or left
child and P can be a right or left child).

What the Color Swaps Accomplished
Suppose that performing a rotation and appropriate color changes caused other
violations of the red-black rules to appear further up the tree. You can imagine



situations in which you would need to work all the way back up the tree,
performing rotations and color switches, to remove rule violations. That’s what
was done in AVL trees.

Fortunately, this situation can’t arise. Using color swaps on the way down
eliminates the situations in which a rotation could introduce any rule violations
further up the tree (we cover rotations on the way down in the next section).
When you get to inserting at the leaf, it’s guaranteed that one or two rotations
plus two color flips will restore red-black correctness in the entire tree. Proving
this guarantee is beyond the scope of this book, but such a proof is possible.

The color swaps on the way down make insertion in red-black trees more
efficient than in other kinds of balanced trees, such as AVL trees. They ensure
that you need to pass through the tree only once, on the way down. If the
implementation is recursive, no work is needed after the recursive call returns.

Rotations on the Way Down
Now let’s discuss the last of the three operations involved in inserting a node:
making rotations on the way down to the insertion point. As we noted,
although we discuss this operation last, it actually takes place before the node
is inserted. We waited until now to discuss it only because it was easier to
explain rotations for a just-installed node than for nodes in the middle of the
tree.

In the discussion of color swaps during the insertion process, we noted that a
color swap could cause a violation of Rule 3 (a parent and child can’t both be
red). The problem arises when you visit a black node with two red children and
a red parent. We also noted that a rotation could fix this violation.

On the way down there are two possibilities, corresponding to Possibility 2 and
Possibility 3 during the insertion phase described earlier. The offending node
can be an outside grandchild, or it can be an inside grandchild. (In the situation
corresponding to Possibility 1, no action is required.)

Outside Grandchild
First, let’s examine an example in which the offending node is an outside
grandchild. By “offending node,” we mean the child in the parent-child pair
that caused the red-red conflict.



For this example, start a new tree and insert the following keys: 50, 25, 75, 12,
37, 6, and 18. The insertion of 12 and 6 will cause color swaps.

Now try to insert a node with the value 3. The tree initially looks like the one
on the left in Figure 10-28. As the search for the insertion point unfolds, it
recognizes the need to swap colors at the subtree rooted at node 12. When the
colors are swapped, node 12 becomes red, matching its parent, node 25. The
visualization tool proceeds to insert node 3, but let’s look at the situation right
after the color swap at node 12.

Figure 10-28 Correcting a red-red outside grandchild on the way down

The middle tree in Figure 10-28 shows the red-red conflict where node 12 is
the problem, X; node 25 is its parent, P; and node 50 is its grandparent, G.



Similar to the way you handle insertion at the leaf level, you must perform two
color changes and one rotation. This example looks a little odd because X
referred to the node being inserted in the earlier discussion, and here it’s not
even a leaf node. These on-the-way-down rotations, however, can take place
anywhere within the tree.

You follow the same set of rules you did under Possibility 2: P Is Red and X Is
Outside, discussed earlier:

1. Flip the color of X’s grandparent G (50 in this example). Ignore the status
message about the root not being black.

2. Flip the color of X’s parent P (25).

3. Rotate with X’s grandparent (50) at the top, in the direction that raises X
(here a right rotation).

These steps result in the tree on the right of Figure 10-28. Suddenly, the tree is
not only balanced but has also become pleasantly symmetrical! This outcome
appears to be a bit of a miracle, but it’s only the result of following the color
rules.

Now the node with value 3 can be inserted in the usual way. Because the node
it connects to, 6, is black, there’s no complexity about the insertion.

When you try this in the visualization tool, it doesn’t perform the rotation
automatically during the insertion of node 3; you will have to do it after the
insertion. During the animation, when the current arrow reaches node 12, the
tool shows the top panel in Figure 10-29.



Figure 10-29 Correcting a red-red outside grandchild in the Visualization
tool

The same color flips and rotation can be performed after the insertion to satisfy
the red-black rules. In fact, if the algorithm were omniscient, it could perform
the color flips and rotation on the original tree, even before an insertion was
attempted. Sadly, omniscience is not an option. It’s quite practical, however, to
detect and fix the problem on the downward search.

Inside Grandchild
If X is an inside grandchild when a red-red conflict occurs on the way down,
two rotations are required to set it right. This situation is like that of the inside
grandchild in the post-insertion phase, which we called Possibility 3.



To see it in action, empty the tree in the visualization tool, and insert 50, 25,
75, 12, 37, 31, and 43. Now try to insert a new node with the value 28. During
the animation of the current arrow descending, it swaps node 37’s color with
that of its children. That leaves node 37 red and in conflict with its parent, node
25, as shown at the left of Figure 10-30. In this situation G is 50, P is 25, and X
is 37.

Figure 10-30 Correcting a red-red inside grandchild on the way down

To cure the red-red conflict, you must do the same two color flips and two
rotations as described earlier in “Possibility 3: P Is Red and X Is Inside” :

1. Change the color of G (node 50; ignore the message that the root is not
black).

2. Change the color of X (37).

3. Rotate with P (25) as the top, in the direction that raises X (left in this
example). That produces the tree in the middle of Figure 10-30.

4. Rotate with G (50) as the top, in the direction that raises X (right in this
example).

Now the insertion of node 28 can proceed as shown at the right of Figure 10-
30. Again, this operation poses no additional challenges because both nodes 31
and 43 were swapped to black when you first tried to insert 28.

When you use the visualization tool to insert 28, it will perform the color swap
of nodes 37, 31, and 43. You will have to perform the preceding four steps after
the insertion of 28 is done.



We’ve concluded the description of how a tree is kept red-black correct during
the insertion process. Adherance to the red-black rules guarantees balance
because the level of leaves can only differ by at most two within any subtree
(forgetting about the red and black labels). That’s a different definition of
balanced when compared to AVL trees, and we look at what that means when
we discuss efficiency.

Deletion
As you may recall from Chapter 8 and saw in the implementation of AVL trees
earlier, coding for deletion is harder than for insertion. Chapter 9 described
how deletion could be done in 2-3-4 trees using rotation and fusion operations
to maintain balance. With red-black trees, rotation and color change operations
can be done to maintain red-black correctness (balance), and the deletion
process remains, as you might expect, quite complex.

In fact, the deletion process is so complicated that many programmers sidestep
it in various ways. One approach, as with ordinary binary trees, is to mark a
node as deleted without actually deleting it—a “soft” delete. Any search
routine that finds the node knows not to report it to the caller. Deleted nodes
must still maintain their red-black status, however, in order to balance the
overall tree. The soft delete solution works in situations where deletions are not
a common occurrence. That approach, however, has a way of ending up
causing performance issues when someone takes the implementation and
applies it to some problem where deletions happen more frequently. In any
case, we forgo a discussion of the deletion process.

The Efficiency of Red-Black Trees
Like ordinary binary search trees, a red-black tree allows for searching,
insertion, and deletion in O(log2 N) time, which is the same as O(log N) time.
Search times should be almost the same in the red-black tree as in the ordinary
tree because the red-black characteristics of the tree aren’t used during
searches. The difference comes, however, in the height of the red-black trees.
The rule that constrains the number of levels, Rule 4, only counts the black
nodes on the path. That means, that there can potentially be a path to a black
leaf that has exactly two black nodes in it, while a path to a red leaf has two
black nodes and two red nodes, as in Figure 10-31. The count of black nodes is



the same, but the path followed by a search is twice as long. According to
Sedgewick (see Appendix B), it can be shown that the search cannot require
more than 2×log2 N comparisons. That constant 2 in front comes from the extra
path length, and it’s the worst case. On average it takes about log2 N
comparisons. In big O notation, remember, you ignore the constant so it
remains O(log N).

Figure 10-31 A red-black tree whose longest path is twice the shortest
path

The times for insertion and deletion are increased by a constant factor because
of having to perform color swaps and rotations on the way down and at the
insertion point. On average, an insertion requires about one rotation. Therefore,
insertion still takes O(log N) time but is slower than insertion in the ordinary
binary tree. Compared with the AVL tree, which performs rotations bottom-up,
the red-black tree is about twice as fast because it only needs to do work during
the descent, although the other multipliers for color flips and rotations, plus the
possibility of being deeper, change that a bit.

The storage penalty compared to ordinary binary search trees is the Boolean
variable needed to label the color of each node. That’s smaller than what the
AVL tree required. It’s also independent of the number of levels in the tree
(you don’t need more space per node when the number of levels gets huge).

Because in most applications there will be more searches than insertions and
deletions, there is probably not much overall time penalty for using a red-black
tree or an AVL tree instead of an ordinary binary search tree. Of course, the big
advantage of red-black, AVL, and 2-3-4 trees is their insensitivity to the order



items are inserted. None of them slow down to O(N) search performance, even
if the data is inserted in the order of the keys.

2-3-4 Trees and Red-Black Trees
At this point 2-3-4 trees (described in Chapter 9) and red-black trees probably
seem like entirely different entities. It turns out that in a certain sense they are
completely equivalent. One can be transformed into the other by the
application of a few simple rules, and even the operations needed to keep them
balanced are equivalent. Mathematicians would say they are isomorphic.

You probably won’t ever need to transform a 2-3-4 tree into a red-black tree,
but the equivalence of these structures casts additional light on their operation
and is useful in analyzing their efficiency.

Historically, the 2-3-4 tree was developed first; later the red-black tree evolved
from it.

Transformation from 2-3-4 to Red-Black
As you might recall, the nodes of a 2-3-4 tree have either 2, 3, or 4 child links
(possibly all empty for a leaf node). Each 2-3-4 node can be transformed into a
red-black subtree by applying a rule based on its type, as shown in Figure 10-
32. The rules are

• Transform any 2-node in the 2-3-4 tree into a one black node in the red-
black tree. Its two children, W and X, become the left and right children
of the black node.

• Transform any 3-node into a child node, C, and a parent node, P. There
are two possibilities for where to transform the three original child links
—W, X, and Y—as shown in Figure 10-32. The child node C gets either
W and X or X and Y as its child links. The parent, P, gets the one
remaining child: either Y or W. It doesn’t matter which item becomes
the child and which the parent if the relationships between the keys are
preserved. The parent is colored black, and the child is colored red.

• Transform any 4-node into a parent and two children. The first child gets
children W and X; the second child gets children Y and Z. As before, the
parent is black; the two children are colored red.



Figure 10-32 Transforming nodes: 2-3-4 to red-black

Note that a leaf node storing a single item is considered a 2-node when
applying these rules. In general, a leaf node storing L items transforms as a
L+1 node does.

Figure 10-33 shows a 2-3-4 tree and its corresponding red-black tree obtained
by applying these transformations. Dotted triangles surround the subtrees that



were made from 4-nodes (one black and two red nodes). Dotted lozenges
surround the subtrees that were made from 3-nodes (one black and one red
node). The red-black rules are automatically satisfied by the transformation.
Check that this is so: the root is black, two red nodes are never connected, and
for every leaf and null child, the path to the root has the same number of black
nodes, 3.

Figure 10-33 A 2-3-4 tree and its red-black equivalent

You can say that a 3-node in a 2-3-4 tree is equivalent to a parent with a red
child in a red-black tree, and a 4-node is equivalent to a parent with two red
children. It follows that a black parent with a black child in a red-black tree
does not represent a 3-node in a 2-3-4 tree; it simply represents a 2-node with



another 2-node child. Similarly, a black parent with two black children (like the
root node of the red-black tree in Figure 10-33) does not represent a 4-node.

Operational Equivalence
Not only does the structure of a red-black tree correspond to a 2-3-4 tree, but
the operations applied to these two kinds of trees are also equivalent. In a 2-3-4
tree the tree is kept balanced during insertion using node splits. In a red-black
tree the balancing methods are color swaps, flips, and rotations.

4-Node Splits and Color Swaps
As the insertion algorithm descends a 2-3-4 tree searching for where a new
node goes, it splits each 4-node into two 2-nodes. In a red-black tree the
algorithm calls for color swaps. Are these operations equivalent?

The top row of Figure 10-34 shows a 4-node (with keys 40-50-60) in a 2-3-4
tree being split. The 2-node holding item 70 that was the parent of the 4-node
becomes a 3-node, holding 50 and 70.



Figure 10-34 A 4-node split and color swap

The bottom row of Figure 10-34 shows the red-black equivalent to the 2-3-4
tree in the top row. The dotted triangle surrounds the equivalent of the 4-node,
holding 40, 50, and 60. A color swap causes nodes 40 and 60 to become black
and node 50 to become red. Thus, node 50 and its parent form the equivalent of
a 3-node, as shown by the dotted lozenge shape surrounding nodes 50 and 70.
This is equivalent to the 3-node holding 50 and 70 above.

Thus, it’s clear that splitting a 4-node during the insertion process in a 2-3-4
tree is equivalent to performing color swaps during the insertion process in a
red-black tree.

3-Node Splits and Rotations



When a 3-node in a 2-3-4 tree is transformed into its red-black equivalent, two
arrangements are possible, as shown earlier in Figure 10-32. Either of the two
data items can be placed as the parent. Depending on which one is chosen, the
middle child of the 3-node is either a left child or a right child in the red-black
tree, and the slant of the line connecting parent and child is either left or right.
These are sometimes called left-leaning and right-leaning red-black trees.

Both arrangements are valid; however, they may not contribute equally to
balancing the tree. Let’s look at the situation in a slightly larger context.

The top panel in Figure 10-35 shows a 2-3-4 tree. The bottom panels show the
left-leaning and right-leaning options for equivalent red-black trees derived
from the transformation rules. The difference between them is the choice of
which of the two data items in the 3-node at the top to make the parent. In the
left-leaning option, node 80 becomes the parent, and in the right-leaning one,
node 70 is chosen.



Figure 10-35 3-node transformation and equivalent rotation

Although these arrangements are equally valid, you can see that the tree on the
left looks less balanced than the one on the right, even though both follow all
the red-black rules. If you tried to insert an item with a key of 45 in the tree on
the left, the insertion algorithm would descend the left branch and find that
node 50 has two red children and perform a color swap. That would make node
50 red and violate Rule 3 with its parent, node 70. To fix that, you would apply
the rule for Outside Grandchild conflicts. Amazingly, this rotation (performed
on the tree without conflicts) results in the exact same tree as the right-leaning
option!



Thus, you can see equivalence between rotations in red-black trees and the
choice of which node to make the parent when transforming 2-3-4 trees to red-
black trees. Although we don’t show it, a similar equivalence can be seen for
the double rotation necessary for inside grandchildren.

Red-Black Tree Implementation
If you’re writing an insertion routine for red-black trees, all you would need to
do (irony intended) is to write code to carry out the operations described in the
preceding sections. As we noted, showing and describing such code are beyond
the scope of this book. Nevertheless, here’s what you would need to think
about.

First, you’d need to add a red-black field to the __Node class. The constructor
would create red nodes for insertion, by default.

You could adapt the insertion routine from the BinarySearchTree in Chapter 8,
the Tree234 class in Chapter 9, or the AVLtree of this chapter. On the way
down to the insertion point, check if the current node is black and its two
children are both red. If so, change the color of all three (unless the parent is
the root, which must be kept black).

After a color swap, check that there are no violations of Rule 3. If so, perform
the appropriate rotations: one for an outside grandchild, two for an inside
grandchild.

When you reach a leaf node, insert the new node, making sure the node is
colored red. Check again for red-red conflicts, and perform any necessary
rotations.

Perhaps surprisingly, your software need not keep track of the height or black
height of different parts of the tree (although you might want to check this
during debugging). You need to check only for violations of Rule 3, a red
parent with a red child, which can be done locally (unlike checks of black
heights, Rule 4, which would require more complex bookkeeping like you did
for the height in AVL trees).

If you perform the color swaps, color changes, and rotations described earlier,
the black heights of the nodes take care of themselves, and the tree should
remain balanced. The RedBlackTree Visualization tool reports black-height
errors only to help you understand the rules; they don’t need to be tracked by



the algorithm. Although the concepts of the red-black tree are a bit harder to
grasp, the implementation can be faster than that of an AVL tree, even though
both remain O(log N).

Summary
• Keeping a binary search tree balanced ensures that the time to find a

given node is as short as possible.

• Inserting data that has already been sorted can create a maximally
unbalanced tree, which will have search times of O(N).

• You can measure tree balance by counting nodes or the length of paths in
the left and right subtrees.

• You should measure balance at every node (every subtree), not just the
root of the tree.

• In the AVL tree, each node keeps a field measuring its height.

• The height of a node is the number of nodes on the path to the deepest
leaf node below it, including itself.

• The height of an empty subtree of a node is considered zero.

• A binary tree is fully balanced when the height difference of the left and
right child of every node is at most one.

• AVL trees perform bottom-up correction of imbalances.

• Left and right rotations alter the positions and heights of subtrees.

• Rotations are implemented by changing the links between nodes of the
tree.

• Rotations preserve the order of keys in the tree by moving the crossover
subtree to the left or right of the top of the rotation.

• When inserting a node causes an AVL subtree to become left or right
heavy, it makes one rotation for an outside grandchild and two rotations
for an inside grandchild to correct the imbalance.



• Deleting a node from an AVL subtree involves finding the node to delete,
finding the successor of the node to delete, moving the successor item up
to the node to delete, deleting the successor node, and correcting any
imbalance created by the deletion of the successor node.

• Imbalances caused by deletion can also be corrected using one or two
rotations by checking the height difference at a node and the child where
the deletion occurred.

• Each AVL node’s height must be updated after rotations, deletions, and
insertions are performed on its subtrees.

• AVL trees take O(log N) for search, insertion, and deletion operations.
Traversal is O(N).

• AVL trees consume O(N) memory.

• In the red-black balancing scheme, each node is assigned a characteristic
—a color that is either red or black.

• A set of four rules, called the red-black rules, specifies permissible ways
that nodes of different colors can be arranged.

• The red-black rules are maintained while inserting and deleting each
node.

• A color swap changes a black node with two red children to a red node
with two black children.

• Rotations alter the heights of subtrees and sometimes cause violations of
the red-black rules.

• Color swaps, and sometimes rotations with color flips, are applied while
searching down the tree to find where a new node should be inserted.
These swaps help return the tree to red-black correctness following an
insertion.

• After a new node is inserted or an internal node undergoes a color swap,
red-red conflicts are checked again. If a violation is found, appropriate
rotations are carried out to make the tree red-black correct.



• These top-down adjustments result in the tree being balanced, or at least
almost balanced.

• Red-black trees have the same big O performance as AVL trees do: O(log
N) for search, insertion, and deletion operations. Traversal is O(N).

• In the worst case, the search path in a red-black tree is twice the length of
that of an AVL tree holding the same items.

• Red-black trees consume O(N) memory.

• Red-black trees consume less memory per node than AVL trees because
they need only one bit of storage for the node color, whereas AVL trees
use an integer to track the height of the tree.

• Adding balancing to a binary tree has only a small negative effect on
average performance and avoids worst-case performance when the data
is already sorted.

• A red-black tree can be derived from any 2-3-4 tree, maintaining balance.

• Insertion and deletion operations on 2-3-4 trees can be shown to be
equivalent to the corresponding operations in red-black trees.

Questions
These questions are intended as a self-test for readers. Answers may be found
in Appendix C.

1. A balanced binary search tree is desirable because it avoids slow
performance when data is inserted ________.

2. In a balanced tree, there are roughly the same number of nodes in the
left and right subtrees, and
a. the tree may need to be restructured during searches.
b. the paths from the root to all the leaf nodes are about the same length.
c. all left subtrees are the same height as all right subtrees.
d. the starting level of all subtrees is closely controlled.



3. Which of the following metrics guarantees a balanced binary tree if it is
less than or equal to one?
a. the sum of the differences between the node count of the left and right

subtrees, at every node of the tree
b. the difference in the number of nodes in the left and right subtrees of

the root node
c. the absolute difference between the heights of the left and right

subtrees, at every node of the tree
d. the height of the left subtree minus the height of the right subtree of

the root node
4. AVL trees

a. track the number of nodes in the subtree below each node.
b. use average values of the keys in a subtree to speed up the search

time.
c. insert each item with height 1 and then adjust that height after

modifications to its subtrees in later operations.
d. use the difference in height of a node’s subtrees to determine which

subtree will store the next item inserted.
5. If an empty AVL tree has 100 items inserted into it, and every insertion

causes either an even balance or a temporary left-heavy tree at the root,
you can conclude that
a. the number of right rotations will equal or exceed the number of left

rotations.
b. the tree will be partially unbalanced leading the average number of

comparisons for a search to be around 50.
c. the last 50 items inserted will end up in the right subtree of the root.
d. only right rotations will be needed to correct imbalances.

6. Deleting an item from an AVL tree
a. is easiest when the node containing the item has two subtrees.
b. uses either one or two rotations to rebalance subtrees based on the

height balance of (1) the subtree and (2) the child with the larger



height,
c. uses fusion operations like 2-3-4 trees do in some situations.
d. uses the mirror image operations of inserting an item.

7. True or False: The red-black rules are a sequence of steps that rearrange
the nodes in a tree to balance it.

8. A null child is
a. a child that doesn’t exist but will be created next as a placeholder to

balance the tree.
b. a child with no children of its own.
c. a child whose key was deleted but was left in the tree as a soft-

deletion.
d. a nonexistent left child of a node with a right child (or vice versa).

9. Which of the following is not a red-black rule?
a. Every path from a root to a leaf, or to a null child, must contain the

same number of black nodes.
b. If a node is black, its children must be red.
c. The root node is always black.
d. Every node must be either black or red.

10. The two possible actions used to balance a red-black tree are _______
and _______.

11. Newly inserted nodes are always colored _______.
12. A crossover node or subtree starts as a ________ and becomes a

_______, or vice versa.
13. Which of the following is not true of red-black trees? Rotations may

need to be made
a. before a node is inserted.
b. after a node is inserted.
c. during a search for the insertion point.
d. when searching for a node with a given key.



14. A color swap involves changing the color of ______ and ______.
15. An outside grandchild is

a. on the opposite side of its parent than its parent is of its sibling.
b. on the same side of its parent than its parent is of its parent.
c. one which is the left descendant of a right descendant (or vice versa).
d. on the opposite side of its parent than its sibling is of their

grandparents.
16. True or False: When one rotation immediately follows another as part of

single insertion at the lowest level of a red-black tree, they are in
opposite directions.

17. Two rotations are necessary when
a. the node is an inside grandchild and the parent is red.
b. the node is an inside grandchild and the parent is black.
c. the node is an outside grandchild and the parent is red.
d. the node is an outside grandchild and the parent is black.

18. Two color swaps are necessary when
a. encountering a black node with two red children on deletion.
b. encountering a red node with two black children on insertion.
c. encountering a black node with two red children on insertion.
d. none of these situations.

19. In comparing the efficiency of AVL trees and red-black trees
a. all operations in AVL trees are somewhat more efficient than those of

red-black trees because they operate bottom-up.
b. AVL trees use more memory per node and have slower search than

red-black trees.
c. red-black trees use fewer rotations to balance trees making them

faster at insertion, deletion, and search.
d. both are O(log N) but the red-black rules can result in balanced trees

with path lengths up to twice as long as those in an AVL tree, leading
to slower search times in red-black trees.



20. The 2-3-4 trees (Chapter 9)
a. can be collapsed into 2-3 trees (Chapter 9), and in some cases, into a

balanced binary trees (Chapter 10).
b. can be transformed into AVL trees, but their balance must be adjusted

through additional rotations.
c. can be restructured using rotations into a red-black tree, although the

balance of the red-black tree may be left-heavy or right-heavy
depending on how 3-nodes are handled.

d. can be mapped into equivalent red-black trees and the 4-node split
operation has the same effect as a red-black color swap.

Experiments
Carrying out these experiments will help to provide insights into the topics
covered in the chapter. No programming is involved.

10-A Tree structures have been used by secret organizations such as
resistance movements for a long time. The tree structure represents the
hierarchy of the group. Group members know their leader—their
parent node—and their direct subordinates—their child nodes.
Knowing more than a few of their members, however, can be
dangerous to the organization. An enemy who discovers one member
may be able to discover the other parts of the group known to that
member.
Which tree structure that you’ve studied (Chapters 9 and 10) would be
best as the basis for organizing such a group? How would balancing
the tree help or hurt the organization? If it helps, which method(s) of
balancing that you’ve seen would be best in terms of preventing an
enemy from knowing the size and structure of the organization if they
captured one member?

10-B If an AVL tree uses a single byte to represent the height at each node,
the height can range from 0 to 255. A tree with heights deeper than that
would cause problems. How many items (nodes) could such an AVL
tree hold without running in to that problem?

10-C If you haven’t already, perform all of the experiments in the sections:
“Experiment 1: Inserting Two Red Nodes,” “Experiment 2: Rotations,”



“Experiment 3: Color Swaps,” and “Experiment 4: An Unbalanced
Tree.”

10-D Use the RedBlackTree Visualization tool and fill an empty tree with 31
random nodes. Repeat this 50 times. How often does the resulting tree
satisfy all the red-black rules? How often is the tree grossly unbalanced
(that is, have some node with a height difference of 3 or more)? How
does this compare with randomly constructing similar trees in the
Binary Search Tree Visualization tool?

10-E Do enough insertions to convince yourself that if red-black rules 1, 2,
and 3 are followed exactly along with the color swaps and rotations
described in this chapter, Rule 4 will take care of itself.

Programming Projects
Writing programs to solve the Programming Projects helps to solidify your
understanding of the material and demonstrates how the chapter’s concepts are
applied. (As noted in the Introduction, qualified instructors may obtain
completed solutions to the Programming Projects on the publisher’s website.)

10.1 Write a method isBalanced() for the AVLtree class that verifies the
entire tree is balanced. It should return True when the height difference
of every node is −1, 0, or +1, and False otherwise. Show that the tree
starts balanced when it’s empty and remains balanced as nodes are
inserted and later deleted.
For extra thoroughness, use Python’s itertools package to find every
permutation of the order of six distinct keys to insert into the empty
tree. Count how many of those insertion permutations produce balanced
trees.

10.2 Write a method howManyWithin() for the AVLtree class that counts the
number of items with keys within a low and a high value. Because the
AVL tree is a binary search tree, not all nodes need to be investigated.
For example, when visiting a node whose key is 20 when the low value
of the range is 40, there’s no need to visit its left child branch because it
cannot possibly have any keys in the range. The method should count
keys that match the low or high value, if the high value is equal to or
greater than the low (a non-empty range). Test your method on a variety



of ranges including empty ranges and ones that match exactly one key
in the tree.

10.3 Perhaps you have used sets in math. They are used to group things like
the set of all prime numbers or the set of all multiples of 3. Another
similar concept is a multiset. In the standard set, an element is either in
or out of the set and repeat instances of the element cannot be in the set.
The multiset allows multiple instances of the same element in a set. The
multiset tracks the count of each of its elements; if the count becomes
zero, the element is no longer in the set. This same idea has been called
bag, aggregate, weighted set, and other names in various places. It
could be used, for example, to represent the coins in a bag or the cards
in a player’s hand in a game that has multiple copies of the same card.
Python has a built-in set data type but not a specific multiset.
Use the AVLtree to implement a Multiset class and perform the basic
set operations. The keys of the AVL tree are the elements of the
multiset and their corresponding values store the count of that element.
This allows for multisets of strings, integers, tuples, lists, and any other
data type that can be ordered.
Your implementation of Multiset should include the following
methods:

• __len__()—Returns the number of keys (distinct elements) stored in
the multiset and allows the Python len() function to be used on
multisets.

• cardinality()—Returns the total count of all elements stored in the
multiset.

• __str__()—Returns a string representation of the multiset showing
the keys and their counts, for example “[(A: 4), (P: 1)]”. This
allows the multiset to be printed or passed to the Python str()
function.

• __contains__(key) —Returns True if the given key is in the multiset
and False otherwise, allowing the multiset to be used in an
expression such as key in multiset.

• count(key) —Returns the count of the given key in the multiset or
zero if the key is not in the multiset.



• add(key, count=1) —Add a key to the multiset with an optional
count parameter that defaults to 1, allowing multiple copies to be
added in one call. Another way to describe this method is that it
increases the count for the given key by the count parameter.

• remove(key, count=1) —Remove a certain number of copies of key
from the multiset. The number of copies is an optional parameter that
defaults to 1. If the number of copies being removed is equal to or
higher than the current count for the key, the key should be removed
from the underlying AVL tree.

Show your implementation working on an empty multiset, adding some
items, showing the string representing the multiset, showing the length
and cardinality for the whole multiset, showing the count for individual
keys, then deleting some elements, and then showing more counts after
the deletions.

10.4 Extend the Multiset implementation from Programming Project 10.3
to add the union() and intersection() methods. The union of two
multisets is like the union of a regular set except that the count for an
element in the union is the maximum of its count in the input multisets.
The intersection of two multisets has counts that are the minimum of
the counts for the element in the input multisets. For both operations,
elements that are not in a multiset have a count of zero.
The union() method of Multiset should take another multiset as input
and return a new multiset containing the union. It’s more difficult to
write it as a method that modifies one of the input multisets because
you must traverse the underlying AVL tree while modifying it.
Similarly, the intersection() method should take another multiset as
input and returns a new multiset containing the intersection.
To perform the union and intersection operations, you need to traverse
the items in the underlying AVL trees. For this, you can look at the
traverse() generator used for 2-3-4 trees in Chapter 9 or the code
provided for the AVL tree with this textbook. To perform the operations
efficiently, you can generate iterators for both multisets and visit all the
elements in order. This operation is somewhat like mergesort, which
takes two sorted sequences and produces a new combined sequence in
sorted order. At each step, the algorithm looks at the element with the



lowest key in the two sequences and determines what should go in the
output multiset.
Show your implementation of union and intersection by adding a
variety of elements to two multisets, ensuring some elements are in
both sets while others are only in one but not the other. Also ensure that
the counts of some of the common elements are different in the two
multisets. Show the union and intersection multisets formed by
combining those two along with their length and cardinality.

10.5 Measure the performance of the AVL tree by altering its structure to
store and report statistics on the number of operations performed. In the
constructor for an AVLtree, create storage for the number of calls to
updateheight(), heightdiff(), rotateRight(), and rotateLeft()
that are all initially zero. Add methods to get the values for these
statistics and to clear them back to zero. Write a __len__() method that
gets the count of the number of items in the AVLtree and a height()
method that gets the height of the root node.
Use the new methods to get the absolute counts for each of the statistics
as you insert 100 or more items and then delete them. Show the counts
for insertions and deletions and the counts divided by the log of the size
of the tree; that is, divide by math.log(len(tree)), when the size is
four or above to always have a positive denominator and at least two
levels in the tree. It’s helpful to print the statistics in fixed width
columns (see Python’s format function for strings) so they look
something like:
 
N  H updHgt hgtDif RotLft RotRgt updHgt  hgtDif RotLft RotRgt 
84 7      6      5      0      1   1.354  1.128  0.000  0.226

The first row shows the abbreviated titles of the statistics. It shows the
number of nodes, N; the height of the tree, H; the four raw statistics;
and the four ratios of those counts to the log N value. Print out about 15
samples of these statistics.
If the efficiency of the operations is O(log N), then the ratios should be
bounded and relatively stable. They will be largest when there are the
most rotations needed to rebalance the tree. Keep track of the maximum
ratios and print them after all the items have been inserted and then



again after all have been deleted. The ratios should remain bounded
even if you increase the number of items to a thousand.
In fact, the worst ratios occur when the tree is small because the
denominator is the smallest. For example, look at the subtree rooted at
node 72 in Figure 10-5. If you forget about the rest of the tree and
assume node 72 is the root, then it is a balanced AVL tree because all
12 of its nodes have a height difference of one or less. If you then delete
node 69 from that tree, the left side becomes unbalanced. It requires
two rotations to balance the left subtree because the inside grandchild
must be promoted. The root is now unbalanced with a left side of height
2 and a right side of height 4. That requires a left rotation to fix, and it
requires a further right rotation because the right subtree is left heavy.
That’s four rotations total, which each cause two calls to
updateHeight(). There are two more calls to updateHeight() from the
descent down to the node to delete, node 69, which leaves a total of 10
calls. The number of calls divided by the log of the number of nodes, 12
(before the deletion), is a little more that 4.0 when using the
math.log() function, which is what’s called the natural logarithm. Your
results should show ratios less than 4 for larger trees.



11. Hash Tables

In This Chapter

• Introduction to Hashing

• Open Addressing

• Separate Chaining

• Hash Functions

• Hashing Efficiency

• Hashing and External Storage

A hash table is a data structure that offers very fast insertion and searching.
When you first hear about them, hash tables sound almost too good to be true.
No matter how many data items there are, insertion and searching (and
sometimes deletion) can take close to constant time: O(1) in Big O notation. In
practice this is just a few machine instructions.

For a human user of a hash table, this amount of time is essentially
instantaneous. It’s so fast that computer programs typically use hash tables
when they need to look up hundreds of thousands of items in less than a second
(as in spell checking or in auto-completion). Hash tables are significantly faster
than trees, which, as you learned in the preceding chapters, operate in relatively
fast O(log N) time. Not only are they fast, hash tables are relatively easy to
program.

Despite these amazing features, hash tables have several disadvantages.
They’re based on arrays, and expanding arrays after they’ve been allocated can
cause challenges. If there will be many deletions after inserting many items,
there can be significant amounts of unused memory. For some kinds of hash
tables, performance may degrade catastrophically when a table becomes too
full, so programmers need to have a fairly accurate idea of how many data



items will be stored (or be prepared to periodically transfer data to a larger hash
table, a time-consuming process).

Also, there’s no convenient way to visit the items in a hash table in any kind of
order (such as from smallest to largest). If you need this kind of traversal,
you’ll need to look elsewhere.

However, if you don’t need to visit items in order, and you can predict in
advance the size of your database or accept some extra memory usage and a
tiny bit of slowness as the database is built up, hash tables are unparalleled in
speed and convenience.

Introduction to Hashing
In this section we introduce hash tables and hashing. The most important
concept is how a range of key values is transformed into a range of array index
values. In a hash table, this transformation is accomplished with a hash
function. For certain kinds of keys, however, no hash function is necessary; the
key values can be used directly as array indices. Let’s look at this simpler
situation first and then go on to look at how hash functions can be used when
keys aren’t distributed in such an orderly fashion.

Bank Account Numbers as Keys
Suppose you’re writing a program to access the bank accounts of a small bank.
Let’s say the bank is fairly new and has only 10,000 accounts. Each account
record requires 1,000 bytes of storage. Thus, you can store the entire database
in only 10 megabytes, which will easily fit in your computer’s memory.

The bank director has specified that she wants the fastest possible access to any
individual record. Also, every account has been given a number from 0 (for the
first account created) to 9,999 (for the most recently created one). These
account numbers can be used as keys to access the records; in fact, access by
other keys is deemed unnecessary. Accounts are seldom closed, but even when
they are, their records remain in the database for reference (to answer questions
about past activity). What sort of data structure should you use in this
situation?

Index Numbers as Keys



One possibility is a simple array. Each account record occupies one cell of the
array, and the index number of the cell is the account number for that record.
This type of array is shown in Figure 11-1.

Figure 11-1 Account numbers as array indices

As you know, accessing a specified array element is very fast if you know its
index number. The clerk looking up what account a check is drawn from knows
that it comes from, say, number 72, so he enters that number, and the program
goes instantly to index number 72 in the array. A single program statement is
all that’s necessary:
accountRec = databaseArray[72]

Adding a new account is also very quick: you insert it just past the last
occupied element. If there are currently 9,300 accounts, the next new record
would go in cell 9,300. Again, a single statement inserts the new record:
databaseArray[nAccounts] = newAccountRecord()



The count of the number of accounts would be incremented like this:
nAccounts += 1

Presumably, the array is made somewhat larger than the current number of
accounts, to allow room for expansion, but not much expansion is anticipated,
or at least it needs to be done only infrequently, such as once a month.

Not Always So Orderly
The speed and simplicity of data access using this array-based database make it
very attractive. This example, however, works only because the keys are
unusually well organized. They run sequentially from 0 to a known maximum,
and this maximum is a reasonable size for an array. There are no deletions, so
memory-wasting gaps don’t develop in the sequence. New items can be added
sequentially at the end of the array, and the array doesn’t need to be much
larger than the current number of items.

A Dictionary
In many situations the keys are not so well behaved, as in the bank account
database just described. The classic example is a dictionary. If you want to put
every word of an English-language dictionary, from a to zyzzyva (yes, it’s a
word), into your computer’s memory so they can be accessed quickly, a hash
table is a good choice.

A similar widely used application for hash tables is in computer-language
compilers, which maintain a symbol table in a hash table (although balanced
binary trees are sometimes used). The symbol table holds all the variable and
function names made up by the programmers, along with the address (or
register) where they can be found in memory. The program needs to access
these names very quickly, so a hash table is the preferred data structure.

Coming back to natural languages, let’s say you want to store a 50,000-word
English-language dictionary in main memory. You would like every word to
occupy its own cell in a 50,000-cell array, so you can access the word’s record
(with definitions, parts of speech, etymology, and so on) using an index
number. This approach makes access very fast, but what’s the relationship of
these index numbers to the words? Given the word ambiguous, for example,
how do you find its index number?



Converting Words to Numbers
What you need is a system for turning a word into an appropriate index
number. To begin, you know that computers use various schemes for
representing individual characters as numbers. One such scheme is the ASCII
code, in which a is 97, b is 98, and so on, up to 122 for z.

The extended ASCII code runs from 0 to 255, to accommodate capitals,
punctuation, accents, symbols, and so on. There are only 26 letters in English
words, so let’s devise our own code, a simpler one that can potentially save
memory space. Let’s say a is 1, b is 2, c is 3, and so on up to 26 for z. We’ll
also say a blank—the space character—is 0, so we have 27 characters.
(Uppercase letters, digits, punctuation, and other characters aren’t used in this
dictionary.)

How could we combine the digits from individual letter codes into a number
that represents an entire word? There are all sorts of approaches. We’ll look at
two representative ones, and their advantages and disadvantages.

Adding the Digits
A simple approach to converting a word to a number might be to simply add
the code numbers for each character. Say you want to convert the word elf to a
number. First, you convert the characters to digits using our homemade code:

e = 5 l = 12 f = 6

Then you add them:

5 + 12 + 6 = 23

Thus, in your dictionary the word elf would be stored in the array cell with
index 23. All the other English words would likewise be assigned an array
index calculated by this process.

How well would this approach work? For the sake of argument, let’s restrict
ourselves to 10-letter words. Then (remembering that a blank is 0), the first
word in the dictionary, a, would be coded by

0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 1 = 1

The last potential word in the dictionary would be zzzzzzzzzz (10 letter z’s). The
code obtained by adding its letters would be



26 + 26 + 26 + 26 + 26 + 26 + 26 + 26 + 26 + 26 = 260

Thus, the total range of word codes is from 1 to 260 (assuming a string of all
spaces is not a word). Unfortunately, there are 50,000 words in the dictionary,
so there aren’t enough index numbers to go around. If each array element could
hold about 192 words (50,000 divided by 260), then you might be able fit them
all in, but how would you distinguish among the 192 words in one array
element?

Clearly, this coding presents problems if you’re thinking in terms of the one
word-per-array element scheme. Maybe you could put a subarray or linked list
of words at each array element. Unfortunately, such an approach would
seriously degrade the access speed. Accessing the array element would be
quick, but searching through the 192 words to find the one you wanted could
be very slow.

So this first attempt at converting words to numbers leaves something to be
desired. Too many words have the same index. Certainly, any anagram of a
word would have the same code because the order of the letters doesn’t change
the value. In addition, these words

acne ago aim baked cable hack

and dozens of other words have letters that add to 23, as elf does. For words
with higher codes, there could be hundreds of other matching words. It is now
clear that this approach doesn’t discriminate enough, so the resulting array has
too few elements. We need to spread out the range of possible indices.

Multiplying by Powers
Let’s try a different way to map words to numbers. If the array was too small
before, make sure it’s big enough. What would happen if you created an array
in which every word—in fact, every potential word, from a to zzzzzzzzzz—was
guaranteed to occupy its own unique array element?

To do this, you need to be sure that every character in a word contributes in a
unique way to the final number.

You can begin by thinking about an analogous situation with numbers instead
of words. Recall that in an ordinary multidigit number, each digit-position
represents a value 10 times as big as the position to its right. Thus 7,546 really
means



7*1,000 + 5*100 + 4*10 + 6*1

Or, writing the multipliers as powers of 10:

7*103 + 5*102 + 4*101 + 6*100

In this system you break a number into its digits, multiply them by appropriate
powers of 10 (because there are 10 possible digits), and add the products. If
this happened to be an octal number using the digits from 0 to 7, then you
would get 7*83 + 5*82 + 4*81 + 6*80.

In a similar way, you can decompose a word into its letters, convert the letters
to their numerical equivalents, multiply them by appropriate powers of 27
(because there are 27 possible characters, including the blank), and add the
results. This approach gives a unique number for every word.

Let’s return to the example of converting the word elf to a number. You convert
the digits to numbers as shown earlier. Then you multiply each number by the
appropriate power of 27 and add the results:

5*272 + 12*271 + 6*270

Calculating the powers gives

5*729 + 12*27 + 6*1

and multiplying the letter codes times the powers yields

3,645 + 324 + 6

which sums to 3,975.

This process does indeed generate a unique number for every potential word.
You just calculated a 3-letter word. What happens with larger words?
Unfortunately, the range of numbers becomes rather large. The largest 10-letter
word, zzzzzzzzzz, translates into

26*279 + 26*278 + 26*277 + 26*276 + 26*275 + 26*274 + 26*273 + 26*272 +
26*271 + 26*270

Just by itself, 279 is more than 7,000,000,000,000, so you can see that the sum
will be huge. An array stored in memory can’t possibly have this many
elements, except perhaps, in some huge supercomputer. Even if it could fit, it



would be very wasteful to use all that memory to store a dictionary of just
50,000 words.

The problem is that this scheme assigns an array element to every potential
word, whether it’s an actual English word or not. Thus, there are cells reserved
for aaaaaaaaaa, aaaaaaaaab, aaaaaaaaac, and so on, up to zzzzzzzzzz. Only a
small fraction of these cells is necessary for real words, so most array cells are
empty. This situation is illustrated in Figure 11-2. Near the word elf, there are
several words that would be stored, such as elk, eli (for the given name Eli),
and elm. The red arrows indicate a pointer to a record describing the word. At
other places, such as around the word bird, there would be many unused cells,
indicated by the cells without a pointer to some other structure.

Figure 11-2 Index for every potential word

The first scheme—adding the numbers—generated too few indices. This latest
scheme—adding the numbers times powers of 27—generates too many.

Hashing
What we need is a way to compress the huge range of numbers obtained from
the numbers-multiplied-by-powers system into a range that matches a
reasonably sized array.

How big an array are we talking about for this English dictionary? If you have
only 50,000 words, you might assume the array should have approximately this
many elements. It’s preferable, however, to have extra cells, rather than too
few, so you can shoot for an array twice that size, 100,000 cells. We discuss the
advantages to having twice the minimum amount needed a little later.



Thus, we seek a way to squeeze a range of 0 to more than 7 trillion into the
range 0 to 100,000. A simple approach is to use the modulo operator (%),
which finds the remainder when one number is divided by another.

To see how this approach works, let’s look at a smaller and more
comprehensible range. Suppose you are trying to squeeze numbers in the range
0 to 199 into the range 0 to 9. The range of the big numbers is 200, whereas the
smaller range has only 10. If you want to convert a big number (stored in a
variable called largeNumber) into the smaller range (and store it in the variable
smallNumber), you could use the following assignment, where smallRange has
the value 10:
smallNumber = largeNumber % smallRange

The remainders when any number is divided by 10 are always in the range 0 to
9; for example, 13 % 10 gives 3, and 157 % 10 is 7. With decimal numbers, it
simply means getting the last digit. The modulo operations compresses (or
folds) a large range into a smaller one, as shown in Figure 11-3. In our toy
example, we’re squeezing the range 0–199 into the range 0–9, which is a 20-to-
1 compression ratio.

Figure 11-3 Range conversion using modulo

A similar expression can be used to compress the really huge numbers that
uniquely represent every English word into index numbers that fit in the
dictionary array:



arrayIndex = hugeNumber % arraySize

The function that computes the hugeNumber is an example of a hash function.
It hashes (converts) a string (or some other piece of data) into a number in a
large range. Taking the modulo with the arraySize maps the number into a
smaller range. This smaller range is the range of index numbers in an array.
The array into which data is inserted using a hash function is called a hash
Table. The index to which a particular key maps is called the hash address.
This terminology can be a little confusing. We use the term hash table to
describe both the whole data structure and the array inside it that holds items.

To review: you can convert (or encode) a word into a huge number by
converting each letter in the word into an integer and then multiplying them by
an appropriate power of 27, based on their position in the word. Listing 11-1
shows some Python code that computes the huge number.

Listing 11-1 Functions to Uniquely Encode Simple English Words as Integers

def encode_letter(letter):  # Encode letters a thru z as 1 thru 26 
   letter = letter.lower()  # Treat uppercase as lowercase 
   if ’a’ <= letter and letter <= ’z’: 
      return ord(letter) - ord(’a’) + 1 
   return 0                 # Spaces and everything else are 0 
 
def unique_encode_word_loop(word): # Encode a word uniquely using 
   total = 0                # a loop to sum the letter codes times 
   for i in range(len(word)): # a power of 27 based on their position 
      total += encode_letter(word[i]) * 27 ** (len(word) - 1 - i) 
   return total 
 
def unique_encode_word(word): # Encode a word uniquely (abbreviated) 
   return sum(encode_letter(word[i]) * 27 ** (len(word) - 1 - i) 
              for i in range(len(word)))

The encode_letter() function takes a letter, gets its lowercase version, and
checks whether it is in the range of ’a’ to ’z’, inclusive. If it is, it converts the
letter to an integer by using Python’s built-in ord() function. This function
returns the Unicode value (also called point) of the character, which is the same
as the ASCII value for the English letters. It returns the value of the character
relative to the ’a’ character ensuring that ’a’ returns a value of 1. For



characters outside the range ’a’ to ’z’, it returns 0. That means that space is
encoded as 0, as well as every other Unicode character that’s not in the range.

To get the unique numeric code for a word, you can use a loop to sum up the
values for each letter. The unique_encode_word_loop() function uses an
index, i, into the letters of its word parameter to extract each one, get its
encoded value using encode_letter(), multiply that value with a power of 27
appropriate for its position, and add the product to the running total. The
power of 27 should be 0 for the last character of the word, which has the index
len(word) - 1. For the second-to-last character at len(word) - 2, the
exponent expression would be 1. The third-to-last would be exponent 2, and so
on, up to exponent len(word) - 1 for the first character (leftmost) in the word.
After the loop exits, the total is returned.

Listing 11-1 also shows a unique_encode_word() function that computes the
exact same encoded value. It calculates it, however, using a more compact
syntax with a list comprehension. The sum() function returns the sum of its
arguments. The list (tuple) comprehension provides the arguments to sum().
Comprehensions are in the form

expression for variable in sequence

and in the unique_encode_word() function, i is used as the index variable that
comes from the comprehension sequence (which are the indices of letters in
word). The expression is the same as what was used in the loop version.

The unique_encode_word() function is an example of a hash function. Using
the modulo operator (%), you can squeeze the resulting huge range of numbers
into a range about twice as big as the number of items you want to store. This
computes a hash address:
arraySize = numberWords * 2 
arrayIndex = unique_encode_word(word) % arraySize

In the huge range, each number represents a potential data item (an
arrangement of letters), but few of these numbers represent actual data items
(English words). A hash address is a mapping from these large numbers into
the index numbers of a much smaller array. In this array you can expect that,
on the average, there will be one word for every two cells. Some cells will have
no words, some will have one, and there can be others that have more than one.
How should that be handled?



Collisions
We pay a price for squeezing a large range into a small one. There’s no longer a
guarantee that two words won’t hash to the same array index.

This is similar to the problem you saw when the hashing scheme was the sum
of the letter codes, but the situation is nowhere near as bad. When you added
the letter codes, there were only 260 possible numeric values (for words up to
10 letters). Now you’re spreading the codes over the 100,000 possible array
cells.

It’s impossible to avoid hashing several different words into the same array
location, at least occasionally. The plan was to have one data item per index
number, but this turns out not to be possible in most hash tables. The best you
can do is hope that not too many words will hash to the same index.

Perhaps you want to insert the word abductor into the array. You hash the word
to obtain its index number but find that the cell at that number is already
occupied by the word bring, which happens to hash to the exact same number.
This situation, shown in Figure 11-4, is called a collision. The word bring has a
unique code of 1,424,122, which is converted to 24,122 by taking the modulo
with 100,000. The word abductor has the unique code 11,303,824,122, and
missable has 139,754,124,122. All three of them hash to index 24,122 of the
hash table.



Figure 11-4 A collision

The slightly different words brine and brink hash to locations nearby the cell
for bring. The reason is that they differ only in their last letter, and that letter’s
code is multiplied by 270, or 1. Other words could also hash to those same
locations.

How Bad Are Collisions?
Is the hash function a good idea? Could running strings of letters through a
“grinder” ever produce some kind of useful hash? It may appear that the
possibility of collisions renders the scheme impractical. It would help to know
how often they are likely to occur in designing strategies to deal with them.

One relevant measure can be seen by answering a classic question: when is it
more likely than not that two people at a gathering share the same birth day and



month? Figure 11-5 illustrates the concept. At first, that idea might not seem
relevant to hash tables. On closer inspection, you can think of the days in a
year as the cells of a hash table. Each birthday lands in exactly one of them.

Figure 11-5 Finding shared birthdays at a gathering

If there are only a few people at the gathering, it’s highly unlikely that they
share a birth day. If there are 367 people, then it is certain that some have the
same birth day. Somewhere between those extremes, there’s a number of
people where the likelihood of a shared birthday is greater than the likelihood
that they are all different.

Maybe intuition might tell you that if you have half as many people as there are
days in the year, then the likelihood would be greater than 50 percent for a
shared birth day. In other words, if there are 183 people, it is more likely than
not to have a shared birth day. That intuition is correct, but the point at which it
changes from below 50 percent to above 50 percent is at 23 people. With 22
people, it’s still more likely they all were born on different days. This
calculation assumes that the birthdays are distributed randomly throughout the
year (which is not the case). At a gathering for people born under a particular
sign of the zodiac, of course, the distribution would be very different!

So even when the ratio of items to hash table cells is less than 10 percent (23
out of 366), the chance of a collision is greater than 50 percent. That means
you should plan your hash tables to always deal with collisions. You can work
around the problem in a variety of ways.



We already mentioned the first technique: specifying an array with at least
twice as many cells as data items. This means you expect half the cells to be
empty. One approach, when a collision occurs, is to search the array in some
systematic way for an empty cell and insert the new item there, instead of at the
index specified by the hash address. This approach is called open addressing.
It’s somewhat like boarding a train or subway car; you enter at one point and
take the nearest seat that’s open. If the seats are full, you continue through the
car until you find an empty seat. The seat closest to the door where you entered
is analogous to the initial hash address.

Returning to hashing words into numbers, if abductor hashes to 24,122, but
this location is already occupied by bring, then you might try to insert abductor
in 24,123, for example. When the insert operation finds an empty cell, it stores
both the key and its associated value. In that way, search operations using open
addressing can compare the original keys to the keys stored in the table to
determine how far the search should continue. It also enables easy checking for
empty cells because they won’t have a key-value structure.

A second approach (mentioned earlier) is to create an array that consists of
references to another data structure (like linked lists of words) instead of the
records for the individual words. Then, when a collision occurs, the new item is
simply inserted in the list at that index. This is called separate chaining.

In the balance of this chapter, we discuss open addressing and separate
chaining, and then return to the question of hash functions.

So far, we’ve focused on hashing strings. In practice, many hash tables are
used for storing strings. Hashing by birthdays is certainly possible, but only
useful in rare instances. Many other hash tables are keyed by numbers, as in the
bank account number example, or in the case of credit card numbers. In the
discussion that follows, we use numbers—rather than strings—as keys. This
approach makes things easier to understand and simplifies the programming
examples. Keep in mind, however, that in many situations these numbers
would be derived from strings or byte sequences.

Open Addressing
In open addressing, when a data item can’t be placed at the index calculated by
the hash address, another location in the array is sought. We explore three
methods of open addressing, which vary in the method used to find the next



vacant cell. These methods are linear probing, quadratic probing, and double
hashing.

Linear Probing
In linear probing the algorithm searches sequentially for vacant cells. If cell
5,421 is occupied when it tries to insert a data item there, it goes to 5,422, then
5,423, and so on, incrementing the index until it finds an empty cell. This
operation is called linear probing because it steps sequentially along the line of
cells.

The HashTableOpenAddressing Visualization Tool
The HashTableOpenAddressing Visualization tool demonstrates linear probing.
When you start this tool, you see a screen like that in Figure 11-6.

Figure 11-6 The HashTableOpenAddressing Visualization tool at startup

In this tool, keys can be numbers or strings up to 8 digits or characters. The
initial size of the array is 2. The hash function has to squeeze the range of keys
down to match the array size. It does this with the modulo operator (%), as
you’ve seen before:
arrayIndex = key % arraySize

For the initial array size of 2, this is
arrayIndex = key % 2



This hash function is simple, so you can predict what cell will be indexed. If
you provide a numeric key to one of the operations, the key hashes to itself,
and the modulo 2 operation produces either array index 0 or 1. For string keys
(anything that contains characters other than the decimal digits), it behaves
similar to the unique_encode_word() function shown in Listing 11-1. For
example, the key cat hashes to 7627107, which produces index 1. The key bat
hashes to one less, 7627106, which produces index 0.

A two-cell hash table can’t hold much data, obviously, and soon you’ll see
what happens as it begins to fill up. The number of cells is shown directly
below the last cell of the table, and the cell indices appear to the left of each
cell. The current number of items stored in the hash table, nItems, is shown in
the center.

The box labeled “HASH” represents the hashing function. Let’s see how new
keys are processed by it and used to find array indices.

The Insert Button
To put some data in the hash table, type a key, cat for example, in the top text
entry box and select Insert. The visualization tool shows the process of passing
the string "cat" through the hashing function to get a big integer. Using the
modulo of the table size, it determines a cell index and draws an arrow
connecting the hashed result to it like the one shown in Figure 11-7. The arrow
points to where probing will begin to find an empty cell. Because the table is
initially empty, the first probe finds an empty cell, and the insert operation
finishes by copying the key into it—along with a colored background
representing some associated data—and then incrementing the nItems value.



Figure 11-7 Probing to insert the key cat in an empty hash table

The next item inserted can show what happens in a collision. Inserting the key
eat causes a hash address of 7627109, which probes cell 1, as shown in Figure
11-8.

Figure 11-8 Probing to insert the key eat

After finding cell 1 occupied, the insertion process begins probing each cell
sequentially—linear probing—to find an empty cell, as shown with the
additional curved arrow in Figure 11-8. The probing would normally start at
index 2, but because that index lies beyond the end of the table, it wraps around
to index 0. Because cell 0 is empty, the key eat can be stored there along with
its associated data.

After incrementing the nItems value to 2, the table is now full. To be able to
add more items in the future, the visualization tool shows what happens next. A
new table is allocated that is at least twice as big. The items from the old table
are then reinserted in the new table by rehashing them. The hashing function
hasn’t changed, nor have the keys, so it might appear that the items would end
up in their same relative positions. Because the size of the table grew, however,
the modulo operator produces new cell indices. The cat and eat keys end up in
cells 3 and 5 this time, as shown in Figure 11-9.



Figure 11-9 After inserting cat and eat in an empty hash table

We explore the details of this process in the “Growing Hash Tables” and
“Rehashing” sections later. First, let’s explore more about the visualization tool
and linear probing.

The Random Fill Button
Initially, the hash table starts empty and grows as needed. To explore what
happens when larger tables get congested, you fill can them with a specified
number of data items using the Random Fill button. Try entering 2 in the text
entry box and selecting Random Fill. The visualization tool generates two
random strings of characters as keys and animates the process of inserting
them.

The animation process takes some time, and when you understand how the
insertions work, it may be preferable to jump right to the end result. If you
uncheck the button labeled Animate Hashing, the Random Fill operation will
perform all the insertions without animation. Similarly, single item inserts will
skip the animation of hashing the key (but not of the probing that happens
afterward). Try disabling the animation and inserting 11 more items. You’ll see
that as the table grows, it divides into multiple columns, as shown in the
example of Figure 11-10.



Figure 11-10 A hash table with 15 items

The Search Button
To locate items within the hash table, you enter the key of the item and select
the Search button. If the Animate Hashing button is checked, the tool animates
the conversion of the key string to a large number. The probing of the table
begins with the index determined from the hashed key. If it finds the cell filled
and the key matches, the key and the color representing its data are copied to
an output box.

The visualization tool simplifies searching for randomly generated and other
existing keys by copying the key to the text entry box when a stored key is
clicked. The search behavior gets a little more complex when the key isn’t in
the table. The tool uses a hashing function that treats numeric keys specially:
they hash to their numeric value. Try typing 3 for the key (or clicking the index
of another empty cell of a table like the one in Figure 11-10) and selecting
Search. The initial probe lands on an empty cell, and the tool immediately
discovers that the item is not in the table.

Now try entering the index of a filled cell, like 14 in Figure 11-10. You can also
click the index number, but be sure that the key is the numeric index and not
the string key stored in the cell. When you select Search, the visualization tool
shows the initial probe going to the selected index. Finding the cell full, but not
containing the desired key, it starts linear probing to see whether a collision
happened when the item was inserted. The next empty cell probed ends the
search.

Filled Sequences and Clusters



As you might expect, some hash tables have items evenly distributed
throughout the cells, and others don’t. Sometimes there’s a sequence of several
empty cells and sometimes a sequence of filled cells. In the example of Figure
11-10, the filled sequences comprise four 1-item sequences, one 4-item
sequence, and one 7-item sequence.

Let’s call a sequence of filled cells in a hash table a filled sequence. As you
add more and more items, the filled sequences become longer. This
phenomenon is called clustering and is illustrated in Figure 11-11. Note that
the order that items were inserted into the table determines how far away a key
is placed relative to its default location.

Figure 11-11 An example of clustering in linear addressing

When you’re searching for a key, it’s possible that the first indexed cell is
already occupied by a data item with some other key. This is a collision; you
see the visualization tool add another arrow pointing to the next cell. The
process of finding an appropriate cell while handling collisions is called
probing.

Following a collision, the hash table’s search algorithm simply steps along the
array looking at each cell in sequence. If it encounters an empty cell before
finding the goal key, it knows the search has failed. There’s no use looking
further because the insertion algorithm would have inserted the item at this cell
(if not earlier). Figure 11-12 shows successful and unsuccessful linear probes
in a simplified hash table. By simplified, we mean that it uses the last two digits
of the key as the table index, which is not a good idea in practice. (You see why
a little later.) The initial probe for key 6,378 lands at cell 78. It probes the next
adjacent cells until it finds the matching key in cell 81. The search for key 478



laso starts at cell 78. After probing 7 cells in the filled sequence, it finds an
empty cell at index 85, which ends the search.

Figure 11-12 Linear probes in clusters

Try experimenting with filled sequences. Find the starting index of such a
sequence like index 26 in Figure 11-10. After clicking that index to copy it into
the text entry box, select Insert (not Search). The insertion algorithm must step
through all of the filed cells to find the next empty one. After it’s inserted, if
you now search for that same index, the search must repeat that same process.

The Delete Button



The Delete button deletes an item whose key is typed by the user. Deletion
isn’t accomplished by simply removing a data item from a cell, leaving it
empty. Why not? We look at the reason a little later. For now, you can see that
the tool replaces the deleted item with a special key that appears as DELETED
in the display.

The Insert button inserts a new item at the first available empty cell or in a
deleted item. The Search button treats a deleted item as an existing item for the
purposes of searching for another item further along.

If there are many deletions, the hash table fills up with these ersatz data items,
which makes it less efficient. For this reason, some open addressing hash table
implementations don’t allow deletion. If it is implemented, it should be used
sparingly to avoid large amounts of unused memory.

Duplicates Allowed?
Can you allow data items with duplicate keys to be used in hash tables? The
visualization doesn’t allow duplicates, which is typical behavior for hash
tables. As mentioned in previous chapters, this approach implements the
storage type as an associative array, where each key can have at most one
value.

The alternative of allowing duplicate keys would complicate things. It would
require rewriting the search algorithm to look for all items with the same key
instead of just the first one, at least in some circumstances. That requires
searching through all filled sequences of cells until an empty cell is found.
Probing the entire filled sequence wastes time for all table accesses, even when
no duplicates are present. Deleting an item would either try to delete the first
instance or all instances of a particular key. Both cases require probing filled
sequences to find the extent of the duplicates and then moving at least one of
the items in the sequence to their default positions if the deletions opened up
some cells. For these reasons, you probably want to forbid duplicates or use
another data structure if they are required.

Avoiding Clusters
Try inserting more items in the HashTableOpenAddressing Visualization tool.
The tool stops growing the table when it reaches 61 cells. As the table gets
fuller, the clusters grow larger. Clustering can result in very long probe lengths.
This means that accessing cells deeper in the sequence is very slow.



The fuller the array is, the worse clustering becomes. For an extreme example,
use the Random Fill button to enter enough random keys so that the total
number of keys is 60. Now try searching for a key that’s not in the table. The
initial probe lands somewhere in the 61-cell array and then hunts for the single
remaining empty (or possibly deleted) cell. If you are unfortunate enough for
the initial probe to be the cell after the empty one, the search can go through all
61 cells.

Clustering is not usually a problem when the array is half full and still not too
bad when it’s two-thirds full. Beyond this, however, performance degrades
seriously as the clusters grow larger and larger. For this reason, it’s critical
when designing a hash table to ensure that it never becomes more than half, or
at the most two-thirds, full. We discuss the mathematical relationship between
how full the hash table is and probe lengths at the end of this chapter.

Clusters are created during insertion but also affect deletion. When an item is
deleted from a hash table, you would ideally mark its cell as empty so that it
can be used again for a later insert and to break up potential clusters. That
simple strategy, however, is a problem for open addressing because probes
follow a sequence of indices in the table to locate items, stopping when they
find empty cells. If you delete an item that happened to be in the middle of
such a sequence, such as item 879 or item 2,578 in Figure 11-12, for example,
items landing later in the probe sequence, such as item 6,378, would not be
found by subsequent searches. Missing items are particularly problematic when
the item being deleted is part of multiple probe sequences. In the example, item
879 happens to be in the probe sequence for item 6,378 even though their
sequences start at different table indices.

You might think that there is some way to rearrange items to fill the hole
created by a deletion. For instance, what if you follow the probe sequence to its
end. Couldn’t you move the last item in the sequence to fill the cell being
deleted (somewhat like the successor node replacing a deleted node in a binary
search tree)? Unfortunately, that last item in the sequence could be an item with
a key that doesn’t hash to the start of the probe sequence used to find the item
to be deleted. For example, if you were deleting item 1,078 in Figure 11-12,
following its probe sequence to the end would suggest that item 7,184 could
replace it, but that would cause that item to be lost from its normal probe
sequence that starts at cell 84.

Another idea: what if you find the last item in the deletion probe sequence that
shares the same starting cell as the item being deleted? That ensures that you



only shift an item on the same probe sequence. Unfortunately, that too causes
problems because it could create a new hole in another probe sequence. If some
other probe sequence happens to land on the item that was moved, then that
sequence is broken. You could try to find any sequences that would visit the
cell holding the item being moved as they skipped past collisions, but there
could be many, many such sequences. Just like with automobiles, cleaning up
after collisions is a big problem.

The approach for deleting items in open addressing is to simply mark cells as
deleted, as the Visualization tool shows. The search algorithm can then step
past deleted cells as it probes for a key. The insert algorithm, too, can hunt for
either empty or deleted cells to use for new items. That helps a bit in keeping
the size of clusters small, but only for insertion. You still must search past
deleted cells when seeking an item (for search or delete). It also wastes
memory, as we discuss later.

Python Code for Open Addressing Hash Tables
Let’s look at the implementation of open addressing in hash tables. Aside from
some of the fancier hashing functions, they are straightforward to implement.
We’ll make a class where it’s easy to change the hash function and probing
technique to resolve collisions. That design choice makes exploring different
options more convenient, but it’s not particularly good for performance.

The Core HashTable
The hash table object must maintain an array to hold the items it stores. That
table should be private because callers should not be able to manipulate its
entries. How big should that table be? We can choose to provide a parameter in
the constructor to set the size, but like other data structures, it will be useful to
allow it to expand later if more cells are needed.

Because we’re making one class to handle hash tables with different open
addressing probes, the constructor also needs a way to specify the method to
search when collisions are found. The code in Listing 11-2 handles that feature
by providing a probe parameter. The default value for the probe is
linearProbe, which we describe shortly. There are also parameters for the
initial size of the table, the hash function, and a maxLoadFactor, explained
later.



Listing 11-2 The Core HashTable Class

class HashTable(object):    # A hash table using open addressing 
   def __init__(            # The constructor takes the initial 
         self, size=7,      # size of the table, 
         hash=simpleHash,   # a hashing function, 
         probe=linearProbe, # the open address probe sequence, and 
         maxLoadFactor=0.5): # the max load factor before growing 
      self.__table = [None] * size # Allocate empty hash table 
      self.__nItems = 0     # Track the count of items in the table 
      self.__hash = hash    # Store given hash function, probe 
      self.__probe = probe  # sequence generator, and max load factor 
      self.__maxLoadFactor = maxLoadFactor 
 
   def __len__(self):       # The length of the hash table is the 
      return self.__nItems  # number of cells that have items 
 
   def cells(self):         # Get the size of the hash table in 
      return len(self.__table) # terms of the number of cells 
 
   def hash(self, key):     # Use the hashing function to get the 
      return self.__hash(key) % self.cells() # default cell index

The constructor creates a private __table of the specified size. The initial None
value in the cells indicates that they are empty. The count of stored items,
__nItems, is set to zero. When items are inserted, they place (key, value) tuples
in the table’s cells, making empty and full cells easy to distinguish. All of the
rest of the constructor parameters are stored in private fields for later use.

The HashTable defines a __len__() method so that Python’s len() function
can be used on instances to find the number of items they contain. A separate
cells() method returns the number of cells in the table, so you can see how
full the table is by comparing it to the number of items. As it fills, the
likelihood of collisions increases.

The other core method shown in Listing 11-2 is the hash() method. This
method is used to hash keys into table indices. We’ve allowed the caller to
provide the hashing function in the constructor. This could be the
unique_encode_word() function from Listing 11-1 or something similar.
Whatever function is used, it should return an integer from a single key
argument. The modulo of that integer with the number of cells in the table



provides the initial table index for that key. This design allows callers to
provide hashing functions that return very large integers, which are then
mapped to the range of cells in the table.

The simpleHash() Function
The default hash function for the HashTable is simpleHash(), which is shown
in Listing 11-3. This function accepts several of the common Python data types
and produces an integer from their contents. It’s not a sophisticated hashing
function, but it serves to show how such functions are created to handle
arbitrary data types.

Listing 11-3 The simpleHash() Method

def simpleHash(key):        # A simple hashing function 
   if isinstance(key, int): # Integers hash to themselves 
      return key 
   elif isinstance(key, str): # Strings are hashed by letters 
      return sum(           # Multiply the code for each letter by 
         256 ** i * ord(key[i]) # 256 to the power of its position 
         for i in range(len(key))) # in the string 
   elif isinstance(key, (list, tuple)): # For sequences, 
      return sum(           # Multiply the simpleHash of each element 
         256 ** i * simpleHash(key[i]) # by 256 to the power of its 
         for i in range(len(key))) # position in the sequence 
   raise Exception(         # Otherwise it’s an unknown type 
      ’Unable to hash key of type ’ + str(type(key)))

The simpleHash() function checks the type of its key argument using Python’s
isinstance() function. For integers, it simply returns the integer. Returning
the unmodified key is, in general, a very bad idea because many applications
use a hash table on integers in a small range. That small range (or distribution)
of numbers will map directly to a small range of cell indices in the table and
likely cause collisions. We choose to use it here to simplify the processing,
experiment with collisions, and look at ways to avoid them.

If the key passed to simpleHash() is a string, the resulting integer it produces
is something like the unique_encode_word() function you saw earlier. It takes
the numeric value of each character in the key using ord() and multiplies that
by a power of 256. The power is the position of the character in the string. The
first character is power 0, which multiplies its numeric ord value by 1. The



second character gets power 1, so it is multiplied by 2561, the third character is
multiplied by 2562, and so on. The multiplication scheme ensures that anagram
strings like "ant" and "tan" will map to different values, at least for simple
strings. The products are all summed together using sum() and a tuple
comprehension.

Note that the use of powers of 256 in the simpleHash() method is not
sufficient to distinguish all string values. Because Python strings may contain
any Unicode character whose numeric value can range up to 0x10FFFF =
1,114,111, the simpleHash() function can hash different strings to the same
integer. Using 1,114,112 as the base instead of 256 avoids that problem, but we
use 256 to keep the numbers smaller in our examples at the risk of causing
more collisions.

The last elif clause in simpleHash() handles lists and tuples. These are the
simple sequence types in Python. They are like strings, except that their
elements could be any other kind of data, not just Unicode characters. It applies
the same multiplication scheme by recursively calling simpleHash() on the
elements individually. In this way, simpleHash() can recursively descend
through a complex structure of sequences to find the integers and strings they
contain, and build a number based on them and their relative positions.

Finally, if none of the data type tests succeed, simpleHash() gives up and
raises an exception to signal that it doesn’t have a method to convert it to an
integer.

The search() Method
The search() method is used to find items in the hash table, navigating past
any collisions. It does this by calling an internal __find() method to get the
table index for the key as shown in Listing 11-4. It’s best to keep that method
private because callers shouldn’t need to know which cell holds a particular
item.

Listing 11-4 The search() and __find() Methods of HashTable

class HashTable(object):    # A hash table using open addressing 
… 
   def search(self,         # Get the value associated with a key 
              key):         # in the hash table, if any 



      i = self.__find(key)  # Look for cell index matching key 
      return (None if (i is None) or # If index not found, 
              self.__table[i] is None or # item at i is empty or 
              self.__table[i][0] != key # it has another key, return 
              else self.__table[i][1]) # None, else return item value 
 
   __Deleted = (None, ’Deletion marker’) # Unique value for deletions 
 
   def __find(self,         # Find the hash table index for a key 
              key,          # using open addressing probes. Find 
              deletedOK=False): # deleted cells if asked 
      for i in self.__probe(self.hash(key), key, self.cells()): 
         if (self.__table[i] is None or # If we find an empty cell or 
             (self.__table[i] is HashTable.__Deleted and # a deleted 
              deletedOK) or # cell when one is sought or the 
             self.__table[i][0] == key): # 1st of tuple matches key, 
            return i        # then return index 
      return None           # If probe ends, the key was not found

The __find() method returns an integer index to a cell or possibly None when
it cannot find the key being sought. The search() method looks at the returned
index and returns None in the cases where the key wasn’t found. In other
words, if the index returned by __find() is None or the table cell it indicates
contains None, or the key stored in that table cell is not equal to the key being
sought, the search for the key failed. The only other possibility is that the table
cell’s key matches the one being sought, so it returns the second item in the
cell’s tuple, the value associated with the key.

The definition of the constant, __Deleted, might seem a little unusual. This is
the value stored in table cells that have been filled and later deleted. It’s a
marker value. By making it a tuple in Python, it has a unique reference
address that can be compared using the is operator. The code must distinguish
between empty cells containing None, deleted cells containing __Deleted, and
full cells during open address searching. The comparison test in the __find()
method (described shortly) uses the is operator instead of the == operator to
compare cell contents with __Deleted in case some application decided to
store a copy of that same tuple. The search() method doesn’t care whether the
cell returned by __find() is empty or deleted, but the insert() method does,
as you see shortly. Note also that the __Deleted marker’s key, None, cannot be
hashed by simpleHash(). If it could, then the search() method might return
the deleted marker value as a result.



The __find() method takes the search key as a parameter with an optional flag
parameter, deletedOK, that tells it whether it can stop after finding a deleted
cell. This method implements the core of the open addressing scheme. The key
is hashed using the hash function that was provided when the table was created.
The hash() method (Listing 11-2) is called to map the large integer computed
by simpleHash() or some other hash function to an integer in the range of the
current size of the hash table. That hash address is the starting point for probing
the cells of the table for the item.

The hash address returned by the call to hash() is passed to the probe function
that was given when the hash table was constructed. The loop

for i in self.__probe(self.hash(key), key, self.cells()):

shows that the probe function is being used as a generator. In other words, it
must create an iterator that iterates over a sequence. The elements of the
sequence are the table cell indices that should be probed for the item. The call
to self.hash(key) returns the first index, and the key and number of cells
arguments allow the generator to know how to create the rest of the sequence.
We look at the linearProbe() generator definition shortly, but first let’s look
at the rest of the __find() method.

Inside the for loop, __find() checks the contents of cell i to see what’s stored
there. If it’s None, the cell is empty and i can be returned to indicate the key is
not in the table. If the cell isn’t empty and has a matching key, then __find()
can also return i as the result to indicate the item was found. The only tricky
case is what to do if the cell has been marked as deleted. The default
(deletedOK=False) is to treat it like another filled cell caused by a collision
and continue the probe sequence. Only if the caller asked to stop on deleted
cells, and the cell’s value is the __Deleted marker, will __find() end the loop
and return.

When some other item is found at cell i, the probe sequence continues. For
linear probing, that is just index i+1 or 0, after it reaches the number of cells in
the table. If the whole probe sequence is completed without finding any empty
cells, then the table must be full of nonmatching or deleted items. It that case,
__find() returns None.

The insert() Method



The process of inserting items in the table follows the same scheme as
searching and adds a few twists for handling the increasing number of items.
Listing 11-5 shows the insert() method getting the index of a cell, i, by
calling __find() on the key of the item to insert. The call is made with
deletedOK=True to allow finding deleted cells, which insert() will fill.

Listing 11-5 The insert() and __growTable() Methods

class HashTable(object):    # A hash table using open addressing 
… 
   def insert(self,         # Insert or update the value associated 
              key, value):  # with a given key 
      i = self.__find(      # Look for cell index matching key or an 
         key, deletedOK=True) # empty or deleted cell 
      if i is None:         # If the probe sequence fails, 
         raise Exception(   # then the hash table is full 
            ’Hash table probe sequence failed on insert’) 
      if (self.__table[i] is None or # If we found an empty cell, or 
          self.__table[i] is HashTable.__Deleted): # a deleted cell 
         self.__table[i] = ( # then insert the new item there 
            key, value)     # as a key-value pair 
         self.__nItems += 1 # and increment the item count 
         if self.loadFactor() > self.__maxLoadFactor: # When load 
            self.__growTable() # factor exceeds limit, grow table 
         return True        # Return flag to indicate item inserted 
 
      if self.__table[i][0] == key: # If first of tuple matches key, 
         self.__table[i] = (key, value) # then update item 
         return False       # Return flag to indicate update 
 
   def loadFactor(self):    # Get the load factor for the hash table 
      return self.__nItems / len(self.__table) 
 
   def __growTable(self):   # Grow the table to accommodate more items 
      oldTable = self.__table # Save old table 
      size = len(oldTable) * 2 + 1 # Make new table at least 2 times 
      while not is_prime(size): # bigger and a prime number of cells 
         size += 2          # Only consider odd sizes 
      self.__table = [None] * size # Allocate new table 
      self.__nItems = 0     # Note that it is empty 
      for i in range(len(oldTable)): # Loop through old cells and 
         if (oldTable[i] and # insert non-deleted items by re-hashing 
             oldTable[i] is not HashTable.__Deleted): 
            self.insert(*oldTable[i]) # Call with (key, value) tuple



The first test on i checks whether it is None, indicating that the probe sequence
ended without finding the key, an empty cell, or a deleted cell. Either the table
is full, or the probe sequence has failed to find any available cells in this case.
The insert() method raises an exception for that. The method could try
increasing the table size for this situation, but if there’s a problem with the
probe sequence, increasing the table size may only make matters worse.

The next test checks whether cell i is empty or deleted. In those cases, the
contents can be replaced by a (key, value) tuple to store the item in the cell.
Doing so adds a new item to the table, and the insert() method increments
the number of items field. That increase could make the table full or nearly full.
To reduce the problem of collisions, the method should increase the size of the
table when the number of items exceeds some threshold.

What threshold should be used? An absolute number doesn’t make sense
because when it’s surpassed, the table could become full again. Instead, it’s
better to look at the load factor, the ratio (or percentage) of the table cells that
are full. The load_factor() method computes the value, which is always a
number in the range 0.0 to 1.0. By comparing the load factor to the
maxLoadFactor specified when the hash table was constructed, we can use a
single threshold that’s valid no matter how large the hash table grows. We
examine the __growTable() method shortly.

The insert() method finishes by returning True when an empty or deleted cell
becomes filled. This value indicates to the caller that another cell became full.
The alternative, when the hash table already has a value associated with the key
to be inserted, is to replace or update the value with the new one. The final if
clause of the insert() method returns False to indicate that no unused cells
were filled by the insertion.

Growing Hash Tables
The __growTable() method in Listing 11-5 increases the size of the array
holding the cells. We explored growing arrays in one of the Programming
Projects from Chapter 2, “Arrays,” and the process is a bit more complicated
for hash tables. First, let’s look at how much it should grow. We could add a
fixed amount of cells or multiply the number of cells by some growth factor.
Adding a small, fixed number of cells would keep the number of unused cells
to a minimum. Multiplying by, say 2, creates a large number of unused cells



initially, but means that the grow operation will be performed many fewer
times.

To see the difference the growth method has, let’s assume that the application
using the hash table chooses to start with a small hash table of five cells and
that it must store 100,000 key-value pairs. If the choices are to grow the table
by five more cells or double its size for each growth step, how many steps will
be needed? Table 11-1 shows the steps in growing the size of the table for the
two methods.

Table 11-1 Growing Tables by a Fixed Increment and by Doubling

The fixed size growth takes 20,000 steps to reach the 100,000 cells needed.
When the size doubles at every step, the 100,000 capacity is reached on the
16th step. As you’ve seen before, that is the difference between O(N) and
O(log N) steps. Reducing the number of growth steps is important because of
what must be done after growing the array. Before we look at that, however,
there’s another factor in choosing the size of the new array.



The __growTable() method in Listing 11-5 first sets oldTable to reference the
current hash table and estimates the size of the next table to be twice the old
size, plus one. Then it starts a loop that finds the first prime number that equals
or exceeds that size. Why? That’s because prime numbers have special
importance with algorithms that use the modulo operator. When you choose a
prime number for the size, only multiples of that prime number hash to cell 0.
Similarly, only multiples of that prime number plus one hash to cell 1. If the
keys to be inserted in the hash table do not have that prime number as a factor,
they tend to hash over the whole range of cells. That’s very desirable behavior,
as you will see later.

The test for prime numbers, is_prime(), is not a part of standard Python.
There are many published algorithms for this (deceptively simple) test, so we
don’t show it here.

Rehashing
After deciding the new size of the hash table, the __growTable() method in
Listing 11-5 creates the new array and sets the number of items back to zero.
That might seem odd; why would we want an empty hash table at this point?
The reason is that the key-value pairs in oldTable need to be stored in the new
table, but in new positions, and none of them are in place yet. If you simply
copy the contents of a cell in oldTable to the cell with the same index in the
new array, the __find() method might not find it. The new array size affects
where the algorithm starts its search because it is used in the modulo operation
that computes the hash address. For example in Figure 11-12, the linear probe
for key 6,378 started at cell 78 and eventually found the item in cell 81 due to
collisions. That was when the array size was 100. If the array size is 200, the
linear probe would start at cell 178 (6,378 modulo 200). Storing that item at
cell 78 in the new table would work only if there were a large cluster extending
from 178 through cell 199 and then wrapping around from 0 to 78.

Instead of copying, key-value pairs must be reinserted, a process called
rehashing, to ensure proper placement. The insertion process distributes them
to their new cells, perhaps causing collisions, but probably fewer collisions
than occurred in the smaller array. The __growTable() method in Listing 11-5
loops over all the cells in the smaller array and reinserts any filled cells that are
not simply the deleted cell marker. This operation can be quite time-
consuming, and it must scan all the cells using the range(len(oldTable))
iterator, not just the __nItems known to be filled.



One implementation note: the asterisk in the self.insert(*oldTable[i])
expression tells Python to take the tuple stored at oldTable[i] and use its two
components as the two arguments in the call to insert(), which are key and
value. The asterisk (*) means multiplication in most contexts but has a
different meaning when it precedes the arguments of a function call or
elements of a tuple.

The linearProbe() Generator
Let’s return to the part of the insert process that probes for empty cells. The
__find() method in Listing 11-4 has a loop of the form

for i in self.__probe(self.hash(key), key, self.cells()):

This is the place where the __probe attribute of the object is called to generate
the sequence of indices to check. The default value for the __probe attribute is
linearProbe(), which is shown in Listing 11-6.

Listing 11-6 The linearProbe() Generator for Open Addressing

def linearProbe(            # Generator to probe linearly from a 
      start, key, size):    # starting cell through all other cells 
   for i in range(size):    # Loop over all possible increments 
      yield (start + i) % size # and wrap around after end of table

The linearProbe() is a straightforward generator that behaves similarly to
Python’s range() generator. In fact, it uses range() in an internal loop that
steps a variable, i, through all size cells of the table. The i index is added to
the starting index for the probe, so it will examine all the subsequent cells in
the array. When that offset index goes past the end of the table, the iterator
wraps the index back to zero by using the modulo of the offset index with
size. The new index will always be between zero and one less than size.

The yield statement in the loop body sends the new index back to the
__find() method to be checked (Listing 11-4). Remember that the yield
statement returns a value and control to the caller. The caller then uses the
value in its own loop until it’s time to get the next value from the iterator.
Control then passes back to the iterator right after the yield statement. In this
case, linearProbe() goes on and increments its own i variable.



When linearProbe() finishes going through all the indices of the array, the
generator ends (by raising a StopIteration exception). That signals to the
caller, __find(), that all the cells have been probed. If the insert() method
hasn’t found an empty cell before the linear probe sequence finishes, then the
table must be full.

The delete() Method
Deleting items is straightforward for hash tables because you only need to
mark the deleted cells. Like with insertion, the delete() method starts by
using the __find() method to find the cell containing the item to delete, as
shown in Listing 11-7. After the cell index, i, is determined, the behavior
depends on what is stored at the cell. If __find() could not discover that cell,
or it already contains a deleted element or some other item whose key does not
match, then a possible error has been found. This delete() method has an
optional parameter, ignoreMissing, which determines whether an exception
should be raised. In general, data structures that store and retrieve data should
raise exceptions when the caller tries to remove an item not in the store, but in
some circumstances such errors can be safely ignored.

Listing 11-7 The delete() Method of HashTable

class HashTable(object):    # A hash table using open addressing 
… 
   def delete(self,         # Delete an item identified by its key 
              key,          # from the hash table. Raise an exception 
              ignoreMissing=False): # if not ignoring missing keys 
      i = self.__find(key)  # Look for cell index matching key 
      if (i is None or      # If the probe sequence fails or 
          self.__table[i] is None or # cell i is empty or 
          self.__table[i][0] != key): # it’s not the item to delete, 
         if ignoreMissing:  # then item was not found. Ignore it 
            return          # if so directed 
         raise Exception(   # Otherwise raise an exception 
           ’Cannot delete key {} not found in hash table’.format(key)) 
 
      self.__table[i] = HashTable.__Deleted # Mark table cell deleted 
      self.__nItems -= 1    # Reduce count of items

When the delete() method finds a cell with a matching key, it marks the cell
with the special __Deleted marker defined for the class and decrements the



count of the number of stored items. Typically, no attempt to resize the hash
table is made when many deletions cause the load factor to shrink below the
threshold used to determine when to grow the table. That’s based on the
assumption that deletion will occur much less often than insertion and search
and the cost of having to rehash all the items stored in the table.

The traverse() Method
To traverse all the items in a hash table, all the table cells must be visited to
determine which ones are filled. The process is easy to implement as a
generator. The one special consideration is that deleted items should not be
yielded. Listing 11-8 shows the implementation.

Listing 11-8 The traverse() Method of HashTable

class HashTable(object):    # A hash table using open addressing 
… 
   def traverse(self):      # Traverse the key, value pairs in table 
      for i in range(len(self.__table)): # Loop through all cells 
         if (self.__table[i] and # For those that contain undeleted 
             self.__table[i] is not HashTable.__Deleted): # items 
            yield self.__table[i] # yield them to caller

Because the implementation stores the key-value pairs as (immutable) Python
tuples, they can be yielded directly to the caller, which can assign them to two
variables in a loop such as

for key, value in hashTable.traverse():

Alternatively, callers can use a single loop variable holding the pair as a tuple.

The Traverse and New Buttons
Returning to the visualization tool, the Traverse button launches the preceding
loop. Each item’s key is printed in a box (ignoring its data). It illustrates the
traverse() iterator skipping over empty and deleted cells.

You can create new, empty hash tables with the New button. This button takes
two arguments: the number of initial cells and the maximum load factor. You
can specify starting sizes of 1 to 61 cells and maximum load factors from 0.2 to



1. When invalid arguments are provided, the default values of 2 and 0.5 are
used.

If you create hash tables with nonprime sizes, they will grow using the
__growTable() method of Listing 11-5, setting the new size to a prime number.
Try stepping through the animation of the rehashing process. This animation
shows how the items move to their new cells.

If you want to see the effects of using different table sizes, try using the New
button to create a table of the desired size with a maximum load factor of 0.99.
The table will not grow until it becomes completely full, so you can see the
effects of different table sizes and clustering.

Quadratic Probing
Using open addressing, hash tables can find empty (and deleted) cells to fill
with new values, but clusters can form. As clusters grow in size, it becomes
more likely that new items will hash to cells within a cluster. The linear probe
steps through the cluster and adds the new item to the end, making it even
bigger, perhaps joining two clusters.

This behavior is somewhat like that of automobiles entering a highway. If only
isolated vehicles make up the flow of highway traffic, the arriving vehicles
have plenty of gaps to fit into. When the highway is crowded, longer chains of
vehicles form clusters. Newly arriving vehicles wait for the cluster to pass and
join at the end, increasing the cluster size. Hopefully, the arriving vehicles
don’t cause real-world collisions as they “probe” for an open spot on the
highway.

The likelihood of forming clusters and the size of clusters depend on the ratio
of the number of items in the hash table to its size—its load factor. Clusters can
form even when the load factor isn’t high, especially when the hashing
function doesn’t distribute keys uniformly over the table. Parts of the hash
table may consist of big clusters, whereas others are sparsely populated.
Clusters reduce performance.

Quadratic probing is an attempt to keep clusters from forming. The idea is to
probe more widely separated cells instead of those adjacent to the primary hash
site.

The Step Is the Square of the Step Number



In a linear probe, if the primary hash index is x, subsequent probes go to x + 1,
x + 2, x + 3, and so on. In quadratic probing, subsequent probes go to x + 1, x +
4, x + 9, x + 16, x + 25, and so on. The distance from the initial probe is the
square of the step number: x + 12, x + 22, x + 32, x + 42, x + 52, and so on.
Figure 11-13 shows some quadratic probes.

Figure 11-13 Quadratic probes

The quadratic probe starts the same as the linear probe. When the initial probe
lands on a nonmatching key, it picks the adjacent cell. If that’s occupied, it may
be in a small cluster, so it tries something 4 cells away. If that’s occupied, the
cluster could be a little larger, so it tries 9 cells away. If that’s occupied, it
really starts making long strides and jumps 16 cells away. Pretty soon, it will



go past the length of the array, although it always wraps around because of the
modulo operator.

Using Quadratic Probing in the Open Addressing Visualization
Tool
The HashTableOpenAddressing Visualization tool can demonstrate different
kinds of collision handling—linear probing, quadratic probing, and double
hashing. (We look at double hashing in the next section.) You can choose the
probe method whenever the table is empty by selecting one of the three radio
buttons. When the table has one or more items, the buttons are disabled to
preserve the integrity of the data.

To see quadratic probing in action, try the following. Use the New button to
create a hash table of 21 cells with a maximum load factor of 0.9. Select the
Use quadraticProbe button to switch to quadratic probing. Then use the
Random Fill button to insert 12 random keys in the table. This action produces
a table with various filled sequences, like the one shown in Figure 11-14. There
is a 6-cell filled sequence along with several shorter ones.



Figure 11-14 Quadratic probing in the HashTableOpenAddressing
Visualization tool

In this example, try inserting the key 0. Because it is a numeric key, the hashed
value is 0 and the first probe is to cell 0. After finding cell 0 full, it tries the cell
at 0 + 1. That cell is occupied, so it continues to cell 0 + 4, finding another
stored item. When it reaches 0 + 9, it finds cell 9 empty and can insert key 0
there. It’s easy to see how the quadratic probes spread out further and further.



If you next try to insert the key 21, it will hash to cell 0 for its initial probe
again because the table has 21 cells. The insertion now will repeat the same set
of probes as for key 0 and then continue on to locate an empty cell. Perhaps
surprisingly, it revisits some of the same cells during the probing, as shown in
Figure 11-15.

Figure 11-15 Inserting key 21 by quadratically probing a relatively full
hash table

Specifically, the cells probed to insert key 21 are 0, 1, 4, 9, 16, (25) 4, (36) 15,
(49) 7. The indices in parentheses are the values before taking the modulo with
21.

This example is particularly troublesome. Not only does it have to probe all the
cells probed to insert key 1, but it also repeats the probe at cell 4 that wouldn’t
have occurred using linear probing. If you keep inserting more keys, you will
see how this behavior becomes worse when the table is almost full. With the
max load factor set to 0.9, it won’t grow the table until the 19th key is inserted.

Incidentally, if you try to fill the hash table up to the maximum 61 items it
supports or with a very high maximum load factor, the visualization tool may
not be able to insert an item, even if empty cells remain. The program tries
only 61 probes before giving up (or whatever the size of current table is).
Because quadratic probes can revisit the same cells, the sequence may never
land on one of the few remaining empty cells.

Also try some searches when the table is nearly full, both for existing keys and
ones not in the table. The probe sequences get very long in some cases.



Implementing the quadratic probe is straightforward. Listing 11-9 shows the
quadraticProbe() generator. Like the linearProbe() shown in Listing 11-6,
it uses range() to loop over all possible cells one time. The loop variable, i, is
squared, added to the start index, and then mapped to the possible indices
using the modulo operator. Because i starts at zero, the first index that is
yielded is the start index.

Listing 11-9 The quadraticProbe() Generator for Open Addressing

def quadraticProbe(         # Generator to probe quadratically from a 
      start, key, size):    # starting cell through all other cells 
   for i in range(size):    # Loop over all possible cells 
      yield (start + i ** 2) % size # Use quadratic increments

The Problem with Quadratic Probes
Quadratic probes reduce the clustering problem with the linear probe, which is
called primary clustering. Quadratic probing, however, suffers from different
and more subtle problems. These problems occur because all the probing
sequences follow the same pattern in trying to find an available cell.

Let’s say 184, 302, 420, and 544 all hash to address 7 and are inserted in this
order. Then 302 will require a one-cell offset, 420 will require a four-cell
offset, and 544 will require a nine-cell offset from the first probe. Each
additional item with a key that hashes to 7 will require longer probes. Although
the cells are not adjacent in the hash table, they still are causing collisions. This
phenomenon is called secondary clustering.

Secondary clustering is not a serious problem. It occurs for any hashing
function that places many keys at the same initial cell or at multiple cells where
the fixed pattern for finding empty cells overlap. There’s another issue,
however, and that’s the coverage of cells visited by the probing sequence.

The quadratic probe keeps making larger and larger steps. There’s an
unexpected interaction between those steps and the modulo operator used to
map the index onto the available cells. In the linear probe, the index is always
incremented by one. That means that linear probing will eventually visit every
cell in the hash table after wrapping around past the last index.



In quadratic probing, the increasing step sizes mean that it eventually visits
only about half the cells. The example in Figure 11-15 illustrated part of the
problem when it revisited cell 4. The reason for this behavior takes some
mathematics to explain.

If you look at the spacing between the cells probed, you’ll see that it increases
by two at each step. The spacing between x + 1 and x + 4 is three. The spacing
between x + 4 and x + 9 is five. The spacing between x + 9 and x + 16 is seven,
and so on. It already looks as though it might skip every other cell because it
will stay on the odd cells if the initial probe was to an even cell (and vice
versa). That’s actually not the case because the modulo operator will change
between odd and even numbered cells when the index goes past the modulo
value. That value is usually a prime number, so it is odd.

Even with a prime number of cells, however, the quadratic probe starts
repeating the same sequence of cell indices fairly quickly. Here’s a simple
example. For simplicity, let’s say the hash table has seven cells in it, and the
key to store initially hashes to cell index 0. Quadratic probing then visits
indices 1, 4, 9, 16, 25, 36, 49, 64, and so on. After taking the modulo with
seven, however, the full sequence is 0, 1, 4, 2, 2, 4, 1, 0, 1, 4, 2, 2, 4, 1, 0, and
so on. That 0, 1, 4, 2, 2, 4, 1 sequence repeats forever, leaving out cell indices
3, 5, and 6.

Three cells may not seem like much, but they’re three out of seven cells total.
Even worse, the probe revisits indices 1, 2 and 4 twice. Because they’ve
already been visited during the seven probe sequence, they must already be
occupied, so revisiting them just wastes time (much more time than the single
cell revisited in the example in Figure 11-15). As the prime number of cells
gets bigger, the repetitive behavior continues. After the quadratic term grows to
be the square of the table size, the sequence returns to the starting index.
Eventually, about half of the cells are visited, and half are not.

So linear probing ends up causing primary clustering, whereas quadratic
probing ends up with secondary clustering and only half the coverage of the
hash table. This approach is not used because there’s a much better solution.

Double Hashing
To eliminate secondary clustering as well as primary clustering and to help
with hash table coverage, there’s another approach: double hashing.



Secondary clustering occurs for any algorithm that generates the same
sequence of probing for every key.

What we need are probe sequences that differ for each key instead of being the
same for every key. Then numbers with different keys that hash to the same
index will use different probe sequences.

The double hashing approach hashes the key a second time, using a different
method, and uses the result as the step size. For a given key, the step size
remains constant throughout a probe, but it’s different for different keys. As
long as the step size is not a multiple of the array size, it will eventually visit all
the cells. That’s one reason why prime numbers are good for the array size;
they make it easier to avoid getting a step size that evenly divides the size of
the array.

Experience has shown that this secondary hash function must have certain
characteristics:

• It must not be the same as the primary hash function.

• It must never output a 0 (otherwise, there would be no step; every probe
would land on the same cell).

Experts have discovered that functions of the following form work well:
stepSize = constant - (key % constant)

where constant is prime and smaller than the array size. For example,
stepSize = 5 - (key % 5)

The HashTableOpenAddressing Visualization tool uses this approach for its
double hashing probe. Different keys may hash to the same index, but they will
(most likely) generate different step sizes. With this algorithm and the
constant = 5, the step sizes are all in the range 1 to 5. Two examples are
shown in Figure 11-16. The first search for key 4,678 starts at cell 78. The
secondary hash function determines that the step size will be three for that key.
After probing three filled cells, the function finds the desired key on the fourth
step. The second search is for key 178 and starts at the same cell. For this key,
however, the step size is determined to be four. After probing two filled cells,
the function finds an empty cell on the third step.



Figure 11-16 Double hashing

Implementing double hashing is only slightly more complicated than linear or
quadratic probing. You still need a generator that loops over the possible
indices, but this time you need to apply the secondary hash function to get the
step size. That step should be less than or equal to a prime number below the
size of the array. Listing 11-10 shows an implementation for that generator.

Listing 11-10 The doubleHashProbe() Generator for Open Addressing

def doubleHashProbe(        # Generator to determine probe interval 
      start, key, size):    # from a secondary hash of the key 



   yield start % size       # Yield the first cell index 
   step = doubleHashStep(key, size) # Get the step size for this key 
   for i in range(1, size): # Loop over all remaining cells using 
      yield (start + i * step) % size # step from second hash of key
 
def doubleHashStep(key, size): # Determine step size for a given key 
   prime = primeBelow(size) # Find largest prime below array size 
   return prime - (         # Step size is based on second hash and 
      simpleHash(key) % prime) # is in range [1, prime]
 
def primeBelow(n):          # Find the largest prime below n 
   n -= 1 if n % 2 == 0 else 2 # Start with an odd number below n 
   while (3 < n and not is_prime(n)): # While n is bigger than 3 or 
      n -= 2                # is not prime, go to next odd number 
   return n                 # Return prime number or 3

The doubleHashProbe() generator starts by immediately yielding the first cell
index folded over the possible range of cells. This is a little different from the
approach in the linear and quadratic probes. The reason: you don’t have to
determine the step size if the first cell ends up being the desired one. Like the
other probes, it doesn’t need to know whether the caller seeks an empty or
filled cell. If the caller finds an acceptable cell, it will exit its loop through the
generator sequence, skipping the calculation of the step size. If the loop
continues, then the generator calls doubleHashStep() to compute the step size.
That value is used in a loop similar to those of the linear and quadratic probes.
The difference is that it starts with 1 times the step size added to the start index
and continues through all possible cells.

The doubleHashStep() function computes the step size for the given key.
First, it gets the largest prime number that is smaller than the array size by
calling primeBelow(). Next, it reapplies the hash function, simpleHash(), to
the key (although it would be better to use a different hash function here). The
large integer it produces gets mapped to the range of the smaller prime number
using the modulo operator. The remainder is subtracted from the prime so that
the step size falls in the range [1, prime].

The primeBelow() function is a straightforward math calculation. It starts by
finding an odd number below the parameter, n, by subtracting either 1 or 2
from it, depending on whether n is even or odd. The while loop decrements n
by 2 until it either finds a prime or reaches 3.

To save some time, the primeBelow result could be stored in the HashTable
object and recomputed only when the array size changes. The step size changes



based on the key, so it cannot be stored as efficiently. You would essentially
need a hash table to look up the step size for each key!

Using Double Hashing in the Open Addressing Visualization Tool
As with the other methods, you can set the probe type whenever the hash table
is empty in the HashTableOpenAddressing Visualization tool. To see a good
example of the probes at work, you need to fill the table rather full, say to
about nine-tenths capacity or more. Try creating a hash table of 41 cells with
the maximum load factor of 0.9. Set the probe type by selecting the Use
doubleHashProbe button. Fill most of the table with 30 random keys (perhaps
without animating the hashing to go faster).

With such high load factors, only about a quarter of new, random data items
will be inserted at the cell specified by the first hash function; most will require
extended probe sequences. Try inserting one or two more random keys by
using the Random Fill button with animation of the hashing.

Try finding some existing keys in the crowded table. When a search needs a
multistep probe sequence, you’ll see how all the steps are the same size for a
given key, but that the step size is different. Some step sizes can be large and,
when wrapping around the table size, can take what looks like a random path
among the cells.

The visualization tool does not show the code for calculating the step size. In
fact, the code is not shown for any of the probe sequence generators. You can
still see the patterns they produce, however, by following the arrows indicating
the cells being probed. The next section discusses the step-by-step execution of
double hashing probes.

Double Hashing Example
The double hashing algorithm has many steps. If you haven’t looked at the
visualization tool, here’s an example of how a series of insertions works. We
start with an empty HashTable created with the doubleHashProbe() as its
probe sequence (see Listing 11-10). We create the hash table with an initial size
of 7 (which is different than visualization tool default size of 2). As we insert
keys, the hash function computes where to store them and how big the steps
should be to probe for open addresses. When the load factor gets too large, the
table grows to accommodate more key-value pairs.



Table 11-2 shows how each insertion probes to find the cell to modify. The first
key inserted is 1. The simpleHash() function just returns the same integer.
That makes it easy to see how insertion works (but it’s a terrible hash function
in general). Using the same integer also clarifies what the step size will be for
double hashing. The first prime below 7 is 5. Subtracting 1 mod 5 from 5
leaves 4 as the step size. Because cell 1 is empty, however, the step size doesn’t
matter, and item 1 is inserted into cell 1.

Table 11-2 Filling a Hash Table Using Double Hashing

The second key inserted, 38, follows the same pattern. After hashing and
taking the modulo with 7, the probe starts at index 3. It would get a different
step size of 2 based on 5 − (38 mod 5), but again, that doesn’t matter because



cell 3 is empty. The third key inserted, 37, maps to index 2, which is also
empty.

On the fourth key, 16, we hit the first collision. The simpleHash() maps it to
index 2, which holds key 37. The step size for that key is 5 − (16 mod 5) = 4.
The second probe goes to cell 6 (2 + 4), which is empty, so key 16 gets stored
there.

At this point, four items are stored in the hash table. The table has seven cells,
so the load factor is now 4/7, which is larger than the default maxLoadFactor of
0.5. The insert() method calls the __growTable() method after the fourth
item is inserted. The table grows to hold 17 cells, and the four items are
rehashed into them as follows:

All of the keys rehash into cells of the expanded table at their initial hash
addresses based on the new size.

The fifth item to insert has key 20. That hashes to cell 3 in the 17-cell table,
which is occupied. The step size is 6, which is calculated using the largest
prime below the table size which is 13 (step = 13 − (20 mod 13)). Probing six
cells away finds cell nine to be empty, so that’s where item 20 lands.

The sixth item to insert has key 3. That also hashes to the occupied cell 3. The
secondary hashing leads to a step size of 10, and the next probe finds cell 13 to
be empty. Item 3 gets placed in cell 13, avoiding the enlargement of any of the
clusters. These last insertions illustrate how two keys, whose primary hash
addresses collide, avoid creating clusters by using different step sizes after the
initial probe.

The seventh item with key 11 finds cell 11 empty and lands there. That pattern
repeats for item 8, key 24, which is stored in the empty cell 7.

More collisions occur with the ninth item, which has a key of 4. The contents
of the array just before the insertion of that item are



Cell 4 is occupied, so it computes the step size of 9 (13 − (4 mod 13)). The
next cell checked is 13. That cell is full, too, so it probes at 5 (13 + 9 % 17 =
5), which is empty. Key 4 is stored there, forming a cluster of three filled cells.

Storing the ninth item in a table of 17 cells brings the load factor to 9/17, which
exceeds 0.5. The table grows again to hold 37 cells, and the nine items are
reinserted into it. One collision occurs during the reinsertions (key 38 would
normally go at index 1 in a 37-cell table but gets stored at cell 25 (1 + (31 − (38
mod 31))).

As Table 11-2 shows, items 10 through 17 are inserted without any collisions.
That behavior is typical when the load factor is reduced after growing the table.
Looking at the details, you can see that item 10 is actually a duplicate key to
item 4, as indicated by the asterisk (*). Both have a key of 16, so the second
insertion becomes an update to the value associated with that key. Item 16 is
another duplicate; this time it’s key 1. It also immediately finds the key at cell 1
and doesn’t need to probe other cells before updating the value.

The eighteenth item produces a collision. It’s a new key, 85, which hashes to
cell 11 (because the table is now of length 37). Because key 11 is stored in cell
11, the double hashing determines that it should step by 8 cells. Probing cell 19
finds it occupied with key 19 from the previous insertion, so it moves on to
store that key in the available cell 27.

As you can see from this example, collisions do cause some items to be placed
in cells different than their original hash location. The chance of a collision
increases as the load factor goes up. The 18 insertions filled 16 cells of the
table because two of the keys were duplicates of previous keys. That puts the
table load factor at 16/37. After inserting three new keys, the table must grow
again, keeping the chance of collision low and the number of clusters small.

Table Size a Prime Number
Double hashing requires the size of the hash table to be a prime number. To see
why, imagine a situation in which the table size is not a prime number. For
example, suppose the array size is 15 (indices from 0 to 14), and that a
particular key hashes to an initial index of 0 and a step size of 5. The probe
sequence would be 0, 5, 10, 0, 5, 10, and so on, repeating endlessly. Only these
three cells would ever be examined, so the algorithm will never find the empty
cells that might be waiting at 1, 2, 3, and so on. The reduced coverage of the



available cells means the algorithm will exhaust all its probes before quitting.
In other words, it will crash and burn.

If the array size were instead 13, which is prime, the probe sequence would
eventually visit every cell. It would be 0, 5, 10, 2, 7, 12, 4, 9, 1, 6, 11, 3, and so
on. If there were even one empty cell, the probe would find it. Using a prime
number as the array size makes it impossible for any number to divide it evenly
(other than 1 and the prime itself), so the probe sequence will eventually check
every cell.

Despite the added time needed to find prime numbers, double hashing wins
overall when choosing the best probe sequence for open addressing.

Separate Chaining
In open addressing, collisions are resolved by looking for an open cell in the
hash table. A different approach is to install a linked list or binary tree at each
index in the hash table. A data item’s key is hashed to the index in the usual
way, and the item is inserted into the structure at that index. Other items that
hash to the same index are simply added to the structure; there’s no need to
search for empty cells in the primary array. Figure 11-17 shows how separate
chaining looks. The top version shows sorted linked lists in the table cells, and
the bottom shows balanced, binary trees.



Figure 11-17 Examples of separate chaining

Separate chaining is conceptually somewhat simpler than the various probe
schemes used in open addressing. The code, however, is longer because it must
include the mechanism for the linked list or trees, usually in the form of an
additional class.

The HashTableChaining Visualization Tool



To see how separate chaining works, start the HashTableChaining Visualization
tool. It displays an empty array, as shown in Figure 11-18. Like the open
addressing tool, it starts with two empty cells that will grow as new items are
added. The linked lists start from these cells and grow downward.

Figure 11-18 Separate chaining in the HashTableChaining Visualization
tool

The buttons in the HashTableChaining Visualization tool are nearly identical to
those of the HashTableOpenAddressing tool, except that the probe choice
buttons have been removed. Despite the similar appearance, the operations
have quite a few differences.

Try inserting some items. As with the open addressing tool, the keys can be
strings or integers, and the same simpleHash() function determines which cell
of the array should contain the key. The hashing box, item count, and load
factor limit are at the top to keep them out of the way as the linked lists grow
downward.

The linked lists are unsorted (we discuss the option of keeping them sorted
shortly). New items are appended to the end of the list. After the total number
of items in all the lists divided by the number of cells exceeds the
maxLoadFactor limit, a similar __growTable() function creates an array that’s
at least twice as big with a prime number of cells. The items are rehashed to
find their location in the new array.

It might seem strange that the separate chaining tool starts with a
maxLoadFactor of 1.0 (100%). You saw how congested hash tables caused



problems in open addressing. Congestion can be a problem in separate
chaining, too, but in a different way.

Try filling the array with 30 random keys (you can turn off the animation of the
insertion by deselecting the Animate Hashing option before filling). You will
likely get a table that looks similar to the one in Figure 11-19. Most (14) of the
linked lists have one item, a few (5) have two items, and two have three items
in the example (the lists in cells 26 and 43). The 30 items are stored in 21 cells
of the 47-cell table. That’s typical of separate chaining; the items are spread out
over many, but not all, of the cells and the length of the chains is relatively
short.

Figure 11-19 A separate chaining hash table with 30 random items

With items in the hash table, try a few searches. If you click the index number
for a cell, it will enter that number in the text entry box. You can use that index
as a search key. If you click index 26 of the hash table in Figure 11-19, enable
the Animate Hashing option, and then select Search, you can see how the
hashing finds cell 26 immediately and must step through each of the three
items in the linked list to determine that no item with key 26 is in the hash
table. Searches for existing keys also may step through a few items before
finding the goal key.

Try deleting a few items (remembering that you can click a key to copy it to
the text entry box). The search mechanism for the item to delete is the same,
and the animation shows the steps it takes. Unlike open addressing, the item is
deleted from the linked list, not replaced with a special deleted value.



In the visualization tool, the items are placed roughly below the hash table cell
in which they belong but are adjusted in position to avoid obscuring other
items and to reduce some of the overlapping arrows. The arrows have different
lengths, making the number of links in each list harder to see. For example, cell
16 in Figure 11-19 holds a linked list of one item, “AL-hlRfS,” and that item
was placed below all the others due to the presence of other items inserted
before it.

Load Factors
The load factor is typically managed differently in separate chaining than in
open addressing. In separate chaining it’s normal to put N or more items into
an N cell array; thus, the load factor can be 1 or greater. There’s no problem
with this; some locations simply contain two or more items in their lists.

Of course, if the lists have many items, access time takes longer because access
to a specified item requires searching through an average of half the items on
the list. Finding the initial cell is fast, taking O(1) time, but searching through a
list takes time proportional to M, the average number of items on the list. This
is O(M) time. Thus, you don’t want the lists to become too full. If you use
binary trees, the search time is O(log M). You can let the trees grow more than
lists do, if they remain balanced.

A load factor of 1, as shown in the initial visualization tool, is common. In
open addressing, performance degrades badly as the load factor increases
above one-half or two-thirds. In separate chaining the load factor can rise
above 1 without hurting performance very much. This insensitivity to the load
makes separate chaining a more robust mechanism and reduces unused
memory, especially when it’s hard to predict in advance how much data will be
placed in the hash table. There is still a need to grow the hash table when the
load factor (or the longest list or deepest tree) grows too big, but the decision
metric is different.

You can experiment with load factor limits from 0.5 to almost 2.0 by creating
new tables with the New button in the visualization tool. You can also fill with
up to 99 randomly keyed items, and the growth of the hash table size is limited
to 61 cells. This limitation creates some very congested separate chaining hash
tables. The scroll bars will be adjusted to allow you to view the whole
structure. The visualization slows down for large tables as it attempts to adjust
the links to avoid overlaps.



Duplicates
Duplicate keys could be allowed in separate chaining but typically are not for
all the same reasons applied to open addressing, plus the reasons mentioned for
linked lists and binary trees. If they are allowed, all items with the same key
will be inserted in the same list or tree. Therefore, if you need to discover all of
them, you must search more of the list or tree in both successful and
unsuccessful searches. Deletion must also search further when deleting all
items with the same key. These extended searches lower performance.

Deletion
In separate chaining, deletion is easier than in open addressing. There’s no need
for a marker for a deleted item. The algorithm hashes to the proper table cell
and then deletes the item from the list or tree. If the item is the last item stored
in that cell, the cell can be set back to empty, if minimum memory usage is
important. Leaving an empty tree or list header in the cell does not harm
garbage collection.

Table Size
With separate chaining, making the table size a prime number is not as
important as it is with open addressing. There are no probe sequences in
separate chaining, so you don’t need to worry that a probe will go into an
endless sequence or not cover all the cells because the step size divides evenly
into the array size.

On the other hand, certain kinds of key distributions can cause data to cluster
when the array size is not a prime number. We have more to say about this
problem when we discuss hash functions.

Buckets
Another approach similar to separate chaining is to use an array at each cell in
the hash table instead of a linked list. Such fixed-size arrays are sometimes
called buckets (although some hash table descriptions use the term “bucket” to
mean what we’ve been describing as a “cell” of the hash table) This approach
is not as efficient as the linked list approach, however, because of the problem
of choosing the size of the buckets. If they’re too small, they may overflow,
requiring growth of the hash table and rehashing all the items. If the buckets



are too large, they waste memory. Linked lists and binary trees, which allocate
memory dynamically, don’t have this problem.

Python Code for Separate Chaining
There are many commonalities between the code for open addressing and
separate chaining. Listing 11-11 shows the core class definition for a separate
chaining HashTable. Compare that with the definition shown in Listing 11-2
for open addressing. There are three differences: there’s an import statement to
get the KeyValueList class, there’s no probe parameter in the constructor
because there is no probe sequence, and the default value for maxLoadFactor is
higher. This class uses a slightly revised version of the LinkedList class from
Chapter 5, “Linked Lists,” for the separate chaining. You could also use the
AVLTree from Chapter 10, “AVL and Red-Black Trees.” It only needs to
support the same interface of creation, insertion, search, deletion, and traversal.
We discuss the KeyValueList class and the tree alternative later.

Listing 11-11 The Core HashTable Class for Separate Chaining

from KeyValueList import * 
 
class HashTable(object):    # A hash table using separate chaining 
   def __init__(            # The constructor takes the initial 
         self, size=7,      # size of the table, 
         hash=simpleHash,   # a hashing function, and 
         maxLoadFactor=1.0): # the max load factor before growing 
      self.__table = [None] * size # Allocate empty hash table 
      self.__nItems = 0     # Track the count of items in the table 
      self.__hash = hash    # Store given hash function, and max 
      self.__maxLoadFactor = maxLoadFactor # load factor 
 
   def __len__(self):       # The length of the hash table is the 
      return self.__nItems  # number of cells that have items 
 
   def cells(self):         # Get the size of the hash table in 
      return len(self.__table) # terms of the number of cells 
 
   def hash(self, key):     # Use the hashing function to get the 
      return self.__hash(key) % self.cells() # default cell index



The constructor for the class could initialize all the cells of the hash table to be
empty linked lists. Doing so, however, would increase the memory consumed
by the structure and add time to the construction process. It’s preferable to wait
until items need to be inserted in cells before creating the chain (list or tree) to
hold them. Note that the utility methods __len__(), cells(), and hash()
remain identical. Now let’s look at what changes for separate chaining.

Perhaps the most significant change is the lack of a __find() method. For
other data structures you used a find method to locate where an item is stored.
In the case of separate chaining, you can use the hash function to find the cell
(or bucket), and the chain’s search and find methods to locate the item within
that cell.

The search() method for the separate chaining HashTable simply hashes the
key to a cell index, i; checks whether cell i has been filled with an list object;
returns None if it doesn’t or the result of searching for the key in the list. Listing
11-12 shows the implementation. All the complexity of the probe sequence has
gone away and is replaced by the, hopefully well-understood, operation of the
chain structure (linked list or tree).

Listing 11-12 The Search and Insert Methods for a Separate Chaining
HashTable

class HashTable(object):    # A hash table using separate chaining 
… 
   def search(self,         # Get the value associated with a key 
              key):         # in the hash table, if any 
      i = self.hash(key)    # Get cell index by hashing key 
      return (None if self.__table[i] is None else # If list exists, 
              self.__table[i].search(key)) # search it, else None 
 
   def insert(self,         # Insert or update the value associated 
              key, value):  # with a given key 
      i = self.hash(key)    # Get cell index by hashing key 
      if self.__table[i] is None: # If the cell is empty, 
         self.__table[i] = KeyValueList() # Create empty linked list 
      flag = self.__table[i].insert(key, value) # Insert item in list 
      if flag:              # If a node was added, 
         self.__nItems += 1 # increment item count 
         if self.loadFactor() > self.__maxLoadFactor: # When load 
            self.__growTable() # factor exceeds limit, grow table 
      return flag           # Return flag to indicate update 



 
   def __growTable(self):   # Grow the table to accommodate more items 
      oldTable = self.__table # Save old table 
      size = len(oldTable) * 2 + 1 # Make new table at least 2 times 
      while not is_prime(size): # bigger and a prime number of cells 
         size += 2          # Only consider odd sizes 
      self.__table = [None] * size # Allocate new table 
      self.__nItems = 0     # Note that it is empty 
      for i in range(len(oldTable)): # Loop through old cells and 
         if oldTable[i]:    # if they contain a list, loop over 
            for item in oldTable[i].traverse(): # all items 
               self.insert(*item) # Re-hash the (key, value) tuple

The insert() method is also simplified. After hashing the key to get the cell
index, i, it checks whether the cell is filled with a list object. If not, a new,
empty key-value list is created and stored there. The main work of the insertion
happens using the KeyValueList’s insert() method, shown later. Like the tree
implementations, the insert method returns a flag indicating whether a new
node was created (as opposed to updating an existing key’s value). When a new
node is created, it increments the number of items and checks the load factor. If
it has crossed the threshold, the hash table must be enlarged. It is important to
count the number of items in all the lists stored in hash table cells, not the
number of lists, as we discuss shortly. After managing the growth of the table,
insert() can return the flag indicating whether a new node was added to the
hash table.

The __growTable() method starts off the same as for open addressing. It keeps
a local variable pointing at the old table while it allocates a new one with a size
that’s a prime number at least twice the size of the previous one. Then it
rehashes each of the items in the old table into the new one. The traversal of
the old table is a loop through all its cells. Filled cells must be traversed using
the chain’s traverse() method. The key-value tuples are stored in the item
variable and then passed as the two arguments to the hash table’s own
insert() method.

Let’s look at the implementation of the KeyValueList class. It’s a specialized
version of the LinkedList class from Chapter 5 where every link item holds a
(key, value) tuple, as shown in Listing 11-13. The definition starts off by
importing the LinkedList class and defining some accessor functions for
getting keys and values from the links.

Listing 11-13 The Definition of the KeyValueList Class



import LinkedList 
 
def itemKey(item): return item[0] # Key is first element of item
def itemValue(item): return item[1] # Value is second element of item 
 
class KeyValueList(LinkedList.LinkedList): # Customize LinkedList 
 
   def insert(self, key, value): # Insert a key + value in list 
      link = self.find(key, itemKey) # Find matching Link object 
      if link is None:        # If not found, 
         super().insert((key, value)) # insert item at front 
         return True          # return success 
      link.setData((key, value)) # Otherwise, update existing link’s 
      return False            # datum and return no-insert flag 
 
   def search(self, key):     # Search by matching item key 
      item = super().search(key, key=itemKey) # Locate key + value 
      return itemValue(item) if item else None # Return value if any 
 
   def delete(self, key):     # Delete a key from the list 
      try:                    # Try the LinkedList deletion by key 
         item = super().delete(key, itemKey) 
         return item          # If no exceptions, return deleted item 
      except:                 # All exceptions mean key was not 
         return False         # found, so return False 
 
   def traverse(self):        # Linked list traverse generator 
      link = self.getFirst()  # Start with first link 
      while link is not None: # Keep going until no more links 
         yield link.getData() # Yield the item 
         link = link.getNext() # Move on to next link

The insert() method differs from its parent class in the way it handles
insertion of duplicate keys. The simple LinkedList version always inserts new
items at the beginning of the list. The KeyValueList must update an existing
value if the key is already in the list. It first finds any link with a matching key
(using the parent class’s find() method with the itemKey function to extract
the key from each link’s tuple). If no such a link is found, it uses the parent
class’s insert() method to put the (key, value) tuple at the start of the list. It
returns True to indicate the addition of a new item. If a link with a matching
key is found, it updates the data for that link with the (key, value) tuple and
returns False to indicate no additions were made.



The search() method uses the parent class’s search() method to get the first
link with a matching key, if any. It returns the associated value if a link is found
and None otherwise.

The delete() method differs the most from its parent. In the simple
LinkedList version, delete() throws an error if the list is empty or the key is
not found. The KeyValueList uses a try except clause to get the result from
the parent delete() method. If an item is found and deleted, it returns that
item. If an error occurs, it returns False to indicate the key was not found.

Finally, the traverse() method of KeyValueList is nearly the same code as its
parent class but uses a yield statement to make it a generator that yields the
(key, value) tuples in the list.

Returning to the separate chaining HashTable implementation, you can define
its traverse() method, as shown in Listing 11-14, to use that of the
KeyValueList. The loops are similar to those used in __growTable(). The
differences are that the traverse() method loops over the current hash table
cells instead of the old copy, and it yields the items it finds instead of
reinserting them.

Listing 11-14 The traverse() and delete() Methods for Separate Chaining

class HashTable(object):    # A hash table using separate chaining 
… 
   def traverse(self):      # Traverse the key, value pairs in table 
      for i in range(len(self.__table)): # Loop through all cells 
         if self.__table[i]: # For those cells containing trees, 
            for item in self.__table[i].traverse(): # traverse 
               yield item   # the tree in-order yielding items 
 
   def delete(self,         # Delete an item identified by its key 
              key,          # from the hash table. Raise an exception 
              ignoreMissing=False): # if not ignoring missing keys 
      i = self.hash(key)    # Get cell index by hashing key 
      if self.__table[i] is not None: # If cell i is not empty, try 
         if self.__table[i].delete(key): # deleting item in tree and 
            self.__nItems -= 1 # if found, reduce count of items 
            return True     # Return flag showing item was deleted 
      if ignoreMissing:     # Otherwise, no deletion. If we ignore 
         return False       # missing items, return flag 



      raise Exception(      # Otherwise raise an exception 
         ’Cannot delete key {} not found in hash table’.format(key))

Before we discuss the delete() method, let’s look at the order in which hash
table items will be traversed.

Traversal Order in Hash Tables
What order should a hash table traverse its items? In binary search trees, you
have the option to traverse in-order, pre-order, or post-order. Is there a way to
do the same in hash tables? The orderings in trees are based on the structure of
the tree with parent, left child, and right child nodes. There is no equivalent
structure over all the items in the hash table (even though there can be such a
structure in a single cell with separate chaining).

The order that the traverse() methods shown in Listing 11-14 and Listing 11-
8 would yield items is based primarily on their hash address. That’s a
combination of both the hash function and the size of the hash table. If you
wanted the keys to be yielded in ascending order, you would need to either
reverse the hash function or collect all the keys and sort them. Reversing a hash
function is very hard to do in most cases. Sorting the keys, as you’ve seen,
could take O(N×log N) time. In general, hash tables return the keys in
“arbitrary” (unpredictable) order. If the caller needs them in order, it can sort
them (by key or value). Interestingly, Python’s dict hash table returned keys in
arbitrary order in early versions. In version 3.7 and beyond, it returns them in
insertion order.

Note that in separate chaining, the items within each cell are traversed
according to the traversal order of the list or tree that is used. In the
KeyValueList implementation, the list keeps the items in reverse insertion
order. When the hash table grows, however, the rehashing of the items goes
through the linked lists and reverses the previous insertion order. That makes
the ultimate traversal order very hard to predict. If you use an AVL tree for
chaining, then the items in each tree could be traversed in key order, but due to
rehashing, they still will be yielded by the hash table’s traversal in arbitrary
order.

The delete() Method for Separate Chaining
The last method of the separately chained hash table implementation shown in
Listing 11-14 is delete(). Like insert(), the code for delete() is simpler



than what was needed for open addressing. This method computes the hash
address of the key and then uses the KeyValueList delete() method to
remove the item, if the list is present. If that list reports that an item was
deleted, it reduces the item count for the hash table and returns True to signal
the deletion of the item. If minimal memory usage is important, the cell should
be set to None before returning True when the deletion results in an empty list
or tree.

If the cell is empty or the tree doesn’t find the key to delete, the ignoreMissing
parameter determines whether to return False or raise an exception.

Which Type of Chaining Should You Use?
Separate chaining can use a number of secondary structures to store the items
in each cell. Lists and trees are very common, and sometimes small arrays
(when dynamic allocation of new storage is being avoided). There is no single
type that’s best for all use cases. Some structures are more efficient than others
depending on the hash function and the keys inserted.

The most important factors are the maximum number of items in a cell and the
number of times they will be searched. If the hash function is very good, it will
distribute the keys evenly among all the table cells. If N items are stored in M
table cells, the average number of items per cell is N/M. Note that this is
exactly the same as the load factor for the hash table. In the separate chaining
implementation, we used a maxLoadFactor of 1.0 as the default value. With a
good hashing function, the average number of items stored in a cell should be
1, at most. There will be some cells with two items, some with none, and very
few with three or more items.

If no cell contains more than three items, it makes sense to use the simplest of
structures for separate chaining, the linked list. The items don’t need to be kept
sorted because you only need to compare at most three keys. Inserting into a an
unsorted list is normally an O(1) operation. In the case of separate chaining,
however, you must search the entire list to see if it is a duplicate key. Searching
that list takes O(N)—or O(N/M) in this case—for the expected average length
of the list. Maintaining the load factor, N/M, at 1.0 or below means that
searching the unsorted list and inserting are both expected to be O(1).

Sorted lists don’t speed up a successful search, but they do cut the time of an
unsuccessful search in half. As soon as an item larger than the search key is
reached, which on average is half the items in a list, the search can be declared



a failure. That would become important the longer the lists grow. Deletion
times are also cut in half in sorted lists.

If many unsuccessful searches are anticipated, it may be worthwhile to use the
slightly more complicated sorted list rather than an unsorted list. An unsorted
list, however, wins when insertion speed is more important. An example of that
might be the use of a hash table to store all the entries for a “pick 6” lottery.
Each lottery participant picks a sequence of six numbers. The hash table is used
to store each participant’s contact info, so the key is the sequence of numbers,
and the data is a list of people who picked that sequence. There could be
millions of these sequences, but because there will be only one search for the
winning sequence chosen by the lottery managers, there will be very few
searches of the hash table (both successful and unsuccessful). There’s little
point to spending time during the insertion to sort the keys.

The choice of the secondary structure to use in separate chaining can be
affected by the choice of hash function too. Although there are many good hash
functions, there are also some bad ones. If a particular application either
chooses a bad hash function or somehow runs across a group of keys that hash
to just one or two addresses in the hash table using that function, the number of
items in one cell can grow as large as N. In that unlikely case, a balanced
binary tree like the AVL tree could be best. That makes the insert and search
operations within each cell O(log N) instead of O(N). This is a degenerate case
where the hash function doesn’t spread the data over a broad number of cells,
so the more efficient tree structures are an improvement over lists.

We return to the question of when to use separate chaining versus open
addressing when we discuss hash table efficiency later in this chapter.

Hash Functions
In this section we explore the issue of what makes a good hash function and
see how we can improve the approach to hashing strings mentioned at the
beginning of this chapter.

Quick Computation
A good hash function is simple, so it can be computed quickly. The major
advantage of hash tables is their speed. If computing the hash function is slow,



this speed will be degraded. A hash function with many iterations or levels of
computation is not a good idea. Many are based on sophisticated math. If they
involve a lot of multiplications and divisions, especially on a computing
platform without hardware support for those kinds of operations, they could
take quite a bit of time.

The purpose of a hash function is to take a range of key values and transform
them into index values in such a way that the hash addresses are distributed
randomly across all the indices of the hash table. Keys may be completely
random or not so random.

Random Keys
A so-called perfect hash function maps every key into a different table
location. This is rarely possible in practice. A special case happens when the
keys are unusually well behaved and fall in a range small enough to be used
directly as array indices. For example, a manufacturer gives numbers for each
of the parts it creates. The numbers started at 1,000 and go up to the number of
things they have ever produced, say 10,000 over the past 50 years. Because
they were created to be unique and with no gaps, these could easily be used
directly as array indices without hashing, by simply having a hash function that
subtracts 1,000 from the part number. These are unusually well-behaved keys.

If you need to store only a few of these part numbers, say the hundred parts
currently kept in inventory, then it’s possible to create a perfect hashing
function that maps them to unique indices in a smaller array. The perfect
hashing function needs to map each of the hundred part numbers to a unique
index. You saw the Huffman coding algorithm in Chapter 8, “Binary Trees,”
which came up with a unique bit sequence for every letter used in a message.
Similar techniques can be used to assign a unique index to every part number.

In most applications, however, it’s impossible to forecast what keys will be
inserted in the hash table. Without knowing the number and type of keys, it’s
impossible to build a perfect hashing function. So typically, you make
assumptions. In this chapter we’ve assumed that the transformed keys were
randomly distributed over a large numeric range. In this situation the hash
function
index = key % arraySize



is satisfactory. It involves only one more mathematical operation, and if the
keys are truly random, the resulting indices will be random too, and therefore
well distributed. If the keys share some common divisor(s), you can reduce the
chance that they cause collisions by choosing arraySize to be a prime number
(and hoping that prime number is not the common divisor).

Nonrandom Keys
Data is often distributed nonrandomly. In fact, it’s very rare to find truly
randomly (mathematicians would call it uniformly) distributed data.

Let’s consider some examples for keys: a timestamp key such as the
milliseconds that have elapsed since a particular point in time and an IP
address on the Internet. Typically, these kinds of keys are not uniformly
distributed across all the possible values; they concentrate in ranges. The
millisecond timestamps may be for events over a short duration, such as log
messages on a computer server over the past week, or perhaps for some past
events, such as the births of a group of people. Those births are all likely to be
concentrated on dates in the past century, not uniformly spread out over tens of
thousands of years. Even within the past century, the birth rate rises and falls,
leaving an uneven distribution. For the IP addresses, it’s rare to get a set of data
that samples the addresses from all over the world. Typically, there will be
many references to local IP addresses and smaller numbers sprinkled from
whatever regions communicated with the computer or network appliance that
collects the data.

Many keys that might be used have an internal structure. IP addresses are 32-
bit or 128-bit numbers organized into four octets or eight 16-bit words. Various
blocks of addresses are reserved for different purposes. Any particular set of
keys is likely to have many of its keys from a few blocks, and none from most
of them.

Part numbers for manufacturers typically have structure too. Let’s look at an
example of a system that uses car part numbers as keys and discuss how they
can be hashed effectively. Perhaps these part numbers are of the form

033-400-03-94-05-0-535

This number might be interpreted as follows:
Digits 0–2: Supplier number (1 to 999, currently up to 70)



Digits 3–5: Category code (100, 150, 200, 250, up to 850)
Digits 6–7: Month of introduction (1 to 12)
Digits 8–9: Year of introduction (00 to 99)
Digits 10–11: Serial number (1 to 99, but never exceeds 100)
Digit 12: Toxic risk flag (0 or 1)
Digits 13–15: Checksum (sum of other fields, modulo 1000)

If you ignore the separating hyphens, the decimal key used for the preceding
16-digit part number would be 0,334,000,394,050,535. The keys for the parts
are not randomly distributed over all possible numbers. The majority of
numbers from 0 to 9,999,999,999,999,999 can’t actually occur (for example,
supplier numbers higher than 70, category codes that aren’t multiples of 50,
and months from 13 to 99). Also, the checksum is not independent of the other
numbers. Some work should be done to these part numbers to help ensure that
they form a range of more truly random numbers.

Don’t Use Nondata
The key fields should be squeezed down until every bit counts. For example,
the category codes in the car part numbers should be changed to run from 0 to
15 (corresponding to the values 100, 150, …, 850 that appear there). The
checksum should be removed from the calculation of the hash because it
doesn’t add any additional information; it’s deliberately redundant. Various
other bit-twiddling techniques are appropriate for compressing the various
fields in the key into the unique values they represent.

The address in memory of the key or the record containing the key should
never be used in the hash function. In other words, if the key is accessed
through a reference pointer, don’t use the pointer when computing the hash.
Use only the part number or other identifying elements referenced by the
pointer. The location in memory where the data is stored changes from run to
run. Using that location would mean that keys would only match on some runs
of the program.

Use All the Data
Every part of the key (except nondata, as just described) should contribute to
the hash function. Don’t just use the first four digits, last four digits, or some



such abbreviation. The more data that contributes to the key, the more likely it
is that the keys will hash evenly into the entire range of indices.

Sometimes the range of keys is so large that it overflows the type of integer
values that the programming language supports. Most computing platforms
support 32-bit and 64-bit integers. Some embedded processors, however, might
support only 16-bit or 8-bit. Regardless of the platform size limit, there will be
keys with numeric values that go beyond what can be represented in a single
machine word. We show how to handle that overflow when we talk about
hashing strings in a moment.

To summarize: The trick is to find a hash function that’s simple and fast, using
all the available data, while excluding the nondata and redundant parts of the
key.

Use a Prime Number for the Modulo Base
Often the hash function involves creating a number on a large range and using
the modulo operator (%) with the table size to map it to the hash address.
You’ve already seen that it’s important for the table size to be a prime number
when using a quadratic probe or double hashing. If the keys themselves are not
randomly distributed, it’s important for the table size to be a prime number no
matter what hashing system is used.

To see why a prime number of cells is helpful, consider what happens if many
hashed keys are separated in value by some number, X. If X is a divisor of the
array size, say ¼ of the size, that large group of keys hash to the same 4
locations, causing primary clustering. Using a prime table size nearly
eliminates this possibility. For example, if the table size were a multiple of 50
in the car part example, the category codes could all hash to index numbers that
are multiples of 50 (assuming that code is multiplied into the hash value). With
a prime number such as 53, however, you are guaranteed that only keys that
hash to multiples of that prime (plus a constant offset) are hashed to the same
address. Part numbering and other man-made schemes rarely use prime
numbers like that.

Returning to the example of timestamps as keys, the events represented by
timestamps are often periodic. The times can represent things that usually
happen at the top of the hour, or every 20 minutes, or every year. The periodic
events will create timestamps bunched together around certain peak times. If
those peaks are separated by a multiple of the array size, then many keys hash



to the same address. Even when they don’t land exactly on multiples of the
array size, the bunches can create collisions of hash addresses causing clusters
in open addressing or long chains in separate chaining.

The moral is to examine your keys carefully and tailor your hash algorithm to
remove any regularities in the distribution of the keys.

Hashing Strings
At the beginning of this chapter, you saw how to convert short strings to key
numbers by multiplying digit codes by powers of a constant. In particular, you
saw that the three-letter word elf could turn into the number 3,975 by
calculating

key = 5*272 + 12*271 + 6*270

This approach has the desirable attribute of involving all the characters in the
input string. The calculated key value can then be hashed into an array index in
the usual way:
index = key % arraySize

The simpleHash() method shown in Listing 11-3 used a similar calculation but
with a base of 256 instead of 27. This calculation allows for many more
possible characters in the string (but not all Unicode values).

The simpleHash() method is not as efficient as it might be. When hashing
strings, it performs the character conversion, raises 256 to the power i (the
position of character in the string), multiplies them, and adds all products in the
sum expression:
sum(256 ** i * ord(key[i]) for i in range(len(key)))

This way of expressing the calculation is concise, but it does some extra work
that can be avoided. You can eliminate computing the power of 256 by taking
advantage of a mathematical identity called Horner’s method. This method
states that an expression like

var4*n4 + var3*n3 + var2*n2 + var1*n1 + var0*n0

can be written as
(((var4*n + var3)*n + var2)*n + var1)*n + var0



The base, n, now appears without an exponent, multiplying each parenthesized
expression (including var4). To convert this equation into loop form, you start
inside the innermost parentheses and work outward. Translating this equation
to a Python function results in the following:
def hashString1(key):        # Use Horner’s method to hash a string 
   total = 0                 # Sum contribution of all characters 
   for i in range(len(key) - 1, -1, -1): # Go in reverse order 
      total = total * 256 + ord(key[i]) # Multiply by base, add char i 
   return total              # Return sum

The hashString1() function computes the same hash that simpleHash() does
for a string, but with one multiply and one addition per character in the loop.
Raising 256 to a power happens by repeating the multiplications.

This approach is a definite improvement because most processors can perform
multiplications in a few clock cycles, whereas raising numbers to a power can
take much longer. There are two more changes that can help a little more.
Multiplying by a power of 2 is the same as shifting the bits of a binary number
to the left by that power. In this case, 256 is 28, and you can use the bit shift
operator, <<, instead of the multiplication:
def hashString2(key):        # Use Horner’s method to hash a string 
   total = 0                 # Sum contribution of all characters 
   for i in range(len(key)): # Go in forward order 
      total = (total << 8) + ord(key[i]) # Shift to mult., add char i 
   return total              # Return sum

Bit shifts are supported by every modern processor and are usually faster than
multiplication. This example also changes the character index, i, to increase
from 0 to the last character of the key. This approach saves a tiny bit of a time
(a subtraction) and makes the code simpler, although it will produce very
different hash values than hashString1() for the same string (other than
palindromes). The strings still get hashed to unique values, but the most
significant characters—the ones that change the hash value the most—are on
the left for the hashString2() function.

The hashString2() function provides a more optimized hash function that will
compute a unique number very quickly from every string. There’s another
factor to consider, however, and that is the magnitude of the sum. As you shift
bits (or multiply), you eventually create numbers bigger than what fits in a
machine word. A 64-bit processor could shift the total by 8 bits seven times



without overflowing its 64-bit registers. For strings longer than 8 characters (or
character points greater than 255), an overflow is likely to occur.

Can we modify the basic approach so we don’t overflow any variables? Notice
that the hash address we eventually end up with is always less than the array
size because we apply the modulo operator. It’s not the final index that’s too
big; it’s the intermediate total values.

With any arithmetic expression using +, *, and −, you can apply the modulo
operator (%) at each step in the calculation. Using the operator this way gives
the same result as applying the modulo operator once at the end but avoids
overflow, at the cost of adding an operation inside the loop. The
hashString3() method shows how this looks:
def hashString3(key, size):  # Use Horner’s method to hash a string 
   total = 0                 # Sum without overflowing 
   for i in range(len(key)): # Go in forward order, shift, add char i 
      total = ((total << 8) + ord(key[i])) % size # and use modulo 
   return total              # Return sum

Most string hashing functions take this approach (or something like it). Various
bit-manipulation tricks can be played as well, such as using a size that is a
power of 2. That means the modulo operator can be replaced by AND-ing the
total with a bit “mask” (for example, total & 0xFFFFFFF). On the other hand,
using a power of 2 as the hash table size means that there could be hash table
collisions for keys with patterns related to that power of 2, rather than a prime.

You can use similar approaches to convert any kind of string or byte sequence
to a number suitable for hashing. Because all data is stored as sequences of
bytes, this scheme handles nearly any kind of data.

Folding
Another reasonable hash function involves breaking the key into groups of
digits and adding the groups. This approach ensures that all the digits influence
the hash value. The number of digits in a group should correspond to the size
of the array. That is, for an array of 1,000 items, use groups of three digits
each. The folding technique is almost like writing the digit string on a strip of
paper, folding the paper between every group of K digits, and then adding the
numbers now piled on top of one another.



For example, suppose you want to hash 10-digit telephone numbers for linear
probing. If the array size is 1,000, you would divide the 10-digit number into
three groups of 3 digits, plus a final digit. If a particular telephone number was
123-456-7890, you would calculate a key value of 123+456+789+0 = 1368.
The modulo operator can map those sums to the range of indices, 0–999. In this
case, 1368 % 1000 = 368. If the array size is 100, you would need to break the
10-digit key into five 2-digit numbers: 12+34+56+78+90 = 270, and 270 %
100 = 70.

It’s easier to imagine how this operation works when the array size is a
multiple of 10. For best results, however, the array size should be a prime
number, or perhaps a power of 2, as you’ve seen for other hash functions. We
leave an implementation of this scheme as an exercise.

Hashing Efficiency
We’ve noted that insertion and searching in hash tables can approach O(1)
time. If no collision occurs, or the separate chains contain one element at most,
only a call to the hash function, an array reference, and maybe a link
dereference are necessary to find an existing item or insert a new item. This is
the minimum access time.

Note that the hash function takes some time to compute, and the amount of
time depends on the length of the key and the hashing function. Keys are
typically short, perhaps tens of bytes. Because the length of the keys is much
shorter than a large N—the number of items stored—you treat the time spent
hashing as O(1). When you’re considering hashing a large sequence of bytes—
say an entire video file—the time spent hashing could become significant, but
it still could be small compared the number of items stored (for example, all
the videos available on the Internet).

If collisions occur, access times become dependent on the resulting probe
lengths or search of a chain. Each cell accessed during a probe or link in a
chain adds another time increment to the search for a vacant cell (for insertion)
or for an existing cell. During an access, a cell or link must be checked to see
whether it’s empty and whether it contains the desired item.

Thus, an individual search or insertion time is proportional to the length of the
probe, length of the chain, or depth of the tree. This variable time must be
added to the constant time for the hash function.



The average probe or chain length (and therefore the average access time) is
dependent on the load factor (the ratio of items in the table to the size of the
table). As the load factor increases, the lengths grow longer.

Let’s look at the relationship between probe lengths and load factors for the
various kinds of hash tables we’ve studied.

Open Addressing
The loss of efficiency with high load factors is more serious for the various
open addressing schemes than for separate chaining.

In open addressing, unsuccessful searches generally take longer than successful
searches. Remember that during a probe sequence, the algorithm stops as soon
as it finds the desired item, which is, on average, halfway through the probe
sequence. On the other hand, probing must go all the way to the end of the
sequence before it’s sure it can’t find an item.

Linear Probing
The following equations show the relationship between probe length (P) and
load factor (L) for linear probing. For a successful search, it’s

P = ( 1 + 1 / (1 − L) ) / 2

and for an unsuccessful search, it’s

P = ( 1 + 1 / (1 − L)2) / 2

These formulas are from Knuth (see Appendix B, “Further Reading”), and their
derivation is quite complicated. Figure 11-20 shows the graphs of these
equations in the blue (upper) curves. The upper graph shows the probe lengths
for successful searches and the lower one shows the lengths for unsuccessful
searches.



Figure 11-20 Successful and unsuccessful probe performance

At a load factor of 0.5, the average successful search takes 1.5 comparisons,
and the average unsuccessful search takes 2.5. At a load factor of 2/3, the
numbers are 2.0 and 5.0. At higher load factors, the numbers become very
large—so high they go off the graph to infinity. We discuss the other lines in
the graphs shortly.

The takeaway, as you can see, is that the load factor must be kept under 2/3 and
preferably under 1/2. On the other hand, the lower the load factor, the more
memory is needed for a given number of items. The optimum load factor in a
particular situation depends on the trade-off between memory efficiency, which
decreases with lower load factors, and speed, which increases.

Quadratic Probing and Double Hashing
Quadratic probing and double hashing share their performance equations.
These equations indicate a modest superiority over linear probing. For a
successful search, the formula (again from Knuth) is

P = −ln(1 − L) / L

where ln() is the natural logarithm function. This is like log2(), except the base
is the special constant, e ≅ 2.718. For an unsuccessful search, it is

P = 1 / (1 − L)

Figure 11-20 shows the graphs of these formulas using red lines. At a load
factor of 0.5, successful searches take about 1.4 probes, whereas unsuccessful
ones average 2.0. At a 2/3 load factor, the numbers are about 1.6 and 3.0; and



at 0.8, they’re 2.0 and 5.0. Thus, somewhat higher load factors can be tolerated
for quadratic probing and double hashing than for linear probing. That shows
up in the graph as the red lines lying below the blue lines.

Note that both the red and blue lines climb steeply as the load factor
approaches 1.0. That behavior is expected because it means the table is nearly
full, and finding a key or an empty slot can take up to N probes.

Separate Chaining
The efficiency analysis for separate chaining is different, and generally easier,
than for open addressing.

We want to know how long it takes to search for a key or to insert an item with
a new key into a separate-chaining hash table. All of the methods must
compute the hash function and determine a starting hash address. The time
taken to compute that is a constant, so we focus on the number of key
comparisons needed when searching the chain structure. For chaining, we
assume that determining when the end of a list or tree has been reached is
equivalent to one key comparison. Thus, all operations require 1 + nComps
time, where nComps is the number of key comparisons.

Say that the hash table contains size cells, each of which holds a list, and that
N data items have been inserted in the table. Then, on average, each list holds
N divided by size items:

Average List Length = N / size

This is the same as the definition of the load factor, L:

L = N / size

Therefore, the average list length equals the load factor.

Searching
In a successful search, the algorithm hashes to the appropriate list and then
searches along the linked list for the item. On average, half the items must be
examined before the correct one is located. Thus, the search time is

P = 1 + L / 2



This is true whether the lists are ordered or not. In an unsuccessful search, if
the lists are unordered, all the items must be searched, so the time is

P = 1 + L

These formulas are graphed in Figure 11-20 using the green (lowest) lines. For
an ordered list, only half the items must be examined in an unsuccessful search,
so the time is the same as for a successful search.

In separate chaining it’s typical to use a load factor of about 1.0 (the number of
data items equals the array size). Smaller load factors don’t improve
performance significantly, but the time for all operations increases linearly with
load factor, so going beyond 2 or so is generally a bad idea. Of course, the open
addressing methods must keep the load factor well below 1.0.

Insertion
On the face of it, insertion of a new key is immediate, in the sense that no
comparisons are necessary. Because we chose to not allow duplicate keys,
however, any existing chain must be searched to determine whether the key is
new or a duplicate. That means that insertion behaves exactly like search plus
some constant work to either insert the new item at the end (or beginning) of
the list or to update the existing data. The hash function must still be computed,
and the data inserted or updated, so let’s call the insertion time 1. To stay
consistent with the other measures, you can call that a probe length, P, of 1.
Finding that the key is new is equivalent to the time taken for an unsuccessful
search of an unordered list:

P = 1 + L

If the lists are ordered or the key exists in the chain, then, as with an
unsuccessful search, an average of half the items in each list must be examined,
so the insertion time is

P = 1 + L / 2

Separate Chaining with Binary Search Trees
If binary search trees are used to organize the items in each cell, there are a few
differences from separate chaining with lists. If you want to get the benefit of
fast search of the binary tree, it makes the most sense to use one of the self-



balancing binary search tree structures (for example, AVL, 2-3-4, or red-black
trees). They are more complex to code, but the number of comparisons needed
in both successful and unsuccessful searches is proportional to the depth of the
tree. The average number of items stored in each tree is the load factor, like it
was for lists. That means the average depth of the trees is log2(L). When the
load factor is zero, there still is one probe, so the probe lengths are
approximately

P = 1 + log2(L + 1)

Inserting into the tree requires finding where the new key belongs, which takes
1 + log2(L + 1) steps. Finding an existing key also takes 1 + log2(L + 1) steps.
Searching for a key that is not in the tree stops when there is no child node
where the key would normally fit, so it too takes the same number of steps.
There are small variations between the exact number of steps in each of these
cases.

Compared with the other methods shown in Figure 11-20, the graph for binary
search trees would be just below the green line for separate chaining. Both
graphs would start at 1.0 and slowly rise as the load factor increases, but the
binary search trees would rise more slowly after the load factor becomes
greater than 1.0. The difference is so minor for low load factors that the
simplicity of chaining with lists outweighs the probe performance. The faster
search is a benefit, only if the load factor gets large, or a bad combination of
the hash function with the keys being hashed puts large fractions of the N items
in a single tree.

Growing Hash Tables
Along with the time spent probing for where to insert a new item, there is also
the time spent growing the hash table and rehashing items already stored in it.
Both open addressing and separate chaining benefit by keeping the load factor
low, so they typically double the hash table size when the load factor exceeds a
threshold (that differs for the two types).

How much extra work does reinserting the items cause? Consider the first
insertions: when the load factor is low, insertion of a single item happens in
O(1) or “constant” time. If you never had to rehash the items, then inserting N
of them takes O(N) time. It may not seem intuitive, but allowing hash tables to
grow exponentially by doubling in size maintains that O(N) performance.



To see why, let’s assume that you start with a table of size 1 and that you
double it every time an insertion makes the load factor exceed 0.5 (we are
intentionally setting aside the complexity of choosing prime table sizes here).
After the first insertion, the table is doubled to two cells, and the one item is
reinserted. The second insertion pushes the load factor over the threshold
again, and the two items must be reinserted into the four-cell table. The steps
are detailed in Table 11-3.

Table 11-3 Reinsertions When Table Size Doubles

At the insertion of the fourth item, the table doubles to hold 16 items, and the 4
items must be reinserted. The fifth item, however, does not cause any doubling
or reinsertion. The same conditions hold until you get to the eighth item, when
another doubling happens, and the 8 items must be reinserted.

As Table 11-3 shows, the reinsertion work happens every time the number of
items reaches another power of 2. There are longer and longer intervals
between those expansions. The whole second section of Table 11-3 has no
reinsertions until item 32 is inserted. By the time you insert some large number
of items, say a million, the number of reinsertions will be

1 + 2 + 3 + 4 + 8 + 16 + … + 262,144 + 524,288

The last number in the sum is the largest power of 2 below one million.
Moving out the exception for 3 and writing these as powers of 2 makes the
sum:

3 + 20 + 21 + 22 + 23 + 24 + … + 218 + 219

The sum of the powers of 2 should look familiar. It is the same as the count of
the nodes in a binary tree going from the root to the leaves. As you saw when



analyzing the efficiency of binary trees in Chapter 8, that sum of powers of 2
going from 0 to some level, K, can be written as a formula that depends on a
power of 2 itself:

So, the total number of reinsertions is 3 + 2K+1 − 1 or 2 + 2K+1. That looks as
though it could become a very large number, which means inserting N items
would take a lot more work than O(N). What you have to remember is the
relationship between K and N. When you insert a million items, K is 19; and
2K is the largest power of 2 less than or equal to N. In other words, K is the
integer just below log2(N). Substituting log2(N) in the equation for the number
of reinsertions (and forgetting about getting the integer just below it) leaves

That means the number of reinsertions grows linearly as N grows. The original
N items were inserted with O(N) work and the reinsertions just increase the
constant multiplying N, so the overall complexity is still O(N). Even when you
grow the table to be the next prime number larger than twice its current size,
the same pattern holds. The number of items to reinsert is always less than half
the new table size, and the overall sum of reinserted items does not grow faster
than O(N).

Hash Table Memory Efficiency
We’ve noted that hash tables can contain many unused cells under various
circumstances. Overall, they still consume O(N) memory to store N items.
They need more memory than a simple array because they must store keys
along with their associated values (arrays store only the values, and the key is
implicit). Keeping the load factor below the thresholds means you need
roughly twice as many cells as the number of items, N, but that is still O(N).

We have assumed that the table grows during insertions by doubling its size
when needed so that it is never much more than twice N. When you look a bit
closer, however, if you first insert P items and then delete some of them to
reach N items, open addressing implementations will consume O(P) space.
That amount could be significant when P is much larger than N.



For separately chained hash tables, the process of inserting P items and then
deleting some to leave N items doesn’t waste quite as much memory as open
addressing does because deletions within a chain or tree free up the memory
that was being consumed. Only deleting the last item in the chain or tree leaves
an empty memory cell or empty chain object.

The other item to note is that traversal time is proportional to the table size. If
many items were deleted from a hash table that once held P items, traversal
time would still take O(P) to check all the cells. This is the first data structure
we’ve seen where traversal could be a bit slower than O(N) where N is the
current number of items stored. Deletions in hash tables cause the difference in
the time efficiency of traversal. It remains O(N), but N is the maximum
number of items inserted, not the current number stored.

Open Addressing Versus Separate Chaining
If open addressing is to be used, double hashing is the preferred system
(certainly over quadratic probing). The exception is the situation in which
plenty of memory is available and the data won’t expand after the table is
created; in this case, linear probing is somewhat simpler to implement and, if
load factors below 0.5 are used, causes little performance penalty.

The number of items that will be inserted in a hash table generally isn’t known
when the data structure implementation is written, and sometimes not even
when the table is created. Thus, in most cases, separate chaining is preferable
to open addressing. Allowing the load factor to get large causes major
performance penalties in open addressing, but performance degrades only
linearly or logarithmically in separate chaining.

When in doubt, use separate chaining. Its drawback is the need for a linked list
or binary search tree class, but the payoff is that adding more data than you
anticipated won’t cause performance to slow to a crawl.

Hashing and External Storage
At the end of Chapter 9, “2-3-4 Trees and External Storage,” we discussed
using B-trees as data structures for external (disk-based) storage. Let’s look
briefly at the use of hash tables for external storage.



Recall from Chapter 9 that a disk file is divided into blocks containing many
records and that the time to access a block is much longer than any internal
processing on data in main memory. For these reasons, the overriding
consideration in devising an external storage strategy is minimizing the number
of block accesses.

On the other hand, external storage is less expensive per byte, so it may be
acceptable to use large amounts of it, more than is strictly required to hold the
data, if by so doing you can speed up access time. Hash tables make this speed
up possible.

Table of File Pointers
The central feature in external hashing is a hash table containing block
numbers, which refer to blocks in external storage. This configuration is
similar to the separately chained hash table, but the contents of the table cells
point to external blocks rather than a list or a tree in memory. The hash table is
sometimes called an index (in the sense of a book’s index). It can be stored in
main memory or, if it is too large, stored externally on disk, with only part of it
being read into main memory at a time. Even if it fits entirely in main memory,
a copy will probably be maintained on the disk and read into memory when the
file is opened.

Nonfull Blocks
Let’s assume the same characteristics as the contact database example from
Chapter 9 in which the block size is 8,192 bytes, and a record is 1,024 bytes.
Thus, a block can hold 8 records. Every entry in the hash table points to one of
these blocks. Let’s say there are 100 blocks in a particular file.

The index (hash table) in main memory holds pointers to the file blocks. The
hash table has indices from 0 to 99. The contents of cell 11, for example, holds
a block number in external storage where a group of records are stored. Those
records’ keys hash to 11.

In external hashing it’s important that blocks don’t become full. Thus, you
might store an average that’s about half the maximum capacity, so 4 records
per block in this example. Some blocks would have more records, and some
fewer. There would be about 400 records in the file. This arrangement is shown
in Figure 11-21.



Figure 11-21 Hashing to external blocks

All records with keys that hash to the same value are located in the same block.
To find a record with a particular key, the search algorithm hashes the key, uses
the hash value as an index to the hash table, gets the block number at that
index, and reads the block. In the Figure 11-21 example, the name Samuels
hashes to address 88 in the 100-block index. That contains block number 2156.
Reading that block from disk allows the algorithm to retrieve the full record for
Samuels. A similar name like Samuelson could hash to a very different address,
93 in the example, and be stored in another block. Different names like
Taniguchi could hash to the same table address, and block, as Samuels. A new
key might hash to an empty cell that has no block number.

This process is efficient because only one block access is necessary to locate a
given item. The downside is that considerable disk space is wasted because the
blocks are, by design, not full. The example in Figure 11-21 shows two blocks,
each holding only two records. For best performance, the load factor would
need to be kept between 0.5 and 1.0.

To implement this scheme, you must choose the hash function and the size of
the hash table with some care so that a limited number of keys hash to the same
value. In this example, you want only four records per key, on the average.



Full Blocks
Even with a good hash function, a block will occasionally become full. This
situation can be handled using variations of the collision-resolution schemes
discussed for internal hash tables: open addressing and separate chaining.

In open addressing, if, during insertion, one block is found to be full, the
algorithm inserts the new record in a neighboring block. In linear probing, this
is the next block, but it could also be selected using double hashing. In separate
chaining, special overflow blocks are made available; when a primary block is
found to be full, the new record is inserted in the overflow block. Overflow
blocks can be chained to allow large overflows, although these impact
performance significantly.

Full blocks are undesirable because an additional disk access is necessary for
the second and any subsequent overflow block(s); and the disk block access
time can be many tens or thousands of times longer than a memory access.
Such long access times may still be acceptable, however, if it happens rarely.

We’ve discussed only the simplest hash table implementation for external
storage. One simple improvement on the example shown in Figure 11-21 is to
add a record index to the hash table in addition to the block number. That
would allow constant time retrieval of the record within the block after it’s read
for only a few bytes more storage per cell. There are many more complex
approaches that are beyond the scope of this book.

Summary
• A hash table is based on an array.

• The range of possible key values is usually greater than the size of the
array.

• A key value is hashed to a number by a hash function.

• The hashed number is mapped to an array index called the hash address,
typically using a modulo operation.

• An English-language dictionary—where words are the keys and
definitions are the values—is a typical example of a database that can be
efficiently handled with a hash table.



• The hashing of a key to an array cell filled with a different key is called a
collision.

• Collisions can be handled in two major ways: open addressing and
separate chaining.

• In open addressing, data items that hash to a full array cell are placed in
another cell in the array, chosen by following a prescribed probing
sequence.

• In separate chaining, each array element consists of a linked list or binary
tree. All data items hashing to a given array index are inserted in that
chaining structure.

• We discussed three kinds of open addressing probe sequences: linear
probing, quadratic probing, and double hashing.

• In linear probing the step size is always 1, so if x is the hash address
calculated by the hash function, the probe goes to x, x+1, x+2, x+3, and
so on.

• In linear probing, contiguous sequences of filled cells can appear. They
are called primary clusters, and they reduce performance.

• In quadratic probing, the offset from the hash address, x, is the square of
the step number, so the probe goes to x, x+1, x+4, x+9, x+16, and so on.

• Quadratic probing eliminates primary clustering but suffers from the less
severe secondary clustering.

• Secondary clustering occurs because all the keys that hash to the same
value follow the same sequence of steps during a probe.

• All keys that hash to the same value follow the same probe sequence in
quadratic probing because the step size does not depend on the key.

• Quadratic probing only visits—or covers—about half the cells in the
hash table.

• In double hashing, the step size depends on the key and is obtained from
a secondary hash function.



• If the secondary hash function returns a value s in double hashing, the
probe goes to x, x+s, x+2s, x+3s, x+4s, and so on, where s depends on
the key but remains constant during the probe.

• The number of probed cells required to find a specified item is called the
probe length.

• The load factor is the ratio of the number of data items stored in a hash
table to the table size.

• The maximum load factor in open addressing should be around 0.5. For
double hashing at this load factor, unsuccessful searches have an average
probe length of 2.

• Search times go to infinity as load factors approach 1.0 in open
addressing.

• It’s crucial that an open-addressing hash table does not become too full.

• A load factor of 1.0 is appropriate for separate chaining.

• At load factor 1.0 a successful search in separate chaining has an average
probe length of 1.5, and an unsuccessful search, 2.0.

• Probe lengths in separate chaining using lists increase linearly with load
factor.

• Probe lengths in separate chaining using balanced binary trees increase
logarithmically with load factor.

• By properly managing the load factor to limit probe lengths and
collisions, hash tables have effectively O(1) performance for search,
insertion, and deletion of a single item.

• Traversing a hash table takes O(N) time, where N is the maximum
number of items inserted.

• Hash tables need O(N) storage and take more space than a simple array
takes to store N items.

• A string can be hashed by multiplying the numeric value of each
character by a different power of a constant and adding the products.



• To avoid overflow with large numbers, you can apply the modulo
operator at each step in the process, if a polynomial function and
Horner’s method is used.

• Hash table sizes should generally be prime numbers. Using prime
numbers helps minimize the chance of collisions without knowing
anything about the distribution of keys.

• When hash tables grow exponentially, the cost of inserting N items
remains O(N), even though many items must be reinserted at each
doubling of the table.

• Hash tables can be used for external storage. One way to do this is to
have the elements in the hash table contain disk-file block numbers. The
blocks contain a limited number of records such that the load factor is
kept low.

Questions
These questions are intended as a self-test for readers. Answers may be found
in Appendix C.

1. Using Big O notation, how long does it take (ideally) to find an item in
a hash table?

2. A(n) __________ transforms a range of key values into a (possibly
large) number, which can be mapped to a range of index values.

3. The typical operation used to map large numeric ranges into small ones
is ___________.

4. When different keys map to the same index in a hash table, _________
occurs.

5. Open addressing refers to
a. keeping many of the cells in the array unoccupied.
b. using a parameter in the hashing function to expand the range of cells

it can address.
c. probing at cell x+1, x+2, and so on, until an empty cell is found.



d. looking for another location in the array when the original one is
occupied.

6. Searching for a key by testing adjacent cells in the hash table is called
___________.

7. What are the first five offsets from the original address in quadratic
probing?

8. Secondary clustering occurs because
a. many keys hash to the same location.
b. the sequence of step lengths is always the same.
c. too many items with the same key are inserted.
d. the hash function maps keys into periodic groups.

9. Double hashing
a. should use a different hash function than that used for the hash

address and compute a step size from the hashed value.
b. applies the same hash function to the hash address, instead of the key,

to get the next hash address.
c. is more effective for separate chaining than for open addressing.
d. decreases the search time by a factor of two.

10. Separate chaining involves the use of a(n) ___________ or
___________ at each hash table cell.

11. A reasonable load factor in separate chaining is _________.
12. True or False: A possible hash function for strings involves multiplying

each character value by a number raised to a power that increases with
the character’s position.

13. The size of the hash table should _________ to minimize the number of
collisions, in general.

14. If digit folding is used in a hash function, the number of digits in each
group should reflect _____________.

15. In which of the open address probing methods does an unsuccessful
search take longer than a successful search?



16. In separate chaining with linked lists, the time to insert a new item
a. increases as the logarithm of the load factor.
b. is proportional to the ratio of items in the table to the number of table

cells.
c. is proportional to the number of lists.
d. is proportional to the percentage of filled cells in the table.

17. When hash tables double or more than double in size when insertions
exceed a threshold and the items must be rehashed into the array, the
overall time taken to insert N items is
a. O(log N) time.
b. O(N) time.
c. O(N×log N) time.

d. O(N2) time.
18. Rank order these data structures for their “unused” memory in storing

the exact same set of N items: a sorted linked list, an AVL tree, and an
open addressing hash table using double hashing and a load factor of
0.6. Unused memory means cells or fields that are allocated but not
filled (or filled with None) instead of a value or link to another structure.

19. True or False: In external hashing, it’s important that the blocks never
become full.

20. In external hashing, all records with keys that hash to the same value are
located in ___________.

Experiments
Carrying out these experiments will help to provide insights into the topics
covered in the chapter. No programming is involved.

11-A A person boarding a long train and looking for an empty seat and cars
entering a highway are pretty good analogies to the way open
addressing looks for an empty cell to hold an item. Can you think of
real-world processes that act like separate chaining? Think of cases in
which there is some initial choice about where people or things go,
followed by hunting through a list based on the first choice to find their



final destination. When you think of one, how likely is it to have
collisions? Can you think of ways to make the real-world process more
efficient based on hash table structures?

11-B This one takes a little math. How many people need to be at a
gathering to make it more likely than not that they share a birth month
(not a birth day)? For this problem, assume that all twelve birth months
are equally likely. If there is only one person at the gathering, then they
must have a unique birth month. The second person will have a unique
birth month with a likelihood of 11/12. The third person will have a
unique birth month with a likelihood of 10/12, and so on. The
likelihood that all the people have distinct birth months is the product
of those likelihoods. Multiply them and find when the combined
likelihood of having unique birth months becomes less than 50 percent.

11-C The idea of hashing can be used in sorting. In Chapter 3, “Simple
Sorting,” and Chapter 7, “Advanced Sorting,” we introduced a number
of sorting methods. Which ones use hashing or something like it to put
the items in order?

11-D With the HashTableOpenAddressing Visualization tool, make a small
quadratic hash table with a size that is not a prime number, say 24, and
a maximum load factor of 0.9, so that it doesn’t grow. Fill it very full
with, say 20, random items. Now search for nonexistent key values.
Try different keys until you find one that causes the quadratic probe to
go into an unending sequence. This repetitive sequence happens
because the quadratic step size modulo the array size forms a repeating
series.
Repeat the experiment, but this time use a prime number for the array
size, say 23. Can you find nonexistent keys that cause a similar
unending sequence?

11-E With the HashTableChaining tool, create an array with 11 cells and a
maximum load factor of 1.99 to allow high density. Next, fill it with 20
random items. Inspect the linked lists that are displayed. What is the
longest list? Add the lengths of all these linked lists and divide by the
number of lists to find the average list length. On average, you need to
search this length in an unsuccessful search. (Actually, there’s a
quicker way to find this average length. What is it?)



Programming Projects
Writing programs to solve the Programming Projects helps to solidify your
understanding of the material and demonstrates how the chapter’s concepts are
applied. (As noted in the Introduction, qualified instructors may obtain
completed solutions to the Programming Projects on the publisher’s website.)

11.1 Implement a new method for HashTable that finds all the keys that
were not placed at their initial hash position within an open addressing
hash table due to collisions. Show the counts of displaced keys for the
linear, quadratic, and double hash probes in hash tables with maximum
load factors of 0.5, 0.7, and 0.9 (in other words, under nine different
conditions: three probe schemes times three load factors).
The number of collisions depends heavily on the distribution of keys
inserted in the table. You should run tests several times using randomly
generated keys because the results will vary with each set. Make sure
you use the same set of keys to insert in each of the different hash table
types to make a reasonable comparison. You can generate 200 random
integers in the range [0, 999] by importing the random module and
evaluating
random.sample(range(1000), 200)

Using the random.sample() function guarantees that there will be no
duplicate keys in the sequence. Initialize your hash tables with a size of
103 to lessen the likelihood of some probe sequences being unable to
find empty cells in a small table. Run your tests many times to see
whether some probe algorithms are clearly better or worse than others.

11.2 Write two hash functions that implement the digit-folding approach
described in the “Folding” section of this chapter. One of the functions
should fold groups of three digits and the other groups of two digits.
Use these functions to create two HashTable objects with linear probing
and the displaced key counting method from Project 11.1. Write a
program that fills these two hash tables with a thousand random 10-
digit integers generated by random.sample(range(10000000000),
1000). Show the counts of displaced keys for the two hashing
functions and the same three maximum load factors: 0.5, 0.7, and 0.9.
Accessing a group of K digits in a positive number may be easier than
you think. Can you generalize the folding hash function to work with



any number of digits, or maybe even with any number for the folding
range, not just 10K?

11.3 Explore what happens when the hash table size is a power of 2 instead
of a prime number. Rewrite the HashTable.__growTable() method so
that it doubles the size of the table without finding the next prime
number larger than that. Use the same conditions as in Project 11.1,
except use a starting size of 128 for the hash tables. The 200 keys that
are inserted will force the table to grow at least once, and it should
remain a power of 2.
Using a table size that is not a prime number increases the chances of
collisions, so much so that you are likely to run into the exception
raised by the insert() method when the probe sequence runs out of
cells to try (see Listing 11-5). The exception will happen for only some
distributions of keys, so you may need to seed the random number
generator with different values to cause the exception. Make sure you
catch the exception and record the problem for the particular probe
sequence and load factor. The same set of keys may work with one
probe sequence, but not in others.
As in Project 11.1, show the number of displaced keys for the nine
different conditions: three probe schemes times three load factors. If the
200 keys cannot be inserted for a particular condition, show that too.

11.4 The double hashing step size calculation in Listing 11-10 uses the
simplehash() function. Replace that function with a multiplicative
hashing function that is a variation on Horner’s method described in the
“Hashing Strings” section, except that it’s designed to work with
integer hash keys. The integer keys can be treated as a sequence of
bytes. You can get the lowest byte from a big integer N by using a bit
mask in Python, N & 0xFF. The loop iterates over the bytes and
computes a hash that starts at 0. On each iteration, the current hash is
multiplied by a prime, and the low byte plus another prime are added to
get the next value of the hash. Multiplying by a prime and adding
another prime help spread the influence of each bit of the key across the
hashed value.
Produce a table like Table 11-2 showing the insertion of 20 integer keys
randomly selected from the range [0, 99999]. Show the multiplicative
hashed address along with the modulo with the small prime to derive



the step size. You need to write some code to produce the probe
sequence and peek at the stored values before inserting the item in the
hash table in order to show the last column of the table.

11.5 Hash tables are perfectly suited to the task of counting things like the
number of times words are used in a text. By going through the text a
word at a time, you can check a hash table to see whether the word has
already been seen before. If it hasn’t, the word is inserted as a key in
the hash table with a value of 1. If it has been seen, the table is updated
to hold the incremented count. Traversing the completed hash table gets
the overall word counts.
Write a program that reads a text file, extracts the individual words,
counts the number of times they occur using a hash table, and then
prints out a list of all the distinct words and their counts. To get the
lines of a text file in Python, you can use a loop like for line in
open(’myfile.text’, ’r’). To get the words from the line, you can
use a loop like for word in line.split(), which splits the string at
whitespace characters. To trim off leading and trailing punctuation from
a word, you can use the strip() method of strings, as in
word.strip(’()<>[]{}-_,.?!:;"’). This would convert "(open-
addressing!)" to "open-addressing", for example. For case-
insensitive word counting, you can use the lower() method for strings
to make all the characters lowercase. Show the output of your program
running on a short text file.



12. Spatial Data Structures

In This Chapter

• Spatial Data

• Computing Distances Between Points

• Circles and Bounding Boxes

• Searching Spatial Data

• Lists of Points

• Grids

• Quadtrees

• Theoretical Performance and Optimizations

• Practical Considerations

• Further Extensions

So far, all our data structures have stored records containing a key to identify
them. That’s perfect when you want to find a record that exactly matches a key.
What about when you want to identify items by position—for example, finding
all the grocery stores within a certain distance of a particular location? For that
task, you need a structure that uses two separate numeric keys to identify the
location of records that correspond to points in space.

Although this pair of numbers may seem to be a simple extension from one
numeric key, the data structures must be dramatically changed to make the
kinds of desired operations happen efficiently. The nature of points in space
and their distances drives much of the design. We look first at the ways to
represent points in space and then at three ways of storing records associated
with those points. We wrap up with a discussion of the performance that you



can expect from these structures and some extensions needed for other
domains.

Spatial Data
Data that has position attributes is called spatial data. Spatial data includes
Cartesian coordinates and geographic coordinates.

Cartesian Coordinates
The simplest form of spatial data corresponds to points on a flat surface. Each
point is represented by a pair of numbers that specify its X and Y coordinates
on the surface, usually written as (x, y). These (x, y) coordinates on a flat
surface are known as Cartesian coordinates, invented by French
mathematician René Descartes. For example, if you were programming a
simulation of a football game, you could use Cartesian coordinates to represent
the location of each player on the field. Because a football field is a very small
piece of the surface of the Earth, you can conveniently pretend that the surface
of the field is perfectly flat, so it is appropriate to use Cartesian coordinates.

Cartesian coordinates could be represented using any convenient unit of
distance—for example, pixels on a screen, or feet or meters on a playing field.
The exact units chosen are important to the application but do not affect the
data structures and algorithms if the units are the same for both dimensions.

Geographic Coordinates
Spatial data points on the surface of the Earth are usually represented by a pair
of numbers that specify the latitude (the angle north or south from the equator)
and the longitude (the angle east or west from the prime meridian at
Greenwich, England). Some applications also require a third value
corresponding to the elevation on or above the surface of the Earth. In this
chapter, we consider just points that are on the surface of the Earth, that is, at
sea level.

Figure 12-1 shows how the globe is divided into hemispheres by the equator in
blue and the prime meridian in red. For example, the location of Ottawa,
Canada, is approximately (45.30096°, −75.81689°) as shown by the small
green dot. The negative longitude indicates that the point is to the west of the



prime meridian. The location of Johannesburg, South Africa, is about
(−26.17643°, 28.04551°) marked by another dot. The negative latitude
indicates that Johannesburg is south of the equator. Latitude, longitude
coordinates are known as geographic coordinates.

Figure 12-1 Geographic coordinates use longitude and latitude

Computing Distances Between Points
Later in this chapter, we look at data structures that support searching for
records at or near specified Cartesian or geographic coordinates. To do these
calculations, you need to be able to compute the distance between two spatial
data points. This calculation is easy to implement for Cartesian coordinates and
a little more complicated for geographic coordinates.



Distance Between Cartesian Coordinates
To compute the distance between two points specified by Cartesian
coordinates, you make use of the familiar Pythagorean theorem that the length
of the hypotenuse squared is the sum of the squares of the sides of a right
triangle. Because the points are defined by their coordinates in the X and Y
axes, you can align a right triangle with the axes to determine what is
sometimes called the Euclidean distance. If the two points are at (x1, y1) and
(x2, y2), then the Euclidean distance d between the two points is

Implementing this distance measure is simple in Python, as shown in Listing
12-1. The result of this formula is in the same units of measurement as the
input Cartesian coordinates.

Listing 12-1 Euclidean Distance Between Cartesian Coordinates

# return the Euclidean distance between points (x1,y1) and (x2,y2)
def euclideanDistance(x1, y1, x2, y2): 
    dx = x2 – x1 
    dy = y2 – y1 
    return (dx*dx + dy*dy) ** 0.5

Distance Between Geographic Coordinates
Calculating the distance between geographic coordinates is more complex.
First, geographic coordinates are specified as angles of latitude and longitude
on the Earth—which do not directly correspond to distances expressed in units
of length. Second, the surface of the Earth is neither flat nor perfectly spherical,
which further complicates the computation. There are many ways that distance
between geographic coordinates can be calculated. The accuracy of the
calculations depends on the simplifying assumptions and approximations used.

The shortest path between two points on a sphere lies along the curve of a
great circle. To get the great circle, take the plane that contains the two points
and the center of the sphere and intersect it with the sphere itself. Computing
the distance between Ottawa and Johannesburg using the Euclidean distance
would be useful only if you could travel in a straight line through the Earth (see
Figure 12-1). Even a path on the surface of the Earth that seems to go directly



between the two points is not necessarily the shortest path. To be sure that the
path is the shortest, it must lie on the great circle path that connects them. That
is why a flight from New York to Spain flies in a path that curves toward the
North Pole, rather than flying due east, as a typical map might imply.

The haversine formula computes the great circle distance between two
geographic coordinates on a sphere. Although Earth is not a perfect sphere, the
haversine formula will give correct answers to within 0.5 percent. That should
be adequate for an application such as finding the nearest airport or coffee
shop, but possibly not accurate enough for others, such as determining exactly
how many kilometers of cable would be needed to connect two airports.

The haversine formula for the distance between two geographic coordinates is

where

• R is the radius of the Earth

• ϕ1 and ϕ2 are the latitudes of the two points

• Δϕ is the difference between the latitudes of the two points

• Δλ is the difference between the longitudes of the two points.

Although this formula looks rather daunting, the Python implementation is
straightforward, as shown in Listing 12-2.

Listing 12-2 Python Implementation of the Haversine Distance

from math import * 
RADIUS_OF_EARTH = 6371    # radius in kilometers 
 
# return the haversine distance between (lon1, lat1) and (lon2, lat2)
def haversineDistance(lon1, lat1, lon2, lat2): 
    lat1 = radians(lat1)    # trig functions need radians 
    lon1 = radians(lon1) 
    lat2 = radians(lat2) 
    lon2 = radians(lon2) 
 



    dLon = lon2 - lon1      # difference of longitudes 
    dLat = lat2 - lat1      # difference of latitudes 
 
    # Haversine formula: 
 
    a = sin(dLat/2)**2 
    if dLon != 0:  # save some trig for dLon == 0 
        a += cos(lat1) * cos(lat2) * sin(dLon/2)**2 
 
    # Numerical issues at antipodal points requires min, max: 
    return 2 * RADIUS_OF_EARTH * asin(min(1, max(a, 0)**0.5))

It is worth noting that as commonly spoken in English, geographic coordinates
are referred to as “latitude, longitude” pairs. When you’re writing code to
uniformly support either Cartesian or geographic coordinates, however, it
makes more sense to refer to geographic coordinates as “longitude, latitude”
pairs. Simply put, longitude angles correspond to values along the equator,
analogous to points along the Cartesian X axis. Likewise, latitude angles
correspond to values along the north-south meridians, analogous to the
Cartesian Y axis. The methods in the class definitions we present for spatial
data structures accept “a, b” pairs to specify spatial location, which are then
interpreted appropriately to mean either x, y or longitude, latitude coordinates.
Although the Euclidean distance will work with any units, this definition of the
haversine distance always returns the distance in kilometers because the Earth’s
radius is specified that way.

Circles and Bounding Boxes
When working with spatial data, you frequently need to determine whether
points lie within a particular area. For example, you might want to know
whether a particular geographic coordinate lies within a particular country or
within a property boundary. Many kinds of regions might be checked. The two
simplest and most common ones are circular and box-shaped areas. You will
need to use the distance calculations in many cases to determine whether a
point is inside or outside one of these regions.

Clarifying Distances and Circles
When you begin the search for a data point nearest to a query point, and no data
point has been considered yet, it is convenient to think of the initial distance



from the query point to the nearest point as being at infinity—in other words, a
number that is arbitrarily large. The Python math module conveniently provides
a predefined constant math.inf, which is larger than any other int or float
number. (In versions of Python before 3.5, the constant for infinity was
produced by the expression float(’inf’), which can still be used.) As the
search proceeds, and subsequent points are encountered, that distance becomes
a finite number, which gets successively smaller as points closer to the query
point are identified.

In Cartesian coordinates, at any step of the search, you can think of the query
point together with the distance to the nearest point so far as defining a circle
around the query point, whose radius is equal to the distance to the current
nearest point.

In geographic coordinates, a curve of constant distance is not a perfect circle
when drawn on a grid whose latitude lines and longitude lines are spaced at
uniform degrees of separation (known as the Mercator projection). Indeed, this
is what causes the apparent distortion of landmasses when viewed on some
maps. For example, near the poles, the meridians are much closer together than
they are near the equator.

These changes in distance are illustrated in Figure 12-2 where three 1,000 km
paths have been drawn in blue. The same paths are drawn on the globe as it
appears from space and on a map using the Mercator projection with 10
degrees separating each of the longitude and latitude grid lines. The path
around Iceland looks much larger than the path centered on the coast of Brazil
in the Mercator projection, even though both are equal diameter. The path
surrounding the tip of Tierra del Fuego, the southern tip of South America
(only partially visible on the globe projection), is also the same diameter.



Figure 12-2 Comparing 1000 km circles at different points on the globe

In the following pages when we discuss a query circle, keep in mind that
sometimes the circle is not truly circular. The term query circle is used to refer
to a curve of constant distance from a query point, which may not always look
perfectly circular depending on the map viewpoint. Our computations account
for this apparent distortion.

Bounding Boxes
As we just mentioned, when using geographic coordinates, a query circle with
a radius of constant distance does not look like a circle when projected on a



map grid with uniform latitude and longitude spacing.

For geographic coordinate query circles far from the equator, the circle begins
to look more like an ellipsoid. In addition, the widest part of the query circle is
not directly due-east or due-west of the center of the query circle as it is at the
equator or in Cartesian coordinates. For example, as a search circle gets farther
north from the equator, the circle gets increasingly flattened, and the widest
part of the search circle progresses farther north of the center of the circle.

In the coming pages we examine data structures that partition space into
rectangular pieces. To search for a particular point, the algorithms repeatedly
check whether a query circle intersects a particular rectangular piece of space
containing data points. It can be computationally complex to determine whether
a circle and rectangle intersect, and, even more so, whether a distorted ellipsoid
and a rectangle intersect.

One way to simplify these repeated query circle-rectangle intersection
calculations is to approximate the query circle by a rectangular bounding box
that snugly encloses the query circle in either Cartesian or geographic
coordinates. As you will see, determining whether two rectangles intersect is a
fast and simple computation. If the bounding box of the query circle doesn’t
intersect a rectangle of space, then you can be certain that there’s no chance
that the query circle itself intersects the rectangle of space. Only when the
bounding box does intersect a rectangle of space do you need to do more
detailed calculations to attempt to find a point within that rectangle that
matches or is nearby the query point.

The Bounding Box of a Query Circle in Cartesian
Coordinates
In Cartesian coordinates, you can easily identify the left, right, top, and bottom
coordinates of the bounds of a query circle of radius r, with a center at a, b, as
shown in Figure 12-3. The left boundary lies at a − r. The right boundary lies at
a + r. The vertical boundaries are similar.



Figure 12-3 The bounding box of a circle in Cartesian coordinates

The Bounding Box of a Query Circle in Geographic
Coordinates
How do you determine the bounding box of a query circle in geographic
coordinates? It’s clear that you need to calculate the bounds for longitude and
latitude, but how? The formulas that solve this problem (shown here) employ
methods in spherical geometry that are outside the scope of this text.



You do not need to understand the detailed math to create the methods that
compute and use the bounding box of a search circle in geographic coordinates.
The preceding equations and the diagram in Figure 12-4 show how to compute
the width in longitude and height in latitude from the center of the query circle
to the edges of its bounding box, where

Figure 12-4 The bounding box of a query circle in geographic coordinates

1. r is the radius of the query circle.

2. R is the radius of the Earth.

3. B is the latitude b of the a, b center of the query circle, expressed in
radians instead of degrees.

4. (Δlong) is the longitude width in radians from the center to the widest
point of the query circle.

5. (Δlat) is the latitude height in radians from the center to the top or bottom
of the query circle.

Note that the widest point of the query circle may not be due east of the center.
The example shown in the figure illustrates this distortion resulting in the
widest part of the circle being slightly vertically offset from the latitude, b.



Implementing Bounding Boxes in Python
We represent bounding boxes of all types in Python using the Bounds class and
its CircleBounds subclass, as shown in Listing 12-3.

Listing 12-3 Creating and Adjusting Bounds Objects

class Bounds(object): 
    def __init__(self, left = -inf, right  = inf, 
                       top  =  inf, bottom = -inf): 
        Bounds.adjust(self, left, right, top, bottom) 
 
# mutator to initialize/change bounds in existing object
def adjust(self, left, right, top, bottom): 
    self.__l = left 
    self.__r = right 
    self.__t = top 
    self.__b = bottom 
 
# return a new Bounds, where some of the
# current boundaries have been adjusted
def adjusted(self, left = None, right = None, 
                   top = None,  bottom = None): 
 
    if left   == None: left   = self.__l 
    if right  == None: right  = self.__r 
    if top    == None: top    = self.__t 
    if bottom == None: bottom = self.__b 
 
    return Bounds(left, right, top, bottom)

Instances of the Bounds class shown in Listing 12-3 store the coordinates of the
left, right, top, and bottom boundaries of a rectangular section of Cartesian or
geographic space. You can create a new Bounds object by invoking the
constructor as shown in this snippet:
b = Bounds(-125.6, -60.8, 49.72, 23.77)

The returned object represents the rough rectangular boundaries of the
continental United States, with its left boundary at −125.6 degrees longitude, its
right boundary at −60.8 degrees longitude, its top boundary at 49.72 degrees
latitude, and its bottom boundary at 23.77 degrees latitude.



Invoking Bounds() with no arguments results in a rectangle with infinite extent.
The mutator method, adjust(), enables the client code and the constructor to
update the private attributes.

A separate method called adjusted() creates and returns a new Bounds object
derived from the current object, and with some or all the boundaries replaced
with new values.

The CircleBounds Subclass
The CircleBounds subclass of Bounds, shown in Listing 12-4, creates a box
enclosing a circle.

Listing 12-4 Initializing and Adjusting CircleBounds objects

# A bounding box that surrounds a search circle. Properly handles
# distorted circles resulting from geographic coordinates.
class CircleBounds(Bounds): 
    # create the bounding box that surrounds the search 
    # circle at a,b,r using the specified distance function 
    def __init__(self, a, b, r, func): 
        # remember the circle’s parameters for later 
        self.__a, self.__b, self.__r = a, b, r 
        self.__func = func 
 
        # get the width/height of the bounding box 
        deltaA, deltaB = self.__deltas(a, b, r, func) 
 
        # initialize the superclass’s rectangular bounds 
        super().__init__(a - deltaA,  # left 
                         a + deltaA,  # right 
                         b + deltaB,  # top 
                         b - deltaB)  # bottom 
 
# if the circle’s radius changed, mutate its bounds
def adjust(self, r): 
    if r != self.__r: 
        self.__r = r 
 
        # new dimensions of bounding box 
        deltaA, deltaB = self.__deltas( 
            self.__a, self.__b, r, self.__func) 
 
        # update the box 



        super().adjust(self.__a - deltaA,  # left 
                       self.__a + deltaA,  # right 
                       self.__b + deltaB,  # top 
                       self.__b - deltaB)  # bottom

The user creates a new CircleBounds object by invoking the constructor with
the a, b coordinates of a circle center, the circle’s radius, and a reference to a
distance function, as shown in this snippet:
c = CircleBounds(38.736, -9.142, 3.14, haversineDistance)

This snippet creates a CircleBounds object that represents the rectangular
bounds surrounding a circle centered in Lisbon, Portugal, with a radius of 3.14
km.

As shown in Listing 12-4 the constructor saves the parameters in private
attributes—to potentially be used later by the adjust() mutator method that
adjusts the radius of the circle. Given the a, b coordinates and radius r of the
circle, the constructor obtains the distances from the center of the circle to the
widest and tallest points on the circle, called deltaA and deltaB. Finally, the
constructor uses those two distances to invoke the superclass’s constructor with
the rectangular bounds of the circle.

The adjust() mutator can be invoked by the client with a new value for the
circle’s radius. If adjust() determines that the radius has changed, then deltaA
and deltaB are recomputed, and then the superclass’s adjust() method
replaces the rectangular bounds with the newly computed boundaries.

All that remains to discuss is how the deltaA and deltaB distances are
computed, as shown in the __deltas() method in Listing 12-5. The method
implements the calculations for width and height of the two types of circles
shown in Figure 12-3 and Figure 12-4. For infinite radius circles or Cartesian
coordinates, deltaA and deltaB are simply the radius of the search circle. For
geographic coordinates, deltaA and deltaB are computed using the preceding
complex formulas and substituted for Δlong and Δlat in Figure 12-4,
respectively.

Listing 12-5 Computing the Width and Height of a Bounding Box Around a
Circle

class CircleBounds(Bounds): 
… 



    def __deltas(self, a, b, r, func): 
        # When r is infinity, bounds are always infinite 
        # For cartesian coordinates, the edges of the bounding 
        # box are r away from the center of the search circle. 
        if r == inf or func == euclideanDistance: 
            deltaA = deltaB = r 
 
        else: # geographic coordinates 
            # The width of the bounding box is determined by 
            # the width of the distorted circle at its widest point. 
            alpha = r / RADIUS_OF_EARTH 
            gamma = radians(90 - abs(b)) # b is latitude 
 
            # if the circle itself crosses the pole then 
            # alpha >= gamma, so we set deltaA as inf, 
            # effectively treating the width as if it were inf 
            if alpha >= gamma: 
                deltaA = inf 
            else: 
                # the circle doesn’t cross a pole, so get 
                # longitude angle from center of circle at 
                # the circle’s widest width calculated using 
                # a spherical right triangle identity. 
                deltaA = degrees(asin(sin(alpha) / sin(gamma))) 
 
            # latitude angle directly above/below the 
            # center of the circle. This works since above 
            # or below is directly on a meridian. 
            deltaB = degrees(alpha) 
 
        return deltaA, deltaB

Recall that for geographic coordinates, a query circle gets progressively
flattened as it approaches either pole. If the center of the circle gets within the
query radius of a pole, the circle extends beyond the pole (in other words, the
pole lies within the query circle). This condition is detected in the code when
the alpha variable exceeds the gamma variable, which could result in an
undefined value of the inverse sine function used to compute deltaA. In that
case, instead of computing the inverse sine, it sets deltaA to be infinite because
the search circle wraps all the way around the pole.

Determining Whether Two Bounds Objects
Intersect



Later in this chapter in the discussion of the Grid and QuadTree classes, some
methods need to determine whether two rectangles defined by their Bounds
objects intersect. You can determine whether two rectangles intersect by
making the simple observation that they do not intersect if one rectangle is fully
to the left of the other or fully above the other.

As illustrated in Figure 12-5, rectangles 2, 3, and 4 do not intersect with
rectangle 1 because they are each either directly above or to the side of
rectangle 1. Rectangle 5, however, does intersect with rectangle 1.

Figure 12-5 Intersecting and nonintersecting rectangles

For any two rectangles A and B, you can say that they don’t intersect if the
following pseudocode expression is true:

(A is to the left of B) or (B is to the left of A) or



(A is above B) or (B is above A)

So, to determine whether rectangles A and B do intersect, you simply negate
that entire expression and simplify, resulting in

(A is NOT to the left of B) and (B is NOT to the left of A) and

(A is NOT above B) and (B is NOT above A)

Examining rectangles 1 and 5, you can see that this latter expression evaluates
to True, and therefore that rectangles 1 and 5 do intersect.

The code in Listing 12-6 shows the simple implementation of the
intersects() method. It uses the negation of the definition of not intersecting.

Listing 12-6 Determining if Bounds Objects Intersect

class Bounds(object): 
… 
    # return True if bounds of the rectangles intersect. 
    # Two rectangles don’t intersect if one is totally to 
    # the left of or above the other. So we negate to 
    # determine if they do intersect. 
    def intersects(self, other): 
        return not( 
            # check if self’s box is to left or right of other 
            self.__r < other.__l  or self.__l > other.__r or 
 
            # check if self’s box is above or below other 
            self.__b > other.__t  or  self.__t < other.__b)

Determining Whether One Bounds Object Lies
Entirely Within Another
As you will soon see, some methods also need to determine whether the bounds
of a circle fit entirely within the bounds of a square subset of cells on a grid.

Figure 12-6 illustrates a sample scenario, where you want to determine whether
the circle drawn in black, with its bounding box drawn in red, lies entirely
within the blue-shaded square of grid cells. If you have a Bounds object
initialized with the boundaries of the blue shaded area, and another
CircleBounds object initialized with the bounding box surrounding the circle,



it is simple to determine whether the circle fits within the blue box, as shown in
the within() method in Listing 12-7.

Figure 12-6 A CircleBounds within another Bounds object

Listing 12-7 Determining Whether a Bounds Object Lies Within Another
Bounds Object

class Bounds(object): 
… 
    # return True if the bounds of self fall within other 
    def within(self, other): 
        return (self.__r < other.__r and 



                self.__l > other.__l and 
                self.__t < other.__t and 
                self.__b > other.__b)

Note that the same definition of within() is used for both Bounds and
CircleBounds objects. This is good enough for the purpose of searching the
data structures but would not correctly determine whether the circle of one
CircleBounds object was truly within (or even overlapping) the circle of
another CircleBounds object.

Searching Spatial Data
Now that we’ve handled these geometry basics, we can focus on the interesting
challenge of searching a collection of spatial data points to find an exact match
to a query point or to find the closest match to a query point. To find the closest
match, we need to specify what it means to be close; in other words, which
distance function should be used to compare a query point to a candidate data
point? If the spatial data consists of Cartesian coordinates, the
euclideanDistance() function will be appropriate. If the spatial data consists
of geographic coordinates, the haversineDistance() function will be
appropriate.

In the following sections, we look at several classes that implement data
structures and algorithms to support exact match and closest match spatial
search. The classes vary in code complexity and Big O performance, so their
applicability depends on the amount and distribution of data you are attempting
to process. The important issues are how to deal with using coordinates as keys
and how to deal with distance when searching. First, we start with a simple
approach. Then we add more complex structures to improve performance.
Finally, we look at the trade-offs between the different approaches.

Lists of Points
If you want to support spatial data search of a small number of points, it can be
appropriate to just store the spatial data points in one of the structures you’ve
already seen, such as an array or a list. Then the spatial data is queried by
traversing over the items to find either an exact match or the closest match to
the query point. This brute-force approach is the simplest possible solution,
though because of that simplicity, the Big O performance is O(N) to search for



an exact or nearest match. In other words, to do a spatial search using brute
force, the code must compare the query point to every point stored in the
structure.

Creating an Instance of the PointList Class
We’ll use a simple Python list (array) to hold a collection of items in a
PointList class. Client code creates an instance of the PointList class by
invoking the constructor to create an object that contains Cartesian points:
b = PointList(’cartesian’)

or that contains geographic points:
b = PointList(’geographic’)

If the constructor is passed any string other than ’cartesian’ or
’geographic’, an exception will be raised.

Listing 12-8 shows the code for the PointList constructor. There are just two
private attributes: a reference to the distance function appropriate to either
Cartesian or geographic coordinates, and a reference to an initially empty list
that will be used to store the points in the object.

Listing 12-8 The PointList Constructor

class PointList(object): 
    def __init__(self, kind): # must specify type of coordinate 
        if kind == ’cartesian’: 
            self.__distance = euclideanDistance 
        elif kind == ’geographic’: 
            self.__distance = haversineDistance 
        else: 
           raise Exception("Invalid kind of coordinate”) 
 
        self.__points = [ ]      # keep track of inserted points

Inserting Points
Points are inserted into the PointList object using the insert() method. For
Cartesian points, the user passes to the insert() method an x coordinate, a y



coordinate, and a reference to whatever data will be associated with the
Cartesian x, y point:
b.insert(34, 56, “Player 1”)  # insert a point at x == 34, y == 56

Likewise, for geographic points, the user passes to insert a longitude, a
latitude, and a reference to the data associated with this geographic longitude,
latitude point:
b.insert(-73.987853, 40.748440, “Empire State Building”)

Most likely, the client code will use a loop to repeatedly invoke insert() so
that the PointList object contains all the points to be searched.

The implementation of the PointList.insert() method is quite simple (see
Listing 12-9). Each inserted point is stored as a tuple containing three elements
appended to the end of the private __points list. Each tuple contains

• The x, or longitude, coordinate

• The y, or latitude, coordinate

• A reference to the data to be associated with the specified point

Listing 12-9 Inserting a Point into a PointList

class PointList(object): 
… 
 
    def insert(self, a, b, data): 
        # Loop through the points looking for an exact match 
        for i in range(len(self.__points)): 
            p = self.__points[i] 
            if p[0] == a and p[1] == b:         # Replace data 
                self.__points[i] = (a, b, data) # for a duplicate 
                return 
 
        self.__points.append((a, b, data))  # not there, so append

For all the data structures in this chapter, the insert() method ensures that
there are no points stored with duplicate a, b coordinates. Thus, for PointList,
insert() loops through all the points in the list, and if it finds an already-
existing point with the same a, b coordinates, the data currently stored for that
point is replaced with the newly inserted data. If no duplicate is found, then the



insertion is accomplished by appending a point to the end of the __points list.
When the client later attempts to find an exact or nearest match, the
findExact() or findNearest() methods will return the single point that is
found to match the query point, and the returned data will be the data that had
been most recently inserted for those coordinates. Because insert() loops over
all the points in the list to avoid inserting a point with duplicate coordinates, it
takes O(N) time for each insertion.

Finding an Exact Match
You call the findExact() method to search for the point contained in the
PointList object that exactly matches the specified x, y or longitude, latitude
coordinates. If an exact match is found, the method returns a reference to the
data that was stored for the matching point:
>>> ans = b.findExact(-73.987853, 40.748440) 
>>> print("Answer was:", ans) # Answer was: Empire State Building

Not surprisingly, the implementation of findExact() shown in Listing 12-10 is
simple. The method loops through potentially every point stored in the
__points list. If an exact match to the specified a, b coordinates is found, then
the data for that point is returned to the client.

Listing 12-10 Finding an Exact Match in a PointList

class PointList(object): 
… 
 
    def findExact(self, a, b):           # Return data for exact point 
        for p in self.__points:          # Loop through all points 
            if p[0] == a and p[1] == b:  # found exact match 
                return p[2]              # so return its data 
        return None                      # Couldn’t find a match!

Because findExact must potentially loop through every point of the __points
list in the worst case, the complexity of the method must be O(N).

Deleting a Point



It is straightforward to implement a method to delete from the PointList a
point specified by a pair of coordinates. As shown in Listing 12-11, the
approach is very similar to that used by findExact(), except that after the
matching point is identified, it is removed from the list using Python’s del
operator. If a matching point is found, then delete() returns the data
associated with the deleted point. Otherwise, delete() returns None.

Listing 12-11 Deleting a Point from a PointList

class PointList(object): 
… 
    # delete the point at a,b 
    # Return the deleted point’s data if found, or None 
    def delete(self, a, b): 
        # Loop through the points looking for an exact match 
        for i in range(len(self.__points)): 
            p = self.__points[i] 
            if p[0] == a and p[1] == b: # found a match 
                del self.__points[i]    # delete the point 
                return p[2]             # return its data 
 
        return None                     # point wasn’t there

Just like findExact(), the Big O time for delete() is O(N).

Traversing the Points
Because PointList is implemented as a simple list of tuples, traversing the
points is trivial. As with the other data structures you’ve seen, traverse() is
implemented as a generator as shown in Listing 12-12.

Listing 12-12 The traverse() method of PointList

class PointList(object): 
 
… 
 
    def traverse(self): 
        for p in self.__points:         # yield each of the tuples 
            yield p



The implementation loops through each of the elements of the list, yielding the
tuples containing the a, b coordinates and the associated data. Because every
point in the list is visited once, the complexity of traverse is O(N). The caller
can use tuple-assignment in its for loop to assign the values to three variables,
or just assign the returned tuple to a single loop variable.

Finding the Nearest Match
You call the findNearest() method to find the point stored in the __points list
that lies closest to the query point. Depending on whether the PointList object
stores Cartesian or geographic coordinates, findNearest() automatically uses
the appropriate function to compute the distance from the query point to each
of the object’s points, as shown in Listing 12-13.

Listing 12-13 Finding the Nearest Point in a PointList

class PointList(object): 
… 
    def findNearest(self, a, b):     # find closest point to (a,b) 
        if len(self.__points) == 0:  # No points yet? 
            return None 
 
        distance = inf               # Assume no nearest point 
        for p in self.__points:      # For each point 
            newDist = self.__distance(a, b, p[0], p[1]) 
            if newDist == 0:         # Nothing could be closer! 
                return p[0], p[1], p[2], 0 
            if newDist < distance:   # If it is closest so far, 
                distance = newDist   # remember the distance, 
                answer   = p         # and the point 
 
        return answer[0], answer[1], answer[2], distance

The method returns to the client a four-element tuple containing the
x/longitude, y/latitude, the associated data, as well as the distance to the point
that is closest to the query point. The distance function that was set when the
object was constructed determines the units of the measurement.

For example, assuming that a geographic point for the location of the Eiffel
Tower has already been inserted in the PointList object, this snippet shows
what would be returned by an invocation of findNearest():



>>> ans = b.findNearest(2.2, 48.8) 
>>> print(ans)  # (2.294694, 48.858093, ’Eiffel Tower’, 9.47495437535)

The implementation of findNearest() shown in Listing 12-13 starts by
checking the base case of an empty list. If the PointList is empty, there is no
nearest point, so None is returned. If there are some points, it initializes the
distance variable to infinity and then loops through all the points. If the
distance from a, b to one of the new points is less than the current best
distance, it updates the answer and then records the new best distance.

This approach is not efficient because it is necessary to compute the distance
between the query coordinates and every point stored in the PointList object’s
__points list. The only shortcut happens when the query point has the exact
same coordinates as one of the points in the __points list, in which case there
would be no reason to keep looping through the remaining points and it returns
the current point as the answer. The complexity of findNearest() is also O(N)
for each invocation.

Grids
The PointList class is appropriate to store and query only a relatively small
number of spatial data points. If you have many points and they are mostly
uniformly spread out in space, then you can superimpose a grid on top of the
points to speed up the insert(), findExact(), and findNearest() methods.
To see why this is so, consider Figure 12-7, which shows a collection of 2,000
spatial data points, with a query point shown as a red diamond.



Figure 12-7 Two thousand data points and a query point

To find a point that exactly matches or is closest to the red query point, every
one of the 2,000 points must be compared to the red query point. If you
superimpose a grid on top of the points, you can break them up into 10 rows
and 10 columns of cells, as in Figure 12-8.



Figure 12-8 Breaking up space into a 10 × 10 grid

To find whether there’s an exact match to the red query point, you only need to
check the points that fall within the same cell as the query point. Finding the
nearest point to the red query point is more complicated because you might end
up checking the points in some neighboring cells. Even in this case, it is only
necessary to check a small fraction of the total number of points.

Implementing a Grid in Python
Transforming Cartesian or geographic coordinates to the row and column
numbers of a grid only requires that the coordinates are divided by the cell size
(which is specified in units appropriate to the type of coordinates). The grid
cells can be represented as an array to quickly access the list of points
associated with each cell.

A two-dimensional array seems like the natural choice to hold the separate
point lists. The two coordinates can be computed separately and used to index a
specific cell in the array. Some issues arise, however, in dealing with negative
values and the range of possible coordinates. Most programming languages do
not allow negative indices in arrays, so if you converted −23.75 to, say, −24,
you couldn’t use that to index a row or column.



To work around that limitation, you need to know the full range of possible
coordinates that might be used. Knowing the bounds of the coordinates, you
could subtract the minimum value of each coordinate from any given
coordinate being processed to get a zero or positive value. The positive value
can then be converted to an index in the array.

Knowing the coordinate bounds solves one problem but presents another. The
bounds can be much larger than what’s needed for a particular set of points. In
geographic coordinates, the bounds are well known. Longitude ranges from
−180 to +180, and latitude from −90 to +90. Let’s assume that you want to
track the position of every known ship on Earth in a data structure. If you
organize them in a two-dimensional array, they will only be placed in some of
the cells. Every cell that contains only land will be empty (except for maybe a
ship being transported over land on a trailer). Even among the cells
representing oceans and seas, there could be many cells without a single ship.
That means a two-dimensional array could have a significant fraction of unused
cells.

As you saw in Chapter 11, hash tables can deal with both issues. The key
provided to a hash table can include negative numbers or even a sequence of
numbers like the a, b coordinates of a point. The hashing function transforms
the coordinate pair into a large number and then maps the number to one of the
cells in its table. As more items are stored in the hash table, the memory used to
store it can grow while limiting the unused cells to a certain percentage of the
total cells. Because the bounds on the coordinates are unimportant, a hash table
can represent an infinite grid with positive and negative row and column
numbers. This capability makes it well suited to managing the points in the grid
data structure.

The next data structure for storing point data, Grid, uses a Python dictionary
(hash table) whose key is a tuple containing the grid row number and column
number (not the coordinates directly). The data stored in each grid cell is a list
of points, just like the list used in PointList. When a dictionary is used to
implement the storage of the grid, unused cells are eliminated, negative grid
coordinates are handled well, and there is no need to determine the extreme
bounds of the coordinates.

Creating an Instance of the Grid Class



You can create an instance of the Grid class by invoking the appropriate
constructor to create an object that contains either Cartesian points or
geographic points. The invocation must include an extra parameter, which is
the width and height of each cell. For example, the following snippet creates a
Grid instance that will contain points with Cartesian coordinates and with grid
cells that are 10 units wide and high:
g = Grid(’cartesian’, 10)

Likewise, the following code creates a Grid instance that will contain points
with geographic coordinates, where each grid cell is 1.2 degrees longitude wide
and 1.2 degrees latitude high:
g = Grid(’geographic’, 1.2)

Note that the grid cell size is measured in degrees while the distances between
points are measured in kilometers. The rationale for this difference may not be
easy to see. Geographic point coordinates are provided in degrees. To find the
appropriate grid cell for a single one of these points, the Grid instance will
need to determine the cell from the two degree values. It is easier to define the
grid size in those units. The distance measure remains the
haversineDistance() function and Grid methods that calculate distances will
return values in kilometers.

Like the PointList, if the Grid constructor is passed any string other than
’cartesian’ or ’geographic’, an exception will be raised, as shown in Listing
12-14.

Listing 12-14 The Grid Constructor

class Grid(object): 
    def __init__(self, kind, cellSize): 
        if cellSize <= 0: 
            raise Exception("Cell size must be positive”) 
        self.__cellSize = cellSize 
 
        if kind == ’cartesian’: 
            self.__distance = euclideanDistance 
 
        elif kind == ’geographic’: 
            self.__distance = haversineDistance 
 
        else: 



            raise Exception("Invalid kind of coordinate”) 
  
        # dict key: (row, col) tuple 
        # dict data: list of (a, b, data) tuples 
        self.__cells = dict()

There are three private attributes: the size of each grid cell (__cellSize), a
reference to the distance function appropriate to either Cartesian or geographic
coordinates, and a reference to an initially empty hash table (dictionary) that
will contain the cells of the grid (__cells). The constructor initializes all these
attributes based on the arguments provided.

Inserting Points
Points are inserted into the Grid object using the insert() method. From the
client’s perspective, points are inserted in a fashion identical to the PointList
insert. The insert() method is passed the x, y coordinates (or longitude,
latitude coordinates) and an associated data item, as shown in Listing 12-15.

Listing 12-15 The Grid Insert Method

class Grid(object): 
… 
    # inputs: x,y or  long,lat 
    # returns row,col tuple specifying grid cell 
    def __getCell(self, a, b): 
        col = floor(a / self.__cellSize) 
        row = floor(b / self.__cellSize) 
        return row, col 
 
    # Insert either an x,y,data or longitude,latitude,data point 
    def insert(self, a, b, data): 
        cell = self.__getCell(a, b)  # which cell contains point? 
        if cell in self.__cells:             # existing cell? 
            c = self.__cells[cell] 
            for i in range(len(c)): 
                p = c[i]                     # For each point in cell 
                if p[0] == a and p[1] == b:  # replace data for 
                     c[i] = (a, b, data)     # a duplicate 
                     return 
 
            c.append((a,b,data)) # append new point to cell 



        else: 
            self.__cells[cell] = [(a,b,data)] # create new cell

The private method __getCell() determines the row and column of the cell to
contain the inserted point by dividing each of the coordinates by the cell size
and then taking the floor (that is, the next lowest int) of the result. (The
floor() function is provided by Python’s math module). The cell’s row,
column coordinates are stored as a tuple in the cell variable. Because this
could be the first point in the cell, the insert() method first checks to see
whether a list of points is already associated with the cell using the expression
cell in self.__cells. That expression tests whether the __cells hash table
has an entry for the key, cell. If nothing is stored yet at that cell, the else:
clause just creates a new grid cell in the __cells dictionary and assigns to it a
new list containing only the (a, b, data) tuple.

If the cell already exists, it is necessary to determine whether a point with the
same a, b coordinates has already been inserted in the cell, by looping through
all the (a, b, data) tuples stored in the cell’s list. Like insertions in
PointList, if a duplicate is found, then the data already stored for that point in
the list is replaced. But, if a duplicate is not found, then the new (a, b, data)
point is appended to the cell’s list.

Insertion is accomplished by possibly creating a new entry in the dictionary to
contain a new list that is an O(1) operation or by checking an existing cell’s list
for a duplicate and possibly appending a point to the end of the list which is an
O(N) operation. The grid cell contains only a portion of the N items stored in
the full structure, but that number is proportional to the total number of items.
The resulting complexity for insert() is therefore O(N). We discuss this
further in the “Big O and Practical Considerations” and the “Theoretical
Performance and Optimizations” section.

Finding an Exact Match
The client uses the findExact() method to search for the point contained in the
Grid object that exactly matches the specified x, y or longitude, latitude
coordinates. If an exact match is found, the method returns a reference to the
data that was stored for the matching point. The client uses findExact() in the
same fashion as with the PointList class.



Two steps are needed to find an exact match in the grid. First, the a, b
coordinates are transformed into the row, column of the corresponding cell by
calling __getCell(), as shown in Listing 12-16. If a point with a, b coordinates
exists in the Grid, it must be found in that cell. The Python expression
__cells.get(cell, None) looks to see whether the __cells dictionary has a
value stored for the cell key and returns it, if so. It returns the second
argument, None, when the key is not in the dictionary. The result in put in the
points variable.

Next, if the cell contains any points, the findExact() method loops through
each of them. If the exact match is found, then the method returns the
associated data. If no match is found, then the loop ends and the method just
returns None.

Listing 12-16 Finding an Exact Match in a Grid Object

class Grid(object): 
… 
 
    # Find the data associated with exact match of coordinates 
    def findExact(self, a, b): 
        cell = self.__getCell(a, b) # which cell contains a,b 
        points = self.__cells.get(cell, None)  # get list of points 
        if points: # there are points for the cell 
            for p in points: # check each point and seek a match 
                if p[0] == a and p[1] == b: 
                    return p[2] # return the data for exact match 
        return None

Big O and Practical Considerations
What is the Big O for findExact()? There is a theoretical answer and then a
more practical answer that suggests that one must also consider a pragmatic,
engineering perspective.

From a theoretical perspective, both findExact() and insert() are O(N).
Let’s review why. The first step in both methods transforms the a, b coordinates
into a row, column pair that specifies the cell at which the a, b point might be
stored. This can be done in O(1) time. Now that you know which cell might
contain the search point, the code loops through all the points stored in the
cell’s list looking for an exact match. The Big O of this step depends on how



the length of each list grows as the overall number of points N grows. Suppose
that the grid had five rows and five columns, and suppose that the points are
uniformly spread across the 25 grid cells. Then you can expect that there would
be about N/25 points stored in each cell. Because you throw away the constant
factor in analyzing complexity, looping through N/25 points to find a match
takes O(N) time.

This scenario seems somewhat extreme. For example, if you have 1 million
points, a five-by-five grid isn’t appropriate. By taking a pragmatic approach, if
the grid instead had 500 by 500 cells, then the million points would be spread
out to about 4 points per each of the 250,000 cells, which surely seems like an
O(1) operation to do an exact find! But from a theoretical perspective, the
algorithm remains O(N) because Big O describes how the computation time
increases as N grows larger. If you were to keep the grid fixed at 500 × 500
cells, and then allow N to grow from 1 million points to 10 million, you would
expect the computation time to likewise increase linearly by a factor of 10.

From a practical perspective, if you know that you have a fixed, or even very
slowly growing, number of points, then it can be appropriate, if you have
enough memory, to engineer your grid to contain enough cells so that each cell
contains a tiny number of points, resulting in effectively constant time to
process the cell’s points. This approach offers the possibility of a classic
engineering trade-off between time efficiency and space or memory efficiency
for a specific scenario of known size. In the example of a 500 × 500 grid
storing a fixed amount of 1 million points, you have effectively used O(N)
memory for cells and lists to obtain an approximation of O(1) time
performance in both findExact() and insert(). Even with that engineered
solution, however, it is important to remember that the exact find operation is
still O(N) for a fixed grid size as the number of points N grows.

In the next section, we consider quadtrees, which have a much more attractive
O(log N) time complexity to find an exact match. Does that mean you will
always want to use quadtrees? Not necessarily.

When coding actual applications, you often know the practical range of
amounts of data points you may have to process. Toward the end of this
chapter, we take a practical look at how to choose among spatial data structure
solutions by timing them on different sized test data. As you will see, the most
theoretically attractive solution doesn’t always result in the shortest run time.



Deleting and Traversing
We leave it as a Programming Project for you to implement a method to delete
from the Grid a point specified by a pair of coordinates. The approach should
be similar to that used by findExact(), except that after the matching point is
identified, it is removed from the cell’s list. Just like findExact(), the Big O
for Grid’s delete is also O(N).

Traversing the grid is straightforward as long as deletion correctly removes
points from the cells and empty cells are skipped. Because the Grid is
implemented as grid cells containing simple lists of tuples, you can implement
the traverse() method as a generator using two nested loops. Listing 12-17
shows the implementation.

Listing 12-17 The traverse() Method of Grid

class Grid(object): 
 
… 
    def traverse(self): 
        for cell in self.__cells:        # for each cell in the grid 
            for p in self.__cells[cell]: # for each point in the cell 
                yield p                  # yield the point

The traverse() generator loops through each of the nonempty cells, getting
the cell key from the _cells hash table. That key is the row, column tuple of
the cell. The inner loop steps through all the points stored in that cell, yielding
each point. The points are tuples that contain the a, b coordinates and the
associated data. The caller can use tuple assignment in the for loop to assign
the values to three variables or just assign the returned tuple to a single loop
variable. This method has O(N) complexity.

Finding the Nearest Match
Sometimes it is fast and easy to find the nearest match to a query point. The
method can start just like findExact(), the coordinates of the query point are
converted into a grid cell’s row, column coordinates, and then all the points
stored in that grid cell are checked to identify the point that is closest to the
query point. Figure 12-9 shows a portion of the grid, the query point in red, and
a circle drawn around the query point to show the distance to the nearest point



in that grid cell. It is clear from the figure that there is no need to search any
further because no point outside that grid cell could possibly be any closer than
the current closest point.

Figure 12-9 Finding the nearest match in a grid

Sometimes, though, you aren’t so lucky. After checking the query point’s grid
cell, the closest point in that grid cell to the query point might be so far away
that it is possible that a closer point could be in an adjacent grid cell. Figure 12-
10 illustrates this scenario. In this case, it is necessary to check the points in
adjacent grid cells (shown shaded in light blue) to be sure that the closest point
has been found.



Figure 12-10 Other grid cells to be checked to find the nearest point

It is also entirely possible that there are no points at all in the query point’s grid
cell. In this case, it is necessary to check grid cells at distances farther and
farther away from the query point until a point near (but possibly not nearest)
the query point is found. This checking is done a layer of cells at a time, where
each layer is one grid cell farther away from the query point’s cell.

The search process can stop after the distance from the query point to the
nearest point found so far is smaller than the distances from the query point to
the edges of the entire layer whose points have all been compared to the query
point.

Does the Query Circle Fall Within a Layer?
How can the algorithm be certain that findNearest() has found the point that
is closest to the query point? After all the points within a layer have been



checked, and if the query circle is enclosed by that layer, then it is certain that
there are no points in farther layers that could possibly be closer to the query
point. In the case of Figure 12-9, you know that there is no need to consider
additional layers of cells. In the cases of Figure 12-10 and Figure 12-11,
however, the query circle extends beyond the bounds of the current layer of
cells, so it is necessary to consider the points in the next layer out. In Figure 12-
11, the cell containing the query point is empty, forcing the search to at least
include the first layer. Stopping the search at the first layer, however, would
miss potentially closer points in the second layer.

Figure 12-11 Checking additional layers to find the nearest point



The row and column number of a cell can be turned back into the coordinates
of its lower-left corner by multiplying by the private __cellSize attribute. So,
given the row and column of the cell containing the query point, the
__cellSize, and the number of the layer that you’re searching (assuming that
the center cell containing the query point is at layer zero), it is easy to compute
the left, right, top, and bottom bounds of the entire layer in either Cartesian or
geographic coordinates.

For example, see Figure 12-12, where the row, col of the center query cell is at
1, 2; the current layer is 2; and the cell size is 50 units in Cartesian coordinates.
Because you’re at layer 2, the entire square layer encompasses five rows and
five columns of cells, each of which is 50 × 50 in Cartesian coordinates. Then
the row of the bottom of the layer is 1 − 2 or −1, the row of the top layer is 1 +
2 or 3, and in terms of Cartesian coordinates

Figure 12-12 Determining the boundary coordinates of a layer



bottom edge: y = (−1 * 50) = −50     top edge: y = ((3 + 1) * 50) = 200

Likewise, the left and right coordinates of the current layer can be calculated
from the column number of the query cell.

The __getLayerBounds() method in Listing 12-18 takes a row, column tuple
specifying the cell, and a layer number as parameters, and does this
computation, returning a Bounds object containing the Cartesian or geographic
coordinates of the left, right, top, and bottom edges of the current layer of cells.

Listing 12-18 Computing the Bounds of a Layer

class Grid(object): 
… 
    # return Bounds of the layer with cell at its center 
    def __getLayerBounds(self, cell, layer): 
        left = (cell[1]-layer) * self.__cellSize 
        right = left + (self.__cellSize * (layer * 2 + 1)) 
 
        bottom = (cell[0]-layer) * self.__cellSize 
        top = bottom + (self.__cellSize * (layer * 2 + 1)) 
 
        return Bounds(left, right, top, bottom)

It’s now a simple matter to compute whether a query circle is entirely contained
within the bounds of the rectangle centered at the query point and that extends
out the specified number of layers, as shown in Listing 12-19. First, you
compute the location of the layer’s outer boundaries, and then you use the
Bounds.within() method (refer to Listing 12-7) to determine whether the query
circle’s bounding box falls within the bounds of the current layer.

Listing 12-19 Determining Whether a Query Circle Lies Within a Layer

class Grid(object): 
… 
    # Returns true if the query circle falls within the specified 
    # layer surrounding the search coordinates. 
    # a,b are the coordinates of the query circle center 
    # cbounds is the current Bounds of the query circle 
    def __withinLayer(self, cBounds, a, b, layer): 
        # get the bounds of the layer 
        cell = self.__getCell(a, b)     # row,col of cell 
        layerBounds = self.__getLayerBounds(cell, layer) 



 
        # check if the circle’s bounds are within the layer 
        return cBounds.within(layerBounds)

Does the Query Circle Intersect a Grid Cell?
The computation of distances between the query point and each point in a grid
cell can be computationally expensive, especially for the computation of the
haversine distance, which involves multiple trigonometric function calls. But
you need to consider only the points contained in those cells that intersect with
the query circle, and you can ignore the cells that don’t intersect with the query
circle.

Figure 12-13 illustrates five query circle sample scenarios in which might occur
when determining whether any part of a query circle falls within the center grid
cell. By creating a bounding box surrounding the query circles, you can then
easily determine whether a query circle might intersect with the center grid cell.
Of course, approximating query circles with their bounding boxes has
limitations. The approximation may sometimes falsely decide that a query
circle intersects a grid cell, when in reality it is the corner of the bounding box
that intersects with the grid cell, but not the circle itself. We have chosen to use
bounding boxes of the query circle, even at the expense of occasional
additional visits to a cell, to simplify the intersection computations for highly
distorted query circles that are far from the equator.



Figure 12-13 Determining the intersection between a query circle and a
cell

If the circle’s bounding box and cell don’t intersect, then you can move on to
the next cell. The intersects() method of the Bounds class in Listing 12-6
performs this intersection test (with the bounding box approximation to the
query circle).

Generating the Sequence of Neighboring Cells to
Visit
The search for the point closest to the query point starts at the cell containing
the query point and then works outward, considering the points in cells at
successive layers of distance from the query point’s cell. Figure 12-14 shows
the query point in red and then the neighboring cells labeled with the row and
column offset from the query cell. The layer number can be easily derived from



the row, column offset by taking the maximum of the absolute values of the
two offsets.

Figure 12-14 Offsets from the query center to each layer

The Grid class contains a static method called offsets(), written as a
generator, and shown in Listing 12-20. The method yields tuples, one at a time,
where each tuple is the row, column offset of the next grid cell to be visited.
For each layer, offsets() first yields tuples for the cells along the sides of the
layer, followed by the tuples for the corners of the layer. The corners are
yielded last for each layer because the corner cells contain points that are
potentially the farthest from the query point.



Listing 12-20 A Generator to Produce Grid Offsets in Layer Order

class Grid(object): 
    # Generator to yield grid offsets in concentric 
    # layers, starting at the center 0,0 
    @staticmethod 
    def offsets(): 
        yield 0,0 
 
        layer = 1 
        while True: 
            for num in range(-layer+1, layer): 
                yield    num,  layer # yield offsets for the 
                yield    num, -layer # cells along each side 
                yield -layer,  num 
                yield  layer,  num 
 
            yield -layer,  layer # yield offsets for the 
            yield  layer,  layer # corners of the layer 
            yield  layer, -layer 
            yield -layer, -layer 
 
            layer += 1  # move on to the next layer

This method could hypothetically run forever, yielding an infinite sequence of
successively farther layers of grid cell offsets. As you soon see, however,
findNearest()stops consuming offsets from the generator after the query
circle fits within a layer. As a practical matter, if there are sufficient points per
grid cell, it is rare that more than one layer of neighboring cells needs to be
visited.

Pulling It All Together: Implementing Grid’s
findNearest()
With these preliminaries out of the way, you can finally implement
findNearest(). This method is a bit longer than usual, so the code comments
in Listing 12-21 are annotated with lettered labels, which we expand on in the
coming paragraphs.

A: If nothing has been inserted yet into the grid, there’s no need to
proceed further, so just return None. This is the only scenario in which



None is returned. Note that the Grid object does not keep track of the
number of items it stores. The length of the Pyhon dictionary (__cells) is
the number of keys with values, so when there are no keys, no lists of
points have been inserted.

B: The algorithm keeps track of the closest point seen so far, and the
distance to that point. Initially, the closest point answer is None, and the
distance to the closest point is math.inf. Because inf is the largest
possible number, any subsequent point’s distance will necessarily be
closer.

C & D: The __getCell method converts the query point’s coordinates
into the row, column of the query point’s cell. That cell is considered to
be layer zero.

E: Loop over each of the grid cell offsets returned by the offsets
generator. The first offset is (0,0) so that causes the search process to start
at the cell containing the query point.

F: At some point, the next offset in the sequence will be one layer farther
out. To determine when the layer number changes, we calculate the layer
of this next offset. As seen in Figure 12-14, the layer number is the larger
of the absolute values of the row and column offset values.

G: If the next offset lies in a new layer of cells, this is the opportunity to
check whether it is necessary at all to loop over the cells in the new layer.
So, if an answer point has been found, and if the query circle fits entirely
within the previous layer (curLayer), then there is no point in proceeding
with the next layer. The method breaks out of the offset loop to return the
best answer point so far. Otherwise, it records the next offset’s layer as
the current layer.

H: Having arrived at a new offset cell to search, findNearest() retrieves
the list of points stored there. The cell’s row and column are obtained by
adding the offsets to the query point cell’s row, column.

I: Now we’re ready to decide whether to do the work to compare all the
points in the new cell to the query point. Comparisons are only needed if
there are some points in the cell, and if the query circle intersects the cell.
Initially, when an answer hasn’t yet been found, perhaps because all the
grid cells so far have been empty, the distance is still infinity, so the query



circle will intersect every cell. But if the query circle doesn’t intersect the
cell, then none of the points could possibly be closer to the closest point
encountered so far.

J: Looping through each of the points in the current cell, compute the
distance from the point to the query point. If the distance is exactly zero,
this means that search has found an exact match to the query point and
can return the point and its data. Otherwise, if the distance to the query
point is less than the smallest distance found so far, remember the new
candidate point and its distance. Because the distance to the nearest point
has now decreased, the method invokes CircleBounds.adjust() to
recompute the bounding box for the smaller query circle.

K: There’s only one way to make it to this line of code. Namely, that the
break statement was executed during step G because an answer was
found and because the query circle was entirely contained within the
previous layer of searched cells. The findNearest() method returns the
coordinates of the point, the data stored with that point, and the distance
from the query point to the answer (that is, nearest) point.

This process may seem complex. Yet, as we show at the end of the chapter, in
certain situations this Grid.findNearest() can perform significantly better
than the theoretically superior QuadTree code.

Listing 12-21 The findNearest() Method for Grid

class Grid(object): 
… 
   def findNearest(self, a, b): # find the closest point to (a,b) 
       if len(self.__cells) == 0:  # A: Nothing in grid yet 
          return None 
 
       answer = None  # B: remember the closest point so far 
 
       # The current search circle and its bounds so far 
       distance = inf 
       cBounds = CircleBounds(a, b, distance, self.__distance) 
 
       cell = self.__getCell(a, b) # C: cell containing a,b 
       curLayer = 0                # D: the layer we’re up to 
 
       # E: for each offset 



       for off in Grid.offsets(): 
           # F: what layer is this new offset? 
           layer = max(abs(off[0]), abs(off[1])) 
 
           # G: if we’re about to consider a new layer, 
           # but the search circle falls entirely within 
           # the prior layer, then there’s no need to continue. 
           if layer != curLayer and answer and\ 
              self.__withinLayer(cBounds, a, b, curLayer): 
               break 
           curLayer = layer # remember what layer we’re up to 
 
           # H: get the points stored in the cell at that offset 
           offsetCell = cell[0]+off[0], cell[1]+off[1] 
           points = self.__cells.get(offsetCell, None) 
 
           # I: if there are points in the cell, and 
           # the search circle intersects the cell... 
           if points and \ 
              cBounds.intersects(self.__getCellBounds(offsetCell)): 
 
               for p in points: # J: for each point in the grid cell 
                   # compute distance to that point from query point 
                   newDist = self.__distance(a, b, p[0], p[1]) 
 
                   if newDist == 0: # exact match? 
                       return p[0], p[1], p[2], 0 
 
                   if newDist < distance:  # new point closer? 
                       distance = newDist  # remember the distance 
                       answer = p          # and the point, and 
                       cBounds.adjust(distance) # adjust bounds 
 
       # K: returns a, b, data, distance to query point 
       return answer[0], answer[1], answer[2], distance

Quadtrees
In the previous sections, you saw that a grid is an excellent data structure for
searching points when the data is somewhat uniformly spread out because each
grid cell contains a relatively equal number of points for searching. But what
happens if the data is not so uniformly spread out? Figure 12-15 shows about
30,000 points. Each of the clusters has about one-third of the points. This kind
of clustered data is typical in the real world. For example, locations of



restaurants, coffee shops, and other businesses tend to be clustered near each
other.

Figure 12-15 Thirty thousand highly clustered points

Overlaying a grid on top of this data, as shown in Figure 12-16, makes it clear
that for clustered data a grid doesn’t offer much benefit. Searching for a point
inside the red-outlined grid cell near the bottom would involve processing
nearly all the points in that cluster.



Figure 12-16 Uniform grid dividing the 30,000 points

Many of the grid cells are empty or contain just a few points, while most of the
points are concentrated in a small number of the grid cells. As one solution,
you could decrease the size of every one of the grid cells. So instead of a grid
of 10 × 10 cells overall, you’d use a grid of 100 × 100 cells for a total of 10,000
grid cells to store the 30,000 points. Figure 12-17 zooms in to look at just one
of the 10 × 10 cells, the red-outlined one, which contains several thousand
points.



Figure 12-17 A finer grid on just one of the point clusters

At this scale, because you are now using a 100 × 100 grid, what used to be a
single grid cell is now itself composed of 10 × 10 of the smaller cells. And
again, most of the points are heavily concentrated within a small fraction of the
cells, while most of the cells contain a relatively small number of points.

This is the dilemma with using fixed grids where the cell size is uniform across
all the data. Real-life data tends to be very unevenly distributed. At whatever
scale of magnification that you use to examine the data, clusters tend to be
apparent. The implication is that no matter how fine the grid is made, some
areas of space would benefit from a finer grid.



Quadtrees, also written as quad trees, provide a solution to this problem. A
quadtree is a tree data structure that recursively divides up space into four
quadrants. Parts of the quadtree that contain more points are further divided
into finer-sized quadrants. Parts of the quadtree that contain fewer points divide
space into larger quadrants. Adaptively subdividing space based on the density
of spatial data makes it possible to insert or search for points in O(log4 N) time,
or as you saw in Chapter 2, “Arrays,” more simply just O(log N) time.

This tree-like structure probably looks familiar. The different kinds of trees you
studied in Chapters 8, 9, and 10 were all organized by dividing the items by
their keys. Quadtrees do something similar but with two numeric values. A
binary search tree with a single numeric key inserts items with lower-valued
keys in the left subtree and higher-valued keys in the right subtree. With spatial
data, you can do something similar, but this time with quadrants.

In the following pages, we look in more detail at a quadtree implementation
using the same methods that were implemented for the PointList and Grid
classes: a constructor, insert(), findExact(), findNearest(), delete(), and
traverse().

Creating an Instance of the QuadTree Class
Client code creates an instance of the QuadTree class by invoking the
constructor to create an object that contains Cartesian points:
q = QuadTree(’cartesian’)

or that contains geographic points:
q = QuadTree(’geographic’)

If the constructor is passed any string other than ’cartesian’ or
’geographic’, an exception is raised.

Listing 12-22 shows the code for the QuadTree constructor. It has just two
private attributes: a reference to the distance function appropriate to either
Cartesian or geographic coordinates, and an initially empty reference to the
root node of the tree.

Listing 12-22 The QuadTree Constructor



class QuadTree(object): 
 
    def __init__(self, kind):  # must specify type of coordinate 
        if kind == ’cartesian’: 
            self.__distance = euclideanDistance 
        elif kind == ’geographic’: 
            self.__distance = haversineDistance 
        else: 
            raise Exception("Invalid kind of coordinate”) 
 
        self.__root = None

Inserting Points: A Conceptual Overview
Let’s look at the first few inserts of points into an initially empty quadtree, with
each new point finding its place in the quadtree through a recursive descent.
Each node in a quadtree potentially has four children, corresponding to the
northeast, southeast, southwest, and northwest quadrants of space that surround
that point. The first point to be inserted into the quadtree becomes the root of
the tree (labeled point A in Figure 12-18), and the four children of that node all
refer to None.



Figure 12-18 Inserting the root point in a QuadTree

Next, as shown in Figure 12-19, another point, labeled B, is inserted. Starting at
the root, the coordinates of the new point are compared against the coordinates
of the root node A. Point B lies to the southwest of point A, so you recursively
descend to the corresponding child of point A. Because the southwest child
currently refers to None, a new node is created to contain B, and upon return
from the recursion, the southwest child of A is made to refer to B.



Figure 12-19 Inserting point B

The next point, labeled C is inserted, as shown in Figure 12-20. Again, starting
from the root node, C is compared to the coordinates of point A. Point C lies to
the southeast of A, so the recursion proceeds to the southeast child, and because
it is found to be None, a new node is created containing the coordinates of point
C, which is then returned from the recursion and assigned to the southeast child
of A.

Figure12-20 Inserting point C

Finally, as shown in Figure 12-21, a point, labeled D, is recursively inserted
into the tree, starting at the root point A. Because D lies in the southwest
quadrant of A, the recursion then proceeds to point B, which is the southwest
child of point A. The coordinates of point D are northwest of the coordinates of
point B, so the recursion then proceeds to the northwest child of B. Having



reached None, a new node is created to hold point D, which is then returned
from the recursion. Upon returning to point B, the northwest child of B is set to
refer to the just-returned reference to the newly created point D.

Figure 12-21 Inserting point D

Avoiding Ambiguity
When recursively descending a quadtree either for insertion or searching, it is
important to make a consistent decision at each node regarding which child to
descend into. If a point is properly within a quadrant, then there is no
ambiguity. But which quadrant should be chosen if an inserted or searched
point lies directly above or below, or directly to the right or left of a node? For
example, in Figure 12-22, to which quadrant of A does point B belong?



Figure 12-22 Quadrant ambiguity

Whatever solution we choose, we must make certain to apply it consistently.
Our solution to this problem is to have the points on each of the four axis
boundary lines belong to the quadrant that is clockwise of the axis line. So, in
Figure 12-22, B would belong to the southwest quadrant of A.

More generally, as shown in Figure 12-23, the points that are exactly above the
node’s point all belong to the node’s northeast quadrant. The points that are
exactly to the right of the quadtree node belong to the node’s southeast
quadrant, and so on.



Figure 12-23 Assignment of axis boundary lines to quadrants

The QuadTree Visualization Tool
To see how quadtrees operate, you can run the QuadTree Visualization tool.
The tool can be used to manage Cartesian point data in a rectangular region, as
shown in Figure 12-24. The points are shown as dots with a label above them
that represents the “data” associated with a point.



Figure 12-24 The QuadTree Visualization tool

You can insert new points in two ways: by double-clicking with a pointer
(mouse) button in the light blue region, or by entering an X coordinate, Y
coordinate, and data label in the three text boxes and selecting the Insert button.

The first point inserted becomes the root of the quadtree and is highlighted in
yellow. When you insert points by double-clicking, the tool automatically
chooses the data label in the form P0, P1, P2, and so on, based on the current
number of points in the quadtree. When you type the coordinates, they are
relative to the origin, point (0, 0), at the lower left of the region. You can
provide any short string for the data.

The quadrants around each point are visible when the boundaries between them
are displayed. If you uncheck the Show Boundaries checkbox, you will see
only the points, making their tree relationship invisible. Finding the parent of a
node is somewhat tricky. You must look at the boundaries, follow them to their
endpoint, and then follow the crossing boundary to see whether it intersects a
labeled node. For example, in Figure 12-24, P3’s parent is P1, and two of P3’s
boundary lines end on the boundary lines of P1. The parent of P4 is harder to
see because both P1 and P3 look equally likely based on the closest boundary
lines. You must look at the extent of the boundaries of the two potential parents
to resolve the ambiguity. P0, the root, has boundary lines that extend all the



way to the blue region boundaries, and those have no boundary lines leading to
another node.

Try inserting a few points by typing the coordinates for the points. By giving
exact coordinates, you can insert new points on a quadrant boundary. Based on
the rule in Figure 12-23, you should be able to predict the quadrant of the new
point. The (single) boundary line drawn for it spans that quadrant. The other
boundary line overlaps the boundary line where the point lies, so it is not
visible. You can also click an existing point to copy its coordinates and label to
the text input boxes. From there, you can edit the values to insert a new point
that lands exactly on one of its quadrant boundaries. Clicking the blue region
where there are no points simply enters the two coordinates into the text boxes.

Implementing Quadtrees: The Node Class
Just as with other types of trees, you can define a class to correspond to the
nodes within a quadtree, as shown in Listing 12-23. The Node class and its
attributes don’t have to be made private because the QuadTree class will never
directly return an object of the Node type, and therefore, encapsulation will not
be violated.

Listing 12-23 The Node Class

class Node(object): 
    # a,b corresponds to either x,y or long,lat 
    def __init__(self, a, b, data): 
        self.a = a  # coordinates of the point 
        self.b = b 
        self.data = data # data associated with point 
 
        # Four children of the Node 
        self.NE = self.SE = self.SW = self.NW = None

Having seen the constructors you may wonder, where in the Node or QuadTree
classes are the boundary lines for each quadrant stored? The answer is that the
boundary lines are not explicitly stored anywhere! Rather, you can think about
the a, b coordinates of each Node as establishing the boundaries that subdivide
all of the space surrounding the point into four quadrants. For example, the
southeast quadrant of a Node has its top boundary specified by the b coordinate,
and its left boundary specified by its a coordinate. But what about the bottom



and right boundaries? Those boundaries are not explicitly stored in the Node
objects; rather, they are implicit. That is partially the reason why it is difficult
to see the parent-child relationships from the boundaries shown in the
visualization tool—the boundaries of a child extend to its parent’s boundaries.

As you will see shortly, the implementation of findNearest() search
recursively descends the quadtree, progressively refining the boundaries of the
space of the quadrant being visited. For example, the boundaries of the root
Node at (a, b) are, respectively:

left: -math.inf, right: math.inf, top: math.inf, bottom: -math.inf

In other words, the root node’s space encompasses all points in the plane.
Suppose you descend to the southeast corner of the root node, P0, which would
be node P1 in Figure 12-24. Then you can refine the boundaries for the
southeast quadrant of P0 at (a, b) to be

left: a, right: math.inf, top: b, bottom: -math.inf

In other words, the southeast quadrant of the root is thought of as being
unbound to the right and downward. As you descend farther into the tree, the
left, right, top, and bottom boundaries get updated to reflect the subset of the
plane that is associated with a child Node. In many parts of the implementation,
however, these boundaries don’t need to be explicitly stored. For example, they
are not needed for insertion. We discuss the explicit boundaries in more detail
when we discuss findNearest().

The insert Method
QuadTree clients insert point data using an insert() method with the same
signature as those in PointList and Grid. Listing 12-24 shows the Python code
for insert() and its companion method, __insert().

Listing 12-24 The insert() Method of QuadTree

class QuadTree(object): 
… 
    def insert(self, a, b, data): # Wrapper. Always succeeds. 
        self.__root = self.__insert(self.__root, a, b, data) 
 
    # Recursive private method that does the inserting 
    def __insert(self, n, a, b, data): 



 
        # return a new Node if we’ve reached None 
        if not n: return Node(a, b, data) 
 
        # if the point to be inserted is identical to current node, 
        # overwrite the data, and don’t recurse any further 
        if n.a == a and n.b == b: 
            n.data = data 
            return n 
 
        # recurse down into the appropriate quadrant 
        if   a >= n.a and b >  n.b: n.NE=self.__insert(n.NE,a,b,data) 
        elif a >  n.a and b <= n.b: n.SE=self.__insert(n.SE,a,b,data) 
        elif a <= n.a and b <  n.b: n.SW=self.__insert(n.SW,a,b,data) 
        else:                       n.NW=self.__insert(n.NW,a,b,data) 
           # a < n.a and b >= n.b 
 
        return n

The insert() method is a wrapper method whose sole function is to invoke the
recursive __insert() method, passing to it the root of the quadtree. Whatever
__insert() returns is then assigned back to the __root attribute. This unusual
pattern is worthy of some discussion, as you may recall from when it was used
in Chapter 10, “AVL and Red-Black Trees,” for AVLTree objects.

Why should insert() need to reassign a value for __root upon every
invocation? Consider the case when the quadtree does not yet contain any
points, and therefore __root refers to None. When insert() invokes
__insert(), a new Node object is created and then returned immediately to
insert(), which then assigns it to __root. That makes sense! But what about
subsequent invocations of insert()? Would its recursive call to __insert()
ever return a reference to a different Node? No, it would not. But that is OK,
because the assignment to self.__root just ends up assigning the same Node to
it that is already there! As you look more carefully at __insert(), you’ll see
that you can ask the same question regarding the returns from all the layers of
recursion.

Moving on to __insert(), the method takes as parameters a reference to the
current Node n in the QuadTree, along with the a, b coordinates and the
associated data for the point to be inserted. In the first step, if __insert()
reaches an empty child node (None), then it creates a new Node and returns it.
The caller might have been the insert() wrapper, in which case the new Node
will be assigned to self.__root. The caller could also have been one of the



recursive invocations of __insert() later in the method. When those
invocations return, the returned newly created Node gets assigned into the
quadrant attribute that until now referred to None.

If n refers to anything other than None, then the next check is for the possibility
that the newly inserted point a, b and the current node n both refer to the exact
same coordinates. We made a design decision that QuadTree objects will not
support multiple points with the duplicate coordinates. So, if there is an exact
match, then the newly inserted data will overwrite the existing data stored for
those coordinates, and then __insert() can return a reference to the current
node n. We leave it as an exercise to explore how to insert points with duplicate
coordinates.

Finally, the real work of the recursion happens. At this point of the __insert()
method, a, b can’t possibly be an exact match to n’s coordinates. The a, b
coordinates of the inserted point are compared to the coordinates of the current
node n to decide which quadrant should receive the new point. Let’s take a
careful look at the first of these four similar recursion decisions:
if a >= n.a and b > n.b: n.NE = self.__insert(n.NE, a, b, data)

Notice that points will end up in the northeast quadrant if the a coordinate is
greater than or equal to the current Node’s a coordinate and if the b coordinate
is greater than the current Node’s b coordinate. But that is exactly the decision
that we illustrated in Figure 12-23: ambiguous points are placed in the quadrant
clockwise away from the boundary where they lie. The decisions for recursion
into the other three quadrants are likewise consistent with the figure.

Also notice the peculiar form of the recursive invocation. It recursively passes
n.NE into __insert(), and then whatever the invocation of __insert returns
gets assigned right back into n.NE! This is just a variation of the first invocation
of __insert() by the insert() wrapper method. Here, when __insert() is
recursively invoked, n.NE might be None, or it might already refer to a child
Node. If n.NE is None, then immediately upon the recursive invocation,
__insert() will create and return a new Node containing the inserted a, b data
point. The caller appropriately assigns the new node to n.NE. If n.NE is not
None and already refers to a child Node, then __insert() will necessarily end
up returning that very Node, which then gets harmlessly assigned back to n.NE.

Appropriately, the last line of __insert() causes a reference to the current
Node n to be returned to the calling method.



In summary, there are three possible returns from the recursion:

1. A reference to a brand-new Node is returned if the recursion reached an
empty node represented as None.

2. If a duplicate point was inserted, after overwriting the current node’s data
with the newly inserted data, a reference to the current Node is returned.

3. A reference to the current Node n is returned if the insertion recursively
occurred somewhere below the current Node.

In all three cases, what is returned to the calling method is a reference to the
Node that belongs at that point in the QuadTree. Most of the time, the returned
value references a Node that has already been created and that is already
referred to by one of the child attributes of the parent Node.

Another way to think about this is to imagine the process involved in inserting
a point with new coordinates 10 levels down into the QuadTree. You recurse
down 10 levels into the appropriate quadrants and reach a child attribute
containing None. At that point, you create a new Node, and it is returned to be
assigned to the parent’s appropriate child attribute. As the recursion then
“unwinds” all the way back to the root, each intermediate Node is just returned
to the calling method, which then harmlessly assigns the Node back to the child
attribute that already contains that reference.

Try stepping through the insertion of a point using the visualization tool. It
shows how each recursive call to __insert() checks the relationship of the
new point’s coordinates with those of a node in the tree and then either
descends to a child node, creates a new node, or updates the data of an existing
one. As the recursion unwinds, the nodes visited along the path to the new or
updated node are returned to their parent.

Efficiency of Insertion
If the quadtree is relatively well balanced, then inserts into the quadtree should
take O(log N) time, so inserting N points would take O(N×log N) time. Just as
with binary search trees, degenerate sequences of inserts can cause the tree to
be very unbalanced. For example, if points were inserted in order along a
southwest diagonal line, the result would be the worst possible case, with each
insertion taking O(N) time, resulting in O(N2) time to insert N points. You see



shortly that such an unbalanced quadtree degrades the performance of
searching, too.

Dynamic rebalancing of a QuadTree in a manner like an AVL tree is possible
but very complex. If an application has all, or even most, of the points in
advance that need to be stored in a QuadTree, then a bulk insert method can
arrange for the tree to be better balanced. We leave this method for you to
complete as an exercise at the end of the chapter.

Finding an Exact Match
The client uses the findExact() method to search for the point contained in the
QuadTree object that exactly matches the specified x, y or longitude, latitude
coordinates. If an exact match is found, the method returns a reference to the
data stored for the matching point. The client uses findExact() in the same
fashion as with the PointList and Grid classes.

Finding an exact match is a simple process, as shown in Listing 12-25. If the
QuadTree contains an exact match, then a recursive descent that mirrors the
descent used by insert() is guaranteed to find the matching point.

Listing 12-25 The findExact() Method of QuadTree

class QuadTree(object): 
… 
    # Wrapper method - returns the data object associated with a,b 
    def findExact(self, a, b): return self.__find(self.__root, a, b) 
 
    def __find(self, n, a, b): 
        if not n: return None  # Couldn’t find the exact point 
 
        # Did we find the exact point? Return the data 
        if n.a == a and n.b == b: return n.data 
 
        # Recurse down into the appropriate quadrant. 
        # If a,b is anywhere, it MUST be in that quadrant. 
        if   a >= n.a and b >  n.b: return self.__find(n.NE, a, b) 
        elif a >  n.a and b <= n.b: return self.__find(n.SE, a, b) 
        elif a <= n.a and b <  n.b: return self.__find(n.SW, a, b) 
        else:                       return self.__find(n.NW, a, b) 
           # a < n.a and b >= n.b



Like the insert() method, you can use a wrapper method called findExact()
to start the recursion by passing the root node into the recursive __find()
method and simply returning its result. The first base case occurs if the
recursion has reached a None (empty leaf) value. If this happens, it is certain
that there’s no exact match for a, b and None should be returned to indicate that
no point was found, and therefore no data returned.

Another base case occurs if the search has reached a node that exactly matches
a, b. In this case, the associated data is returned and makes its way back to the
wrapper method as the recursion unwinds.

Otherwise, if an exact match to a, b is anywhere in the quadtree, it must be in
the quadrant that encloses a, b. So, just as was done for insertion, you
recursively descend into the appropriate quadrant, and you return whatever is
returned by the recursive call. If the recursion reaches None, then it is certain
that there’s no node that matches the specified coordinate.

Try a few exact searches with the visualization tool to watch this process.
Create a few points in the quadtree and then click a region with no points.
Doing so fills in the coordinates of the clicked point in the arguments area and
enables the Find Exact operation. Select the Find Exact button. It draws a cross
at the clicked point and makes the recursive calls to __find() as it checks the
relationship of a, b to each node. You can also click an existing point to verify
that findExact() follows the nodes in the tree to that point.

Efficiency of Exact Search
If the quadtree is relatively well balanced, then finding an exact match for a
point in a quadtree should take O(log N) time, though in the worst case with a
completely unbalanced tree, findExact() could be as bad as O(N). This
degenerate performance makes it no better than the operation in a simple
PointList, although it is very unlikely to occur with data that is inserted in a
random order with respect to spatial position.

Traversing the Points
Just as we did with PointList and Grid, QuadTree’s traverse()
implementation should be done as a generator. The natural way to traverse a
QuadTree is to do a pre-order recursion, starting at the root, and then
recursively visiting and yielding each of the nodes in the tree, followed by each



node’s children. Mixing recursion with generators poses a challenge because it
is difficult to write efficient recursive generators in Python.

As we discussed in Chapter 6, “Recursion,” every recursive function can be
transformed into a nonrecursive version by using a stack. We showed this
transformation in Chapter 8, “Binary Trees.” Listing 12-26 shows a similar
nonrecursive implementation of traverse(), where we use a Python list to
implement the two required stack operations of push (using list’s append()
and pop() methods). Alternately, it would be straightforward to use the Stack
class from Chapter 4, “Stacks and Queues,” if you know the number of points
in the quadtree, or the LinkStack class from Chapter 5, “Linked Lists,” if you
don’t.

Listing 12-26 The traverse() Method of QuadTree

class QuadTree(object): 
… 
   def traverse(self): 
        s = [ ]   # initialize stack with root 
        if self.__root: s.append(self.__root) 
 
        while len(s) > 0: # stack’s not empty? 
 
            # process Node at top of stack 
            n = s.pop() 
            yield n.a, n.b, n.data 
 
            # push each child onto stack 
            if n.NE: s.append(n.NE) 
            if n.SE: s.append(n.SE) 
            if n.SW: s.append(n.SW) 
            if n.NW: s.append(n.NW)

The method starts by initializing the stack to contain just the root Node. Then,
as long as the stack isn’t empty, you pop the top Node from the stack and yield
its coordinates and data. Finally, any children of the Node are pushed onto the
stack.

This implementation seems more complex than the corresponding traverse()
methods in the PointList and Grid classes. What is its Big O complexity?

With a bit of analysis, we can determine that the quadtree’s traverse is also
O(N). We determine this by focusing on the pushes and pops of points to and



from the stack. Examining the code, we can see that each Node is pushed just
once onto the stack, and that each Node is ultimately popped (and yielded) just
once from the stack, corresponding to each pass through the while loop. Thus,
for a QuadTree containing N nodes, the traversal can be accomplished with N
passes through the while loop, and a total of N pushes and N pops. These
roughly 3N operations correspond to O(N) complexity for the traverse()
method.

Deleting a Point
To locate a point to delete, you should use the same approach as used in
findExact(). If the matching point is identified, it needs to be deleted. If not,
an exception should be raised.

Removing a leaf node from a quadtree should be relatively simple. What
should the method do, however, if the matching node is an interior node of the
quadtree? Because a Node can’t be easily removed from the quadtree without
rebuilding the structure of its children, one reasonable approach would be to
leave the Node in place, and instead set its data attribute to None. Thus, any
Node with a data attribute containing None would not subsequently be treated as
a valid data point stored in the quadtree. If the quadtree must support None as a
legitimate data value for a point, then a special sentinel value must be inserted
that can be distinguished from None. The __Deleted sentinel performs this role
for open addressing hash tables (as described in Chapter 11, “Hash Tables”).

Marking the data attribute as deleted means that small changes are needed to
the findExact() method (in Listing 12-25) and the findNearest() method
(described in the following sections) so that nodes without data are never
considered as valid matching points. These data-less nodes take some extra
memory but still provide useful information about where space is subdivided
into quadrants.

Because delete() must first find the node like findExact(), the Big O must
be at least O(log N). The rest of the work (removing a leaf node or inserting a
no-data marker in the data attribute of an interior node) takes a few steps but
does not depend on the number of items in the quadtree, so it adds nothing to
the overall complexity. If many interior nodes are deleted, the tree does not
shrink, so the N in O(log N) is the total number of inserted items, not the
current number of items in the tree, for deletion, insertion, and search.



We leave it as a Programming Project for you to implement a method to delete
a point specified by a pair of coordinates from the quadtree. The visualization
tool does not have a delete operation, but you can erase all points with the New
button and then insert new points.

Finding the Nearest Match
As usual, finding the nearest match via the findNearest() method is more
complicated than findExact(). Just as with the Grid class, merely descending
into the appropriate quadtree quadrant does not guarantee that you have found
the nearest match to the search coordinates.

For example, in Figure 12-25, if you descend into the QuadTree to find the
deepest node whose boundaries surround the red diamond query point (outlined
in red), you can use that deepest point as a good candidate for the nearest
match. However, if you draw a circle with the query point at its center and its
radius matching the distance to the candidate, it becomes clear that any
quadrant that is overlapped by the circle might conceivably contain a closer
node and must therefore be considered. Those quadrants that you must visit are
shaded in light blue. The example shows that there is a point in the query circle
that was not visited on the path to the candidate (because the search from the
root node—the one whose quadrant boundaries span the entire figure—
followed the path to the NW, then NE, and then SW quadrants based on the
query point). How do you ensure that those other quadrants shaded in blue are
visited during the search?



Figure 12-25 Additional quadrants to be visited based on query circle

Similar to how the Grid object had to intersect a query circle with the various
cells, there’s a way to compare quadtree boundaries with the query circle to
minimize the quadrants to explore. Let’s look at the implementation details to
complete your understanding of how to find the nearest Node to a query point.

Finding a Candidate Node
Let’s start by following the logic used in findExact() to get a point
somewhere in the vicinity of the query point. Listing 12-27 shows the private
__nearPoint method. As you soon see, findNearest() invokes this method by
passing in __root and the a, b search coordinates.

Listing 12-27 The __nearPoint() Method

class QuadTree(object): 
… 
    # find a nearby (but not necessarily the nearest) point 
    # to a,b by recursing as deep as possible into the tree. 
    def __nearPoint(self, n, a, b): 
        # Base cases: 



        if not n: return None # reached None so return it 
 
        if a == n.a and b == n.b: return n # found exact point 
 
        # recurse down into the appropriate quadrant 
        if   a >= n.a and b >  n.b: ans = self.__nearPoint(n.NE, a, b) 
        elif a >  n.a and b <= n.b: ans = self.__nearPoint(n.SE, a, b) 
        elif a <= n.a and b <  n.b: ans = self.__nearPoint(n.SW, a, b) 
        else:                       ans = self.__nearPoint(n.NW, a, b) 
           # a < n.a and b >= n.b 
 
        # if we found a lower Node near this point return it 
        # otherwise return the current node 
        return ans if ans else n

The __nearPoint() method returns the deepest Node in the tree along the path
from the root toward the query point. It does so by recursively descending into
the QuadTree in a fashion almost identical to __find(). Instead of returning the
corresponding data if an exact match is found to a, b, __nearPoint() returns a
reference to the Node that either matches a, b exactly, or is as deep as possible
in the QuadTree.

Not surprisingly, the base cases are similar to __find(). If __nearPoint()
reaches None, then None is returned. If it reaches a node whose coordinates
exactly match a, b, then that Node (n) is returned.

Otherwise, it recursively descends into the quadrant containing the query point
and stores in ans whatever is returned by the recursive invocation. There are
only two possibilities after the recursive call. One possibility is that ans is None
because __nearPoint() just descended into an empty child. If that happens,
then it means that the current node n is a leaf, and therefore it returns the
current node, n. Otherwise, if ans is anything but None, it means that the
recursion is returning a reference to the lowest possible Node, which is then
returned to its caller.

Finding the Closest Node
After __nearPoint() has discovered a candidate for the Node nearest to a, b,
the __nearest() method shown in Listing 12-28 can recursively descend the
quadtree again, starting at the root, trying to find successively closer
candidates. This method computes the distance from the query point to the
coordinates of each Node visited. If the distance is smaller than the distance to



the so-far best candidate Node, then the current node, n, becomes the new,
closer candidate, cand.

Listing 12-28 Recursively Refine Nearest Candidate

class QuadTree(object): 
… 
    # Returns the nearest Node and distance to query point a,b. 
    def __nearest(self, n, # current Node being visit 
                  a, b,    # query point 
                  dist,    # distance to candidate 
                  cand,    # best candidate so far 
                  bounds): # Bounds of current quadrant 
 
        # Reached a None node, or already found 
        # a perfect match? Return our answer. 
        if not n or dist == 0: return cand, dist 
 
        # Is the current quad tree point closer than 
        # the candidate? If so, update the candidate 
        fn = self.__distance 
        newDist  = fn(a, b, n.a, n.b) 
        if newDist < dist: 
           cand = n 
           dist = newDist 
 
        # bounding box surrounding the search circle 
        cBounds = CircleBounds(a, b, dist, fn) 
 
        # For each child node - update bounds for that quadrant 
        # if the search circle’s bounds intersects the child 
        # quadrant’s new bounds, descend to that child node. 
         newB = bounds.adjusted(left = n.a, top = n.b) 
        if cBounds.intersects(newB): 
           cand, dist = self.__nearest(n.SE, a, b, dist, cand, newB) 
           cBounds.adjust(dist) # adjust the circle’s bounds 
 
        # likewise for the other three quadrants 
        newB = bounds.adjusted(left = n.a, bottom = n.b) 
        if cBounds.intersects(newB): 
            cand, dist = self.__nearest(n.NE, a, b, dist, cand, newB) 
            cBounds.adjust(dist) 
 
        newB = bounds.adjusted(right = n.a, top = n.b) 
        if cBounds.intersects(newB): 
            cand, dist = self.__nearest(n.SW, a, b, dist, cand, newB) 



            cBounds.adjust(dist) 
 
        newB = bounds.adjusted(right = n.a, bottom = n.b) 
        if cBounds.intersects(newB): 
            cand, dist = self.__nearest(n.NW, a, b, dist, cand, newB) 
            # no need to update circle’s bounds after last quadrant 
 
        return cand, dist # best candidate seen so far

In the Grid class, you saw how the intersects() method determines whether
the query circle’s bounds intersect a grid cell and, therefore, whether to
consider the points within the cell. QuadTree’s __nearest() method also uses
the same intersects() method to determine whether the query circle’s bounds
intersect any of the quadrants below the current node and, therefore, whether to
continue the recursion into that quadrant. To make that determination,
__nearest() must manage Bounds objects for both the query circle and the
quadrant associated with node n. The bounds parameter passed from the parent
holds node n’s boundaries, and the node cBounds variable is set to be the query
circle’s bounds using the new nearest distance to n. As the algorithm descends
into each node’s quadrants, these bounds will be updated, as described shortly.

Each return from the four possible recursive calls to __nearest()returns either
the same candidate and distance that were just passed to the __nearest()
recursion or a closer candidate and distance that the recursion discovered.
Because it is possible that a recursive call may have decreased the distance to
the nearest candidate, __nearest also invokes CircleBound’s adjust() to
adjust the bounding box around the current query circle. Having possibly
checked all four quadrants, __nearest() then returns the best candidate and
distance that was found.

There is some subtlety in how __nearest() uses Bounds.intersects(). As
previously discussed, Node objects do not explicitly store the specific
boundaries of the rectangle of space that they cover. Rather, each node stores
just two of the boundaries, defined as appropriate, by the a coordinate (for
either the left or right boundary) and by the b coordinate for either the top or
bottom boundary.

How do you determine all four boundaries that define the rectangle surrounding
each node? Consider Figure 12-26, which shows a QuadTree containing just
three nodes: a root, G, drawn in green; its northeast child, P, drawn in purple;
and P’s southeast child C, drawn in (cobalt) blue. The nodes form a grandparent



(G), parent (P), and child (C) relationship. The figure also shows the Cartesian
coordinates for each of the three points.

Figure 12-26 The intersection of ancestor quadrants forms a child’s
quadrant

What are the left, right, top, and bottom bounds of G’s region of space?
Because G is the root, its region of the plane is unbounded. In other words, its
bounds are

left: -math.inf, right: math.inf, top: math.inf, bottom: -math.inf

When the search recursively descends to G’s northeast child, node P, what are
P’s bounds? P’s top and right bounds are still at infinity. However, P’s left
boundary is at G’s a coordinate, 300, and P’s bottom boundary is at G’s b
coordinate, 200. In other words, the bounds of P’s region are

left: 300, right:math.inf, top: math.inf, bottom: 200

Taking one more step, what happens when the search recursively descends to
P’s southwest child, C. What are C’s bounds (as shown in cross-hatched blue)?
C’s top boundary is defined by P’s b coordinate 450, and C’s right boundary is
defined by P’s a coordinate, 380. C’s other boundaries are inherited from P. In
other words, the bounds of C’s region are



left: 300, right: 380, top: 450, bottom: 200

Each time you descend to a deeper node in the quadtree, the bounds for that
child node are refined by replacing the appropriate two of the four bounds with
the coordinates of the current node. In other words, the bounds of a node in the
quadtree are formed by the intersection of the quadrant bounding boxes in the
path from the root to that node.

Based on this understanding, take another look at the code for __nearest() in
Listing 12-28. For each of the four child quadrants, the method uses
Bounds.adjusted() to create a new Bounds object, newB, appropriately updated
to reflect the bounds of that child based on the bounds of its parent. That newB
object determines whether the search circle’s bounds intersect the child’s
quadrant’s bounds.

Pulling It All Together: Implementing QuadTree’s
findNearest()

As shown in Listing 12-29, the public findNearest() method proceeds as
follows. First, using the __nearPoint() method, it finds a candidate node, ans,
by recursively descending from the root as far as possible into the quadtree.
Then it computes the distance from the query point to the candidate node. This
is the best answer so far, even though it’s a rough approximation (unless the
query point matches one of the points exactly). The candidate node and the
distance from it to the query point define a query circle centered at the query
point, with a radius equal to the distance to the initial candidate node.

Listing 12-29 The findNearest() Method of QuadTree

class QuadTree(object): 
… 
    # returns a,b,data,distance of point nearest to query a,b. 
    def findNearest(self, a, b): 
        if not self.__root: return None # No points yet! 
 
        # Descend the tree and find the leaf node nearby 
        # to this query point. This quickly sets an upper 
        # bound on the nearest possible point 
        ans  = self.__nearPoint(self.__root, a, b) 
        dist = self.__distance(a, b, ans.a, ans.b) 
 



        # Now we will descend the tree once more, refining 
        # the candidate by progressively shrinking the radius. 
        # The bounds of the root node are infinite. 
        bounds =  Bounds() 
        ans,dist = self.__nearest(self.__root, a,b, dist, ans, bounds) 
 
       return ans.a, ans.b, ans.data, dist

Next, the findNearest() method constructs a Bounds object for the infinite
extent of the root node. The root node, the query point, the current best
candidate answer, and the infinite bounds are passed to the __nearest()
method to begin the recursive search, which descends into any quadrant that is
overlapped by the current query circle. Each time it encounters a Node that is
closer to the query point than the current candidate, the candidate is replaced,
and the radius of the query circle gets smaller. The result of the recursive call
on the root node provides all the return values for the complete search.

The QuadTree Visualization tool makes it easier to see how the nodes are
visited, how the distances change the query circle bounds, and how the bounds
overlap. We show an example using the tool of a find nearest search starting, in
Figure 12-27. It begins by descending the 7-node quadtree to find the leaf node
closest to the a, b query point. Starting at the root, P0, it goes to the southeast
quadrant to visit P2. The query point lies in P2’s northwest quadrant, so
__nearPoint() descends to P5. P5 is a leaf node, so returns it as the answer,
ans.

Figure 12-27 Finding the nearPoint during a find nearest search



Finding the near point and storing it in ans does not involve any distance
calculations, only coordinate comparisons. The findNearest() method then
computes the distance from the query point to the ans, as shown by the green
line in Figure 12-27. The resulting dist measure is passed to the first call to the
__nearest() method as the query circle radius (the distance from the current
cand to the query point).

The first call to __nearest() examines the root node, P0. After checking the
base cases of visiting an empty leaf node or finding an exact coordinate match
where dist is 0, the method measures the distance from P0 to the query point.
Figure 12-28 shows this measurement and makes it clear that P0 is closer than
the candidate, cand, found by __nearPoint(), P5.

Figure 12-28 Visiting the root node during a find nearest search

The visualization tool also displays the various Bounds objects used by
__nearest(). Initially, only the bounds value passed as an argument appears
and has infinite extent. Figure 12-28 shows the bounds value both at the top
right as a string and with diagonal hashing in the same color over the entire
display.

The distance from the query point (a, b) to P0 is 62.2, which is less than the
dist measure to the cand point shown in the upper left. That means the
__nearest() method replaces cand with the current node, P0, and updates the
dist measure, reducing the query circle. That new radius is what’s used to
compute the circle bounds, cBounds, which is used to determine what quadrants
to explore.



Figure 12-29 shows the situation when __nearest() is being called on the
southeast child of the root. The n pointer indicates the current node, P2, while
cand still points at P0. At this point, three Bounds objects are displayed (in
addition to a faded version of the infinite bounds of the root node). The bounds
region was passed from the calling routine and covers the whole southeast
quadrant of P0. The cBounds region shows the query circle bounding box
around a, b. That was made just large enough to include P0, the root and the
current best cand point. It’s shown in a different color and with a different
angle to the hash marks. Finally, the newB region shows the region currently
being checked to see whether it should be searched, P2’s southwest quadrant.
It’s displayed in a third color and different hash angle. It’s bounded on three
sides by its point’s coordinates and the bounds inherited from its parent, P0.
Because newB doesn’t overlap the cBounds region, it’s clear that the southwest
quadrant of P2 could not contain any points closer than current best cand point.
Thus, the __nearest() method does not make a recursive call for the southwest
quadrant of P2. It will, however, make a call for the northwest quadrant of P2
and visit node P5 because that quadrant does overlap the cBounds region.

Figure 12-29 Eliminating quadrants during find nearest search

Although the overlapping information in the visualization tool may be
confusing, the eliminated quadrants are somewhat easier to see. P2’s SW, NE,
and SE quadrants are eliminated, as are P5’s NE and SE, P6’s SW and SE, P1’s
NW and SW, P3’s NW and SW, and P4’s NW and NE quadrants. That’s about
half of the quadrants, which is similar to how binary search removes half of the
range of cells to explore.



Efficiency of findNearest()
The time complexity of findNearest() is on average O(log N). The
__nearPoint() method, which behaves similarly to findExact(), should be
able to identify a candidate Node in O(log N) time, unless the tree is highly
unbalanced. Likewise, a good initial candidate will result in a tight query circle,
enabling __nearest() to efficiently descend back down into the tree
considering just a small number of adjacent QuadTree cells, again in O(log N)
time. An unbalanced tree or a degenerate distribution of data could result in
O(N) time for each search. For example, if all the QuadTree nodes are
distributed in a circle, and the query point is at or very near the center of the
circle. Then, __nearest()has no alternative but to visit every Node in the
QuadTree because the search circle necessarily overlaps each nonempty
QuadTree cell.

Theoretical Performance and Optimizations
PointList, Grid, and QuadTree present three different approaches to storing
and querying spatial data points. Table 12-1 summarizes the average Big O
complexity of each operation implemented across spatial data structures.

Table 12-1 Big O Performance of the Spatial Data Structures

Could the Big O of PointList and Grid be improved to be competitive or
superior to QuadTree?



One easy enhancement for PointList would be to use a hash table (such as a
Python dictionary) instead of a list to store the entire collection of points in a
PointList. Doing so would result in improved O(1) performance for
insert(), findExact(), and delete(). The performance of findNearest()
and traverse(), however, would not be improved because both require
considering every point in the PointList.

The Grid implementation already uses a hash table to map grid cell coordinates
to lists of points stored in each grid cell. Because the grid spacing is fixed,
however, the list in each grid cell contains O(N) points, making the find and
delete methods also O(N). By replacing the list in each grid cell with a
dictionary, the performance of findExact() and delete() can also be
improved to O(1). Here, too, findNearest() remains O(N) because the nearest
neighbor to query point is found by examining all the O(N) points stored in one
or more of the grid cells.

Even with these improvements, QuadTree’s theoretical O(log N) performance
for findNearest() is difficult to surpass.

Practical Considerations
In this chapter we covered three different ways to organize spatial data: brute
force using a list of points, uniform grids, and quadtrees. If you have dozens or
even hundreds of spatial data points, then the brute-force approach may be
sufficient.

But what should you use if you have many more points—say, tens of
thousands, hundreds of thousands, or even millions? Understanding the Big O
of a data structure provides some guidance. But remember that the Big O of an
algorithm informs you only of the shape of the curve. It (intentionally)
excludes an important constant factor that can make a difference in real-life
applications.

Let’s examine some practical time measurements of the performance of the
Grid and QuadTree data structures. To do this, we ran experiments where we
loaded points into a Grid or a QuadTree and then recorded the time to do 1,000
findNearest() queries. Geographic data points were randomly selected with a
uniform distribution across a rectangle that roughly encompasses the
continental United States. Then 1,000 uniformly distributed query points were



randomly selected across that same rectangle, and the time to find the nearest
data point was recorded.

Figure 12-30 shows the results of these informative experiments. The X axis
shows the number of points loaded into a Grid or QuadTree data structure. The
Y axis shows the total time in seconds to run 1,000 findNearest() queries
against the data. For grids, we created a Grid object where the cells were sized
at 0.5 degrees in latitude and longitude—resulting in about 6,500 grid cells
covering the United States. A second grid object was created where the cells
were of size 1.0 degrees latitude and longitude—resulting in about 1,600 grid
cells. Finally, we also created a QuadTree, also loaded with varying numbers of
points, but able to grow in depth as more points were inserted.

Figure 12-30 Performance of findNearest() on different-sized data sets

Not surprisingly, the red and blue plot lines are quite linear, confirming the
analysis of their O(N) performance. Their slopes reflect the respective sizes of
the grid cells and, therefore, how many points are stored on average per cell. In
the long run, as the data structures are loaded with millions of points,



QuadTrees win, with their very slow O(log N) growth as the number of points
increases.

Interestingly, if you have only 100,000 or fewer points, then grids of cell size 1
or 0.5 degrees can perform better than quadtrees. If you were willing to expend
more memory on grid cell storage, then an even finer grid would result in better
linear performance, by reducing the leading constant factor. Be careful,
however, in ensuring that the data won’t grow much larger in software that uses
grids like these.

These experiments were somewhat artificial because real-life data is usually
not uniformly distributed across the map. Businesses, people, vehicles, and
other real-life objects tend to be very clustered in space. If that’s what your data
looks like, then you should be especially careful to measure the performance of
your spatial data structure under realistic conditions.

Further Extensions
We have explored the basics of spatial data: what it is, how you might organize
points in a data structure, and how those organizations impact the four basic
operations. The search operation, common to all data structures, needed
extensions for exact matches and nearest match. Spatial data, however, is used
for many different purposes, and those applications often require more
capabilities than what we’ve described here. Let’s explore a few extensions.

Other Operations
Beyond the insert(), findExact(), findNearest(), delete(), and
traverse() operations we covered, there are many other possible—and useful
—operations on spatial data. Here are just a few:

• Instead of finding just the one nearest neighbor to a point, find the K
nearest neighbors to the query point.

• Traverse the points in order of increasing distance from a query point.

• Find all points within a specified distance from a query point.

• Find all points within a rectangular region of space.



• Find all points that lie within a polygonal boundary such as the borders of
a country.

• Find the closest pair of points.

Each of these operations needs special algorithms to identify candidate points,
determine whether they affect the output, and determine how to incorporate
them in the output. Making them efficient is a challenge.

Higher Dimensions
The data structures covered in this chapter all deal with two-dimensional data
—points on the plane or on the surface of the globe, specified with just two
coordinates. Point data in three dimensions is also common. For example, a
third dimension could correspond to the height of an object above the plane or
globe. A natural extension to the Grid class could be used to store and query
three-dimensional points. In effect, a three-dimensional grid would look like a
regularly spaced collection of cubes (instead of squares).

Quadtrees also have a natural analog in the three-dimensional world, namely
octrees. With quadtrees, each point recursively subdivides space into four
quadrants. With octrees, each point subdivides space into eight octants.
Analogous to map data, octrees are efficient at representing and searching
three-dimensional point data that clusters in space.

It is possible to use spatial data structures to represent point data in even higher
dimensions. You can use k-d trees (that is, k-dimensional) to represent points
in arbitrarily high dimensions. These k-d trees are usually implemented by
recursively subdividing space into half along carefully chosen dimensions.

These higher dimensional data structures can support the same types of
operations, including insert, traverse, find exact, and find nearest.

Implementing and using data structures for high-dimensional data brings
theoretical and engineering challenges. In a discussion of the distance between
points in two-dimensional and three-dimensional space, you gain an intuitive
understanding of what “distance” means. But when you consider additional
dimensions, the notion of spatial distance is not meaningful and must be
addressed carefully. For example, a fourth dimension of time could be very
useful, but then what distance function would be useful in a space consisting of
x, y, z, and time?



High-dimensional data also suffers from the “curse of dimensionality.” If you
measure the Euclidean distance between two points of very high dimension, the
differences in distances among many pairs of points can be very small. Another
way to say this is that if you have high-dimensional data, all points in your data
set can seem equally or nearly equally distant from each other! Therefore,
although quadtrees and even k-d trees for low-dimensional data can be searched
in O(log N) time, as the dimension of your data increases, it becomes necessary
to search a larger and larger proportion of all the tree’s cells and data points to
find a nearest neighbor!

Summary
• Spatial data structures store point data based on two-dimensional

position.

• Positions can correspond to Cartesian x, y coordinates, or geographic
latitude and longitude coordinates on the Earth.

• Distance between points is measured differently depending on the
coordinate systems.

• The Euclidean distance computes the straight-line distance between
points on a plane.

• The haversine distance computes the distance along the great circle
connecting points on a globe.

• Point data can be stored in different kinds of spatial data structures.

• A brute-force approach stores points in a list or in an array such as the
PointList.

• A Grid structure divides up the plane or globe into cells of equal size and
stores point data as lists or arrays for each cell.

• Quadtrees organize point data as a tree.

• Each node in a quadtree stores data for a particular point in space.

• A quadtree node can have up to four child nodes corresponding to the
four quadrants relative to its position.



• Grid structures do not adapt to point data that clusters spatially, but
quadtrees do.

• All spatial data structures provide methods to insert new point data,
search for an exact match, and search for the nearest point data to a
query point.

• Grid searches begin in the query point grid cell and expand outward by
layer.

• Quadtree searches begin at the root node and follow child quadrants
containing the query point.

• Search performance is improved by eliminating grid cells or quadrants
that lie outside of the current query circle.

• Query circles have a different shape when geographic coordinates are
plotted with parallel lines for longitude meridians as in the Mercator
projection.

• Rectangular bounding boxes simplify testing for the intersection or
complete enclosure of one region and another but can only approximate
the boundary of a query circle.

• Different spatial data structures yield different Big O performance.

• Simple point lists and grids take O(N) time for search and deletion (and
insertion when duplicate points must be detected and updated).

• Quadtrees take O(log N) time for insertion, search, and deletion.

• The performance of spatial data structures can be improved by
augmenting the structure with O(1) data structures such as hash tables.

• It is important to perform measurements with real-life data for your
application to determine the best approach for your scale and type of
data.

• Uniformly distributed data can be organized well with grids, and the
grid cells can be made small to improve performance.

• Nonuniform data, or data of unknown size or distribution can be better
organized with quadtrees because the quadtree adaptively subdivides



space in regions that contain more data.

• Octrees can store and search three-dimensional data.

• There are a wide variety of other operations needed for spatial data
applications.

Questions
These questions are intended as a self-test for readers. Answers may be found
in Appendix C.

1. What distinguishes the keys for spatial data structures from those used
for other structures like trees, arrays, and lists?

2. _________ coordinates are used to represent a point on the surface of
the earth.

3. When you’re making data structures for two-dimensional spatial data,
what things must be initialized when creating the (empty) structure for
all of them?

4. Bounding boxes are used in spatial calculations because
a. rectangles are the only viable shapes that work with spatial

coordinates.
b. checking whether two rectangles overlap is computationally simpler

than checking whether an ellipsoid overlaps with a rectangle.
c. using bounding boxes is a convenient way to put a bound on the

worst-case complexity of a spatial computation.
d. the haversine distance works only with rectangular bounds.

5. True or False: Lists of points are never an acceptable data structure for
searching spatial data.

6. What advantage does a grid have over a point list in storing spatial data?
7. What advantage does a quadtree have over a grid in storing spatial data?
8. To implement efficient access to the cells of a grid, you use

a. a two-dimensional array or a list to store each cell of the grid
containing data points.



b. a quadtree to locate the quadrant storing the cell.
c. a list of point coordinates sorted by each point’s row and column

number.
d. a hash table that maps keys consisting of row, column tuples to the list

of corresponding points in that grid cell.
9. Using Big O notation, how long does it take to find the nearest neighbor

to a query point in each of the following structures holding N points?
a. a point list
b. a grid
c. a quadtree

10. True or False: A quadtree supports data points with any number of
dimensions.

11. Query circles
a. are used in find exact searches to determine whether a point matches

the query.
b. are used by quadtrees to bound the size of each node’s quadrants.
c. are used by grids to limit which other grid cells should be traversed.
d. start large and decrease in radius as find nearest searches points in

grids and quadtrees.
12. True or False: A quadtree uses layers to gradually expand the search for

the nearest point.
13. What are the quadrants of a node? How are points lying on the boundary

between two quadrants placed into the appropriate quadrant?
14. The depth of a well-balanced quadtree of N points is proportional to

a. N
b. N/4
c. 

d. log4N

15. True or False: Quadtrees are superior because their worst-case behavior
is always better than point lists or grids.



Experiments
Carrying out these experiments will help to provide insights into the topics
covered in the chapter. No programming is involved.

12-A Which of the three spatial data structures discussed in this
chapter would use the least amount of memory per spatial data point?
Which would use the most memory for the same number of points?

12-B Consider the problem of finding the item the farthest from a
query point. How would you approach this problem, and which data
structure would be more appropriate: a grid or a quadtree?

12-C The quadtree makes finding the nearest point very fast. Could
the principles used in findNearest() be applied to finding the nearest
key in other data structures? More specifically, how could you speed up
the search for the nearest key in a binary search tree? Does the answer
change if the keys are strings instead of integers?

12-C Consider the problem of finding the K nearest neighbors of a
query point. How would you implement this method using your choice of
spatial data structure, and what supplementary data structure might you
use to make the implementation efficient?

Programming Projects
Writing programs to solve the Programming Projects helps to solidify your
understanding of the material and demonstrates how the chapter’s concepts are
applied. (As noted in the Introduction, qualified instructors may obtain
completed solutions to the Programming Projects on the publisher’s website.)

12.1 Modify the Grid class to support a delete() method that is given the
coordinates of a point to delete. If the point is found in the Grid, then
the point is deleted from the appropriate cell, and the associated data is
returned to the client. If the point is not found, then None is returned to
the client.

12.2 Modify the QuadTree class to support a delete() method. Because a
Node object can’t easily be removed from a QuadTree, consider adopting
the representation that a Node with None for its data denotes a “deleted”
node. When implementing delete this way, you must modify the class’s



other methods to be consistent with this new representation. If the point
is not found, then None is returned to the client.

12.3 Modify Grid and QuadTree to store more than one datum at a specific
coordinate. In other words, change them to allow duplicate keys. Be
sure to modify all methods that could be impacted by this change.

12.4 Create a subclass of QuadTree called BulkQuadTree. The new subclass
has a constructor that accepts a sequence of points in bulk and then
attempts to build a well-balanced quadtree. Add measurement methods
to the quadtree to quantify its balance and measure the balance of
quadtrees using large collections of random points and large collections
of sorted points.

12.5 Add a method to Grid that moves the data associated with a point at a
specified location to a new location.



13. Heaps

In This Chapter

• Introduction to Heaps

• The Heap Visualization Tool

• Python Code for Heaps

• A Tree-Based Heap

• Heapsort

• Order Statistics

Keeping items in priority order is useful in many contexts. At school and at
work, we all deal with numerous tasks with various deadlines. Typically, the
nearest deadlines get the highest priority. Sometimes, the importance of the task
or the severity of not completing it outweighs a later deadline, so you move it
up in priority and work it before tasks with shorter deadlines. When doctors
and nurses triage patients arriving at a medical facility, they weigh decisions
about the severity of the injury or illness and how long the patient can wait
before treatment must start.

One characteristic of organizing tasks by priority is that you only need to know
what the highest priority task is. That’s the one that will be worked first.
Perhaps you need to know what the first two or three tasks are because they can
all be worked at the same time (or worked in smaller increments in rotation).

What’s less obvious in prioritizing is that you don’t need to know the precise
order of the remaining tasks. You can set them aside and deal with them after
higher-priority tasks are completed. That means you don’t have to fully sort all
the tasks; a partial sort allows you focus on the important ones.

You learned in Chapter 4, “Stacks and Queues,” that a priority queue is a data
structure that offers convenient access to the data item with the smallest (or



largest) key. In those implementations, all the items are stored in a sequence
sorted by their priority.

A heap organizes items in a partially sorted order inside a binary tree. That
might seem as if it wouldn’t be as useful as the binary search and other trees
you saw in Chapters 8, 9, and 10, but it is surprisingly powerful. The partial
sorting means the heap is faster in some operations. That makes it particularly
well suited for implementing priority queues, where it is much faster than
maintaining a fully sorted sequence.

Heaps are used for more than just priority queues. They can be implemented
with arrays, enabling an algorithm called a heapsort that competes with the
quicksort both in speed and its low memory requirements. They are perfect for
getting order statistics, such as the top 1 percent of a population of items when
the rest won’t be used (for example, finding the most important key words in a
billion text documents from the Internet to summarize their content).

NOTE
Don’t confuse the term heap, used here for a special kind of binary tree, with the same term
used to mean the portion of computer memory available to store some kinds of data as the
program runs. The computer memory heap is a section of random-access memory used to
hold dynamically allocated and deallocated objects.

Introduction to Heaps
A heap is a binary tree with these characteristics:

• It’s complete. This means all its levels are completely filled, except,
perhaps, the leaf level. If you read the items from left to right across each
row, either the whole row is full, or all the items are on the left side of
the bottom row. Figure 13-1 shows examples of complete and
incomplete trees.



Figure 13-1 Complete and incomplete binary trees

• Each node in a heap satisfies the heap condition: every node’s key is
larger than (or equal to) the keys of its children. This makes the tree
partially ordered.

• It’s (usually) implemented as an array. This isn’t a requirement, but it is a
desirable feature in most use cases. In Chapter 8, “Binary Trees,” we
described how binary trees can be stored in arrays, rather than using
references to connect distinct node objects.

Figure 13-2 shows a heap as both a tree and the array used to implement it. The
array is what’s stored in memory; the heap tree is only a conceptual
representation. Notice that the tree is complete and that the heap condition is
satisfied for all the nodes.

Another big difference from the other trees we’ve studied: the keys in the nodes
are not in sorted order, neither in the array, nor in the binary tree, at least not
the way they would be ordered in a binary search tree.



Figure 13-2 A heap array and its corresponding binary tree

The fact that a heap is a complete binary tree means there are no “holes” in the
array used to represent it. Every cell is filled, from 0 to nItems – 1 (nItems is
12 in Figure 13-2). When the next item is inserted, the cell at index nItems is
filled, in the way that items were inserted at the end of arrays in Chapter 2,
“Arrays.”

We assume in this chapter that the maximum key (rather than the minimum) is
stored in the root. A priority queue based on such a heap is a descending-
priority queue. (We discussed ascending-priority queues in Chapter 4.)

Priority Queues, Heaps, and ADTs



A priority queue is an abstract data type (ADT) offering methods that allow
removal of the item with the maximum (or minimum) key value, insertion, and
sometimes other operations such as traversal. We describe heaps in this chapter,
which are frequently used to implement priority queues. There’s a very close
relationship between a priority queue and the heap used to implement it. The
code fragment of Listing 13-1 shows the equivalence.

Listing 13-1 Implementing Priority Queues Using a Heap

class Heap(object): 
   def __init__(self, size=2): # Heap constructor  
      self._arr = [None] * size # Heap stored as a list/array 
… 
   def insert(self, item):  # Insert a new item in a heap 
… 
   def remove(self):        # Remove top item of heap and return it 
… 
 
class PriorityQueue(Heap):  # Create a priority queue, using a heap

The three methods for the PriorityQueue class are identical to the methods for
the underlying Heap class, so it can be implemented as a subclass. This example
and the implementation in Chapter 4 make it conceptually clear that a priority
queue is an ADT that can be implemented in a variety of ways, whereas a heap
is a more fundamental kind of data structure. In this chapter, for simplicity, we
simply show the heap’s methods without the priority-queue wrapping.

Partially Ordered
A heap is partially ordered compared with a binary search tree, where all a
node’s left descendants have keys less than all its right descendants. As you
saw in Chapter 8, the full ordering of binary search trees allows you to traverse
the nodes in the order of their keys by following a simple algorithm.

In a heap, traversing the nodes in order is difficult because the organizing
principle (the heap condition) is not as strong as the organizing principle in a
binary search tree. All you can say about a heap is that, along every path from
the root to a leaf, the nodes are arranged in descending order. As you can see in
the tree of Figure 13-2, the nodes to the left or right of a given node, or on
higher or lower levels—provided they’re not on the same path—can have keys



larger or smaller than the node’s key. Except where they share the same nodes,
paths are independent of each other.

Because heaps are partially ordered, some operations are difficult or
impossible. Besides its failure to support traversal ordered by the keys, a heap
also does not allow convenient searching for a specified key. The reason is that
there’s not enough information to decide which of a node’s two children to pick
in trying to descend to a lower level during the search. It follows that a node
with a specified key can’t be deleted, at least in O(log N) time, because there’s
no way to find it. These operations can be carried out by looking at every cell
of the array in sequence, but this is only possible in slow, O(N), time.

Thus, the organization of a heap may seem dangerously close to randomness.
Nevertheless, the ordering is just sufficient to allow fast removal of the
maximum node and fast insertion of new nodes. These operations are all that’s
needed to use a heap as a priority queue, as a sorting mechanism, and for
finding certain members of a distribution. We discuss briefly how the two core
operations are carried out and then see them in action in a visualization tool.

Insertion
Inserting an item in a heap is straightforward. You know it means adding a
node to the tree, and the only place new nodes can go is at the leaf level.
Because the tree is complete, the new node is added just to the right of the last
node if the bottom row is not full, or as the left child of the leftmost node of a
full bottom row. In Figure 13-2, there are 12 nodes in the tree. Adding a
thirteenth item means filling the array at index 12, which corresponds to the
dashed node in the tree, just to the right of index 11.

What about the heap condition? If you’re lucky, the inserted item has a key less
than its parent (or it is the root node), and you are done. You can’t count on
being lucky, however, so you need to compare the keys. If the newly inserted
leaf has a key greater than its parent, you can swap the two items. Figure 13-3
shows an example where item 80 is inserted at the bottom in cell 12. The blue
link indicates which two nodes need to be compared.



Figure 13-3 Inserting an item in a heap and sifting up

Because the inserted item’s key, 80, is greater than 48, the key of its parent in
cell 5, the items must be swapped. After the swap, item 80 now has items 20
and 48 as children, and both keys satisfy the heap condition because they are



smaller. Whenever you swap a parent and child key, you only increase the
value of the parent key. That means that you can never break the heap condition
with the other child—the one that wasn’t swapped.

After moving the inserted item up to the second from bottom row, you still
need to check whether it satisfies the heap condition in its new position. That’s
shown at the upper right of Figure 13-3. Comparing 80 with 68 reveals that the
two nodes linked by the blue line need to be swapped too.

After the second swap, item 80 lands in cell 2, as shown at the bottom of the
figure. Comparing item 80 with its new parent, item 89 in cell 0, reveals that it
now satisfies the heap condition. No more swapping is needed.

Moving items up the tree until they satisfy the heap condition is called sifting
up. This operation is very similar in concept to one iteration of the bubble sort.
The operation has also been called by other names such as bubble up, trickle
up, percolate up, swim up, heapify up, and up heap. Because you apply it to a
single new item on a heap that already satisfies the heap condition, only a
single pass toward the root node is needed.

Removal
Removal means removing the item with the maximum key. In other data
structures, like trees and hash tables, you use a delete() method to remove an
item with a specified key. Heaps typically support the removal of the maximum
key only. This item is always kept at the root node, so finding it is easy. The
root is always at index 0 of the heap array.

The problem is that after the root is gone, the tree is no longer complete.
Alternatively, from the point of view of the heap array, there’s an empty cell.
This “hole” must be filled.

There are several possible approaches to filling the hole. What if you simply
shifted every item in the array by one cell toward index 0? That would get rid
of the hole, but it could introduce new problems. If the array contained the
three keys: 50, 30, and 40, deleting 50 would leave 30, 40. That could put 30 at
the root with 40 as its one child, and that would break the heap condition.

What about using a modified version of the sift up method that was used for
insertion? You could sift up the child of the (empty) root with the larger key.
You could then repeat the process of filling the hole created by moving up the



child by moving down a level in the tree. You would continue until you move
up a child node that is also a leaf node. That would certainly preserve the heap
condition because you always move up the higher valued key. It doesn’t appear
to create any holes because it fills each vacancy it creates. Or does it?

In Figure 13-4, two very similar heap trees are shown at the left. Removing the
maximum item from the top, item 75, leaves a hole. The blue arrow shows the
next step is to promote item 65 in cell 1 to fill the hole. The next step promotes
item 44 to fill the hole at cell 1. At the end of the top row, the final heap has
four items and the heap condition is preserved. So, the approach works for this
heap.



Figure 13-4 Two examples of filling holes with the maximum child item

In the bottom row of Figure 13-4, however, the heap has one more item. The
same items are moved in the same sequence. After you move up item 44, there
is an empty cell 4 but a full cell 5, item 24. That empty leaf node means the tree
is no longer complete and you don’t have a heap.



Simply filling with the maximum child does not work. It seems as though you
would need to sift up a child item based on the path to the last node in the tree;
that is the node in the highest numbered filled cell. But if you sift up a child
that has a key less than it’s sibling, it would create a node where the parent has
a key less than its child. That would mean you would have to do more swaps or
moves or actions like the rotations that were used to balance AVL trees. That’s
getting very complicated.

Fortunately, there’s a simpler solution: take the root item out of the tree to
return later, replace it with the last item in the heap, shrink the heap size by one,
and sift down the new root. This operation is very similar to the approach of
filling holes and solves the problem of leaving a hole in the wrong place on the
leaf layer.

To see how this approach works, let’s look at an example. Figure 13-5 starts
with the same initial heap as in the bottom row of Figure 13-4. The first step is
the removal of item 75 from the root node. The second step takes the last item
in the heap, item 24 at cell 5, and moves it to the root. The third step is
shrinking the heap size by one to eliminate cell 5.



Figure 13-5 Replacing the root with the last item and sifting down

Now you can start the sift down process at the root node. In the upper right of
the figure, item 24 sits at the root node. The blue links to its children indicate
that we must look at their keys to determine which one is larger. The larger one
(at cell 1) becomes the candidate for swapping.



In the next step—at the left of the second row in the figure—you compare the
keys of cells 0 and 1 to find that a swap is needed. After swapping those two
items, you begin the sift down process starting at cell 1. The two blue links
below cell 1 show that you compare the keys of cells 3 and 4 to find which one
is larger. After settling on cell 4, it’s clear that another swap is needed. When
that swap is made, you end up with the heap at the bottom right of the figure.

The final tree in Figure 13-5 satisfies the heap condition and is complete. If you
try to sift down further, you will find that cell 4 has no children, so no more
sifting can be done. In fact, you can stop the process when either a leaf node is
found, or no swap is needed with the maximum child.

As you might expect, this whole process is call sift down (or bubble down,
trickle down, percolate down). It’s only slightly more complex than sift up. The
difference being that there are up to two children at each node. It must choose
the node with the maximum key if there are two children, and the left node if
there is only one. (There can never be a node with a right node and no left node
in a complete tree.) Then it compares the parent with the target child, swaps
them if needed and continues, or finishes if they are already in heap order.
Because it always chooses the maximum child, the swap cannot create a heap
condition violation.

The sift down algorithm guarantees that the items in the nodes it visits are in
heap order. It also guarantees the binary tree remains complete because
removing the last node of a complete tree preserves completeness, and
swapping parent and child nodes cannot create holes. Like sift up, this
operation is similar to one iteration of a bubble sort. It also shares a
characteristic with deletion in binary search trees where the successor node
replaces the node to be deleted (without having to do rotations to rebalance the
tree).

Not Really Swapped
Both the sift down and sift up algorithms are easy to understand when you
visualize the item swaps between parent and child nodes like those shown in
Figure 13-3 and Figure 13-5. Each swap involves two moves or copies,
typically using a temporary variable. There’s a more efficient way of
implementing the changes, however, as shown in Figure 13-6.



Figure 13-6 Sifting down with swaps versus with moves

When you sift down, the item that was inserted at the root is moved down by
each swap. Every item lower in the tree is compared with the same key of the
item from the root. That means you can copy the root item into a temporary
storage location and simply move items up into the holes that are created by
each move/copy. The process is shown on the right of Figure 13-6 and ends up
being a rotation of the items.

Why is this process more efficient? In the example in Figure 13-6, six items are
moved when you use swapping. Five items are copied when you move items
instead of swapping; three copies up (the blue arrows), plus one copy to the
temporary variable and one copy from the temporary variable to the final
position (the green arrows). That’s not much of a savings, but think about
sifting an item down 100 levels in a large heap. In that case, swapping makes
200 copies, whereas moving makes 102. You save about half the copy
operations (and close to two-thirds considering a typical swap makes three
copies using a temporary variable). The same method works when sifting up a
newly inserted item at a leaf node.



Another way to visualize the sift up and sift down processes being carried out
with copies is to think of a “hole” or “blank”—the absence of an item in a node
—moving down in a sift down and up in a sift up. In Figure 13-6, moving item
18 into the temporary storage at right leaves a hole at the root. When item 75 is
copied up to the root, the hole moves down one level. The next move up of
item 65 moves the hole down another level. Eventually, the hole moves to a
leaf node or a node whose child keys are smaller than the item sifting down
from the root. That hole is filed with the content of the temporary storage. The
holes, of course, are conceptual; copying items in memory leaves the original
value in the source node.

Sifting data down the heap saves time in the way the insertion sort saved time
over the bubble sort. You use many fewer copy operations to achieve the result.

Other Operations
Heaps’ affinity to priority queues makes a few other operations very useful. In
particular, priority queues used to manage the processes running on a computer
can benefit by having methods for peek, change-priority, and replace-max. The
peek operation is the same as for stacks and queues: it returns the key and data
of the maximum keyed item without changing the heap contents.

The change-priority operation changes the priority of an item in the queue.
This is needed when the priority of a process must be changed before it is next
removed from the priority queue for running, perhaps because higher priority
jobs are preventing it from being run.

The change_priority() method first must find the item in the heap, which
could be quite slow, as mentioned in the “Partially Ordered” section. When it is
found, increasing the priority means a sift up operation must follow. Similarly,
decreasing the priority means sifting the item down. These changes can be
performed just like insertion and removal, respectively, except that the sifting
starts with an existing item anywhere in the tree after modifying its priority.

The replace-max operation is widely used. When operating systems take the
next process item from the priority queue to run, they frequently have a process
to put back in the queue to run later. The operating system usually limits the
amount of time each process can run before it is suspended to allow other
processes to run. The process that was running is placed back on the priority
queue, perhaps with a different priority.



If you simply remove the maximum priority process/item from the heap and
then insert the previously running process in the heap, there will be both a sift
down for the remove operation followed by a sift up for the insert operation. A
replace_max() operation eliminates the sift up operation by replacing the root
item with the one to be inserted back in priority queue. The new root item is
sifted down into proper position, and the old root is returned, so the
replace_max() can be used in place of remove(). This approach saves
considerable time in switching between hundreds or thousands of processes
that might run for just a few microseconds.

The Heap Visualization Tool
The Heap Visualization tool demonstrates the operations we discussed in the
preceding section: it allows you to insert new items into a heap and to remove
or peek at the largest item. It does not, however, implement the other operations
mentioned: change priority and replace max.

When you start up the Heap Visualization tool, you see a display like Figure
13-7. The tool shows the heap both as an array and as a tree. Both are initially
empty. The array is shown on the left side. It has two cells to start, and the
nItems pointer points at cell 0 to show that no items are currently in the heap.



Figure 13-7 The Heap Visualization tool

The tree is shown to the right of the array. When the heap is empty, there are no
nodes. Furthermore, because no tree object is needed when the tree is
represented as an array, there’s no box at the top like there was in the other tree
visualizations.

The Insert Button
A new item is always inserted in the first available array cell—the one
indicated by the nItems pointer. In the visualization, cell 0 is at the top of the



column of array cells to align with the tree that has its root at the top. The first
node goes in cell 0 and creates a root node in the tree. Every subsequent insert
goes in the array as a leaf node in the tree just to the right of the last node on
the bottom row of the heap. Try entering a key—an integer between 0 and 99—
in the text entry box and selecting Insert. If you enter the values 33, 51, 44, 12,
and 70, you should see a heap like the one in Figure 13-8.

Figure 13-8 A small heap in the Heap Visualization tool

During each insertion, you see the tool put the new item in the last array cell
and last leaf of the tree, and then sift it up until it is correctly positioned
according to the heap condition. You also see the array expand when needed,
which we look at in the Python code.

The Make Random Heap Button



You can create heaps of up to 31 random items for experiments. Type the
number of desired items in the text entry box and then select the Make Random
Heap button. The array and the tree are filled with items, some of which may
have duplicate keys. Duplicates are less of an issue in heaps because they aren’t
used like a database where items are identified by unique keys.

The Make Random Heap clears any existing items before it places the new
items to satisfy the heap condition. If you wish to simply clear the current heap,
you can enter 0 for the number of items to empty the heap.

The Erase and Random Fill Button
The Erase and Random Fill button performs a similar operation to that of the
Make Random Heap button, except that it only fills the array with a randomly
ordered collection of items. Because the heap condition is almost never
satisfied after inserting items with random keys, the number of items in the
heap is set to one (or zero if you choose an empty heap). A single-item array
always satisfies the heap condition because there are no child items with which
to compare its key.

The Visualization tool shows the random items in the array with the nItems
pointer at cell 1, as shown in Figure 13-9. With only one item satisfying the
heap condition, only the root node is shown in the tree. If you insert a new item
in this condition, the new item will go in the cell indicated by the nItems
pointer, overwriting whatever item had been stored there earlier. A separate
operation can be used to organize the array items beyond the nItems pointer
into a proper heap.



Figure 13-9 A random set of items in the array used for the heap

The Peek Button
Just as with stacks and queues, many algorithms need to see what the next item
will be before they decide to remove it. The Peek button performs this common
task, copying the key and data from the root node, the one with the maximum
key, to return as an output.

The Remove Max Button
Selecting the Remove Max button takes the maximum item out of the heap,
replaces it with the last item, and sifts that item down from the root of the tree.
The removed key and data are returned as an output.

The Heapify Button



The Heapify button takes whatever data is stored in the array beyond the
nItems pointer and rearranges it to form a heap. We study this operation in the
“Heapsort” section later.

The Traverse Button
Occasionally, it’s useful to perform some operation on all the items in a heap,
such as collecting statistics about the current collection. The Traverse button
provides an example by printing the keys of all the items. We explore the issue
of traversal order later in this chapter.

Python Code for Heaps
As mentioned previously, heaps are almost always implemented as arrays. The
reason is that the corresponding binary tree is complete and always fills the first
N cells of the array, where N is the number of items in the heap. We use
Python’s list (array) to store the items in this implementation.

Listing 13-2 shows the beginning of the definition of the Heap class. As with
other array-based structures, the constructor takes an initial size parameter to
determine the size of the array to allocate. An internal _nItems field is set to 0
to indicate no items are stored in the private _arr yet. The constructor also
takes a key parameter, which defines the function to extract the key used in
ordering records or other complex structures stored in the array.

Listing 13-2. The Core Heap Class

def identity(x): return x   # Identity function 
 
 
class Heap(object): 
   def __init__(self, key=identity, size=2): # Heap constructor 
      self._arr = [None] * size # Heap stored as a list/array 
      self._nItems = 0      # No items in initial heap 
      self._key = key       # Function to get key from heap item 
 
   def isEmpty(self): return self._nItems == 0 # Test for empty heap 
 
   def isFull(self):  return self._nItems == len(self._arr) 
 
   def __len__(self): return self._nItems  # Number of items 



 
   def peek(self):          # Return item with maximum key 
      return None if self.isEmpty() else self._arr[0]

The first four methods are like those for stacks and queues. The isEmpty()
method tests whether the heap has any items stored in it. The isFull() method
checks whether the number of items fills the entire array that was allocated.
The __len__() method allows callers to know the number of items in the heap
using Python’s built-in len() function. Finally, the peek() method returns the
maximum-keyed item in the heap if it is not empty.

The next methods define the correspondence between the array and tree
representations of a heap. Traversing a tree when sifting up or sifting down
means following parent-child relationships, which are not explicit in the array.
As you saw in Chapter 8, the node at index i in the array has its

• Parent at (i - 1) // 2,

• Left child at i * 2 + 1, and

• Right child at i * 2 + 2.

Those relationships can be seen in Figure 13-2. The formulas may return
indices that are outside of the array bounds, [0, _nItems), in which case there
is either no parent or no child for that node. The methods in Listing 13-3
translate cell indices into those of their neighboring nodes but do not test
whether there is an item there.

Listing 13-3 Parent and Child Relationship Methods

class Heap(object): 
… 
   def parent(self, i):     # Get index of parent in heap tree 
      return (i - 1) // 2   # Item i’s parent index is half of i - 1 
 
   def leftChild(self, i):  # Get index of left child in heap tree 
      return i * 2 + 1      # Item i’s left child is at twice i plus 1 
 
   def rightChild(self, i): # Get index of right child in heap tree 
      return i * 2 + 2      # Item i’s right child -> twice i plus 2

NOTE



Remember that Python’s // operator performs integer division, in which the answer is
rounded to the lowest integer. This is true even for negative numbers: -1 // 2 == -1.

Insertion
The insert() method is fairly short; the bulk of the work is handled by the sift
up algorithm in a separate method, as shown in Listing 13-4.

If the internal array is full, the insert() method calls the private _growHeap()
method to increase the size of the array. Let’s look at growing the heap before
the rest of the insert operation. Like the hash tables in Chapter 11, “Hash
Tables,” growing the heap doubles the size of the array. First, it saves the
current array in a temporary variable, allocates a new array that’s twice as
large (including at least one cell), and then copies all the current items into it.
Unlike the hash tables, there is no need to reinsert (rehash) the items in the
heap; they can be copied to the new array in the same order. The Visualization
tool animates the _growHeap() process, and seeing it in operation can help
clarify the details.

After the array size has been checked and perhaps enlarged, the insert()
method places the new item in the empty cell indexed by _nItems. After
incrementing _nItems by one, it can now call _siftUp() on the new item at the
end of the array (bottom of the tree).

The _siftUp() method starts at a particular index in the array, i, and works up
the parent links to the root. If called on the root (or a negative index), it does
nothing because the item cannot move upward in the tree. Otherwise, it
prepares to move the item at i by storing it and its key in temporary variables.
This creates the first “hole” at cell i.

The while loop “walks” up the parent links. When i gets to 0, it has reached
the root, and no more moves are possible. In the loop body, _siftUp() finds
the parent node and compares its key to that of the item being sifted up. If the
parent’s key is less than the itemkey, it moves the parent item down into cell i.
That means the “hole” moves up, and it changes i to point at the parent cell. If
the parent’s key is greater than or equal to the itemkey, then the final position
for the item has been found and the loop terminates.

The final step is moving the item to the “hole,” where it either has a parent
with a larger key or no parent node. The hole is now filled, and the heap
condition is restored.



Listing 13-4 The insert() Method for Heaps

class Heap(object): 
… 
   def insert(self, item):  # Insert a new item in a heap 
      if self.isFull():     # If insertion would go beyond array 
         self._growHeap()   # then expand heap array 
      self._arr[self._nItems] = item # Store item at end of array 
      self._nItems += 1     # Increase item count 
      self._siftUp(self._nItems - 1) # Sift last item up 
 
 
   def _growHeap(self):     # Grow the array for the heap 
      current = self._arr   # Store the current array 
      self._arr = [None] * max(1, 2 * len(self._arr)) # Double array 
      for i in range(self._nItems): # Loop over all current items & 
         self._arr[i] = current[i]  # copy them to the new array 
 
 
   def _siftUp(self, i):    # Sift item i up toward root to preserve 
      if i <= 0:            # heap condition. The root node, i = 0, 
         return             # cannot go higher, so done. 
      item = self._arr[i]   # Store item at cell i 
      itemkey = self._key(item) # and its key 
      while 0 < i:          # While i is below the root 
         parent = self.parent(i) # Get the index of its parent node 
         if (self._key(self._arr[parent]) < # If parent’s key is 
             itemkey):      # less than that of item i, 
            self._arr[i] = self._arr[parent] # copy parent to i 
            i = parent      # and continue up tree 
         else:              # If parent’s key is greater or equal, 
            break           # then we have found where item i belongs 
 
      self._arr[i] = item   # Move item i into final position

Removal
The removal algorithm is also not complicated. As with insertion, the method
has two parts: 1) the initial work of removing the maximum keyed item and
filling that hole, and 2) sifting down the new root item. Listing 13-5 shows the
code. The first step is to raise an exception if the heap is empty. Next, it copies
the item in the root node to a temporary variable. This original root is returned
after reducing the heap.



The remove() method copies the last item in the heap—the one at _nItems - 1
—to the root node. It decrements _nItems first because the last item in the
array was just moved to index 0. After clearing the last cell for the garbage
collector, it calls _siftDown() to move the new root item down the heap to
where it belongs. When the sift down finishes, it can return the item removed
from the root node earlier.

The _siftDown() method needs to know which nodes are leaf nodes. Because
the tree is complete, this index can be calculated from the number of items in
the heap. The firstleaf index always occurs at index _nItems // 2. You can
see examples of these index relationships in Figure 13-4. The first tree has five
items, and the first leaf is at index 2. The second tree (the leftmost one in the
second row) has six items, and its first leaf is at index 3. All nodes with an
index equal to or larger than firstleaf are leaf nodes. If index i for the item
to be sifted down is in that range, the item cannot be moved down because it
has no child nodes, so the _siftDown() method returns immediately.

Listing 13-5 The remove() Method for Heaps

class Heap(object): 
… 
   def remove(self):        # Remove top item of heap and return it 
      if self.isEmpty():    # It’s an error if the heap is empty 
         raise Exception("Heap underflow”) 
      root = self._arr[0]   # Store the top item 
      self._nItems -= 1     # Decrease item count 
      self._arr[0] = self._arr[self._nItems] # Move last to root 
      self._arr[self._nItems] = None # Clear for garbage collection 
      self._siftDown(0)     # Move last item down into position 
      return root           # Return top item 
 
   def _siftDown(self, i):  # Sift item i down to preserve heap cond. 
      firstleaf = len(self) // 2 # Get index of first leaf 
      if i >= firstleaf:    # If item i is at or below leaf level, 
         return             # it cannot be moved down 
      item = self._arr[i]   # Store item at cell i 
      itemkey = self._key(item) # and its key 
      while i < firstleaf:  # While i above leaf level, find children 
         left, right = self.leftChild(i), self.rightChild(i) 
         maxi = left        # Assume left child has larger key 
         if (right < len(self) and # If both children are present, and 
             self._key(self._arr[left]) < # left child has smaller 
             self._key(self._arr[right])): # key 



            maxi = right    # then use right child 
         if (itemkey <      # If item i’s key is less 
             self._key(self._arr[maxi])): # than max child’s key, 
            self._arr[i] = self._arr[maxi] # then move max child up 
            i = maxi 
         else:              # If item i’s key is greater than or equal 
            break           # to larger child, then found position 
      self._arr[i] = item   # Move item to its final position

When _siftDown() is called on an internal (nonleaf) node, it stores the item at
i and its key in temporary variables. Then it begins a loop that will descend the
heap tree until it reaches a leaf node or finds a node where the stored item can
be reinserted to preserve the heap condition.

Inside the loop, it gets the indices of node i’s children. If there is only a left
child, it must have the maximum key; otherwise, the left and right child keys
must be compared to determine the index of the child node with the maximum
key, maxi. The test starts by assuming maxi is the left child. If the right child
exists and has a larger key, maxi is set to the right child.

Now the key of the item being sifted down can be compared with the maximum
child key. If the itemkey is smaller than the maximum child key, the maximum
child is moved up. That creates a “hole” at the maximum child node, and i is
updated to point there for the next loop. If the itemkey equals or exceeds the
maximum child key, index i points to where the item belongs, and the loop
terminates by using break.

The final step of _siftDown() moves the item to sift down into cell i. That
fills the last “hole” and restores the heap condition.

Traversal
Traversing the items in a heap is somewhat common. This operation might be
used, for example, to list all the processes waiting to run in a priority queue or
to visit each item and collect statistics. Because the heap only partially orders
the items, it is not easy to traverse the items in the order of their key values.
Instead, the simplest traversal order is the same as traversing the underlying
array.

Listing 13-6 shows the traverse() generator used to step through all the items.
The completeness of the heap tree means it can simply step through every



index for active items in the array. That’s done with a for loop over the range
of indices, yielding each array cell content back to the caller.

Listing 13-6 The traverse() Generator and print() Method for Heaps

class Heap(object): 
… 
   def traverse(self):      # Generator to step through all heap items 
      for i in range(len(self)): # Get each current item index 
         yield self._arr[i] # and yield the item at the index 
 
   def print(               # Print heap tree with root on left 
         self, indentBy=2,  # indenting by a few spaces for each level 
         indent=’’, i=0):   # starting with indent at node i 
      if i >= len(self):    # If item i is not in tree 
         return             # don’t print it 
      next = indent + ’ ’ * indentBy 
      self.print(indentBy,  # Print right subtree of i at next indent 
                  next, self.rightChild(i)) 
      print(indent, self._arr[i]) # Print item i after indent, then 
      self.print(indentBy,  # Print left subtree of i at next indent 
                 next, self.leftChild(i))

Although this simple traversal order doesn’t follow the key ordering, it does
follow a particular order for the heap’s binary tree. The order is called breadth
first because it works across the broad levels of the tree visiting all the nodes at
a particular level in the tree before going to the next lower level. The nodes are
visited from shallowest to deepest, and the breadth of each level is traversed in
order, left to right. Try traversing a medium- or large-sized heap (15 or more
items) using the Visualization tool to see this. This ordering is very useful for
some tree algorithms.

Printing the heap tree is often useful when developing the code. The print()
method in Listing 13-6 prints the tree on its “side,” as was done with trees in
Chapters 8, 9, and 10. The method is recursive and uses a reverse form of in-
order traversal, where the right subtree of a node is printed, then the node itself,
and then its left subtree. The indentation increases for each subtree.

Efficiency of Heap Operations
For a heap with a substantial number of items, the sift up and sift down
algorithms are the most time-consuming part of the operations you’ve seen.



These algorithms spend time in a loop, repeatedly moving nodes up or down
along a path. The maximum number of copies necessary is bounded by the
height of the heap; if there are five levels, four copies carry the “hole” from the
top to the bottom. (We ignore the two moves used to transfer the end node to
and from temporary storage; they’re always necessary, so they require constant
time.)

The _siftUp() method has up to four operations in its loop: (1) calculate the
parent index of the current “hole,” (2) compare the key of the node to insert
with that of the parent, (3) copy the parent down to the “hole,” and (4) move
the “hole” up. The third and fourth operations are skipped on the final iteration
of the loop. The _siftDown() method has up to six operations in its loop: (1)
calculate the left and right child indices of the current “hole,” (2) compare the
keys of the left and right child items, (3) assign the largest child index, (4)
compare the largest child key with that of the item sifting down, (5) copy the
largest child item into the “hole,” and (6) move the “hole” down. The fifth and
sixth operations are skipped on the final iteration of the loop. Both methods
must move the sifted node into the final “hole” after the loop exits.

A heap is a special kind of binary tree, and as you saw in Chapter 8, the number
of levels L in a binary tree equals log2(N+1), where N is the number of nodes.
The _siftUp() and _siftDown() routines cycle through their loops L−1 times,
so the first takes time proportional to log2 N, and the second somewhat more
because of the extra comparison and assignment. Thus, the insert and remove
operations both operate in O(log N) time.

For insertion, you must also consider the time to grow the heap array up to the
size needed to hold all the heap items. The analysis of the time needed to grow
the array follows that of growing the array for hash tables. Remember that
doubling the hash array when the load factor was above a threshold allowed a
hash table for N items to be built in O(N) time. In the case of heaps, the insert
operation is O(log N) instead of O(1). That means inserting N items into a heap
takes O(N×log N) time.

Traversing a heap of N items requires O(N) time. There are no empty cells in
the array that must be visited, like in the hash table, so traversing a heap is a
little faster than a hash table.

A Tree-Based Heap



In the figures of this chapter, we’ve shown heaps as if they were trees because
it’s easier to visualize them that way, but the implementation is array-based. It’s
possible, of course, to use an actual tree-based implementation. The tree will be
a binary tree, but it won’t be a search tree because, as you’ve seen, the ordering
principle is not as strong. It will be a complete tree, with no missing nodes.
Let’s call such a tree a tree-based heap.

One problem with tree-based heaps is finding the last node. You need to find
this node to remove the maximum item because it’s the node that’s inserted in
place of the deleted root (and then sifted down). You also need to find the first
“empty node”—the node just after the last node”—because that’s where the
insert method needs to place the new item before sifting it up. In general, you
can’t search for these nodes because you don’t know their values, and anyway
it’s not a search tree. You could add some fields to a tree-based heap data
structure that maintain pointers to the end, just like for double-ended lists, but
there’s another way that doesn’t require the additional fields.

As you saw in the discussion of the Huffman tree in Chapter 8, you can
represent the path from root to leaf as a binary number, with the binary digits
indicating the path from each parent to its child: 0 for left and 1 for right. It
turns out there’s a simple relationship between the number of nodes in the tree
and the binary number that codes the path to the last node. Assume the root is
numbered 1; the next row has nodes 2 and 3; the third row has nodes 4, 5, 6,
and 7; and so on. This is, of course, one more than the array index used in the
array-based implementation.

To find the last filled node (or the first empty node), convert the number of
nodes (or one more than the number) to binary. For example, say there are 29
nodes in the tree and you want to find the last node. The number 29 (decimal)
is 11101 in binary. Remove the initial 1, leaving 1101. This is the path from the
root to node 29: right, right, left, right. Each 1 in the binary representation
means take the right child, and each 0 means the left. The first available null
node will be found by following the path to 30, which (after removing the
initial 1) is 1110 binary: right, right, right, left. shows the path through the tree.



Figure 13-10 Finding the path to the last node in a 29-node tree.

You can see the binary representation of an integer in Python using the string
format tool. For example, ’{:b}’.format(29) evaluates to ’11101’. It’s also
easy to repeatedly use the % operator to find the remainder (0 or 1) when the



number n is divided by 2 and then use the // or >> operators to divide n by 2
and drop the last bit. When n is less than 1, you’re done. The sequence of
remainders, which you can save in an array, is the binary number. (Be careful
which order you interpret them!)

Using the binary representation allows a tree-based heap to find the path to the
last leaf or next empty leaf, but it doesn’t speed up reaching that node. The
algorithm still must follow all the references from the root to the node, taking
O(log N) steps. For an array-based heap, that can be done in constant time,
O(1).

After the appropriate node (or null child) is found, the heap operations are
straightforward. When you’re sifting up or down, the structure of the tree
doesn’t change, so you don’t need to change linkages to move the actual nodes
around. You can simply copy the data items from one node to the next, like was
done in the array-based implementation. This way, you don’t need to connect
and disconnect all the children and parents for a simple move. The Node class,
however, needs a field for the parent node in addition to the child nodes
because you need to access the parent when you sift up. This is somewhat like
the doubly linked lists you saw in Chapter 5, “Linked Lists.” The root of the
tree should also keep an nItem field to facilitate finding the path to the last leaf
and first empty node.

In the tree heap insertion and removal operations take O(log N) time. As in the
array-based heap, the time is mostly spent doing the sift up and sift down
operations, which take time proportional to the height of the tree. Traversal of a
tree-based heap still takes O(N) time, but the traversal order can be any of the
orders you saw for binary trees: pre-order, in-order, or post-order. While the
name might be “in-order,” the traversal is still not in the order of the item keys.
The flexibility to perform those three orderings comes from the explicit child
references in the structure. It’s possible to do a breadth-first traversal by
converting node numbers to paths from the root, and then following those paths
to the node, but that would take significantly more than O(N) time.

Heapsort
The efficiency of the heap data structure lends itself to a surprisingly simple
and very efficient sorting algorithm called a heapsort.



The basic idea is to insert all the unordered items from a source data structure
into a heap using the normal insert() method. Repeated application of the
remove() method then removes the items in sorted order. Here’s how that
might look to sort a Python sequence into a result array:
theHeap = Heap(size=len(aSequence)) # Create an empty heap
for item in aSequence:             # Loop over unsorted sequence 
   theHeap.insert(item)            # Copy items to heap 
result = []                        # Make a result array
while not theHeap.isEmpty():       # Loop over array indices 
   result.append(theHeap.remove()) # Copy items back to array

This code would put the items in the result array in descending order because
the first item removed from the heap is the maximum. To put the items in
ascending order, you could construct the result array to have enough cells and
then index it in reverse order.

Because insert() and remove() operate in O(log N) time, and each must be
applied N times, the entire sort requires O(N×log N) time, which is the same as
the quicksort. It’s not quite as fast as quicksort overall, however, partly because
there are more operations in the inner while loop in _siftDown() than in the
inner loop in quicksort.

With a little cleverness, we can enhance this basic algorithm to make heapsort
more efficient. The first enhancement saves time, and the second saves
memory.

Sifting Down Instead of Up
If you insert N new items into a heap, you apply the _siftUp() method N
times. You can take advantage, however, of a similar technique to what you did
when removing items: sifting an out-of-sequence item down from the root into
a correctly arranged heap. What’s more, doing this only needs N/2 calls to
_siftDown(), because you need to do it only for internal (nonleaf) nodes. This
approach offers a small speed advantage, even though sifting down is slightly
more time-consuming.

Two Correct Subheaps Make a Correct Heap
To see how this approach works, we need to look at smaller parts of the heaps:
subheaps. What do we mean by subheap? They are just like subtrees inside of



trees. Any node in a heap tree can be thought of as the root of a subheap. Figure
13-11 shows three subheaps outlined with dotted triangles.

Figure 13-11 Sifting down into two correct subheaps makes a correct
heap

Remember that the remove() algorithm extracts the root item, replaces it with
the last item in the heap, decrements the item count, and sifts the root item
down. In that case, an out-of-order item was placed in node 0, and both its
subheaps were correctly ordered. After it was sifted down, the heap condition
was restored. That property generalizes to work at any node in the heap tree. To
be more specific, if you apply _siftDown() to node J and both J’s left and right
subheaps satisfy the heap condition, then the subheap rooted at J will also
satisfy the heap condition after the sift down operation completes. This
property holds whether or not the item at node J satisfied the heap condition
before sifting down.

In Figure 13-11, if an out-of-order item is placed in node J, the subheap rooted
at node J does not meet the heap condition. If you then sift down that item,
subheap J will correctly satisfy the heap condition if both its child subheaps—
rooted at nodes L and R—are correct. When subheap J is correct, you can then
consider what to do with the subheap at its parent, which may not be correct.



This example suggests a way to transform an unordered array into a heap. You
can apply _siftDown() to the nodes on the bottom of the (potential) heap—that
is, at the end of the array—and work your way upward to the root at index 0. At
each step, the subheaps below you will already be correct heaps because you
already applied _siftDown() to them. When you apply it to the root, the
unordered array will have been transformed into a heap.

Notice also, that the nodes on the bottom row—those with no children—are
already correct heaps because they are trees with only one node; they have no
relationships that can be out of order. Therefore, you don’t need to apply
_siftDown() to these nodes. You can start at node N/2 − 1, the rightmost node
with children, instead of N − 1, the last node. Thus, you need only half as many
sift operations as you would using insert() N times. Figure 13-12 shows that
in a 13-node heap, sifting down starts at node 5, then node 4, and so on until it
reaches the root at 0.



Figure 13-12 The _siftDown() method is applied to the internal nodes

In Python, the first internal node of an N node heap has index N // 2 - 1. So,
to apply _siftDown() to the internal nodes, working back to the root, you could



run
for j in range(N // 2 - 1, -1, -1): 
   theHeap._siftDown(j);

Using the Same Array
The initial code fragment for the heapsort showed unordered data in a
sequence. This data was then inserted into a heap and finally removed from the
heap and written back to an array in sorted, descending order. In this procedure,
three size-N structures are required: the initial sequence, the array used by the
heap, and the result array.

In fact, the same array can be used for all three: the input, the heap, and the
result array. Reusing the array cuts the amount of memory needed for heapsort
by two-thirds; no memory beyond the initial array is necessary. In other words,
you can create the heap in place. This approach only works, of course, if the
source data is in an array to start. To use the heapsort algorithm on data stored
in a hash table or linked list, the items would need to be inserted into a heap
and then removed (or the underlying array returned as the result).

You’ve already seen how _siftDown() can be applied to half the elements of
an array to transform them into a correct heap. If you transform the unordered
array data into a heap in place, only one array is necessary for this task. Thus,
the first step in heapsort requires only one array.

What about the second step when you apply remove() repeatedly to the heap?
Where are you going to put the items that are removed?

Each time an item is removed from the heap, an element at the end of the heap
array becomes empty because the heap shrinks by one. You can put the
removed item in this newly freed cell. As more items are removed, the heap
array becomes smaller and smaller, while the array of ordered data becomes
larger and larger. In other words, part of the array is holding the heap, and part
is holding the sorted output. With a little planning, it’s possible for the ordered
array and the heap array to share the same space.

The fact that all the work can be done in one array means that you don’t need a
separate heap object to hold the intermediate results. You can simply operate on
the input array and heapify it. The array starts off unsorted. All N items are
part of the unsorted section. When you construct the heap, the leaf nodes—the
second half the array—are automatically part of the heap. The first half of the



array contains the unsorted section. As you sift items down, the unordered
section of the array shrinks as the heap grows. When the array is fully
heapified, then you can start removing the maximum item from index 0 and
placing it at the end of the array. That way, you avoid disrupting the heap
because the heap has shrunk by one.

The Heap Visualization tool can heapify an array of data items by their keys.
To see an example, use the Erase and Random Fill button to erase any existing
data and fill the array with a few dozen items. While the array is full, the heap
tree shows only the root node, as in Figure 13-9, because the random
arrangement of data is unlikely to satisfy the heap condition.

Start the heapification by selecting the Heapify button. Figure 13-13 shows a
snapshot during the processing of a 30-item array. After creating the 15 leaf
nodes, the algorithm steps backward through the internal nodes just above the
leaves. In the figure, 6 of the internal nodes have been made into subheaps,
with 5 of them satisfying the heap condition locally. The arrow labeled j
indicates that it is about to sift down item 37 to make that subheap satisfy the
heap condition. After it finishes making all the 3-node (and one 2-node)
subheaps, it goes to the next higher level and joins them into 7-node (and one
6-node) subheaps. Note that the j arrow points at item 37 in both the array on
the left and the partial tree on the right, indicating the boundary between the
array cells that have been heapified so far.

Figure 13-13 Heapifying an array of 30 random items in the Visualization
tool

With the data now in the form of a heap, the heapsort can begin producing the
final, sorted ordering. The Visualization tool doesn’t show the sorting process,



so let’s follow the full process in a small example. Figure 13-14 shows the
sorting of a six-item array in place using heapsort. The first row shows the
heapification process, and the second row shows the construction of the sorted
array.

Figure 13-14 Heapsort in place

The array in the upper left of the figure is the original, unsorted array. The next
step to the right shows the starting state in heapifying the array. The last three
items of the array—indices 3 through 5—are treated as leaf nodes in the partial
heap (shown by the dashed line encircling those nodes). You could also call
these leaves “single node subheaps.” Note that not one of the items in the array
has changed; a range of those nodes/cells has simply been marked as the heap
area.

The third step shows what happens after calling siftDown() on the node at
index 2. The original item in node 2 has key 28. That gets sifted down to node
5 and item 75 moves up. The heap now has four items—indices 2 through 5.
The figure shows the other items in nodes 0 and 1, but they are not part of the
heap. (The Visualization tool shows a node at the root of the heap tree during
heapification, but it is not connected to the other nodes and is not part of the
collection of verified subheaps.)

The fourth step shows the outcome of sifting down item 36 from node 1. It
swaps places with item 89 in node 4, and the heap now has five items. The red
links show that the heap condition has been confirmed for the connected nodes.

In the fifth step, the final item at node 0, item 51, is sifted down. It swaps
places with item 89 but doesn’t need to sift down any further to the second



level. Now that the six-item array is fully heapified; it’s a complete, correct
heap. That is shown at the right end of the top row of Figure 13-14.

The heapsort algorithm then removes items from the top of the heap and places
them at the end of the array. Removing the maximum item to place at the end
of the array effectively swaps the root item with last item in the heap. In the
example in the figure, item 89 at the root is swapped with item 28 at node 5.
Then item 28 sifts down into node 2 as shown in the sixth step (first step of the
second row) of Figure 13-14. Item 89 sits at the end of the array, which is
outside of the heap range of 0 through 4.

The seventh step takes the maximum item at the root, item 75, swaps it with the
last item of the heap, item 36, and sifts item 36 down. This time the item goes
down the left branch to node 1. Item 51 moves up to the root. The extracted
maximum, 75, ends up in node 4. Now the four-item heap spans indices 0
through 3, and indices 4 and 5 hold the partial result.

The eighth and ninth steps are similar. They swap the root and last items of the
heap, and then sift down from the root. Each time, the maximum item from the
root is placed just before the other sorted items from previous steps. The heap
shrinks and ends up with just one element in the heap. At this point, the array is
fully sorted. The one-item heap contains the item with the minimum key.
There’s no need to swap it with the last heap item, itself, and do any sifting.

Going through the details shows the very efficient use of the array. The heap
starts as the second half of the array, and heapify grows it to include all the
items up to the root. Then the heap shrinks while occupying the first part of the
array as items are removed. Let’s look at the code to do this.

The heapsort() Subroutine
Here, we combine the two techniques—converting the array into a heap
(“heapifying” it) and then placing removed items at the end of the same array—
together in a subroutine that performs heapsort on an input array.

The heapsort() subroutine shown in Listing 13-7 takes a Python array (list)
and sorts its items by their keys as extracted by the key function, which defaults
to the identity() function. The first statement sets a local variable, heapHi, to
manage the range of indices where the heap is stored. We use the same
mapping of array indices to binary tree nodes as in the Heap class. It calls the



heapify() routine to organize the items into a heap. Let’s first discuss
heapify() and then return to heapsort().

Listing 13-7 The heapsort(), heapify(), and siftDown() Subroutines

def heapsort(array,         # Sort an array in-place by keys extracted 
             key=identity): # from each item using the key function 
   heapHi = len(array)      # Make entire array from 0 to heapHi 
   heapify(array, heapHi, key) # into a heap using heapify 
   while heapHi > 1:        # While heap has more than 1 item 
      heapHi -= 1           # Decrement heap’s higher boundary & swap 
      array[0], array[heapHi] = array[heapHi], array[0] # max and last 
      siftDown(array, 0, heapHi, key) # & sift down item moved to top 
 
def heapify(array,          # Organize an array of N items to satisfy 
            N=None,         # the heap condition using keys extracted 
            key=identity):  # from the items by the key function 
   if N is None:            # If N is not supplied, 
      N = len(array)        # then use number of items in array 
   heapLo = N // 2          # The heap lies in the range [heapLo, N) 
   while heapLo > 0:        # Heapify until the entire array is a heap 
      heapLo -= 1           # Decrement heap’s lower boundary 
      siftDown(array, heapLo, N, key) # Sift down item at heapLo 
 
def siftDown(array,         # Sift item down in heap starting from 
             j,             # node j 
             N=None,        # down to but not including node N 
             key=identity): # using key function to extract item’s key 
   if N is None:            # If N is not supplied, 
      N = len(array)        # then use number of items in array 
   firstleaf = N // 2       # Get index of first leaf in heap 
   if j >= firstleaf:       # If item j is at or below leaf level, 
      return                # it cannot be moved down 
   item = array[j]          # Store item at cell j 
   itemkey = key(item)      # and its key 
   while j < firstleaf:     # While j above leaf level, find children 
      left, right = j + j + 1, j + j + 2 # Get indices of children 
      maxi = left           # Assume left child has larger key 
      if (right < N and     # If both children are present, and 
          key(array[left]) < # left child has smaller 
          key(array[right])): # key 
         maxi = right       # then use right child 
      if (itemkey <         # If item j’s key is less 
          key(array[maxi])): # than max child’s key, 
         array[j] = array[maxi] # then move max child up 
         j = maxi           # and continue from new “hole” 



      else:                 # If item j’s key is greater than or equal 
         break              # to larger child, then found position 
 
   array[j] = item          # Move item to its final position

The heapify() subroutine determines the amount of the data within the array,
N, in case the caller did not provide it. The lower bound of the heap, heapLo, is
set to N // 2 because all the leaf nodes are correct, single-item subheaps. Thus,
the heap covers the cells from heapLo to N - 1. The while loop expands the
heap by reducing heapLo to incorporate all the nonleaf nodes. It starts with the
node immediately before the heap, at heapLo - 1. That’s the rightmost internal
node at the lowest level of the tree. The item there is sifted down by calling the
siftDown() routine on the array and passing the heap bounds, heapLo to N.
This loop continues until heapLo reaches 0, which means all the internal nodes
have been sifted into the heap.

When heapify() is done, control returns to heapsort(). The while loop there
removes items from the heap in descending order by key. Like the way the
Heap.remove() method in Listing 13-5 operates, the number of items in the
heap is reduced by decrementing heapHi. Instead of copying the maximum
item to a temporary variable, however, it is swapped with the last item of the
heap. That puts the maximum item at the end of the array, in its final position
for the result. The swap also moves the last leaf item to the root, and the next
call to the siftDown() routine sifts it down into the remaining heap.

The loop stops when heapHi is 1 because a single-item heap needs no sifting,
and the remaining item must have the smallest key. When the loop finishes, the
array’s items are sorted in order of increasing key values.

The siftDown() routine is nearly the same as the private Heap._siftDown()
method in Listing 13-5. The difference is that in the heapsort() context, it
must pass the array and the range of indices where the heap lies. That changes
as heapsort() runs. The operation only needs to know the index of the node to
sift down, where the heap ends, and the key function because it does not move
up in the heap tree.

If the end of the heap is not provided, the length of the array is used. The index
of the first leaf node in the heap is calculated to determine when sifting down
terminates. If the item to be sifted down is at or below the first leaf (in other
words, has an index at or above firstleaf), nothing needs to be done, and the
routine returns to the caller.



When node j is an internal node, siftDown() stores the item and its key in
temporary variables. Then it starts a loop to perform the item moves needed to
position the item in the correct position within its subheaps. It calculates the
child node indices and determines the one with the maximum key. Then the
itemkey is compared with the maximum child key. If the itemkey is smaller,
the maximum child is moved up and the loop continues downward until a leaf
node is reached. At the end of the loop, the item is moved into the cell last
visited in the loop.

The Efficiency of Heapsort
As we noted, heapsort runs in O(N×log N) time. Although it may be slightly
slower than quicksort, an advantage over quicksort is that it is less sensitive to
the initial distribution of data. Certain arrangements of key values can reduce
quicksort to slow O(N2) time, whereas heapsort runs in O(N×log N) time no
matter how the data is distributed. Both sort methods take O(N) memory, and
both can sort arrays in place.

What might be somewhat surprising is that the first part of heapsort, the
heapification of the array, takes only O(N) time. Extracting the full sorted
sequence is what requires the O(N×log N) time. You can take advantage of that
capability for other algorithms such as in statistics.

Order Statistics
Heaps have another special application: calculating order statistics. When you
analyze large quantities of data, a variety of statistical measures provide
information about the overall distribution of data. When the data can be ordered
—from smallest to largest, darkest to brightest, earliest to latest, and so on—
you typically want to know the minimum and maximum values. They are easy
to compute by going through all the values once and updating variables that
store the minimum and maximum values found.

Word clouds are a common example of the use of order statistics. In word (or
text) clouds, the frequency of words in a collection such as books, chat
messages, essays, or speeches is used to determine the size of the words in a
graphic. Figure 13-15 shows a word cloud derived from several of Mahatma
Gandhi’s speeches. The largest words were the most common, and the word
size indicates how frequently the other terms appeared. (Very common words



such as is, be, a, and to are not shown. The speech transcripts are from
www.mkgandhi.org/speeches/speechMain.htm, and the word cloud was
produced by www.wordclouds.com.)

Figure 13-15 Word cloud made from several of Mahatma Gandhi’s
speeches

What if you want to find the median value? The median value lies above half
the data observations and below the other half. The median is a very useful
statistic because it is less sensitive to changes at the ends of the distribution.
Other analyses look for the quartiles or deciles. That is the value in which a
quarter or a tenth of the data is less than the value. These values can be used,
for instance, to identify the least used or most used routers in a network, or the
largest contributors to a political campaign.

To find these order statistics like the decile, quartile, or median, and perhaps go
a step further to not just identify the value but also collect all the records that
fall within, say, the highest decile, you could sort the data. With heapsort or
quicksort, you can do that in O(N×log N) time. That’s fast, but still quite a bit
more than the O(N) time it takes to find the minimum, maximum, and linear
statistics like the average. Is there a faster way?

Partial Ordering Assists in Finding the Extreme
Values
As you’ve seen, the maximum (or minimum) keyed item goes to the root of a
heap. If you want to find the 10 highest keyed items, you can simply remove 10
items from the heap. Removing these items could save quite a bit of work

http://www.mkgandhi.org/speeches/speechMain.htm
http://www.wordclouds.com/


compared with using heapsort to fully sort, say, 10 million records, just to find
the 10 highest. So, you need to put the data in the heap efficiently and remove
only the desired items.

How much time does it take to make the heap? As you saw in heapsort, if the
data is already in an array that can be modified, you can heapify the items by
sifting down all the items stored in internal nodes. As shown in Listing 13-7,
the heapify() subroutine consists of a single loop over the data calling
siftdown() on each of the internal nodes.

Getting the highest keyed items from the array operates similarly to
heapsort(), but removes only a fixed number, K, of items. The highest()
function shown in Listing 13-8 starts off by determining the number of items in
the array and then heapifying it. A result array of K-elements is allocated to
hold the maximum-keyed items.

Listing 13-8 Subroutine to Get the K Highest Keyed Items in an Array

def highest(K, array,       # Get the highest K items from an array 
            N=None,         # of N items by heapifying the array based 
            key=identity):  # on keys extracted by the key function 
   if N is None:            # If N is not supplied, 
      N = len(array)        # then use number of items in array 
   heapify(array, N, key)   # Organize items into a heap 
   result = [None] * K      # Construct an output array 
   heapHi = N               # End of heap starts at last item 
   while N - heapHi < K:    # While we have not yet removed K items, 
      result[N - heapHi] = array[0] # Put max from heap in result 
      heapHi -= 1           # Decrement heap’s higher boundary & swap 
      array[0], array[heapHi] = array[heapHi], array[0] # max and last 
      siftDown(array, 0, heapHi, key) # & sift down item moved to top 
 
   return result            # Return K-item result

The highest() function uses a while loop to remove the K items from the
heap. Each removal shrinks the heap, lowering the heapHi index by one, and
the count of items removed is the difference between the end of the array, N,
and heapHi. That difference is used as the index in the result array for storing
the output items (in descending order by key). The heapHi index is then
decremented to effectively remove the maximum-keyed item from the heap.
The first and last items on the heap are swapped, and the new item at the root is
sifted down into the correct heap position.



When the highest() function returns, the result array contains the K highest-
keyed items in descending order, and the input array has been rearranged to
satisfy the heap condition in the first N − K cells, followed by K cells of the
highest-keyed items in increasing order by key.

The Efficiency of K Highest
How much work is done in computing highest()? There are two phases to
consider. The first phase is the heapify() operation on N items, and the second
is the removal of the K highest-keyed items.

Analyzing the complexity of the second phase is straightforward. Removing an
item causes one item to sift down through the heap. It’s possible that the item
sifts down to the leaf level of the heap. The full heap has log2(N+1) levels, so
the removal phase takes O(K×log N) time. The heap does shrink by one for
each removal, but we can assume that N is much bigger than K, and K is 1 or
larger, so log(N) doesn’t change significantly as K items are removed.

The analysis of the first phase might be a surprise. As mentioned earlier, the
heapify() operation takes O(N) time, even though it must go through half of
the items in the array, sifting them down into the heap. That means the overall
complexity of computing highest() is O(N + K×log N). When K is much
smaller than N, that is quite an improvement over a heapsort that takes
O(N×log N).

To understand how heapify() takes O(N) time, let’s first imagine that the sift
down operation does not depend on the depth of the heap. Then each internal
node would take O(1) time, so processing all N/2 of them would take O(N)
time. You can think of that as a lower bound on how fast heapify() computes.

The next step is to look at how much work is done for each internal node. All
the leaf nodes and perhaps some internal nodes have been processed to form a
group of subheaps, as shown in Figure 13-16. The dashed line surrounds the
nodes that have been processed so far, and the red circle surrounds the next
item to sift down.



Figure 13-16 Sifting down during heapify

The item sifting down lies at a particular level, L, of the overall heap. It can sift
down all the way to the leaf level, which lies at log2(N+1). The figure shows
the difference between L and the leaf level as the sift depth. For the leaves, the
sift depth is zero. For the parents of the leaves, it’s one. Each level higher in the
tree adds one until you reach the root, where the sift depth is log2(N+1).

The sift depth limits the amount or work that must be done for a particular
node. If the sift depth is S, it will take at most S×2 comparisons and S copies to
shift the stored items along the path to the leaf nodes. The reason is that you
need one comparison to find the maximum child, one comparison of the
maximum child with its parent, and one copy to move the maximum child up
(in the worst case).

Now you have a maximum bound on the work at each node. Let’s see what the
whole tree could require. Assume that you have complete binary tree where
every level is full of nodes. Down at the leaf nodes, the sift depth is zero, so
you don’t even try to sift them down. Half of the tree’s nodes are leaf nodes
(technically, (N + 1) / 2). They don’t add anything to the total work.

One level up from the leaves, you have S = 1, a sift depth of one. How many
nodes are at that level? Exactly half as many as there are leaves, so (N + 1) / 4,
need to sift down at most one level. You can start writing down the total work
done on these first two levels by multiplying the sift depth with the number
nodes at that depth:



In this case, 1 is the amount of work when S = 1. If you count comparisons and
copies equally, then it might actually take 3 units of work. Because that 3 is a
constant, and constants are ignored later when looking at the Big O complexity,
you leave that constant out.

Moving up a level, you reach S = 2 and the number of nodes is halved again:

Let’s move the common (N + 1) part out of the sum for all the levels:

As you go up in sift depth, a pattern emerges. Each term in the sum multiplies
the sift depth, S, with a fraction that is a power of ½. When you sum up K of
those levels, you get

Notice that most of the internal nodes lie near the bottom of the tree and have a
small sift depth (half of them have sift depth 0). The root of the tree has the
largest sift depth, but there’s only one root node. So, you must process many
nodes with short distances to sift down, and fewer nodes with longer distances.
In the summation, each term that’s added is smaller than the term before it.
That means that it might be going down so fast that it doesn’t keep expanding
the total for more levels.

Let’s now write the summation compactly. You sum from sift depth 0 up to the
maximum sift depth at the root, log2(N+1). You use S to stand for the sift
depth. That makes the total work for all levels:

The first term in the total work is (N + 1). If that fancy summation on the right
doesn’t grow with N, then you end up with the work taking O(N) time! Is that



even possible?

To answer that, you need to bring in some math knowledge of other
summations.

The first summation is easy to see visually. Figure 13-17 shows the example
when x is ½. When ½ is raised to the power 0, it is one and is represented by
the square on the left. When it’s raised to the power 1, it is one-half that size
and is represented by the rectangle on the lower right. With each successive
power, you divide the last rectangle in half and place it in the space at the
upper-right corner.

Figure 13-17 Infinite sum of the powers of ½

These ever-shrinking rectangles continue to fill up half of the remaining space.
They never shrink to zero, but the space remaining continues to shrink. As the
power goes to infinity, the total space of all the rectangles sums to 2. How do
you know that? If you look at the rectangle that holds all the squares and little
rectangles in the figure, it’s exactly twice as big as the first square, which
contributed exactly 1 unit to the total. Looking at the first formula and
substituting ½ for x, you get 1 / (1 − ½), which is 2.



The second summation formula comes by taking the derivative of both sides of
the first equation and then multiplying both by x. That’s hard to see visually. If
you haven’t seen it before, it’s part of calculus.

You can use the second summation to simplify the total work equation. By
summing all the way to infinity, instead of just to log2(N+1), you get an upper
bound on the work done by heapify().

The summation over S doesn’t quite match the formula with jxj but you can
modify it by factoring out one of the powers of ½:

Substituting ½ for x in the second summation formula above, you get

So, the upper bound on the total work performed by heapify() is just a
multiple of N, and that means heapify runs in O(N) time. Proving that took
somewhat complicated math but was worth the effort. It means that highest()
runs in O(N + K×log N) time to find the K highest keyed items. Compared with
a heapsort() that takes O(N×log N) time, it saves O((N − K)×log N − N) time.
The bigger the difference between N and K, the more important it is to use
highest().

Summary
• A heap is a fundamental data structure that organizes items in a partial

ordering within a binary tree.

• The item with the largest key is stored at the root of the heap tree.



• The heap condition requires that the key of an item at a node of the tree is
greater than or equal to those of its child nodes, if any.

• The binary tree for the heap is always complete. All levels of the tree are
completely full, and the lowest level can only be missing nodes on the
right.

• Priority queues are typically constructed using heaps either as
descending-priority queues or ascending-priority queues (where the
smallest keyed item is at the root of the heap tree and all children have
keys greater than or equal to their parent’s).

• Heaps and priority queues offer common methods: inserting a new item,
removing the largest item, and peeking at the first (largest) item.

• A heap offers removal of the largest item, and insertion, in O(log N) time.

• Heaps support traversal but do not support ordered traversal of the data,
locating an item with a specific key, nor deletion.

• Heaps are usually implemented as arrays, taking advantage of the
completeness of the binary tree to uniquely map array cells to tree nodes.

• The root is at index 0 and the last item at index N−1.

• The completeness of the tree ensures that all cells between 0 and N−1 are
used.

• Insertion operates by placing an item in the first vacant cell of the array
and then sifting it up to its appropriate position.

• When an item is removed from the root, it’s replaced by the last item in
the array, which is then sifted down to its appropriate position.

• The sift up and sift down processes can be thought of as a sequence of
swaps but are more efficiently implemented as a sequence of copies.

• If the heap supports changing the priority of an arbitrary item, it must
first locate the node with the item. Next, its key is changed. Then, if the
key was increased, the item is sifted up, and if the key was decreased, the
item is sifted down.



• A heap can be implemented using nodes and references to form the
binary tree (not a search tree). This is called a tree-based heap.

• Algorithms exist to find the last occupied node or the first free node in a
tree-based heap using the number of items in the tree.

• Heapsort is an efficient sorting procedure that requires O(N×log N) time.

• Conceptually, heapsort consists of making N insertions into a heap,
followed by N removals.

• Heapsort can be made to run faster by applying the sift down algorithm
directly to N/2 items in the unsorted array, rather than inserting N items.

• The same array can be used for the initial unordered data, for the heap
array, and for the final sorted data. Thus, heapsort requires no extra
memory.

• The heapify operation organizes the items in an array to satisfy the heap
condition.

• Heapifying an array takes O(N) time.

• Finding the K highest (or lowest) keys among N items in an array can be
done efficiently using heapify followed by K removals.

• The complexity of finding these K order statistics is O(N + K×log N).

Questions
These questions are intended as a self-test for readers. Answers may be found
in Appendix C.

1. What does the term complete mean when applied to binary trees?
a. All the necessary data items have been inserted.
b. All the rows are filled with nodes, except possibly the bottom one.
c. All existing nodes contain data.
d. The node arrangement satisfies the heap condition.

2 What does the term partially ordered mean when applied to heaps?



3. When an item is removed from a heap, it is always removed from the
__________.

4. When an item is inserted into a heap,
a. a hole is introduced at the root node and sifted down until it reaches

the position the item should occupy.
b. a search starts from the root to find the item with the key equal to or

just above the key to insert, and the item is inserted as that node’s
child.

c. the maximum item in the heap is moved to the first empty cell, and
the new item is inserted and sifted down until it reaches the position it
should occupy.

d. the item is inserted in the first empty cell and then sifted up until it
reaches the position it should occupy.

5. A heap can be represented by an array because a heap
a. is a binary tree.
b. is partially complete.
c. is partially ordered.
d. satisfies the heap condition.

6. The last node in a heap is
a. always a left child.
b. always a right child.
c. always on the bottom row.
d. never less than its sibling.

7. A heap is to a priority queue as a(n) _______ is to a stack.
8. Which operation is more complex, sifting up or down? Why?
9. The basic heapsort concept involves

a. removing data items from a heap and then inserting them again.
b. inserting data items into a heap and then removing them.
c. copying data from two heaps into another empty one, merging their

items.



d. copying data from the array representing a heap to the heap tree.
10. How many arrays, each big enough to hold all the data, does it take to

perform a heapsort?
11. The time complexity of running heapsort is O(_______).
12. Compared to quicksort, heapsort is _______.
13. To heapify an array:

a. the items in the second half of the array are sifted up.
b. the items in the array are sequentially inserted into a separate heap

data structure.
c. the array is reordered in place to establish the heap condition between

nodes.
d. the heapsort algorithm is applied to the leaf nodes of the partial heap

tree.
14. The heapify() routine on an N-item array takes O(_______) time.
15. To get the K highest keyed items from an N-item array takes

O(_______) time.

Experiments
Carrying out these experiments will help to provide insights into the topics
covered in the chapter. No programming is involved.

13-A Imagine you have a heap, H, and you insert an item M on it that
has a key larger than any item currently in the heap. If you now remove
an item from the heap, you will get item M as the item returned. Will the
heap after the two operations be identical to what it was before? By
identical, we mean all the items are in the same nodes of the binary tree
as they were before. Why or why not?

13-B Sorting algorithms are called stable when items with equal keys
remain in the same relative order after an array of items is sorted. Does
the heapsort() of Listing 13-7 implement a stable sort? Why or why
not?

13-C While the Visualization tool does not perform a heapsort, it can
shed light on Experiment 13-B. Insert some items with equal keys. Then



remove them. The color of the nodes is the secondary data item.
Carefully note the colors assigned to each item. Can you find examples
where the items are removed in something other than the reverse of the
order they were inserted?

13-D Does the order in which data is inserted in a heap affect the
arrangement of the heap? Use the Heap Visualization tool to find out. Try
taking a group of seven distinct keys and inserting them in different
orders.

13-E Use the Visualization tool’s Insert button to insert 10 items in
ascending order into an empty heap. If you remove these items with the
Remove Max button, will they come off in the reverse order? Does the
answer change depending on which 10 items are inserted?

Programming Projects
Writing programs to solve the Programming Projects helps to solidify your
understanding of the material and demonstrates how the chapter’s concepts are
applied. (As noted in the Introduction, qualified instructors may obtain
completed solutions to the Programming Projects on the publisher’s website.)

13.1 Add two levels() methods to the Heap class that return the number of
levels in the heap. An empty heap has zero levels. A heap with one item
has one level. The number of levels is one more than the level of the
deepest leaf node. Implement levels_loop() by making a loop that
descends the heap tree to find the deepest leaf, counting the levels along
the way. Implement levels() by using Python’s math package and its
log2() function on the number of items in the heap. Test your program
on heaps of sizes ranging from 0 to 33 items.

13.2 Make a version of Heap that accepts a flag in its constructor to select an
ascending, rather than descending, heap. In other words, the item key at
the root is the smallest rather than the largest, and child items have keys
greater than or equal to their parent, when ascending is chosen. Make
sure all operations work correctly for both ascending and descending
heaps.

13.3 Implement a merge() method for the Heap class that takes a second
heap and merges its items into the object. The method should check that
the key functions are identical for two heaps and raise an exception if



they differ. Is there a faster way to merge the heaps than removing items
from the second one and inserting them in the first? Hint: Think about
the analysis for heapsort and K highest. Demonstrate your program
merging both empty and nonempty heaps, and heaps with different key
functions.

13.4 Implement a replaceItem() method for the Heap class that behaves
like the change_priority() method described in the “Other
Operations” section. The replaceItem() method should take two
arguments: an item already in the heap and a new item to replace it.
Because the heap only has a function to extract keys from items, it
cannot update the key of the existing item, so a new item must replace
it. Your implementation must find the existing item in the heap and raise
an exception if it is not found. After the item is found, it should replace
the item and then sift it either up or down, depending on whether the
new item key is larger or smaller than the old one.
The search for the item to replace can be made more efficient by not
searching subheaps where the key of the existing item exceeds that of
the top of the subheap. All the keys in the subheap must have equal or
lower values. This filtering of subheaps can be done by starting with a
queue containing just the root index. At each iteration, remove an index
from the queue. If it indexes the goal item, stop and return the value. If
not, put the child node indices in the queue if their keys equal or exceed
the goal key. If the queue becomes empty, the item is not in the heap.
Demonstrate the results of your program for these cases:

• Item exists in heap; replacement item has a higher key

• Item exists in heap; replacement item has a lower key

• Item not in heap and has a key higher than all those in the heap

• Item not in heap and has a key lower than all those in the heap

13.5 Use the word frequency-counting program that was built for
Programming Project 11.5 to analyze the 20 most frequently used and
20 least frequently used words in a text file. As a reminder, the word
frequency program reads a text file, extracts the individual words, and
counts the number of times they occur using a hash table. The program
should traverse the items in the hash table and insert them into a plain
array. The array can then be heapified first in descending order and then



ascending order using the word count as the key. Use something like the
highest() subroutine to extract and print the top 20 for each order. Be
careful if the text file has fewer than 40 distinct words in it. Finding the
top K words won’t produce a good word cloud because the most
frequently occurring words are likely to be the most common words in
the source language of the text, but it still can yield interesting results.



14. Graphs

In This Chapter

• Introduction to Graphs

• Traversal and Search

• Minimum Spanning Trees

• Topological Sorting

• Connectivity in Directed Graphs

Graphs are among the most versatile structures used in computer programming.
They appear in all kinds of problems that are generally quite different from
those we’ve dealt with thus far in this book. If you’re dealing with general
kinds of data storage problems such as records in a database, you probably
don’t need a graph, but for some problems—and they tend to be interesting
ones—a graph is indispensable.

Our discussion of graphs is divided into two chapters. In this chapter we cover
the algorithms associated with unweighted graphs, show some problems that
these graphs can represent, and present a visualization tool to explore them. In
the next chapter we look at the more complicated algorithms associated with
weighted graphs.

Introduction to Graphs
Graphs are data structures rather like trees. In a mathematical sense, a tree is a
particular kind of graph. In computer programming, however, graphs are used
in different ways than trees.

The data structures examined previously in this book have an architecture
dictated by the algorithms used on them. For example, a binary tree is
structured the way it is because that “shape” makes it easy to search for data



and insert new data. The links between nodes in a tree represent quick ways to
get from parent to child.

Graphs, on the other hand, often have a shape dictated by a physical or abstract
problem. For example, nodes in a graph may represent cities, whereas edges
(links) may represent airline flight routes or roads or railways between the
cities. Another more abstract example is a graph representing the individual
tasks necessary to complete a project. In the graph, nodes may represent tasks,
whereas directed edges (with an arrow at one end) indicate which task must be
completed before another. In both cases, the shape of the graph arises from the
specific real-world situation.

If graphs represent real-world things, what can they be used for? Well, the ones
that describe transportation links can be used to find all the possible ways of
getting from one place to another. If you’re only interested in the shortest path
(or maybe the longest), there are algorithms that use graphs to find that path.
When the graph represents communication between people, you can find
clusters of people that form communities or organizations. Similarly,
communication graphs can be used to find people or groups that are isolated
from one another.

Before going further, we must mention that, when discussing graphs, nodes are
traditionally called vertices (the singular is vertex). The links between vertices
are called edges. The reason is probably that the nomenclature for graphs is
older than that for trees, having arisen in mathematics centuries ago.

Definitions
Figure 14-1 shows a simplified map of the major freeways in the vicinity of
Seattle, Washington. Next to the map is a graph that models these freeways.



Figure 14-1 Roadmap and a corresponding graph

In the graph, circles represent freeway interchanges, and straight lines
connecting the circles represent freeway segments. The circles are vertices, and
the lines are edges. The vertices are usually labeled in some way—often, as



shown here, with letters of the alphabet. Each edge connects and is bounded by
the two vertices at its ends.

The graph doesn’t reflect the exact geographical positions shown on the map; it
shows only the relationships of the vertices and the edges—that is, which edges
are connected to which vertex. It doesn’t concern itself with physical distances
or directions (even though the figure shows them in roughly the same
orientation as the map). The primary information provided by the graph is the
connectedness (or lack of it) of one intersection to another, not the actual
routes.

Adjacency and Neighbors
Two vertices are said to be adjacent to one another if they are connected by a
single edge. Thus, in Figure 14-1, vertices C and E are adjacent, but vertices C
and F are not. The vertices adjacent to a given vertex are said to be its
neighbors. For example, the neighbors of vertex D are B, E, and F.

Paths
A path is a sequence of edges. The graph in Figure 14-1 has a path from vertex
A to vertex F that passes through vertices B and D. By convention, we call this
path ABDF. There can be more than one path between two vertices; another
path from A to F is ACEF. Because this graph came from a road network, you
can easily see the correspondence of real-world routes to paths in the graph.

Connected Graphs
A graph is said to be connected if there is at least one path from every vertex to
every other vertex, as in the graph in Figure 14-1. If “You can’t get there from
here” (as a rural farmer might tell city slickers who stop to ask for directions),
the graph is not connected. For example, the road networks of North America
are not connected to those of Japan. A nonconnected graph consists of several
connected components. In Figure 14-2, two graphs with the same group of
vertices are shown. In the graph on the left, all five vertices are connected,
forming a single connected component. The graph on the right has two
connected components: B-D and A-C-E.



Figure 14-2 Connected and nonconnected graphs

Note that an edge always links two vertices in a graph. It would be incorrect to
eliminate, for instance, vertex D in the right-hand graph of Figure 14-2 and
leave a “dangling” edge connected to B.

For simplicity, the algorithms we discuss in this chapter are written to apply to
connected graphs or to one connected component of a nonconnected graph. If
appropriate, small modifications usually enable them to work with
nonconnected graphs as well.

Directed and Weighted Graphs
Figure 14-1 and Figure 14-2 show undirected graphs. That means that the
edges don’t have a direction; you can go either way on them. Thus, you can go
from vertex A to vertex B, or from vertex B to vertex A, with equal ease.
Undirected graphs model rivers and roads appropriately because you can
usually go either way on them (at least, slow-flowing rivers). Sometimes
undirected graphs are called bidirectional graphs.

Graphs are often used to model situations in which you can go in only one
direction along an edge—from A to B but not from B to A, as on a one-way
street, the northbound or southbound lanes of a freeway, or downstream on a
river with waterfalls and rapids. Such a graph is said to be directed. The



allowed direction is typically shown with an arrowhead at the end of the edge.
A valid path in a directed graph is a sequence of edges where the end vertex of
edge J is the start vertex of edge J + 1.

In some graphs, edges are given a numeric weight. The weight is used to model
something such as the physical distance between two vertices, or the time it
takes to get from one vertex to another, or how much it costs to travel from
vertex to vertex (on airline routes, for example). Such graphs are called
weighted graphs. We explore them in the next chapter.

In this chapter we start the discussion on simple undirected, unweighted
graphs; later we explore directed, unweighted graphs. We have by no means
covered all the definitions and descriptions that apply to graphs; we introduce
more as we go along.

The First Uses of Graphs
One of the first mathematicians to work with graphs was Leonhard Euler in the
early eighteenth century. He solved a famous problem dealing with the bridges
in the town of Königsberg, on the Baltic coast. This town on a river included an
island and seven bridges, as shown in Figure 14-3.

Figure 14-3 The bridges of Königsberg



The problem, much discussed by the townsfolk, was to find a way to walk
across all seven bridges without recrossing any of them. We don’t recount
Euler’s solution to the problem; it turns out that there is no such path. The key
to his solution, however, was to represent the problem as a graph, with land
areas as vertices and bridges as edges, as shown at the right of Figure 14-3.
This is perhaps the first example of a graph being used to represent a problem
in the real world.

Note that in the graph of the Königsberg bridges, multiple bridges connect the
different land areas. For example, the island, A, connects to the lower bank of
the river, C, by bridges u and w. The graph shows multiple edges, and the edges
are labeled to distinguish them. The term for a graph that allows multiple edges
to connect a single pair of vertices is a multigraph. In this the case, the edge
labels aren’t weights—just ways to distinguish the possible paths between
vertices A and C.

Representing a Graph in a Program
It’s all very well to think about graphs in the abstract, as Euler and other
mathematicians did, but you want to represent graphs using a computer. What
sort of software structures are appropriate to model graphs? Let’s look at
vertices first and then at edges.

Vertices
In an abstract graph program, you could simply number the vertices 0 to N−1
(where N is the number of vertices). You wouldn’t need any sort of variable to
hold the vertices because their usefulness would result from their relationships
with other vertices.

In most situations, however, a vertex represents some real-world object, and the
object must be described using data items. If a vertex represents a city in an
airline route simulation, for example, it may need to store the name of the city,
the name of the airport, its altitude, its location, runway orientations, and other
such information. Thus, it’s usually convenient to represent a vertex by an
object of a vertex class. Our example programs store only a name string (like
A), used as a label for identifying the vertex. Listing 14-1 shows how the basic
Vertex class might look.

Listing 14-1 The Basic Vertex Class



class Vertex(object):       # A vertex in a graph 
   def __init__(self, name): # Constructor: stores a vertex name 
      self.name = name      # Store the name 
   def __str__(self):       # Summarize vertex in a string 
      return ’<Vertex {}>’.format(self.name)

Note that the name attribute is declared public here. The reason is that you can
allow it to be manipulated by the caller during various operations without
affecting the graph containing it.

Vertex objects can be placed in an array and referred to using their index
number. The vertices might also be placed in a list or some other data structure.
The unique vertex index or the object itself can identify this vertex within a
graph.

For vertices with coordinates like latitude and longitude, storing them in a
quadtree may make sense, as described in Chapter 12, “Spatial Data
Structures.” It is important to have them in some structure that preserves their
unique identifiers so that even if the caller changes the name or other attribute,
the vertex can be retrieved. If you use a quadtree, you could not allow the
coordinates of the vertex to change without changing its placement in the
quadtree. For graphs with simply labeled vertices, an array is fine for storage if
the vertex always stays at its original index.

Whatever structure is used for vertices, this storage is for convenience only. It
has no relevance to how they are connected by edges. For edges, you need
another mechanism.

Edges
In Chapter 8, “Binary Trees,” you saw that a computer program can represent
trees in several ways. Mostly that chapter examined trees in which each node
contained references to its children, but you also learned that an array could be
used, with a node’s position in the array indicating its relationship to other
nodes. Chapter 13, “Heaps,” described arrays used to represent a particular
kind of tree called a heap.

A graph, however, doesn’t usually have the same kind of fixed organization as
a tree. In a binary tree, each node has a maximum of two children, but each
vertex in a graph may be connected to an arbitrary number of other vertices.



For example, in Figure 14-2, the left-hand graph’s vertex B is connected to four
other vertices, whereas D is connected to only one.

To model this sort of free-form organization, a different approach to
representing edges is preferable to that used for trees. Several methods are
commonly used for graphs. We examine two (although some might call it
three): the adjacency matrix and the adjacency list. Remember that one vertex
is said to be adjacent to another if they’re connected by a single edge, not a
path through several edges.

The Adjacency Matrix
An adjacency matrix can be represented as a two-dimensional array in which
the elements indicate whether an edge is present between two vertices. If a
graph has N vertices, the adjacency matrix is an N×N array. Table 14-1 shows
an example of an adjacency matrix for the left-hand graph of Figure 14-2,
repeated here.

Table 14-1 Adjacency Matrix

The vertex labels are used as headings for both rows and columns. An edge
between two vertices is indicated by a 1; the absence of an edge is a 0. (You
could also use Boolean True/False values.) As you can see, vertex B is
adjacent to all four other vertices; A is adjacent to B and C; C is adjacent to A,
B, and E; D is adjacent only to B; and E is adjacent to B and C. In this
example, the “connection” of a vertex to itself is indicated by 0, so the diagonal
from upper left to lower right, A-A to E-E, which is called the identity
diagonal and shaded blue, is all 0s. The entries on the identity diagonal don’t



convey any real information, so you can equally well put 1s along it, if that’s
more convenient to a program. (A kind of graph called a pseudograph allows
edges that go from a vertex to itself. Such graphs can use the diagonal of the
adjacency matrix to represent the presence or absence of such edges.)

Note that the triangular-shaped part of the matrix above the identity diagonal is
a mirror image of the part below; both triangles contain the same information.
This redundancy is a bit inefficient, but there’s no simple way to create a
triangular array in most computer languages, so it’s simpler to accept the
redundancy. Consequently, when you add an edge to the graph, you make two
entries in the adjacency matrix rather than one.

Note, in this chapter, we focus on unweighted graphs, and the edges don’t need
separate labels like in the bridges of Königsberg. Graphs that allow multiple
edges between a single pair of vertices are called multigraphs. They can be
quite useful as in the case of the bridges of Königsberg but are beyond the
scope of this text.

Using Hash Tables for the Adjacency Matrix
One way to improve storage efficiency is to keep the matrix as a hash table
rather than a two-dimensional array. To do this, the hash table must accept keys
with two parts—one for each vertex. That’s straightforward, as discussed in
Chapter 11, “Hash Tables.” The individual characters in a string or the indices
in a tuple can be hashed using different weights in the hashing function to
produce a single hash index.

To represent an edge using a hash table adjacency matrix, you make an entry at
a particular pair of vertices. For example, to add an edge between vertices 2
and 7, you would insert a value for the key (2, 7). Using the data structures
from Chapter 11, you could write
adjacencyMatrix = HashTable() 
adjacencyMatrix.insert((2, 7), True)

After the edges are placed in the matrix, programs can determine whether two
edges are adjacent by using the hash table’s search() method. For example, to
see whether two vertices are adjacent, you would evaluate
adjacencyMatrix.search((4, 12)). If no entry had been made for (4, 12), the
search would return None, which Python treats as False in a Boolean context. If
an entry had been made for that key, its True value would be returned.



With either hash tables or two-dimensional arrays, you can avoid the duplicate
storage of the two triangular halves of the matrix by always using the smaller
vertex index in the first position. In other words, to check if vertex 19 is
adjacent to vertex 8 by a bidirectional edge, you would check the matrix at (8,
19) instead of (19, 8). Reordering the vertex indices would be necessary for
all operations on the matrix—insertion, deletion, and searching. That adds a
little extra time to each of those operations. The alternative of adding time to
the insertion and deletion operations by using both orderings and updating both
matrix cells is usually preferable when searching will be much more frequent
than inserting and deleting. It also is better for directional graphs, as you see
later.

Hash tables have an extra benefit over two-dimensional arrays when there are
few edges. If a graph has, for example, a thousand vertices and two thousand
edges, the two-dimensional array needs storage for a million cells while the
hash table needs only enough for the two thousand edges (so perhaps four
thousand cells). The difference becomes significant for large graphs because
the memory needed for two-dimensional arrays is O(N2), where N is the
number of vertices, limiting what can be kept in the computer’s memory.

On the other hand, two-dimensional arrays are easier to decompose into rows
and columns. Many graph algorithms were developed to take advantage of the
capability to access rows and columns quickly. The choice of representation
depends on what operations need to be done quickly on the graph.

The Adjacency List
The other common way to represent edges is with a list. The list in adjacency
list refers to a linked list of the kind examined in Chapter 5, “Linked Lists.” In
actuality, an adjacency list is an array of lists, or sometimes a list of lists, or
sometimes a list stored in each Vertex. Each individual list contains references
to the adjacent vertices of that vertex. Table 14-2 shows the adjacency lists for
the left-hand graph of Figure 14-2, repeated here.

Table 14-2 Adjacency Lists



In this table, the  symbol indicates a link in a linked list. Each link in the list
is a vertex. Here, the vertices are arranged in alphabetical order in each list,
although that’s not strictly necessary. More likely, the order of the vertices
would depend on the order the edges were added to the graph.

Don’t confuse the contents of adjacency lists with paths. The adjacency list
shows which vertices are adjacent to—one edge away from—a given vertex,
not paths from vertex to vertex.

In the next chapter we discuss when to use one of the adjacency matrices as
opposed to an adjacency list. The Visualization tool shown in this chapter
shows the adjacency matrix approach, but in many cases, the list approach is
more efficient.

Adding Vertices and Edges to a Graph
To add a vertex to a graph, you make a new Vertex object, insert it into a
vertex array or list, and grow the adjacency structure, as we discuss shortly. In a
real-world program, a vertex might contain many data elements, but for
simplicity of the program examples, you can assume that it contains only a
single attribute, its name. (The visualization tool also associates different colors
with the vertices in addition to their names to indicate the different data they
reference.) Thus, the creation of a vertex looks something like this:
vertices.append(Vertex(’F’))

This command inserts a vertex object named F at the end of the Python array
called vertices.



How you add an edge to a graph depends on whether you’re using an adjacency
matrix or adjacency lists to represent the graph. Let’s say that you’re using an
adjacency matrix and want to add an edge between vertices 1 and 3. These
numbers correspond to the array indices in vertices where the vertices are
stored.

When the adjacency matrix was created, it would have a particular size. If
adding a new vertex means it needs an extra row and column, the array will
need to grow. When the adjacency matrix, adjMat, is first created, it is filled it
with 0s or perhaps a Boolean False. When it grows, all the new cells must be
filled with that same value. Adjacency matrices represented as hash tables do
not require growing when new vertices are added. They grow when edges are
added as new keys as described in Chapter 11, “Hash Tables.”

Two-Dimensional Arrays and Python
To insert the edge between vertices 1 and 3 in two-dimensional array in Java or
C++, you could write
adjMat[1][3] = 1; 
adjMat[3][1] = 1;

The core Python language supports only one-dimensional arrays, although
extensions like NumPy provide multidimensional arrays. You can store an array
in the cell of another array to approximate multidimensional arrays. For
example, you can create an array of vertices plus an adjacency matrix, and
insert an edge with code like the following:
vertices = []                  # A list of vertices 
vertices.append(Vertex(’A’)) 
vertices.append(Vertex(’B’)) 
vertices.append(Vertex(’C’)) 
vertices.append(Vertex(’D’)) 
 
adjMat = [ [False for v in range(len(vertices))] 
           for _ in range(len(vertices)) ] 
adjMat[1][3] = True 
adjMat[3][1] = True

To create the adjacency matrix, we’ve used nested list comprehensions that
create an outer array filled with arrays. The inner comprehension, [False for
v in range(len(vertices))], creates a list/array of four cells filled with the
value False. The outer comprehension repeats the inner creation four times to



create four cells filled with lists/arrays. The result of the last two assignment
statements leaves adjMat holding
[[False, False, False, False], 
 [False, False, False, True], 
 [False, False, False, False], 
 [False, True,  False, False]]

The True values show up in the rows and columns indexed by (1, 3) and (3, 1).
Note that Python’s capability to expand a list/array using the multiplication
operator doesn’t work correctly here. If you try
badMat = [ [False] * len(vertices) ] * len(vertices) 
badMat[1][3] = True

the resulting badMat array contains
[[False, False, False, True], 
 [False, False, False, True], 
 [False, False, False, True], 
 [False, False, False, True]]

That’s not what you want, but why did it come out that way? The reason is that
the multiplication operator fills the cells of the expanded list with the exact
same value. The inner multiply creates a four-cell array of False values. The
outer multiply does the same kind of expansion, and every cell is filled with a
reference to the same inner four-cell array. Because the same inner array is
shared among all the cells of the outer array, assigning True to cell 3 in one row
affects all the rows.

Storing Edges in Adjacency Lists
Returning to the concept of using adjacency lists, they have a similar nested
list/array structure, but with a significant difference. Instead of each row having
the same length, they are variable-length lists of vertex indices. For example,
adjList = [ [] for v in range(len(vertices)) ] 
adjList[1].append(3) 
adjList[3].append(1) 
produces an array containing

[[], [3], [], [1]]

The cells of this array contain lists of vertex indices. Cell 0 has the (empty) list
of vertices for vertex 0, and so on. The complete adjacency list shows that



vertices 0 and 2 have no edges, whereas vertices 1 and 3 share an edge.

Note that the multiplication operator also fails to work for adjacency lists too.
For example,
badList = [[]] * len(vertices) 
badList[1].append(3)

produces
[[3], [3], [3], [3]]

The list comprehension method effectively executes a loop to create separate
elements for its output array; that’s how it builds separate lists on each
iteration.

The Graph Class
Let’s make this discussion more concrete with a Python Graph class that
constructs a vertex list and an adjacency matrix and contains methods for
adding vertices and edges. Listing 14-2 shows the code.

Listing 14-2 The Basic Graph Class

class Graph(object):        # A graph containing vertices and edges 
   def __init__(self):      # Constructor 
      self._vertices = []   # A list/array of vertices 
      self._adjMat = {}     # A hash table mapping vertex pairs to 1 
 
   def nVertices(self):     # Get the number of graph vertices, i.e. 
      return len(self._vertices) # the length of the vertices list 
 
   def nEdges(self):        # Get the number of graph edges by 
      return len(self._adjMat) // 2 # dividing the # of keys by 2 
 
   def addVertex(self, vertex): # Add a new vertex to the graph 
      self._vertices.append(vertex) # Place at end of vertex list 
 
   def validIndex(self, n): # Check that n is a valid vertex index 
      if n < 0 or self.nVertices() <= n: # If it lies outside the 
         raise IndexError   # valid range, raise an exception 
      return True           # Otherwise it’s valid 
 
   def getVertex(self, n):  # Get the nth vertex in the graph 
      if self.validIndex(n): # Check that n is a valid vertex index 



         return self._vertices[n] # and return nth vertex 
 
   def addEdge(self, A, B): # Add an edge between two vertices A & B 
      self.validIndex(A)    # Check that vertex A is valid 
      self.validIndex(B)    # Check that vertex B is valid 
      if A == B:            # If vertices are the same 
         raise ValueError   # raise exception 
      self._adjMat[A, B] = 1 # Add edge in one direction and 
      self._adjMat[B, A] = 1 # the reverse direction 
 
   def hasEdge(self, A, B): # Check for edge between vertices A & B 
      self.validIndex(A)    # Check that vertex A is valid 
      self.validIndex(B)    # Check that vertex B is valid 
      return self._adjMat.get( # Look in adjacency matrix hash table 
         (A, B), False)     # Return either the edge count or False

This implementation makes use of Python’s list type to manage the list of
vertices and the dict type to store the adjacency matrix. These two structures
behave like the Stack and HashTable classes you saw in earlier chapters, but
with some different syntax. The constructor for the Graph creates an empty
list called _vertices and an empty dict called _adjMat. You saw hash tables
used to store a grid of cells in Chapter 12, “Spatial Data Structures.” In case
you skipped that, we describe the use of Python’s dict type as a dictionary
(hash table) in more detail here.

The pair of curly braces, {}, in the constructor creates an empty hash table that
can accept most Python data structures as a key. For this graph, we use tuples
of vertex indices, like (2, 7), as the keys to the adjacency matrix. When we
need to store a 1 in the adjacency matrix for a particular tuple, we could write
self._adjMat[(2, 7)] = 1

The square brackets after _adjMat surround the key to the hash table. That tells
Python that it should hash the key inside to find where to place the value in the
hash table. Later we can retrieve the value from the hash table using the same
syntax.

You can also use the slightly simpler syntax
self._adjMat[2, 7] = 1

to do the same thing. To programmers familiar with other languages, this
syntax might look like a multidimensional array reference, but it is not. The
comma in the expression within the brackets tells Python to construct a tuple.



In this case, it constructs the tuple (2, 7) and uses that as the key for the hash
table. The hashing function uses all the tuple elements in calculating the hash
table index. This means that the value gets stored in a unique location for the
key (2, 7). In a two-dimensional array, the cell at row 2, column 7 would be
addressed, but in the hash table, some location in its one-dimensional array is
used. To the calling program, it doesn’t matter which one, as long as that exact
same cell is found when it references (2, 7) in the hash table later.

The Python syntax for addressing one-dimensional arrays and hash tables is
identical. When Python sees var[2], the integer inside the square brackets tells
the interpreter that var should be accessed as a one-dimensional array. If it sees
var[2, 7], the comma inside causes it to construct a tuple. With a tuple as the
index (or key), it accesses var as a hash table, not an array. If some other data
type like a string (for example, var[’2 7’]) or a Boolean (for example,
var[True]) is inside the brackets, it treats that as a key to a hash table. Only
integers inside the brackets cause Python to treat the object as an array.

Moving on to the first method defined in the Graph class of Listing 14-2, you
find that nVertices() makes use of Python’s len() function to get the length
of the list/array holding the vertices. A freshly constructed Graph has an empty
_vertices list, so the length is zero.

The second method, nEdges(), is similar but uses the length of the hash table,
_adjMat, in its calculation. Python uses the number of keys that have been
stored in the hash table as its length. Because we plan to store vertex pairs
along with their mirror image—for example (2, 7) and (7, 2)—as separate
keys for each edge, the total number of edges is half the number of keys.

The third method, addVertex(), adds a vertex to the graph by using Python’s
built-in append() method on the _vertices list. This is just like pushing an
element on a stack (assuming the top of the stack is the end of the list). We left
out a check in this method that the vertex argument is one of the Vertex
objects as defined in Listing 14-1, but that would be good to include.

Next, the program introduces a simple test for a valid vertex index,
validIndex(). Because callers specify vertices by their index, they could
specify indices outside the range of those already added to the graph. This
predicate—a function with a Boolean result—checks whether the index lies
outside of the range [0, nVertices), raising the IndexError exception if it
does. This is the same exception that Python uses for invalid array indices.



The getVertex() method gets a vertex from the graph based on an index, n.
After the index is validated, the vertex object can be retrieved from the array.

The addEdge() method takes two vertex indices, A and B, as parameters. To
create the edge, it first verifies that both A and B are valid vertex indices.
Without these checks, the Graph could become internally inconsistent. It also
checks whether A and B are the same index. That would create an edge from a
vertex to itself. This simple Graph class doesn’t allow the creation of
pseudographs. Finally, the method updates the adjacency matrix to create the
edge. It uses both orders of the vertices because the edge is bidirectional.

We now have a basic Graph object that can expand to accept any number of
vertices and edges. The next important method is one that tests whether an edge
exists between two vertices. The hasEdge() method takes two vertex indices, A
and B, as parameters. They are checked for validity like before. With valid
indices, the adjacency matrix can be checked to see whether an edge was
defined. You might expect to use the same Python syntax, _adjMat[A, B], to
test for that edge. That, however, causes a problem if the edge does not exist.
Python hash tables raise a KeyError exception when asked to access a key that
has not been previously inserted.

There are a couple of ways to address missing keys in the adjacency matrix.
One is to catch the KeyError exception that could occur when accessing
_adjMat[A, B]. The other is to use Python’s get() method for hash tables,
which is what this implementation does. The get() method takes the key as the
first parameter plus a second one for the value to return if the key is not in the
hash table. We pass the tuple, (A, B), for the key. The default value is set to
False so that hasEdge() returns that when the edge does not exist. If the edge
does exist, the call to get() will return 1, the value that was inserted by
addEdge(), which is interpreted as True in Boolean contexts.

Another way to implement the hasEdge(A, B) check would be to return the
value of this expression (A, B) in self._adjMat. Python uses the in operator
to test whether a key has been inserted in a hash table. Because we only ever
set the values in _adjMat to 1, we could ignore the value and only check for the
presence of the key. When edges are deleted, however, we could not simply set
the value to 0 if we use the (A, B) in self._adjMat test; we would need to
remove the key from the hash table.

Traversal and Search



One of the most fundamental operations to perform on a graph is finding which
vertices can be reached from a specified vertex. This operation is used to find
the connected components of a graph and underlies many more complex
operations. When we look at a graph diagrams, it’s usually immediately
obvious which vertices are connected, at least for simple graphs. To the
computer, however, it must discover what vertices are connected by chaining
together edges. Let’s look at some examples of discovering what’s connected.

Imagine that you are traveling to a foreign country by airplane or boat for a
vacation. When there, you will be visiting the countryside by bicycle, and you
want to know all the places you can go. Paved roads and some dirt roads would
be good for the trip, but roads that are closed for repair or washed out with mud
or floods are not worth traversing. The road conditions might be cataloged
somewhere, but in some cases, you would have to go to a nearby location to
find out whether the road was passable. Based on the road conditions, some
towns could be reached, whereas others couldn’t. You still want to have the
best vacation possible, so you would determine what places are accessible via
bicycle and decide your route among them. You might have to remake the plan
as you travel and learn more about road conditions in each area.

Other situations where you need to find all the vertices reachable from a
specified vertex are in designing circuits and plumbing networks. Electronic
circuits are composed of components like transistors that are connected by
conductors such as wires or metal paths. In plumbing networks various
components such as water heaters, faucets, drains, and gas stoves connect via
pipes. Figure 14-4 shows small examples of an electronic circuit and a
plumbing network. In both cases, many of the components are connected, and
others are not. It’s critical to their function that the connections are complete. If
not, hot water might not reach a particular faucet, or the signal from an antenna
might not reach a decoder. Perhaps even more important, the disconnected
vertices must remain that way—lest the power supply connect directly to a
speaker or the gas supply connect to a faucet.



Figure 14-4 An electronic circuit and a plumbing network

In these kinds of networks, it’s important to find all the vertices connected to a
given vertex. That defines the connected components of the graph. Each
connected component must be realized in the form of electrical or plumbing
connections. That’s often easy for you to see in diagrams like Figure 14-4,
especially when the colors of the edges in the plumbing diagram clearly
separate the kinds of pipes. It’s much less clear in the case of the road network
for bicycling, especially when you must travel to an area to learn what’s
connected and what’s not.



Assume that you’ve been given a graph that describes a network. Now you
need an algorithm that provides a systematic way to start at a specified vertex
and move along edges to other vertices in such a way that, when it’s done, you
are guaranteed that it has visited every vertex that’s connected to the starting
vertex. Here, as it did in Chapter 8, where we discussed binary trees, visit
means to perform some operation on the vertex, such as displaying it, adding it
to a collection, or updating one of its attributes.

There are two common approaches to traversing a graph: depth-first (DF) and
breadth-first (BF). Both eventually reach all connected vertices but differ in
the order they visit them. The depth-first traversal is implemented with a stack,
whereas breadth-first is implemented with a queue. You can traverse all the
connected vertices or perhaps stop when you find a particular vertex. When the
goal is to stop at a particular vertex, the operation is called depth-first search
(DFS) or breadth-first search (BFS) instead of traversal.

You saw in Chapter 8 that the different traversal orders of binary trees—pre-
order, in-order, and post-order—had different properties and uses. The same is
true of graphs. The choice of depth-first or breadth-first depends on the goal of
the operation.

Depth-First
The depth-first traversal uses a stack to remember where it should go when it
reaches a dead end (a vertex with no adjacent, unvisited vertices). We show an
example here, encourage you to try similar examples with the Graph
Visualization tool, and then finally show some code that carries out the
traverse.

An Example
Let’s look at the idea behind the depth-first traversal in relation to the graph in
Figure 14-5. The colored numbers and dashed arrows in this figure show the
order in which the vertices are visited (which differ from the ID numbers used
to identify vertices).





Figure 14-5 Depth-first traversal example

To carry out the depth-first traversal, you pick a starting point—in this case,
vertex A. You then do three things: visit this vertex, push it onto a stack so that
you can remember it, and mark it so that you won’t visit it again.

Next, you go to any vertex adjacent to A that hasn’t yet been visited. We’ll
assume the vertices are selected in alphabetical order, so that brings up B. You
visit B, mark it, and push it on the stack.

Now what? You’re at B, and you do the same thing as before: go to an adjacent
vertex that hasn’t been visited. This leads you to F. We can call this process
Rule 1.

Rule 1
If possible, visit an adjacent unvisited vertex, mark it, and push it on the stack.

Applying Rule 1 again leads you to H. At this point, however, you need to do
something else because there are no unvisited vertices adjacent to H. Here’s
where Rule 2 comes in.

Rule 2
If you can’t follow Rule 1, then, if possible, pop a vertex off the stack.

Following Rule 2, you pop H off the stack, which brings you back to F. F has
no unvisited adjacent vertices, so you pop it. The same is true of vertex B. Now
only A is left on the stack.

A, however, does have unvisited adjacent vertices, so you visit the next one, C.
The visit to C shows that it is the end of the line again, so you pop it, and
you’re back to A. You visit D, G, and I, and then pop them all when you reach
the dead end at I. Now you’re back to A. You visit E, and again you’re back to
A.

This time, however, A has no unvisited neighbors, so you pop it off the stack.
Now there’s nothing left to pop, which brings up Rule 3.

Rule 3
If you can’t follow Rule 1 or Rule 2, you’re done.



Table 14-3 shows how the stack looks in the various stages of this process, as
applied to Figure 14-5. The contents of the stack show the path you took from
the starting vertex to get where you are (at the top of the stack). As you move
away from the starting vertex, you push vertices as you go. As you move back
toward the starting vertex, you pop them. The order in which you visit the
vertices is ABFHCDGIE. Note that this is not a path, just a vertex list, because
H is not adjacent to C, for example.

Table 14-3 Stack Contents During Depth-First Traversal



You might say that the depth-first algorithm likes to get as far away from the
starting point as quickly as possible and returns only when it reaches a dead
end. If you use the term depth to mean the distance from the starting point, you
can see where the name depth-first comes from.



An Analogy
An analogy you might think about in relation to a depth-first search is a maze.
The maze—perhaps one of the people-size ones made of hedges, popular in
England, or corn stalks, popular in America—consists of narrow passages
(think of edges) and intersections where passages meet (vertices).

Suppose that Minnie is lost in a maze. She knows there’s an exit and plans to
traverse the maze systematically to find it. Fortunately, she has a ball of string
and a marker pen. She starts at some intersection and goes down a randomly
chosen passage, unreeling the string. At the next intersection, she goes down
another randomly chosen passage, and so on, until finally she reaches a dead
end.

At the dead end, she retraces her path, reeling in the string, until she reaches the
previous intersection. Here she marks the path she’s been down, so she won’t
take it again, and tries another path. When she’s marked all the paths leading
from that intersection, she returns to the previous intersection and repeats the
process.

The string represents the stack in depth-first: it “remembers” the path taken to
reach a certain point. The pen represents marking vertices as visited. If Minnie
didn’t have a pen, she could always choose, say, the leftmost passage to visit
when arriving at an intersection. When returning along the string and coming
back to an intersection, she would choose the next passage to the right to visit
and continue to follow the string back if there were no more passages to the
right. The critical thing is that Minnie needs to remember having visited an
intersection/vertex so that she doesn’t just revisit them. The sense of left and
right doesn’t exist in most graphs, and computers don’t use pens; they must use
explicit marking.

The Graph Visualization Tool and Depth-First Traverse
You can try out the depth-first traversal with the Depth-First Traverse button in
the Graph Visualization tool. Start the tool (as described in Appendix A,
“Running the Visualizations”). At the beginning, there are no vertices or edges,
just an empty shaded rectangle. You create vertices by double-clicking the
desired location within the shaded box. The first vertex is automatically labeled
A, the second one is B, and so on. They’re each given a different color.



To make an edge, drag the pointer from one vertex to another. Figure 14-6
shows part of the graph of Figure 14-5 as it looks while being created using the
tool. The adjacency matrix appears in the lower-right corner. When the
visualization tool first starts, there are no vertices, and the matrix is empty. The
matrix and the _vertices table in the upper right grow as you add vertices.



Figure 14-6 The Graph Visualization tool



You can edit the graph in many ways. Like the other visualization tools, this
one has buttons in the operations area that allow you to create and delete
vertices by their label. Because the tool must find vertices by their label, all the
names must be unique (and short enough to fit in the little circles and
rectangles). When you add a vertex—say with the label V—the program will
choose a random location for it within the shaded box and conveniently update
the label in the text entry box to W in case you plan to add another. That allows
you to click New Vertex N times to create N vertices with unique names. You
can also put a number in the text entry box and select the Random Fill button to
create that many more vertices.

If you want to rearrange the vertex positions, press and hold the Shift key while
you click a vertex and drag it to its new position. The visualization tool allows
you to place the vertex only where it lies completely within the shaded box and
does not overlap another vertex. If you want to get rid of a vertex or an edge,
you can double-click it.

Another way to delete edges is by clicking the box corresponding to that edge
in the adjacency matrix table. Because edges are either present or absent in this
kind of graph, each click toggles the edge on or off. You can collapse the
adjacency matrix by pressing the  button and restore it with the  button. That
capability is especially useful for large graphs.

To run the depth-first traversal algorithm, select a starting vertex by clicking it
and then select the Depth-First Traverse button. When you click a vertex, the
blue circle marks it as the starting vertex for the traversal, as vertex A is
marked in Figure 14-6. Try it on the graph shown in Figure 14-6 or one of your
own design. The animation shows the creation of a stack below the shaded box
and how vertices are pushed on and popped off to traverse the graph. Of course,
the traversal covers only the connected component that includes the selected
vertex.

Python Code
The depth-first traversal algorithm must find the vertices that are unvisited and
adjacent to a specified vertex. How should this be done? The adjacency matrix
holds the answer. By going to the row for the specified vertex and stepping
across the columns, you can pick out the columns with a 1; the column number
is the number of an adjacent vertex. You can then check whether this vertex is
unvisited by examining the value for that vertex in separate array called
visited. If that value is False, you’ve found what you want—the next vertex



to visit. If no vertices on the row are simultaneously 1 (adjacent) and unvisited,
there are no unvisited vertices adjacent to the specified vertex. The code for
this process is made up of several parts—a generator for all vertices, a
generator for getting adjacent vertices, and a generator for getting unvisited
vertices—as shown in Listing 14-3.

Listing 14-3 Code for Traversing Adjacent Vertices

class Graph(object): 
… 
   def vertices(self):      # Generate sequence of all vertex indices 
      return range(self.nVertices()) # Same as range up to nVertices 
 
   def adjacentVertices(    # Generate a sequence of vertex indices 
         self, n):          # that are adjacent to vertex n 
      self.validIndex(n)    # Check that vertex n is valid 
      for j in self.vertices(): # Loop over all other vertices 
         if j != n and self.hasEdge(n, j): # If other vertex connects 
            yield j         # via edge, yield other vertex index 
 
   def adjacentUnvisitedVertices( # Generate a sequence of vertex 
         self, n,           # indices adjacent to vertex n that do 
         visited,           # not already show up in the visited list 
         markVisits=True):  # and mark visits in list, if requested 
      for j in self.adjacentVertices(n): # Loop through adjacent 
         if not visited[j]: # vertices, check visited 
            if markVisits:  # flag, and if unvisited, optionally 
               visited[j] = True # mark the visit 
 
            yield j         # and yield the vertex index

The generator for all vertex indices is the same as Python’s range() generator
for index values up to nVertices – 1. The adjacentVertices() generator
takes a vertex index, n, as the starting vertex. It checks that n is within the
bounds of the known vertices and then starts a loop over all the other vertex
indices. For another vertex, j, that is not n but does have an edge in the
adjacency matrix to n, the generator yields vertex j for processing by the caller.
When all nVertices have been checked, the generator is finished, and it raises
the StopIteration exception.

One way to implement the marking of vertices as visited or unvisited is to share
a data structure between the caller and the generator. The simplest approach



uses an array of Boolean flags indicating which of the nVertices have been
visited.

The adjacentUnvisitedVertices() generator of Listing 14-3 takes a starting
vertex index, n, plus a visited array and a markVisits flag as parameters. The
visited array should have at least one cell for all the vertices, initially with all
false values. This array can be created in Python using an expression like
[False] * nVertices or [None] * nVertices. When markVisits is true, the
generator will set the flag for the cells it visits to True.

By using adjacentVertices() to enumerate the vertices adjacent to vertex n,
all that remains is the check for whether they have been visited. If they have
not, they are optionally marked as visited before yielding them. With this kind
of generator, it’s easy to define different traversal orderings like depth-first, as
shown in Listing 14-4.

Listing 14-4 Implementation of Depth-First Traversal of a Graph

class Stack(list):          # Use list to define Stack class 
   def push(self, item): self.append(item) # push == append 
   def peek(self): return self[-1] # Last element is top of stack 
   def isEmpty(self): return len(self) == 0 
 
class Graph(object): 
… 
   def depthFirst(          # Traverse the vertices in depth-first 
         self, n):          # order starting at vertex n 
      self.validIndex(n)    # Check that vertex n is valid 
      visited = [False] * self.nVertices() # Nothing visited initially 
      stack = Stack()       # Start with an empty stack 
      stack.push(n)         # and push the starting vertex index on it 
      visited[n] = True     # Mark vertex n as visited 
      yield (n, stack)      # Yield initial vertex and initial path 
      while not stack.isEmpty(): # Loop until nothing left on stack 
         visit = stack.peek() # Top of stack is vertex being visited 
         adj = None 
         for j in self.adjacentUnvisitedVertices( # Loop over adjacent 
            visit, visited): # vertices marking them as we visit them 
            adj = j         # Next vertex is first adjacent unvisited 
            break           # one, and the rest will be visited later 
         if adj is not None: # If there’s an adjacent unvisited vertex 
            stack.push(adj) # Push it on stack and 
            yield (adj, stack) # yield it with the path leading to it 



         else:              # Otherwise we’re visiting a dead end so 
            stack.pop()     # pop the vertex off the stack

The depth-first algorithm needs a stack that keeps track of the path of vertices
as it traverses the graph. Python’s list data type acts like a stack, including
having a pop() method. Because it does not have a corresponding push() or
peek() method, we define those in terms of equivalent operations in the simple
Stack subclass of list. The four lines of Python code at the top of Listing 14-4
show how little needs to be changed to implement a stack with a list.

The depthFirst() generator traverses the vertices using the rule-based
approach outlined previously. After checking the index for the starting vertex, it
makes a visited array filled with False for each of the nVertices. After the
stack is created, the starting vertex, n, is pushed on it and marked as visited.
The generator can now yield the first vertex, n, in the depth-first traversal.

The depthFirst() generator yields both the vertex index being visited and the
stack (path) to the vertex because different callers need one or both of those.
For example, to find the connected components of the graph you would need to
collect only the vertices, whereas to solve a maze you would need the path that
reaches the exit.

The main while loop of the depthFirst() generator applies the three rules.
The top of the stack is the last vertex visited. It uses peek() to get its index and
stores it in visit. The rules need to know if there are unvisited vertices
adjacent to the visit vertex. The method assumes there are none by setting adj
to None and calling adjacentUnvisitedVertices() generator to find such a
vertex. If one is yielded, adj is updated with its index, and the inner for loop is
exited. If none are found, adj remains None. The depth-first traversal needs
only to find the first unvisited neighbor. The others will be found during a later
pass through the loop.

Now we can test for Rule 1: if there is an adjacent unvisited vertex, mark it as
visited and push it on the stack. The marking is done by
adjacentUnvisitedVertices(), and depthFirst() pushes the adjacent vertex
on the stack. The new vertex and its path are yielded to the caller for
processing, and the while loop continues.

If Rule 1 doesn’t apply, it now checks Rule 2: if possible, pop a vertex off the
stack. At this point, the stack can’t be empty because the while loop test
checked that, and no vertices have been popped off since then. A simple pop()
operation accomplishes Rule 2.



If neither Rule 1 nor Rule 2 applies, then you reach Rule 3: you’re done. When
the outer while loop finishes, all the reachable vertices have been pushed on
the stack and then popped off, following the depth-first ordering.

You can test this code on a simple graph, as shown in Figure 14-7.





Figure 14-7 A test of depthFirst() on a small graph

Looking back on the choice to yield both the vertex and the path to that vertex
in the depthFirst() generator, note the redundancy because the vertex is
always the last element in the path. You could rewrite the generator to return
only the path, shifting the extraction of the vertex to the caller. That’s not much
of a change in Python where the caller can access the last vertex using an O(1)
reference to path[-1]. If the path is returned as a linked list, however, getting
the last element takes O(N) time and merits the extra return value.

Depth-First Traversal and Game Simulations
When you’re implementing game programs, depth-first traversal can simulate
the sequence of moves made by players. In two-player board games like chess,
checkers, and backgammon, each player chooses from among a set of possible
actions on their turn. The actions at each turn depend on the state of the game,
sometimes called the board state. For example, in the initial state of chess, the
actions are limited to movement of the pawns or knights. Subsequent board
states allow actions involving the other pieces.

This behavior can be modeled with a graph where the possible actions form
edges between board states, which are the vertices in a graph. Starting from a
particular board state, depth-first traversal enumerates all possible board states
that could be reached from the initial state.

Let’s look at how that works for a simple game of tic-tac-toe. The first player,
let’s say it is the X-player, can make one of nine possible moves. The O-player
can counter with one of eight possible moves, and so on. Each move leads to
another group of choices by your opponent, which leads to another series of
choices for you, until the last square is filled. Figure 14-8 shows a partial graph
of the board states. Only the edges connecting the topmost board state for each
move are included, and symmetric board states are not drawn. That leaves only
three distinct possible choices for the X-player’s first move.



Figure 14-8 Tic-tac-toe board states as a graph

When you are deciding what move to make, one approach is to mentally
imagine a move, then your opponent’s possible responses, then your responses,
and so on. You can decide what to do by seeing which move leads to the best
outcome. In simple games like tic-tac-toe, the number of possible moves is
sufficiently limited that it’s possible to follow each path to the end of the game.

Analyzing these moves involves traversing the graph. As evident in Figure 14-
8, even a “simple” game like tic-tac-toe can lead to a large graph. The number
of edges for the first move, after eliminating symmetric moves, is three. The O-
player’s first move includes four options. The next X-player move can have up
to seven options after eliminating symmetry. The number of options diminishes
after that.

Using depth-first traversal means the analysis drives toward the final states
first. Any path that leads to an opponent’s victory could be eliminated or, at
least, set aside to be further explored as a last option. That would allow you to
“prune” the graph significantly. How much could pruning save? If you don’t
pay attention to symmetry, there are nine possible first moves, followed by
eight possible opponent moves, followed by seven possible first-player moves,
and so on. That’s 9×8×7×6×5×4×3×2×1 (9 factorial or 9! or 362,880) moves,



ignoring the reduction due to games ending after one player completes three in
a row. Those moves are edges in the graph, and that’s a lot of edges to follow.
Pruning could make a huge savings.

Although exploring 362,880 edges seems manageable for modern computers,
other games have much larger graphs. Chess has 64 squares and 16 pieces for
each player. The game of go has a 19-by-19 grid of points where players place
either a black or white stone. Those 361 points mean there are something like
361! potential sequences of moves (and that number doesn’t account for the
removal and replacement of stones). Even though some of the sequences result
in the same board state, exploring the full graph is quite daunting. Most game-
playing algorithms only explore the graph to a particular depth and use many
techniques to eliminate as many paths as possible in analyzing move options.
They may never generate the complete graph.

Breadth-First
The depth-first traversal algorithm acts as though it wants to get as far away
from the starting point as quickly as possible. In the breadth-first, on the other
hand, the algorithm likes to stay as close as possible to the starting point. It first
visits all the vertices adjacent to the starting vertex, and only then goes further
afield. This kind of traversal is implemented using a queue instead of a stack.

An Example
Figure 14-9 shows the same graph as Figure 14-5, but this time we traverse the
graph breadth-first. Again, the numbers indicate the order in which the vertices
are visited. Like before, A is the starting vertex. You mark it as visited and
place it in an empty queue. Then you follow these rules:



Figure 14-9 Breadth-first traversal example

Rule 1
Take the first vertex in the queue (if there is one) and insert all its adjacent unvisited
vertices into the queue, marking them as visited.

Rule 2
If you can’t carry out Rule 1 because the queue is empty, you’re done.

The breadth-first traversal is slightly simpler than the depth-first traversal
because there are only two rules. Walking through the example, you first visit
A. Then you take all the vertices adjacent to A and insert each one into the
queue as you visit and mark it. Now you’ve visited A, B, C, D, and E. At this
point the queue (from front to rear) contains BCDE.

You apply Rule 1 again, removing B from the queue and looking for vertices
adjacent to it. You find A and F, but A has been visited, so you visit and insert
only F in the queue. Next, you remove C from the queue. It has no adjacent
unvisited vertices, so nothing is visited or inserted in the queue. You remove D
from the queue and find its neighbor G is unvisited, so you visit it and insert it
in the queue. You remove E and find no unvisited neighbors.



At this point the queue contains FG, the only adjacent unvisited vertices found
while previously visiting BCDE. You remove F and visit and insert H on the
queue. Then you remove G and visit and insert I.

Now the queue contains HI. After you remove each of these and find no
adjacent unvisited vertices, the queue is empty, so you’re done. Table 14-4
shows this sequence.

Table 14-4 Queue Contents During Breadth-First Traversal



At each moment, the queue contains the vertices that have been visited but
whose neighbors have not yet been fully explored. (Contrast this breadth-first
traversal with the depth-first traversal, where the contents of the stack hold the
route you took from the starting point to the current vertex.) The nodes are
visited by breadth-first in the order ABCDEFGHI.



The Graph Visualization Tool and Breadth-First Traversal
Use the Graph Visualization tool to try out a breadth-first traversal using the
Breadth-First Traverse button. Again, you can experiment with the graph in
Figure 14-9, or you can make up your own.

Notice the similarities and the differences of the breadth-first traversal
compared with the depth-first traversal.

You can think of the breadth-first traversal as proceeding like ripples widening
when you drop a stone in water—or, for those of you who enjoy epidemiology,
as the influenza virus carried by air travelers from city to city. First, all the
vertices one edge away from the starting point (plane flight) are visited, then all
the vertices two edges away are visited, and so on.

Python Code
The breadthFirst() method of the Graph class is like the depthFirst()
method, except that it uses a queue instead of a stack and fully explores the
sequence of adjacent unvisited vertices. The implementation for both the Queue
class and the traversal generator is shown in Listing 14-5.

Listing 14-5 The breadthFirst() Traversal Generator for a Graph

class Queue(list):          # Use list to define Queue class 
   def insert(self, j): self.append(j) # insert == append 
   def peek(self): return self[0] # First element is front of queue 
   def remove(self): return self.pop(0) # Remove first element 
   def isEmpty(self): return len(self) == 0 
 
class Graph(object): 
… 
   def breadthFirst(        # Traverse the vertices in breadth-first 
         self, n):          # order starting at vertex n 
      self.validIndex(n)    # Check that vertex n is valid 
      visited = [False] * self.nVertices() # Nothing visited initially 
      queue = Queue()       # Start with an empty queue and 
      queue.insert(n)       # insert the starting vertex index on it 
      visited[n] = True     # and mark starting vertex as visited 
      while not queue.isEmpty(): # Loop until nothing left on queue 
         visit = queue.remove() # Visit vertex at front of queue 
         yield visit        # Yield vertex to visit it 
         for j in self.adjacentUnvisitedVertices( # Loop over adjacent 



               visit, visited): # unvisited vertices 
            queue.insert(j) # and insert them in the queue

Here, we define the Queue class as a subclass of list. Inserting an item in the
queue uses the list’s append() method. This means the back (or end) of the
queue is at the highest index of the list. That means, peek() and remove()
operate on the first element of the list at index 0. The Python list.pop()
method takes an optional parameter for the index of the item to remove.

The beginning of the traversal starts off just as it did for depth-first, checking
the validity of the starting vertex and creating a visited array for all the
vertices. Then the visited array is created and seeded with the starting vertex
index, and that index is marked as visited. The implementation in Listing 14-5
deviates slightly from the rules shown earlier in that the visit of the first vertex
doesn’t happen until inside the while loop where the rules are applied. Also
note that marking vertices in the visited array happens before they are yielded
to the caller. The overall breadthFirst() generator “visits” a vertex by
yielding it to the caller for processing while keeping the internal visited array
to track which vertices it has already put in its queue to process.

The while loop test determines whether Rule 1 or Rule 2 will apply. If it’s Rule
1, the loop body removes a vertex from the front of the queue and immediately
visits it by yielding it. The method visits the starting vertex in the same way all
the others are visited. Note that we no longer have the stack to provide the path
taken to reach this vertex. As a consequence, the breadthFirst() generator
yields only a vertex index. It’s possible and useful to provide the path, and we
leave that as programming project.

After breadthFirst() removes a vertex from the queue and visits it, the next
thing to do is insert all the adjacent unvisited vertices in the queue. That
process is handled by looping through the adjacentUnvisitedVertices()
generator (shown in Listing 14-3) and inserting the vertices in the queue. That
completes the implementation of Rule 1. Rule 2 is also done because no more
processing is needed when the queue is empty.

Let’s test the breadthFirst() traversal on nearly the same graph used for
depth-first, but let’s add one edge between C and H to see what effect it has.
Figure 14-10 shows the code used to construct the graph and traverse the
vertices in breadth-first order. The extra edge is highlighted in the code. Note
that the vertex ID numbers used to create the edges are different from the visit
numbers next to the vertices in the figure.





Figure 14-10 A test of breadthFirst() on a small graph

In the test example, after visiting ABCDE, the queue contains the unvisited
adjacent vertices, FHG. Without the edge from C to H, the queue would have
been FG, like in the graph of Figure 14-9. With the edge CH, H is marked as
visited and inserted on the queue when C is removed. Then F is removed, and
its neighbors searched for unvisited vertices. H has not yet been visited (yielded
by the generator that starts at F), but it was marked as visited as it was added to
the queue. So, H does not show up as a vertex to add to the queue. The next
pass through the while loop removes H from the front of the queue and visits
it. Because it, too, has no adjacent unvisited neighbors, nothing is put on the
queue. The next pass removes G from the queue, finds I as unvisited, and
inserts that final vertex.

This example illustrates an interesting property of breadth-first traversal and
search: it first finds all the vertices that are one edge away from the starting
point, then all the vertices that are two edges away, and so on. This capability is
useful if you’re trying to find the shortest path from the starting vertex to a
given vertex (see Project 14.3). You start a breadth-first traversal, and when
you visit a particular vertex, you know the path you’ve traced so far is the
shortest path to it. If there were a shorter path, the breadth-first traversal would
have visited it already. In Figure 14-10, there are two paths from A to H: ABFH
and ACH. The fact that breadth-first visits H before G is due to having a two-
edge path using the added edge. In Figure 14-9, the absence of edge CH means
G is visited before H because both G and H can only be reached through three-
edge paths.

Minimum Spanning Trees
Suppose you’re designing a large apartment building and need to decide where
the hot water pipes should go. The example shown in Figure 14-4 shows a
completed plumbing network for a two-and-a-half-bathroom house, but let’s
imagine you have hundreds of sinks, bathtubs, showers, washing machines, and
hot water heaters to connect. For the water supply, you could connect every
fixture to every other one with a pipe. That would certainly provide the shortest
possible path between every pair of fixtures. That would also cost a lot, and any
plumber asked to do the installation would probably laugh.

After you get over your embarrassment, you realize that you only really need to
connect every sink, bathtub, shower, and washing machine to a water heater.



You want those pipes to be short so that the hot water can reach the faucets
quickly and to minimize the length of pipe needing insulation. You can’t run
the pipes through the rooms of the building; they must be hidden inside the
walls, floors, and ceilings. Not every wall will allow pipes to go through it,
such as a wall made of glass. So, you must take some twisted paths to hook
everything together. How do you find which paths to hook up so that all the
fixtures are connected but the amount of pipe is the shortest?

It would be nice to have an algorithm that, for any connected set of fixtures and
pipes (vertices and edges, in graph terminology), would find the minimum set
of pipes needed to connect all the fixtures. Even if it didn’t find the absolute
minimum pipe length overall or the minimum total distance to the water heater,
you wouldn’t want any extra pipes connecting two fixtures if there was another
path between them. For instance, you wouldn’t want a loop of pipes (edges)
like the path ABFHCA in Figure 14-10 or the fully connected graph on the left
of Figure 14-11 (although there are cases where plumbing loops are desirable).
The result of such an algorithm would be a graph with the minimum number of
edges necessary to connect the vertices. The graph on the left of Figure 14-11
has the maximum number of edges, 10, for a five-vertex graph. The graph on
the right has the same five vertices but with the minimum number of edges
necessary to connect them, four. This constitutes a minimum spanning tree
(MST) for the graph.



Figure 14-11 A fully connected graph and a minimum spanning tree

There are many possible minimum spanning trees for a given graph. The MST
of Figure 14-11 shows edges AC, BC, BD, and BE, but edges AC, CE, ED, and
DB would do just as well. The arithmetically inclined will note that the number
of edges in a minimum spanning tree is always one fewer than the number of



vertices. Removing any edge from a minimum spanning tree would create
multiple connected components.

For now, don’t worry about the length of the edges. You’re not trying to find a
minimum physical length, just the minimum number of edges. (Your plumber
might have a different opinion). We discuss more about this when we talk about
weighted graphs in the next chapter.

The algorithm for creating the minimum spanning tree is almost identical to
that used for traversing. It can be based on either the depth-first or the breadth-
first traversal. This example uses the depth-first traversal.

Perhaps surprisingly, by executing the depth-first traversal and recording the
edges you’ve traveled to reach a vertex, you automatically create a minimum
spanning tree. It’s also somewhat counterintuitive because breadth-first
traversal finds the shortest path to each vertex. The only difference between the
minimum spanning tree method, which you see in a moment, and the depth-
first traversal, which you saw earlier, is that it must somehow record and return
a tree-like structure.

Minimum Spanning Trees in the Graph
Visualization Tool
The Graph Visualization tool runs the minimum spanning tree algorithm after
you select a starting vertex and select the corresponding button. You see the
depthFirst() generator run in the code window to yield results to a method
we explore shortly.

As the depth-first traversal yields vertices and their paths from the starting
vertex, the Visualization tool highlights them, as shown in Figure 14-12. In the
example, the algorithm adds vertex E and its path from the starting vertex, C, to
the tree it is building. The vertices that have been added have brown circles
around them (B, C, D, and E) and the edges forming the path returned by
depthFirst() are highlighted in blue. Edges added in earlier steps (for
example, edge BD) are highlighted in brown.



Figure 14-12 The Graph Visualization tool adding a path to a minimum
spanning tree

As you can see, the minimum spanning tree implementation must track many
things as it runs. We explore the detailed implementation in Python, but first we
need to revisit a structure that we discussed in detail in several preceding
chapters: trees.

Trees Within a Graph
What does a minimum spanning tree “look” like? Is it a binary tree? No,
because the number of vertices connected to a given vertex could be one, two,
three, and so on. For example, in the minimum spanning tree on the right of
Figure 14-13, there is no way to arrange the vertices and edges into a binary
tree form. Even though the trees for both Figure 14-11 and Figure 14-13 come
from the same starting graph, it’s not possible to know whether the resulting
tree will have edges that could form a binary tree.



Figure 14-13 Another minimum spanning tree from a fully connected five-
node graph

So, what structure should be used to represent the minimum spanning tree? You
could try to make a tree structure with an arbitrary number of children for each
node, something like the 2-3-4 tree but with any number of children. That could
be a good solution, but there’s an easier one: use the Graph class itself.

A minimum spanning tree is a subgraph—a subset of the original graph’s
vertices and edges. The spanning part means that all the vertices in a connected



component are still connected, and the tree means there is a single, unique path
between every pair of vertices. The trees you’ve seen so far all share those
properties. There was a unique path from the root to every node in the tree, and
all of them were reachable from the root.

It’s possible for the minimum spanning tree to include every vertex and edge of
the input graph. Typically, however, the tree is a proper subset of the vertices
and edges forming a connected component.

Python Code for the Minimum Spanning Tree
Our minimumSpanningTree() method returns a new graph with a subset of the
vertices and edges in the starting graph. We create the MST using a depth-first
traversal from a starting vertex. All the vertices in the connected component
that includes the starting vertex will go in the MST. Any nonconnected vertices,
like A and F in Figure 14-12, are left out. Listing 14-6 shows the code.

Listing 14-6 The minimumSpanningTree() Method of Graph

class Graph(object): 
… 
   def minimumSpanningTree( # Compute a minimum spanning tree 
         self, n):          # starting at vertex n 
      self.validIndex(n)    # Check that vertex n is valid 
      tree = Graph()        # Initial MST is an empty graph 
      vMap = [None] * self.nVertices() # Array to map vertex indices 
      for vertex, path in self.depthFirst(n): 
         vMap[vertex] = tree.nVertices() # DF visited vertex will be 
         tree.addVertex(    # last vertex in MST as we add it 
            self.getVertex(vertex)) 
         if len(path) > 1:  # If the path has more than one vertex, 
            tree.addEdge(   # add last edge in path to MST, mapping 
               vMap[path[-2]], vMap[path[-1]]) # vertex indices 
      return tree

Because the result contains a subset of the original vertices, the vertex indices
could be different in the two graphs. For instance, a 10-vertex graph might be
composed of two connected components: one with six vertices and the other
with four. If you ask for an MST starting from a vertex in the six-vertex
component, the MST will have exactly six vertices with indices 0 through 5.
Those vertices could have indices up to 9 in the original graph, so you need a



way to track the correspondence of vertices in the original graph to those in the
MST.

The minimumSpanningTree() method starts with an empty graph—called tree
—to hold the MST. As we add vertices to it, we note the translation between
old and new vertices in an array called vMap. The array needs a cell for every
possible vertex. Just before we add a vertex to the MST, we know what index it
will get because it’s placed at the end of the existing vertices. That means the
old vertex index maps to the number of the vertices added to the MST so far.

To see how the mapping works, look at the sample vMap in Figure 14-12. The
vMap appears in the upper right of the display as an array aligned with input
vertices whose values point to indices in the new tree (vertex indices). As the
starting point, vertex C was visited first and becomes the first vertex in the
output tree, so the vMap shows C mapping to index 0. The next vertex added to
the tree is vertex B, so it maps to index 1, and so on. Only the vertices included
in the minimum spanning tree will have entries in vMap mapping them to their
new indices. In Figure 14-12, vertices A and F are not in vMap because they are
not connected to C.

In the code after setting up the empty tree and vMap, minimumSpanningTree()
uses the depthFirst() traversal over the graph to visit all the vertices in the
connected component. The depthFirst() traversal yields both a vertex and the
path to the vertex for each visit (in the form of a stack). The first vertex visited
will always be the starting vertex, and the path will contain just that one vertex
on the visit.

In the depth-first loop body, we first store the mapping from the vertex being
visited to its index in the MST. The number of vertices already in the tree
provides the index to store in vMap. The next call adds the vertex being visited
to the MST. Then, if the path to the visited vertex has at least one edge in it, we
add the last edge to the MST as well. We get the vertices forming that edge
from the last two vertices in the path: path[-2] and path[-1]. We must
translate those vertex indices using the vMap array. We’re guaranteed that the
indices in the path were set in vMap because the path contains only vertices that
were previously visited by depthFirst().

Does this code handle everything? What about the edges? We add one edge for
each vertex added to the MST other than the starting vertex. Is that enough?
Yes, adding one edge per vertex means we get exactly the N−1 edges from the
N vertex connected component. Each added edge is the last edge in the unique



path that leads to that vertex. So, the algorithm covers all the vertices and edges
of the connected component that belongs in the MST.

When the depth-first traversal is complete, tree contains the full minimum
spanning tree, so it is returned to the caller. To help with development and see
the detailed contents of the various arrays, you can define some print methods
for the Graph class, as shown in Listing 14-7.

Listing 14-7 Methods for Summarizing and Printing Graphs

class Graph(object): 
… 
   def __str__(self):       # Summarize the graph in a string 
      nVertices = self.nVertices() 
      nEdges = self.nEdges() 
      return ’<Graph of {} vert{} and {} edge{}>’.format( 
         nVertices, ’ex’ if nVertices == 1 else ’ices’, 
         nEdges, ’’ if nEdges == 1 else ’s’) 
 
   def print(self,          # Print all the graph’s vertices and edges 
             prefix=’’):    # Prefix each line with the given string 
      print(’{}{}’.format(prefix, self)) # Print summary form of graph 
      for vertex in self.vertices(): # Loop over all vertex indices 
         print(’{}{}:’.format(prefix, vertex), # Print vertex index 
               self.getVertex(vertex)) # and string form of vertex 
         for k in range(vertex + 1, self.nVertices()): # Loop over 
            if self.hasEdge(vertex, k): # higher vertex indices, if 
               print(prefix, # there’s an edge to it, print edge 
                     self._vertices[vertex].name, 
                     ’<->’, 
                     self._vertices[k].name)

These printing methods use some of Python’s string formatting features, which
we don’t describe here. Instead, we show what they produce on a small
example.

For this example, we use a small graph with six vertices, two of which are not
connected to the other four. Figure 14-14 shows the original graph on the left
along with the depth-first traversal starting at vertex A. The minimum spanning
tree is on the right. Vertices B and C do not appear in the minimum spanning
tree because they are not connected by an edge to the other vertices. The output
of the print() method appears below each graph. Note that edges are printed



once next to their “first” (lower index) vertex and not repeated next to their
“second” (higher index) vertex.

Figure 14-14 Printed descriptions of a graph and a minimum spanning
tree

The minimum spanning tree algorithm follows the depth-first traversal to get
all the vertices in the connected component of the starting vertex. The vertices
of other components are ignored. The resulting subgraph will always have N−1
edges for the N vertices in the connected component.

How much time does it take to build the minimum spanning tree? Well, it’s at
least O(N) to go through all the N vertices. The depthFirst() traversal method
seems as though it should be O(N), as was the case for all the traversal
algorithms you’ve seen for other data structures. A closer inspection, however,
shows that for each vertex visited, the depthFirst() generator starts up its own
internal loop over all vertices to find the first adjacent unvisited one. If there



are few edges, that inner loop could go through most of the vertices before
finding the next adjacent one. That means it could take O(N) just to find the
next adjacent vertex, and depthFirst() traversal could take O(N2). The
breadth-first traversal always completes its inner loop, so it’s definitely O(N2).
That’s not always going to happen for depth-first, as we discuss in the next
chapter, but for now you can assume that worst case and that means the
minimum spanning tree takes O(N2) too.

Topological Sorting
Topological sorting is another operation that can be modeled with graphs. It’s
useful in situations where items or events must be arranged in a specific order.
Let’s look at an example.

Dependency Relationships
In school, students find (sometimes to their dismay) that they can’t take just
any course they want. Some courses have prerequisites—other courses that
must be taken first. The course sequence usually models a hierarchy where
some concepts cannot be mastered without first understanding another set of
concepts. These are dependency relationships. They occur everywhere.
Algebra depends on understanding arithmetic; linear algebra depends on
understanding algebra. In programming, a source file can import or include
other source files, which makes one file dependent on another. In cooking, each
step depends on completing the previous preparations. For example, baking
bread depends on mixing the dough and heating an oven.

Dependency relationships can be described with a graph—specifically a
directed graph. Figure 14-15 shows a simplified recipe for baking bread.



Figure 14-15 A dependency graph for baking bread

To bake bread, you need to have a heated oven and a loaf of dough in a pan. To
have a loaf, it should be shaped from dough. That dough should be raised first,



and so on. Most of the steps must be done in a particular order. Removing the
eggshells after beating the eggs would be problematic (removing them after
raising the dough would be even worse). Some pairs of steps, however, can be
done in either order. It doesn’t matter which order you measure the flour and
the salt; and heating the oven and mixing the dough can be done in either order,
even simultaneously. The dependency relations shown by the arrows capture
this partial ordering.

Analyzing the different tasks and their relative order may seem trivial to
anyone who has baked bread before, but they are anything but trivial to a robot.
Imagine a robot that could a read a cookbook recipe and figure out all the steps.
Assuming it could understand the meaning of the words, it would still need to
determine the ordering of tasks. Recipes are usually written in chronological
order of the steps, so it could simply follow that sequence. That, however,
would probably lengthen the preparation time because steps that could be done
at the same time would be done sequentially. Ideally, it would analyze all the
possible orderings of the steps and find the most efficient one.

Directed Graphs
Dependency relationships expose a graph feature we haven’t discussed yet: the
edges need to have a direction. When this is the case, the graph is called a
directed graph or a digraph. In a directed graph you can proceed only one way
along an edge. The arrows in Figure 14-16 show the direction of the edges.



Figure 14-16 A small directed graph and its adjacency matrix

In a program, the difference between a undirected graph and a directed graph is
that an edge in a directed graph has only one entry in the adjacency matrix.



Figure 14-16 shows a small directed graph and its adjacency matrix.

Each 1 in the matrix represents a single edge. The row labels show where the
edge starts, and the column labels show where it ends. Thus, the edge from A
to B is represented by a single 1 at row A column B. If the directed edge were
reversed so that it went from B to A, there would be a 1 at row B column A
instead.

For a undirected graph, as noted earlier, half of the adjacency matrix mirrors
the other half, so half the cells are redundant. For directed graphs, however,
every cell in the adjacency matrix conveys unique information. The halves are
not mirror images.

For a directed graph, the method that adds an edge thus needs only a single
statement
self._adjMat[A, B] = 1

instead of the two statements required in a undirected graph. If you use the
adjacency-list approach to represent your graph, then A has B in its list, but—
unlike a undirected graph—B does not have A in its list.

Sorting Directed Graphs
Imagine that you make a list of all the actions needed to bake bread, using
Figure 14-15 as your input data. You then arrange the actions in the order you
need to take them. The final Bake bread step (Bb) is the last item on the list,
which might look like this using two initials for each vertex:

Mf,Ms,Ml,Re,Be,Md,Rd,Fl,Pp,Pl,Ho,Bb

Arranged this way, the graph vertices are said to be topologically sorted. Any
action you must take before some other action occurs before it in the list.

Many possible orderings would satisfy the dependency relationships. You could
heat the oven and prepare the pan first as in

Ho,Pp,Mf,Ms,Ml,Re,Be,Md,Rd,Fl,Pl,Bb

This approach also satisfies all the relationships (although the similarity to
chemical symbols might be a bit unsettling when thinking about bread). There
are many other possible orderings as well. When you use an algorithm to
generate a topological sort, the approach you take determines which of various



valid sortings are generated. The specific constraint that must be followed in
graph terminology is as follows. For it to be a valid sorting of a directed graph,
if there is a path from vertex A to vertex B, vertex A must precede vertex B in
the topological sort.

Directed graphs can model other situations besides recipe steps and course
prerequisites. Many industrial projects are managed by breaking down the
overall project into smaller jobs or tasks. Each task might depend on outputs of
other tasks and might require some time to elapse between the end of one task
and the start of another. Take building a house as an example. The person who
wants the house constructed must identify a site, find a builder, obtain permits,
and get financing. The actual construction work depends on having all those
tasks done. There could be a delay between completing all the preparation tasks
and commencing construction as the builder finds crewmembers available to
start the new work. These delays are somewhat predictable, but rarely with any
precision.

Modeling job schedules with graphs is called critical path analysis. Although
we don’t show it here, a weighted, directed graph (discussed in the next
chapter) can be used, which allows the graph to include the time necessary to
complete different tasks in a project. The graph can then tell you such things as
the minimum time necessary to complete the entire project and overall costs by
looking at different possible topological sorts.

The Graph Visualization Tool
The Graph Visualization tool can model directed graphs too. When the graph
has no edges, you can select or clear the Bidirectional checkbox. The checkbox
is disabled when any edges exist. You can select New Graph to clear all the
vertices and edges and uncheck the Bidirectional box.

The vertices and edges are edited in the same way for directed graphs. The
differences are that edges are drawn as a curve with arrow heads, dragging the
pointer from one vertex to another only creates the edge from the first one to
the second, and clicking a cell in the adjacency matrix only creates the edge
from the corresponding row to the corresponding column. Figure 14-17 shows
the same directed graph as the bread baking example from Figure 14-15 using
the two-letter abbreviations for the operations. The vertices have been
rearranged but the edges connecting them remain the same. The adjacency



matrix is large and obscures the table of vertices. Use the collapse and
uncollapse button to switch the view of the matrix.

Figure 14-17 A directed graph in the Graph Visualization tool.



You can use the tool to run depth and breadth-first traversals and minimum
spanning trees of directed graphs. The results are different than for the
undirected graphs because the edges are now directional.

The Topological Sorting Algorithm
Let’s look at how to sort the vertices topologically. Here, we start with a basic
algorithm and then improve it. For the basic algorithm, we need at least two
steps.

Step 1
Find an unvisited vertex that has no (unvisited) predecessors.

The predecessors to vertex, V, are those vertices that are directly “upstream”
from it—that is, connected to it by an edge that points to V. If an edge points
from A to B, then A is a predecessor to B (and B is a successor to A). In Figure
14-16, the only vertex with no predecessors is C. In the bread baking example
of Figure 14-17, six vertices have no predecessors: Mf, Ms, Ml, Re, Pp, and
Ho. These vertices can be found by looking for columns in the adjacency
matrix with no edges.

Step 2
Mark the vertex found in Step 1 as visited and add it at the end of the result list.

Steps 1 and 2 are repeated until all the vertices are gone. At this point, the
result list holds the vertices arranged in topological order.

You can see the process at work by using the Graph Visualization tool.
Construct the graph in Figure 14-16 (or any other graph, if you prefer). Then
select the Topological Sort button. There’s no need to select a starting vertex
because the algorithm doesn’t need one.

The animation in the Visualization tool proceeds in two phases. It’s a bit fancier
than the two-step algorithm shown earlier, but those same steps are used. We
look at a couple of different implementations later to see how to sort the
vertices efficiently.

Note that this topological sorting algorithm works on unconnected graphs as
well as connected graphs. This models the situation in which you have two



unrelated goals, such as getting a degree in mathematics and at the same time
taking a hiking trip in the mountains. Some graphs, however, cause problems.

Cycles and Trees
One kind of graph that this basic algorithm cannot handle is a graph with
cycles. We mentioned how the minimum spanning tree of a graph never creates
a loop connecting a vertex to itself by a path of two or more edges. The formal
name for such a loop is a cycle.

If a path ends up at the vertex where it started by following directed edges, the
graph has at least one cycle. In Figure 14-18 the path B-D-C-B forms a cycle.
In addition, A-B-D-C-A forms a cycle. Notice that A-B-C-A is not a cycle
because you can’t go from B to C in this directed graph.

Figure 14-18 Directed graph with cycles.

A cycle models the paradox (which some students claim to have encountered at
certain institutions), in which course B is a prerequisite for course D, D is a
prerequisite for C, and C is a prerequisite for B. Fortunately, such paradoxes are
rare.

Cycles can occur in undirected graphs too, but you must be more specific about
them. You can typically ignore the cycle formed by following an edge and
returning immediately back along the same edge. Cycles must be formed by
paths of two or more distinct undirected edges. Multigraphs allow a pair of
vertices to be connected by multiple edges, so a cycle could form with as few
as two edges. In non-multigraphs, you need at least three undirected edges to
form a cycle.



It’s easy to figure out whether some kinds of undirected graphs have cycles. If a
graph with N nodes has more than N−1 edges, it must have cycles. You can
make this point clear to yourself by trying to draw a graph with N nodes and N
edges that does not have any cycles. On the other hand, detecting cycles in
directed graphs and graphs with fewer edges can be hard to do. In Chapter 15,
“Weighted Graphs,” the section on efficiency discusses the complexity of
finding certain kinds of cycles.

A undirected graph with no cycles is always a tree. It’s the presence of cycles
that allows two vertices to be connected by distinct paths.

The binary and multiway trees you saw in earlier chapters of this book are
types of directed graphs because the edges always link a parent node to a child
node. We never allowed those trees to create cycles. Doing so would cause
problems like those described for circular lists in Chapter 5.

Topological sorts succeed only on directed graphs with no cycles. Such a graph
is called a directed acyclic graph, often abbreviated DAG. The basic
topological sorting algorithm doesn’t have a step for what to do if Step 1 fails
—when there is no vertex that has no unvisited predecessors. For example, if
you ask it to process the graph in Figure 14-18, Step 1 will see that all vertices
have at least one predecessor and fail. Thus, we need to add a final step:

Step 3

After Step 1 fails, if the result list has fewer vertices than the graph,
the graph must have a cycle.

This three-step algorithm can handle all directed graphs with and without
cycles.

Python Code for the Basic Topological Sort
We introduce some new methods in the Graph class to work on predecessors
and use them to implement the three steps of the basic topological sorting
algorithm in Listing 14-8. The first method, predecessorVertices(), is a
generator like adjacentVertices(), which yields all the predecessor vertices
of a given vertex, n. It validates the vertex index and then loops over all
possible indices, yielding only those with an edge pointing to n.



Listing 14-8 Code for the Basic Topological Sort of Vertices

class Graph(object): 
… 
   def predecessorVertices( # Generate a sequence of vertex indices 
         self, n):          # that are adjacent predecessors to n 
      self.validIndex(n)    # Check that vertex index n is valid 
      for j in self.vertices(): # Loop over all other vertices 
         if j != n and self.hasEdge(j, n): # If other vertex connects 
            yield j         # via edge, yield other vertex index 
 
   def onlyVisitedPredecessors( # Test whether vertex n’s predecessors 
         self, n, visited): # have all been visited, if any 
      return all(visited[j] # All predecessors must have been set in 
                 for j in self.predecessorVertices(n)) # visited array 
 
   def findUnvisitedWithoutPredecessor( # Find a vertex without 
         self, visited):    # unvisited predecessor vertices, if any 
      for vertex in self.vertices(): # Loop over all vertices 
         if (not visited[vertex] and # If vertex is unvisited and has 
             self.onlyVisitedPredecessors( # only visited 
                vertex, visited)): # predecessors, 
            return vertex   # then return it 
      return None           # Otherwise there’s a cycle or no vertices 
 
   def sortVerticesTopologically( # Return a sequence of all vertex 
         self):             # indices sorted topologically 
      result = []           # Result list of vertices 
      nVertices = self.nVertices() # Number of vertices 
      visited = [None] * nVertices # Array to mark visited vertices 
      while len(result) < nVertices: # Loop until all vertices handled 
         vertex = self.findUnvisitedWithoutPredecessor( # Find an 
               visited)     # unvisited vertex without predecessors 
         if vertex is None: # If no such vertex exists, then raise an 
            raise Exception(’Cycle in graph, cannot sort’) # exception 
         result.append(vertex) # Append unvisited vertex and 
         visited[vertex] = True # mark it as visited 
      return result

To implement Step 1, we need a test to find an unvisited vertex with no
unvisited predecessors. In other words, the algorithm seeks a vertex where all
its predecessors, if any, are among the visited vertices. The
onlyVisitedPredecessors() method takes a vertex index, n, as a parameter
and uses Python’s all() function to test whether all of n’s predecessors satisfy



the condition. The arguments to the all() function are the values of the
visited array for each predecessor index. If one or more of those predecessors
have a visited value of None or False, then vertex n fails the test. Notably, if n
has no predecessors, the argument list to the all() function is empty and it
returns True.

The findUnvisitedWithoutPredecessor() method performs Step 1, looping
over all possible vertices, skipping visited vertices, and returning the first
unvisited one that satisfies onlyVisitedPredecessors(). If it completes the
loop without finding an unvisited vertex without predecessors, it returns None,
signaling that there must be a cycle.

The sortVerticesTopologically() method performs Steps 1, 2, and 3. It sets
up an empty result list to hold the sorted vertices. Next it creates a visited
array, like the ones used in the traversal methods, marking all the vertices as
unvisited. The main work begins with the while loop. On each pass of the loop,
it tries Step 1 to find a vertex with no predecessors. If that comes back as
None, it raises an exception to signal the detection of a cycle. Otherwise, it adds
the vertex to the end of the result and marks it as visited, which implements
Step 2. If the loop finishes, then there are nVertices in the result list, and it is
returned, handling Step 3.

The basic topological sort algorithm is easy to understand, but let’s look at its
efficiency. Figure 14-19 shows the different levels of the algorithm. Each level
represents one of the methods being called. Let’s look at the innermost level
first. Every loop through the vertices() sequence is, of course, O(N). Thus,
one call to the onlyVisitedPredecessors() test for a particular vertex looks at
all the other vertices, so it takes O(N) time too. At the next level, outward, the
findUnvisitedWithoutPredecessor() method calls the inner test on every
vertex until it finds one that matches. Although that middle level does quit
when it finds such a vertex, it still has to scan some fraction of the vertices, so
the combined worst-case complexity of the middle level is O(N2) (to be
thorough, we would need to determine the average number of tries needed to
find the vertex, but we can assume it’s proportional to N without knowing
anything about the graph’s edges).



Figure 14-19 Complexity of the basic topological sort algorithm

The outermost routine, sortVerticesTopologically(), calls the middle level
until all nVerticies have been copied. That’s another O(N) factor, so each
level of the algorithm contributes O(N) as shown. Overall, the algorithm is
O(N3). Can we do better than that?

Improving the Topological Sort
Yes, we can reduce that complexity to at least O(N2), but it will take a more
complicated organization of the data. While this transformation is complicated,
learning from examples of how others have improved algorithm performance
will help you analyze and improve your own programs. It’s another case study
in how to select and use the data structures most appropriate for a task.

The key concept that we’re interested in is the number of edges for each vertex.
If we organize the vertices by the number of inbound edges, we can quickly
find the ones with no predecessors. In graphs, the number of inbound and
outbound edges are called the inbound degree and the outbound degree, or
indegree and outdegree, for short.

The first thing we need is a method to get the inbound and outbound degree of
a vertex. The degree() method in Listing 14-9 takes a vertex as a parameter,
counts both kinds of edges at that vertex, and returns the counts as a tuple.

After we know the inbound degree for all the vertices, we can put all the
vertices with degree 0 in one place, so they are easy to find. In fact, if we keep
an array indexed by degree, we can put each vertex in the cell of the array for
its inbound degree. We need some structure in each array cell that can hold a



group of vertices. Should that structure be a stack? A queue? A tree? The
answer depends on how we process the vertices, so let’s look at the remaining
steps.

After we take a vertex out of the cell for degree 0, we can put it in the sorted
result list. The successors of that vertex now have one fewer inbound edge,
effectively. A successor that had only one inbound edge from the vertex that
was put in the result list can now be considered to have degree 0. So instead of
tracking which vertices have been visited, we can simply change the degree for
each successor vertex, moving it to the proper cell in the array for its new
degree. As we process vertices and their successors, every vertex will
eventually be moved down to degree 0 (if there are no cycles).

Knowing that we want to move vertices between cells in the array, it becomes
clear that we need a structure that enables fast insertion and deletion. Stacks
and queues have O(1) insert and delete complexity, but only for specific orders
(LIFO and FIFO). For this algorithm we would need to, say, remove vertex 27
from one cell and add it to another.

If we want to insert and delete items by a key, such as their vertex index, the
best data structures would be an array or a hash table. Both have O(1) insert
and delete times (assuming we don’t need to shift items in the array to
eliminate holes). The hash table has the added advantage of only needing
memory proportional to the items in it; an array would need N cells to hold any
of the N vertices.

Figure 14-20 illustrates the relations of structures we need. The left side shows
a simple four-vertex graph. Next on its right is the Graph object that holds the
_vertices array and _adjMat adjacency matrix to represent it. Next to that is a
four-element array that shows the inbound degree for each of the four vertices.
For example, vertex A has inbound degree 1 while vertex B has inbound degree
2.



Figure 14-20 Structures used for topological sort

The vertsByDegree array groups together the vertices by their inbound degree.
Each cell in this array references a hash table that holds the keys for the
vertices with a particular inbound degree. For example, vertsByDegree[1]
references a hash table holding two keys. The keys are the vertex indices of
vertices of inbound degree one: 0 (A) and 3 (D). The hash table for degree
three is empty because none of the vertices have inbound degree three. The
hash tables have extra cells to maintain a 50 percent load factor.

The sortVertsTopologically() method in Listing 14-9 starts by creating the
vertsByDegree array. The maximum inbound degree any vertex could ever
have is the number of vertices minus one. For a graph with E edges, the highest
inbound edge count could be E. To account for vertices with indegree 0, we
need to add 1 to E. The size of the array is the minimum of these values:
nVertices and nEdges+1. The vertsByDegree array is built using a list
comprehension [{} for j in range(min(self.nVertices(),
self.nEdges() + 1))]. As you saw for building the adjacency matrix, using
the list comprehension ensures that N distinct empty hash tables are made to fill
the array cells.

Listing 14-9 The Improved Topological Sort of Vertices

class Graph(object): 
… 
   def degree(self, n):     # Get degree of vertex as (in, out) pair 
      self.validIndex(n)    # Validate vertex index 
      inb, outb = 0, 0      # Count inbound and outbound edges 
      for j in self.vertices(): # Loop over all vertices 



         if j != n:         # other than target vertex 
            if self.hasEdge(j, n): # If other vertex precedes 
               inb += 1            # increase inbound degree 
            if self.hasEdge(n, j): # If other vertex succeeds n 
               outb += 1           # increase outbound degree 
      return (inb, outb)    # Return inbound and outbound degree 
 
   def sortVertsTopologically( # Return sequence of all vertex indices 
         self):             # sorted topologically more efficiently 
      vertsByDegree = [     # Make an empty hash table for every 
         {} for j in range( # possible degree, max = nVerts – 1 or 
            min(self.nVertices(), self.nEdges() + 1))] # nEdges 
      inDegree = [0] * self.nVertices() # Allocate indegree array 
      for vertex in self.vertices(): # Loop over all vertices, record 
         inDegree[vertex] = self.degree(vertex)[0] # inbound degree 
         vertsByDegree[     # In hash table for this inbound degree 
            inDegree[vertex]][vertex] = 1 # insert vertex 
      result = []           # Result list is initially empty 
      while len(            # While there are vertices with inbound 
            vertsByDegree[0]) > 0: # degree of 0 
         vertex, _ = vertsByDegree[0].popitem() # take vertex out of 
         result.append(vertex) # hash table & add it to end of result 
         for s in self.adjacentVertices( # Loop over vertex’s 
               vertex):     # successors; move them to lower degree 
            vertsByDegree[ # In hash table holding successor vertex 
               inDegree[s]].pop(s) # delete the successor 
            inDegree[s] -= 1 # Decrease inbound degree of successor 
            vertsByDegree[ # In hash table for lowered inbound degree 
               inDegree[s]][s] = 1 # insert modified successor 
      if len(result) == self.nVertices(): # All vertices in result? 
         return result      # Yes, then return it, otherwise cycle 
      raise Exception(’Cycle in graph, cannot sort’)

The sorting algorithm creates an inDegree array to hold the inbound degree of
every vertex. Initially, these are filled with 0s.

Now we can populate the new data structures. The next section is a for loop
over all the vertices. It calculates the degree of the vertex by calling
self.degree() and extracts the first element of the returned tuple using [0] to
get the inbound degree.

The sorting algorithm now inserts the vertex in the vertsByDegree array based
on its inbound degree. It finds the appropriate hash table by referencing
vertsByDegree[inDegree[vertex]]. This kind of nested reference looks a
little complicated, but it really is only two array lookups. The vertex variable



indexes the inDegree array to get a numeric degree for the vertex. That
numeric degree indexes the vertsByDegree array. The content of that array cell
is a hash table. To enter a key in a hash table, ht, you could write ht[key] = 1.
That’s what’s being done by writing vertsByDegree[inDegree[vertex]]
[vertex] = 1; it sets the vertex key in the hash table retrieved from
vertsByDegree. These strings of references can be tricky to understand when
you first look; try working from inner to outer references as well as outer to
inner.

After the vertsByDegree array is populated with all the vertices and an empty
result list/array created, the algorithm can now process the vertices in a while
loop. The loop condition tests whether the hash table for inbound degree 0
vertices has any keys in it. If there are no degree 0 vertices, then we’re either
done, or the graph has at least one cycle in it.

Inside the while loop body, we pop one of the degree 0 vertices out of its hash
table. Python has several methods for removing items from hash tables. The
popitem() method removes and returns a key and its value from the hash table.
In this case, the sorting algorithm doesn’t care which key is removed, nor what
value it has, so it puts the value in the underscore (_) variable. (Python’s
popitem() always removes the last key inserted, making it behave like a stack.)
Another way to remove a key from a hash table is to use the pop() method,
which requires a specific key.

Next, the algorithm appends the degree 0 vertex to the result list. Because the
vertex has no predecessors, it can be the next vertex in the output sequence.
That allows each of the vertex’s successors to reduce their inbound degree by
one. The inner for loop goes through the adjacent vertices of vertex, which
are the same as the successors for directed graphs. Each successor vertex, s, is
removed from the hash table holding s based on its current degree. The
vertsByDegree[inDegree[s]] looks up the hash table and the .pop(s)
removes the successor’s key. Next, the algorithm lowers the degree for s by
one, and s is inserted in the hash table for that lower degree. After all the
successors have been lowered by one degree, the algorithm continues the outer
while loop, popping vertices out of the degree 0 hash table.

When the degree 0 hash table is empty, we check the length of the result list
against the number of vertices. If the result contains all the vertices, it can be
returned as the sorted vertex list. If not, a cycle prevented finding a vertex
without predecessors.



Try looking at the details of a topological sort using the Graph Visualization
tool. It implements this improved algorithm and shows how the inDegree and
vertsByDegree arrays are constructed and updated. As the
sortVertsTopologically() method executes, try to figure out what will
happen next at each step. The hash tables are shown as simple lists rather than
as arrays with empty cells that would illustrate their load factors, but that is not
critical to understanding the overall algorithm.

Efficiency of the Topological Sort
Does this new structure—an array of hash tables—improve the efficiency?
Let’s review. Building the initial, empty vertsByDegree array takes O(N) time.
The first for loop will also take at least O(N) time because it goes through all
the vertices. Now we must look at what happens inside that loop.

The call to self.degree(vertex) takes O(N) time because it has to check all N
vertices to see whether they have inbound or outbound edges to the given
vertex. Thus, populating the inDegree array makes the overall for loop take
O(N2) time because it covers the entire two-dimensional adjacency matrix to
compute all of these.

We also must examine the statement that puts the vertices in their appropriate
hash table inside the vertsByDegree array. It does two array lookups (one
inside inDegree and the other inside vertsByDegree) and a hash table access
for every vertex. The lookups and the hash table access are all O(1), so this
doesn’t add more complexity to the first for loop; overall it takes O(N2) time.

The main while loop of the sortVertsTopologically() method executes N
times (if there are no cycles, and fewer if there are any). Inside the loop, the act
of popping an item and inserting it at the end of the result list is O(1). The inner
for loop must process each of the successors. Finding the (adjacent) successors
takes O(N) time, so the inner for loop is at least O(N). Some subset of those N
vertices will be successors, and each gets popped from a hash table,
decremented in degree, and inserted in another hash table, which are all O(1)
operations. The inner for loop takes O(N) time; thus, the outer, main while
loop combined with it, takes O(N2) time.

Both preparing the array of hash tables in the first for loop and processing the
result in the main while loop take O(N2) time. The extra memory needed for
the vertsByDegree and inDegree arrays has made an improvement over the



O(N3) time of the basic algorithm. That might seem small, but it can be huge
when N grows large.

Connectivity in Directed Graphs
You’ve seen how, in a undirected graph, you can find all the vertices that are
connected by doing a depth-first or breadth-first traversal. When you try to find
all the connected vertices in a directed graph, things get more complicated. You
can’t just start from a randomly selected vertex and expect to reach all the other
connected vertices.

Consider the small, directed graph in Figure 14-16 and Figure 14-20. If you
start on A, you can get to B and D but not to C. If you start on B, you can get
only to D, and if you start on D, you can’t get anywhere. The meaningful
question about connectivity is: What vertices can you reach if you start on a
particular vertex?

The Connectivity Matrix
You can easily use the depthFirst() method (Listing 14-4) to traverse part of
the graph starting from each vertex in turn. For the graph of Figure 14-16, the
output will look something like this:
ABD 
BD 
CABD 
D

This is the connectivity table for the directed graph. The first letter is the
starting vertex, and subsequent letters show the vertices that can be reached
(either directly or via other vertices) from the starting vertex.

Transitive Closure and Warshall’s Algorithm
In some applications it’s important to find out quickly whether one vertex is
reachable from another vertex. This is the essential question in genealogy: Who
are my ancestors? Another example is a celebrity connection game such as the
“six degrees of Kevin Bacon,” where people try to find a path through
acquaintances to reach a particular person. Some people hypothesize that you
need at most a path length of six acquaintances to reach a celebrity. In many



applications the path length doesn’t matter. Perhaps you want to take a trip by
train from Athens to Kamchatka, and you don’t care how many intermediate
stops you need to make. Is this trip possible? Graphs are ideal for answering
these questions. The trip won’t be possible unless the vertices are part of the
same connected component.

You could examine the connectivity table, but then you would need to look
through all the entries on a given row, which would take O(N) time (where N is
the average number of vertices reachable from a given vertex). But you’re in a
hurry. Is there a faster way?

It’s possible to construct a table that will tell you quickly (that is, in O(1) time)
whether one vertex connects to another. Such a table can be obtained by
systematically modifying a graph’s adjacency matrix. The graph represented by
this revised adjacency matrix is called the transitive closure of the original
graph. Such a revised matrix can be called the connectivity matrix.

Remember that in an ordinary adjacency matrix the row number indicates
where an edge starts, and the column number indicates where it ends. The
connectivity matrix has a similar arrangement, except the path length between
the two vertices may be more than one. In the adjacency matrix, a 1 or True at
the intersection of row C and column D means there’s an edge from vertex C to
vertex D, and you can get from one vertex to the other in one step. Of course,
in a directed graph it does not follow that you can go the other way, from D to
C.

You can use Warshall’s algorithm named for Stephen Warshall to find the
transitive closure of the graph. It changes the adjacency matrix into a
connectivity matrix. This algorithm does a lot in a few lines of code. It’s based
on a simple idea:

If you can get from vertex L to vertex M, and you can get from M to N, then
you can get from L to N.

A two-step path is thus derived from two one-step paths. The adjacency matrix
shows all possible one-step paths, so it’s a good starting place to apply this rule.

You might wonder whether this algorithm can find paths of more than two
edges. After all, the rule only talks about combining two one-edge paths into
one two-edge path. As it turns out, the algorithm can build on previously
discovered multiedge paths to create paths of arbitrary length. The basic idea is:
if you can build the connectivity matrix for one and two edge paths, then you



could apply the same algorithm to that table to build all the three-edge and
fewer paths. If you keep reapplying the algorithm, you will eventually discover
all the possible paths.

Here’s how it works. Let’s use the adjacency matrix of Figure 14-21 as an
example. For this example, you examine every cell in the adjacency matrix, one
row at a time.

Figure 14-21 A five-vertex directed graph and its adjacency matrix

Row A
Let’s start with row A. There’s nothing (0) in columns A and B of that row, but
there’s a 1 at column C, so you can stop there.

Now the 1 at this location says there is a path from A to C. If you knew there
was a path from some other vertex X to A, then you would know there was a
path from X to C. Where are the edges (if any) that end at A? They’re in
column A. So, you examine all the cells in column A. In the _adjMat of Figure
14-21, there’s only one 1 in column A: at row B. It says there’s an edge from B
to A. So, you know there’s an edge from B to A, and another (the one you
started with when examining row A) from A to C. From this, you infer that you
can get from B to C in two steps. You can verify this is true by looking at the
graph.

To record this result, you put a 1 at the intersection of row B and column C.
The result is shown in the second matrix in Figure 14-22. The highlighted cell
shows where the value changed to 1.



Figure 14-22 Steps in Warshall’s algorithm

The remaining cells of row A are blank. You only need to copy the contents of
column A to columns that have a 1 in row A. In other words, you perform an
operation akin to a bitwise OR of column A and column C for this first “bit”
that you find turned “on”. Note that column A also has a 1 for vertex E.
Column C already had a 1 for vertex E, so the bitwise OR operation doesn’t
change it.

Rows B, C, and D
Next, you go to row B. The first cell, at column A, has a 1, indicating an edge
from B to A. Do any edges end at B? You look in column B, but it’s empty, so
you know that none of the 1s you find in row B will result in finding longer
paths because no edges end at B. You could perform the bitwise OR of column
B with the three columns that have a 1 in row B, but a bitwise OR with 0s
doesn’t change anything, as shown in the fourth panel of Figure 14-22.

Row C has no 1s at all, so you go to row D. Here, you find an edge from D to
E. Column D is empty, however, so no edges end on D and the OR changes
nothing.

Row E
In row E you see there are edges from E to A and from E to C. Looking in
column E, you see the first entry is for the edge B to E, so with B to E and E to
A, you infer there’s a path from B to A. That path, however, has already been
discovered, as indicated by the 1 at that location.



There’s another 1 in column E, at row D. This edge from D to E plus the ones
from E to A and E to C imply paths from D to A and C, so you insert a 1 in
both of those cells. The result is shown in last matrix of Figure 14-22.

Warshall’s algorithm is now complete. You’ve added three 1s to the adjacency
matrix, which now shows which nodes are reachable from another node in any
number of steps. The graph at the top right of Figure 14-22 shows the edges
added to the graph by the transitive closure as curved arrows in a different
color.

Long Paths
Can Warshall’s algorithm find long paths in the graph and build the full
closure? It seems as though going row by row once through the matrix might
not find long, complicated chains of edges. Figure 14-23 shows a longer
example.

Figure 14-23 Warshall’s algorithm on a long path

In this graph, the five vertices are connected by four edges to form a long
chain. Each step of Warshall’s algorithm adds new edges to the matrix. First,
one edge is added for row A, then two edges when it examines row B, and then
three edges for row C. The new entries sometimes line up in a column and
sometimes in a row. The six edges are all that are needed to build the final
connectivity matrix; rows D and E contribute nothing because either the row or
its corresponding column contains all 0s.

Cycles



If D were connected to E in the graph of Figure 14-23, it could form a cycle,
assuming the direction of the edge went from E to D. What happens in the
connectivity matrix if there’s a cycle? Does Warshall’s algorithm still work?

In fact, Warshall’s algorithm can be used to detect cycles. Consider the example
shown in Figure 14-24. Vertices A, B, C, and D form a cycle with vertex E
dangling from vertex C. In the initial adjacency matrix, which is the upper-left
matrix in the figure, the identity diagonal where the row index is the same as
the column index has all 0s. That’s what you expect in adjacency matrices
because only pseudographs to allow vertices to have edges to themselves.

Figure 14-24 Warshall’s algorithm applied to a graph with a cycle

If you go through the steps of Warshall’s algorithm, the final connectivity
matrix shows all 1s along the diagonal except for vertex E (as circled in the
matrix at the bottom right of Figure 14-24). That means vertices A, B, C, and D
must be part of at least one cycle. There is some path starting from each vertex
that leads back to itself.

The presence of 1s along the diagonal tells you that cycles must exist, but not
how many there are nor which vertices are in which cycles. Those are harder
problems to solve. Nevertheless, it’s useful to have methods that identify the
presence (and absence) of cycles. The 0 in the diagonal entry for vertex E in
Figure 14-24 tells you that it is not part of a cycle. (Perhaps schools should be
required to check for 0s by applying this to the dependency relationship graph
of all their course prerequisites.)

Implementation of Warshall’s Algorithm



One way to implement Warshall’s algorithm is with three nested loops (as
suggested by Sedgewick; see Appendix B, “Further Reading”). The outer loop
looks at each row; let’s call its variable R. The loop inside that looks at each cell
(column) in the row; it uses variable C. If a 1 is found in matrix cell (R, C),
there’s an edge from R to C, and then a third (innermost) loop is activated.

The third loop performs the OR operation between column R and column C. It
has to loop over each of the cells (vertices) in those columns using its own
variable and perform the OR between their values. We leave the details as an
exercise.

Because there are three loops over all N vertices, the overall complexity is
O(N3). That’s a lot of computation to build the connectivity matrix. If you only
want to find the answer to the problem “Is there a sequence of train trips that go
from Athens to Kamchatka?” you could find the answer in O(N2) time with a
depth-first or breadth-first search. Building the full connectivity matrix first,
however, can make a huge difference in other, advanced graph algorithms. It
could also be used to test for the presence of cycles, possibly returning as soon
as any diagonal is set to one. That would still take O(N3) time (in the worst
case and average case), so it’s not very fast. We discuss the complexity of this
and other graph algorithms in the next chapter.

Summary
• Graphs consist of vertices connected by edges.

• Graphs can represent many real-world entities such as transportation
routes, electrical circuits, and job scheduling.

• Vertices are adjacent if a single edge connects them.

• The adjacency of vertices is usually represented by either an adjacency
matrix or adjacency lists.

• Adjacency matrices can be represented using two-dimensional arrays or
hash tables.

• Traversal algorithms allow you to visit each vertex in a graph in a
systematic way and are the basis of several other activities such as
searches.



• The two main traversal algorithms are depth-first (DF) and breadth-first
(BF).

• The depth-first traversal can be based on a stack; the breadth-first
traversal can be based on a queue.

• A breadth-first search finds the shortest path between two vertices (in
terms of number of edges), if one exists.

• Depth-first search explores parts of the graph furthest away from the
starting vertex early in the traversal, which can be useful in move
analysis of games.

• A minimum spanning tree (MST) is a subgraph with the minimum
number of edges necessary to connect all a undirected graph’s vertices.

• Minimum spanning trees are useful in finding layouts of networks with
the fewest number of interconnections.

• A minimum spanning tree can be determined using depth-first traversal
on an unweighted, undirected graph.

• Trees are a type of undirected graph where a unique path connects any
two vertices.

• In a directed graph, edges have a direction (often indicated by an arrow).

• Directed graphs can represent situations such as dependency
relationships, river flows, and one-way road networks.

• The adjacency matrices of undirected graphs always have mirror image
symmetry, but those of directed graphs do not.

• In a topological sort of directed graph vertices, if there is a path from
vertex A to vertex B, vertex A precedes B in the result list. Vertex pairs
not connected by a path can appear in either order.

• Topological sorting can be done only on directed acyclic graphs (DAG)
—graphs without cycles.

• Topological sorting is typically used for scheduling complex projects that
consist of tasks contingent on other tasks.



• Topological sorting can be done in O(N2) time, where N is the number of
vertices, by computing the inbound degree of each vertex and holding
the vertices in hash tables for each degree.

• Warshall’s transitive closure algorithm finds whether there is a
connection, of either one or multiple edges, from any vertex to any other
vertex.

• Warshall’s algorithm transforms an adjacency matrix into a connectivity
matrix, and that matrix can be used to detect the existence of cycles.

• The basic implementation of Warshall’s algorithm could take O(N3) time.

Questions
These questions are intended as a self-test for readers. Answers may be found
in Appendix C.

1. In a graph, a(n) _______ connects two _________.
2. How do you tell, by looking at its adjacency matrix, how many edges

there are in an undirected graph?
3. In a game simulation using a graph, a(n) _______ corresponds to a game

board state and a(n) _______ corresponds to a player’s move.
4. A directed graph is one in which

a. you must follow the minimum spanning tree.
b. you must go between vertices in topologically sorted order.
c. you can go in only one direction from one given vertex to another.
d. you can go in only one direction on any valid path.

5. If a graph’s adjacency matrix has rows [0,1,0,0], [1,0,1,1], [0,1,0,0], and
[0,1,1,0], what is the corresponding adjacency list for vertices A, B, C,
and D?

6. A minimum spanning tree is a graph in which
a. the number of edges connecting all the vertices is as small as possible.
b. the number of edges is equal to the number of vertices.



c. all unnecessary vertices have been removed.
d. every combination of two vertices is connected by the minimum

number of edges.
7. How many different minimum spanning trees are there in a undirected

graph of three vertices and three edges?
8. Choose the fastest way to check whether a path exists from vertex A to

vertex Z in a directed graph among these options.
a. Get the minimumSpanningTree(A), and then find the path from the

root of that tree to Z.
b. Loop over the vertices returned by calling depthFirst(A) until Z

shows up.
c. Loop over the vertices returned by calling breadthFirst(Z) until A

shows up.
d. Apply Warshall’s algorithm to the graph and then check the

connectivity matrix to see if A can reach Z.
9. A undirected graph must have a cycle if

a. any vertex can be reached from some other vertex.
b. the number of connected components is more than one.
c. the number of edges is equal to the number of vertices.
d. the number of paths is fewer than the number of edges.

10. A(n) ______ is a graph with no cycles.
11. The degree of a vertex

a. is the number of edges in the path linking it to a starting vertex.
b. is the number of edges that connect it to other vertices.
c. is the number of vertices in its connected component of the graph.
d. is half the number of edges in its row of the adjacency matrix.

12. Can a minimum spanning tree for a undirected graph have cycles?
13. True or False: There may be many correct topological sorts for a given

directed graph.
14. Topological sorting results in



a. edges being directed so vertices are in ascending order.
b. vertices listed in order of increasing number of edges from the

beginning vertex.
c. vertices arranged in ascending order, so F precedes G, which precedes

H, and so on.
d. vertices listed so the ones later in the list are downstream from the

ones earlier.
15. If a graph’s adjacency matrix has rows [0,1,0,0], [0,0,0,1], [1,0,0,0], and

[1,0,0,0] with vertices A, B, C, and D, could it be passed as an argument
to sortVertsTopologically()? If so, what would the result be?

16. What’s a DAG?
17. Warshall’s algorithm

a. finds the largest cycle in a graph, if there is one.
b. changes the adjacency matrix into a connectivity matrix.
c. sorts the vertices in ascending order but not topologically.
d. finds the fewest number of edges needed to perform closure.

18. Under what conditions does it make sense to perform a topological sort
on a undirected graph?

19. If graph G1 has 100 vertices and G2 has 10 vertices, what’s the
computing time ratio between calling sortVertsTopologically() on
G1 and G2?

20. Which algorithm solves the bridges of Königsberg problem?
a. Warshall’s algorithm
b. the minimum spanning tree algorithm
c. the topological sort algorithm
d. the breadth-first traversal algorithm

Experiments
Carrying out these experiments will help to provide insights into the topics
covered in the chapter. No programming is involved.



14-A You saw how depth-first traversal is used to determine the
minimum spanning tree of a particular graph. Could you use breadth-first
traversal instead? If not, why not? If so, what would be different between
the two methods? Experiment with the sample graphs shown in this
chapter.

14-B Think about representing the bridges of Königsberg network
(see Figure 14-3) in the computer. Would using an adjacency matrix
work? How about an adjacency list? Does it matter if the bridges need
distinct labels (like those in the figure) or if all that needs to be stored is
the number of edges between two vertices? If either representation won’t
work, explain why not, and propose a way to make it work.

14-C Using the Graph Visualization tool, start with a new (empty
graph) and collapse the Adjacency Matrix window. Then randomly fill in
5 vertices and add 7 edges. Without exposing the Adjacency Matrix,
write down the adjacency matrix for the graph. When you’re done,
expand the matrix view to see if you got it right. Repeat this exercise
with a directed graph of 5 vertices and 10 edges.

14-D On paper, create a five-by-five matrix. Put Xs along the
diagonal. Then randomly fill some of the cells with 1s, leaving the rest
blank (or filled with 0s) to make a five-vertex adjacency matrix. Don’t
worry about symmetry around the diagonal. Now, with the Adjacency
Matrix of the Graph Visualization tool hidden, create the corresponding
directed graph from your paper matrix. When you’re done, show the
matrix in the tool to see if the graph corresponds to your adjacency
matrix.

14-E In the Graph Visualization tool, see whether you can create a
directed graph with a cycle that the Topological Sort operation cannot
identify.

Programming Projects
Writing programs to solve the Programming Projects helps to solidify your
understanding of the material and demonstrates how the chapter’s concepts are
applied. (As noted in the Introduction, qualified instructors may obtain
completed solutions to the Programming Projects on the publisher’s website.)



14.1 Change the Graph class to be able to create both kinds of graphs:
undirected or directed. Add an optional directed parameter to the
constructor that is False by default. Change all the methods that have
different behavior for directed graphs than undirected graphs based on
whether the directed flag is set, including the print() method to show
-> (instead of <->) for directed edges. Construct both kinds of graphs
using 10 vertices (A, B, C, D, E, F, G, H, I, and J) and the 12 edges
(AG, AI, CF, DA, DI, HD, HE, HF, HG, IH, JC, and JH). Show the
output of the print() method on both graphs and the depthFirst()
traversal vertices and paths starting from vertex J.

14.2 Make a recursive traversal generator, depthFirstR(). The method
shown in Listing 14-4 uses a stack to track the path to the current vertex.
Your method should make use of the call stack and values passed in the
recursive calls to determine the order of visiting the vertices and the
paths to yield. Demonstrate the output of your generator on the graph in
Project 14.1 and on the graph used in the second breadth-first example
in Figure 14-10. Show the order of the vertices and the paths to each
one.

14.3 Modify the breadthFirst() generator to return the path to each vertex
as well as the vertex being visited. Use it to write a shortestPath()
method that finds the shortest path between two vertices, if such a path
exists. Demonstrate its output searching for the shortest path from
vertex A to H in the second breadth-first example of Figure 14-10, and
from vertex F to A in the initial graph of Figure 14-14. Include a full
breadth-first traversal starting from vertices A and F, respectively, in
those graphs.

14.4 Implement Warshall’s algorithm to compute the connectivity matrix
from the adjacency matrix of a graph. Instead of updating the adjacency
matrix, write a new method, connectivityMatrix(), that returns a new
matrix. The result can start out as a copy of the internal _adjMat (using
the Python dict’s copy() method). Use your directed graph
implementation from Project 14.1. Write a second method,
hasCycles(), that tests for the presence of cycles in the graph.
Demonstrate your methods on the graphs of Figure 14-22, Figure 14-23,
and Figure 14-24.

14.5 A clique is a graph or subgraph of N vertices where every vertex is
adjacent to all the N−1 other vertices. In graphs of communication



patterns, cliques can indicate interconnected and influential groups.
They represent groups of people or organizations that communicate with
one another—more so than with others in the graph. That tendency to
interact only with members of the group leads to the feeling of
exclusion felt by people outside a social clique.
Add a method to the Graph class that returns all the subgraph cliques
with N vertices. The parameter, N, should be between 2 and the total
number of vertices in the graph to be meaningful. Every pair of adjacent
vertices forms a clique of size 2 (in a undirected graph), so there is
exactly one subgraph clique of size 2 per edge. Larger cliques can be
formed by adding a single vertex to a smaller one, if that vertex has
edges to all the vertices in the smaller clique.
Your method should return the cliques as subgraphs with N vertices.
Demonstrate your method’s output when seeking cliques of size 3, 4,
and 5 in at least the following two graphs:

• A 10-vertex graph where five of the vertices are fully interconnected
and the other five are not connected to more than one other vertex.

• A 10-vertex graph with three overlapping cliques of size 4. The
cliques overlap by sharing one vertex. This pattern can be generated
using the following expression for vertex index pairs:

[(a, b) for c in range(0, 9, 3) 
for a in range(c, c + 4) for b in range(a + 1, c + 4)]

Note: Finding cliques in graphs can be quite computationally complex,
especially when searching for all of them. Running your method on
large graphs could take a long time to process, as we discuss in the next
chapter.

14.6 The Knight’s Tour is an ancient and famous chess puzzle. The object is
to move a knight from one square to another on an otherwise empty
chess board until it has visited every square exactly once. Write a
program that solves this puzzle using a depth-first search. It’s best to
make the board size variable so that you can attempt solutions for
smaller, square boards (K×K). The regular 8×8 board could take years
to solve on small computers, but a 5×5 board should take less than a
minute. We have more to say about the complexity of this problem in
the next chapter.



Refer to the “Depth-First Traversal and Game Simulations” section in this
chapter, keeping in mind that a puzzle is like a one-player game. It may be
easier to think of a new knight being created and remaining on the new square
when a move is made (rather than moving a single knight around). This way, a
sequence of added knights represents the game board state, and the occupied
squares can be deduced from the knights’ positions. When the board is
completely filled with knights (the sequence of knights equals the size of the
board), you win.

When looking for its next move, a knight must not only make a legal knight’s
move (two spaces in one direction and one space in the other), but it must also
not move off the board or onto an already-occupied (visited) square. If you
make the program display the board and wait for a keypress after every move,
you can watch the progress of the algorithm as it places more and more knights
on the board. When it gets boxed in, you can see it backtrack by removing
some knights and trying a different series of moves.

This problem has some complexities that might not seem obvious. One of the
most important is what the vertices in the graph represent. Looking at the tic-
tac-toe boards in Figure 14-8 would suggest using vertices to represent the
board states: where each of the nine squares is either blank, an X, or an O. To
use the depthFirst() traversal method shown in Listing 14-4, you would need
to first create a Graph with a vertex for every possible board state. In tic-tac-toe
there are 39 = 19,683 possible ways of placing blank, X, or O in the nine
squares. Even though many of those would be impossible in a real game (for
example, where the number of Xs and Os differ by more than 1), creating all
those vertices and then adding edges between them would be time-consuming.
For an 8×8 chessboard where every square is either empty or occupied by a
knight, there are 264, or over 4 billion, board states. That is not likely to be an
efficient way to solve this problem.

For many game simulations, the graph is not fully created at the beginning. As
moves are made and potential counter moves are explored, new vertices are
added to the graph based on the legal moves from the last board state. Thus, the
graph is only partially represented throughout the game. That means that the
depth-first traversal methods we implemented won’t work to solve the Knight’s
tour because neither the adjacency matrix nor the list of vertices is complete.

Another approach is to create one vertex per square on the board. Edges
between vertices could then represent legal knight moves in chess. In this way
the graph represents legal board moves, not board states. The state of the board



is implicit in the path taken by the search, which is a sequence of squares where
the knights are placed. The number of vertices for the graph would be K×K,
with approximately 4×K×K edges. If you use the depthFirst() traversal
method on this legal board move graph, would you solve the puzzle? This
method would certainly provide a path of all legal moves and avoid revisiting
vertices (squares) previously visited on the path. The problem, however, is that
it is designed to visit every vertex exactly once.

In the case of the Knight’s Tour, you need to explore every possible path to a
vertex. To see why, imagine that after visiting 24 of the 25 squares in a 5×5
board, you find that the last empty square cannot be reached from the last
square visited. So, you must backtrack in the depth-first search. Let’s say you
return to the 20th knight and try a new path through the remaining 5 squares. If
you had marked 4 of those last 5 squares in the visited array used by the
depthFirst() traversal method, they wouldn’t be searched again. You need a
different way of marking what has already been searched.

If you use a legal board move graph, you will need to write a depth-first
traversal that explores all potential paths in the graph, not just all vertices. If
you create game board state vertices as you search, then you must ensure that
you visit those vertices in depth-first order.



15. Weighted Graphs

In This Chapter

• Minimum Spanning Tree with Weighted Graphs

• The Shortest-Path Problem

• The All-Pairs Shortest-Path Problem

• Efficiency

• Intractable Problems

In the preceding chapter you saw that a graph’s edges can have direction. This
chapter explores another edge feature: weight. For example, if vertices in a
weighted graph represent cities, the weight of the edges might represent
distances between the cities, or costs to fly between them, or the number of
automobile trips made annually between them (a figure of interest to highway
engineers).

When you include weight as a feature of a graph’s edges, some interesting and
complex questions arise. What is the minimum spanning tree for a weighted
graph? What is the shortest (or cheapest) distance from one vertex to another?
Such questions have important applications in the real world.

We first examine a weighted but undirected graph and its minimum spanning
tree. In the second half of this chapter, we examine graphs that are both
directed and weighted, in connection with the famous Dijkstra’s algorithm,
used to find the shortest path from one vertex to another.

Minimum Spanning Tree with Weighted Graphs
To introduce weighted graphs, we return to the question of the minimum
spanning tree. Creating such a tree is a bit more complicated with a weighted
graph than with an unweighted one. When all edges are the same weight, it’s



fairly straightforward—as you saw in Chapter 14, “Graphs,”—for the algorithm
to choose one edge to add to the minimum spanning tree. When edges have
different weights, however, you need to choose a bit more carefully.

An Example: Networking in the Jungle
Suppose you want to install high-speed network lines to connect six cities in
the mythical country of Turala. Five links are all that is needed to connect the
six cities, but which five links should they be? The cost of connecting each pair
of cities varies, so you must pick the route carefully to minimize the overall
cost. Figure 15-1 shows a weighted graph with six vertices. Each edge has a
weight, shown by a number alongside the edge. This is the abstract form of a
weighed graph. Notice that some links are not shown (for example, no direct
link from A to D or A to F). When the graph represents a real-world problem,
some links could be impractical because of distance, terrain, environmental, or
other issues.



Figure 15-1 A weighted graph

How can you pick a subgraph that minimizes the cost of connecting vertices
into a network? The answer is to calculate a minimum spanning tree. It will
have five edges (one fewer than the number of vertices), it will connect all six
cities, and it will minimize the total cost of the links. Can you figure out this
route by looking at the graph in Figure 15-1? If not, you can solve the problem
with the WeightedGraph Visualization tool.

The WeightedGraph Visualization Tool
The WeightedGraph Visualization tool is like the Graph tool, but it creates
weighted, undirected graphs. You can create vertices, link them with edges, and
show or hide the adjacency matrix them as before. In the shaded graph region,
you can double-click to create a new vertex, drag from one vertex to another to



create an edge, and drag using the second mouse button or by holding the Shift
key to move a vertex. Double-clicking an edge or vertex deletes it.

Edges created by dragging get an initial weight of 1. You can change the weight
by selecting it—either in the shaded graph region or in the adjacency matrix—
and changing the numeric value. As you change weights in one place, they
update everywhere. If you erase the weight, or make it zero, the edge
disappears. Weights are restricted to the values 1–99.

Try out this tool by creating some small graphs and finding their minimum
spanning trees. (For some configurations, you’ll need to be careful positioning
the vertices so that the weight numbers don’t fall on top of each other.)

Use the WeightedGraph Visualization tool to construct the graph of Figure 15-
1. The result should look something like Figure 15-2. If you happen to have the
visualization tool running on a computer where you can launch it from the
command line, you can initialize the graph (with random positioning of the
vertices) using this command:
python3 WeightedGraph.py A B C D E F A-B:4 A-C:6 B-C:7 B-D:12 B-E:8 C-
D:7 
C-E:10 D-E:5 D-F:7 E-F:6



Figure 15-2 The WeightedGraph Visualization tool

Now find this graph’s minimum spanning tree starting from vertex A by
clicking that vertex to highlight it with the blue ring and then selecting the
Minimum Spanning Tree button. The result should be the minimum spanning
tree shown in Figure 15-3.



Figure 15-3 The minimum spanning tree of the previous graph

The tool discovers that the minimum spanning tree consists of the edges AB,
AC, CD, DE, and EF, for a total edge weight of 28. The order in which the
edges are specified is unimportant. If you start at a different vertex, you will
create a tree with the same edges, but in a different order. For a graph with
distinct connected components, the minimum spanning tree connects only one
of them, as you saw in Chapter 14.



Building the Minimum Spanning Tree: Send Out the
Surveyors
The algorithm for constructing the minimum spanning tree is a little involved,
so we’re going to introduce it with the analogy of building a high-speed
network in Turala. Imagine that your company won the contract to bring high-
speed networking to this jungle-covered country. You are the project manager,
of course, and there are also various surveyors on your team.

The first challenge of this project is something that happens in many problems:
you have to “discover” the graph. Although the location of the cities and the
approximate cost of laying network cables or creating point-to-point
microwave transmission systems are known, the exact details of the terrain
between the cities is not. That means that the graph and its edge weights are
unknown at the start. Part of your job is to discover that information.

Computer algorithms always focus on tiny parts of a problem. Unlike humans
who like to look at the big picture, computers focus on a single vertex, edge,
node, key, and so on, at a time, making a series of local decisions that combine
to arrive at a particular goal. With graphs, algorithms tend to start at some
vertex and work away from it, acquiring data about nearby vertices before
finding out about vertices farther away. This is especially true in large graphs,
which are difficult or impossible to fully represent at one time, such as all
possible routes between the stars in a galaxy.

In a similar way, planning the route in Turala involves getting to some of the
cities and finding out what lies on the roads and paths linking them. Acquiring
this information takes time. That’s where your surveyors come in.

Starting in Blum
You start by setting up an office in the city of Blum. (You could start in any
city, but you’ve heard Blum has the best restaurants.) The other cities on the
contract to be connected are Cerf, Dahl, Gray, Kay, and Naur. Blum is at one
end of the country, and you learn that only two cities can be reached from Blum
—Cerf and Dahl—as shown in Figure 15-4. The graph shows Blum with a
thicker outline to indicate you have an office there.



Figure 15-4 First cities visited in Turala

Technically, you could try to reach the other cities by direct paths through the
jungle. The network must reach those two cities, and your analysis shows that it
will be less expensive to go through one or both cities than to cut through the
jungle, mountains, and rivers on some new path.

You send two of your surveying teams out along the paths to these cities to see
what conditions are like. Their job is to evaluate these routes for different
networking options (buried cable, overhead cable, transmission towers, and so
on). They take the actual distance and add extra cost factors for soil conditions,
river crossings, elevation changes, and the like.

The first team arrives in Cerf and calls you with their report; they say the link
from Blum to Cerf should cost 31 million Turala kopeks (and the scenery is
gorgeous). The second team reports a little later from Dahl that the Blum–Dahl
link, which crosses more level country, should cost 24 million. You make a list:

Blum–Dahl, 24

Blum–Cerf, 31

You always list the links in order of increasing cost; you’ll see why this is a
good idea soon.

Finalizing the Blum–Dahl Link



At this point you figure you can send out the construction crew to actually
build the Blum–Dahl link. How can you be sure that link will eventually be part
of the optimal solution (the minimum spanning tree)? So far, you know the cost
of only two links in the system. Don’t you need more information?

To get a feel for this situation, try to imagine some other route linking Blum to
Dahl that would be better than the direct link. If it doesn’t go directly to Dahl,
this other route must go through Cerf and circle back to Dahl, possibly via one
or more other cities indicated by the question marks in Figure 15-5. You
already know the link from Blum to Cerf would be more costly, 31 million,
than the link from Blum to Dahl at 24. Your preplanning indicated that trying to
reach any of the other cities directly from Blum would be even more costly. So
even if the remaining links in this hypothetical circle route are cheap, with a
cost of 1 million (or even 0), it will still cost more to get to Dahl from Blum by
going through Cerf and the unknown cities (> 31 million). OK, then what if the
costs are high on the unknown circle route, say 100 (or really anything bigger
than 31)? If those costs are high, you’ll probably keep both the Blum–Dahl and
Blum–Cerf routes in the plan. In both cases for the unknown costs, the Blum–
Dahl route stays. The Blum–Cerf link is not certain, so you won’t build
anything there yet.



Figure 15-5 Hypothetical circle route to Dahl

You conclude that the Blum–Dahl route will be part of the minimum spanning
tree. This isn’t a formal proof (which is beyond the scope of this book), but it
does suggest your best bet is to pick the cheapest link. You send some of your
staff to set up an office in Dahl.

Why do you need another office? Due to a Turalan government regulation, you
must install an office before you can send out surveyors from a town. In graph
terms, you must add a vertex to the tree before you can learn the weight of the
edges leading away from that vertex. All towns with offices are on links that
will be in the final minimum spanning tree; towns with no offices are not yet
connected.

Building the Blum–Cerf Link



After you’ve completed the Blum–Dahl link and built your new office, you can
send out surveyors from Dahl to all the cities reachable from there. They learn
that these are Cerf, Gray, and Kay. The survey teams reach their destinations
and report back costs of 35, 41, and 52 million, respectively. Of course, you
don’t send a survey team back to Blum because you’ve already surveyed the
route, installed the networking link, and have an office there (with a nice view
of the coast).

Now you know the costs of four links (in addition to the one you’ve already
built):

• Blum–Cerf, 31

• Dahl–Cerf, 35

• Dahl–Gray, 41

• Dahl–Kay, 52

At this point it may not be obvious what to do next. There are many potential
links to choose from. What do you imagine is the best strategy now? Here’s the
rule:

Rule
From the list, always pick the lowest-cost edge.

Actually, you already followed this rule when you chose which route to follow
from Blum; the Blum–Dahl edge had the lowest weight (cost). Here the lowest-
cost edge is Blum–Cerf, so you can now finalize the Blum-to-Cerf route at a
cost of 31 million. You can now open an office in Cerf (and enjoy the unique
musical culture there).

Let’s pause for a moment and make a general observation. At a given time in
planning the best route, there are three kinds of cities:

1. Cities on routes that have been finalized. (In graph terms they’re vertices
in the minimum spanning tree.)

2. Cities that have been visited by the surveyors, so you know the cost to
link them to at least one city in the first group of cities. You can call these
“fringe” cities.

3. Cities that have not been visited by your team.



At this stage, Blum, Dahl, and Cerf are in category 1; Gray and Kay are in
category 2; and Naur is in category 3, as shown in Figure 15-6. As you work
your way through the algorithm, cities move from unknown to fringe, and from
fringe to finalized.

Figure 15-6 Partway through the minimum spanning tree algorithm

Building the Cerf–Kay Link
At this point, Blum, Dahl, and Cerf are connected to the network and have
offices. You already know the costs from Blum and Dahl to cities in category 2,
but you don’t know the costs of connecting from Cerf. So, from Cerf you send
out surveyors to Gray, Kay, and Naur. They report back costs of 49 million to
Gray, 38 million to Kay, and 87 million to Naur. Here’s the new list:

Dahl–Cerf, 35



Cerf–Kay, 38

Dahl–Gray, 41

Cerf–Gray, 49

Dahl–Kay, 52

Cerf–Naur, 87

The Dahl–Cerf link was on the previous list and is crossed out in this list.
Why? Well, there’s no point in considering links to cities that are already
connected, even by an indirect route. Furthermore, minimum spanning trees
must not contain cycles. You can now revise your rule slightly:

Rule
From the list, always pick the lowest-cost edge to a fringe city (vertex).

From this list, you can see that the next least costly route is Cerf–Kay, at 38
million. You send out the crew to install this link and set up an office in Kay,
resulting in the graph of Figure 15-7.



Figure 15-7 The minimum spanning tree after visiting all links from Cerf

Building the Kay–Gray Link
From Kay, you dispatch more survey teams, and they report back costs of 25
million to Gray and 40 to Naur. The Dahl–Kay link from the previous list must
be removed because Kay is now a connected city. Your new list of edges to
fringe cities (ignoring the crossed out links to finalized cities) is



Kay–Gray, 25

Dahl–Gray, 41

Kay–Naur, 43

Cerf–Gray, 49

Cerf–Naur, 87

The lowest-cost link is Kay–Gray, so you build this link and install an office in
Gray.

And, Finally, the Link to Naur
The choices are narrowing. After you remove already-linked cities and send out
surveyors from Gray, the situation appears like the left-hand graph in Figure
15-8. Your list now shows only:



Figure 15-8 The final connections of the minimum spanning tree in Turala

Kay–Naur, 43

Gray–Naur, 46

Cerf–Naur, 87

You install the last link from Kay to Naur, build an office in Naur, and you’re
done. You know you’re done because there’s now an office in all six cities.



You’ve constructed the links for Blum–Dahl, Blum–Cerf, Cerf–Kay, Kay–Gray,
and Kay–Naur, as shown on the right of Figure 15-8. This is the lowest-cost
network at 161 million (24 + 31 + 38 + 25 + 43) linking the six cities in Turala.

Note that the final minimum spanning tree does not include all of the lowest-
cost edges. The last link added, from Kay to Naur, had a cost of 43. That’s
higher than the cost of Dahl–Cerf at 35 and Dahl–Gray at 41. Could there be
another minimum spanning tree that uses one of those links? The short answer
is yes; there can be other spanning trees with an equal total cost (but none with
a lower cost).

Creating the Algorithm
Using the somewhat fanciful idea of networking a small country, we’ve shown
the main ideas behind the minimum spanning tree for weighted graphs. Now
let’s see how to go about creating the algorithm for this process.

Storing the Edges
The key activities in the example were tracking the category for each city and
listing the costs of links between pairs of cities. You decided where to build the
next link (edge) and add a new city (vertex) by selecting the minimum cost
link.

A collections of weighted edges in which you repeatedly select the minimum
value suggests a priority queue or sorted list or minimum heap as an
appropriate data structure. These are all efficient ways to handle the selection
of the minimum cost edge, but you should look at the other operations that need
to be done, too. You certainly need to remove the minimum cost edge from the
collection, but you also need to either remove nonminimum edges that connect
vertices already in the MST or discard them when they are selected as the
minimum cost edge. Of course, you also must insert all the edges in the
structure as they are discovered.

Inserting into a priority queue based on a sorted array is an O(N) operation due
to shifting the values in the array (or finding the insertion point in a list).
Inserting into heap is an O(log N) operation. For removing the minimum value,
priority queues and sorted arrays need O(1) time (if the minimum is kept at the
end of the array so that no shifting is required) while the heap takes O(log N).



Let’s assume the graph has V vertices and E edges. You only discover those
values as the graph is explored, but you can give them names for the analysis.
During the process, you will insert E edges into the collection and also remove
at least V − 1 of them, perhaps discarding those that link two vertices already in
the MST. You know that E must be greater than or equal to V − 1, or the graph
must have more than one connected component. Let’s summarize the costs of
the various structures in Table 15-1. Because we need to analyze the costs for
edges and vertices, we use O(E) and O(V) instead of O(N).

Table 15-1 Efficiency of Different Edge Storage Schemes

In the overall costs, the insertion costs dominate. The removals are much less
costly for the priority queue and sorted list, but the inserts grow as the square of
the number of edges. For the heap, both insertion and removal grow
logarithmically. You can simplify and use E only in the overall cost because it
is bigger than V (in all but the simplest graphs). That makes it clear that heaps
are the most efficient because E × log E < E2 as E grows large.

Instead of a list or array, you use a minimum heap, as described in Chapter 13,
“Heaps.” Because heaps don’t offer an efficient way to delete items other than
the minimum valued one, you simply remove the minimum edges until you
find one that connects to a fringe vertex.

Outline of the Algorithm
Let’s restate the algorithm in graph terms (as opposed to linking city terms).

Start with a vertex (any one will do) and put it in the tree (a subgraph). Then
repeatedly do the following:

1. For each outgoing edge from the newest vertex, if it goes to a vertex
already in the tree, “prune” (discard) it. Otherwise, put the edge in the
minimum heap.



2. Pick the edge with the lowest weight from the heap until either

a. the heap is empty, or

b. you reach an edge with one vertex out of the tree.

3. If the heap was emptied in the previous step, then you’ve found the full
tree for the connected component. Otherwise, add the edge to the tree,
and note the destination vertex as the newest in the tree.

Repeat these steps until all the vertices are in the tree or the heap becomes
empty. At that point, you’re done.

In step 1, newest means most recently installed in the tree. The edges for this
step can be found in the adjacency matrix (or perhaps computed if the graph
edges have yet to be discovered). In step 2, edges with one vertex out of the
tree are the edges from finalized vertices to fringe vertices.

Implementing Weights: To Infinity and Beyond
When we introduced graphs in Chapter 14, we described how the adjacent
vertices could be represented either as an array or as lists. When edges have
weights, you need to consider the implementation options again.

Typically, weights can be any number, perhaps including floating-point values.
That provides maximum flexibility in representing the weights for a wide range
of problems. If you use a list of adjacent vertices, you simply add a field to
each link in that list to hold the weight associated with the edge going to the
vertex. In adjacency matrices, you used numbers to represent adjacent versus
nonadjacent vertices (1 versus 0). Could you just put the edge weight as the
number in that array cell? In other words, could adjMat[j, k] hold the weight
of the edge between vertex indices j and k? The answer is not quite as simple
as it might appear.

You need to distinguish adjacent and nonadjacent vertices. If the weights are
never allowed to be zero, you could continue using zeros to represent
nonadjacent vertices. That might not seem like much of a constraint, but in
practice, it can be quite limiting. There are many applications in which having
an edge with zero weight is useful. Sometimes even having negative weights is
useful and avoiding accidentally setting a weight to zero would be very
inconvenient. In this chapter, however, we assume that edge weights are zero or
positive.



If you can’t use zeros to represent nonadjacent vertices, what can you do? One
way to address this limitation is to store a value that represents positive infinity
as the edge weight for nonadjacent vertices. This allows zero weight edges and
negative weights, if needed. Infinite weight is something like being infinitely
distant—or unconnected. How do you represent infinity in a finite amount of
memory? There are several ways, but like the way bounds and the query circle
radius were managed in Chapter 12, “Spatial Data Structures,” you can use the
convenient mechanism Python offers. In the math module, a constant called inf
is defined that behaves like positive infinity (+[inf]). If it is compared with any
other integer or floating-point number, it will always be greater. The only
number it is equal to is itself.

Using positive infinity to represent nonadjacent vertices means you would fill
the initial adjacency matrix with that value for empty graphs. Sometimes this is
called a weighted adjacency matrix because all cells have edge weights, but
only the finite ones are considered adjacent. Alternatively, in a hash table
representation of the adjacency matrix, any key not in the hash table would
have a weight of positive infinity, and only the adjacent vertex pairs would
have finite weights stored. In this book, we implement the weighted graph class
using a hash table.

Python Code
We don’t have to change much in the implementation of the WeightedGraph
class compared to the Graph class described in Chapter 14. Only the edges have
changed. Listing 15-1 shows the revised parts.

Listing 15-1 The Basic WeightedGraph Class

from project_13_2_solution import Heap  # Minimum heap
import math 
 
class Vertex(object):       # A vertex in a graph 
… # same as for Graph 
 
class WeightedGraph(object): # A graph containing vertices and edges 
   def __init__(self):      # with weights. 
      self._vertices = []   # A list/array of vertices 
      self._adjMat = {}     # Hash table maps vertex pairs to weight 
 
… # skipping shared definitions with Graph 



 
   def addEdge(             # Add edge of weight w between two 
         self, A, B, w):    # vertices A & B 
      self.validIndex(A)    # Check that vertex A is valid 
      self.validIndex(B)    # Check that vertex B is valid 
      if A == B:            # If vertices are the same 
         raise ValueError   # raise exception 
      self._adjMat[A, B] = w # Add edge in one direction and 
      self._adjMat[B, A] = w # the reverse direction 
 
   def hasEdge(self, A, B): # Check for edge between vertices A & B 
      return ((A, B) in self._adjMat and # If vertex tuple in adjMat 
              self._adjMat[A, B] < math.inf) # and has finite weight 
 
   def edgeWeight(self, A, B): # Get edge weight between vertices 
      self.validIndex(A)    # Check that vertex A is valid 
      self.validIndex(B)    # Check that vertex B is valid 
      return (              # If vertex tuple in adjMat, return 
         self._adjMat[A, B] if (A, B) in self._adjMat 
         else math.inf)     # the weight stored there otherwise +∞

The weighted graph needs a Heap data structure, specifically the minimum (or
ascending) heap from Programming Project 13.2. We also need the math
module for the positive infinity constant. The Vertex class is the same because
the changes apply only to the edges of the graph. The constructor is included in
Listing 15-1 even though it is identical to that of the Graph.

The first method that needs a new definition is the one for adding edges. It
must now take a third parameter for the weight of the new edge. As before,
addEdge() starts by validating the vertex indices, A and B, passed by the caller
and verifies that the edge links distinct vertices. Then it stores the weight, w, in
the _adjMat cell for the vertex pair in both directions. In the unweighted Graph,
it just stored a 1 in those cells.

The next method, hasEdge(), changes to first test for the presence of the vertex
pair among the keys of the adjacency matrix (instead of using Python’s get()
method for hash tables to supply a default value when the key is missing). It
also compares any value stored in the matrix with math.inf, positive infinity.
That comparison might not be needed in many applications because it will
make a difference only if the caller stores math.inf as the weight of some
edge. That might be done, for example, to remove an edge from the graph. If
the comparison were left out of hasEdge(), however, then the method would
return True for edges with infinite weight.



The final method, edgeWeight(), is new. We need a method that returns the
weight of a given edge. It checks for valid vertex indices and then returns the
weight stored in the adjacency matrix if the vertex pair is a key in the adjacency
matrix. Otherwise, it returns positive infinity.

That’s all that needs to be changed in the basic representation. A few other
changes like including the weights in the output of the print() method are
helpful. Now we can focus on the algorithms that use weights.

The Weighted Minimum Spanning Tree Algorithm
To find the spanning tree that minimizes the total edge weight, we can set up
data structures similar to those used for the unweighted graph. Listing 15-2
shows the code. After validating the starting index, minimumSpanningTree()
creates an empty subgraph called tree to hold the result. It then builds an array
to map vertex indices from the graph to those in the tree, vMap. We need that
because we will be adding vertices in a different order to the tree as the
algorithm discovers the edges with lowest weight. It also serves to identify
which vertices have been copied (mapped) into the tree.

Next, an empty heap is constructed to keep the edges in partially sorted order
so that it’s quick to get the lowest weight edge. The items we insert on the heap
of edges are tuples of an edge—a vertex pair—and its weight. We use the key
parameter of the Heap class to specify the function that extracts the weight from
each tuple. The weight() function is shown at the end of Listing 15-2. It
returns the second element of the tuple.

Listing 15-2 The minimumSpanningTree() Method of WeightedGraph

class WeightedGraph(object): # A graph containing vertices and edges 
… 
 
   def minimumSpanningTree( # Compute a spanning tree minimizing edge 
         self, n):          # weight starting at vertex n 
      self.validIndex(n)    # Check that vertex n is valid 
      tree = WeightedGraph() # Initial MST is an empty weighted graph 
      nVerts = self.nVertices() # Number of vertices 
      vMap = [None] * nVerts # Array to map vertex indices into MST 
      edges = Heap(         # Use min heap for explored edges 
         key=weight,        # Store (A, B) vertex pair & weight in 
         descending=False)  # each heap item 
      vMap[n] = 0           # Map start vertex into MST 



      tree.addVertex(self.getVertex(n)) # Copy vertex n into MST 
      while tree.nVertices() < nVerts: # Loop until all verts mapped 
         for vertex in self.adjacentVertices(n): # For all adjacent 
            if not vMap[vertex]: # vertices that are not mapped, 
               edges.insert( # put weighted edges in heap 
                  ((n, vertex), self.edgeWeight(n, vertex))) 
         edge, w = (        # Get first edge and weight, if one exists 
            (None, 0) if edges.isEmpty() else edges.remove()) 
         while (not edges.isEmpty() and  # While there are more edges 
                vMap[edge[1]] is not None): # and current edge in MST, 
            edge, w = edges.remove()        # go on to next edge 
         if (edge is None or # If we didn’t find an edge or it goes 
             vMap[edge[1]] is not None): # to a mapped vertex 
            break           # there are no more edges to be added 
         n = edge[1]        # Otherwise get new vertex and 
         vMap[n] = tree.nVertices() # map it into MST 
         tree.addVertex(self.getVertex(n)) # copy it into MST 
         tree.addEdge(      # Add weighted edge to MST mapping 
            vMap[edge[0]], vMap[edge[1]], w) # vertex indices 
      return tree           # Return the minimum spanning tree 
 
def weight(edge): return edge[1] # Get weight from edge tuple in heap

With the output subgraph (tree), the vertex map, and the edges heap built, the
main part of the algorithm begins. Initially we map the starting vertex in the
input graph, n, to vertex 0 in the output tree and add that vertex object to the
tree. If the input graph happened to be a single vertex graph, that’s all that
would be needed because there can be no edges in the output tree.

The main while loop iterates until the output tree has as many vertices as the
input graph. You’ll see what happens if the graph has more than one connected
component a little later. Inside the loop, we begin with the start vertex, n, find
all its adjacent vertices, and look to see if each adjacent vertex has been
mapped into the tree. At the start, the only mapped vertex is the initial n, but
on subsequent passes through the loop, n will be the last vertex added to the
output tree. That’s why we must check every adjacent vertex using the vMap
array.

Adjacent vertices that have not been mapped mean that the corresponding edge
leads to the fringe and should be inserted in the heap. The call to
edges.insert() puts the tuple of the edge and its edge weight in the heap. The
heap knows where to place it according to the weight key defined when it was
constructed.



Next, the method takes the first edge out of the heap or sets edge to None if the
edges heap is empty. The inner while loop checks whether this edge connects
to a vertex that is already mapped into the output tree, by looking at the value
of vMap[edge[1]], the mapping for the adjacent vertex. How do we know to
examine the vertex at edge[1] instead of the one at edge[0]? The reason is that
we add edges to the edges heap only where the second vertex is on the fringe
and the first vertex is already in the finalized tree.

If the edge goes to a vertex already in the tree and there are more edges in the
heap, we take the next lowest weight edge from the heap by calling
edges.remove() in the inner loop. After the inner loop exits, if no edge was
found (edge is None) or we only found edges connecting within the tree
(vMap[edge[1]] is not None), then we’ve run out of edges to follow in
expanding the tree. In that case, it’s time to break out of the outer while loop
because we have built the minimum spanning tree of the connected component
containing the start vertex. The returned tree will have fewer vertices than the
input graph.

After verifying that we did find an edge leading to an unmapped vertex, we set
n to be that new vertex, edge[1], map it into the output tree, add the vertex to
the tree, and add the edge that led to it. Each of vertices of in the edge must be
mapped to their new indices in the output tree using vMap. The next pass
through the main while loop will explore edges extending from n.

When control exits from the main while loop, the minimum spanning tree is
complete (for the connected component that includes the starting vertex). As
you can see, adding weights to the minimum spanning tree algorithm makes it
more complicated than the depth-first traversal that was used for the
unweighted graph. Having the heap and vertex mapping array available,
however, reduces the complexity of the code.

The WeightedGraph Visualization tool can display each of the steps in this
algorithm. Try creating a simple graph, selecting a starting vertex, and using the
step button, , to see how each operation happens.

Figure 15-9 shows the WeightedGraph Visualization tool during the
computation of the minimum spanning tree of the graph shown in Figures 15-1,
15-2, and 15-3. At this point in the processing, vertices A, B, C, and D have
been added to the output tree. There are a lot of data structures on the display,
including



Figure 15-9 The Visualization tool computing a minimum spanning tree

• The array for the input graph’s _vertices (at the upper right)

• The hash table for the input graph’s _adjMat, adjacency matrix (which is
collapsed in Figure 15-9 to show other variables)

• The vMap array mapping input vertices to their index in the output tree (at
the upper right next to the _vertices array)



• The output minimum spanning tree (shown by a curved arrow starting at
the lower left pointing to the first vertex, highlight rings on the vertices
that have been mapped into the tree, and thicker, highlighted edges that
have been added to tree)

• The edges heap shown as a simple, ordered array at the bottom instead of
a heap tree (Showing the heap as a tree would take more room, and
placing the items in standard heap ordering would make their
relationships less clear.)

The quantity of data and their relationships are complex. Try stepping through
the algorithm, watching the incremental changes to the different structures, and
predicting what will change at each step before selecting the button to see the
outcome.

The Shortest-Path Problem
Perhaps the most commonly encountered problem associated with weighted
graphs is that of finding the shortest (lowest-weight) path between two given
vertices. The solution to this problem is applicable to a wide variety of real-
world situations: planning travel routes, laying out integrated circuits, project
scheduling, and more. It is a more complex problem than we’ve seen before, so
let’s start by looking at a (somewhat) real-world scenario in the same mythical
country of Turala.

Travel by Rail
This time you’re concerned with railroads rather than network connections.
While Turala was a little behind the times in terms of communication
infrastructure, the country has a wonderful rail system. You want to find the
fastest route from one city to another to plan for a race across the country.

Finding the fastest route is one variant of the shortest-path problem. In this
situation you’re interested in the shortest travel times, but you could look for
the shortest-distance or lowest-fare route. In weighted graphs, shortest doesn’t
necessarily mean shortest in terms of time or distance; it can also mean
cheapest, lowest emission, or best route by some other measure.

The time to travel between any two cities by train can vary. That’s due to the
track conditions and changing weather; heavy rain, snow, or fog means the



trains travel slower. The railroads post the travel times daily, but they only post
them at the station for the trains leaving from there. Your team will have to get
the conditions on the day of the race.

Possible Routes
To plan your route, you need to know what options are available. The first step
is to outline the possible train rides your team might take. You would likely
construct a map of the cities in graph form like the one at the left of Figure 15-
10. There are several possible routes between any two cities. For example, to
take the train from Blum to Kay, you could go through Dahl, or you could go
through Cerf and Gray, or through Dahl and Gray, or you could take several
other routes.



Figure 15-10 Train travel in Turala

Note the graph in Figure 15-10 doesn’t have travel times (or fares or schedule).
All you know at this point is that the race will start in Blum, so that’s why it’s
highlighted.

A Directed, Weighted Graph
The travel times between cities can be different depending on the direction of
travel. Trains going uphill might proceed more slowly than those going



downhill. Planes flying against the jet stream have lower ground speed than
those flying with it. To model differences like these, we use directed graphs
where the weight for traveling from vertex J to vertex K is different than the
weight from K to J. The Turalan railroad has only single-track lines, so you can
go in only one direction between any two cities at any point in time. In your
solution, you will only note the travel times going away from Blum because
you don’t need to plan a round trip. In the case of finding a lowest-fare route,
you could use a undirected graph if the fare was the same in both directions.

Dijkstra’s Algorithm
The solution we show for the shortest-path problem is called Dijkstra’s
algorithm, after Edsger Dijkstra, who first described it in 1959. Interestingly,
the method not only solves for the shortest path to a destination city, but it can
also solve for the shortest path to any other destination, as you shall see.

Agents and Train Rides
On the day of the race, you learn that the finish line is in Naur. To see how
Dijkstra’s algorithm works, your team is going to operate the way a computer
does, looking at one piece of information at a time, so we assume that you are
similarly unable to see the big picture (as in the preceding section). That means
your team needs to send agents to stations like the surveying teams for the
network routing.

At each city, the stationmasters can tell you how long it will take to travel to the
other cities that you can reach directly (that is, in a single ride, without passing
through another city). Alas, they cannot tell you the times to cities further than
one ride away. You keep a notebook, like the one at the right of Figure 15-10,
with a row for each city. You hope to end up with rows filled in with the
shortest time from your starting point to that city (plus a little more information
that you will need at the end).

The First Agent: In Blum
Eventually, you’re going to place agents in every city (at least those needed to
get to Naur). These agents must obtain information about travel times to other
cities. You yourself are the agent in Blum.



All the stationmaster in Blum can tell you is that today it will take 22 minutes
to get to Cerf and 16 minutes to get to Dahl. You write this information in your
notebook, as shown in Table 15-2.

Table 15-2 Step 1: Notebook with Information from the Agent at Blum

The table lists all the cities for which you have some information about the
travel time. The Via column records what city you came from to get that time.
You’ll see later why this is good to know. What do you do now? Here’s the rule
you follow:

Rule
Always send an agent to the unvisited city whose overall route from the starting point
(Blum) is the shortest.

Notice that this is not quite the same rule as that used in the minimum spanning
tree problem (the network installation). There, you picked the least expensive
single link (edge) from the connected cities to an unconnected city. Here, you
pick the least expensive total route from Blum to a city with no agent. At this
particular point in your planning, these two approaches amount to the same
thing because all known routes from Blum consist of only one edge. As you
send agents to more cities, however, the routes from Blum will become the sum
of several direct edges.

The Second Agent: In Dahl
The shortest route from Blum is to Dahl, at 16 minutes. So, you send half your
team to Dahl, where one will act as the agent and others will be ready for later
tasks. When they arrive, they message you that the Dahl stationmaster says
today’s trains will take 29 minutes to reach Cerf, 28 minutes to reach Gray, 24
minutes to reach Kay, and 15 minutes to return to Blum. That last travel time
confuses your agents, until they realize the stationmaster doesn’t know where
they came from and is just trying to be helpful.



Now you can update your notebook. Adding up the time you already spent
getting to Dahl with the times to reach Gray and Kay, you can make two new
entries in the notebook as shown in Table 15-3. You now know that you can
reach Gray in 44 minutes and Kay in 40 minutes from Blum. You also received
information about Cerf. If you travel to Cerf via Dahl, it takes 16 + 29 = 45
minutes. That’s longer than the direct travel from Blum, so there’s no need to
change the entry for Cerf.

Table 15-3 Step 2: Notebook with Information from the Agents at Dahl

It helps to see how this information looks in graph form. Figure 15-11 shows
the weights on the routes (edges) that have been learned so far. You have agents
in Blum and Dahl, and a quick look among the other cities in your notebook
shows that Cerf is the next shortest route. Following the rule, you and the other
agents in Blum go to Cerf to learn what conditions are like there. That’s what
the “Visit” pointer is showing; it’s time to visit Cerf.



Figure 15-11 Following step 2 in the shortest-path algorithm.

The table on the right of Figure 15-11 shows the same information that’s in
your notebook but in a different format. The cities are in a different order, it
includes the start city of Blum, and there are some extra numbers along with
the city names. The reasons for those are explained shortly.

After you’ve placed agents in a city, you can be sure that the route taken by
them to get to that city is the fastest route. Why? Consider the present case. If
there were a faster route than the direct one from Blum to Cerf, it would need
to go through some other city. The only other way out of Blum by train is to
Dahl, which you explored first. You already found that the Blum–Dahl–Cerf
route takes more time than the direct route to Cerf. If there were a route via
Gray, Kay, or some other city back to Cerf, it would have to take at least 40
minutes (the time needed to reach Kay), so there’s no faster way via Dahl.
Hence, you conclude with certainty that you know the shortest time to all the
visited cities (Blum, Dahl, and now Cerf).

Based on this analysis, you decide that from now on you won’t need to update
the entries for the time from Blum to Cerf or Blum to Dahl. You won’t be able
to find faster routes, so you can cross them off the list.



Three Kinds of Cities
As in the minimum spanning tree algorithm, the cities for the shortest-path
algorithm are divided into three categories:

1. Cities in which you’ve installed an agent (for which you’ve already found
the shortest path).

2. Cities with known travel times from cities with an agent; they’re on the
fringe.

3. Unknown cities.

At the beginning of step 2, Blum and Dahl are category 1 cities because they
have agents there. Based on the travel times learned in Dahl, you sent agents to
Cerf, moving that city to category 1. Those three cities form a tree consisting of
paths that all begin at the starting vertex (Blum) and that each end on a
different destination vertex. This is not the same tree, of course, as a minimum
spanning tree. It’s the shortest-path tree because you’ve concluded you now
know the fastest routes to each city.

Two other cities have no agents, but you know some of the times to reach them
because you have agents in adjacent category 1 cities. You know the time to go
from Blum to Gray is at most 44 minutes and to Kay is at most 40 minutes. The
information in your notebook means that Gray and Kay are category 2 (fringe)
cities.

You don’t know anything yet about Naur; it’s an “unknown” city (from the
perspective of this algorithm). As in the minimum spanning tree algorithm,
Dijkstra’s shortest-path algorithm moves cities from the unknown category to
the fringe category, and from the fringe category to the tree, as it goes along.

The Agents in Cerf
With you and your other agents now in Cerf, you can cross out Cerf and Dahl
in your list and get information from the stationmaster there. Cerf is a busy
station because five rail lines connect to it. Your agents learn today’s trains take
34 minutes to Gray, 65 minutes to Naur, 26 minutes to Kay, 24 minutes to Dahl,
and 18 minutes to Blum. You add the times to your notebook, for the unvisited
cities to get Table 15-4.

Table 15-4 Step 3: Notebook with Information from the Agents at Cerf



The Blum–Cerf–Gray route takes 22 + 34 = 56 minutes. That’s more than the
Blum–Dahl–Gray route of 44 minutes, so the entry from before remains.
Similarly, Blum–Cerf–Kay takes 22 + 26 = 48 minutes, which is slower than
Blum–Dahl–Kay at 40. You do make a new entry for Naur (so it is no longer in
the unknown category).

The times to return to Blum or Dahl are less than what it took to go to Cerf
from those cities. Shouldn’t that affect the route plan? It might be that Cerf is
higher in elevation so going back is faster, but that’s not going to help you pick
the fastest route from Blum to Naur. The crossed-out entries don’t need
updates.

You now have the situation shown in Figure 15-12. The information learned in
Cerf shows that the next city to visit is Kay with the total time from Blum
being 40 minutes. It’s also clear that the fastest route to Kay is the Blum–Dahl–
Kay route because you noted the predecessor of Kay was Dahl in the notes.
You now have all of the cities in category 1 or category 2; none remain in
category 3.



Figure 15-12 Following step 3 in the shortest-path algorithm.



Because you have Naur in your notebook, can you stop sending agents out?
Some members of the team are eager to finish the surveying. You do have one
route to Naur, but it’s not certain yet that you know the very fastest route. You
tell your team in Dahl to split up, move half to Kay, and press on.

The Agents in Kay
When you have agents in Kay, they quickly report the following travel times:
Gray 25 minutes, Naur 36 minutes, Cerf 29 minutes, and Dahl 24 minutes.
Those last two are cities you have already crossed off, so only the first two
matter. Adding the times to the shortest time to get to Kay of 40 minutes (via
Dahl) means you could get to Gray in 65 minutes and Naur in 76 minutes. You
already know a route to Gray that takes 44 minutes (via Dahl), so the new route
is no good. The route to Naur, however, is shorter. (It was worth pressing on!)
You update your notebook to show what’s in Table 15-5.

Table 15-5 Step 4: Information from the Agents at Kay

You are faced with another choice of ending the process with the newer, better
route to Naur. You trust in the process, however, and decide to continue. The
shortest route to an unvisited city is now to Gray (via Dahl) at 44 minutes. This
corresponds to the upper graph of Figure 15-13.



Figure 15-13 Following steps 4 and 5 in the shortest-path algorithm.

You’re closing in on the goal. You send the remaining team in Dahl to Gray
because that was the fastest way to get to Gray based on the notes. (A sharp
observer might note that you could get agents from Kay there faster, but that’s
not really part of the computer algorithm, which simply has to choose which
vertex to explore next.)

The Last Agents in Gray
Your (now very experienced) agents report the only route that matters from
Gray: it will take 30 minutes to reach Naur from there. Because it takes 44
minutes to get to Gray (via Dahl), you now could get to Naur in 74 minutes.
You make another revision to your notebook and end up with the graph and
table shown at the bottom of Figure 15-13. You send an agent to Naur, just to
confirm the time.

When there’s an agent in every city, you know the best times from Blum to
every other city. You’re done. With no further calculations, the last entries in
your notebook show today’s fastest routes from Blum to all other visited cities.
Your team now has the optimal route for the Blum to Naur race. That route plus
the other fastest routes form a tree rooted at the starting point (not to be
confused with the minimum spanning tree).

Note that you don’t have the fastest route to any cities not yet visited when you
stop updating the notebook. If Turala had a dozen more cities, you wouldn’t
know for sure how long it takes to get to them. To get all the fastest routes, you
would need to visit every city. You have, however, found the fastest way to get
from Blum to Naur and know that any other team who simply chose the direct
train from Cerf to Naur would lose the race!



This narrative has demonstrated the essentials of Dijkstra’s algorithm. On the
surface, it seems more like the breadth-first search than the depth-first one,
expanding the shortest-known path away from the starting point. The key
points are

• Each time you send agents to a new city, you use the new information
provided by them to revise your list of times. Only the shortest route
(that you know about) from the starting point to a given city is retained,
including the previously visited city that achieved that time.

• You always send your next agents to the unvisited city that is closest (in
time) to the starting point. That is different from the fastest single train
trip (edge) from any city with an agent, as was selected in the minimum
spanning tree.

In the terms of graphs, Dijkstra’s algorithm adds one vertex to its output
subgraph on each iteration. The vertex added has the lowest total edge weight
on the path back to the starting vertex. Because that path back is unique (each
vertex has a unique preceding vertex), the subgraph is always a tree. If there are
multiple, equal weight paths to a vertex, it will choose a path with fewer edges
due to the breadth-first style exploration.

Finding Shortest Paths Using the Visualization Tool
Let’s see how Dijkstra’s algorithm looks using the WeightedGraph
Visualization tool. If you happen to have the tool where you can launch it using
the command line, you can run
python3 WeightedGraph.py -TuralaSP

This command creates the graph using two-letter prefixes for the city names
and the weights shown in the previous examples. The vertex positions are
random, so if you want the graph in the tool to look like the examples, you will
probably have to move them around to look something like Figure 15-14.



Figure 15-14 The railroad scenario in WeightedGraph Visualization tool

Two vertices must be selected to calculate a shortest path: a start and an end
vertex. The Visualization tool lets you select the start vertex with first mouse
button, just as with the minimum spanning tree. You select the end vertex by
holding the Shift key or pressing a different mouse button. The vertices are
highlighted with rings like those in Figure 15-14 for Bl(um) and Na(ur).

Note that the visualization tool shows the graph as undirected. Dijkstra’s
algorithm works on both kinds of graphs, and the results are the same
(assuming only positive weights and the weights are those that are needed for
the final direction of travel). Showing only one edge between a pair of vertices
keeps the display less cluttered.

After the graph is configured and the endpoints selected, the Shortest Path
operation is enabled. Try pressing the button and stepping through the process.
We look at some key steps next, focusing on the “notebook” used for tracking
the shortest paths and the visited vertices before looking at the details of the
implementation.

The Costs Notebook
The Visualization tool draws the notebook entries a little differently than the
preceding figures. At the start of the shortest-path algorithm, it creates a
structure at the bottom of the display called costs with a single entry for
Bl(um), as in Figure 15-15. The top of the entry is the vertex name along with
its matching-colored background. The bottom of the entry is the total time
(weight, distance, cost, and so on) to reach that vertex, along with the vertex
visited just before. These are shown as tuple like (0, ’Bl’), where the first



component is the total time and the second is the previous or parent vertex. For
this starting vertex, there is no previous one, so it’s marked as being Bl(um).

Figure 15-15 The first entry in costs for the shortest path to Naur

In the upper right of the display, a visited array tracks which vertices have
been finalized with their shortest path (put in category 1). The 1 in the cell next
to Bl(um) indicates that it—and it alone—falls in this category at this stage.
The total time for category 1 vertices in the costs structure is that for the final,
shortest path.

The display has many different arrows indicating variables used in different
parts of the program, which can be confusing. Several of them show the same
information but in different ways. For example, the start and end variables
indicate the start and end vertices in both the _vertices array and the graph
layout. The nextVert arrow shows the next vertex to be processed in both the
costs structure and the graph layout. Sometimes these arrows and other display
elements overlap each other, making them harder to read.

When the algorithm chooses the second city to visit, Da(hl), the situation looks
like Figure 15-16. The costs structure now has three entries, showing the
shortest paths found so far for the three vertices, just like the notebook in Table
15-2. All of them have Bl(um) as the preceding vertex. The visited array
shows that only Bl(um) and Da(hl) have been visited, and hence are in category
1 with their final shortest paths.



Figure 15-16 After selecting Da(hl) to visit in finding the shortest path to
Naur

The figure also collapses the adjacency matrix to show the variables cost and
pathCost, which might otherwise be hidden. The edge weights remain visible
in the graph layout, so the adjacency matrix information is still available.

The process continues visiting cities and updating the structures. After skipping
over the visit to Ce(rf), Figure 15-17 shows the contents of the costs and
visited structures when Ka(y) is visited. It shows that both Gr(ay) and Ka(y)
were reached from Da(hl). Ka(y) has a shorter total path cost of 40 compared to
Gr(ay)’s cost of 44, so it is chosen as the next vertex to visit. The visited array
shows that Ka(y) has now been put in category 1. Ce(rf) was visited in the
previous stage, but the path through Da(hl) took less time.

Both Gr(ay) and Na(ur) are unvisited at this stage, but you do have estimated
times to reach them of 44 and 87, respectively. Their parent vertices are
different because they were reached along different paths.



Figure 15-17 After selecting Ka(y) to visit in finding the shortest path to
Naur

The algorithm selects Gr(ay) for the next visit as shown in Figure 15-18. No
new vertices have been added to the costs structure, but one has been changed.
The total time taken to reach Na(ur) has been updated from 87 to 76. That’s due
to the new information found when visiting Ka(y) that Na(ur) could be reached
in 36 minutes. Unlike a paper notebook, where you might put a line through an
old entry, the previous estimate is simply erased from the entry for Na(ur), and
the new entry showing the path from Kay replaces it.

Figure 15-18 Visiting Gr(ay) in finding the shortest path to Naur

The final shortest path to Naur is updated at the next stage, changing the total
time to 74 with Gr(ay) as the parent vertex. With Naur in the visited array,
we’re done updating the costs structure. What’s left is following the
“breadcrumbs” stored in that structure to determine the best path from Blum.



We’ll see how to do that and figure out what we should use to represent the
costs notebook and how to deal with an end vertex in a different connected
component in the next section.

Implementing the Algorithm
What kind of data structure should we use for the notebook? Dijkstra’s
algorithm needs something that records total weights (times) and predecessors
for individual vertices of the graph (cities). What options do we have?

Among the data structures you’ve seen so far, you could use nearly all of them
to store a record holding a path weight and vertex index for the predecessor.
These records would be identified by an integer key, the vertex index for the
destination. Using an array would give you the fastest access by that key, O(1).
Sorted lists, sorted arrays, trees, and heaps could be an option because that
allows for quickly finding the lowest weight path. Using those structures,
however, means finding the records to be updated for each newly discovered
edge weight will take longer than O(1); probably O(log N) or O(N), where N is
the number of vertices you’re tracking. Like the analogy with the agents sent to
the train stations, you must update several records for each vertex visited (all of
its adjacent vertices minus the parent vertex), so you really need to keep the
time to find each record as O(1).

If you use an array, you need an array that holds all the vertices. That’s not
much memory for small graphs but becomes more significant with huge ones.
Finding the shortest path in Turala only needed an array that could hold six
items. If you were finding the shortest route between two road intersections in
North America, however, there are more than a million vertices to consider. Do
you really want to create an array for millions of vertices when the final result
route needs to visit only a couple of dozen?

If the purpose of applying Dijkstra’s algorithm is to find the shortest path from
a starting vertex to all other vertices in the connected component, then it makes
sense to allocate an array for all the vertices. They will all be visited as part of
the process. If the purpose is to find the shortest path between two specific
vertices, however, it makes more sense to use a hash table. After you visit the
destination vertex, the algorithm can stop and return the shortest (lowest
weight) path. There will be entries for all the vertices that are adjacent to a
vertex on the shortest path, but that could be millions fewer.



As you saw in Chapter 11, hash tables can grow as needed while still providing
O(1) search time. Using Dijkstra’s algorithm to search for the shortest path
between two out of a two million vertex road network is likely to need to
explore a tiny fraction of the total number of vertices, maybe tens or hundreds
of vertices. A hash table allows you not only to use memory proportional to
that tiny fraction of vertices, but it also means that enumerating (traversing) all
the current vertices in the table to, say, find the one with lowest total path
weight takes time proportional to the tiny fraction. That’s not as efficient as
keeping all the items in a priority queue or heap where the time to find the
shortest takes O(1), but those structures would take more time to find each
vertex when updating their total path cost.

You should also consider how to track vertices that have been visited by the
algorithm. In the notebook, you crossed off cities (vertices) as they were
visited. That suggests that you could add a flag to each record indicating
whether the vertex had been visited or not. With that representation,
determining whether vertex K has been visited or not takes a hash table search,
and if a record for K is found, checking if its flag is set. That is probably the
most memory-efficient way, but you could also keep a separate hash table to
store the visited vertices. Doing so means determining the visit status for K
only requires seeing whether key K has been inserted in the hash table.

In the Visualization tool, the costs notebook and visited table appear as simple
tables or arrays. That is only to simplify their appearance in the tool; we use
hash tables in the code.

Python Code
You can implement the shortest-path algorithm in a single method as shown in
Listing 15-3. This version will finish as soon as it finds the shortest path
between the given start and end vertices, not continuing to find the shortest
paths to all other vertices.

Listing 15-3 The shortestPath() Method for WeightedGraph

class WeightedGraph(object): # A graph containing vertices and edges 
… 
 
  def shortestPath(         # Find shortest path between two vertices, 
         self, start, end): # if it exists, as list of vertex indices 



      visited = {}          # Hash table of visited vertices 
      costs = {             # Hash of path costs to vertices including 
         start: (0, start)} # their predecessor vertex 
      while end not in visited: # Loop until we visit the end vertex 
         nextVert, cost = None, math.inf # Look for next vertex 
         for vertex in costs: # among unvisited vertices whose cost 
            if (vertex not in visited and # to reach is the lowest 
                costs[vertex][0] <= cost): 
               nextVert, cost = vertex, costs[vertex][0] 
         if nextVert is None: # If no unvisited vertex could be found 
            break           # we cannot get to the end, so exit loop 
         visited[nextVert] = 1 # Visit vertex at end of lowest cost 
         for adj in self.adjacentVertices(nextVert): # path and 
            if adj not in visited: # adjacent, unvisited vertices 
               pathCost = (    # Extended path costs weight of adj. 
                  self.edgeWeight(nextVert, adj) + # edge plus cost of 
                  costs[nextVert][0])  # path so far 
               if (adj not in costs or # If reached adj for first time 
                   costs[adj][0] > pathCost): # or old path costlier, 
                  costs[adj] = ( # update cost to reach vertex 
                     pathCost, nextVert) # via extended path 
 
      path = []             # Build output path from end 
      while end in visited: # Path only contains visited vertices 
         path.append(end)   # Append end vertex 
         if end == start:   # If we reached the start, 
            break           # we’re done. Otherwise go to 
         end = costs[end][1] # predecessor via lowest cost path 
      return list(reversed(path)) # Return path from start to end

As explained in the previous section, the shortestPath() method starts off by
creating two hash tables: visited and costs. The Python dict structures used
for these hash tables simplify the syntax a little, but you could also use
instances of the HashTable class introduced in Chapter 11. The visited table is
initially empty because no vertices have yet been visited. As the algorithm
visits vertices, it will insert a 1 in this hash table at the vertex’s index.

The costs hash table maps vertex indices to the records containing the total
path weight to that vertex and the predecessor vertex index to reach it. This
holds the notebook contents and is the same as what is shown on the right side
of Figures 15-10, 15-11, 15-12, and 15-13. Initially, it holds a record of (0,
start), as shown in Figure 15-10. That represents the zero path weight of the
zero length path from the starting vertex. The first element of the record (tuple)
is the path length, and the second element is the predecessor or parent vertex.



For the starting vertex, there is no predecessor, so we could store None in the
tuple instead of start. The figure shows the record being placed in the first cell
of the hash table, but the starting index could hash to any cell.

With these two hash tables set up, we now enter the main while loop of the
algorithm. The loop condition, end not in visited, says it all. The loop
continues until the end vertex is inserted in the visited hash table. (If the start
and end vertices are not in the same connected component, we’ll detect that
later and break out of the loop.)

In the loop body, the first thing to do is find which vertex to visit next. The rule
in Dijkstra’s algorithm is to find the unvisited vertex with the lowest weight
path from the start. We set up a nextVert and a cost variable to search for
these. The cost variable is initialized to math.inf so that any (finite) cost
found is considered as a lower-cost path. The first inner for loop goes over all
the vertices with records in the costs hash table. Inside that for loop, when it
finds a vertex that has not yet been visited and the path cost to reach that
vertex is less than the minimum cost path found so far, it updates nextVert
and cost to use that vertex and its path cost (stored in the first element [0] of
the costs record).

We now know which vertex to visit. Because we put the start vertex in the
costs table outside of the main loop, it will be found by the inner loop and
become the first vertex visited. If the inner for loop ended without finding an
unvisited vertex, that means that we’ve explored all the vertices connected to
the starting vertex without discovering a path to the destination. In other words,
if the nextVert is None, then we can break out of the main loop.

When the nextVert is not None, we mark it in the visited hash table and
proceed to process the edges connected to it. The second inner for loop steps
through all adjacent vertices of nextVert, storing the index in the adj variable.
Adjacent vertices that have not been visited are examined. The cost of the edge
from nextVert to the adj vertex is added to the path cost of reaching nextVert.
For the starting vertex, the path cost was set to zero, so no special handling is
needed for the first edges. The next if statement checks whether adj is either a
new vertex in the costs hash table or the pathCost to reach it is lower than the
one recorded in costs. If it’s new or lower, the costs hash table entry for the
adj vertex is updated with the new lower cost and its predecessor vertex.

That takes care of the one rule and update strategy in Dijkstra’s algorithm.
When the main while loop ends, we’ll either have the end vertex among those



visited along with its path cost in the costs table, or no path could be found.
We assume the latter, setting path to [], an empty list. The next loop
reconstructs the path from the costs table, if there is one.

The final while loop starts from the end vertex and works backward. It appends
the end vertex to the output list. Next, it checks whether that end vertex was
the start vertex. If so, the path is complete, and it breaks out of the loop. If
not, it sets end to the predecessor vertex index that was stored as the second
element of the costs table record and continues on. When the loop exits, path
holds the vertex indices of the shortest path but in reverse order. We use the
Python utilities reversed() and list() to put the list in forward order and
return it as a list.

This implementation is straightforward and fairly efficient. To see how all the
different data structures work together to achieve the goal, it helps to run
through a few examples, either by hand or using the Visualization tool.

The All-Pairs Shortest-Path Problem
In discussing connectivity in Chapter 14, we wanted to know whether it was
possible to travel from Athens to Kamchatka if we didn’t care how many stops
were made. With weighted graphs you can answer other questions that might
occur to you as you wait at the ticket counter: How much will the journey cost?
How long will the journey take?

To find whether a trip was possible, you created a connectivity matrix starting
from the adjacency matrix. The analogous table for weighted graphs gives the
minimum cost from any vertex to any other vertex using multiple edges. This is
called the all-pairs shortest-path problem.

You might create such a matrix by

1. Making a shortestPaths() method based on the shortestPath()
method that takes a single vertex as its parameter,

2. Changing its main while loop to end when all vertices have been visited,
and

3. Returning paths and their costs for all visited vertices.

Then you could run shortestPaths() starting at each vertex in turn to populate
the rows of the all-pairs shortest-paths matrix. With a nondirectional graph, the



result matrix would be symmetric, and you could limit the amount of work
done by only determining the cost of paths where the start index is less than the
end index, but it would still be quite complex.

In the end, this could produce a travel time table for Turala like the one in Table
15-6, if you assume the return travel time is the same as the forward travel
times shown in Figure 15-13. The best time found for the trip from Blum to
Naur, 74 minutes, is in the table, but it also would find that the Cerf to Naur trip
could be done in 62 minutes compared to the 65-minute direct route.

Table 15-6 All-Pairs Shortest-Path Table

In the preceding chapter, you saw that Warshall’s algorithm was a way to create
a table showing which vertices could be reached from a given vertex using one
or many steps. Analogous approaches for weighted graphs were published by
Robert Floyd and Stephen Warshall separately in 1962. The pattern of moving
through the adjacency matrix is the same, but the update strategy is different
because you need to sum the edge/path weights rather than doing inclusive OR
operations.

Let’s learn the Floyd-Warshall algorithm using a simple four-vertex graph.
Figure 15-19 shows a weighted, directed graph and its weighted adjacency
matrix in two formats.



Figure 15-19 A weighted, directed graph and its adjacency matrix

The weighted adjacency matrix shows the cost of all the one-edge paths. The
format on the right explicitly fills in an edge weight of positive infinity for
nonadjacent vertices. The goal is to extend this matrix to show the cost of all
paths regardless of length. Any path that doesn’t exist will have infinite weight.

For humans, it’s easy to see that you can go from B to C at a cost of 30 (10
from B to D plus 20 from D to C). The return trip, from C to B, is not possible
(or at least would cost more than anyone with finite resources can afford).

As in Warshall’s algorithm, you copy the adjacency matrix and then
systematically modify it into a path weight matrix. You examine every cell in
every row. If there’s a finite weight (let’s skip down to row C where there’s a
30 in column A), then you then look in column C (because C is the row where
the 30 is). If you find a finite entry in column C (like the 20 at row D), you
know there is a path from C to A with a weight of 30 and a path from D to C
with a weight of 20. From this, you can deduce that there’s a two-edge path
from D to A with a weight of 50. Figure 15-20 shows the steps when the Floyd-
Warshall algorithm is applied to the graph in Figure 15-19.



Figure 15-20 Steps in the Floyd-Warshall algorithm to create the path
weight matrix

Row A has no finite weights, so there’s nothing to do there. In row B there’s a
70 in column A and a 10 in column D, but there are no finite weights in column
B, so the entries in row B can’t be combined with any edges ending on B.
(Technically, you could add the 70 to infinity, but that gives infinity and you
only make changes if it lowers a path weight.)

In row C, however, you find a 30 at column A. Looking in column C, you find
a 20 at row D. Now you have C to A with a weight of 30 and D to C with a
weight of 20, so you have D to A with a weight of 50.

Row D shows an interesting situation: where the algorithm updates an existing
cost. There’s a 50 in column A. There’s also 10 in row B of column D, so you
know there’s a path from B to A with a cost of 60. There’s already a cost of 70
in this cell. What do you do? Because you want the shortest path and 60 is less
than 70, you replace the 70 with 60.

The implementation of the Floyd-Warshall algorithm is similar to that for
Warshall’s algorithm. Instead of simply inserting 1s into the table when a
multiple-edge path is found, you add the costs of the two paths and insert the
sum, as long as the sum is less than the cost already stored for the combined
path. Similar to the Dijkstra algorithm, each cell contains the minimum path
weight connecting two vertices that have been found so far. After going
through all the rows and columns, the overall shortest-path weights are
discovered. We leave the details as an exercise.

Efficiency



So far, we haven’t discussed much about the efficiency of the various graph
algorithms. The issue is complicated by the two ways of representing graphs:
the adjacency matrix and adjacency lists, and the fact that there are two
different measures of graph size.

If an adjacency matrix is used, the algorithms we’ve discussed mostly require
O(V2) time, where V is the number of vertices. Why? If you analyze the
algorithms, you’ll see that they involve examining each vertex once, and for
that vertex going across its row in the adjacency matrix, looking at each edge in
turn. In other words, each cell of the adjacency matrix, which has V2 cells, is
examined.

For large matrices O(V2) isn’t very good performance. If the graph is dense,
there isn’t much you can do about improving this performance. As we noted
earlier, by dense, we mean a graph that has many edges—one in which many or
most of the cells in the adjacency matrix are filled. It’s worthwhile noting that
the maximum density graphs, ones where every vertex is adjacent to every
other vertex, have V × (V − 1) / 2 or O(V2) edges.

Many graphs are sparse, the opposite of dense. There’s no clear-cut definition
of how many edges a graph must have to be described as sparse or dense, but if
each vertex in a large graph is connected by only a few edges, the graph would
normally be described as sparse.

Consider again finding the shortest route between two road intersections. There
could be millions of intersections for a graph covering a large continent. The
intersections are the vertices of the graph, and the roads connecting them are
the edges. Maybe the busiest intersection has 12 roads connected to it (such as
the l’Arc de Triomphe de l’Etoile in Paris, France). Twelve is much smaller
than a million, and even if every vertex had 12 edges, a million-vertex graph
would need to look at most 12 million edges. That’s vastly smaller than what a
dense graph would have: O(V2) or millions squared, which are trillions. All but
the smallest road network graphs are sparse.

In sparse graphs, running times can be improved by using the adjacency list
representation rather than the adjacency matrix. This is easy to understand: you
don’t waste time examining adjacency matrix cells that don’t hold edges. It also
takes less memory because you don’t need an array cell for every vertex pair—
only enough to hold each edge. That’s an advantage of the hash table
representation of the adjacency matrix too.



For unweighted graphs, a depth-first search with adjacency lists requires
O(V+E) time, where V is the number of vertices and E is the number of edges.
The traversal visits each vertex and each vertex’s edges exactly once. For
weighted graphs, both the minimum spanning tree and the shortest-path
algorithm require O((E+V) × log V) time. They, too, must visit every vertex
and edge and choose the lowest-cost path at each iteration. The lowest-cost
edge is kept in a heap with O(log N) removal time for the MST. (For the
shortest-path algorithm, we would need to introduce another data structure to
get O(log N) time to find the shortest cumulative path so far.) In large, sparse
graphs these O((E+V) × log V) times can represent dramatic improvements
over the O(V2) adjacency matrix approach.

There’s another kind of complexity—one that’s especially important for new
programmers. That’s the intellectual complexity of the code. We’ve used the
adjacency matrix approach throughout this chapter to make the code easier to
read and the algorithmic steps easier to visualize. You can consult Sedgewick
(see Appendix B, “Further Reading”) and other writers for examples of graph
algorithms using the adjacency-list approach. The adjacency list isn’t much
more intellectually complex and definitely outperforms the matrix on sparse
graphs. The hash tables we’ve used for some of the structures like the costs
table improve the performance by making insertion and search take O(1) time,
but they do add intellectual complexity to the code.

The Warshall and he Floyd-Warshall algorithms are slower than the other
algorithms we’ve discussed so far in this book. They both operate in O(V3)
time, making use of the row and column nature of the adjacency matrix. This is
the result of the three nested loops used in their implementation. They can be
implemented using adjacency lists to save some time and get to O(V2×E), but
at some cost of increased code complexity.

Intractable Problems
In this book you’ve seen Big O values starting from O(1), through O(N), O(N ×
log N), O(N2), up to (for the Warshall and the Floyd-Warshall algorithms)
O(N3). Even O(N3) running times can be reasonable for values of N in the
thousands. Algorithms with these Big O values can be used to find solutions to
most practical problems.



Some algorithms, however, have Big O running times that are so large that they
can be used only for relatively small values of N. Many real-world problems
that require such algorithms simply cannot be solved in a reasonable length of
time. Such problems are said to be intractable. (Another term used for such
problems is NP complete, where NP means nondeterministic polynomial. An
explanation of what this means is beyond the scope of this book.) The very
complexity of these problems is part of what makes them interesting. Let’s look
at a couple of them.

The Knight’s Tour
The Knight’s Tour (Programming Project 14.6 in Chapter 14) is an example of
an intractable problem because the number of possible paths is so large. The
total number of possible move sequences (tours) is difficult to calculate, but
you can approximate it. A knight in the middle of a board can move to a
maximum of eight squares. This number is reduced by moves that would be off
the edge of the board and moves that would end on a square that was already
visited. In the early stages of a tour, there will be closer to eight moves, but this
number will gradually decrease as the board fills up.

Let’s assume (conservatively) only two possible moves from each position
averaged over the entire puzzle where it will vary quite a bit. After the initial
square, the knight can visit 63 more squares. Thus, there is a total of 263

possible move sequences. This is about 1019. Assume a computer can make a
billion moves a second (109). There are roughly 107 seconds in a year, so the
computer can try about 1016 moves in a year. Solving the puzzle by brute force
—exploring every possible move sequence—can therefore be expected to take
103, more than a thousand years because this was a conservative estimate.

This particular problem can be made more tractable if strategies are used to
“prune” the tree created by the move sequences. One is Warnsdorff’s heuristic
(H. C. von Warnsdorff, 1823), which specifies that you always move to the
square that has the fewest possible exit moves. A heuristic (from the ancient
Greek: εὑρίσκω, heurískō, “I find, discover”) in computer science, is a
technique that helps solve a problem more quickly, although it is not always
guaranteed to do so.

The Traveling Salesperson Problem



Here’s another famous intractable problem. Suppose you’re a salesperson, and
you need to go to all the cities where you have potential clients. You would like
to minimize the number of miles, and thus time, you travel. You know the
distance from each city to every other city. You want to start in your home city,
visit each client city only once, and return to your home city. In what sequence
should you visit these cities to minimize the total miles traveled? In graph
theory, this is called the traveling salesperson problem, often abbreviated
TSP. (It was originally called the traveling salesman problem.)

Let’s return to Turala for another business opportunity, selling networking
equipment in each of the six major cities. Figure 15-21 shows the cities and
their driving distances. What’s the shortest way to travel from Blum through
each of the other cities and back to Blum? As before, not all cities are
connected by roads to all other cities, at least not without passing through
another city. For example, there are many ways to get from Blum to Gray, but
none of them include driving directly from Blum to Gray without going
through Cerf or Dahl.

Figure 15-21 Driving distances in Turala

To find the shortest salesperson route, you could list all the possible
permutations of the other cities (Dahl–Kay–Naur–Gray–Cerf, Dahl–Gray–
Naur–Kay–Cerf, Dahl–Gray–Kay–Naur–Cerf, and so on) and calculate the
total distance for each permutation. The route Blum–Dahl–Kay–Naur–Gray–
Cerf–Blum has a total length of 140.

Unfortunately, the number of permutations can be very large: it’s the factorial
of the number of cities (not counting your home city). If there were 6 cities to
visit, there are 6 choices for the first city, 5 for the second, 4 for the third, and



so on, for a total of 6×5×4×3×2×1, or 720 possible routes. For the moment, you
can count all possible permutations, even if no roads connect some pairs of
cities.

The problem quickly becomes impractical to solve for even 50 cities (more
than 1064). Again, there are strategies to reduce the number of sequences that
must be checked, but this helps only a little. You can apply the same logic that
was used in the Knight’s tour, noting that at each city you choose among a few
edges, excluding those going to previously visited cities. If the average number
of choices at each city is 2 or more, then there are at least 250 paths to explore
when trying to visit 50 cities. That’s over 1015, which is much smaller than
1064, but still a huge number.

A weighted graph is used to implement the TSP problem, with weights
representing distance and vertices representing the cities. The graph can be
undirected if the distance is the same going from A to B as from B to A, as it
usually is when driving. If the weights represent airfares or travel times, they
may be different in different directions, in which case a directed graph is used.

Hamiltonian Paths and Cycles
A problem that’s similar to the TSP but more abstract is that of finding a
Hamiltonian cycle of a graph. As we noted earlier, a cycle is a path that starts
and ends on the same vertex. A Hamiltonian path is one that visits every
vertex in the graph exactly once but does not have a final edge that returns to
the initial vertex. It’s named for William Rowan Hamilton, who invented the
icosian game, now also known as Hamilton’s puzzle, which involves finding a
Hamiltonian cycle in the edge graph of the dodecahedron. Finding a
Hamiltonian path is somewhat like the bridges of Königsberg problem
discussed in Chapter 14. The difference is between finding a path the visits all
the vertices once, while the bridges of Königsberg problem seeks a path that
visits all the edges once (and allows revisiting vertices).

Don’t confuse finding a Hamiltonian cycle with detecting whether there are any
cycles in a graph. A Hamiltonian cycle must include all the vertices, not just a
subset, and be a cycle. Cycles in a graph can be detected with Warshall’s
algorithm (or Floyd-Warshall or some other more targeted algorithms) and
detecting their existence is considerably easier than finding a Hamiltonian
cycle.



Every solution to the TSP is a Hamiltonian cycle, but unlike the TSP, finding
Hamiltonian paths and cycles doesn’t care about distances; all you want to
know is whether such a cycle exists. In Figure 15-21 the route Blum–Dahl–
Kay–Gray–Naur–Cerf–Blum is a Hamiltonian cycle, while Blum–Dahl–Kay–
Cerf–Gray–Naur–Blum is not because there is no Naur–Blum edge. The
Knight’s Tour problem is an example of a Hamiltonian cycle, if the knight
returns to its starting square, and a Hamiltonian path, if not.

Finding a Hamiltonian cycle takes the same O(N!) time as the TSP. You’ll see
the term exponential time used for Big O values such as 2N and N! The term
exponential is used loosely in everyday parlance to mean anything that
increases really fast. For computer science, however, we like to be a bit more
precise.

To see how much worse O(N!) and O(2N) time are than O(N2), you can plot
their growth on a graph (well, a different kind of graph…). Figure 15-22 puts
them in perspective with the other growth rates that you saw in Chapter 2,
“Arrays.”

Figure 15-22 Exponential growth

The uppermost line shows the O(N!) growth rate. It starts off being less than
O(N2) for small values of N but quickly dominates all the others. The next line
below it is for O(2N), and it also dominates all of the other growth rates you’ve
seen so far. It’s clear that the number of steps grows far faster for these
exponential categories than the others.

The O(2N) line appears straight in this graph, whereas all the others have some
curvature. Is it clear to you why it is straight? In the graph of Figure 15-22, the



vertical axis is logarithmic. Every step vertically in the graph means the
number grows tenfold. You saw that logarithms are the inverse of exponential
functions back in Chapter 2. When you plot an exponential function like 2N on
a logarithmic scale, they “cancel each other,” and the curve flattens out into a
line.

The growth rates O(1), O(log N), O(N), O(N × log N), and O(N2) are all less
than exponential, curving downward as N increases in the logarithmic graph of
Figure 15-22. Note that while the O(N2) curve has an exponent in the formula,
it is not called exponential because it grows significantly more slowly than the
O(2N) curve. Even the more complex O(N3), O(N4), and so on growth rates
will be smaller than O(2N) for large values of N.

The O(N!) growth rate not only exceeds the O(2N) exponential, but it has a
slight upward curve. That’s on the logarithmic scale, so it grows even more
aggressively than the others do. That’s why you must be very careful with
algorithms that have this kind of performance. If you invent a new algorithm to
solve a problem, you should analyze its performance to see what size inputs it
can handle.

Would you ever want to implement a program that takes exponential time?
Probably not, but there’s another reason why they are so intriguing. Certain
kinds of problems can be shown to always require exponential time to solve.
It’s not a question of choosing the right data structures to get a lower
complexity solution; there are none. These kinds of algorithms are the basis of
cryptography—scrambling information into sequences of symbols that should
be accessible only to specific people or groups. Finding really hard problems to
solve means the problem’s solution can be used to encrypt the information.
Only those people who know the solution will be able to decrypt the
information in any kind of reasonable time.

Summary
• In a weighted graph, edges have an associated number called the weight,

which might represent distances, costs, times, or other quantities.

• The minimum spanning tree in a weighted graph minimizes the weights
of the edges necessary to connect all the vertices.



• An algorithm using a priority queue or heap can be used to find the
minimum spanning tree of a weighted graph.

• At each step, the minimum spanning tree algorithm chooses the lowest
weighted edge from a visited vertex to an unvisited one.

• Finding the minimum spanning tree of a weighted graph solves real-
world challenges such as installing network cables between cities.

• Large graphs are often “discovered” as an algorithm focuses on one
vertex, edge, or path at a time.

• Nonadjacent vertices can be used by assigning them an infinite weight
edge.

• The shortest-path problem in a nonweighted graph involves finding the
minimum number of edges between two vertices.

• Solving the shortest-path problem for weighted graphs yields the path
with the minimum total edge weight.

• The shortest-path problem for weighted graphs can be solved with
Dijkstra’s algorithm.

• In each iteration of Dijkstra’s algorithm, the lowest weight route to an
unvisited vertex determines the next vertex to visit.

• Dijkstra’s algorithm keeps records for the shortest path to all visited
vertices including the total weight and parent vertex on the path to that
visited vertex.

• The algorithms for large, sparse graphs generally run much faster if the
adjacency-list representation of the graph is used rather than the
adjacency matrix.

• Hash tables are a good representation for sparse adjacency matrices.

• Finding the total weight of the edges between every pair of vertices in a
graph is called the all-pairs shortest-path problem. The Floyd-Warshall
algorithm can be used to solve this problem.

• Some graph algorithms take exponential time and are therefore not
practical for graphs with more than a few vertices.



• The exponential growth rates—O(N!) and O(2N)—grow significantly
faster than the O(N2) rate, which in turn, is much higher than other rates
like O(N × log N), O(N), and O(log N).

• Examples of problems that take exponential time are the traveling
salesperson problem (TSP) and finding Hamiltonian cycles.

Questions
These questions are intended as a self-test for readers. Answers may be found
in Appendix C.

1. The weights in a weighted graph are used to model things like _______,
_______, and _______.

2. The minimum spanning tree (MST) of a weighted graph minimizes
a. the number of edges from the starting vertex to a specified vertex.
b. the number of edges used to span all the vertices.
c. the total weight of edges connecting all the vertices.
d. the total weight of the edges between two specified vertices in the

tree.
3. The numerical weights in weighted graphs

a. must be integers with zeros reserved for nonadjacent vertices.
b. can be any finite value but must have a sum less than the number of

vertices.
c. cannot include negative values.
d. can include any value including positive infinity for nonadjacent

vertices.
4. True or False: The weight of the MST depends on the starting vertex.
5. In the MST algorithm, what is removed from the priority queue?
6. In the country network installation example, at the time each edge is

added to the MST, the edge connects
a. the starting city to an adjacent city.
b. an already-connected city to an unconnected city.



c. an unconnected city to a fringe city.
d. two cities with offices.

7. True or False: After adding an edge to the MST, it could be removed or
replaced later with a better edge.

8. When exploring edges at a newly visited vertex, the MST algorithm
“prunes” edges that lead to a vertex that _________.

9. True or False: The shortest-path problem must be carried out on a
directed graph.

10. Dijkstra’s algorithm finds the shortest
a. paths from one specified vertex to all the vertices visited while finding

the shortest path to another specified vertex.
b. paths from all vertices to all other vertices that can be reached along

one edge.
c. paths from all vertices to all other vertices that can be reached along

multiple edges.
d. path from one specified vertex to another specified vertex.

11. True or False: The rule in Dijkstra’s algorithm when applied to a graph
where the edge weights are distances is to always put in the subgraph
the unvisited vertex that is closest to the starting vertex.

12. In the railroad route example, a fringe city is one
a. to which the travel time is known, but from which no other travel

times are known.
b. which is in the tree.
c. to which the travel time is known and which was just added to the

tree.
d. which is completely unknown.

13. The all-pairs shortest-path problem involves finding the shortest path
a. from the starting vertex to every other vertex.
b. from the starting vertex to every vertex that is one edge away.
c. from every vertex to every other vertex that is more than one edge

away.



d. from every vertex to every other vertex.
14. Comparing the Floyd-Warshall algorithm with Warshall’s algorithm

(described in Chapter 14), how are the matrix cells updated differently?
15. Problems that take an exponential amount of time to solve are called

_______.
16. Representing adjacency using a(n) _______ can reduce the complexity

of several algorithms on sparse graphs compared to using a(n) _______.
17. A path weight matrix is the output of the _______ algorithm.
18. What is an approximate Big O time for an attempt to solve the knight’s

tour on a K×K board?
19. In Figure 15-21, is the route Blum–Cerf–Naur–Kay–Gray–Dahl–Blum

the minimum solution for the traveling salesperson problem? Why or
why not?

20. When should a directed graph be used to solve the traveling salesperson
problem, as opposed to a undirected graph?

Experiments
Carrying out these experiments will help to provide insights into the topics
covered in the chapter. No programming is involved.

15-A Consider an alternative proposal for finding the minimum
spanning tree. For a connected, undirected graph with V vertices, take
the V − 1 lowest weight edges and make a graph with them and the V
vertices. If some of the edges have the same weight, randomly select
among the edges of equal weight to get the V − 1 edges. Try it on the
graphs of Figure 15-1 and Figure 15-8. Does it provide a better solution?
Why or why not? Can you think of other graph examples where it would
work or not work?

15-B The minimum spanning tree algorithm can start from any vertex.
If it starts at different vertices, will it find the same tree? Can you find
some small graphs that produce different trees and some graphs that
produce the same trees? (Hint: Keep the graphs small.) See whether you
can define under what graph conditions the algorithm will find the exact
same minimum spanning tree.



15-C Dijkstra’s algorithm finds the shortest path between two vertices
and has the side benefit of finding the shortest path from the starting
vertex to some of the other vertices. Can you define which of those other
vertices get that benefit? Does it matter what ending vertex was chosen?
Try some examples with graphs in the WeightedGraph Visualization tool,
where the graph has only one connected component.

15-D Traveling salespeople are much rarer now than they used to be.
Think about what other kinds of business activity need to solve the TSP.
How fast do they need to solve it? How many vertices would be in the
graphs?

15-E Turala’s government tells you they want to connect water
supplies between their different regions using pipelines. They would like
to pump water in either direction between about 50 water sources
depending on changing rainfall and other conditions. Of course, they
want to minimize the costs, and it’s acceptable to pump water via
intermediate points rather than connecting all sources to all other sources.
What kind of problem is this, and what algorithm would you use? What’s
the difference between finding the minimum construction costs versus
minimum operational costs?

Programming Projects
Writing programs to solve the Programming Projects helps to solidify your
understanding of the material and demonstrates how the chapter’s concepts are
applied. (As noted in the Introduction, qualified instructors may obtain
completed solutions to the Programming Projects on the publisher’s website.)

15.1 Create an allShortestPathsMatrix() method for the WeightedGraph
class using the Floyd-Warshall algorithm. It should return an array of
the minimum costs to get from any vertex to any other vertex. The result
matrix can be a Python dict that is indexed like the
WeightedGraph._adjMat attribute. Demonstrate it running on the train
times shown in the lower graph of Figure 15-13.

15.2 Create a directed weighted graph class based on the WeightedGraph
described in the text. Use it to make a generator for all maximum length
paths in the directed graph. A maximum length path from starting vertex
K is one that cannot be extended to an adjacent vertex without revisiting
a vertex already on the path. The allMaxPaths() generator should yield



all such paths starting from all vertices. This can be done as a recursive
generator. The generator will produce all the long paths but will also
include shorter and even single vertex paths for vertices with no
outgoing edges. Create another generator, HamiltonianPaths(), that
calls allMaxPaths() and yields only those paths that contain all the
vertices in the graph. Show the output of both methods operating on
three graphs: the one shown in Figure 15-19, that same graph minus the
outgoing edges from Vertex B, and that same graph with an additional
edge from C to B with weight 15.

15.3 Implement a method that solves the traveling salesperson problem
described in the “Intractable Problems” section in this chapter. In spite
of its intractability, your method should have no trouble solving the
problem for small N, say 10 cities or fewer. Use a directed graph as
implemented in Programming Project 15.2. You can use the brute-force
approach of testing every possible sequence of cities. Your method
should return either an empty list or None if there is no solution.
Demonstrate your method running on the driving times shown in Figure
15-21 with three variations on the return times: (a) the same time, (b)
the return takes 5 minutes longer, and (c) the return takes 10 minutes
longer. Does the solution change among the variations?

15.4 When you’re planning a project, it’s important to know how long it will
take to complete. You saw in Chapter 14 that directed graphs could be
used to model dependency relationships and how to topologically sort
the vertices to show the order of tasks needed to complete a project.
With time as the weight in a graph, you can find two things: the total
time needed to complete the project and the critical path—the path
through the dependency graph that takes the longest to complete.
Use the directed graph as implemented in Programming Project 15.2
and create a criticalPath() method that takes a vertex index as
parameter and returns the critical path leading to it along with the total
time (weight) along that path. Vertices with no predecessors (inbound
edges) have only themselves in the critical path and a total time of zero.
All other vertices return the critical path among their predecessors that
has the longest time. This method can be implemented recursively. Take
care to prevent infinite recursion if the graph has a cycle; the
criticalPath() method should return the path up to a vertex that
would cause a cycle along with infinite time for that path. Show the
output of the method operating on three graphs: the one shown in



Figure 15-19, that same graph minus the outgoing edges from Vertex B,
and that same graph with an additional edge from B to C with weight
35.

15.5 Many problems require finding the connected components of a graph
and uniquely labeling the vertices that comprise them. For a road
network in a mountainous, snowy country, the towns and cities are all
part of one connected component in good weather. As snow falls in the
mountains, roads become impassable, sometimes cutting off towns from
the others. Weighted graphs can model that situation by having towns as
vertices, roads as edges, and weighting the edges by their maximum
elevation. When snow cuts off travel above a given elevation, the
connected components change.
Write a connectedComponents() method for the WeightedGraph class
that returns an array of labels for each of the vertices. Vertices with the
same label in the array are part of the same component; different labels
imply disconnected components. The connectedComponents() method
takes a threshold argument that will be used to identify which roads are
still passable. Its default value is infinity so that all roads (edges) with
finite weight are included.
The algorithm for finding the labels starts off by assigning each vertex
the label of its name attribute (you can assume all the cities have unique
names). Then you make a sequence of update passes to change the
labels. In each update pass, the algorithm looks at every edge with
weight below the threshold. If the vertices at the ends of the edge have
different labels, it replaces the higher label with the lower one (by
comparing their lexicographic order). This repeats until an update pass
goes through all the edges without changing any labels. The minimum
labels “spread” across all the vertices in their connected component
until no more labels change.
Write a second method, componentVertices(), that takes the array of
labels and builds a hash table that maps a label to a list of vertex indices
that share the label. The number of keys in the hash table is the number
of connected components. Demonstrate your methods running on the
graph in Figure 15-21 using thresholds of 50, 21, and 15.



16. What to Use and Why

In This Chapter

• Analyzing the Problem

• Foundational Data Structures

• Special-Ordering Data Structures

• Sorting

• Specialty Data Structures

• External Storage

• Onward

We briefly summarize what we’ve learned so far, with an eye toward deciding
what data structure or algorithm to use in a particular situation.

This chapter comes with some caveats. Of necessity, it’s very general. Every
real-world situation is unique, so what we say here may not be the right answer
to your problem. You need to analyze the problem to determine its
characteristics and see whether they match those of the data structure or
algorithm.

This chapter is divided into these somewhat arbitrary sections:

• Analyzing the problem: Determine the characteristics that guide the
choice of data structure and algorithm

• Foundational data structures: Arrays, linked lists, trees, hash tables

• Special-ordering data structures: Stacks, queues, priority queues, heaps

• Sorting: Insertion sort, Shellsort, quicksort, mergesort, heapsort



• Specialty data structures: Quadtrees, graphs

• External storage: Sequential storage, indexed files, B-trees, hashing

Note
For detailed information on these topics, refer to the individual chapters in this book.

Analyzing the Problem
As a developer, you should always review the plans for the software you intend
to develop. There can be—and usually are—many goals for a particular
software project. Commercial companies want to create products that sell.
Scientific organizations want systems that accurately record, model, and
analyze their data. Governments want software that helps educate, protect, and
account for their citizens and jurisdictions. Analyzing these kinds of goals is
important; it tells you what needs to be built or changed. The organization’s
goals are less informative about how to build it to achieve the speed, cost (in
terms of memory and other computing resources), and ease of maintenance that
everyone wants.

Let’s assume someone has analyzed the overall goals and provided a set of
desired features and requirements for the new system. To figure out what data
structures and algorithms are appropriate, you need to look at the
characteristics of the computations involved. What kind of data is being
manipulated? How much will be processed? What kinds of results are needed
and how fast? The answers to these kinds of questions help narrow your
choices.

What Kind of Data?
The problem domain usually makes very clear what type of data will be
manipulated. It could be records about company transactions, audio recordings
of animal calls, measurements of experiments in a lab, or videos that will be
streamed to viewers. Each kind of data is built up from the primitive data types:
numbers, characters, and Booleans. The primitives are grouped into meaningful
chunks—for example, text message strings, arrays of numbers measuring
temperatures, records for personnel, centerlines of roadways, medical images,



and volumetric shapes. The enormous variety of kinds of data can be quite
daunting.

Despite that variety, some characteristics help pick the best approach for data
structures. First among them is how will the different parts of the data be
accessed? For example, if you’re processing text message strings, you expect
them to be short and to be requested as a whole; there likely is no need to
extract the last word from each text nor to find the median-valued character in
each one. Typically, the “chunks” are manipulated as a whole. If components
within the chunks need separate processing, that fact should be noted. For
example, videos typically contain a series of still images and a separate series
of numeric values for one or more audio channels. The visual and audio content
can be manipulated together—as an editor might carve up a video of an
interview—or manipulated separately to find utterances of words or find the
appearances of blue sky in the video frames.

With the different chunks of data identified, the next question to ask is how will
those chunks be identified? In particular, is there a key or index that helps
uniquely identify it? For example, personnel records usually have many fields,
and several of them might be used as keys to identify the records. Text
messages don’t have an implicit key to identify them, but when they are part of
records, they often have keys for sender, recipient, and time sent. The text
content can, of course, be processed to find other keys like words, phrases, or
languages used. Keys are often stored alongside the more numeric structures
like arrays or images. For example, an image database might have keywords
associated with the image content—for example, outdoor/indoor, people,
landscapes, animals.

The other way to identify chunks of data is by index or coordinates. To get the
next message in a sequence means going to the next index. To get the image
that appears 10 seconds after the start of a video, a program would find the
video frame by its index. The array-like data chunks always have natural
indices and are frequently accessed by those indices. It would make no sense to
store an image, for example, with each of its pixels in a different node of binary
search tree ordered by pixel value. Reconstructing the array form of the image
from the tree would be time-consuming and likely to be needed frequently.
Other indices can involve multiple numbers like map coordinates and
volume/spatial coordinates.

How Much Data?



When you know the kinds of data, how they fit into chunks, and how they are
going to be addressed, the next question is how many of those chunks are
there? This characteristic often drives the choice of data structure significantly
and is sometimes the hardest to determine. Projects often start with a small
scope in mind and only later does someone try to run it with significant
amounts of data. It’s easy and tempting to focus on the smaller sizes, because
that means the program is likely to run fast enough regardless of the data
structure(s) and algorithm(s) used. With a little more analysis, you can often
foresee how the amount of data might expand and be prepared for it.

In the analysis, you don’t have to be very precise. You really only need to know
how many data items in terms of orders of magnitude. Are there tens of
items? Hundreds? Thousands? The exact number doesn’t matter, but the
number of decimal places does.

Look for External Constraints
If the data to be processed is constrained in some way, you may be able to
conclude that the code will never need to process more than a certain amount.
If you know, for example, that the system will need to store the known contacts
of only one person, it’s extremely unlikely to need to store more than 1,000
items and certainly fewer than 100,000. A system tracking one or two items per
person for everyone alive today needs to handle at most tens of billions of
items. By the time such a system will needs to handle trillions, it’s likely that
some new system will have replaced it.

What Creates the Data?
The biggest difference in amounts of data comes from how it is produced. If the
data is manually produced, it is likely to be far smaller than data produced by
automation. Things that people produce manually like text messages, songs, or
paintings are all limited by the amount of time spent doing the activity and the
number of people doing it. There are good models about how many people are
alive now and how many there will be for decades. It may less clear how many
of the people will perform the activity, but you really only need estimates of the
order of magnitude: thousands, millions, and so on.

Data produced by automation can be many orders of magnitude larger. Imagine
all of the video produced by an astronomical telescope operating continuously
(or at least nightly) for a year. Multiply that by all the telescopes in operation



and the total time period to get an estimate for the quantity of data that might
be collected for analysis. When making estimates, you must also consider
potential growth. For example, when you’re thinking about the number of
sources of video that might produce content on a video sharing site, an estimate
made in the year 2000 would probably have been one or two orders of
magnitude smaller than one made in 2020 after the widespread acceptance of
handheld smartphones with video recording capability.

Underestimates are common. Projects usually start by focusing on small goals
and leave the challenge of scaling for later. A classic example was the common
design decision to store two digits for the year in many database systems
developed in the late twentieth century. Companies and governments made
great efforts to find and fix all such limited systems before the year 2000.
Similar problems will occur in the future too, because nearly all timekeeping
systems use a fixed amount of storage for their timestamps. Although these
examples are not underestimates of the quantity of data, they are indicative of
the tendency to develop systems that can handle initial estimates without
accounting for how the data will change over time.

What Operations and How Frequent?
The system to be built does something with these chunks of data. A good
design lists all the operations, along with estimates of how frequently they will
be done and what the requirements are for their performance.

For example, a bookkeeping system for a business has insertion of new data for
every sales transaction, income, and payments. There are hundreds or
thousands or (hopefully) hundreds of thousands of transactions daily. There are
deletions for errors occasionally, maybe a hundred in a day. There are
operations to report on overall activity, income and expenses, every day, week,
month, quarter, and year. There are performance requirements for each of those,
such as being able to insert a new transaction in a microsecond or get a
quarterly report in less than a minute. All of those can be reasonably achieved,
but on some new project, you might spot problems where it will become
difficult to do.

It’s often quite clear what kinds of operations must be done for inputs and
outputs to humans. Operations that are done for maintenance or for sending to
some other process might have time constraints that are less clear. For example,
storm prediction models need to be rerun with the latest inputs at regular



intervals, legal requirements can require that old data be removed from a
system periodically, and financial transactions that streamed in too fast to be
fully processed need to be reconciled and cataloged after trading stops. The
term background processing is sometimes used to describe such maintenance
tasks. They can affect all the system’s data and hence could take significant
computing resources.

When you’re considering how frequently operations occur, it’s not always
possible to be specific. Unlike the bookkeeping system with daily, weekly,
monthly, quarterly, and annual reports, most systems are run on demand, and
the amount of demand is highly variable. What’s most important to know,
however, is the relative frequency of the operations. Are searches more frequent
than insertions? Is traversal more frequent than search? At a minimum, you
should try to rank order the four basic operations of insertion, deletion, search,
and traversal.

The processing order of data items strongly influences the choice of structures.
For example, reconciling all the transactions that streamed in during a trading
day likely must be done in the order they occurred. That means a queue is more
appropriate than a stack. If the streaming order is not quite the same as the
trading order, then a priority queue or heap would be better.

In another example, a warehouse inventory system would have updates for new
stock added to the warehouse and for items removed to fill orders. When users
want to place an order, the current item quantities determine whether or not it
can be filled immediately. The sequence of what items appear in an order is not
predictable. The orders contain seemingly random items. This means that the
processing order is unpredictable, and using a data structure designed for a
specific order like a queue or a stack might be ill advised.

Different algorithms can impose the processing order requirement as well. In
Dijkstra’s algorithm for the shortest path between two vertices in a graph
(Chapter 15, “Weighted Graphs”), there is a specific order in visiting the
vertices. In the Tower of Hanoi problem (Chapter 6, “Recursion”), both the
constraints on moving disks and the method of finding the specific order of
disk movements to solve the puzzle need the last-in, first-out (LIFO)
processing order provided by a stack. The algorithmic constraints are
sometimes better defined than what the system requirements provide.

Most importantly, what operations must be fast? Are any of them special? If the
purpose of the system is to produce the driving routes of delivery trucks or to



find the locations of warehouses nearby, the general-purpose data structures are
not likely to perform well enough. The operations that must be performed the
fastest often force the choice of using specialized data structures and/or
algorithms.

Who Will Maintain the Software?
Determining what data structures and algorithms to use depends not only on the
data and operations on that data, but on the people who will maintain the
software as (the inevitable) changes are made. Programmers have different skill
levels, and using highly complicated algorithms or structures could become a
barrier to being able to make changes easily.

Knowing who will work on a problem and what kinds of data structures are
challenges for them is probably the hardest problem characteristic to gauge. If
this is a program run by a large corporate or government agency, they are likely
to be able to find highly skilled programmers to maintain and update the
system. At the other end of the spectrum, a program written by volunteers for a
social club might have trouble finding more volunteers to fix some future
problem. Nontechnical organizations could have more trouble than ones that
attract volunteers with software skills.

If you expect the people maintaining the software to be comfortable with
advanced data structures, then the choices of structures and algorithms are wide
open. Technical and scientific organizations are generally very receptive to
using complex structures, if they will achieve better performance. Another way
to put it is that technical organizations are less averse to the risk of using
advanced structures and algorithms that might be hard for software developers
to master in later updates. That doesn’t mean you should always choose the
most advanced structure or algorithm for such an organization; choosing the
least complex one that meets the performance requirements means a broader
group of developers will be able to maintain it.

When the future development staff is less well-defined, or is unlikely to have
familiarity with advanced structures, or would take a long time to learn
complex structures, the design choices should be more limited. Using exotic
algorithms that are not widely known adds to the maintenance burdens for the
system. That said, it is always important to achieve the performance
requirements of the system. It would be unacceptable, for example, to use an
O(N2) algorithm that’s easier to understand than a complex O(N×log N)



algorithm if the system is not able to process the expected amount of data in the
required time.

Note that some complexity issues are mitigated by the use of standard libraries
to implement the data structures. Hash tables use some rather complex concepts
in their implementation, but using them inside another program is
straightforward when a good library is available. Data structures in standard
libraries with well-documented programming interfaces and well-known
performance characteristics should be fairly easy for other developers to use
and maintain.

Foundational Data Structures
Every data structure is built on top of the primitive types—numbers, characters,
and Booleans—and ways of putting them together. The two fundamental ways
of arranging these primitives into bigger groups are by putting sequences of the
same primitive type into arrays, and by linking different chunks together using
references. You can also say that references are a primitive type (although you
use them only for organizing the other data, not to hold the values to be
manipulated).

With these basic constructs, you can form the foundational data structures:
arrays, linked lists, and trees. You can also include hash tables in this category.
Hash tables behave like arrays in many ways (even though the indexing is
much more complicated than for arrays). All other structures can be built using
combinations of these, but sometimes they are all that is needed.

The biggest differences among these foundational structures are

• How items they contain are addressed: by index, by reference, by key, by
coordinates

• How memory is allocated and deallocated for them

Arrays, of course, allow items to be indexed by an integer and are allocated in
blocks where the program specifies the number of items when the array is
created. Linked lists and trees make use of references. The items they contain
can be specified by a reference to a link or node, or perhaps by an integer that
counts items from the beginning of the list or the root of the tree. The links and
nodes are allocated as they are needed. Hash tables address items by a key and
typically only by a key. Of course, items in arrays, linked lists, and trees can



also be addressed by a key, but it takes more time to do so, significantly more
time as the number of items grows. Hash tables are also somewhat like lists and
trees in the way that memory can be allocated as needed.

Which of these general-purpose data structures is appropriate for a given
problem? We go through them individually and show how the characteristics of
a problem help answer that.

Speed and Algorithms
The general-purpose data structures can be roughly arranged in terms of speed
when items are specified by key: arrays and linked lists are slow, trees are fairly
fast, and hash tables are very fast.

Don’t draw the conclusion, however, that it’s always best to use the fastest
structures. There’s a penalty for using them. First, they are—in varying degrees
—more complex to program than the array and linked list. Also, hash tables use
memory somewhat inefficiently. Ordinary binary trees revert to slow O(N)
operation for ordered data; and balanced trees, which avoid this problem, are
more complex to program.

Processing Speed: A Moving Target
The fast structures come with some drawbacks, and another development
makes the slow structures more attractive. Every year there’s an increase in the
CPU and memory-access speed of the latest computers. Moore’s Law
(postulated by Gordon Moore in 1965) specifies that the number of transistors
on microchips will double every 18 months. Over 50 years later, that trend has
held up, even as the size of individual transistors approaches the size of
molecules and atoms.

In a related trend, the clock speed of chips rose exponentially, although the rate
of increase has begun to diminish. Coupled with the ability to run many
programs (or threads) in parallel, the effective processing speed of computers
has continued to rise exponentially. Doesn’t this suggest that you don’t need to
worry about the big O efficiency of data structures? If the computer runs
exponentially faster, won’t it overcome the differences between the slower and
faster structures?

The answer is not a simple yes or no. While the computers have been able to
run faster, software developers have taken advantage of these gains to write



software that uses more memory and processing cycles on the computer. This
software bloat means that operating system size, random-access memory
requirements, library size, and features have all been increasing as well.
Ironically, those increases have reduced and occasionally reversed the speed
gains from hardware. The instinct to implement “easier-to-use” but slower or
more memory-intensive structures has counteracted the gains in processing
speed.

Suppose a computer a few years ago handled an array of 100 objects in
acceptable time. Now, computers are much faster, so an array with 10,000
objects might run at the same speed. Many writers provide estimates of the
maximum size you can make a data structure before it becomes too slow. Don’t
trust these estimates (including those in this book). Today’s estimate doesn’t
apply to tomorrow.

Instead, start by considering the simplest data structures that meet the
requirements. Unless it’s obvious they’ll be too slow, code a simple version of
an array or linked list and see what happens. If it runs in acceptable time on the
biggest amount of data, look no further. Why toil away on a balanced tree when
no one would ever notice if you used an array instead? Even if you must deal
with millions or tens of millions of items, it’s still worthwhile to see how well
an array or linked list will handle them. Only when experimentation shows
their performance to be too slow should you revert to more sophisticated data
structures. Of course, you must plan properly to have time to make such
changes if your initial design doesn’t pan out.

Libraries
Libraries of data structures are available commercially in all major
programming languages. Languages themselves may have some structures built
in. We’ve explored Python’s structures extensively throughout this book. Java,
for example, includes Vector, Stack, and Hashtable classes. C++ includes the
Standard Template Library (STL), which contains classes for many data
structures and algorithms.

Using a commercial library may eliminate or at least reduce the programming
necessary to create the data structures described in this book. It also eliminates
some of the risk that future developers will need to dig into the details of their
coding. When commercial or well-maintained public libraries are available,
using a complex structure such as a balanced tree, or a delicate algorithm such



as quicksort, becomes a more attractive possibility. You must, however, analyze
their specific features, requirements, and limitations to ensure that the class,
method, or algorithm can be adapted to your particular problem.

Arrays
In many situations the array is the first kind of structure you should consider
when storing and manipulating data. Arrays are useful when

• The amount of data is reasonably small.

• The amount of data is predictable in advance.

• The items will be addressed by index for most of the time.

• The order the items will be accessed is variable.

What is “reasonably small”? The answer depends on your computing resources
and how much you must store for each array cell. The basic idea is that it
should fit in the computer’s random-access memory (RAM). It can be as large
as the virtual address space allowed on the computer, but parts of that space
will be swapped in and out of the random-access memory, slowing it down. As
an example, a single processor might have 8 gigabytes of RAM and a virtual
address space of 264 bytes. Allocating a billion-cell array (where each cell takes
8 bytes) might be fine in that environment. The larger the array, the more the
speed of shuffling data in and out of RAM will slow down the computation.
The shuffling becomes even more pronounced on systems where multiple
processes must share the RAM. We discuss this issue more in the “Virtual
Memory” section.

Predicting the size of the data in advance is hard in many applications. Arrays
work best when the whole array can be allocated at once, or perhaps in a few
iterations. When the array size grows, data must be copied from the existing
array to the new one. The growth operation can sometimes lead to a significant
amount of memory being allocated but unused.

The speed of arrays is contingent on being able to find a cell in constant time
by using an integer index to find where it lies in memory relative to the array’s
starting address. If the algorithms that use the items in the array have that
integer index available, arrays are as fast as it gets. If the items must be moved
within the array, say within a sorted array or an array where the active data



must always be the first N cells, then the indices change with deletions and/or
insertions, and it becomes harder to take advantage of the constant time access.
Arrays are best when the data will be inserted, randomly accessed by the index,
and rarely deleted.

You shouldn’t use an array

• If the data will be addressed by key (try a hash table).

• If there will be many insertions and/or deletions that require moving
items within the array.

• If the data must be kept in sorted order and is large (try a heap).

Linked Lists
Consider a linked list when

• The amount of data to be stored is not easily predicted in advance and
minimizing memory usage is important.

• Data will frequently be inserted and deleted, and the order of the items is
important.

• The data will be addressed or processed in the order it was received (or
the reverse).

The linked list obtains whatever storage it needs as new items are added, so it
can expand to fill all available memory; and there is no need to fill “holes”
during deletion, as there is in arrays.

Insertion is fast in an unordered list. Searching and deletion by key or by index
are slow (although deletion is faster than in an array). Like arrays, linked lists
addressed by key or index are best used when the amount of data is
comparatively small.

You shouldn’t use a linked list

• If the data will be addressed by a key (try a hash table).

• If the data will be addressed by an integer index in arbitrary order (try an
array).



Binary Search Trees
A binary search tree is the next structure to consider when arrays and linked
lists prove too slow. Consider binary search trees

• When data will be addressed and ordered by a key.

• When data will be frequently inserted and deleted.

• When minimizing memory usage is important.

A tree provides fast O(log N) insertion, searching, and deletion. Traversal in
key order is O(N), which is the fastest for any data structure. [The fact that
binary search trees order their items by a key means a traversal in sorted order
takes O(N) time while an unsorted array or list would need to be sorted first.]
You can also find the minimum and maximum quickly, O(log N), and traverse a
range of items.

An unbalanced binary tree is much easier to program than one that balances
itself, but unfortunately ordered data can reduce its performance to O(N) time,
no better than a linked list. If you’re certain the data will be inserted in random
order with respect to the key, there’s not much point in using a balanced tree.

You shouldn’t use a binary search tree

• If an array or a linked list meets all the requirements.

• If the order of the items is unimportant.

• If the items are likely to be inserted in the forward or reverse order of the
key.

Balanced Search Trees
Of the various kinds of balanced search trees, we discussed 2-3-4, red-black,
and AVL trees. They are all balanced trees, and thus guarantee O(log N)
performance whether the data is inserted ordered according to the key or not.
These balanced trees are challenging to program, with the red-black tree being
the most difficult. They also impose slightly more memory overhead than plain
binary search trees, which may or may not be significant.

Consider a balanced search tree



• When data will be addressed and ordered by a key.

• When long sequences of insertions in (reverse) order of the key are likely.

• When data will be frequently inserted and deleted.

• When minimizing memory usage is important.

• When the complexities of the balancing algorithms are handled by
experienced developers.

The risk associated with developing and maintaining complex algorithms may
be reduced by using libraries maintained by qualified companies or other
organizations. In many cases hash tables may be a better choice than balanced
search trees, but also may use complex hashing algorithms.

You shouldn’t use a balanced search tree

• If an array or a linked list meets all the requirements.

• If the order of the items is unimportant.

• If the items are likely to be inserted in random order with respect to the
key.

Hash Tables
Hash tables have the most desirable performance for almost all data items
referenced by a key. The keys can be any data type that might be considered an
index, including integers. The O(1) performance for searching, insertion, and
deletion by key are the fastest possible.

Consider a hash table

• When data will be addressed by a key and the traversal order of the items
by the key is unimportant.

• When minimizing memory usage is somewhat important and some
unused memory is tolerable.

• When the complexities of the hashing and collision resolution algorithms
are handled by experienced developers.



Hash tables are not sensitive to the order in which data is inserted and so can
take the place of a balanced tree. Programming them is simpler than for
balanced trees assuming a good hashing function for the keys is available.

Hash tables require more than the minimum amount of memory, especially for
open addressing. For example, with a load factor limit of 50 percent, they use
double the number of cells or more than the links needed for a linked list. Like
the linked lists and trees, the memory can be allocated as items are inserted
with only a modest amount of extra time. (Some insertions cause the array to
grow, but over N insertions, only time proportional to N is needed to copy
items.)

Hash tables don’t support any kind of ordered traversal, or easy access to the
minimum or maximum keys and items. Even finding all the keys that have
been inserted is more time-consuming than a tree or list. If these capabilities
are important, the binary search tree is a better choice.

You shouldn’t use a hash table

• If the order of the items by key is important (try a balanced search tree).

• The amount of memory used must be as small as possible (try a balanced
search tree).

• The keys of items are not hashed uniformly by the hashing function (try
another hashing function).

Comparing the General-Purpose Storage Structures
Table 16-1 summarizes the speeds of the various foundational data storage
structures using Big O notation.

Table 16-1 Foundational Data Structure Speeds



In unordered arrays and lists, insertion is made at the end and beginning of the
structure, respectively. Deletions within arrays requires filling the gap by
shifting items. Deletion of the first item of a list is O(1), but the general delete
by key takes O(N). The ordered array uses a binary search, which is fast, but
insertion and deletion require moving half the items on the average, which is
slow. Traversal means visiting all N items, but only the ordered structures make
it easy to visit them in the order of ascending (or descending) keys; the asterisk
(*) means the traversal by ordered keys is not supported.

Special-Ordering Data Structures
The special-ordering data structures discussed in this book are the stack, the
queue, and the priority queue. These structures provide fast access to the data in
a particular order. Instead of acting as a general-purpose data store, they are
typically used by a computer program to aid in carrying out some algorithm.
We’ve seen examples of this kind of usage throughout this book, such as in
Chapters 14, “Graphs,” and 15, “Weighted Graphs,” where stacks, queues,
priority queues, and hash tables are all used in graph algorithms.

Stacks, queues, and priority queues are implemented by a foundational
structure such as an array, a linked list, or (in the case of the priority queue) a



heap. These data structures present a simple interface to the user, typically
allowing only insertion and the ability to access or delete only one particular
data item. These accessible items are

• For stacks: The last item inserted

• For queues: The first item inserted

• For priority queues: The item with the highest priority (and the first item
among items with the same priority)

These abstract data types (ADTs) can be seen as conceptual aids. Their
functionality could be obtained using the underlying structure (such as an
array) directly, but the well-defined interface makes it clear to any programmer
that their purpose is to provide fast access in a specific order. For example,
imagine two similar programs, one with an array (list in Python) and one with
a queue object. They might perform the exact same operations on the
underlying cells, but the very presence of the queue signals that the data will be
handled in first-in, first-out (FIFO) order.

The main drawback of these ADTs is that they can’t be conveniently searched
for an item by key value. They can be traversed easily, but only the priority
queue can be quickly traversed in key order (if it is not implemented as a heap).

Stack
A stack is used when you want access only to the last data item inserted; the
other items are accessed only after doing something with last data item. It’s a
last-in, first-out (LIFO) structure. It also allows fast peeking at the first item
inserted on the stack but not deleting it.

A stack is often implemented as an array or a linked list. The array
implementation is efficient because the most recently inserted item is placed at
the end of the array, where it’s also easy to delete. Stack overflow can occur but
is not likely if the array is adequately sized.

If the stack will contain a lot of data and the amount can’t be predicted
accurately in advance (as when recursion is implemented as a stack), a linked
list is a better choice than an array. A linked list is efficient because items can
be inserted and deleted quickly from the head of the list. Stack overflow
doesn’t occur until the entire memory is full.



Implementing a stack with a linked list is slightly slower than with an array
because memory allocation is necessary to create a new link for each insertion,
instead of allocating all the space needed at the beginning. Deallocation of the
links is necessary at some point following removal of an item from the list.
This might be done explicitly by the program or through a process known as
garbage collection (both of which take time). The linked list implementation
can either be more or less memory efficient than the array implementation.
Linked lists require storage of the pointers to the next link, while arrays can
have many unused cells if the stack size is much smaller than what was
allocated.

Queue
Use a queue when you want access only to the first data item inserted; it’s a
first-in, first-out (FIFO) structure.

Like stacks, queues can be implemented as arrays or linked lists. Both are
efficient with O(1) insertion and deletion. The array requires additional
programming to handle the situation in which the queue wraps around at the
end of the circular array. A linked list must be double-ended to allow insertions
at one end and deletions at the other. Both array and double-ended linked list
implementations also allow O(1) access to peek at the last item inserted but not
to delete it.

As with stacks, the choice between an array implementation and a linked list
implementation is determined by how well the maximum number of items can
be predicted. Use the array if you know about how much data there will be;
otherwise, use a linked list.

Priority Queue
A priority queue is used when the only access desired is to the data item with
the highest priority. This is the item with the largest (or sometimes the smallest)
key.

Priority queues can be implemented as an ordered array or as a heap. Insertion
into an ordered array is slow, but deletion is fast. With the heap
implementations, both insertion and deletion take O(log N) time. The drawback
of the heap implementation is that it does not preserve FIFO ordering among
items with equal keys.



The heap implementation is almost always faster than implementing as an
ordered array. Memory usage of these types varies but is always O(N). If the
maximum number of items can be predicted in advance, the sorted array needs
the least memory. If the size is hard to predict, both ordered arrays and heaps
can be grown as needed without degrading overall insertion time but at the
expense of having more unused memory.

Use an ordered array if FIFO ordering of equal keyed items is required, and it’s
difficult to reliably prioritize items by insertion time. For all other priority
queues, the heap is the best choice.

Comparison of Special-Ordering Structures
Table 16-2 shows the Big O times for insertion and deletion on stacks, queues,
and priority queues and whether the items can be traversed according to the
order of their keys in O(N) time. These structures don’t support fast searching.

Table 16-2 Special-Ordering Data Structure Speeds

Sorting
The widespread availability of libraries with good sorting capabilities has made
writing sorting methods rare. As a first step, look for well-tested libraries and



try them on the problem data. If you can’t find one that performs well enough,
you may need to implement your own.

For data that will fit in memory, it’s worthwhile initially to try a slow but
simple sort, such as the insertion sort. Your computing platform might have
enough processing speed to sort your data in a reasonable time. Remember to
try it with many different initial orderings of the data because the performance
of insertion sort (and other algorithms) can vary significantly with the input
ordering.

Insertion sort is the best of the simple sorting algorithms we saw in Chapter 3,
“Simple Sorting,” and is especially good for almost sorted data, operating in
about O(N) time if not too many items are out of place. For example, when
adding 10 items to an already-sorted file of 20 million, insertion sort should be
very fast.

If the insertion sort proves too slow, then it’s likely you’ll need an O(N×log N)
algorithm, like those we introduced in Chapter 7, “Advanced Sorting.” These
can be significantly more complex, so having a simple but slow algorithm like
insertion sort is good for testing the correctness of your next method.

You could try the Shellsort next. It’s fairly straightforward to implement and
should get the performance to O(N3/2). You need to implement an interval
sequence, and Knuth’s is likely to be fine.

If the Shellsort proves too slow, you should use one of the more complex but
faster sorts: mergesort, heapsort, or quicksort. Mergesort requires extra memory
and is the best choice if the data will not fit in memory. When there’s not
enough RAM, the merging can be done by reading items one at a time from
two sorted files and outputting the lowest item to a third file. The file merging
is often paired with an in-memory sorting method like Shellsort or heapsort to
sort small sections of the initial file data and write them to disk

For in-memory sorting, the heapsort described in Chapter 13, Heaps,” has
distinct advantages. The data can be sorted within an initial array without
requiring extra memory. It sorts the data in O(N×log N) time regardless of the
initial data ordering. A side benefit is that the heapify method used to make the
initial array into a heap can be used for making heaps in O(N) time, enabling
calculations like order statistics without a full sort. The disadvantage of
heapsort is its somewhat more complicated algorithm, which ends up making
more comparisons than quicksort, although both are O(N×log N) overall.



If complex algorithms are not a deterrent, Timsort is also an option. While the
average performance of Timsort is also O(N×log N), it has the added benefit of
running in O(N) time for initially sorted data.

Table 16-3 summarizes the running time for the sorting algorithms. The column
labeled Algorithm Complexity attempts to categorize the level of difficulty in
understanding and correctly implementing the algorithm. This, of course,
depends greatly on the programmers doing the implementation. What’s simple
for some people can be complex for others.

Table 16-3 Comparison of Sorting Algorithm Speeds

Specialty Data Structures
Many data structures are created to address particular problem areas. They
work well for their designed goals but can’t really serve as general-purpose
data stores. Although they may support insertion, deletion, search, and traversal
of items, they differ in their primary operations of interest. You can turn to
these structures based on what operations are needed.

Quadtrees and Grids



When the data items have a spatial component, located in either a two-
dimensional space such as a map or in three dimensions, you need structures
that enable fast searches of those spaces. Quadtrees and grids offer a way of
capturing the spatial information of points or regions so that items can be found
by position in a two-dimensional space. Octrees offer a similar structure for
items in three-dimensional space.

By organizing the items by their coordinates, quadtrees enable fast searches for
the items nearest to or the items within a certain radius of a given point. Similar
to binary trees, these kinds of searches (plus insertion and deletion) can be done
in O(log N) time. This is much faster than a simple list of points or grids when
there are large numbers of points that cluster in a few regions.

Grids can perform very well for smaller collections of points. They can
outperform quadtrees when the points are close to a uniform distribution within
known bounds.

Graphs
Graphs can be used to model real-world situations. The structure of the graph
reflects the structure of the problem such as in transportation and
communication networks. They are also used in other algorithms such as the
PageRank algorithm—the initial ranking mechanism of Google’s search results.
The interlinked structure of websites can be modeled with a directed graph.

When you need a graph, nothing else will do, so there’s no decision to be made
about when to use one. The primary choice is how to represent the graph: using
an adjacency matrix or adjacency lists. Your choice depends on whether the
graph is dense, when the adjacency matrix is preferred, or sparse, when the
adjacency list or adjacency hash table should be used.

The special operations that graphs handle include finding paths, trees, and
subgraphs. The depth-first search and breadth-first search for a particular vertex
or kind of vertex run in O(V2) time, where V is the number of vertices, for
adjacency matrix representation. They run in O(V+E) time, where E is the
number of edges, for adjacency list representation. Finding minimum spanning
trees and shortest paths run in O(V2) time using an adjacency matrix and
O((E+V)×log V) time using adjacency lists. The number of edges can be on the
order of V2 in dense graphs, so you need to estimate V and E for your graph
and do the arithmetic to see which representation is appropriate.



External Storage
For most of the data storage structures, we assumed that data was kept in main
memory. When the data is too large to fit in memory, some or all of it must be
stored in external storage, which often means disk files. We discussed external
storage in the second parts of Chapter 9, “2-3-4 Trees and External Storage,”
and Chapter 11, “Hash Tables.”

When data is stored in a disk file, we assumed that it was organized in fixed-
size units called blocks, each of which holds a certain number of records. A
record in a disk file holds the same sort of data as an object in main memory.
Like an object, a record has at least one key value used to access it.

We also assumed that reading and writing operations always involve a single
block, and these read and write operations are far more time-consuming than
any processing of data in main memory. For fast operation, the number of disk
accesses must be minimized.

Sequential Storage
The simplest approach to external storage is to store records randomly and read
them sequentially when searching for one with a particular key. New records
can simply be inserted at the end of the file. Deleted records can be marked as
deleted, or records can be shifted down (as in an array) to fill in the gap.

On the average, searching and deletion involve reading half the blocks, so
sequential storage is not very fast, operating in O(N) time, where N is the
number of blocks. Still, it might be satisfactory for a small number of records.

Indexed Files
Speed increases dramatically when indexed files are used. In this scheme an
index of keys and corresponding block numbers is kept in main memory. To
access a record with a specified key, the index is consulted. It supplies the
block number for the key, and only one block needs to be read, taking O(1)
time.

Several indices with different kinds of keys can be used (one for last names,
one for telephone numbers, and so on). This scheme works well until the index



becomes too large to fit in memory. When that is the situation, the index files
are themselves stored on disk and read into memory as needed.

The disadvantage of indexed files over sequential storage is that the index must
be created and maintained. This process involves reading through all the
records sequentially, so creating the index could be slow, if it’s created after
many external records have been stored. Also, the index needs to be updated
when items are inserted into and deleted from the file.

B-trees
B-trees are multiway trees, commonly used in external storage, in which nodes
correspond to blocks on the disk. As in other trees, the algorithms find their
way down the tree, reading one block at each level. B-trees provide searching,
insertion, and deletion of records in O(log N) time. This is quite fast and works
even for very large files. The programming, however, is not trivial.

Hashing
If it’s acceptable to use about twice as much external storage as a file would
normally take, then external hashing might be a good choice. It has the same
access time as indexed files, O(1), but can handle larger files.

Choosing Among External Storage Types
The choice of what scheme to use in managing external storage depends on the
problem’s characteristics. If multiple indices to the records must be maintained
(for example, by name, by telephone, by address), using indexed files is really
the only option. This option takes a bit longer for insertions and deletions
because multiple indices must be updated for each operation, but it provides the
fastest access for searches that use one or more of the indices.

If only a single index is needed, then B-trees or hashing become attractive. B-
trees use less disk space, and hashing provides the fastest search access.

Virtual Memory
Sometimes you can let your operating system’s virtual memory capabilities
solve disk access problems with little programming effort on your part.



If you skipped the complications of B-trees or hashing and simply used
sequential storage, you can read large disk files into an array. If that array is too
big to fit in main (RAM) memory, the virtual memory system keeps part of that
array in main memory and stores the rest on the disk. As you access different
parts of the array, they are read from the disk automatically and placed in
memory. This is typically done in chunks of memory called pages.

You can apply internal algorithms to the entire file contents by assuming the
corresponding array was in memory at the same time, and let the operating
system worry about reading the appropriate part of the file if it isn’t in memory
already. Operating systems have some sophisticated methods of predicting what
pages of memory will be needed next and ensuring they are loaded quickly.

Of course, the operation on such a huge array is slower than when the entire
array is in memory, but changing your algorithm to use B-trees or hashing to
find records also takes time. It’s unclear which will be faster, and it is quite
possible for virtual memory paging to be faster or slower than one of the
external-storage algorithms depending on the amount of data. Given that
uncertainty, it may be worth simply ignoring the fact that a file doesn’t fit in
memory and seeing how well your algorithms work with the help of virtual
memory. If the simple implementation doesn’t perform well enough, then you
can invest time in optimizing the external memory accesses.

Onward
We’ve come to the end of our survey of data structures and algorithms. The
subject is large and complex, and no one book can make you an expert. We
hope this book has given you a taste for them and taught you the fundamentals.
If that taste intrigued you, many, many more data structures and variations on
the ones described here await you. Some researchers spend their entire careers
inventing, developing, and analyzing their performance. Those of us who
simply use them as building blocks benefit by interpreting those analyses and
comparing them to the requirements of our jobs.

Appendix B, “Further Reading,” contains suggestions for further study.



Appendix A. Running the
Visualizations

In This Appendix

• For Developers: Running and Changing the Visualizations

• For Managers: Downloading and Running the Visualizations

• For Others: Viewing the Visualizations on the Internet

• Using the Visualizations

We believe that active learning is the best way to master new material. Reading
a book and attending a lecture provide the key concepts, but applying that
knowledge by solving practice problems and performing experiments makes
the abstract ideas more concrete.

To understand data structures and algorithms, it helps to see them in action. To
that end, we have developed interactive visualizations of most of the data
structures and algorithms described in this book. These programs show the
step-by-step processing of data in each structure, allowing you to see all the
key operations. You can try the structures with your own data to see how they
handle it. The individual chapters suggest exercises for you to try with the
visualizations to ensure that you see the important behaviors of each structure
and algorithm.

There are several ways for you to run the visualization programs. The best way
for each reader depends on how much programming you plan to do. For readers
who plan to or already work as software developers, we encourage you to
download the source code and run the programs on a computer with an editor
or other integrated development environment. You can even help future
students by contributing to the open-source software project for the
visualizations. Your experience can help suggest new ways of making the



complex ideas easier to understand by others. Follow the instructions in “For
Developers: Running and Changing the Visualizations.”

If you don’t plan to do much programming but still want to try running the
visualizations on your own data, you can download them and run them on a
personal computer. This approach would be a good choice for someone who
manages or analyzes software development, without doing much coding on
their own. If that suits your needs, follow the instructions in “For Managers:
Downloading and Running the Visualizations.”

If you don’t plan on doing any programming and have a connection to the
Internet, you can run the visualizations in a web browser. The programs were
written in Python and display their visualization using Tk, which means they
don’t execute in a browser. That adds extra layers of interface that somewhat
limits what you can do and see. For someone without access to a computer for
software development, however, this may be the only option. If that’s the case,
follow the instructions in “For Others: Viewing the Visualizations on the
Internet.”

After you have been able to launch the visualizations, make sure to read the
section “Using the Visualizations” at the end. This section explains some of the
key features of all the visualizations and their user interfaces, including some
limitations in the visualization that are not necessarily present in actual
implementations of the data structures.

For Developers: Running and Changing the
Visualizations
To maximize your ability to run the programs and modify them for your own
experiments or to contribute to the open-source software project, you need at
least three pieces of software on the computer where you plan to do the
development:

• Python

• Git

• The visualization software

The first two come in different versions depending on your computer’s
operating system.



Getting Python
To get the Python programming language, you have many options. First, check
whether it is already available on your system. If you’re already familiar with
command-line interfaces like the Windows Power Shell, the Windows
Command interpreter, or macOS and Linux Terminals, try launching one of
those interfaces and typing the command:
python3

If Python release 3 is installed, this should produce some lines that look
something like:
Python 3.7.5 (default, Nov  4 2019, 10:26:32) 
[Clang 9.0.0 (clang-900.0.39.2)] on darwin 
Type “help", “copyright", “credits” or “license” for more information. 
>>>

If this code doesn’t show up, then you probably need to install Python. There
are many places on the Internet to get Python. We explain only the primary
one: www.python.org/downloads. This website has all the releases of Python
and many preconfigured downloads for the different operating systems. It’s
also the official source for all information about the programming language, the
different releases, documentation, and proposed changes for the future. The
visualizations were made using Python release 3. You need a version that starts
with “3.”; do not use one that starts with “2.” or lower. If this is your first time
using Python, you may want to follow the documentation links to read the
guides for beginners.

Getting Git
The second tool, git, manages collections of software and their different
versions. It’s exceptionally well suited to managing source code because it
provides many ways to track the changes in text files. Git became the tool of
choice for the developers of the Linux operating system. One of its key features
is the distributed nature of the software collections, called repositories, that it
manages. While github.com maintains a copy of most of these repositories,
every developer gets their own complete repository including all the history of
changes, in their local copy of the repository.

http://www.python.org/downloads
http://github.com/


The git command-line tool is incredibly powerful, and not surprisingly,
incredibly complex. It was invented by software professionals for use by
software professionals. Its complexity, however, can be a hindrance for
newcomers. Many users just need the basics, and graphical user interfaces can
make that much easier. The GitHub Desktop tool provides a straightforward
graphical interface to working with repositories, their branches, and commits
(changes) to those branches.

Learning how to use the git command-line tool is beyond the scope of this
book. Instead, we describe how to use GitHub Desktop. If you’re already
familiar with the git command-line tool, however, go ahead and use that,
because it can do everything GitHub Desktop does and more.

Use your web browser to visit https://desktop.github.com. It should auto-detect
the operating system of your computer and propose a download option. At the
time of this writing, only Windows and macOS are supported (on Linux, you
need to use the git command-line tool, which is often bundled with the Linux
distribution). Follow the download instructions to install GitHub Desktop.

Both GitHub Desktop and the git command-line tool allow you to review the
history of changes in a repository and make new changes to the files it contains.
In the next section, we discuss how to get the repository that contains the
visualizations for this book. If you plan to make contributions to the open-
source visualization project, you also need an account on the GitHub.com
website. That is where the project’s repository is stored, and your user account
allows you to contribute to many different projects. Go to https://github.com
and select the Sign up button to create a new account.

Getting the Visualizations
The third piece of software you need is the visualization code itself, which is
bundled in a git repository. You can find that repository at
https://github.com/JMCanning78/datastructures-visualization. The process of
downloading a git repository is called cloning the repository. If you are using
Github Desktop, go to the File > Clone Repository dialog. Choose the
GitHub.com tab and then start typing in the repository name,
JMCanning78/datastructures-visualization. The repository should pop up
as a choice that you can select. The dialog lets you specify a Local Path on your
computer where it will store the clone. After selecting the repository on

https://desktop.github.com/
https://github.com/
https://github.com/JMCanning78/datastructures-visualization


GitHub.com and specifying the local path, select the Clone button to make the
clone.

If you’re using the command-line version of git, the best way to get the
visualization software is to put one of your command-line windows into the
parent directory where you want to store the software and then run the git
clone command. For example, if you wanted to store the repository in
/Users/Me/myrepositories, the commands would look something like this:
cd/Users/Me/myrepositories 
git clone https://github.com/JMCanning78/datastructures-visualization

The cd command is short for change directory. Your command-line tool might
have a different name for the change directory command. The git clone
command creates a subdirectory called datastructures-visualization that
contains a clone of the git repository. You can use the cd command again to
change the current working directory to be that subdirectory. From that
directory, you can launch the visualizations by running
python3 DatastructureVisualizations.py

If you get a message about missing required modules, you may need to add
some modules to your Python environment. Try running the Python installer
program (pip3), as follows:
pip3 install -r requuirements.txt

When that runs successfully, try the previous command to run the
visualizations.

If you prefer to use an Integrated Development Environment (IDE) for your
Python development work, you need to register the cloned repository with the
IDE. From there, you should be able to run DatastructureVisualizations.py or
any other Python programs.

For Managers: Downloading and Running the
Visualizations
If you have a macOS or Windows desktop computer, you may be able to
download a prepackaged collection of all the visualizations. It runs basically
the same program as the DatastructureVisualizations.py described previously.
Browse https://datastructures.live/ and look for the links related to downloads.

https://datastructures.live/


The software bundles are cryptographically signed to help ensure the integrity
of the software. Your computer and its malware protection software may ask
whether you trust the downloaded visualization software before allowing you
to run it.

For Others: Viewing the Visualizations on the
Internet
You can view the visualizations in a web browser by visiting
https://datastructures.live/view/. When you select the Run button, this site runs
the visualizations on a server and copies the output to a pane in your web
browser window. The initial screen looks something like Figure A-1.

https://datastructures.live/view/


Figure A-1 Initial screen when viewing visualizations in a web browser



Select the Select Visualization button at the top to get a menu of all the
visualizations that can be shown.

There are limitations on viewing the visualizations in a web browser. In
particular:

• The window cannot be resized although you can increase the size of the
upper pane by adjusting the size of the web browser window and
dragging the separator bar just above the “Powered by trinket” text.

• The screen is being copied over the Internet, so there might be choppy or
slow updates in response to interactions. Try using the visualization
tool’s lower animation speed or stepping mode when this occurs.

• The viewing works best on computers with a mouse and keyboard.
Viewing the trinket.io website on a device with only a touchscreen might
not allow you to enter text for the arguments to operations. Selecting a
text entry area does not put the keyboard focus on that area.

Using the Visualizations
The visualizations are small programs that usually show one data structure at a
time. They all have a similar structure with a drawing area at the top and a set
of controls on the bottom (see Figure A-2). There are specific instructions for
how to use the visualizations in each of the chapters, and some general
guidelines common to all of them follow.



Figure A-2 Drawing area at the top and a set of controls on the bottom

The visualizations show the data in a drawing area at the top, such as in Figure
A-2. The Operations box in the lower left is where you initiate operations on
the data structure. The buttons are grayed out and disabled when they are not
applicable. In particular, the operations that take an argument like a key to
insert are on the left side of the Operations box. They are grouped with a text
entry area that must have a value entered before they become enabled. The hint
in blue text explains what can be typed in the text entry area for the different
operation arguments. Operations that take no arguments, like Traverse and
Random Fill, are on the right.

Below the Operations box is a slider. This control can be adjusted to slow down
or speed up the animation of the operations. During animations, the three small
buttons on the lower right  are enabled to provide fine control. The
leftmost of three buttons is either a triangle to resume playback, or two vertical
bars  to pause the animation, depending on the current state. The second
button (with a triangle pointing into a vertical bar) steps forward in the



animation by one “step.” That button is enabled only when code is displayed
because the steps are defined by the code. The square button stops the current
operation and enables other operations to be run. Stopping an operation before
it finishes can leave the data structure in an odd state, such as leaving extra
copies of data items or not sorting all the items.

During most operations, a code box appears in the lower right (see Figure A-3).
It shows the same program described in book, highlighting the part of the
program being executed. In the figure, the items in an array are being sorted.
The various local variables are shown along with the data structure in the
drawing at the top. Only the three animation buttons are enabled while the sort
operation runs. The highlighting on the single step button indicates that
keyboard focus is on that button. Pressing the spacebar when a button has
keyboard focus “presses” the button. Operations normally begin running in the
“play” mode when a button is pressed. By holding down the Shift key when
pressing the button, you can start the operation in stepping mode (if it displays
code).



Figure A-3 The code box in the lower right

After each operation finishes, the code, and local variables remain on the
display until the next operation is started. Status or error messages also appear
at the bottom of the window, between the sliding speed control and the code
box. The messages usually appear when operations finish. Figure A-4 shows
the display after the successful search for key 62 in the array.



Figure A-4 Results of the search for key 62 in the array

In most visualizations, you can click a data item to select it and copy its value
into the text entry area. This makes it less likely that a typographical error will
prevent searching for or deleting an existing value.

Hint messages about the controls can appear next to the text entry box(es) and
operations buttons. Hovering the mouse pointer over one of them displays a
short hint about what values can be entered in that box or what the button does.
When you first start one of the visualizations, it displays a message telling you
all the kinds of things that can be entered in all the text entry box(es), like the
message in Figure A-2.

Depending on how you run the visualization, you may be able to resize the
window. This capability is sometimes useful when the amount of data grows
too large or the lines of code are wide. The code text box does not grow



vertically but can be scrolled for longer programs. Some visualizations require
more display space and provide scrollbars to move around. At least one
visualization also lets users zoom in and out on particular regions.



Appendix B. Further Reading

Because there are so many good books on computer science, data
structures, and algorithms, it’s hard to choose what’s right to recommend. If
we’ve sparked your interest to read further, then we’ve succeeded in one of
our goals. There are many paths from which to choose. Here are a few that
we’ve found to be especially good, organized into topic areas.

Data Structures and Algorithms
The definitive reference for any study of data structures and algorithms is
The Art of Computer Programming by Donald E. Knuth, of Stanford
University (Addison-Wesley, 2011). This seminal work was originally
published in the 1970s and was cited as a major part of his Turing award in
1974. It currently consists of four volumes: Volume 1: Fundamental
Algorithms, Volume 2: Seminumerical Algorithms, Volume 3: Sorting and
Searching, and Volume 4A: Combinatorial Algorithms, Part 1. Of these,
Volume 3 is the most relevant to the topics in this book. This work is highly
mathematical and does not make for easy reading, but it is the bible for
anyone contemplating serious research in the field. As of this writing, Prof.
Knuth continues working on Volume 4B of the series releasing fascicles
from time to time.

A somewhat more accessible text is Robert Sedgewick and Kevin Wayne’s
Algorithms (Addison-Wesley, 2016). This fourth edition of the book
contains code examples written in Java and is adapted from earlier editions
in which the code examples were written in Pascal, C, and C++. It is
comprehensive and authoritative. The text and code examples are quite
compact and require close reading.

Every computer scientist needs to have and read the encyclopedic
Introduction to Algorithms, by Cormen, Leiserson, Rivest, and Stein (MIT



Press, 2009). The book provides clear, concise coverage of a startling range
of topics, and is language agnostic—usefully providing algorithms in a
generic pseudocode.

Programming Pearls by Jon Louis Bentley (second edition, Addison-
Wesley, 2000) was originally written in 1986 but is nevertheless stuffed full
of great advice for the programmer. Much of the material deals with data
structures and algorithms.

We’ve covered high-level data structures and algorithms, but there’s a
whole world of fascinating low-level bitwise data structures and algorithms
that are still surprisingly useful in modern programming. For a great survey
of such techniques, try Hacker’s Delight by Henry S. Warren Jr. (Addison-
Wesley, 2013).

Recursion is a recurring theme throughout our book. Readers who are new
to the concept and practice of writing recursive code can benefit by
practicing recursively coding diverse problems. While these books address
recursive solutions in Java, they are unbeatable sources of challenging
problems: Thinking Recursively with Java, by Eric Roberts (Wiley, 2006),
and Practicing Recursion in Java, by Irena Pevac (CreateSpace
Independent Publishing, 2016).

Object-Oriented Programming Languages
For a clear, beautifully structured, step-by-step introduction to the concepts
of object-oriented programming in Java, it is worth seeking out the now
out-of-print On to Java by Patrick Henry Winston and Sundar Narasimhan
(Pearson, 2002). One can only hope for a Python version of this classic
book one day!

To get started in Python, try the comprehensive Building Python Programs
by Reges, Stepp, and Obourn (Pearson, 2019). The book and its companion
website provide extensive opportunities to methodically learn and hone
your Python programming skills.

When you’re ready to master Python’s clever features, Python Tricks—The
Book, by Dan Bader (Dan Bader, 2017) is a great resource. The book is
filled with many self-contained nuggets of Python wisdom that you can



incrementally add to your repertoire, including how to best use Python’s
object-oriented features.

If you’re already an experienced Python programmer, then Python Distilled,
by David M. Beazley (Addison-Wesley Professional, 2021), should always
be kept in reach on your desk for quick reference. This compact yet
authoritative book contains almost everything you’ll need to know about
making the most effective and appropriate use of Python’s most advanced
features.

Object-Oriented Design (OOD) and Software
Engineering
For an easy, nonacademic introduction to software engineering, try The
Object Primer: The Application Developer’s Guide to Object-Orientation,
Second Edition, by Scott W. Ambler (Cambridge University Press, 2001).
This short book explains in plain language how to design a large software
application. The title is a bit of a misnomer; it goes way beyond mere OO
concepts.

Object-Oriented Design in Java by Stephen Gilbert and Bill McCarty
(Waite Group Press, 1998) is an unusually accessible text.

A classic in the field of OOD is Object-Oriented Analysis and Design with
Applications by Grady Booch et al. (Addison-Wesley, 2007). The author is
one of the pioneers in this field and the creator of the Booch notation for
depicting class relationships. This book isn’t easy for beginners but is
essential for more advanced readers.

An early book on software design is The Mythical Man-Month by Frederick
P. Brooks, Jr. (Addison-Wesley, 1996), which explains in a very clear and
literate way some of the reasons why good software design is necessary.
Since its original publication in 1975, it is said to have sold more copies
than any other computer book.



Appendix C. Answers to Questions

Index

• Chapter 1, “Overview”

• Chapter 2, “Arrays”

• Chapter 3, “Simple Sorting”

• Chapter 4, “Stacks and Queues”

• Chapter 5, “Linked Lists”

• Chapter 6, “Recursion”

• Chapter 7, “Advanced Sorting”

• Chapter 8, “Binary Trees”

• Chapter 9, “2-3-4 Trees and External Storage”

• Chapter 10, “AVL and Red-Black Trees”

• Chapter 11, “Hash Tables”

• Chapter 12, “Spatial Data Structures”

• Chapter 13, “Heaps”

• Chapter 14, “Graphs”

• Chapter 15, “Weighted Graphs”

Chapter 1, “Overview”



1. insert, search, delete, traverse
2. c
3. If it is indented below a class definition with no intervening definition

at the outer (unindented) level.
4. sorting
5. Constructors are functions that build an instance of an object class.

Python uses the __init__() method of a class as the constructor.
6. You choose data structures that model the system and behavior being

represented by the program. Among data structures that model the
system equally well, you choose the ones that perform the most
efficiently. Among those that perform equally fast, you choose ones
that take the least amount of memory space.

7. A key field is used to find a larger record, typically by keeping a sorted
structure of keys to accelerate the search.

8. It can reduce the amount of memory needed to store the data. It makes
the program easier to understand, and hence, easier to maintain by
other programmers.

9. To implement data structures and tightly organize algorithms with the
data they manipulate.

10. b, d, & g

Chapter 2, “Arrays”
1. They should have get() and set() methods to access the value of a

particular array cell. The ability to get and set cells indexed by an
integer value is the basic functionality of arrays in all languages.

2. d. Some languages don’t require specifying the maximum number of
cells at construction time, but most do.

3. to prevent access to internal values of the object instance from being
manipulated by code outside the object.

4. d



5. True
6. b
7. False
8. d
9. a

10. Both find() and search() return a numeric index to a cell in the
ordered array containing an item being sought. If the item being sought
is not in the array, find() returns the index of the next item just after
the sought item, if any, while search() returns None. The versions in
OrderedRecordArray.py search by key instead of the item itself.

11. raising to a power
12. 3
13. b
14. 6
15. False
16. a
17. constant
18. c
19. b
20. The number of records in the current, solar-system-based

implementation is good for tens, maybe hundreds of records. For
potentially billions of records that will need to be accessed in “random”
order, a search method that is faster than O(N) is needed. To get the
O(log N) search speed, an ordered array is required, at a minimum. In
fact, even more complex data structures are needed to get the search
time down to something reasonable. The size of the individual records
is not an important factor here.

Chapter 3, “Simple Sorting”



1. d
2. comparing and swapping (or copying/moving)
3. False
4. a
5. False
6. b
7. False
8. A swap would take three times longer than a copy operation because a

swap involves three separate copy operations, assuming no concurrent
copying.

9. Items with indices less than or equal to outer are sorted.
10. c
11. d
12. copies
13. b
14. Items with indices less than outer are partially sorted.
15. b

Experiment 3-A: The bubble sort and insertion sort algorithms are stable.
The selection sort is not stable. For example, the list [(’elm’, 1),
(’elm’, 2), (’asp’, 1)] sorts to [(’asp’, 1), (’elm’, 2), (’elm’,
1)] when sorting by the first element.

Chapter 4, “Stacks and Queues”
1. 10
2. b
3. last-in, first-out and first-in, first-out
4. False



5. Neither; it doesn’t move.
6. 45
7. False
8. c
9. O(N)

10. c
11. True
12. b
13. Yes. The find() method would need to be modified to find the lowest

index into the array for the priority of the item being inserted
(assuming high indices are at the front of the queue and highest
priority). That’s needed to maintain the FIFO ordering of the items with
equal priority. The binary search algorithm in the find() method stops
at the first index it finds with the matching priority key.

14. a (and maybe b if some keystrokes can have higher priority and need to
be processed ahead of others in the queue)

15. a

Chapter 5, “Linked Lists”
1. c
2. first (called __first in LinkedList)
3. d
4. 2
5. 1 plus setting the __next field to None in the new link, which really is a

nonreference.
6. b
7. x.setNext(None)



8. When the variable, x, is passed as a reference instead of a copy of its
value

9. a
10. c
11. a linked list
12. once
13. a double-ended list
14. an ordered double-ended list
15. d
16. Usually, the list. They both do push() and pop() in O(1) time, but the

list uses memory more efficiently.
17. The array. Binary search allows O(log N) time to find the item by key,

but if you use a list, even a doubly linked one, each search step has to
walk through all the intermediate links to get to the next item to test.

18. b
19. Calling programs can change the link’s next pointer to create or break

circular lists, regardless of whether the list type supports them.
20. a

Chapter 6, “Recursion”
1. c
2. 101
3. d
4. 2. The base case returns 0, and nth has a value of 1 in the caller to the

base case. That caller returns the first non-base case value of 1. The
value of nth right after 1 is returned is in the call where nth has the
value 2.

5. True



6. "ue"
7. c
8. moving a smaller number of disks
9. b

10. b
11. b
12. 11. There are calls to mergesort() for array sizes 1,024, 512, 256, 128,

64, 32, 16, 8, 4, 2, and 1 on the stack at one point.
13. stack
14. Both function arguments and local variables of a recursive function

must be stored for each call that happens in the recursive execution.
These can be stored in the problem descriptions and kept on a stack.

15. when the stack of problem descriptions is empty

Chapter 7, “Advanced Sorting”
1. c
2. 40
3. d

4. The complexity could degenerate to O(N2).

5. O(N×log N), O(N2)
6. a
7. pivot
8. d
9. True

10. c
11. partitioning the resulting subarrays recursively (to fully sort the array)
12. b



13. pivot
14. log2N

15. For data that is initially forward or reverse sorted, the complexity
becomes O(N2).

16. True
17. a
18. O(N). It needs 10 linked lists and those lists must collectively store a

full copy of the N elements.
19. d
20. b only, and it’s a modified version of mergesort.

Chapter 8, “Binary Trees”
1. O(log N)
2. c
3. False
4. b
5. 5
6. c
7. node, (binary search) tree
8. a
9. d

10. False
11. finding
12. b
13. linked list
14. A’s key, the key of A’s right child



15. d
16. d
17. 2×n+2
18. False
19. compress
20. c

Chapter 9, “2-3-4 Trees and External Storage”
1. b
2. lower in height; always balanced
3. 2
4. False
5. b
6. the root is split
7. a
8. 2
9. b

10. O(log N)
11. d
12. at least one block’s worth of
13. 2-3
14. a
15. c

Chapter 10, “AVL and Red-Black Trees”
1. in order (or inverse order) of the keys



2. b
3. c
4. c
5. a
6. b
7. False
8. d
9. b

10. rotations, changing the colors of nodes (swaps and flips)
11. red
12. left child, right child
13. d
14. a node (black), its two children (red)
15. b
16. True
17. a
18. d, Only one color swap is needed for a black node with two red

children on insertion.
19. d
20. d

Chapter 11, “Hash Tables”
1. O(1)
2. hash function
3. the modulo operation
4. a collision



5. d
6. linear probing
7. (0), 1, 4, 9, 16, 25
8. b
9. a

10. linked list or binary search tree
11. 1.0
12. True
13. be a prime number
14. the array size
15. all of them; for the same key, an unsuccessful search must go through

the whole probe sequence, whereas a successful search stops with the
found item.

16. b
17. b
18. A sorted linked list is most efficient with 1 empty link for all N items.

Next most efficient is the hash table at 0.6 load factor, which has 0.4 ×
N empty or deleted cells. The AVL tree has two empty links for all its
leaf nodes, which is up to (N + 1)/2, and one empty link for some of the
parents of the leaf nodes. For a complete, balanced binary tree, there
would be exactly (N + 1)/2 leaf nodes and no empty links among the
internal nodes. Overall, the total would be close to 2 × N/2 or N empty
cells. The actual count in a specific tree could vary from that, but it is
not going to get below N/2, which is still more than 0.4 × N.

19. False
20. the same block

Chapter 12, “Spatial Data Structures”



1. The keys are a combination of two numbers, rather than a single
integer or string.

2. Geographic or latitude-longitude
3. The distance function (and the separate structures for storing the

points)
4. b
5. False
6. Only a portion of the spatial data is stored in each grid cell, reducing

search time
7. Quadtrees can adapt to clusters in spatial data while grids cells may end

up having some cells very full and others be empty. They have O(log
N) search time instead of O(N) for grids and point lists.

8. d
9. a. O(N) b. O(N) c. O(log N)

10. False
11. d
12. False
13. The quadrants are the northeast, northwest, southwest, and southeast

regions around a node’s center. Points lying on the boundary of two
quadrants are placed in next quadrant in clockwise order.

14. d
15. False

Chapter 13, “Heaps”
1. b
2. Both the right and left children have keys less than (or equal to) the

parent, but no ordering is specified between the child items.
3. root



4. d
5. a
6. c
7. array or linked list
8. sifting down because it must determine the maximum child key
9. b

10. one
11. O(N×log N)
12. slower because it takes more time per item but faster in some cases

because it does not degenerate to O(N2)
13. c
14. N
15. N + K×log N

Experiment 13-B: The heapsort algorithm is not stable. Consider an array
of all equal keys such as 2, 2, 2, 2, 2, 2. It already meets the heap condition,
so heapify doesn’t reorder any items. The max (root) item is removed from
the heap and goes to the last position of the array. The last of the remaining
equal keyed items in the heap is then moved to the root and sifted down.
Because all keys in the heap are equal, the item does not sift down and
becomes the next item moved to the end. This repeats for all the equal
keyed items, swapping the last for the first and then swapping them back
again for each removal. Using the original indices of the six-element array
—0, 1, 2, 3, 4, and 5 to track the item order—the final arrangement will be
1, 2, 3, 4, 5, 0.

Chapter 14, “Graphs”
1. edge, vertices (or sometimes, nodes)
2. Count the number of 1s or edges and divide by 2 (assuming the identity

diagonal is all 0s).



3. vertex, edge
4. d
5. A:B, B:A C D, C:B, D:B C
6. a
7. Three. If the vertices are A, B, and C, the minimum spanning trees are

defined by the paths ABC, BCA, and CAB.

8. Option b, depth-first search, is the fastest because it takes O(N2) time.
Option a first finds an MST using depth-first traversal over the entire
connected component and then takes more time to find whether Z is in
the MST. Option c runs in O(N2) time but doesn’t work in all directed
graphs because a breadth-first search would find only A and Z in the
same component if there was a cycle including A and Z. Option d
works but takes O(N3) time to compute the connectivity matrix.

9. c
10. directed acyclic graph (DAG) or tree (directed or undirected)
11. b
12. No
13. True
14. d
15. Yes. The adjacency matrix is asymmetric, so the graph is undirected.

The result would be an exception because the graph contains a cycle,
ABDA.

16. directed acyclic graph
17. b
18. Only if the goal is to find vertices with no edges. Every vertex with a

undirected edge has a predecessor. The result would find all the
vertices with no edges with the rest essentially forming a cycle (if
cycles like ABA are allowed for a undirected edge AB).

19. Using the improved topological sort algorithm, computing time is
O(N2). Because the first graph has 10 times as many vertices, the ratio



would be 102 = 100. The basic topological search took O(N3), so its
ratio would be 103 = 1,000.

20. None of the algorithms mentioned in this chapter solve the bridges of
Königsberg problem.

Chapter 15, “Weighted Graphs”
1. distances, costs, times
2. c
3. d
4. False (for undirected graphs)
5. the lowest-weight edge
6. b
7. False
8. is already in the MST
9. False

10. a
11. True
12. a
13. d
14. In Warshall’s algorithm, connectivity matrix cells are updated using

bitwise-OR rules, whereas in the Floyd-Warshall algorithm, the cells
are the updated using the minimum of their current value and that of
adding two other cell values.

15. intractable
16. adjacency list, adjacency matrix
17. Floyd-Warshall

18. 2N, where N is K2 − 1, the number of squares on the board minus 1



19. No. The route mentioned in the “Traveling Salesperson Problem”
section of the text had total cost of 140, whereas the proposed route
costs 145. Neither is the minimum solution of the TSP.

20. when the cost (weight) of traveling in one direction between two
vertices is not the same as traveling in the opposite direction 
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