
M A N N I N G

Ken Youens-Clark

Learn coding and testing with puzzles and games

Tiny Python Projects

KEN YOUENS-CLARK

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2020 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Development editor: Elesha Hyde
Technical development editor: Al Scherer

Manning Publications Co. Review editor: Aleksandar Dragosavljević
20 Baldwin Road Production editor: Deirdre S. Hiam
PO Box 761 Copy editor: Andy Carroll
Shelter Island, NY 11964 Proofreader: Katie Tennant

Technical proofreader: Mathijs Affourtit
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617297519
Printed in the United States of America

www.manning.com

brief contents
Getting started: Introduction and installation guide 1

1 ■ How to write and test a Python program 15

2 ■ The crow’s nest: Working with strings 35

3 ■ Going on a picnic: Working with lists 55

4 ■ Jump the Five: Working with dictionaries 76

5 ■ Howler: Working with files and STDOUT 92

6 ■ Words count: Reading files and STDIN, iterating lists,
formatting strings 107

7 ■ Gashlycrumb: Looking items up in a dictionary 118

8 ■ Apples and Bananas: Find and replace 128

9 ■ Dial-a-Curse: Generating random insults from
lists of words 150

10 ■ Telephone: Randomly mutating strings 165

11 ■ Bottles of Beer Song: Writing and
testing functions 178

12 ■ Ransom: Randomly capitalizing text 195

13 ■ Twelve Days of Christmas: Algorithm design 207
iii

BRIEF CONTENTSiv
14 ■ Rhymer: Using regular expressions to create
rhyming words 225

15 ■ The Kentucky Friar: More regular expressions 248

16 ■ The Scrambler: Randomly reordering the middles
of words 268

17 ■ Mad Libs: Using regular expressions 281

18 ■ Gematria: Numeric encoding of text using
ASCII values 295

19 ■ Workout of the Day: Parsing CSV files, creating
text table output 311

20 ■ Password strength: Generating a secure and
memorable password 331

21 ■ Tic-Tac-Toe: Exploring state 351

22 ■ Tic-Tac-Toe redux: An interactive version
with type hints 367

contents
preface xv
acknowledgments xvii
about this book xix
about the author xxii
about the cover xxiii

Getting started: Introduction and installation guide 1
Writing command-line programs 1
Using test-driven development 4
Setting up your environment 4
Code examples 5
Getting the code 8
Installing modules 10
Code formatters 10
Code linters 11
How to start writing new programs 11
Why not Notebooks? 12
The scope of topics we’ll cover 12
Why not object-oriented programming? 13
A note about the lingo 13
v

CONTENTSvi
1 How to write and test a Python program 15
1.1 Creating your first program 15
1.2 Comment lines 16
1.3 Testing your program 17
1.4 Adding the #! (shebang) line 18
1.5 Making a program executable 20
1.6 Understanding $PATH 20

Altering your $PATH 21

1.7 Adding a parameter and help 22
1.8 Making the argument optional 24
1.9 Running our tests 26

1.10 Adding the main() function 26
1.11 Adding the get_args() function 27

Checking style and errors 28

1.12 Testing hello.py 29
1.13 Starting a new program with new.py 30
1.14 Using template.py as an alternative to new.py 33

2 The crow’s nest: Working with strings 35
2.1 Getting started 36

How to use the tests 36 ■ Creating programs with new.py 37
Write, test, repeat 38 ■ Defining your arguments 39
Concatenating strings 41 ■ Variable types 42 ■ Getting
just part of a string 43 ■ Finding help in the REPL 44
String methods 44 ■ String comparisons 45 ■ Conditional
branching 47 ■ String formatting 48 ■ Time to write 49

2.2 Solution 49
2.3 Discussion 50

Defining the arguments with get_args() 50 ■ The main()
thing 51 ■ Classifying the first character of a word 51
Printing the results 52 ■ Running the test suite 52

2.4 Going further 53

3 Going on a picnic: Working with lists 55
3.1 Starting the program 56
3.2 Writing picnic.py 58

CONTENTS vii
3.3 Introducing lists 59
Adding one element to a list 60 ■ Adding many elements to a
list 61 ■ Indexing lists 63 ■ Slicing lists 64 ■ Finding
elements in a list 64 ■ Removing elements from a list 65
Sorting and reversing a list 67 ■ Lists are mutable 69
Joining a list 70

3.4 Conditional branching with if/elif/else 70
Time to write 71

3.5 Solution 71
3.6 Discussion 73

Defining the arguments 73 ■ Assigning and sorting the items 73
Formatting the items 73 ■ Printing the items 74

3.7 Going further 75

4 Jump the Five: Working with dictionaries 76
4.1 Dictionaries 77

Creating a dictionary 78 ■ Accessing dictionary values 80
Other dictionary methods 81

4.2 Writing jump.py 82
4.3 Solution 84
4.4 Discussion 85

Defining the parameters 85 ■ Using a dict for encoding 85
Various ways to process items in a series 86 ■ (Not) using
str.replace() 90

4.5 Going further 91

5 Howler: Working with files and STDOUT 92
5.1 Reading files 93
5.2 Writing files 97
5.3 Writing howler.py 99
5.4 Solution 101
5.5 Discussion 102

Defining the arguments 102 ■ Reading input from a file or the
command line 103 ■ Choosing the output file handle 104
Printing the output 104 ■ A low-memory version 104

5.6 Going further 106

CONTENTSviii
6 Words count: Reading files and STDIN, iterating lists,
formatting strings 107
6.1 Writing wc.py 109

Defining file inputs 110 ■ Iterating lists 111 ■ What you’re
counting 111 ■ Formatting your results 112

6.2 Solution 114
6.3 Discussion 115

Defining the arguments 115 ■ Reading a file using
a for loop 115

6.4 Going further 117

7 Gashlycrumb: Looking items up in a dictionary 118
7.1 Writing gashlycrumb.py 119
7.2 Solution 122
7.3 Discussion 123

Handling the arguments 123 ■ Reading the input file 124
Using a dictionary comprehension 125 ■ Dictionary
lookups 126

7.4 Going further 126

8 Apples and Bananas: Find and replace 128
8.1 Altering strings 130

Using the str.replace() method 131 ■ Using str.translate() 131
Other ways to mutate strings 132

8.2 Solution 133
8.3 Discussion 134

Defining the parameters 134 ■ Eight ways to replace
the vowels 135

8.4 Refactoring with tests 149
8.5 Going further 149

9 Dial-a-Curse: Generating random insults from
lists of words 150
9.1 Writing abuse.py 151

Validating arguments 153 ■ Importing and seeding the random
module 154 ■ Defining the adjectives and nouns 155 ■ Taking
random samples and choices 156 ■ Formatting the output 156

CONTENTS ix
9.2 Solution 157
9.3 Discussion 159

Defining the arguments 159 ■ Using parser.error() 160
Program exit values and STDERR 160 ■ Controlling randomness
with random.seed() 161 ■ Iterating with range() and using
throwaway variables 162 ■ Constructing the insults 162

9.4 Going further 163

10 Telephone: Randomly mutating strings 165
10.1 Writing telephone.py 167

Calculating the number of mutations 168 ■ The mutation
space 169 ■ Selecting the characters to mutate 169
Mutating a string 172 ■ Time to write 173

10.2 Solution 173
10.3 Discussion 175

Mutating a string 175 ■ Using a list instead of a str 176

10.4 Going further 177

11 Bottles of Beer Song: Writing and testing functions 178
11.1 Writing bottles.py 179

Counting down 180 ■ Writing a function 181 ■ Writing
a test for verse() 182 ■ Using the verse() function 186

11.2 Solution 187
11.3 Discussion 189

Counting down 189 ■ Test-driven development 189
The verse() function 190 ■ Iterating through the verses 191
1,500 other solutions 194

11.4 Going further 194

12 Ransom: Randomly capitalizing text 195
12.1 Writing ransom.py 197

Mutating the text 197 ■ Flipping a coin 198 ■ Creating
a new string 198

12.2 Solution 199
12.3 Discussion 200

Iterating through elements in a sequence 200 ■ Writing a function
to choose the letter 202 ■ Another way to write list.append() 202
Using a str instead of a list 203 ■ Using a list comprehension 203
Using a map() function 204

CONTENTSx
12.4 Comparing methods 204
12.5 Going further 205

13 Twelve Days of Christmas: Algorithm design 207
13.1 Writing twelve_days.py 208

Counting 209 ■ Creating the ordinal value 211 ■ Making the
verses 213 ■ Using the verse() function 215 ■ Printing 215
Time to write 215

13.2 Solution 216
13.3 Discussion 218

Making one verse 218 ■ Generating the verses 221
Printing the verses 222

13.4 Going further 223

14 Rhymer: Using regular expressions to create rhyming words 225
14.1 Writing rhymer.py 227

Breaking a word 228 ■ Using regular expressions 229
Using capture groups 232 ■ Truthiness 236 ■ Creating the
output 238

14.2 Solution 238
14.3 Discussion 240

Stemming a word 240 ■ Formatting and commenting the regular
expression 242 ■ Using the stemmer() function outside your
program 243 ■ Creating rhyming strings 244 ■ Writing
stemmer() without regular expressions 245

14.4 Going further 246

15 The Kentucky Friar: More regular expressions 248
15.1 Writing friar.py 250

Splitting text using regular expressions 251 ■ Shorthand
classes 252 ■ Negated shorthand classes 254 ■ Using re.split()
with a captured regex 255 ■ Writing the fry() function 256
Using the fry() function 261

15.2 Solution 262
15.3 Discussion 263

Writing the fry() function manually 264 ■ Writing the fry()
function with regular expressions 266

15.4 Going further 266

CONTENTS xi
16 The Scrambler: Randomly reordering the middles of words 268
16.1 Writing scrambler.py 269

Breaking the text into lines and words 270 ■ Capturing, non-
capturing, and optional groups 272 ■ Compiling a regex 272
Scrambling a word 273 ■ Scrambling all the words 275

16.2 Solution 276
16.3 Discussion 277

Processing the text 277 ■ Scrambling a word 279

16.4 Going further 280

17 Mad Libs: Using regular expressions 281
17.1 Writing mad.py 282

Using regular expressions to find the pointy bits 284
Halting and printing errors 287 ■ Getting the values 288
Substituting the text 289

17.2 Solution 289
17.3 Discussion 290

Substituting with regular expressions 291 ■ Finding the
placeholders without regular expressions 291

17.4 Going further 293

18 Gematria: Numeric encoding of text using
ASCII values 295

18.1 Writing gematria.py 296
Cleaning a word 297 ■ Ordinal character values and
ranges 298 ■ Summing and reducing 300 ■ Using
functools.reduce 302 ■ Encoding the words 303
Breaking the text 304

18.2 Solution 304
18.3 Discussion 305

Writing word2num() 306 ■ Sorting 308 ■ Testing 309

18.4 Going further 309

19 Workout of the Day: Parsing CSV files, creating text
table output 311

19.1 Writing wod.py 312
Reading delimited text files 313 ■ Manually reading a CSV
file 315 ■ Parsing with the csv module 318 ■ Creating a

CONTENTSxii
function to read a CSV file 320 ■ Selecting the exercises 321
Formatting the output 322 ■ Handling bad data 322
Time to write 323

19.2 Solution 323
19.3 Discussion 325

Reading a CSV file 325 ■ Potential runtime errors 326
Using pandas.read_csv() to parse the file 327 ■ Formatting
the table 328

19.4 Going further 330

20 Password strength: Generating a secure and memorable
password 331

20.1 Writing password.py 334
Creating a unique list of words 335 ■ Cleaning the text 337
Using a set 339 ■ Filtering the words 340 ■ Titlecasing the
words 341 ■ Sampling and making a password 341
l33t-ify 342 ■ Putting it all together 343

20.2 Solution 343
20.3 Discussion 346

Cleaning the text 346 ■ A king’s ransom 347 ■ How to
l33t() 347 ■ Processing the files 347 ■ Sampling and
creating the passwords 348

20.4 Going further 349

21 Tic-Tac-Toe: Exploring state 351
21.1 Writing tictactoe.py 353

Validating user input 355 ■ Altering the board 355
Printing the board 356 ■ Determining a winner 356
Solution 357 ■ Validating the arguments and mutating
the board 360 ■ Formatting the board 363 ■ Finding the
winner 364

21.2 Going further 366

22 Tic-Tac-Toe redux: An interactive version
with type hints 367

22.1 Writing itictactoe.py 368
Tuple talk 369 ■ Named tuples 371 ■ Adding type
hints 372 ■ Type verification with Mypy 373 ■ Updating

CONTENTS xiii
immutable structures 375 ■ Adding type hints to function
definitions 376

22.2 Solution 377
A version using TypedDict 379 ■ Thinking about state 381

22.3 Going further 381

Epilogue 383

appendix Using argparse 385

index 405

preface
Why write Python?
Python is an excellent, general-purpose programming language. You can write a pro-
gram to send secret messages to your friends or to play chess. There are Python
modules to help you wrangle complex scientific data, explore machine learning algo-
rithms, and generate publication-ready graphics. Many college-level computer science
programs have moved away from languages like C and Java to Python as their intro-
ductory language because Python is a relatively easy language to learn. We can use
Python to study fundamental and powerful ideas from computer science. As I show
you ideas like regular expressions and higher-order functions, I hope to encourage
you to study further.

Why did I write this book?
Over the years, I’ve had many opportunities to help people learn programming, and I
always find it rewarding. The structure of this book comes from my own experience in
the classroom, where I think formal specifications and tests can be useful aids in learn-
ing how to break a program into smaller problems that need to be solved to create the
whole program.

 The biggest barrier to entry I’ve found when I’m learning a new language is that
small concepts of the language are usually presented outside of any useful context. Most
programming language tutorials will start with printing “HELLO, WORLD!” (and this is
book is no exception). Usually that’s pretty simple. After that, I usually struggle to
write a complete program that will accept some arguments and do something useful.
xv

PREFACExvi
In this book, I’ll show you many, many examples of programs that do useful things,
in the hopes that you can modify these programs to make more programs for your
own use.

 More than anything, I think you need to practice. It’s like the old joke: “What’s the
way to Carnegie Hall? Practice, practice, practice.” These coding challenges are short
enough that you could probably finish each in a few hours or days. This is more mate-
rial than I could work through in a semester-long university-level class, so I imagine
the whole book will take you several months. I hope you will solve the problems, then
think about them, and then return later to see if you can solve them differently, maybe
using a more advanced technique or making them run faster.

acknowledgments
This being my first book, it has been interesting to note the many people who have
helped me create it. It all started with a call with Mike Stephens, the acquisitions edi-
tor for Manning, who entertained the idea of a book on learning how to produce seri-
ous, tested software by writing silly games and puzzles. That eventually led to a call
with Marjan Bace, the publisher, who was enthusiastic about using test-driven develop-
ment ideas to motivate readers to actively engage with writing the programs.

 My first development editor, Susanna Kline, had to help me wrestle the first few
chapters of the book into something people would actually want to read. My second
development editor, Elesha Hyde, provided patient and thoughtful guidance through
months of writing, editing, and reviews. I thank my technical editors, Scott Chaussee,
Al Scherer, and Mathijs Affourtit, for carefully checking all my code and text for mis-
takes. I appreciated the efforts of Manning’s MEAP team, especially Mehmed Pasic for
producing the PDFs and giving me technical guidance on how to use AsciiDoc. I
would also like to thank my project editor Deirdre Hiam, my copyeditor Andy Carroll,
my proofreader Katie Tennant, and my review editor Aleksandar Dragosavljević. Also,
the readers of the liveBook edition and the many technical reviewers who provided
such great feedback: Amanda Debler, Conor Redmond, Drew Leon, Joaquin Beltran,
José Apablaza, Kimberly Winston-Jackson, Maciej Jurkowski, Mafinar Khan, Manuel
Ricardo Gonzalez Cova, Marcel van den Brink, Marcin Sęk, Mathijs Affourtit, Paul R
Hendrik, Shayn Cornwell, Víctor M. Pérez.

 I especially want to acknowledge the countless people who create the open source
software upon which all of this is built. From the people who maintain the Python
xvii

ACKNOWLEDGMENTSxviii
language and modules and documentation to the countless hackers who answer ques-
tions on the internet, I thank you for all that you do.

 Of course, none of this would have ever been possible without the love and sup-
port of my family, especially my wife, Lori Kindler, who has been an unbelievable
source of love and support for over 27 years. (I’m still really, really sorry about wreck-
ing on my mountain bike and the year it took for me to recover!) Our three children
bring me such challenges and joy, and I hope that I am making them proud. They
constantly have to feign interest in topics they know and care nothing about, and they
have shown such patience for the many hours I’ve spent writing this book.

about this book
Who should read this book
After you read this book and write all the programs, I would hope that you will be a
zealot for creating programs that are documented, tested, and reproducible.

 I think my ideal reader is someone who’s been trying to learn to code well but isn’t
quite sure how to level up. Perhaps you are someone who’s been playing with Python
or some other language that has a similar syntax, like Java(Script) or Perl. Maybe
you’ve cut your teeth on something really different, like Haskell or Scheme, and
you’re wondering how to translate your ideas to Python. Maybe you’ve been writing
Python for a while and are looking for interesting challenges with enough structure to
help you know when you’re moving in the right direction.

 This is a book that will teach you to write well-structured, documented, testable
code in Python. The material introduces best practices from industry such as test-
driven development—that’s when the tests for a program exist even before the program
itself is written! I will show you how to read documentation and Python Enhancement
Proposals (PEPs) and how to write idiomatic code that other Python programmers
would immediately recognize and understand.

 This is probably not an ideal book for the absolute beginning programmer. I
assume no prior knowledge of the Python language specifically, because I’m thinking
of someone who is coming from another language. If you’ve never written a program
in any language at all, you might do well to come back to this material when you are
comfortable with ideas like variables, loops, and functions.
xix

ABOUT THIS BOOKxx
How this book is organized: A roadmap
The book is written with chapters building on previous chapters, so I really recom-
mend you start at the beginning and work sequentially through the material.

■ Every program uses command-line arguments, so we start off discussing how to
use argparse to handle this. Every program is also tested, so you’ll have to learn
how to install and use pytest. The introduction and chapter 1 will get you up
and running.

■ Chapters 2–4 discuss the basic Python structures like strings, lists, and dictionaries.
■ Chapters 5 and 6 move into how we can work with files as input and output and

how files are related to “standard in” and “standard out” (STDIN/STDOUT).
■ Chapters 7 and 8 start combining ideas so you can write more complicated

programs.
■ Chapters 9 and 10 introduce the random module and how to control and test

random events.
■ In chapters 11–13 you’ll learn more about compartmentalizing code into func-

tions and how to write and run tests for them.
■ In chapters 14–18 we’ll start digging into denser topics like higher-order func-

tions as well as regular expressions to find patterns of text.
■ In chapters 19–22 we’ll start writing more complex, “real-world” programs that

will put all your skills together while pushing your knowledge of the Python lan-
guage and testing.

About the code
Every program and test shown in the book can be found at https://github.com/
kyclark/tiny_python_projects.

Software/hardware requirements
All the program were written and tested with Python 3.8, but version 3.6 would be suf-
ficient for almost every program. Several additional modules are required, such as
pytest for running the tests. There are instructions for how to use the pip module to
install these.

iiveBook discussion forum
Purchase of Tiny Python Projects includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the author and from other users. To access the
forum, go to https://livebook.manning.com/book/tiny-python-projects/welcome/v-6.
You can also learn more about Manning's forums and the rules of conduct at https://
livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take

https://github.com/kyclark/tiny_python_projects
https://github.com/kyclark/tiny_python_projects
https://livebook.manning.com/book/tiny-python-projects/welcome/v-6/
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/discussion

ABOUT THIS BOOK xxi
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking him some challenging questions lest his interest stray! The forum
and the archives of previous discussions will be accessible from the publisher’s website
as long as the book is in print.

Other online resources
One element missing from many programming courses is a demonstration of how one
can go from having no program to having one that works. In my classroom teaching, I
spend a lot of time showing students how to start writing a program and then how to
work through the process of adding and testing new features. I’ve recorded videos for
each chapter and shared them at www.youtube.com/user/kyclark. There is a playlist
for each chapter, and the videos follow the pattern of each chapter by introducing the
problem and the language features you might use to write your program, followed by
a discussion of the solution(s).

http://www.youtube.com/user/kyclark

about the author
My name is Ken Youens-Clark. I work as a Senior Scientific Programmer at the Univer-
sity of Arizona. Most of my career has been spent working in bioinformatics, using
computer science ideas to study biological data.

 I began my undergraduate degree as a Jazz Studies major on the drum set at the
University of North Texas in 1990. I changed my major a few times and eventually
ended up with a BA in English literature in 1995. I didn’t really have a plan for my
career, but I did like computers.

 Around 1995, I stared tinkering with databases and HTML at my first job out of
college, building the company’s mailing list and first website. I was definitely hooked!
After that, I managed to learned Visual Basic on Windows 3.1 and, during the next few
years, I programmed in several languages and companies before landing in a bioinfor-
matics group at Cold Spring Harbor Laboratory in 2001, led by Lincoln Stein, a prom-
inent author of books and modules in Perl and an early advocate for open software,
data, and science. In 2014 I moved to Tucson, AZ, to work at the University of Arizona,
where I completed my MS in Biosystems Engineering in 2019.

 When I’m not coding, I like playing music, riding bikes, cooking, reading, and
being with my wife and children.
xxii

about the cover
The figure on the cover of Tiny Python Projects is captioned “Femme Turc allant par les
rues,” or “Turkish woman going through the streets.” The illustration is taken from a
collection of dress costumes from various countries by Jacques Grasset de Saint-Sau-
veur (1757–1810), titled Costumes de Différents Pays, published in France in 1788. Each
illustration is finely drawn and colored by hand. The rich variety of Grasset de Saint-
Sauveur’s collection reminds us vividly of how culturally apart the world’s towns and
regions were just 200 years ago. Isolated from each other, people spoke different dia-
lects and languages. In the streets or in the countryside, it was easy to identify where
they lived and what their trade or station in life was just by their dress.

 The way we dress has changed since then, and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns, regions, or countries. Perhaps we have traded cultural
diversity for a more varied personal life—certainly for a more varied and fast-paced
technological life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Grasset de Saint-Sauveur’s pictures.
xxiii

Getting started:
Introduction and
installation guide
This book will teach you how to write Python programs that run on the command
line. If you have never used the command line before, don’t worry! You can use
programs like PyCharm (see figure I.1) or Microsoft’s VS Code to help you write
and run these programs. If you are completely new to programming or to the
Python language, I will try to cover everything I think you’ll need to know, although
you might find it useful to read another book first if you’ve never heard of things
like variables and functions.

 In this introduction, we’ll discuss

 Why you should learn to write command-line programs
 Tools and environments for writing code
 How and why we test software

Writing command-line programs
Why do I want you to write command-line programs? For one, I think they strip a
program down to its most bare essentials. We’re not going to try to write compli-
cated programs like an interactive 3D game that requires lots of other software to
work. The programs in this book will all work with the barest of inputs and create
only text output. We’re going to focus on learning the core Python language and
how to write and test programs.

 Another reason for focusing on command-line programs is that I want to show
you how to write programs that can run on any computer that has Python installed.
I’m writing this book on my Mac laptop, but I can run all the programs on any of
1

2 Getting started: Introduction and installation guide
the Linux machines I use in my work or on a friend’s Windows machine. Any com-
puter with the same version of Python can run any of these programs, and that is
pretty cool.

 The biggest reason I want to show you how to write command-line programs,
though, is because I want to show you how to test programs to make sure they work.
While I don’t think anyone will die if I make a mistake in one of my programs, I still
really, really want to be sure that my code is as perfect as possible.

 What does it mean to test a program? Well, if my program is supposed to add two
numbers together, I’ll need to run it with many pairs of numbers and check that it
prints the correct sum. I might also give it a number and a word, to make sure that it
doesn’t try to add “3” plus “seahorse” but instead complains that I didn’t give it two

Figure I.1 This is the PyCharm tool being used to edit and run the hello.py program from chapter 1. “Hello,
World!”

3Writing command-line programs
numbers. Testing gives me some measure of confidence in my code, and I hope you
will come to see how testing can help you understand programming more deeply.

 The exercises in this book are meant to be silly enough to pique your interest, but
they each contain lessons that can be applied to all sorts of real-world problems. Almost
every program I’ve ever written needs to accept some input data, whether from the user
or from a file, and produce some output—sometimes text on the screen or maybe a new
file. These are the kinds of skills you’ll learn by writing these programs.

 In each chapter, I’ll describe some program that I want you to write and the tests
you’ll use to check if your program is working correctly. Then I’ll show you a solution
and discuss how it works. As the problems get harder, I’ll start suggesting ways you
might write your own tests to explore and verify your code.

 When you’re done with this book, you should be able to

 Write and run command-line Python programs
 Handle arguments to your programs
 Write and run tests for your programs and functions
 Use Python data structures like strings, lists, and dictionaries
 Have your programs read and write text files
 Use regular expressions to find patterns in text
 Use and control randomness to make your programs behave unpredictably

“Codes are a puzzle. A game, just like any other game.”

 —Alan Turing

Alan Turing is perhaps most famous for cracking the Enigma code that the Nazis
used to encrypt messages during World War II. The fact that the Allies could read
enemy messages is credited with shortening the war by years and saving millions of
lives. The Imitation Game is a fun movie that shows how Turing published puzzles in
newspapers to find people who could help him break what was supposed to be an
unbreakable code.

 I think we can learn tons from writing fun programs that generate random insults
or produce verses to “The Twelve Days of Christmas” or play Tic-Tac-Toe. Some of the
programs in this book even dabble a bit in cryptography, like in chapter 4 where we
encode all the numbers in a piece of text or in chapter 18 where we create signatures
for words by summing the numeric representations of their letters. I hope you’ll find
the programs both amusing and challenging.

 The programming techniques in each exercise are not specific to Python. Most
every language has variables, loops, functions, strings, lists, and dictionaries, as well as
ways to parameterize and test programs. After you write your solutions in Python, I
encourage you to write solutions in another language you know and compare what
parts of the different languages make it easier or harder to write your programs. If your
programs support the same command-line options, you can even use the included tests
to verify those programs.

4 Getting started: Introduction and installation guide
Using test-driven development
Test-driven development is described by Kent Beck in his 2002 book by that title as a method
for creating more reliable programs. The basic idea is that we write tests even before we
write code. The tests define what it means to say that our program works “correctly.” First
we write and run our tests to verify that our code fails. Then we write the code to make
each test pass. We always run all of the tests so that, as we fix new tests, we ensure we don’t
break tests that were passing before. When all the tests pass, we have at least some assur-
ance that the code we’ve written conforms to some manner of specification.

 Each program you are asked to write in this book comes with tests that will tell you
when the code is working acceptably. The first test in every exercise checks whether
the expected program exists. The second test checks that the program will print a
help message if we ask for help. After that, your program will be run with various inputs
and options.

 Since I’ve written around 250 tests for the programs
in this book, and you have not yet written one of the pro-
grams, you’re going to encounter many failed tests.
That’s OK! In fact, it’s a really good thing, because when
you pass all the tests, you’ll know that your programs are
correct. You’ll learn to read the failed tests carefully to
figure out what needs fixing. Then you’ll correct the pro-
gram and run the tests again. You may get another failed
test, in which case you’ll repeat the process until finally
all the tests pass. Then you’ll be done.

 It doesn’t matter if you solve the problems the same way as in the solution I pro-
vide. All that matters is that you figure out a way to pass the tests.

Setting up your environment
If you want to write these programs on your computer, you will need Python version
3.6 or later. It’s quite possible that it’s already installed on your computer.

 You’ll also need some way to execute the python3 command—something we often
call a command line. If you use a Windows computer, you may want to install Windows
Subsystem for Linux (WSL). On a Mac, the default Terminal app is sufficient. You can
also use a tool like VS Code (in figure I.2) or PyCharm, which have terminals built
into them.

 I wrote and tested the programs for this book with Python version 3.8, but they
should work with version 3.6 or newer. Python 2 reached its end of life at the end of
2019 and should no longer be used. To see what version of Python you have installed,
open a terminal window and type python3 --version. If it says something like “com-
mand "python3" not found,” then you need to install Python. You can download the
latest version from the Python site (www.python.org/downloads).

 If you are using a computer that doesn’t have Python, and you don’t have any way to
install Python, you can do everything in this book using the Repl.it website (http://repl.it).

http://repl.it
http://www.python.org/downloads

5Code examples
Code examples
Throughout the book, I will show commands and code using a fixed-width font.
When the text is preceded with a dollar sign ($), that means it’s something you can
type on the command line. For instance, there is a program called cat (short for “con-
catenate”) that will print the contents of a file to the screen. Here is how I can run it to
print the contents of the spiders.txt file that lives in the inputs directory:

$ cat inputs/spiders.txt
Don't worry, spiders,
I keep house
casually.

If you want to run that command, do not copy the leading $, only the text that follows.
Otherwise you’ll probably get an error like “$: command not found.”

Figure I.2 An IDE like VS Code combines a text editor for writing your code along with a terminal (lower-right
window) for running your programs, and many other tools.

6 Getting started: Introduction and installation guide
 Python has a really excellent tool called IDLE that allows you to interact directly
with the language to try out ideas. You can start it with the command idle3. That
should open a new window with a prompt that looks like >>> (see figure I.3).

You can type Python statements there, and they will be immediately evaluated and
printed. For example, type 3 + 5 and press Enter, and you should see 8:

>>> 3 + 5
8

This interface is called a REPL because it’s a Read-Evaluate-Print-Loop. (I pronounce
this like “repple” in a way that sort of rhymes with “pebble.”) You can get a similar tool
by typing python3 on the command line (see figure I.4).

 The IPython program is yet another “interactive Python” REPL that has many
enhancements over IDLE and python3. Figure I.5 shows what it looks like on my system.

 I also recommend you look into using Jupyter Notebooks, as they allow you to
interactively run code with the added bonus that you can save a Notebook as a file and
share all your code with other people.

Figure I.3 The IDLE application allows you to interact directly with the Python language.
Each statement you type is evaluated when you press Enter, and the results are shown in
the window.

7Code examples
Figure I.4 Typing the command python3 in the terminal will give you a REPL similar to
the IDLE interface.

Figure I.5 The IPython application is another REPL interface you can use to try out your
ideas with Python.

8 Getting started: Introduction and installation guide
Whichever REPL interface you use, you can type Python statements like x = 10 and
press Enter to assign the value 10 to the variable x:

>>> x = 10

As with the command-line prompt, $, do not copy the leading >>> or Python will
complain:

>>> >>> x = 10
File "<stdin>", line 1

>>> x = 10
^

SyntaxError: invalid syntax

The IPython REPL has a magical %paste mode that removes the leading >>> prompts
so that you can copy and paste all the code examples:

In [1]: >>> x = 10

In [2]: x
Out[2]: 10

Whichever way you choose to interact with Python, I suggest you manually type all the
code yourself in this book, as this builds muscle memory and forces you to interact with
the syntax of the language.

Getting the code
All the tests and solutions are available at https://github.com/kyclark/tiny_python_
projects. You can use the program Git (which you may need to install) to copy that
code to your computer with the following command:

$ git clone https://github.com/kyclark/tiny_python_projects

Now you should have a new directory called tiny_python_projects on your computer.
 You may prefer to make a copy of the code into your own repository, so that you

can track your changes and share your solutions with others. This is called “forking”
because you’re breaking off from my code and adding your own programs to the
repository. If you plan to use Repl.it to write the exercises, I recommend you do fork
my repo into your own account so that you can configure Repl.it to interact with your
own GitHub repositories.

 To fork, do the following:

1 Create an account on GitHub.com.
2 Go to https://github.com/kyclark/tiny_python_projects.
3 Click the Fork button (see figure I.6) to make a copy of the repository into your

account.

https://github.com/kyclark/tiny_python_projects
https://github.com/kyclark/tiny_python_projects
https://github.com/kyclark/tiny_python_projects
https://github.com/kyclark/tiny_python_projects

9Getting the code
Now you have a copy of my all code in your own repository. You can use Git to copy
that code to your computer. Be sure to replace “YOUR_GITHUB_ID” with your actual
GitHub ID:

$ git clone https://github.com/YOUR_GITHUB_ID/tiny_python_projects

I may update the repo after you make your copy. If you would like to be able to get
those updates, you will need to configure Git to set my repository as an “upstream”
source. To do so, after you have cloned your repository to your computer, go into your
tiny_python_projects directory:

$ cd tiny_python_projects

Then execute this command:

$ git remote add upstream https://github.com/kyclark/tiny_python_projects.git

Whenever you would like to update your repository from mine, you can execute this
command:

$ git pull upstream master

Figure I.6 The Fork button on my GitHub repository will make a copy of the code into your account.

10 Getting started: Introduction and installation guide
Installing modules
I recommend using a few tools that may not be installed on your system. You can use
the pip module to install them like so:

$ python3 -m pip install black flake8 ipython mypy pylint pytest yapf

I’ve also included a requirements.txt file in the top level of the repository. You can use
it to install all the modules and tools with this command:

$ python3 -m pip install -r requirements.txt

If, for example, you wish to write the exercises on Repl.it, you will need to run this
command to set up your environment, as the modules are not already installed.

Code formatters
Most IDEs and text editors will have tools to help you format your code so that it’s eas-
ier to read and find problems. In addition, the Python community has created a stan-
dard for writing code so that other Python programmers can readily understand it.
The PEP 8 (Python Enhancement Proposal) document at www.python.org/dev/peps/
pep-0008/ describes best practices for formatting code, and most editors will automat-
ically apply formatting for you. For instance, the Repl.it interface has an autoformat
button (see figure I.7), VS Code has a Format Document command, and PyCharm has
a Reformat Code command.

Figure I.7 The Repl.it tool has an autoformat button to reformat your code according to community standards.
The interface also includes a command line for running and testing your program.

http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/

11How to start writing new programs
There are also command-line tools that integrate with your editor. I used YAPF (Yet
Another Python Formatter, https://github.com/google/yapf) to format every pro-
gram in the book, but another popular formatter is Black (https://github.com/psf/
black). Whatever you use, I encourage you to use it often. For instance, I can tell YAPF
to format the hello.py program that we will write in chapter 1 by running the follow-
ing command. Note that the -i tells YAPF to format the code “in place,” so that the
original file will be overwritten with the newly formatted code.

$ yapf -i hello.py

Code linters
A code linter is a tool that will report problems in your code, such as declaring a vari-
able but never using it. Two that I like are Pylint (www.pylint.org/) and Flake8
(http://flake8.pycqa.org/en/latest/), and both can find errors in your code that the
Python interpreter itself will not complain about.

 In the final chapter, I will show you how to incorporate type hints into your code
that the Mypy tool (http://mypy-lang.org/) can use to find problems, such as using
text when you should be using a number.

How to start writing new programs
I think it’s much easier to start writing code with a standard template, so I wrote a pro-
gram called new.py that will help you create new Python programs with boilerplate
code that will be expected of every program. It’s located in the bin directory, so if you
are in the top directory of the repository, you can run it like this:

$ bin/new.py
usage: new.py [-h] [-s] [-n NAME] [-e EMAIL] [-p PURPOSE] [-f] program
new.py: error: the following arguments are required: program

Here you can see that new.py is asking you to provide the name of the “program” to
create. For each chapter, the program you write needs to live in the directory that has
the test.py file for that program.

 For example, you can use new.py to start off chapter 2’s crowsnest.py program in
the 02_crowsnest directory like so:

$ bin/new.py 02_crowsnest/crowsnest.py
Done, see new script "02_crowsnest/crowsnest.py."

If you open that file now, you’ll see that it has written a lot of code for you that I’ll
explain later. For now, just realize that the resulting crowsnest.py program is one that
can be run like so:

$ 02_crowsnest/crowsnest.py
usage: crowsnest.py [-h] [-a str] [-i int] [-f FILE] [-o] str
crowsnest.py: error: the following arguments are required: str

https://github.com/google/yapf
https://github.com/psf/black
https://github.com/psf/black
https://github.com/psf/black
http://www.pylint.org/
http://mypy-lang.org/
http://flake8.pycqa.org/en/latest/

12 Getting started: Introduction and installation guide
Later you’ll learn how to modify the program to do what the tests expect.
 An alternative to running new.py is to copy the file template.py from the template

directory to the directory and program name you need to write. You could create the
crowsnest.py program file like so:

$ cp template/template.py 02_crowsnest/crowsnest.py

You do not have to use either new.py or copy the template.py file to start your pro-
grams. These are provided to save you time and provide your programs with an initial
structure, but you are welcome to write your programs however you please.

Why not Notebooks?
Many people are familiar with Jupyter Notebooks, as they provide a way to integrate
Python code and text and images into a document that other people can execute like
a program. I really love Notebooks, especially for interactively exploring data, but I
find them difficult to use in teaching for the following reasons:

 A Notebook is stored in JavaScript Object Notation (JSON), not as line-oriented
text. This makes it really difficult to compare Notebooks to each other to find
out how they differ.

 Code and text and images can live mixed together in separate cells. These cells
can be interactively run in any order, which can lead to very subtle problems in
the logic of a program. The programs we write in this book will always be run
from top to bottom in entirety every time, which I think makes them easier to
understand.

 There is no way for Notebooks to accept different values when they are run.
That is, if you test a program with one input file and then want to change to a
different file, you have to change the program itself. You will learn how to pass in a
file as an argument to the program, so that you can change the value without
changing the code.

 It’s difficult to automatically run tests on a Notebook or on the functions they
contain. We will use the pytest module to run our programs over and over with
different input values and verify that the programs create the correct output.

The scope of topics we’ll cover
The purpose of this book is to show you how amazingly useful all the built-in features
of the Python language are. The exercises will push you to practice manipulating
strings, lists, dictionaries, and files. We’ll spend several chapters focusing on regular
expressions, and every exercise except for the last requires you to accept and validate
command-line arguments of varying types and numbers.

 Every author is biased toward some subjects, and I’m no different. I’ve chosen
these topics because they reflect ideas that are fundamental to the work I’ve done over
the last 20 years. For instance, I have spent many more hours than I would care to

13A note about the lingo
admit parsing really messy data from countless Excel spreadsheets and XML files. The
world of genomics that has consumed most of my career is based primarily on effi-
ciently parsing text files, and much of my web development work is predicated on
understanding how text is encoded and transferred to and from the web browser. For
that reason, you’ll find many exercises that entail processing text and files, and that
will challenge you to think about how to transform inputs into outputs. If you work
through every exercise, I believe you’ll be a much improved programmer who under-
stands the basic ideas that are common across many languages.

Why not object-oriented programming?
One topic that you’ll notice is missing from this book is writing object-oriented code
in Python. If you are not familiar with object-oriented programming (OOP), you can skip
this section.

 I think OOP is a somewhat advanced topic that is beyond the scope of this book. I
prefer to focus on how to write small functions and their accompanying tests. I think
this leads to more transparent code, because the functions should be short, should
only use the values explicitly passed as arguments, and should have enough tests that
you can completely understand how they will behave under both favorable and unfa-
vorable circumstances.

 The Python language is itself inherently object-oriented. Almost everything from
strings to the lists and dictionaries that we’ll use are actually objects, so you’ll get plenty of
practice using objects. But I don’t think it’s necessary to create objects to solve any of the
problems I present. In fact, even though I spent many years writing object-oriented
code, I haven’t written in this style for the last few years. I tend to draw my inspiration
from the world of purely functional programming, and I hope I can convince you by the
end of this book that you can do anything you want by combining functions.

 Although I personally avoid OOP, I would recommend you learn about it. There
have been several seismic paradigm shifts in the world of programming from proce-
dural to object-oriented and now functional. You can find dozens of books on OOP in
general and on programming objects in Python specifically. This is a deep and fasci-
nating topic, and I encourage you to try writing object-oriented solutions and com-
pare them to my solutions.

A note about the lingo
Often in programming books you will see foobar used in examples. The word has no
real meaning, but its origin probably comes from the military acronym “FUBAR”
(Fouled Up Beyond All Recognition). If I use “foobar” in an example, it’s because I
don’t want to talk about any specific thing in the universe, just the idea of a string of
characters. If I need a list of items, usually the first item will be “foo” and the next will
be “bar.” After that, convention uses “baz” and “quux,” again because they mean noth-
ing at all. Don’t get hung up on “foobar.” It’s just a placeholder for something that
could be more interesting later.

14 Getting started: Introduction and installation guide
 Programmers also tend to call errors in code bugs.
This comes from the days of computing before the inven-
tion of transistors. Early machines used vacuum tubes,
and the heat from the machines would attract actual
bugs like moths that could cause short circuits. The oper-
ators (the people running the machines) would have to
hunt through the machinery to find and remove the
bugs; hence, the term “to debug.”

How to write and
test a Python program
Before you start working on the exercises, I want to discuss
how to write programs that are documented and tested.
Specifically, we’re going to

 Write a Python program to say “Hello, World!”
 Handle command-line arguments using argparse
 Run tests for the code with Pytest.
 Learn about $PATH
 Use tools like YAPF and Black to format the code
 Use tools like Flake8 and Pylint to find problems in

the code
 Use the new.py program to create new programs

1.1 Creating your first program
It’s pretty common to write “Hello, World!” as your first program in any language,
so let’s start there. We’re going to work toward making a version that will greet
whichever name is passed as an argument. It will also print a helpful message when
we ask for it, and we’ll use tests to make sure it does everything correctly.

 In the 01_hello directory, you’ll see several versions of the hello program we’ll
write. There is also a program called test.py that we’ll use to test the program.

 Start off by creating a text file called hello.py in that directory. If you are work-
ing in VS Code or PyCharm, you can use File > Open to open the 01_hello direc-
tory as a project. Both tools have something like a File > New menu option that will
allow you to create a new file in that directory. It’s very important to create the
hello.py file inside the 01_hello directory so that the test.py program can find it.
15

16 CHAPTER 1 How to write and test a Python program
 Once you’ve started a new file, add this line:

print('Hello, World!')

It’s time to run your new program! Open a terminal window in VS Code or PyCharm
or in some other terminal, and navigate to the directory where your hello.py program
is located. You can run it with the command python3 hello.py—this causes Python
version 3 to execute the commands in the file named hello.py. You should see this:

$ python3 hello.py
Hello, World!

Figure 1.1 shows how it looks in the Repl.it interface.

If that was your first Python program, congratulations!

1.2 Comment lines
In Python, the # character and anything following it is ignored
by Python. This is useful for adding comments to your code or
temporarily disabling lines of code when testing and debug-
ging. It’s always a good idea to document your programs, indi-
cating the purpose of the program or the author’s name and
email address, or both. We can use a comment for that:

Purpose: Say hello
print('Hello, World!')

If you run this program again, you should see the same output as before because the
“Purpose” line is ignored. Note that any text to the left of the # is executed, so you can
add a comment to the end of a line if you like.

Figure 1.1 Writing and running our first program using Repl.it

17Testing your program
1.3 Testing your program
The most fundamental idea I want to teach you is how to test your programs. I’ve writ-
ten a test.py program in the 01_hello directory that we can use to test our new hello.py
program.

 We will use pytest to execute all the commands and tell us how many tests we
passed. We’ll include the -v option, which tells pytest to create “verbose” output. If
you run it like this, you should see the following output as the first several lines. After
that will follow many more lines showing you more information about the tests that
didn’t pass.

NOTE If you get the error “pytest: command not found,” you need to install
the pytest module. Refer to the “Installing modules” section in the book’s
introduction.

$ pytest -v test.py
============================= test session starts ==============================
...
collected 5 items

test.py::test_exists PASSED [20%]
test.py::test_runnable PASSED [40%]
test.py::test_executable FAILED [60%]
test.py::test_usage FAILED [80%]
test.py::test_input FAILED [100%]

=================================== FAILURES ===================================

I’ve written the tests in an order that I hope will help you write the program in a logi-
cal fashion. If the program doesn’t pass one of the tests, there’s no reason to continue
running the tests after it. I recommend you always run the tests with the flags -x, to
stop on the first failing test, and -v, to print verbose output. You can combine these
like -xv or -vx. Here’s what our tests look like with those options:

$ pytest -xv test.py
============================= test session starts ==============================
...
collected 5 items

The first test always checks that the expected
file exists. Here the test looks for hello.py.

The second test tries to run the program with python3 hello.py and then
checks if the program printed “Hello, World!” If you miss even one character,
like forgetting a comma, the test will point out the error, so read carefully!

The third test checks that the program is “executable.” This
test fails, so next we’ll talk about how to make that pass.

The fourth test asks the program for help and doesn’t get
anything. We’re going to add the ability to print a “usage”
statement that describes how to use our program.

The last test checks that the program
can greet a name that we’ll pass as an
argument. Since our program doesn’t

yet accept arguments, we’ll need to
add that, too.

18 CHAPTER 1 How to write and test a Python program

n
e
y
”

test.py::test_exists PASSED [20%]
test.py::test_runnable PASSED [40%]
test.py::test_executable FAILED [60%]

=================================== FAILURES ===================================
_______________________________ test_executable ________________________________

def test_executable():
"""Says 'Hello, World!' by default"""

out = getoutput({prg})
> assert out.strip() == 'Hello, World!'
E AssertionError: assert '/bin/sh: ./h...ission denied' == 'Hello, World!'
E - /bin/sh: ./hello.py: Permission denied
E + Hello, World!

test.py:30: AssertionError
!!!!!!!!!!!!!!!!!!!!!!!!!! stopping after 1 failures !!!!!!!!!!!!!!!!!!!!!!!!!!!
========================= 1 failed, 2 passed in 0.09s ==========================

Let’s talk about how to fix this error.

1.4 Adding the #! (shebang) line
One thing you have learned so far is that Python programs live in plain text files that
you ask python3 to execute. Many other programming languages, such as Ruby and
Perl, work in the same way—we type Ruby or Perl commands into a text file and run
it with the right language. It’s common to put a special comment line in programs
like these to indicate which language needs to be used to execute the commands in
the file.

 This comment line starts off with #!, and the nickname for this is “shebang” (pro-
nounced “shuh-bang”—I always think of the # as the “shuh” and the ! as the “bang!”).
Just as with any other comment, Python will ignore the shebang, but the operating sys-
tem (like macOS or Windows) will use it to decide which program to use to run the
rest of the file.

 Here is the shebang you should add:

#!/usr/bin/env python3

The env program will tell you about your “environment.” When I run env on my com-
puter, I see many lines of output like USER=kyclark and HOME=/Users/kyclark. These
values are accessible as the variables $USER and $HOME:

This test fails. No more tests are run because
we ran pytest with the -x option.

The angle bracket (>) at
the beginning of this line
shows the source of the
subsequent errors.

The “E” at the beginning of this line shows that this is a
“Error” you should read. The AssertionError is saying that th

test.py program is trying to execute the command ./hello.p
to see if it will produce the text “Hello, World!

The hyphen character (-) is
showing that the actual
output from the command
is “Permission denied.”

The plus character (+) shows
that the test expected to get
“Hello, World!”

19Adding the #! (shebang) line
$ echo $USER
kyclark
$ echo $HOME
/Users/kyclark

If you run env on your computer, you should see your login name and your home
directory. They will, of course, have different values from mine, but we both (proba-
bly) have both of these concepts.

 You can use the env command to find and run programs. If you run env python3,
it will run a python3 program if it can find one. Here’s what I see on my computer:

$ env python3
Python 3.8.1 (v3.8.1:1b293b6006, Dec 18 2019, 14:08:53)
[Clang 6.0 (clang-600.0.57)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

The env program is looking for python3 in the environment. If Python has not been
installed, it won’t be able to find it, but it’s also possible that Python has been installed
more than once. You can use the which command to see which python3 it finds:

$ which python3
/Library/Frameworks/Python.framework/Versions/3.8/bin/python3

If I run this on Repl.it, I can see that python3 exists in a different place. Where does it
exist on your computer?

$ which python3
/home/runner/.local/share/virtualenvs/python3/bin/python3

Just as my $USER name is different from yours, my python3 is probably different from
yours. If the env command is able to find a python3, it will execute it. As shown previ-
ously, if you run python3 by itself, it will open a REPL.

 If I were to put my python3 path as the shebang line, like so,

#!/Library/Frameworks/Python.framework/Versions/3.8/bin/python3

my program would not work on another computer that has python3 installed in a dif-
ferent location. I doubt it would work on your computer, either. This is why you
should always use the env program to find the python3 that is specific to the machine
on which it’s running.

 Now your program should look like this:

#!/usr/bin/env python3
Purpose: Say hello
print('Hello, World!')

The shebang line tells the operating system to use
/usr/bin/env to find python3 to interpret this program.

A comment line documenting
the purpose of the program

A Python command to print
some text to the screen

20 CHAPTER 1 How to write and test a Python program
1.5 Making a program executable
So far we’ve been explicitly telling python3 to run our pro-
gram, but since we added the shebang, we can execute the
program directly and let the OS figure out that it should use
python3. The advantage of this is that we could copy our pro-
gram to a directory where other programs live and execute it
from anywhere on our computer.

 The first step in doing this is to make our program “execut-
able” using the command chmod (change mode). Think of it as
turning your program “on.” Run this command to make hello.py
executable:

$ chmod +x hello.py

Now you can run the program like so:

$./hello.py
Hello, World!

1.6 Understanding $PATH
One of the biggest reasons to set the shebang line and make your program executable
is so that you can install your Python programs just like other commands and pro-
grams. We used the which command earlier to find the location of python3 on the
Repl.it instance:

$ which python3
/home/runner/.local/share/virtualenvs/python3/bin/python3

How was the env program able to find it? Windows, macOS, and Linux all have a
$PATH variable, which is a list of directories the OS will look in to find a program. For
instance, here is the $PATH for my Repl.it instance:

> echo $PATH
/home/runner/.local/share/virtualenvs/python3/bin:/usr/local/bin:\
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

The directories are separated by colons (:). Notice that the directory where python3
lives is the first one in $PATH. It’s a pretty long string, so I broke it with the \ character
to make it easier to read. If you copy your hello.py program to any of the directories
listed in your $PATH, you can execute a program like hello.py without the leading ./
and without having to be in the same directory as the program.

 Think about $PATH like this: If you lose your keys in your house, would you start
looking in the upper-left kitchen cabinet and work your way through each cabinet,
and then all the drawers where you keep your silverware and kitchen gadgets, and
then move on to your bathrooms and bedroom closets? Or would you start by looking
in places where you normally put your keys, like the key hooks beside the front door,

The +x will add an “executable”
attribute to the file.

The ./ is the current directory, and it’s necessary to run a
program when you are in the same directory as the program.

21Understanding $PATH
and then move on to search the pockets of your favorite jacket and your purse or
backpack, and then maybe look under the couch cushions, and so forth?

 The $PATH variable is a way of telling your computer to only look in places where
executable programs can be found. The only alternative is for the OS to search every
directory, and that could take several minutes or possibly even hours! You can control
both the names of the directories in the $PATH variable and their relative order so that
the OS will find the programs you need.

 It’s very common for programs to be installed into /usr/local/bin, so we could try
to copy our program there using the cp command. Unfortunately, I do not have per-
mission to do this on Repl.it:

> cp 01_hello/hello.py /usr/local/bin
cp: cannot create regular file '/usr/local/bin/hello.py': Permission denied

But I can do this on my own laptop:

$ cp hello.py /usr/local/bin/

I can verify that the program is found:

$ which hello.py
/usr/local/bin/hello.py

And now I can execute it from any directory on my computer:

$ hello.py
Hello, World!

1.6.1 Altering your $PATH

Often you may find yourself working on a computer that won’t allow you to install pro-
grams into your $PATH, such as on Repl.it. An alternative is to alter your $PATH to
include a directory where you can put your programs. For instance, I often create a
bin directory in my home directory, which can often be written with the tilde (~).

 On most computers, ~/bin would mean “the bin directory in my home directory.”
It’s also common to see $HOME/bin where $HOME is the name of your home directory.
Here is how I create this directory on the Repl.it machine, copy a program to it, and
then add it to my $PATH:

$ mkdir ~/bin
$ cp 01_hello/hello.py ~/bin
$ PATH=~/bin:$PATH
$ which hello.py
/home/runner/bin/hello.py

Use the mkdir (“make
directory”) command
to create ~/bin.

Use the cp command to
copy the 01_hello/hello.py
program to the ~/bin
directory.

Put the ~/bin directory first in $PATH.

Use the which command to look for the hello.py program.
If the previous steps worked, the OS should now be able to
find the program in one of the directories listed in $PATH.

22 CHAPTER 1 How to write and test a Python program
Now I can be in any directory,

$ pwd
/home/runner/tinypythonprojects

and I can run it:

$ hello.py
Hello, World!

Although the shebang and the executable stuff may seem like a lot of work, the payoff
is that you can create a Python program that can be installed onto your computer or
anyone else’s and run just like any other program.

1.7 Adding a parameter and help
Throughout the book, I’ll use string diagrams to visualize the inputs and outputs of
the programs we’ll write. If we created one for our program now (as in figure 1.2),
there would be no inputs, and the output would always be “Hello, World!”

It’s not terribly interesting for our program to always say “Hello, World!” It would be
nice if it could say “Hello” to something else, like the entire universe. We could do this
by changing the code as follows:

print('Hello, Universe')

But that would mean we’d have to change the code every time we wanted to make it
greet a different name. It would be better to change the behavior of the program with-
out always having to change the program itself.

 We can do that by finding the parts of the program that we want to change—like
the name to greet— and providing that value as as an argument to our program. That
is, we’d like our program to work like this:

$./hello.py Terra
Hello, Terra!

How would the person using our program know to do this? It’s our program’s responsibil-
ity to provide a help message! Most command-line programs will respond to arguments

Figure 1.2 A string diagram representing our hello.py program that
takes no inputs and always produces the same output

23Adding a parameter and help

We m
import

argpa
modul

us

e out
he
 in

e
like -h and --help with helpful messages about how to use the programs. We need our
program to print something like this:

$./hello.py -h
usage: hello.py [-h] name

Say hello

positional arguments:
name Name to greet

optional arguments:
-h, --help show this help message and exit

To do this, we can use the argparse module. Modules are files of code we can bring
into our programs. We can also create modules to share our code with other people.
There are hundreds to thousands of modules you can use in Python, which is one of
the reasons why it’s so exciting to use the language.

 The argparse module will “parse” the “arguments” to the program. To use it,
change your program as follows. I recommend you type everything yourself and don’t
copy and paste.

#!/usr/bin/env python3
Purpose: Say hello

import argparse

parser = argparse.ArgumentParser(description='Say hello')
parser.add_argument('name', help='Name to greet')
args = parser.parse_args()
print('Hello, ' + args.name + '!')

Figure 1.3 shows a string diagram of our program now.
 Now when you try to run the program like before, it triggers an error and a “usage”

statement (notice that “usage” is the first word of the output):

$./hello.py
usage: hello.py [-h] name
hello.py: error: the following arguments are required: name

Note that name is called
a positional argument.

The shebang line tells the OS which
program to use to execute this program.

This comment documents the
purpose of the program.

ust
 the
rse

e to
e it.

The parser will figur
all the arguments. T
description appears
the help message.

We need to tell the parser to
expect a name that will be th
object of our salutations.

We ask the parser to parse any
arguments to the program.

We print the greeting using
the args.name value.

We run the program with no arguments,
but the program now expects a single
argument (a “name”).

Since the program doesn’t get the expected
argument, it stops and prints a “usage”
message to let the user know how to
properly invoke the program.

The error message tells the user that
they have not supplied a required

parameter called “name.”

24 CHAPTER 1 How to write and test a Python program
We’ve changed the program so that it requires a name or it won’t run. That’s pretty
cool! Let’s give it a name to greet:

$./hello.py Universe
Hello, Universe!

Try running your program with both the -h and --help arguments, and verify that
you see the help messages.

 The program works really well now and has nice documentation, all because we
added those few lines using argparse. That’s a big improvement.

1.8 Making the argument optional
Suppose we’d like to run the program like before, with no arguments, and have it
print “Hello, World!” We can make the name optional by changing the name of the
argument to --name:

#!/usr/bin/env python3
Purpose: Say hello

import argparse

parser = argparse.ArgumentParser(description='Say hello')
parser.add_argument('-n', '--name', metavar='name',

default='World', help='Name to greet')
args = parser.parse_args()
print('Hello, ' + args.name + '!')

Now we can run it like before:

$./hello.py
Hello, World!

Figure 1.3 Now our string diagram shows that our program can take an
argument and produce a message based on that value.

The only change to this program is adding -n and
--name for the “short” and “long” option names.

We also indicate a default value. “metavar” will
show up in the usage to describe the argument.

25Making the argument optional
Or we can use the --name option:

$./hello.py --name Terra
Hello, Terra!

And our help message has changed:

$./hello.py -h
usage: hello.py [-h] [-n NAME]

Say hello

optional arguments:
-h, --help show this help message and exit
-n name, --name name Name to greet

Figure 1.4 shows a string diagram that describes our program.

Our program is really flexible now, greeting a default value when run with no argu-
ments or allowing us to say “hi” to something else. Remember that parameters that
start with dashes are optional, so they can be left out, and they may have default values.
Parameters that don’t start with dashes are positional and are usually required, so they
do not have default values.

Table 1.1 Two kinds of command-line parameters

Type Example Required Default

Positional name Yes No

Optional -n (short), --name (long) No Yes

The argument is now optional and no longer a
positional argument. It’s common to provide both
short and long names to make it easy to type the

options. The metavar value of “name” appears here
to describe what the value should be.

Figure 1.4 The name parameter is now optional. The program will greet
a given name or will use a default value when it’s missing.

26 CHAPTER 1 How to write and test a Python program
1.9 Running our tests
Let’s run our tests again to see how we are doing:

$ make test
pytest -xv test.py
============================= test session starts ==============================
...
collected 5 items

test.py::test_exists PASSED [20%]
test.py::test_runnable PASSED [40%]
test.py::test_executable PASSED [60%]
test.py::test_usage PASSED [80%]
test.py::test_input PASSED [100%]

============================== 5 passed in 0.38s ===============================

Wow, we’re passing all our tests! I actually get excited whenever I see my programs
pass all their tests, even when I’m the one who wrote the tests. Before we were failing
on the usage and input tests. Adding the argparse code fixed both of those because it
allows us to accept arguments when our program runs, and it will also create docu-
mentation about how to run our program.

1.10 Adding the main() function
Our program works really well now, but it’s not quite up to community standards and
expectations. For instance, it’s very common for computer programs—not just ones
written in Python—to start at a place called main(). Most Python programs define a
function called main(), and there is an idiom to call the main() function at the end of
the code, like this:

#!/usr/bin/env python3
Purpose: Say hello

import argparse

def main():
parser = argparse.ArgumentParser(description='Say hello')
parser.add_argument('-n', '--name', metavar='name',

default='World', help='Name to greet')1

args = parser.parse_args()
print('Hello, ' + args.name + '!')

if __name__ == '__main__':
main()

1 See Python’s documentation of main for more information: https://docs.python.org/3/library/__main
__.html.

def defines a function,
named main() in this case.
The empty parentheses
show that this function
accepts no arguments.

Every program or module in Python has a
name that can be accessed through the
variable __name__. When the program is
executing, __name__ is set to “__main__”.1 If this is true, call

the main() function.

https://docs.python.org/3/library/__main__.html
https://docs.python.org/3/library/__main__.html
https://docs.python.org/3/library/__main__.html

27Adding the get_args() function

The ma
func
is m
sho

n

As our programs get longer, we’ll start creating more functions. Python programmers
approach this in different ways, but in this book I will always create and execute a
main() function to be consistent. To start off, we’ll always put the main part of our
program inside the main() function.

1.11 Adding the get_args() function
As a matter of personal taste, I like to put all the argparse code into a separate
place that I always call get_args(). Getting and validating arguments is one con-
cept in my mind, so it belongs by itself. For some programs, this function can get
quite long.

 I always put get_args() as the first function so that I can see it immediately when I
read the source code. I usually put main() right after it. You are, of course, welcome to
structure your programs however you like.

 Here is what the program looks like now:

#!/usr/bin/env python3
Purpose: Say hello

import argparse

def get_args():
parser = argparse.ArgumentParser(description='Say hello')
parser.add_argument('-n', '--name', metavar='name',

default='World', help='Name to greet')
return parser.parse_args()

def main():
args = get_args()
print('Hello, ' + args.name + '!')

if __name__ == '__main__':
main()

Nothing has changed about the way the program works. We’re just organizing the code
to group ideas together—the code that deals with argparse now lives in the get_args()
function, and everything else lives in main(). Just to be sure, go run the test suite!

The get_args() function is
dedicated to getting the
arguments. All the argparse
code now lives here.

We need to call return to send the
results of parsing the arguments
back to the main() function.in()

tion
uch
rter
ow.

Call the get_args() function to get parsed
arguments. If there is a problem with the
arguments or if the user asks for --help, the
program never gets to this point because
argparse will cause it to exit. If our program
does make it this far, the input values must
have been OK.

28 CHAPTER 1 How to write and test a Python program

 entire
 long
ent

 to
nd the
erson
t, how
lems,
1.11.1 Checking style and errors

Our program works really well now. We can use tools like Flake8
and Pylint to check if our program has problems. These tools are
called linters, and their job is to suggest ways to improve a program.
If you haven’t installed them yet, you can use the pip module to do
so now:

$ python3 -m pip install flake8 pylint

The Flake8 program wants me to put two blank lines between each
of the function def definitions:

$ flake8 hello.py
hello.py:6:1: E302 expected 2 blank lines, found 1
hello.py:12:1: E302 expected 2 blank lines, found 1
hello.py:16:1: E305 expected 2 blank lines after class or function definition,

found 1

And Pylint says that the functions are missing documentation (“docstrings”):

$ pylint hello.py
************* Module hello
hello.py:1:0: C0114: Missing module docstring (missing-module-docstring)
hello.py:6:0: C0116: Missing function or method docstring (missing-function-

docstring)
hello.py:12:0: C0116: Missing function or method docstring (missing-function-

docstring)

Your code has been rated at 7.00/10 (previous run: -10.00/10, +17.00)

A docstring is a string that occurs just after the def of the function. It’s common to
have several lines of documentation for a function, so programmers often will use
Python’s triple quotes (single or double) to create a multiline string. Following is
what the program looks like when I add docstrings. I have also used YAPF to format
the program and fix the spacing problems, but you are welcome to use Black or any
other tool you like.

#!/usr/bin/env python3
"""
Author: Ken Youens-Clark <kyclark@gmail.com>
Purpose: Say hello
"""

import argparse

Triple-quoted, multiline docstring for the
program. It’s common practice to write a
docstring just after the shebang to docum
the overall purpose of the function. I like
include at least my name, email address, a
purpose of the script so that any future p
using the program will know who wrote i
to get in touch with me if they have prob
and what the program is supposed to do.

29Testing hello.py
--
def get_args():

"""Get the command-line arguments"""

parser = argparse.ArgumentParser(description='Say hello')
parser.add_argument('-n', '--
name', default='World', help='Name to greet')

return parser.parse_args()

--
def main():

"""Make a jazz noise here"""

args = get_args()
print('Hello, ' + args.name + '!')

--
if __name__ == '__main__':

main()

To learn how to use YAPF or Black on the command line, run them with the -h or
--help flag and read the documentation. If you are using an IDE like VS Code or
PyCharm, or if you are using the Repl.it interface, there are commands to reformat
your code.

1.12 Testing hello.py
We’ve made many changes to our program—are we sure it still works correctly? Let’s
run our test again.

 This is something you will do literally hundreds of times, so I’ve created a short-
cut you might like to use. In every directory, you’ll find a file called Makefile that
looks like this:

$ cat Makefile
.PHONY: test

test:
pytest -xv test.py

If you have the program make installed on your computer, you can run make test
when you are in the 01_hello directory. The make program will look for a Makefile in
your current working directory and then look for a recipe called “test.” There it will
find that the command to run for the “test” target is pytest -xv test.py, so it will run
that command for you.

$ make test
pytest -xv test.py

A big horizontal “line” comment to
help me find the functions. You can
omit these if you don’t like them.

The docstring for the get_args()
function. I like to use triple quotes even
for a single-line comment, as they help

me to see the docstring better.

The main() function is simply where the
program begins, so there’s not much to say
in the docstring. I think it’s (at least a little)
funny to always put “Make a jazz noise
here,” but you can put whatever you like.

30 CHAPTER 1 How to write and test a Python program
============================= test session starts ==============================
...
collected 5 items

test.py::test_exists PASSED [20%]
test.py::test_runnable PASSED [40%]
test.py::test_executable PASSED [60%]
test.py::test_usage PASSED [80%]
test.py::test_input PASSED [100%]

============================== 5 passed in 0.75s ===============================

If you do not have make installed, you might like to install it and learn about how
Makefiles can be used to execute complicated sets of commands. If you do not want to
install or use make, you can always run pytest -xv test.py yourself. They both accom-
plish the same task.

 The important point is that we were able to use our tests to verify that our program
still does exactly what it is supposed to do. As you write programs, you may want to try
different solutions. Tests give you the freedom to rewrite a program (also called
“refactoring your code”) and know that it still works.

1.13 Starting a new program with new.py
The argparse module is a standard module that is always
installed with Python. It’s widely used because it can save
us so much time in parsing and validating the arguments
to our programs. You’ll be using argparse in every pro-
gram for this book, and you’ll learn how you can use it to
convert text to numbers, to validate and open files, and
much more. There are so many options that I created a
Python program called new.py that will help you start writ-
ing new Python programs that use argparse.

 I have put this new.py program into the bin directory of the GitHub repo. I suggest
you use it to start every new program you write. For instance, you could create a new
version of hello.py using new.py. Go to the top level of your repository and run this:

$ bin/new.py 01_hello/hello.py
"01_hello/hello.py" exists. Overwrite? [yN] n
Will not overwrite. Bye!

The new.py program will not overwrite an existing file unless you tell it to, so you can
use it without worrying that you might erase your work. Try using it to create a pro-
gram with a different name:

$ bin/new.py 01_hello/hello2.py
Done, see new script "01_hello/hello2.py."

31Starting a new program with new.py
Now try executing that program:

$ 01_hello/hello2.py
usage: hello2.py [-h] [-a str] [-i int] [-f FILE] [-o] str
hello2.py: error: the following arguments are required: str

Let’s look at the source code of the new program:

#!/usr/bin/env python3
"""
Author : Ken Youens-Clark <kyclark@gmail.com>
Date : 2020-02-28
Purpose: Rock the Casbah
"""

import argparse
import os
import sys

--
def get_args():

"""Get command-line arguments"""

parser = argparse.ArgumentParser(
description='Rock the Casbah',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('positional',
metavar='str',
help='A positional argument')

parser.add_argument('-a',
'--arg',
help='A named string argument',
metavar='str',
type=str,
default='')

parser.add_argument('-i',
'--int',
help='A named integer argument',
metavar='int',
type=int,
default=0)

parser.add_argument('-f',
'--file',
help='A readable file',
metavar='FILE',
type=argparse.FileType('r'),
default=None)

parser.add_argument('-o',
'--on',

The shebang line should use
the env program to find the
python3 program.

This docstring is for the
program as a whole.

These lines import
various modules that
the program needs.

The get_args() function is
responsible for parsing and
validating arguments.

Define a “positional”
argument like our first
version of hello.py that
had a name argument.

Define an “optional”
argument like when
we changed to use the
--name option.

Define an optional argument
that must be an integer value.

Define an optional argument
that must be a file.

Define a “flag” option that is either “on”
when present or “off” when absent.
You’ll learn more about these later.

32 CHAPTER 1 How to write and test a Python program
help='A boolean flag',
action='store_true')

return parser.parse_args()

--
def main():

"""Make a jazz noise here"""

args = get_args()
str_arg = args.arg
int_arg = args.int
file_arg = args.file
flag_arg = args.on
pos_arg = args.positional

print(f'str_arg = "{str_arg}"')
print(f'int_arg = "{int_arg}"')
print('file_arg = "{}"'.format(file_arg.name if file_arg else ''))
print(f'flag_arg = "{flag_arg}"')
print(f'positional = "{pos_arg}"')

--
if __name__ == '__main__':

main()

This program will accept the following arguments:

 A single positional argument of the type str. Positional means it is not preceded
by a flag to name it but has meaning because of its position relative to the com-
mand name.

 An automatic -h or --help flag that will cause argparse to print the usage.
 A string option called either -a or --arg.
 A named option argument called -i or --int.
 A file option called -f or --file.
 A Boolean (off/on) flag called -o or --on.

Looking at the preceding list, you can see that new.py has done the following for you:

 Created a new Python program called hello2.py
 Used a template to generate a working program complete with docstrings, a

main() function to start the program, a get_args() function to parse and doc-
ument various kinds of arguments, and code to start the program running in
the main() function

 Made the new program executable so that it can be run like ./hello2.py

Return the parsed arguments to main(). If there
are any problems, like if the --int value is some text
rather than a number like 42, argparse will print
an error message and the “usage” for the user.

Define the main() function
where the program starts.

The first thing our main() functions will always
do is call get_args() to get the arguments.

Each argument’s value is accessible through
the long name of the argument. It is not
required to have both a short and long name,
but it is common and tends to make your
program more readable.

When the program is being executed,
the __name__ value will be equal to
the text “__main__.”

If the condition is true, this
calls the main() function.

33Summary
The result is a program that you can immediately execute and that will produce docu-
mentation on how to run it. After you use new.py to create your new program, you
should open it with your editor and modify the argument names and types to suit the
needs of your program. For instance, in chapter 2 you’ll be able to delete everything
but the positional argument, which you should rename from 'positional' to some-
thing like 'word' (because the argument is going to be a word).

 Note that you can control the “name” and “email” values that are used by new.py
by creating a file called .new.py (note the leading dot!) in your home directory. Here
is mine:

$ cat ~/.new.py
name=Ken Youens-Clark
email=kyclark@gmail.com

1.14 Using template.py as an alternative to new.py
If you don’t want to use new.py, I have included a sample of the preceding program as
template/template.py, which you can copy. For instance, in chapter 2 you will need to
create the program 02_crowsnest/crowsnest.py.

 You can do this with new.py from the top level of the repository:

$ bin/new.py 02_crowsnest/crowsnest.py

Or you can the use cp (copy) command to copy the template to your new program:

$ cp template/template.py 02_crowsnest/crowsnest.py

The main point is that you won’t have to start every program from scratch. I think it’s
much easier to start with a complete, working program and modify it.

NOTE You can copy new.py to your ~/bin directory. Then you can use it from
any directory to create a new program.

Be sure to skim the appendix—it has many examples of programs that use argparse.
You can copy many of those examples to help you with the exercises.

Summary
 A Python program is plain text that lives in a file. You need the python3 pro-

gram to interpret and execute the program file.
 You can make a program executable and copy it to a location in your $PATH so

that you can run it like any other program on your computer. Be sure to set the
shebang to use env to find the correct python3.

 The argparse module will help you document and parse all the parameters to
your program. You can validate the types and numbers of arguments, which can
be positional, optional, or flags. The usage will be automatically generated.

34 CHAPTER 1 How to write and test a Python program
 We will use the pytest program to run the test.py programs for each exercise.
The make test shortcut will execute pytest -xv test.py, or you can run this
command directly.

 You should run your tests often to ensure that everything works.
 Code formatters like YAPF and Black will automatically format your code to

community standards, making it easier to read and debug.
 Code linters like Pylint and Flake8 can help you correct both programmatic

and stylistic problems.
 You can use the new.py program to generate new Python programs that use

argparse.

The crow’s nest:
Working with strings
Avast, you corny-faced gollumpus!
Ye are barrelman for this watch.
D’ye ken what I mean, ye addle-
pated blunderbuss?! Ah, landlubber
ye be! OK, then, you are the lookout
in the crow’s nest—the little bucket
attached to the top of a mast of a
sailing ship. Your job is to keep a
lookout for interesting or dangerous
things, like a ship to plunder or an
iceberg to avoid. When you see
something like a narwhal, you are
supposed to cry out, “Ahoy, Captain,
a narwhal off the larboard bow!” If
you see an octopus, you’ll shout
“Ahoy, Captain, an octopus off the lar-
board bow!” (We’ll assume every-
thing is “off the larboard bow” for this exercise. It’s a great place for things to be.)

 From this point on, each chapter will present a coding challenge that you
should complete on your own. I will discuss the key ideas you’ll need to solve the
problems as well as how to use the provided tests to determine when your program
is correct. You should have a copy of the Git repository locally (see the setup instruc-
tions in the book’s introduction), and you should write each program in that chap-
ter’s directory. For example, this chapter’s program should be written in the
02_crowsnest directory, where the tests for the program live.
35

36 CHAPTER 2 The crow’s nest: Working with strings
 In this chapter, we’re going to start working with strings. By the end, you will be
able to

 Create a program that accepts a positional argument and produces usage
documentation

 Create a new output string depending on the inputs to the program
 Run a test suite

Your program should be called crowsnest.py. It will accept a single positional argu-
ment and will print the given argument inside the “Ahoy” bit, along with the word “a”
or “an” depending on whether the argument starts with a consonant or a vowel.

 That is, if given “narwhal,” it should do this:

$./crowsnest.py narwhal
Ahoy, Captain, a narwhal off the larboard bow!

And if given “octopus,”

$./crowsnest.py octopus
Ahoy, Captain, an octopus off the larboard bow!

This means you’re going to need to write a program that accepts some input on the
command line, decides on the proper article (“a” or “an”) for the input, and prints
out a string that puts those two values into the “Ahoy” phrase.

2.1 Getting started
You’re probably ready to start writing the program! Well, hold on just a minute longer,
ye duke of limbs. We need to discuss how you can use the tests to know when your pro-
gram is working and how you might get started programming.

2.1.1 How to use the tests

“The greatest teacher, failure is.”

 —Yoda

In the code repository, I’ve included tests that will guide you in the writing of your
program. Before you even write the first line of code, I’d like you to run the tests so
you can look at the first failed test:

$ cd 02_crowsnest
$ make test

Instead of make test you could also run pytest -xv test.py. Among the output,
you’ll see this line:

$ pytest -xv test.py
============================= test session starts ==============================
...

37Getting started

ne
e
if
.
collected 6 items

test.py::test_exists FAILED [16%]

You’ll also see lots of other output trying to convince you that the expected file, crows-
nest.py, does not exist. Learning to read the test output is a skill in itself—it takes quite
a bit of practice, so try not to feel overwhelmed. In my terminal (iTerm on a Mac), the
output from pytest shows colors and bold print to highlight key failures. The text in
bold, red letters is usually where I start, but your terminal may behave differently.

 Let’s take a gander at the output. It does look at bit daunting at first, but you’ll get
used to reading the messages and finding your errors.

=================================== FAILURES ===================================
_________________________________ test_exists __________________________________

def test_exists():
"""exists"""

> assert os.path.isfile(prg)
E AssertionError: assert False
E + where False = <function isfile at 0x1086f1310>('./crowsnest.py')
E + where <function isfile at 0x1086f1310> = <module 'posixpath'
from '/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/posixpath.

py'>.isfile
E + where <module 'posixpath' from
'/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/posixpath.py'>

= os.path

test.py:22: AssertionError
!!!!!!!!!!!!!!!!!!!!!!!!!! stopping after 1 failures !!!!!!!!!!!!!!!!!!!!!!!!!!!
============================== 1 failed in 0.05s ===============================

The first test for every program in the book checks that the expected file exists, so let’s
create it!

2.1.2 Creating programs with new.py

In order to pass the first test, you need to create a file called crowsnest.py inside the
02_crowsnest directory where test.py is located. While it’s perfectly fine to start writing
from scratch, I suggest you use the new.py program to print some useful boilerplate
code that you’ll need in every exercise.

This test failed. There are more tests after this, but
testing stops here because of the -x flag to pytest.

This is the actual code inside
test.py that is running. It’s a
function called test_exists().

The “>” at the beginning of this li
indicates this is the line where th
error starts. The test is checking
there is a file called crowsnest.py
If you haven’t created it, this will
fail as expected.

The “E” at the beginning of this line is the “Error” you should read. It’s very
difficult to understand what the test is trying to tell you, but essentially the
./crowsnest.py file does not exist.

This warns that no more tests will run after the one failure. This is
because we ran it with the flag to stop testing at the first failure.

38 CHAPTER 2 The crow’s nest: Working with strings

expe
file e

so this
pa
 From the top level of the repository, you can run the following command to create
the new program.

$ bin/new.py 02_crowsnest/crowsnest.py
Done, see new script "02_crowsnest/crowsnest.py."

If you don’t want to use new.py, you can copy the template/template.py program:

$ cp template/template.py 02_crowsnest/crowsnest.py

You should now have the outline of a working program that accepts command-line
arguments. If you run your new crowsnest.py with no arguments, it will print a short
usage statement like the following (notice how “usage” is the first word of the output):

$./crowsnest.py
usage: crowsnest.py [-h] [-a str] [-i int] [-f FILE] [-o] str
crowsnest.py: error: the following arguments are required: str

Run it with ./crowsnest.py --help. It will print a longer help message too.

NOTE Those are not the correct parameters for our program, just the default
examples supplied by new.py. You will need to modify them to suit this program.

2.1.3 Write, test, repeat

You just created the program, so you ought to be able to pass the first test. The cycle I
hope you’ll develop is to write a very small amount of code—literally one or two lines
at most—and then run the program or the tests to see how you’re doing.

 Let’s run the tests again:

$ make test
pytest -xv test.py
============================= test session starts ==============================
...
collected 6 items

test.py::test_exists PASSED [16%]
test.py::test_usage PASSED [33%]
test.py::test_consonant FAILED [50%]

As you can see, creating a new program with new.py will make you pass the first two tests:

1 Does the program exist? Yes, you just created it.
2 Does the program print a help message when you ask for help? Yes, you ran it

above with no arguments and the --help flag, and you saw that it will produce
help messages.

The
cted

xists,
 test
sses.

The program will respond to -h and --help. The fact that the help
is actually incorrect is not important at this point. The tests are

only checking that you seem to have the outline of a program that
will run and process the help flags.

The test_consonant() test is failing. That’s OK! We haven’t even started
writing the actual program, but at least we have a place to start.

39Getting started
Now you have a working program that accepts some arguments (but not the right
ones). Next you need to make your program accept the “narwhal” or “octopus” value
that needs to be announced. We’ll use command-line arguments to do that.

2.1.4 Defining your arguments

Figure 2.1 is sure to shiver your timbers, showing the inputs (or parameters) and output
of the program. We’ll use these diagrams throughout the book to imagine how code
and data work together. In this program, the input is a word, and a phrase incorporat-
ing that word with the correct article is the output.

We need to modify the part of the program that gets the arguments—the aptly named
get_args() function. This function uses the argparse module to parse the command-
line arguments, and our program needs to accept a single, positional argument. If
you’re unsure what a “positional” argument is, be sure to read the appendix, espe-
cially section A.4.1.

 The get_args() function created by the template names the first argument
positional. Remember that positional arguments are defined by their positions and
don’t have names that start with dashes. You can delete all the arguments except for
the positional word. Modify the get_args() part of your program until it will print
this usage:

$./crowsnest.py
usage: crowsnest.py [-h] word
crowsnest.py: error: the following arguments are required: word

Likewise, it should print longer usage documentation for the -h or --help flag:

$./crowsnest.py -h
usage: crowsnest.py [-h] word

Figure 2.1 The input to the program is a word, and the output is that word plus
its proper article (and some other stuff).

40 CHAPTER 2 The crow’s nest: Working with strings

d

he
.

Crow's Nest -- choose the correct article

positional arguments:
word A word

optional arguments:
-h, --help show this help message and exit

Do not proceed until your usage matches the preceding!
 When your program prints the correct usage, you can get the word argument

inside the main function. Modify your program so that it will print the word:

def main():
args = get_args()
word = args.word
print(word)

Then test that it works:

$./crowsnest.py narwhal
narwhal

And now run your tests again. You should still be passing two and failing the third.
Let’s read the test failure:

=================================== FAILURES ===================================
________________________________ test_consonant ________________________________

def test_consonant():
"""brigantine -> a brigantine"""

for word in consonant_words:
out = getoutput(f'{prg} {word}')

> assert out.strip() == template.format('a', word)
E AssertionError: assert 'brigantine' == 'Ahoy, Captai...larboard bow!'
E - brigantine
E + Ahoy, Captain, a brigantine off the larboard bow!

So we need to get the word into the “Ahoy” phrase. How can we do that?

You need to define a word
parameter. Notice that it is listed
as a positional argument.

The -h and --help flags are create
automatically by argparse. You
are not allowed to use these as
options. They are used to create t
documentation for your program

It’s not terribly important right now to understand this line, but the getoutput()
function is running the program with a word. We’re going to talk about the f-string in
this chapter. The output from running the program will go into the out variable, which
will be used to see if the program created the correct output for a given word. None of
the code in this function is anything you should worry about being able to write yet.

The line starting with “>” shows the code that
produced an error. The output of the program is

compared to an expected string. Since it didn’t
match, the assert produces an exception.

This line starts with “E”
to indicate the error.

The line starting with a hyphen (-) is what the test got when it ran with
the argument “brigantine”—it got back the word “brigantine.”

The line starting with the plus sign (+) is what the test
expected: “Ahoy, Captain, a brigantine off the larboard bow!”

41Getting started
2.1.5 Concatenating strings

Putting strings together is called concatenating or joining strings. To demonstrate, I’ll
enter some code directly into the Python interpreter. I want you to type along. No,
really! Type everything you see, and try it for yourself.

 Open a terminal and type python3 or ipython to start a REPL. A REPL is a Read-
Evaluate-Print-Loop—Python will read each line of input, evaluate it, and print the
results in a loop. Here’s what it looks like on my system:

$ python3
Python 3.8.1 (v3.8.1:1b293b6006, Dec 18 2019, 14:08:53)
[Clang 6.0 (clang-600.0.57)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

The “>>>” is a prompt where you can type code. Remember not to type that part! To
exit the REPL, either type quit() or press Ctrl-D (the Control key plus the letter D).

NOTE You may prefer to use Python’s IDLE (integrated development and
learning environment) program, IPython, or Jupyter Notebooks to interact
with the language. I’ll stick to the python3 REPL throughout the book.

Let’s start off by assigning the variable word to the value “narwhal.” In the REPL, type
word = 'narwhal' and press Enter:

>>> word = 'narwhal'

Note that you can put as many (or no) spaces around the = as you like, but convention
and readability (and tools like Pylint and Flake8 that help you find errors in your
code) ask you to use exactly one space on either side.

 If you type word and press Enter, Python will print the current value of word:

>>> word
'narwhal'

Now type werd and press Enter:

>>> werd
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'werd' is not defined

WARNING There is no werd variable because we haven’t set werd to be any-
thing. Using an undefined variable causes an exception that will crash your pro-
gram. Python will happily create werd for you when you assign it a value.

We need to insert the word between two other strings. The + operator can be used to
join strings together:

>>> 'Ahoy, Captain, a ' + word + ' off the larboard bow!'
'Ahoy, Captain, a narwhal off the larboard bow!'

42 CHAPTER 2 The crow’s nest: Working with strings
If you change your program to print() that string instead of just printing the word,
you should be able to pass four tests:

test.py::test_exists PASSED [16%]
test.py::test_usage PASSED [33%]
test.py::test_consonant PASSED [50%]
test.py::test_consonant_upper PASSED [66%]
test.py::test_vowel FAILED [83%]

If you look closely at the failure, you’ll see this:

E - Ahoy, Captain, a aviso off the larboard bow!
E + Ahoy, Captain, an aviso off the larboard bow!
E ? +

We hardcoded the “a” before the word, but we really need to figure out whether to use
“a” or “an” depending on whether the word starts with a vowel. How can we do that?

2.1.6 Variable types

Before we go much further, I need to take a small step back and point out that our
word variable is a string. Every variable in Python has a type that describes the kind of
data it holds. Because we put the value for word in quotes ('narwhal'), word holds a
string, which Python represents with a class called str. (A class is a collection of code
and functions that we can use.)

 The type() function will tell you what kind of data Python thinks something is:

>>> type(word)
<class 'str'>

Whenever you put a value in single quotes ('') or double quotes (""), Python will
interpret it as a str:

>>> type("submarine")
<class 'str'>

WARNING If you forget the quotes, Python will look for some variable or
function by that name. If there is no variable or function by that name, it will
cause an exception:

>>> word = narwhal
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'narwhal' is not defined

Exceptions are bad, and we will try to write code that avoids them, or at least knows
how to handle them gracefully.

43Getting started
2.1.7 Getting just part of a string

Back to our problem. We need to put either “a” or “an” in front of the word we’re
given, based on whether the first character of word is a vowel or a consonant.

 In Python, we can use square brackets and an index to get an individual character
from a string. The index is the numeric position of an element in a sequence, and we
must remember that indexing starts at 0.

>>> word = 'narwhal'
>>> word[0]
'n'

You can index into a literal string value too:

>>> 'narwhal'[0]
'n'

Because the index values start with 0, that means the last index is
one less than the length of the string, which is often confusing.
The length of “narwhal” is 7, but the last character is found at
index 6:

>>> word[6]
'l'

You can also use negative index numbers to count backwards
from the end, so the last index is also -1:

>>> word[-1]
'l'

You can use slice notation [start:stop] to get a range of charac-
ters. Both start and stop are optional. The default value for
start is 0 (the beginning of the string), and the stop value is not
inclusive:

>>> word[:3]
'nar'

44 CHAPTER 2 The crow’s nest: Working with strings
The default value for stop is the end of the string:

>>> word[3:]
'whal'

In the next chapter, you’ll see that this is the same as the syntax for slicing lists. A
string is (sort of) a list of characters, so this isn’t too strange.

2.1.8 Finding help in the REPL

The str class has a ton of functions we can use to handle strings, but what are they? A
large part of programming is knowing how to ask questions and where to look for
answers. A common refrain you may hear is “RTFM”—Read the Fine Manual. The
Python community has created reams of documentation, which are all available at
https://docs.python.org/3/. You will need to refer to the documentation constantly
to remind yourself (and discover) how to use certain functions. The docs for the
string class are here: https://docs.python.org/ 3/library/string.html.

 I prefer to read the docs directly inside the REPL, in this case by
typing help(str):

>>> help(str)

Inside the help, you move up and down in the text using the up and
down cursor arrows on your keyboard. You can also press the space-
bar or the letter F (or sometimes Ctrl-F) to jump forward to the next
page, and the letter B (or sometimes Ctrl-B) to jump backward. You can search
through the documentation by pressing / and then the text you want to find. If you
press N (for “next”) after a search, you will jump to the next place that string is found.
To leave the help, press Q (for “quit”).

2.1.9 String methods

Now that we know word is a string (str), we have all these incredibly
useful methods we can call on the variable. (A method is a function
that belongs to a variable like word.)

 For instance, if I wanted to shout about the fact that we have a
narwhal, I could print it in UPPERCASE LETTERS. If I search through
the help, I will see that there is a function called str.upper(). Here is
how you can call or execute that function:

>>> word.upper()
'NARWHAL'

You must include the parentheses, (), or else you’re talking about
the function itself :

>>> word.upper
<built-in method upper of str object at 0x10559e500>

https://docs.python.org/3/library/string.html
https://docs.python.org/3/

45Getting started
That will actually come in handy later, when we use functions like map() and filter(),
but for now we want Python to execute the str.upper() function on the variable word,
so we add the parentheses. Note that the function returns an uppercase version of the
word but does not change the value of word:

>>> word
'narwhal'

There is another str function with “upper” in the name called str.isupper(). The
name helps you know that this will return a true/false type answer. Let’s try it:

>>> word.isupper()
False

We can chain methods together like so:

>>> word.upper().isupper()
True

That makes sense. If I convert word to uppercase, then word.isupper() returns True.
 I find it odd that the str class does not include a method

to get the length of a string. For that, we must use a separate
function called len(), short for “length”:

>>> len('narwhal')
7
>>> len(word)
7

Are you typing all this into Python yourself? I recommend you do! Find other meth-
ods in the str help, and try them out.

2.1.10 String comparisons

You now know how to get the first letter of word by using word[0]. Let’s assign it to the
variable char:

>>> word = 'octopus'
>>> char = word[0]
>>> char
'o'

If you check the type() of your new char variable, it is a str. Even a single character is
still considered by Python to be a string:

>>> type(char)
<class 'str'>

Now we need to figure out if char is a vowel or a consonant. We’ll say that the letters “a,”
“e,” “i,” “o,” and “u” make up our set of “vowels.” You can use == to compare strings:

46 CHAPTER 2 The crow’s nest: Working with strings
>>> char == 'a'
False
>>> char == 'o'
True

NOTE Be careful to always use one equal sign (=) when assigning a value to a
variable, like word = 'narwhal' and two equal signs (==, which, in my head, I
pronounce “equal-equal”) when you compare two values like word == 'narwhal'.
The first is a statement that changes the value of word, and the second is an
expression that returns True or False (see figure 2.2).

We need to compare our char to all the vowels. You can use and and or in such com-
parisons, and they will be combined according to standard Boolean algebra:

>>> char == 'a' or char == 'e' or char == 'i' or char == 'o' or char == 'u'
True

What if the word is “Octopus” or “OCTOPUS”?

>>> word = 'OCTOPUS'
>>> char = word[0]
>>> char == 'a' or char == 'e' or char == 'i' or char == 'o' or char == 'u'
False

Do we have to make 10 comparisons in order to check the uppercase versions, too?
What if we were to lowercase word[0]? Remember that word[0] returns a str, so we
can chain other str methods onto that:

>>> word = 'OCTOPUS'
>>> char = word[0].lower()
>>> char == 'a' or char == 'e' or char == 'i' or char == 'o' or char == 'u'
True

An easier way to determine if char is a vowel would be to use
Python’s x in y construct, which will tell us if the value x is in
the collection y. We can ask whether the letter 'a' is in the
longer string 'aeiou':

>>> 'a' in 'aeiou'
True

Figure 2.2 An expression returns a
value. A statement does not.

47Getting started
But the letter 'b' is not:

>>> 'b' in 'aeiou'
False

Let’s use that to test the first character of the lowercased word (which is 'o'):

>>> word = 'OCTOPUS'
>>> word[0].lower() in 'aeiou'
True

2.1.11 Conditional branching

Once you have figured out if the first letter is a vowel, you will need to select an article.
We’ll use a very simple rule: if the word starts with a vowel, choose “an”; otherwise,
choose “a.” This misses exceptions like when the initial “h” in a word is silent. For
instance, we say “a hat” but “an honor.” Nor will we consider the case where an initial
vowel has a consonant sound, as in “union,” where the “u” sounds like a “y.”

 We can create a new variable called article that we will set to the empty string,
and we’ll use an if/else statement to figure out what to put in it:

article = ''
if word[0].lower() in 'aeiou':

article = 'an'
else:

article = 'a'

Here is a much shorter way to write that with an if expression (expressions return val-
ues; statements do not). The if expression is written a little backwards. First comes
the value if the test (or “predicate”) is True, then the predicate, and then the value if
the predicate is False (figure 2.3).

This approach is also safer because the if expression is required to have the else.
There’s no chance that we could forget to handle both cases:

>>> char = 'o'
>>> article = 'an' if char in 'aeiou' else 'a'

Initialize article to
the empty string. Check if the first, lowercased

character of word is a vowel.

Set article to “an” if the
first character is a vowel.Set article to “a” if the first

character is not a vowel.

Figure 2.3 The if expression will return the first value if the
predicate is True and the second value otherwise.

48 CHAPTER 2 The crow’s nest: Working with strings
Let’s verify that we have the correct article:

>>> article
'an'

2.1.12 String formatting

Now we have two variables, article and word, that need to be incorporated into our
“Ahoy!” phrase. You saw earlier that we can use the plus sign (+) to concatenate strings.
Another method for creating new strings from other strings is to use the str.format()
method.

 To do so, you create a string template with curly brackets {}, which indicate place-
holders for values. The values that will be substituted are arguments to the str.format()
method, and they are substituted in the same order that the {} appear (figure 2.4).

Here it is in code:

>>> 'Ahoy, Captain, {} {} off the larboard bow!'.format(article, word)
'Ahoy, Captain, an octopus off the larboard bow!'

Another method for combining strings uses the special “f-string” where you can put
the variables directly into the curly brackets {}. It’s a matter of taste which approach
you choose; I tend to prefer this style because I don’t have to think about which vari-
able goes with which set of brackets:

>>> f'Ahoy, Captain, {article} {word} off the larboard bow!'
'Ahoy, Captain, an octopus off the larboard bow!'

NOTE In some programming languages, you have
to declare the variable’s name and what type of data
it will hold. If a variable is declared to be a number,
it can never hold a different type of value, like a
string. This is called static typing because the type of
the variable can never change.

Python is a dynamically typed language, which means
you do not have to declare a variable or what kind of
data the variable will hold. You can change the value
and type of data at any time. This could be either great
or terrible news. As Hamlet says, “There is nothing
either good or bad, but thinking makes it so.”

Figure 2.4 The str.format() method is used to expand the values of variables inside
strings.

49Solution

par
pa

argu

S
defau

para
th

args c
the
val

the ge
fu
2.1.13 Time to write

Here are a few hints for writing your solution:

 Start your program with new.py and fill in get_args() with a single positional
argument called word.

 You can get the first character of the word by indexing it like a list, word[0].
 Unless you want to check both upper- and lowercase letters, you can use either

the str.lower() or str.upper() method to force the input to one case for
checking whether the first character is a vowel or consonant.

 There are fewer vowels (five, if you recall) than consonants, so it’s probably eas-
ier to check whether the first character is one of those.

 You can use the x in y syntax to see if the element x is in the collection y, with
the collection here being a list.

 Use str.format() or f-strings to insert the correct article for the given word
into the longer phrase.

 Run make test (or pytest -xv test.py) after every change to your program to
ensure that your program compiles and is on the right track.

Now go write the program before you turn the page and study my solution. Look alive,
you ill-tempered shabaroon!

2.2 Solution
Following is one way you could write a program that satisfies the test suite:

#!/usr/bin/env python3
"""Crow's Nest"""

import argparse

--
def get_args():

"""Get command-line arguments"""

parser = argparse.ArgumentParser(
description="Crow's Nest -- choose the correct article",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('word', metavar='word', help='A word')

return parser.parse_args()

--
def main():

"""Make a jazz noise here"""

args = get_args()
word = args.word

Define the function get_args () to handle the
command-line arguments. I like to put this first so
I can see it right away when I’m reading the code.

The
ser will
rse the
ments.

The description
shows in the

usage to describe
what the

program does.

how the
lt values
for each
meter in
e usage.

Define a
positional
argument
called word.

The result of parsing the arguments
will be returned to main().

Define the main() function
where the program will start.

ontains
 return

ue from
t_args()
nction. Put the args.word value from the

arguments into the word variable.

50 CHAPTER 2 The crow’s nest: Working with strings
article = 'an' if word[0].lower() in 'aeiou' else 'a'

print(f'Ahoy, Captain, {article} {word} off the larboard bow!')

--
if __name__ == '__main__':

main()

2.3 Discussion
I’d like to stress that the preceding listing is a solution, not the solution. There are
many ways to express the same idea in Python. As long as your code passes the test
suite, it is correct.

 That said, I created my program with new.py, which automatically gives me two
functions:

 get_args(), where I define the arguments to the program
 main(), where the program starts

Let’s talk about these two functions.

2.3.1 Defining the arguments with get_args()

I prefer to put the get_args() function first so that I can see right away what the pro-
gram expects as input. You don’t have to define this as a separate function—you could
put all this code inside main(), if you prefer. Eventually our programs are going to get
longer, though, and I think it’s nice to keep this as a separate idea. Every program I
present will have a get_args() function that will define and validate the input.

 Our program specifications (the “specs”) say that the program should accept one
positional argument. I changed the 'positional' argument name to 'word' because
I’m expecting a single word:

parser.add_argument('word', metavar='word', help='Word')

I recommend you never leave the positional argument named 'positional' because it
is an entirely nondescriptive term. Naming your variables according to what they are
will make your code more readable.

 The program doesn’t need any of the other options created by new.py, so you can
delete the rest of the parser.add_argument() calls.

 The get_args() function will return the result of parsing the command-line argu-
ments that I put into the variable args:

return parser.parse_args()

Choose the correct article, using an if
expression to see if the lowercased,
first character of word is or is not in
the set of vowels.

Print the output
string using an

f-string to
interpolate the

article and word
variables inside

the string.

Check if we are in the “main”
namespace, which means the
program is running.

If we are in the “main” namespace,
call the main() function to make
the program start.

51Discussion
If argparse is not able to parse the arguments—for example, if there are none—it will
never return from get_args() but will instead print the “usage” for the user and exit
with an error code to let the operating system know that the program exited without
success. (On the command line, an exit value of 0 means there were 0 errors. Any-
thing other than 0 is considered an error.)

2.3.2 The main() thing

Many programming languages will automatically start from the main() function, so I
always define a main() function and start my programs there. This is not a require-
ment, but it’s an extremely common idiom in Python. Every program I present will
start with a main() function that will first call get_args() to get the program’s inputs:

def main():
args = get_args()

I can now access the word by calling args.word. Note the lack of parentheses. It’s not
args.word() because it is not a function call. Think of args.word as being like a slot
where the value of the word lives:

word = args.word

I like to work through my ideas using the REPL, so I’m going to pretend that word has
been set to “octopus”:

>>> word = 'octopus'

2.3.3 Classifying the first character of a word

To figure out whether the article I choose should be a or an, I need to look at the first
character of the word. In the introduction, we used this:

>>> word[0]
'o'

I can check if the first character is in the string of vowels, both lower- and uppercase:

>>> word[0] in 'aeiouAEIOU'
True

I can make this shorter, however, if I use the word.lower() function. Then I’d only
have to check the lowercase vowels:

>>> word[0].lower() in 'aeiou'
True

Remember that the x in y form is a way to ask if element x is in the collection y. You
can use it for letters in a longer string (like the list of vowels):

>>> 'a' in 'aeiou'
True

52 CHAPTER 2 The crow’s nest: Working with strings
You can use membership in the list of vowels as a condition to
choose “an”; otherwise, we choose “a.” As mentioned in the intro-
duction, the if expression is the shortest and safest way to make a
binary choice (where there are only two possibilities):

>>> article = 'an' if word[0].lower() in 'aeiou' else 'a'
>>> article
'an'

The safety of the if expression comes from the fact that Python will not even run this
program if you forget the else. Try it and see what error you get.

 Let’s change the value of word to “galleon” and check that it still works:

>>> word = 'galleon'
>>> article = 'an' if word[0].lower() in 'aeiou' else 'a'
>>> article
'a'

2.3.4 Printing the results

Finally we need to print out the phrase with our article and word. As noted in the
introduction, you can use the str.format() function to incorporate the variables into
a string:

>>> article = 'a'
>>> word = 'ketch'
>>> print('Ahoy, Captain, {} {} off the larboard bow!'.format(article, word))
Ahoy, Captain, a ketch off the larboard bow!

Python’s f-strings will interpolate any code inside the {} placeholders, so variables get
turned into their contents:

>>> print(f'Ahoy, Captain, {article} {word} off the larboard bow!')
Ahoy, Captain, a ketch off the larboard bow!

However you choose to print out the article and word is fine, as long as it passes the
tests. While it’s a matter of personal taste which you choose, I find f-strings a bit easier
to read, as my eyes don’t have to jump back and forth from the {} placeholders to the
variables that will go inside them.

2.3.5 Running the test suite

“A computer is like a mischievous genie. It will give you exactly what you ask for, but not
always what you want.”

 —Joe Sondow

Computers are a bit like bad genies. They will do exactly what you tell them, but not
necessarily what you want. In an episode of The X-Files, the character Mulder wishes for
peace on Earth, and a genie removes all humans but him.

53Going further
 Tests are what we can use to verify that our programs are doing what we actually
want them to do. Tests can never prove that our program is truly free from errors, only
that the bugs we imagined or found while writing the program no longer exist. Still,
we write and run tests because they are really quite effective and much better than not
doing so.

 This is the idea behind test-driven development:

 Write tests before we write the software.
 Run the tests to verify that our as-yet-unwritten software fails to deliver on

some task.
 Write the software to fulfill the request.
 Run the tests to check that it now does work.
 Keep running all the tests to ensure that when we add some new code we do not

break existing code.

We won’t be discussing how to write tests just yet. That will come later. For now, I’ve
written all the tests for you. I hope that by the end of this book, you will see the value
of testing and will always start off by writing tests first and code second!

2.4 Going further
 Have your program match the case of the incom-

ing word (for example, “an octopus” and “An
Octopus”). Copy an existing test_ function in
test.py to verify that your program works correctly
while still passing all the other tests. Try writing
the test first, and then make your program pass
the test. That’s test-driven development!

 Accept a new parameter that changes “larboard”
(the left side of the boat) to “starboard” (the
right side1). You could either make an option
called --side that defaults to “larboard,” or you
could make a --starboard flag that, if present,
changes the side to “starboard.”

 The provided tests only give you words that start with an actual alphabetic char-
acter. Expand your code to handle words that start with numbers or punctua-
tion. Should your program reject these? Add more tests to ensure that your
program does what you intend.

1 “Starboard” has nothing to do with stars but with the “steering board” or rudder, which typically was on the
right side of the boat for right-handed sailors.

54 CHAPTER 2 The crow’s nest: Working with strings
Summary
 All Python’s documentation is available at https://docs.python.org/3/ and via

the help command in the REPL.
 Variables in Python are dynamically typed according to whatever value you

assign them, and they come into existence when you assign a value to them.
 Strings have methods like str.upper() and str.isupper() that you can call to

alter them or get information.
 You can get parts of a string by using square brackets and indexes like [0] for

the first letter or [-1] for the last.
 You can concatenate strings with the + operator.
 The str.format() method allows you to create a template with {} placeholders

that get filled in with arguments.
 F-strings like f'{article} {word}' allow variables and code to go directly

inside the brackets.
 The x in y expression will report whether the value x is present in the collec-

tion y.
 Statements like if/else do not return a value, whereas expressions like x if y

else z do return a value.
 Test-driven development is a way to ensure programs meet some minimum cri-

teria of correctness. Every feature of a program should have tests, and writing
and running test suites should be an integral part of writing programs.

https://docs.python.org/3/

Going on a picnic:
Working with lists
Writing code makes me hungry! Let’s write a program to list some tasty foods we’d
like to eat.

 So far we’ve worked with single variables, like a name to say “hello” to or a
nautical-themed object to point out. In this program, we want to keep track of one
or more foods that we will store in a list, a variable that can hold any number of
items. We use lists all the time in real life. Maybe it’s your top-five favorite songs,
your birthday wish list, or a bucket list of the best types of buckets.

 In this chapter, we’re going on a picnic, and we want to print a list of items to
bring along. You will learn to

 Write a program that accepts multiple positional arguments
 Use if, elif, and else to handle conditional branching with three or more

options
 Find and alter items in a list
 Sort and reverse lists
 Format a list into a new string

The items for the list will be passed as positional arguments. When
there is only one item, you’ll print that:

$./picnic.py salad
You are bringing salad.
55

56 CHAPTER 3 Going on a picnic: Working with lists
What? Who just brings salad on a picnic? When there are two
items, you’ll print “and” between them:

$./picnic.py salad chips
You are bringing salad and chips.

Hmm, chips. That’s an improvement. When there are three
or more items, you’ll separate the items with commas:

$./picnic.py salad chips cupcakes
You are bringing salad, chips, and cupcakes.

There’s one other twist. The program will also need to
accept a --sorted argument that will require you to sort
the items before you print them. We’ll deal with that in
a bit.

 So, your Python program must do the following:

 Store one or more positional arguments in a list
 Count the number of arguments
 Possibly sort the items
 Use the list to print a new a string that formats the arguments according to

how many items there are

How should we begin?

3.1 Starting the program
I will always recommend you start programming by running new.py or by copying tem-
plate/template.py to the program name. This time the program should be called pic-
nic.py, and you need to create it in the 03_picnic directory.

 You can do this using the new.py program from the top level of your repository:

$ bin/new.py 03_picnic/picnic.py
Done, see new script "03_picnic/picnic.py."

Now go into the 03_picnic directory and run make test or pytest -xv test.py. You
should pass the first two tests (program exists, program creates usage) and fail the third:

test.py::test_exists PASSED [14%]
test.py::test_usage PASSED [28%]
test.py::test_one FAILED [42%]

57Starting the program
The rest of the output complains that the test expected “You are bringing chips” but
got something else:

=================================== FAILURES ===================================
___________________________________ test_one ___________________________________

def test_one():
"""one item"""

out = getoutput(f'{prg} chips')
> assert out.strip() == 'You are bringing chips.'
E assert 'str_arg = ""...nal = "chips"' == 'You are bringing chips.'
E + You are bringing chips.
E - str_arg = ""
E - int_arg = "0"
E - file_arg = ""
E - flag_arg = "False"
E - positional = "chips"

test.py:31: AssertionError
====================== 1 failed, 2 passed in 0.56 seconds ======================

Let’s run the program with the argument “chips” and see what it gets:

$./picnic.py chips
str_arg = ""
int_arg = "0"
file_arg = ""
flag_arg = "False"
positional = "chips"

Right, that’s not correct at all! Remember, the template doesn’t yet have the correct
arguments, just some examples, so the first thing we need to do is fix the get_args()
function. Your program should print a usage statement like the following if given no
arguments:

$./picnic.py
usage: picnic.py [-h] [-s] str [str ...]
picnic.py: error: the following arguments are required: str

And here is the usage for the -h or --help flags:

$./picnic.py -h
usage: picnic.py [-h] [-s] str [str ...]

Picnic game

positional arguments:
str Item(s) to bring

The program is
being run with the
argument “chips.”

This line is causing the error. The output is tested to see if it
is equal (==) to the string “You are bringing chips.”

The line starting with a
+ sign shows what was
expected.

The lines starting with
the - sign show what was
returned by the program.

58 CHAPTER 3 Going on a picnic: Working with lists
optional arguments:
-h, --help show this help message and exit
-s, --sorted Sort the items (default: False)

We need one or more positional arguments and an optional flag called --sorted.
Modify your get_args() until it produces the preceding output.

 Note that there should be one or more of the item parameter, so you should
define it with nargs='+'. Refer to section A.4.5 in the appendix for details.

3.2 Writing picnic.py
Figure 3.1 shows a tasty diagram of the inputs and outputs for the picnic.py program
we’ll write.

The program should accept one or more positional arguments for the items to bring
on a picnic as well as an -s or --sorted flag to indicate whether or not to sort the
items. The output will be “You are bringing” followed by the list of items formatted
according to the following rules:

 If there’s one item, state the item:

$./picnic.py chips
You are bringing chips.

 If there are two items, put “and” in between the items. Note that “potato chips”
is just one string that happens to contain two words. If you leave out the quotes,

Figure 3.1 A string diagram of the picnic program showing the various inputs and outputs
the program will handle

59Introducing lists
there would be three arguments to the program. It doesn’t matter here whether
you use single or double quotes:

$./picnic.py "potato chips" salad
You are bringing potato chips and salad.

 If there are three or more items, place a comma and space between the items and
the word “and” before the final element. Don’t forget the comma before the
“and” (sometimes called the “Oxford comma”) because your author was an
English lit major and, while I may have finally stopped using two spaces after the
end of a sentence, you can pry the Oxford comma from my cold, dead hands:

$./picnic.py "potato chips" salad soda cupcakes
You are bringing potato chips, salad, soda, and cupcakes.

Be sure to sort the items if the -s or --sorted flag is specified:

$./picnic.py --sorted salad soda cupcakes
You are bringing cupcakes, salad, and soda.

To figure out how many items we have, how to sort and slice them, and how to format
the output string, we need to talk about the list type in Python.

3.3 Introducing lists
It’s time to learn how to define positional arguments so that they are available as a
list. That is, if we run the program like this,

$./picnic.py salad chips cupcakes

the arguments salad chips cupcakes will be available as a list of strings inside the
program. If you print() a list in Python, you’ll see something like this:

['salad', 'chips', 'cupcakes']

The square brackets tell us this is a list, and the
quotes around the elements tell us they are
strings. Note that the items are shown in the
same order as they were provided on the com-
mand line. Lists always keep their order!

 Let’s go into the REPL and create a variable called items to hold some scrump-
tious victuals to bring on our picnic. I really want you to type these commands your-
self, whether in the python3 REPL or IPython or a Jupyter Notebook. It’s very
important to interact in real time with the language.

 To create a new, empty list, you can use the list() function:

>>> items = list()

60 CHAPTER 3 Going on a picnic: Working with lists
Or you can use empty square brackets:

>>> items = []

Check what Python says for the type(). Yep, it’s a list:

>>> type(items)
<class 'list'>

One of the first things we need to know is how many items we have for our picnic. Just
as with a str, we can use len() (length) to get the number of elements in items:

>>> len(items)
0

The length of an empty list is 0.

3.3.1 Adding one element to a list

An empty list is not very useful. Let’s see how we can add new items. We used
help(str) in the last chapter to read documentation about the string methods—the
functions that belong to every str in Python. Here I want you to use help(list) to
learn about the list methods:

>>> help(list)

Remember that pressing the spacebar or F key (or Ctrl-F) will take you forward,
and pressing B (or Ctrl-B) will take you back. Pressing the / key will let you search
for a string.

 You’ll see lots of “double-under” methods, like __len__. Skip over those, and the
first method is list.append(), which we can use to add items to the end of a list.

 If we evaluate items, the empty brackets will tell us that it’s empty:

>>> items
[]

Let’s add “sammiches” to the end:

>>> items.append('sammiches')

Nothing happened, so how do we know if it worked? Let’s check the length. It should
be 1:

>>> len(items)
1

Hooray! That worked. In the spirit of testing, we’ll use the assert statement to verify
that the length is 1:

>>> assert len(items) == 1

61Introducing lists
The fact that nothing happens is good. When an assertion fails, it triggers an excep-
tion that results in a lot of messages.

 If you type items and press Enter in the REPL, Python will show you the contents:

>>> items
['sammiches']

Cool, we added one element.

3.3.2 Adding many elements to a list

Let’s try to add “chips” and “ice cream” to items:

>>> items.append('chips', 'ice cream')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: append() takes exactly one argument (2 given)

Here is one of those pesky exceptions, and these will cause your programs to crash,
something we want to avoid at all costs. As you can see, append() takes exactly one
argument, and we gave it two. If you look at items, you’ll see that nothing was added:

>>> items
['sammiches']

OK, so maybe we were supposed to give it a list of items to add? Let’s try that:

>>> items.append(['chips', 'ice cream'])

Well, that didn’t cause an exception, so maybe it worked? We would expect there to be
three items, so let’s use an assertion to check that:

>>> assert len(items) == 3
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AssertionError

We get another exception, because len(items) is not 3. What is the length?

>>> len(items)
2

Only 2? Let’s look at items:

>>> items
['sammiches', ['chips', 'ice cream']]

Check that out! Lists can hold any type of data, like strings and numbers and even
other lists (see figure 3.2). We asked items.append() to add ['chips', 'ice cream'],
which is a list, and that’s just what it did. Of course, it’s not what we wanted.

62 CHAPTER 3 Going on a picnic: Working with lists
Let’s reset items so we can fix this:

>>> items = ['sammiches']

If you read further into the help, you will find the list.extend() method:

| extend(self, iterable, /)
| Extend list by appending elements from the iterable.

Let’s try that:

>>> items.extend('chips', 'ice cream')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: extend() takes exactly one argument (2 given)

Well that’s frustrating! Now Python is telling us that extend() takes
exactly one argument, which, if you refer to the help, should be an
iterable. A list is something you can iterate (travel over from beginning to end), so
that will work:

>>> items.extend(['chips', 'ice cream'])

Nothing happened. No exception, so maybe that worked? Let’s check the length. It
should be 3:

>>> assert len(items) == 3

Yes! Let’s look at the items we’ve added:

>>> items
['sammiches', 'chips', 'ice cream']

Great! This is sounding like a pretty delicious outing.
 If you know everything that will go into the list, you can create it like so:

>>> items = ['sammiches', 'chips', 'ice cream']

The list.append() and list.extend() methods add new elements to the end of a
given list. The list.insert() method allows you to place new items at any position

Figure 3.2 A list can hold any mix of values,
such as a string and another list of strings.

63Introducing lists
by specifying the index. I can use the index 0 to put a new element at the beginning
of items:

>>> items.insert(0, 'soda')
>>> items
['soda', 'sammiches', 'chips', 'ice cream']

I recommend you read through all the list functions so you get an idea of just how
powerful this data structure is. In addition to help(list), you can also find lots of
great documentation here: https://docs.python.org/3/tutorial/datastructures.html.

3.3.3 Indexing lists

We now have a list of items. We know how to use len() to find how many items there
are in the items list, and now we need to know how to get parts of the list to format.

 Indexing a list in Python looks exactly the same as indexing a str (figure 3.3).
(This actually makes me a bit uncomfortable, so I tend to imagine a str as a list of
characters, and then I feel somewhat better.)

All indexing in Python is zero-offset, so the first element of items is at index items[0]:

>>> items[0]
'soda'

If the index is negative, Python starts counting backwards from the end of the list.
The index -1 is the last element of the list:

>>> items[-1]
'ice cream'

You should be very careful when using indexes to reference elements in a list. This is
unsafe code:

>>> items[10]
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
IndexError: list index out of range

WARNING Referencing an index that is not present will cause an exception.

Figure 3.3 Indexing lists and strings is the same. For both,
you start counting at 0, and you can also use negative
numbers to index from the end.

https://docs.python.org/3/tutorial/datastructures.html

64 CHAPTER 3 Going on a picnic: Working with lists
You’ll soon learn how to safely iterate, or travel through, a list so that you don’t have
to use indexes to get at elements.

3.3.4 Slicing lists

You can extract “slices” (sub-lists) of a list by using list[start:stop]. To get the
first two elements, you use [0:2]. Remember that the 2 is actually the index of the
third element, but it’s not inclusive, as shown in figure 3.4.

>>> items[0:2]
['soda', 'sammiches']

If you leave out start, it will default to a value of 0, so the following line does the same
thing:

>>> items[:2]
['soda', 'sammiches']

If you leave out stop, it will go to the end of the list:

>>> items[2:]
['chips', 'ice cream']

Oddly, it is completely safe for slices to use list indexes that don’t exist. For example,
we can ask for all the elements from index 10 to the end, even though there is nothing
at index 10. Instead of an exception, we get an empty list:

>>> items[10:]
[]

For this chapter’s exercise, you’re going to need to insert the word “and” into the
list if there are three or more elements. Could you use a list index to do that?

3.3.5 Finding elements in a list

Did we remember to pack the chips?
 Often you’ll want to know if some item is in a list. The index method will return

the location of an element in a list:

>>> items.index('chips')
2

Note that list.index() is unsafe code, because it will cause an exception if the argu-
ment is not present in the list. See what happens if we check for a fog machine:

Figure 3.4 The stop value for a list
slice is not included. If the stop value
is omitted, the slice goes to the end
of the list.

65Introducing lists
>>> items.index('fog machine')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: 'fog machine' is not in list

You should never use list.index() unless you have first verified that an element is
present. The x in y approach that we used in chapter 2 to see if a letter was in a
string of vowels can also be used for lists. We get back a True value if x is in the col-
lection of y:

>>> 'chips' in items
True

I hope they’re salt and vinegar chips.
 The same code returns False if

the element is not present:

>>> 'fog machine' in items
False

We’re going to need to talk to the
planning committee. What’s a pic-
nic without a fog machine?

3.3.6 Removing elements from a list

The list.pop() method will remove and return the element at the index, as shown in
figure 3.5. By default it will remove the last item (-1).

>>> items.pop()
'ice cream'

If we look at items, we will see it’s now shorter by one:

>>> items
['soda', 'sammiches', 'chips']

Figure 3.5 The list.pop() method will remove an element from the list.

66 CHAPTER 3 Going on a picnic: Working with lists
We can use an index value to remove an element at a particular location. For instance,
we can use 0 to remove the first element (see figure 3.6):

>>> items.pop(0)
'soda'

Now items is shorter still:

>>> items
['sammiches', 'chips']

You can also use the list.remove() method to remove the first occurrence of a given
item (see figure 3.7):

>>> items.remove('chips')
>>> items
['sammiches']

WARNING The list.remove() method will cause an exception if the element
is not present.

Figure 3.6 You can specify an index value to list.pop() to remove a
particular element.

Figure 3.7 The list.remove() method will
remove an element matching a given value.

67Introducing lists
If we try to use items.remove() to remove the chips again, we’ll
get an exception:

>>> items.remove('chips')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: list.remove(x): x not in list

So don’t use this code unless you’ve verified that a given element
is in the list:

item = 'chips'
if item in items:

items.remove(item)

3.3.7 Sorting and reversing a list

If the --sorted flag is used to call our program, we’re going to need to sort the items.
You might notice in the help documentation that two methods, list.reverse() and
list.sort(), stress that they work in place. That means that the list itself will be
either reversed or sorted, and nothing will be returned. So, given this list,

>>> items = ['soda', 'sammiches', 'chips', 'ice cream']

the items.sort() method will return nothing:

>>> items.sort()

If you inspect items, you will see that the items have
been sorted alphabetically:

>>> items
['chips', 'ice cream', 'sammiches', 'soda']

As with list.sort(), nothing is returned from the list.reverse() call:

>>> items.reverse()

But the items are now in the opposite order:

>>> items
['soda', 'sammiches', 'ice cream', 'chips']

The list.sort() and list.reverse()methods are easily confused with the sorted()
and reversed()functions. The sorted()function accepts a list as an argument and
returns a new list:

>>> items = ['soda', 'sammiches', 'chips', 'ice cream']
>>> sorted(items)
['chips', 'ice cream', 'sammiches', 'soda']

68 CHAPTER 3 Going on a picnic: Working with lists
It’s crucial to note that the sorted() function does not alter the given list:

>>> items
['soda', 'sammiches', 'chips', 'ice cream']

Note that Python will sort a list of numbers numerically, so we’ve got that going for us,
which is nice:

>>> sorted([4, 2, 10, 3, 1])
[1, 2, 3, 4, 10]

WARNING Sorting a list that mixes strings and numbers will cause an
exception!

>>> sorted([1, 'two', 3, 'four'])
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: '<' not supported between instances of 'str' and 'int'

The list.sort()method is a function that belongs to the list. It can take arguments
that affect the way the sorting happens. Let’s look at help(list.sort):

sort(self, /, *, key=None, reverse=False)
Stable sort *IN PLACE*.

That means we can also sort()items in reverse, like so:

>>> items.sort(reverse=True)

Now they look like this:

>>> items
['soda', 'sammiches', 'ice cream', 'chips']

The reversed() function works a bit differently:

>>> reversed(items)
<list_reverseiterator object at 0x10e012ef0>

I bet you were expecting to see a new list with the items in reverse.
This is an example of a lazy function in Python. The process of
reversing a list might take a while, so Python is showing that it has
generated an iterator object that will provide the reversed list when
we actually need the elements.

 We can see the values of our reversed() list in the REPL by using the list() func-
tion to evaluate the iterator:

>>> list(reversed(items))
['ice cream', 'chips', 'sammiches', 'soda']

69Introducing lists
As with the sorted() function, the original items remains unchanged:

>>> items
['soda', 'sammiches', 'chips', 'ice cream']

If you use the list.sort() method instead of the sorted() function, you might end
up deleting your data. Imagine you wanted to set items equal to the sorted list of
items, like so:

>>> items = items.sort()

What is in items now? If you print items in the REPL, you won’t see anything useful,
so inspect the type():

>>> type(items)
<class 'NoneType'>

It’s no longer a list. We set it equal to the result of calling the items.sort() method,
which changes items in place and returns None.

 If the --sorted flag is given to your program, you will need to sort your items in
order to pass the test. Will you use list.sort() or the sorted() function?

3.3.8 Lists are mutable

As you’ve seen, we can change a list quite easily. The list.sort() and list.reverse()
methods change the whole list, but you can also change any single element by refer-
encing it by index. Maybe we should make our picnic slightly healthier by swapping
out the chips for apples:

>>> items
['soda', 'sammiches', 'chips', 'ice cream']
>>> if 'chips' in items:
... idx = items.index('chips')
... items[idx] = 'apples'
...

Let’s look at items to verify the result:

>>> items
['soda', 'sammiches', 'apples', 'ice cream']

We can also write a couple of tests:

>>> assert 'chips' not in items
>>> assert 'apples' in items

See if the string 'chips' is
in the list of items.

Assign the index of 'chips'
to the variable idx.

Use the index idx to change
the element to 'apples'.

Make sure “chips” are no
longer on the menu.

Check that we now have
some “apples.”

70 CHAPTER 3 Going on a picnic: Working with lists
You will need to get the word “and” into your list just before the last element when
there are three or more items. Could you use this idea?

3.3.9 Joining a list

In this chapter’s exercise, you’ll need to print a string based on the number of ele-
ments in the given list. The string will intersperse other strings like a comma and a
space (', ') between the elements of the list.

 The following syntax will join a list with a string made of a comma and a space:

>>> ', '.join(items)
'soda, sammiches, chips, ice cream'

The preceding code uses the str.join() method and passes the list as an argu-
ment. It always feels backwards to me, but that’s the way it goes.

 The result of str.join() is a new string:

>>> type(', '.join(items))
<class 'str'>

The original list remains unchanged:

>>> items
['soda', 'sammiches', 'chips', 'apples']

We can do quite a bit more with Python’s list, but that should be enough for you to
solve this chapter’s problem.

3.4 Conditional branching with if/elif/else
You need to use conditional branching, based on the number of items, to correctly
format the output. In chapter 2’s exercise, there were two conditions—either a vowel
or not—so we used if/else statements. Here we have three options to consider, so
you will have to use elif (else-if) as well.

 For instance, suppose we want to classify someone by their age using three options:

 If their age is greater than 0, it is valid.
 If their age is less than 18, they are a minor.
 Otherwise, they are 18 years or older, which means they can vote.

71Solution
Here is how we could write that code:

>>> age = 15
>>> if age < 0:
... print('You are impossible.')
... elif age < 18:
... print('You are a minor.')
... else:
... print('You can vote.')
...
You are a minor.

See if you can use that example to figure out how to write the three options for pic-
nic.py. First write the branch that handles one item. Then write the branch that han-
dles two items. Then write the last branch for three or more items. Run the tests after
every change to your program.

3.4.1 Time to write

Now go write the program yourself before you look at my solution. Here are a few
hints:

 Go into your 03_picnic directory and run new.py picnic.py to create your pro-
gram. Then run make test (or pytest -xv test.py). You should pass the first
two tests.

 Next work on getting your --help usage looking like the example shown earlier
in the chapter. It’s very important to define your arguments correctly. For the
items argument, look at nargs in argparse, as discussed in section A.4.5 of
the appendix.

 If you use new.py to start your program, be sure to keep the Boolean flag and
modify it for your sorted flag.

 Solve the tests in order! First handle one item, then handle two items, and then
handle three. Then handle the sorted items.

You’ll get the best benefit from this book if you try writing the programs and passing
the tests before reading the solutions!

3.5 Solution
Here is one way to satisfy the tests. If you wrote something different that passed, that’s
great!

#!/usr/bin/env python3
"""Picnic game"""

import argparse

--
def get_args():

"""Get command-line arguments"""

The get_args() function is placed first so we can
easily see what the program accepts when we

read it. Note that the function order here is not
important to Python, only to us readers.

72 CHAPTER 3 Going on a picnic: Working with lists

al

The ma
functio
where

progr
will st

,
Copy
list f
into

variab

arg
valu
eit

Jo
on

P
outpu

u
str.

m
int

the
v

parser = argparse.ArgumentParser(
description='Picnic game',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('item',
metavar='str',
nargs='+',
help='Item(s) to bring')

parser.add_argument('-s',
'--sorted',
action='store_true',
help='Sort the items')

return parser.parse_args()

--
def main():

"""Make a jazz noise here"""

args = get_args()
items = args.item
num = len(items)

if args.sorted:
items.sort()

bringing = ''
if num == 1:

bringing = items[0]
elif num == 2:

bringing = ' and '.join(items)
else:

items[-1] = 'and ' + items[-1]
bringing = ', '.join(items)

print('You are bringing {}.'.format(bringing))

--
if __name__ == '__main__':

main()

The item argument uses nargs='+' so
that it will accept one or more position
arguments, which will be strings.

The dashes in the short (-s) and long
(--sorted) names make this an option.
There is no value associated with this
argument. It’s either present (in which
case it will be True) or absent (False).

Process the command-line arguments
and return them to the caller.

in()
n is
the
am
art.

Call the get_args() function and put the returned value into
the variable args. If there is a problem parsing the arguments
the program will fail before the values are returned. the item

rom args
 the new
le items.

Use the length function len() to get the number of items in the list.
There can never be zero items because we defined the argument
using nargs='+', which always requires at least one value.

The
s.sorted
e will be
her True
or False.

If we are supposed to sort the items, call the
items.sort() method to sort them in place.

Use an empty string to initialize a variable
to hold the items we are bringing. If the number of items

is 1, we will assign the
one item to bringing.

If the number of items is 2, put the
string ' and ' in between the items.

Otherwise, alter the last
element in items to append
the string 'and ' before
whatever is already there.

in the items
 a string of

comma and
space.

rint the
t string,
sing the
format()
ethod to
erpolate
bringing
ariable.

When Python runs the program, it will read
all the lines to this point but will not run
anything. Here we look to see if we are in
the “main” namespace. If we are, we call the
main() function to make the program begin.

73Discussion
3.6 Discussion
How did it go? Did it take you long to write your version? How different was it from
mine? Let’s talk about my solution. It’s fine if yours is different from mine, just as long
as you pass the tests!

3.6.1 Defining the arguments

This program can accept a variable number of arguments that are all the same thing
(strings). In my get_args() method I define an item like so:

parser.add_argument('item',
metavar='str',
nargs='+',
help='Item(s) to bring')

This program also accepts -s and --sorted arguments. They are “flags,” which typi-
cally means that they are True if they are present and False if absent. Remember that
the leading dashes makes them optional.

parser.add_argument('-s',
'--sorted',
action='store_true',
help='Sort the items')

3.6.2 Assigning and sorting the items

In main() I call get_args() to get the arguments, and I assign them to the args vari-
able. Then I create the items variable to hold the args.item value(s):

def main():
args = get_args()
items = args.item

If args.sorted is True, I need to sort items. I chose the in-place sort method here:

if args.sorted:
items.sort()

Now I have the items, sorted if needed, and I need to format them for output.

3.6.3 Formatting the items

I suggested you solve the tests in order. There are four conditions we need to solve:

 Zero items
 One item

A positional parameter
called item

An indication to the
user in the usage that
this should be a string

The number of
arguments, where '+'
means one or moreA longer help description that

appears for the -h or --help options

The short flag name The long flag name

If the flag is present, store
a True value. The default
value will be False.

The longer help description

74 CHAPTER 3 Going on a picnic: Working with lists

Check i
numbe
items
 Two items
 Three or more items

The first test is actually handled by argparse—if the user fails to provide any argu-
ments, they get a usage message:

$./picnic.py
usage: picnic.py [-h] [-s] str [str ...]
picnic.py: error: the following arguments are required: str

Since argparse handles the case of no arguments, we have to handle the other three
conditions. Here’s one way to do that:

bringing = ''
if num == 1:

bringing = items[0]
elif num == 2:

bringing = ' and '.join(items)
else:

items[-1] = 'and ' + items[-1]
bringing = ', '.join(items)

Can you come up with any other ways to do this?

3.6.4 Printing the items

Finally, to print() the output, I used a format string where the {} indicate a place-
holder for a value, like so:

>>> print('You are bringing {}.'.format(bringing))
You are bringing salad, soda, and cupcakes.

If you prefer, you could use an f''-string:

>>> print(f'You are bringing {bringing}.')
You are bringing salad, soda, and cupcakes.

They both get the job done.

Initialize a variable for
what we are bringing.

Check if the number
of items is 1.

If there is one item,
bringing is the one item.

f the
r of
is 2.

If there are two items, we
join the items on the
string ' and '.

Otherwise…
Insert the string 'and '
before the last item.Join all the items

on the string ', '.

75Summary
3.7 Going further
 Add an option so the user can choose not to print with the Oxford comma

(even though that is a morally indefensible option).
 Add an option to separate items with a character passed in by the user (like a

semicolon if the list of items needs to contain commas).

Be sure to add tests to the test.py program to ensure your new features are correct!

Summary
 Python lists are ordered sequences of other Python data types, such as strings

and numbers.
 There are methods like list.append() and list.extend() to add elements to

a list. Use list.pop() and list.remove() to remove elements.
 You can use x in y to ask if element x is in the list y. You can also use

list.index() to find the index of an element, but this will cause an exception
if the element is not present.

 Lists can be sorted and reversed, and elements within lists can be modified.
Lists are useful when the order of the elements is important.

 Strings and lists share many features, such as using len() to find their lengths,
using zero-based indexing where 0 is the first element and -1 is the last, and
using slices to extract smaller pieces from the whole.

 The str.join() method can be used to make a new str from a list.
 if/elif/else can be used to branch code depending on conditions.

Jump the Five:
Working with dictionaries
“When I get up, nothing gets me down.”

 —D. L. Roth

In an episode of the television show The Wire, drug dealers
assume the police are intercepting their text messages.
Whenever a phone number needs to be texted in the course
of a criminal conspiracy, the dealers will obfuscate the num-
ber. They use an algorithm we’ll call “Jump the Five” because
each number is changed to its mate on the opposite of a US
telephone pad if you jump over the 5. In this exercise, we’ll
discuss how to encrypt messages using this algorithm, and
then we’ll see how to use it to decrypt the encrypted mes-
sages, you feel me?

 If we start with the 1 button and jump across the 5, we get
to 9. The 6 jumps the 5 to become 4, and so forth. The num-
bers 5 and 0 will swap with each other.

 In this exercise, we’re going to write a Python program called jump.py that will
take in some text as a positional argument. Each number in the text will be
encoded using this algorithm. All non-number text will pass through unchanged.
Here are a couple of examples:

$./jump.py 867-5309
243-0751
$./jump.py 'Call 1-800-329-8044 today!'
Call 9-255-781-2566 today!
76

77Dictionaries
You will need some way to inspect each character in the input text to identify the num-
bers—you will learn how to use a for loop for this. Then you’ll see how a for loop can
be rewritten as a “list comprehension.” You’ll need some way to associate a number
like 1 with the number 9, and so on for all the numbers—you’ll learn about a data
structure in Python called a dictionary that will allow you to do exactly that.

 In this chapter, you will learn to

 Create a dictionary
 Use a for loop and a list comprehension to process text, character by character
 Check if items exist in a dictionary
 Retrieve values from a dictionary
 Print a new string with the numbers substituted with their encoded values

Before we start writing, you need to learn about Python’s dictionaries.

4.1 Dictionaries
A Python dictionary allows us to relate some thing (a
“key”) to some other thing (a “value”). An actual dictio-
nary does this. If we look up a word like “quirky” in
a dictionary (www.merriam-webster.com/dictionary/
quirky), we can find a definition, as in figure 4.1. We
can think of the word itself as the “key” and the defini-
tion as the “value.”

Dictionaries actually provide quite a bit more information about words, such as pro-
nunciation, part of speech, derived words, history, synonyms, alternate spellings, ety-
mology, first known use, and so on. (I really love dictionaries.) Each of those attributes
has a value, so we could also think of the dictionary entry for a word as itself being
another “dictionary” (see figure 4.2).

Let’s see how we can use Python’s dictionaries to go beyond word definitions.

Figure 4.1 You can find the definition of a word by looking
it up in a dictionary.

Figure 4.2 The entry for “quirky” can contain much more than a
single definition.

http://www.merriam-webster.com/dictionary/quirky
http://www.merriam-webster.com/dictionary/quirky
http://www.merriam-webster.com/dictionary/quirky

78 CHAPTER 4 Jump the Five: Working with dictionaries
4.1.1 Creating a dictionary

In the film Monty Python and the
Holy Grail, King Arthur and his
knights must cross The Bridge
of Death. Anyone who wishes to
cross must correctly answer three
questions from the Keeper.
Those who fail are cast into the
Gorge of Eternal Peril.

 Let us ride to CAMELOT.… No, sorry, let us create and use a dictionary to
keep track of the questions and answers as key/value pairs. Once again, I want you
to fire up your python3 or IPython REPL or Jupyter Notebook and type these out
for yourself.

 Lancelot goes first. We can use the dict() function to create an empty dictionary
for his answers.

>>> answers = dict()

Or we can use empty curly brackets (both methods are equivalent):

>>> answers = {}

The Keeper’s first question is, “What is your name?” Lancelot
answers, “My name is Sir Lancelot of Camelot.” We can add the
key “name” to the answers dictionary by using square brackets
([]—not curlies!) and the literal string 'name':

>>> answers['name'] = 'Sir Lancelot'

If you type answers and press Enter in the REPL,
Python will show you a structure in curlies (see figure
4.3) to indicate that this is a dict:

>>> answers
{'name': 'Sir Lancelot'}

You can verify this with the type() function:

>>> type(answers)
<class 'dict'>

Next the Keeper asks, “What is your quest?” to which Lancelot answers “To seek the
Holy Grail.” Let’s add “quest” to answers:

>>> answers['quest'] = 'To seek the Holy Grail'

Figure 4.3 A dictionary is printed
inside curly braces. The keys are
separated from the values by a
colon.

79Dictionaries
There’s no return value to let us know something happened,
so type answers to inspect the variable again to ensure the
new key/value was added:

>>> answers
{'name': 'Sir Lancelot', 'quest': 'To seek the

Holy Grail'}

Finally the Keeper asks, “What is your favorite color?” and
Lancelot answers, “Blue.”

>>> answers['favorite_color'] = 'blue'
>>> answers
{'name': 'Sir Lancelot', 'quest': 'To seek the Holy Grail', 'favorite_color':

'blue'}

NOTE I’m using “favorite_color” (with an underscore) as the key, but I could
use “favorite color” (with a space) or “FavoriteColor” or “Favorite color,” but
each one of those would be a separate and distinct string, or key. I prefer to
use the PEP 8 naming conventions for dictionary keys and variable and func-
tions names. PEP 8, the “Style Guide for Python Code” (www.python.org/
dev/peps/pep-0008/), suggests using lowercase names with words separated
by underscores.

If you knew all the answers beforehand, you could create answers using the dict()
function with the following syntax, where you do not have to quote the keys, and the
keys are separated from the values with equal signs:

>>> answers = dict(name='Sir Lancelot', quest='To seek the Holy Grail',
favorite_color='blue')

Or you could use the following syntax using curlies {}, where the keys must be quoted
and they are followed by a colon (:):

>>> answers = {'name': 'Sir Lancelot', 'quest': 'To seek the Holy Grail',
'favorite_color': 'blue'}

It might be helpful to think of the answers dictionary as a box holding key/value pairs
that describe Lancelot’s answers (see figure 4.4), just the way the “quirky” dictionary
holds all the information about that word.

Figure 4.4 Just like the “quirky” dictionary
entry, a Python dictionary can contain many
key/value pairs.

http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/

80 CHAPTER 4 Jump the Five: Working with dictionaries
4.1.2 Accessing dictionary values

To retrieve the values, you use the key name inside square brackets ([]). For instance,
you can get the name like so:

>>> answers['name']
'Sir Lancelot'

Let’s request his “age”:

>>> answers['age']
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
KeyError: 'age'

As you can see, you will cause an exception if you ask for a dic-
tionary key that doesn’t exist!

 Just as with strings and lists, you can use x in y to first see if
a key exists in the dict:

>>> 'quest' in answers
True
>>> 'age' in answers
False

The dict.get() method is a safe way to ask for a value:

>>> answers.get('quest')
'To seek the Holy Grail'

When the requested key does not exist in the dict, it will return the spe-
cial value None:

>>> answers.get('age')

That doesn’t print anything because the REPL won’t print a None, but
we can check the type(). Note that the type of None is the NoneType:

>>> type(answers.get('age'))
<class 'NoneType'>

There is an optional second argument you can pass to dict.get(),
which is the value to return if the key does not exist:

>>> answers.get('age', 'NA')
'NA'

That’s going to be important for the solution because we will only
need to represent the characters 0–9.

81Dictionaries
4.1.3 Other dictionary methods

If you want to know how “big” a dictionary is, the len() (length) function on a dict
will tell you how many key/value pairs are present:

>>> len(answers)
3

The dict.keys() method will give you just the keys:

>>> answers.keys()
dict_keys(['name', 'quest', 'favorite_color'])

And dict.values() will give you just the values:

>>> answers.values()
dict_values(['Sir Lancelot', 'To seek the Holy Grail', 'blue'])

Often we want both together, so you might see code like this:

>>> for key in answers.keys():
... print(key, answers[key])
...
name Sir Lancelot
quest To seek the Holy Grail
favorite_color blue

An easier way to write this would be to use the dict.items() method, which will return
the contents of the dictionary as a new list containing each key/value pair:

>>> answers.items()
dict_items([('name', 'Sir Lancelot'), ('quest', 'To seek the Holy Grail'),
('favorite_color', 'blue')])

The preceding for loop could also be written using the dict.items() method:

>>> for key, value in answers.items():
... print(f'{key:15} {value}')

...
name Sir Lancelot
quest To seek the Holy Grail
favorite_color blue

Unpack each key/value pair into the variables
key and value (see figure 4.5). Note that you
don’t have to call them key and value. You
could use k and v or question and answer.

Print the key in a left-justified field 15
characters wide. The value is printed normally.

Figure 4.5 We can unpack the key/value pairs returned by
dict.items() into variables.

82 CHAPTER 4 Jump the Five: Working with dictionaries
In the REPL you can execute help(dict) to see all the methods available to you, like
dict.pop(), which removes a key/value, or dict.update(), which merges one dictio-
nary with another.

TIP Each key in the dict is unique.

That means if you set a value for a given key twice,

>>> answers = {}
>>> answers['favorite_color'] = 'blue'
>>> answers
{'favorite_color': 'blue'}

you will not have two entries but one entry with the second value:

>>> answers['favorite_color'] = 'red'
>>> answers
{'favorite_color': 'red'}

Keys don’t have to be strings—you can also use numbers like the int and float types.
Whatever value you use must be immutable. For instance, lists could not be used
because they are mutable, as you saw in the previous chapter. You’ll learn which types
are immutable as we go further.

4.2 Writing jump.py
Now let’s get started with writing our program. You’ll need to create a program called
jump.py in the 04_jump_the_five directory so you can use the test.py that is there.
Figure 4.6 shows a diagram of the inputs and outputs. Note that your program
will only affect the numbers in the text. Anything that is not a number will remain
unchanged.

Figure 4.6 A string diagram for the jump.py program. Any number in the input text
will be changed to a corresponding number in the output text.

83Writing jump.py
When your program is run with no arguments, -h, or --help, it should print a usage
message:

$./jump.py -h
usage: jump.py [-h] str

Jump the Five

positional arguments:
str Input text

optional arguments:
-h, --help show this help message and exit

Note that we will be processing text representations of the “numbers,” so the string '1'
will be converted to the string '9'. We won’t be changing the actual integer value 1 to
the integer value 9. Keep that in mind as you figure out a way to represent the substi-
tutions in table 4.1.

How would you represent this using a dict? Try creating a dict called jumper in the
REPL with the preceding key/value pairs, and then see if the following assert state-
ments will execute with exceptions. Remember that assert will return nothing if the
statement is True.

>>> assert jumper['1'] == '9'
>>> assert jumper['5'] == '0'

Next, you will need a way to visit each character. I suggest you use a for loop, like so:

>>> for char in 'ABC123':
... print(char)
...
A
B
C
1
2
3

Table 4.1 The encoding table for the numeric characters in the text

1 => 9
2 => 8
3 => 7
4 => 6
5 => 0
6 => 4
7 => 3
8 => 2
9 => 1
0 => 5

84 CHAPTER 4 Jump the Five: Working with dictionaries

Rather than printing the char, print the value of char in the jumper table, or print the
char itself. Look at the dict.get() method! Also, if you read help(print), you’ll see
there is an end option to replace the newline that gets stuck onto the end with some-
thing else.

 Here are some other hints:

 The numbers can occur anywhere in the text, so I recommend you process the
input character by character with a for loop.

 Given any one character, how can you look it up in your table?
 If the character is in your table, how can you get the value (the translation)?
 How can you print() the translation or the value without printing a newline?

Look at help(print) in the REPL to read about the options for print().
 If you read help(str) on Python’s str class, you’ll see that there is a

str.replace() method. Could you use that?

Now spend the time to write the program on your own before you look at the solu-
tions. Use the tests to guide you.

4.3 Solution
Here is one solution that satisfies the tests. I will show some variations after we discuss
this first version.

#!/usr/bin/env python3
"""Jump the Five"""

import argparse

--
def get_args():

"""Get command-line arguments"""

parser = argparse.ArgumentParser(
description='Jump the Five',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('text', metavar='str', help='Input text')

return parser.parse_args()

--
def main():

"""Make a jazz noise here"""

args = get_args()
jumper = {'1': '9', '2': '8', '3': '7', '4': '6', '5': '0',

'6': '4', '7': '3', '8': '2', '9': '1', '0': '5'}

Define the get_args()
function first, so it’s
easy to find when I
read the program.

Define one positional
argument called “text.”

Define a main()
function where the
program starts.

Get the command-line
arguments from get_args ().

Create a
dictionary for
the lookup
table.

85Discussion

newli
I a

proces
cha
for char in args.text:
print(jumper.get(char, char), end='')

print()

--
if __name__ == '__main__':

main()

4.4 Discussion
Let’s break this program down into the big ideas, like how we define the parameters,
define and use a dictionary, process the input text, and print the output.

4.4.1 Defining the parameters

As usual, the get_args() function is defined first. The program needs to define one
positional argument. Since I’m expecting some “text,” I call the argument 'text' and
then assign that to a variable called text:

parser.add_argument('text', metavar='str', help='Input text')

While that seems rather obvious, I think it’s very important to name things for what
they are. That is, please don’t leave the name of the argument as 'positional'—that
does not describe what it is.

 It may seem like overkill to use argparse for such a simple program, but it handles
the validation of the correct number and type of the arguments as well as generating
help documentation, so it’s well worth the effort.

4.4.2 Using a dict for encoding

I suggested you could represent the substitution table as a dict, where each number
key has its substitute as the value in the dict. For instance, I know that if I jump from
1 over the 5, I should land on 9:

>>> jumper = {'1': '9', '2': '8', '3': '7', '4': '6', '5': '0',
... '6': '4', '7': '3', '8': '2', '9': '1', '0': '5'}
>>> jumper['1']
'9'

Since there are only 10 numbers to encode, this is probably the easiest way to write
this. Note that the numbers are written with quotes around them, so they are actually
of the type str and not int (integers). I do this because I will be reading characters
from a str. If I stored them as actual numbers, I would have to coerce the str types
using the int() function:

>>> type('4')
<class 'str'>

Process each character
in the input text.

Print either the value of the
character from the “jumper”
table or the character itself.
Change the “end” value to
print() so as to avoid adding
a newline.

Print a
ne after
m done
sing the
racters.

Call the main() function if
the program is in the
“main” namespace.

86 CHAPTER 4 Jump the Five: Working with dictionaries
>>> type(4)
<class 'int'>
>>> type(int('4'))
<class 'int'>

4.4.3 Various ways to process items in a series

As you’ve seen before, strings and lists in Python are similar in how you can index
them. Both strings and lists are essentially sequences of elements—strings are sequences
of characters, and lists can be sequences of anything at all.

 There are several different ways to process any sequence of items, which here will
be characters in a string.

METHOD 1: USING A FOR LOOP TO PRINT() EACH CHARACTER

As I suggested in the introduction, we can process each character of the text using a
for loop. To start, I might first see if each character of the text is in the jumper table
using the x in y construct:

>>> text = 'ABC123'
>>> for char in text:
... print(char, char in jumper)
...
A False
B False
C False
1 True
2 True
3 True

NOTE When print() is given more than one argument, it will put a space
between each bit of text. You can change that with the sep argument. Read
help(print) to learn more.

Now let’s try to translate the numbers. I could use an if expression, where I print the
value from the jumper table if char is present, and, otherwise, print the char:

>>> for char in text:
... print(char, jumper[char] if char in jumper else char)
...
A A
B B
C C
1 9
2 8
3 7

It’s a bit laborious to check for every character, but it’s necessary because, for instance,
the letter “A” is not in jumper. If I try to retrieve that value, I’ll get an exception:

>>> jumper['A']
Traceback (most recent call last):

87Discussion
File "<stdin>", line 1, in <module>
KeyError: 'A'

The dict.get() method allows me to safely ask for a value if it is present. Asking for
“A” will not produce an exception, but it will also not show anything in the REPL
because it returns the None value:

>>> jumper.get('A')

It’s a bit easier to see if we try to print() the values:

>>> for char in text:
... print(char, jumper.get(char))
...
A None
B None
C None
1 9
2 8
3 7

I can provide a second, optional argument to dict.get(), which is the default value
to return when the key does not exist. In this program, I want to print the character
itself when it does not exist in jumper. For instance, if I had “A,” I’d want to print “A”:

>>> jumper.get('A', 'A')
'A'

But if I have “5,” I want to print “0”:

>>> jumper.get('5', '5')
'0'

I can use that to process all the characters:

>>> for char in text:
... print(jumper.get(char, char))
...
A
B
C
9
8
7

I don’t want that newline printing after every character, so I can use end='' to tell
Python to put the empty string at the end instead of a newline.

 When I run this in the REPL, the output is going to look funny because I have to
press Enter after the for loop to run it. Then I’ll be left with ABC987 with no newline,
and then the >>> prompt:

88 CHAPTER 4 Jump the Five: Working with dictionaries
>>> for char in text:
... print(jumper.get(char, char), end='')
...
ABC987>>>

In your code, you’ll have to add another print().
 It’s useful that you can change what is added at the end, and that you can print()

with no arguments to print a newline. There are several other really cool things
print() can do, so I encourage you to read help(print) and try them out.

METHOD 2: USING A FOR LOOP TO BUILD A NEW STRING

There are several other ways you could solve this. While it was fun to explore all the
things we can do with print(), that code is a bit ugly. I think it’s cleaner to create a
new_text variable and call print() once with that:

def main():
args = get_args()
jumper = {'1': '9', '2': '8', '3': '7', '4': '6', '5': '0',

'6': '4', '7': '3', '8': '2', '9': '1', '0': '5'}
new_text = ''
for char in args.text:

new_text += jumper.get(char, char)
print(new_text)

In this version, I start by setting new_text equal to the empty string:

>>> new_text = ''

I use the same for loop to process each character in the text. Each time through the
loop, I use += to append the right side of the equation to the left side. The += adds the
value on the right to the variable on the left:

>>> new_text += 'a'
>>> assert new_text == 'a'
>>> new_text += 'b'
>>> assert new_text == 'ab'

On the right, I’m using the jumper.get()
method. Each character will be appended
to the new_text, as shown in figure 4.7.

>>> new_text = ''
>>> for char in text:
... new_text += jumper.get(char, char)
...

Now I can call print() once with the new value:

>>> print(new_text)
ABC987

Create an empty
new_text variable.

Use the same
for loop.

Append either the encoded
number or the original

char to the new_text.
Print the new_text.

Figure 4.7 The += operator will append the
string on the right to the variable on the left.

89Discussion
METHOD 3: USING A FOR LOOP TO BUILD A NEW LIST

This method is the same as the preceding one, but rather than new_text being a str,
it’s a list:

def main():
args = get_args()
jumper = {'1': '9', '2': '8', '3': '7', '4': '6', '5': '0',

'6': '4', '7': '3', '8': '2', '9': '1', '0': '5'}
new_text = []
for char in args.text:

new_text.append(jumper.get(char, char))
print(''.join(new_text))

As we go through the book, I’ll keep reminding you how Python treats strings and lists
similarly. Here I’m using new_text exactly the same as I did before, starting with an
empty structure and then making it longer for each character. I could actually use the
exact same += syntax instead of the list.append() method:

for char in args.text:
new_text += jumper.get(char, char)

After the for loop is done, I have all the new characters that need to be put back
together using str.join() into a new string that I can print().

METHOD 4: TURNING A FOR LOOP INTO A LIST COMPREHENSION

A shorter solution uses a list comprehension, which is basically a one-line for loop inside
square brackets ([]) that results in a new list (see figure 4.8).

def main():
args = get_args()
jumper = {'1': '9', '2': '8', '3': '7', '4': '6', '5': '0',

'6': '4', '7': '3', '8': '2', '9': '1', '0': '5'}
print(''.join([jumper.get(char, char) for char in args.text]))

Initialize new_text
as an empty list.

Iterate through each
character of the text.Append the results of the

jumper.get () call to the
new_text variable.

Join the new_text on the
empty string to create a
new string to print.

Figure 4.8 A list comprehension
will generate a new list with the
results of iterating with a for
statement.

90 CHAPTER 4 Jump the Five: Working with dictionaries
A list comprehension is read backwards from a for loop, but it’s all there. It’s one line
of code instead four!

>>> text = '867-5309'
>>> [jumper.get(char, char) for char in text]
['2', '4', '3', '-', '0', '7', '5', '1']

You can use str.join() on the empty string to turn that list into a new string you
can print():

>>> print(''.join([jumper.get(char, char) for char in text]))
243-0751

The purpose of a list comprehension is to create a new list, which is what we were try-
ing to do with the for loop code before. A list comprehension makes much more
sense and uses far fewer lines of code.

METHOD 5: USING THE STR.TRANSLATE() FUNCTION

This last approach uses a really powerful method from the str class to change all the
characters in one step:

def main():
args = get_args()
jumper = {'1': '9', '2': '8', '3': '7', '4': '6', '5': '0',

'6': '4', '7': '3', '8': '2', '9': '1', '0': '5'}
print(args.text.translate(str.maketrans(jumper)))

The argument to str.translate() is a translation table that describes how each char-
acter should be translated. That’s exactly what jumper does.

>>> text = 'Jenny = 867-5309'
>>> text.translate(str.maketrans(jumper))
'Jenny = 243-0751'

I’ll explain this in much greater detail in chapter 8.

4.4.4 (Not) using str.replace()

I asked earlier whether you could use str.replace() to change all the numbers. It
turns out you cannot, because you’ll end up changing some of the values twice so that
they end up at their original values.

 Watch how we start off with this string:

>>> text = '1234567890'

When you change “1” to “9,” now you have two 9’s:

>>> text = text.replace('1', '9')
>>> text
'9234567890'

91Summary
This means that when you try to change all the 9’s to 1’s, you end up with two 1’s. The
1 in the first position is changed to 9 and then back to 1 again:

>>> text = text.replace('9', '1')
>>> text
'1234567810'

So if you go through each number in “1234567890” and try to change them using
str.replace(), you’ll end up with the value “1234543215”:

>>> text = '1234567890'
>>> for n in jumper.keys():
... text = text.replace(n, jumper[n])
...
>>> text
'1234543215'

But the correctly encoded string is “9876043215.” The str.translate() function
exists to change all the values in one move, all while leaving the unchanging charac-
ters alone.

4.5 Going further
 Try creating a similar program that encodes the numbers with strings (for

example, “5” becomes “five,” “7” becomes “seven”). Be sure to write the neces-
sary tests in test.py to check your work!

 What happens if you feed the output of the program back into itself? For exam-
ple, if you run ./jump.py 12345, you should get 98760. If you run ./jump.py
98760, do you recover the original numbers? This is called round-tripping, and
it’s a common operation with algorithms that encode and decode text.

Summary
 You can create a new dictionary using the dict() function or with empty curly

brackets ({}).
 Dictionary values are retrieved using their keys inside square brackets or by

using the dict.get() method.
 For a dict called x, you can use 'key' in x to determine if a key exists.
 You can use a for loop to iterate through the characters of a str just like you

can iterate through the elements of a list. You can think of strings as lists of
characters.

 The print() function takes optional keyword arguments like end='', which
you can use to print a value to the screen without a newline.

Howler: Working with
files and STDOUT
In the Harry Potter stories, a “Howler” is a nasty-gram that
arrives by owl at Hogwarts. It will tear itself open, shout a
blistering message at the recipient, and then combust. In
this exercise, we’re going to write a program that will trans-
form text into a rather mild-mannered version of a Howler by
MAKING ALL THE LETTERS UPPERCASE. The text that
we’ll process will be given as a single positional argument.

 For instance, if our program is given the input, “How dare you steal that car!” it
should scream back “HOW DARE YOU STEAL THAT CAR!” Remember spaces on
the command line delimit arguments, so multiple words need to be enclosed in
quotes to be considered one argument:

$./howler.py 'How dare you steal that car!'
HOW DARE YOU STEAL THAT CAR!

The argument to the program may also name a file, in
which case we need to read the file for the input:

$./howler.py ../inputs/fox.txt
THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG.
92

93Reading files
Our program will also accept an -o or
--outfile option that names an output
file into which the output text should be
written. In that case, nothing will be
printed on the command line:

$./howler.py -o out.txt 'How dare
you steal that car!'

There should now be a file called out.txt
that has the output:

$ cat out.txt
HOW DARE YOU STEAL THAT CAR!

In this exercise, you will learn to

 Accept text input from the command line or from a file
 Change strings to uppercase
 Print output either to the command line or to a file that needs to be created
 Make plain text behave like a file handle

5.1 Reading files
This is our first exercise that will involve reading files. The argu-
ment to the program will be some text that might name an input
file, in which case you will open and read the file. If the text is not
the name of a file, you’ll use the text itself.

 The built-in os (operating system) module has a method for
detecting whether a string is the name of a file. To use it, you must
import the os module. For instance, there’s probably not a file
called “blargh” on your system:

>>> import os
>>> os.path.isfile('blargh')
False

The os module contains loads of useful submodules and functions. Consult the docu-
mentation at https://docs.python.org/3/library/os.html or use help(os) in the REPL.

 For instance, os.path.basename() and os.path.dirname() can return a file’s
name or directory from a path, respectively (see figure 5.1):

>>> file = '/var/lib/db.txt'
>>> os.path.dirname(file)
'/var/lib'
>>> os.path.basename(file)
'db.txt'

https://docs.python.org/3/library/os.html

94 CHAPTER 5 Howler: Working with files and STDOUT
In the top level of the GitHub source repository, there is a directory called “inputs”
that contains several files we’ll use for many of the exercises. Here I’ll use a file called
inputs/fox.txt. Note that you will need to be in the main directory of the repo for this
to work.

>>> file = 'inputs/fox.txt'
>>> os.path.isfile(file)
True

Once you’ve determined that the argument is the name of a file, you must open() it to
read() it. The return from open() is a file handle. I usually call this variable fh to
remind me that it’s a file handle. If I have more than one open file handle, like both
input and output handles, I may call them in_fh and out_fh.

>>> fh = open(file)

NOTE Per PEP 8 (www.python.org/dev/peps/pep-0008/#function-and-
variable-names), function and variable “names should be lowercase, with
words separated by underscores as necessary to improve readability.”

If you try to open() a file that does not exist, you’ll get an exception. This is unsafe
code:

>>> file = 'blargh'
>>> open(file)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
FileNotFoundError: [Errno 2] No such file or directory: 'blargh'

Always check that the file exists!

>>> file = 'inputs/fox.txt'
>>> if os.path.isfile(file):
... fh = open(file)

We will use the fh.read() method to get the contents of the file. It might be helpful
to think of a file as a can of tomatoes. The file’s name, like “inputs/fox.txt,” is the label
on the can, which is not the same as the contents. To get at the text inside (or the
“tomatoes”), we need to open the can.

Figure 5.1 The os module has handy functions like
os.path.dirname() and os.path.basename()
for getting parts of file paths.

http://www.python.org/dev/peps/pep-0008/#function-and-variable-names
http://www.python.org/dev/peps/pep-0008/#function-and-variable-names

95Reading files
Take a look at figure 5.2:

1 The file handle (fh) is a mechanism we can use to get at the contents of the file.
To get at the tomatoes, we need to open() the can.

2 The fh.read() method returns what is inside the file. With the can opened,
we can get at the contents.

3 Once the file handle has been read, there’s nothing left.

NOTE You can use fh.seek(0) to reset the file handle to the beginning if you
really want to read it again.

Figure 5.2 A file is a bit like a can of tomatoes. We have to open it first so that we can read it, after
which the file handle is exhausted.

96 CHAPTER 5 Howler: Working with files and STDOUT
Let’s see what type() the fh is:

>>> type(fh)
<class '_io.TextIOWrapper'>

In computer lingo, “io” means “input/output.” The fh object is something that han-
dles I/O operations. You can use help(fh) (using the name of the variable itself) to
read the docs on the class TextIOWrapper.

 The two methods you’ll use quite often are read() and write(). Right now, we
care about read(). Let’s see what that gives us:

>>> fh.read()
'The quick brown fox jumps over the lazy dog.\n'

Do me a favor and execute that line one more time. What do
you see?

>>> fh.read()
''

A file handle is different from something like a str. Once
you read a file handle, it’s empty. It’s like pouring the toma-
toes out of the can. Now that the can is empty, you can’t
empty it again.

 We can actually compress open() and fh.read() into one line of code by chaining
those methods together. The open() method returns a file handle that can be used
for the call to fh.read() (see figure 5.3). Run this:

>>> open(file).read()
'The quick brown fox jumps over the lazy dog.\n'

And now run it again:

>>> open(file).read()
'The quick brown fox jumps over the lazy dog.\n'

Each time you open() the file, you get a fresh file handle to read().
 If we want to preserve the contents, we’ll need to copy them into a variable.

>>> text = open(file).read()
>>> text
'The quick brown fox jumps over the lazy dog.\n'

Figure 5.3 The open() function returns a file handle,
so we can chain it to a call to read().

97Writing files
The type() of the result is a str:

>>> type(text)
<class 'str'>

If you want, you can chain any str method onto the end of that. For instance, maybe
you want to remove the trailing newline. The str.rstrip() method will remove any
whitespace (which includes newlines) from the right end of a string (see figure 5.4).

>>> text = open(file).read().rstrip()
>>> text
'The quick brown fox jumps over the lazy dog.'

Once you have your input text—whether it is from the com-
mand line or from a file—you need to UPPERCASE it. The
str.upper() method is probably what you want.

5.2 Writing files
The output of the program should either appear on the command line or be written
to a file. Command-line output is also called standard out or STDOUT. (It’s the standard
or normal place for output to occur.) Now let’s look at how to write the output to a file.

 We still need to open() a file handle, but we have to use an optional second argu-
ment, the string 'w', to instruct Python to open it for writing. Other modes include
'r' for reading (the default) and 'a' for appending, as listed in table 5.1.

You can additionally describe the kind of content, whether 't' for text (the default) or
'b' for binary, as listed in table 5.2.

Table 5.1 File-writing modes

Mode Meaning

w Write

r Read

a Append

Figure 5.4 The open() method returns a file
handle, to which we chain read(), which returns a
string, to which we chain the str.rstrip() call.

98 CHAPTER 5 Howler: Working with files and STDOUT
You can combine the values in these two tables, like
'rb' to read a binary file or 'at' to append to a text
file. Here we will use 'wt' to write a text file.

 I’ll call my variable out_fh to remind me that
this is the output file handle:

>>> out_fh = open('out.txt', 'wt')

If the file does not exist, it will be created. If the file does exist, it will be overwritten,
which means that all the previous data will be lost! If you don’t want an existing file to
be lost, you can use the os.path.isfile() function you saw earlier to first check if
the file exists, and perhaps use open() in the “append” mode instead. For this exer-
cise, we’ll use the 'wt' mode to write text.

 You can use the write() method of the file handle to put text into the file. Whereas
the print() function will append a newline (\n) unless you instruct it not to, the
write() method will not add a newline, so you have to explicitly add one.

 If you use the out_fh.write() method in the REPL, you will see that it returns the
number of bytes written. Here each character, including the newline (\n), is a byte:

>>> out_fh.write('this is some text\n')
18

You can check that this is correct:

>>> len('this is some text\n')
18

Most code tends to ignore this return value; that is, we don’t usually bother to capture
the results in a variable or check that we got a nonzero return. If write() fails, there’s
usually some much bigger problem with your system.

 You can also use the print() function with the optional file argument. Notice
that I don’t include a newline with print() because it will add one. This method
returns None:

>>> print('this is some more text', file=out_fh)

When you are done writing to a file handle, you should out_fh.close() it so that
Python can clean up the file and release the memory associated with it. This method
also returns None:

>>> out_fh.close()

Table 5.2 File-content modes

Mode Meaning

t Text

b Bytes

99Writing howler.py
Let’s check if the lines of text we printed to our out.txt file made it by opening the file
and reading it. Note that the newline appears here as \n. We need to print() the
string for it to create an actual newline:

>>> open('out.txt').read()
'this is some text\nthis is some more text\n'

When we print() on an open file handle, the text will be appended to any previously
written data. Look at this code, though:

>>> print("I am what I am an' I'm not ashamed.", file=open('hagrid.txt', 'wt'))

If you run that line twice, will the file called hagrid.txt have the line once or twice?
Let’s find out:

>>> open('hagrid.txt').read()
"I am what I am an' I'm not ashamed\n"

Just once! Why is that? Remember, each call to open() gives us a new file handle, so
calling open() twice results in new file handles. Each time you run that code, the file is
opened anew in write mode and the existing data is overwritten. To avoid confusion, I
recommend you write code more along these lines:

fh = open('hagrid.txt', 'wt')
fh.write("I am what I am an' I'm not ashamed.\n")
fh.close()

5.3 Writing howler.py
You’ll need to create a program called howler.py in the 05_howler directory. You can
use the new.py program for this, copy template.py, or start however you prefer. Fig-
ure 5.5 is a string diagram showing an overview of the program and some example
inputs and outputs.

 When run with no arguments, it should print a short usage message:

$./howler.py
usage: howler.py [-h] [-o str] text
howler.py: error: the following arguments are required: text

When run with -h or --help, the program should print a longer usage statement:

$./howler.py -h
usage: howler.py [-h] [-o str] text

Howler (upper-cases input)

positional arguments:
text Input string or file

optional arguments:
-h, --help show this help message and exit
-o str, --outfile str

Output filename (default:)

100 CHAPTER 5 Howler: Working with files and STDOUT
If the argument is a regular string, it should uppercase that:

$./howler.py 'How dare you steal that car!'
HOW DARE YOU STEAL THAT CAR!

If the argument is the name of a file, it should uppercase the contents of the file:

$./howler.py ../inputs/fox.txt
THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG.

If given an --outfile filename, the uppercased text should be written to the indi-
cated file and nothing should be printed to STDOUT:

$./howler.py -o out.txt ../inputs/fox.txt
$ cat out.txt
THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG.

Here are a few hints:

 Start with new.py and alter the get_args() section until your usage statements
match the ones above.

 Run the test suite and try to pass just the first test that handles text on the com-
mand line and prints the uppercased output to STDOUT.

 The next test is to see if you can write the output to a given file. Figure out how
to do that.

Figure 5.5 A string diagram
showing that our howler.py program
will accept strings or files as inputs
and possibly an output filename.

101Solution
 The next test is for reading input from a file. Don’t try to pass all the tests at
once!

 There is a special file handle that always exists called “standard out” (often
STDOUT). If you print() without a file argument, it defaults to sys.stdout.
You will need to import sys in order to use it.

Be sure you really try to write the program and pass all the tests before moving on to
read the solution. If you get stuck, maybe whip up a batch of Polyjuice Potion and
freak out your friends.

5.4 Solution
Here is a solution that will pass the tests. It’s rather short because Python allows us to
express some really powerful ideas very concisely.

#!/usr/bin/env python3
"""Howler"""

import argparse
import os
import sys

--
def get_args():

"""get command-line arguments"""

parser = argparse.ArgumentParser(
description='Howler (upper-case input)',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('text',
metavar='text',
type=str,
help='Input string or file')

parser.add_argument('-o',
'--outfile',
help='Output filename',
metavar='str',
type=str,
default='')

args = parser.parse_args()

if os.path.isfile(args.text):
args.text = open(args.text).read().rstrip()

return args

The text argument is a string
that may be the name of a file.

The --outfile option is also
a string that names a file.

Parse the command-line arguments
into the variable args so that we can
manually check the text argument.

Check if args.text is the
name of an existing file.

If so, overwrite the
value of args.text with
the results of reading
the file.

Return the arguments
to the caller.

102 CHAPTER 5 Howler: Working with files and STDOUT

ope
ha
w

conve
upp
--
def main():

"""Make a jazz noise here"""

args = get_args()
out_fh = open(args.outfile, 'wt') if args.outfile else sys.stdout
out_fh.write(args.text.upper() + '\n')
out_fh.close()

--
if __name__ == '__main__':

main()

5.5 Discussion
How did it go for you this time? I hope you didn’t sneak into Professor Snape’s office
again. You really don’t want more Saturday detentions.

5.5.1 Defining the arguments

The get_args() function, as always, comes first. Here I define two arguments. The
first is a positional text argument. Since it may or may not name a file, all I can know
is that it will be a string.

parser.add_argument('text',
metavar='text',
type=str,
help='Input string or file')

NOTE If you define multiple positional parameters, their order relative to each
other is important. The first positional parameter you define will handle the
first positional argument provided. It’s not important, however, to define
positional parameters before or after options and flags. You can declare those
in any order you like.

The other argument is an option, so I give it a short name of -o and a long name of
--outfile. Even though the default type for all arguments is str, I like to state this
explicitly. The default value is the empty string. I could just as easily use the special
None type, which is also the default value, but I prefer to use a defined argument like
the empty string.

parser.add_argument('-o',
'--outfile',
help='Output filename',
metavar='str',
type=str,
default='')

Call get_args () to get the
arguments to the program.

Use an if expression
to choose either

sys.stdout or a newly
opened file handle to

write the output.

Use the
ned file
ndle to
rite the
output
rted to
ercase.

Close the file
handle.

103Discussion
5.5.2 Reading input from a file or the command line

This is a deceptively simple program that demonstrates a couple of very important ele-
ments of file input and output. The text input might be a plain string, or it might be
the name of a file. This pattern will come up repeatedly in this book:

if os.path.isfile(args.text):
args.text = open(args.text).read().rstrip()

The os.path.isfile() function will tell me if there is a file with the specified name
in text. If that returns True, I can safely open(file) to get a file handle, which has a
method called read and which will return all the contents of the file.

WARNING You should be aware that fh.read() will return the entire file as a
single string. Your computer must have more memory available than the size
of the file. For all the programs in this book, you will be safe as the files are
small. In my day job, I regularly deal with gigabyte-sized files, so calling
fh.read() would likely crash my program if not my whole system, because I
would exceed my available memory.

The result of open(file).read() is a str, which has a method called str.rstrip()
that will return a copy of the string stripped of any whitespace on the right side (see
figure 5.6). I call this so that the input text will look the same whether it comes from
a file or directly from the command line. When you provide the input text directly
on the command line, you have to press Enter to terminate the command. That
Enter is a newline, and the operating system automatically removes it before passing
it to the program.

The longer way to write the preceding statement would be

if os.path.isfile(text):
fh = open(text)
text = fh.read()
text = text.rstrip()
fh.close()

Figure 5.6 The open() function returns a file
handle (fh). The fh.read() function returns a
str. The str.rstrip() function returns a new
str with the whitespace removed from the right
side. All these functions can be chained together.

104 CHAPTER 5 Howler: Working with files and STDOUT
In my version, I chose to handle this inside the get_args() function. This is the first
time I’ve shown you that you can intercept and alter arguments before passing them
on to main(). We’ll use this idea quite a bit in later exercises.

 I like to do all the work to validate the user’s arguments inside get_args(). I could
just as easily do this in main() after the call to get_args(), so this is entirely a style issue.

5.5.3 Choosing the output file handle

The following line decides where to put the output of the program:

out_fh = open(args.outfile, 'wt') if args.outfile else sys.stdout

The if expression will open args.outfile for writing text (wt) if the user provided that
argument; otherwise, it will use sys.stdout, which is a file handle to STDOUT. Note
that I don’t have to call open() on sys.stdout because it is always available and open
for business (figure 5.7).

5.5.4 Printing the output

To get the uppercase text, I can use the text.upper() method. Then I need to find a
way to print it to the output file handle. I chose to do this:

out_fh.write(text.upper())

Alternatively, you could do this:

print(text.upper(), file=out_fh)

Finally, I need to close the file handle with out_fh.close().

5.5.5 A low-memory version

There is a potentially serious problem waiting to bite us in this program. In get_args(),
we’re reading the entire file into memory with this line:

if os.path.isfile(args.text):
args.text = open(args.text).read().rstrip()

Figure 5.7 An if expression succinctly handles a binary choice. Here we want the output file
handle to be the result of opening the outfile argument if present; otherwise, it should be
sys.stdout.

105Discussion
We could, instead, only open() the file:

if os.path.isfile(args.text):
args.text = open(args.text)

Later we could read it line by line:

for line in args.text:
out_fh.write(line.upper())

The problem, though, is how to handle the times when the text argument is actually
text and not the name of a file. The io (input-output) module in Python has a way to
represent text as a stream:

>>> import io
>>> text = io.StringIO('foo\nbar\nbaz\n')
>>> for line in text:
... print(line, end='')
...
foo
bar
baz

This is the first time you’re seeing that you can treat a regular string value as if it were
a generator of values similar to a file handle. This is a particularly useful technique for
testing any code that needs to read an input file. You can use the return from
io.StreamIO() as a “mock” file handle so that your code doesn’t have to read an
actual file, just a given value that can produce “lines” of text.

 To make this work, we can change how we handle args.text, like so:

#!/usr/bin/env python3
"""Low-memory Howler"""

import argparse
import os
import io
import sys

--
def get_args():

"""get command-line arguments"""

parser = argparse.ArgumentParser(
description='Howler (upper-cases input)',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('text',
metavar='text',
type=str,
help='Input string or file')

parser.add_argument('-o',
'--outfile',
help='Output filename',

Import the io module. Use the io.StringIO() function to turn
the given str value into something we
can treat like an open file handle.

Use a for loop to iterate
through the “lines” of text
separated by newlines.Print the line using the

end='' option to avoid
having two newlines.

106 CHAPTER 5 Howler: Working with files and STDOUT

.

metavar='str',
type=str,
default='')

args = parser.parse_args()

if os.path.isfile(args.text):
args.text = open(args.text)

else:
args.text = io.StringIO(args.text + '\n')

return args

--
def main():

"""Make a jazz noise here"""

args = get_args()
out_fh = open(args.outfile, 'wt') if args.outfile else sys.stdout
for line in args.text:

out_fh.write(line.upper())
out_fh.close()

--
if __name__ == '__main__':

main()

5.6 Going further
 Add a flag that will lowercase the input instead. Maybe call it --ee for the poet

e e cummings, who liked to write poetry devoid of uppercase letters.
 Alter the program to handle multiple input files. Change --outfile to --outdir,

and write each input file to the same filename in the output directory.

Summary
 To read or write files, you must first open() them.
 The default mode for open() is for reading a file.
 To write a text file, you must use 'wt' as the second argument

to open().
 Text is the default type of data that you write() to a file han-

dle. You must use the 'b' flag to indicate that you want to
write binary data.

 The os.path module contains many useful functions, such as
os.path.isfile(), that will tell you if a file exists with a given
name.

 STDOUT (standard output) is always available via the special
sys.stdout file handle, which is always open.

 The print() function takes an optional file argument specifying where to put
the output. That argument must be an open file handle, such as sys.stdout
(the default) or the result of open().

Check if args.text is a file.

If it is, replace args.text with
the file handle created by
opening the file.

Otherwise, replace args.text
with an io.StringIO() value that
will act like an open file handle
Note that we need to add a
newline to the text so that it
will look like the lines of input
coming from an actual file.

Read the input (whether io.StringIO()
or a file handle) line by line.

Process the line as before.

Words count: Reading files
and STDIN, iterating lists,

formatting strings
“I love to count!”

 —Count von Count

Counting things is a surprisingly important program-
ming skill. Maybe you’re trying to find out how many
pizzas were sold each quarter or how many times you
see certain words in a set of documents. Usually the
data we deal with in computing comes to us in files,
so in this chapter, we’re going to push a little further
into reading files and manipulating strings.

 We’re going to write a Python version of the ven-
erable wc (“word count”) program. Ours will be
called wc.py, and it will count the lines, words, and
bytes found in each input supplied as one or more positional arguments. The
counts will appear in columns eight characters wide, and they will be followed by
the name of the file. For instance, here is what wc.py should print for one file:

$./wc.py ../inputs/scarlet.txt
7035 68061 396320 ../inputs/scarlet.txt

When counting multiple files, there will be an additional “total” line summing each
column:

$./wc.py ../inputs/const.txt ../inputs/sonnet-29.txt
865 7620 44841 ../inputs/const.txt
17 118 661 ../inputs/sonnet-29.txt

882 7738 45502 total
107

108 CHAPTER 6 Words count: Reading files and STDIN, iterating lists, formatting strings
There may also be no arguments, in which case we’ll read from standard in, which is
often written as STDIN. We started talking about STDOUT in chapter 5 when we used
sys.stdout as a file handle. STDIN is the complement to STDOUT—it’s the “standard”
place to read input on the command line. When our program is given no positional
arguments, it will read from sys.stdin.

 STDIN and STDOUT are common file handles that many command-line programs
recognize. We can chain the STDOUT from one program to the STDIN of another to cre-
ate ad hoc programs. For instance, the cat program will print the contents of a file to
STDOUT. We can use the pipe operator (|) to funnel that output as input into our pro-
gram via STDIN:

$ cat ../inputs/fox.txt | ./wc.py
1 9 45 <stdin>

Another option is to use the < operator to redirect input from a file:

$./wc.py < ../inputs/fox.txt
1 9 45 <stdin>

One of the handiest command-line tools is grep, which can find patterns of text in
files. If, for instance, we wanted to find all the lines of text that contain the word “scar-
let” in all the files in the inputs directory, we could use this command:

$ grep scarlet ../inputs/*.txt

On the command line, the asterisk (*) is a wildcard that will match anything, so *.txt
will match any file ending with “.txt.” If you run the preceding command, you’ll see
quite a bit of output.

 To count the lines found by grep, we can pipe that output into our wc.py program
like so:

$ grep scarlet ../inputs/*.txt | ./wc.py
108 1192 9201 <stdin>

We can verify that this matches what wc finds:

$ grep scarlet ../inputs/*.txt | wc
108 1192 9201

In this chapter, you will

 Learn how to process zero or more positional arguments
 Validate input files
 Read from files or from standard input
 Use multiple levels of for loops
 Break files into lines, words, and bytes
 Use counter variables
 Format string output

109Writing wc.py
6.1 Writing wc.py
Let’s get started! Create a program called wc.py in the 06_wc directory, and modify
the arguments until it will print the following usage if run with the -h or --help flags:

$./wc.py -h
usage: wc.py [-h] [FILE [FILE ...]]

Emulate wc (word count)

positional arguments:
FILE Input file(s) (default: [<_io.TextIOWrapper name='<stdin>'

mode='r' encoding='UTF-8'>])

optional arguments:
-h, --help show this help message and exit

Given a nonexistent file, your program should print an error message and exit with a
nonzero exit value:

$./wc.py blargh
usage: wc.py [-h] [FILE [FILE ...]]
wc.py: error: argument FILE: can't open 'blargh': \
[Errno 2] No such file or directory: 'blargh'

Figure 6.1 is a string diagram that will help you think about how the program should
work.

Figure 6.1 A string diagram showing that wc.py will read one or more file inputs or
possibly STDIN and will produce a summary of the words, lines, and bytes contained
in each input.

110 CHAPTER 6 Words count: Reading files and STDIN, iterating lists, formatting strings
6.1.1 Defining file inputs

Let’s talk about how we can define the program’s parameters using argparse. This
program takes zero or more positional arguments and nothing else. Remember that
you never have to define the -h or --help arguments, as argparse handles those
automatically.

 In chapter 3 we used nargs='+' to indicate one or more items for our picnic. Here
we want to use nargs='*' to indicate zero or more. When there are no arguments,
the default value will be None. For this program, we’ll read STDIN when there are no
arguments.

 All of the possible values for nargs are listed in table 6.1.

Any arguments that are provided to our program must be readable files. In chapter 5 you
learned how to test whether the input argument was a file by using os.path.isfile().
The input was allowed to be either plain text or a filename, so you had to check this
yourself.

 In this program, the input arguments are required to be readable text files, so we
can define our arguments using type=argparse.FileType('rt'). This means that
argparse takes on all the work of validating the inputs from the user and producing
useful error messages. If the user provides valid input, argparse will provide a list of
open file handles. All in all, this will save us quite a bit of time. (Be sure to review section
A.4.6 on file arguments in the appendix.)

 In chapter 5 we used sys.stdout to write to STDOUT. To read from STDIN here,
we’ll use Python’s sys.stdin file handle. Like sys.stdout, the sys.stdin file handle
does not need an open()—it’s always present and available for reading.

 Because we are using nargs='*' to define our argument, the result will always be a
list. To set sys.stdin as the default value, we should place it in a list like so:

parser.add_argument('file',
metavar='FILE',
nargs='*',
type=argparse.FileType('rt'),
default=[sys.stdin],
help='Input file(s)')

Table 6.1 Possible values for nargs

Symbol Meaning

? Zero or one

* Zero or more

+ One or more

Zero or more of
this argument

If arguments are provided,
they must be readable text
files. The files will be opened
by argparse and will be
provided as file handles.The default will be a list containing sys.stdin, which is like an

open file handle to STDIN. We do not need to open it.

111Writing wc.py
6.1.2 Iterating lists

Your program will end up with a list of file handles that will need to be processed. In
chapter 4 we used a for loop to iterate through the characters in the input text. Here
we can use a for loop over the args.file inputs, which will be open file handles:

for fh in args.file:
read each file

You can give whatever name you like to the variable you use in your for loop, but I
think it’s very important to give it a semantically meaningful name. Here the variable
name fh reminds me that this is an open file handle. You saw in chapter 5 how to
manually open() and read() a file. Here fh is already open, so we can use it directly
to read the contents.

 There are many ways to read a file. The fh.read() method will give you the entire
contents of the file in one go. If the file is large—if it exceeds the available memory on
your machine—your program will crash. I would recommend, instead, that you use
another for loop on the fh. Python will understand this to mean that you wish to read
each line of the file handle, one at a time.

for fh in args.file: # ONE LOOP!
for line in fh: # TWO LOOPS!

process the line

That’s two levels of for loops, one for each file handle and then another for each line
in each file handle. ONE LOOP! TWO LOOPS! I LOVE TO COUNT!

6.1.3 What you’re counting

The output for each file will be the number of lines, words, and bytes (like characters
and whitespace), each of which is printed in a field eight characters wide, followed by
a space and then the name of the file, which will be available to you via fh.name.

 Let’s take a look at the output from the standard wc program on my system. Notice
that when it’s run with just one argument, it produces counts only for that file:

$ wc fox.txt
1 9 45 fox.txt

The fox.txt file is short enough that you could manually verify that it does in fact con-
tain 1 line, 9 words, and 45 bytes, which includes all the characters, spaces, and the
trailing newline (see figure 6.2).

 When run with multiple files, the standard wc program also shows a “total” line:

$ wc fox.txt sonnet-29.txt
1 9 45 fox.txt

17 118 669 sonnet-29.txt
18 127 714 total

112 CHAPTER 6 Words count: Reading files and STDIN, iterating lists, formatting strings
We are going to emulate the behavior of this program. For each file, you will need to
create variables to hold the numbers of lines, words, and bytes. For instance, if you use
the for line in fh loop that I suggest, you will need to have a variable like num_lines
to increment on each iteration.

 That is, somewhere in your code you will need to set a vari-
able to 0 and then, inside the for loop, make it go up by 1.
The idiom in Python is to use the += operator to add some
value on the right side to the variable on the left side (as
shown in figure 6.3):

num_lines = 0
for line in fh:

num_lines += 1

You will also need to count the number of words and bytes, so
you’ll need similar num_words and num_bytes variables.

 To get the words, we’ll use the str.split() method to break each line on spaces.
You can then use the length of the resulting list as the number of words. For the
number of bytes, you can use the len() (length) function on the line and add that to
a num_bytes variable.

NOTE Splitting the text on spaces doesn’t actually produce “words” because it
won’t separate the punctuation, like commas and periods, from the letters, but
it’s close enough for this program. In chapter 15, we’ll look at how to use a reg-
ular expression to separate strings that look like words from others that do not.

6.1.4 Formatting your results

This is the first exercise where the output needs to be formatted in a particular way.
Don’t try to handle this part manually—that way lies madness. Instead, you need to
learn the magic of the str.format() method. The help doesn’t have much in the way

Figure 6.2 The fox.txt file contains 1 line of text, 9 words, and a total of 45
bytes.

Figure 6.3 The +=
operator will add the
value on the right to the
variable on the left.

113Writing wc.py
of documentation, so I recommend you read PEP 3101 on advanced string formatting
(www.python.org/dev/peps/pep-3101/).

 The str.format() method uses a template that contains curly brackets ({}) to cre-
ate placeholders for the values passed as arguments. For example, we can print the
raw value of math.pi like so:

>>> import math
>>> 'Pi is {}'.format(math.pi)
'Pi is 3.141592653589793'

You can add formatting instructions after a colon (:) to specify how you want the
value displayed. If you are familiar with printf() from C-type languages, this is the same
idea. For instance, I can print math.pi with two numbers after the decimal by specify-
ing 0.02f:

>>> 'Pi is {:0.02f}'.format(math.pi)
'Pi is 3.14'

In the preceding example, the colon (:) introduces the formatting options, and the
0.02f describes two decimal points of precision.

 You can also use the f-string method, where the variable comes before the colon:

>>> f'Pi is {math.pi:0.02f}'
'Pi is 3.14'

In this chapter’s exercise, you need to use the formatting option {:8} to align each of
the lines, words, and characters into columns. The 8 describes the width of the field.
The text is usually left-justified, like so:

>>> '{:8}'.format('hello')
'hello '

But the text will be right-justified when you are formatting numeric values:

>>> '{:8}'.format(123)
' 123'

You will need to place a single space between the last column and the name of the file,
which you can find in fh.name.

 Here are a few hints:

 Start with new.py and delete all the nonpositional arguments.
 Use nargs='*' to indicate zero or more positional arguments for your file

argument.
 Try to pass one test at a time. Create the program, get the help right, and then

worry about the first test, then the next, and so on.
 Compare the results of your version to the wc installed on your system. Note

that not every system has the same version of wc, so results may vary.

http://www.python.org/dev/peps/pep-3101/

114 CHAPTER 6 Words count: Reading files and STDIN, iterating lists, formatting strings

,
n
e

It’s time to write this yourself before you read the solution. Fear is the mind killer. You
can do this.

6.2 Solution
Here is one way to satisfy the tests. Remember, it’s fine if you wrote it differently, as
long as it’s correct and you understand your code!

#!/usr/bin/env python3
"""Emulate wc (word count)"""

import argparse
import sys

--
def get_args():

"""Get command-line arguments"""

parser = argparse.ArgumentParser(
description='Emulate wc (word count)',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('file',
metavar='FILE',
nargs='*',
default=[sys.stdin],
type=argparse.FileType('rt'),
help='Input file(s)')

return parser.parse_args()

--
def main():

"""Make a jazz noise here"""

args = get_args()

total_lines, total_bytes, total_words = 0, 0, 0
for fh in args.file:

num_lines, num_words, num_bytes = 0, 0, 0
for line in fh:

num_lines += 1
num_bytes += len(line)
num_words += len(line.split())

total_lines += num_lines
total_bytes += num_bytes
total_words += num_words

If you set the default to a
list with sys.stdin, you have
handled the STDIN option.

If the user supplies any
arguments, argparse will
check if they are valid file
inputs. If there is a problem
argparse will halt executio
of the program and show th
user an error message.

These are the variables
for the “total” line, if I

need them.

Iterate through the list of
arg.file inputs. I use the
variable fh to remind me
that these are open file
handles, even STDIN.

Initialize variables to
count the lines, words,
and bytes in just this file.

Iterate through each
line of the file handle.

For each line, increment
the number of lines by 1.

The number of bytes is
incremented by the
length of the line.

To get the number of words, we can
call line.split() to break the line on

whitespace. The length of that list is
added to the count of words.

Add all the counts for lines, words, and bytes for
this file to the variables for counting the totals.

115Discussion
print(f'{num_lines:8}{num_words:8}{num_bytes:8} {fh.name}')

if len(args.file) > 1:
print(f'{total_lines:8}{total_words:8}{total_bytes:8} total')

--
if __name__ == '__main__':

main()

6.3 Discussion
This program is rather short and seems rather simple, but it’s not exactly easy. Let’s
break down the main ideas in the program.

6.3.1 Defining the arguments

One point of this exercise is to get familiar with argparse and the trouble it can save
you. The key is in defining the file parameter. We use type=argparse.File-
Type('rt') to indicate that any arguments provided must be readable text files. We
use nargs='*' to indicate zero or more arguments, and we set the default to be a list
containing sys.stdin. This means we know that argparse will always give us a list of
one or more open file handles.

 That’s really quite a bit of logic packed into a small space, and most of the work val-
idating the inputs, generating error messages, and handling the defaults is all done
for us!

6.3.2 Reading a file using a for loop

The values that argparse returns for args.file will be a list of open file handles. We
can create such a list in the REPL to mimic what we’d get from args.file:

>>> files = [open('../inputs/fox.txt')]

Before we use a for loop to iterate through them, we need to set up three variables to
track the total number of lines, words, and characters. We could define them on three
separate lines:

>>> total_lines = 0
>>> total_words = 0
>>> total_bytes = 0

Or we can declare them on a single line like the following:

>>> total_lines, total_words, total_bytes = 0, 0, 0

Print the counts for this file using the {:8} option
to print in a field 8 characters wide followed by a
single space and then the name of the file.

Check if we had
more than 1 input.

Print the
“total” line.

116 CHAPTER 6 Words count: Reading files and STDIN, iterating lists, formatting strings
Technically we’re creating a tuple on the right side by placing commas between the
three zeros and then “unpacking” them into three variables on the left side. I’ll have
more to say about tuples much later.

 Inside the for loop for each file handle, we initialize three more variables to hold
the count of lines, characters, and words for this particular file. We can then use another
for loop to iterate over each line in the file handle (fh). For lines, we can add 1 on
each pass through the for loop. For bytes, we can add the length of the line
(len(line)) to track the number of “characters” (which may be printable characters
or whitespace, so it’s easiest to call them “bytes”). Lastly, for words, we can use
line.split() to break the line on whitespace to create a list of “words.” It’s not a
perfect way to count actual words, but it’s close enough. We can use the len() func-
tion on the list to add to the words variable.

 The for loop ends when the end of the file is reached. Next we can print() out
the counts and the filename, using {:8} placeholders in the print template to indicate
a text field 8 characters wide:

>>> for fh in files:
... lines, words, bytes = 0, 0, 0
... for line in fh:
... lines += 1
... bytes += len(line)
... words += len(line.split())
... print(f'{lines:8}{words:8}{bytes:8} {fh.name}')
... total_lines += lines
... total_bytes += bytes
... total_words += words
...

1 9 45 ../inputs/fox.txt

Notice that the preceding call to print() lines up with the second for loop, so that it
will run after we’re done iterating over the lines in fh. I chose to use the f-string
method to print each of lines, words, and bytes in a space eight characters wide, fol-
lowed by one space and then the fh.name of the file.

 After printing, we can add the counts to the “total” variables to keep a running
total.

117Summary
Lastly, if the number of file arguments is greater than 1, we need to print the totals:

if len(args.file) > 1:
print(f'{total_lines:8}{total_words:8}{total_bytes:8} total')

6.4 Going further
 By default, wc will print all the columns like our program does, but it will also

accept flags to print -c for number of characters, -l for number of lines, and -w
for number of words. When any of these flags are present, only columns for the
specified flags are shown, so wc.py -wc would show just the columns for words
and characters. Add short and long flags for these options to your program so
that it behaves exactly like wc.

 Write your own implementation of other system tools like cat (to print the con-
tents of a file to STDOUT), head (to print just the first n lines of a file), tail (to
print the last n lines of a file), and tac (to print the lines of a file in reverse
order).

Summary
 The nargs (number of arguments) option to argparse allows you to validate

the number of arguments from the user. The asterisk ('*') means zero or
more, whereas '+' means one or more.

 If you define an argument using type=argparse.FileType('rt'), argparse
will validate that the user has provided a readable text file and will make the
value available in your code as an open file handle.

 You can read and write from the standard in/out file handles by using
sys.stdin and sys.stdout.

 You can nest for loops to handle multiple levels of processing.
 The str.split() method will split a string on spaces.
 The len() function can be used on both strings and lists. For lists, it will tell you

the number of elements the list contains.
 Both str.format() and Python’s f-strings recognize printf-style formatting

options to allow you to control how a value is displayed.

Gashlycrumb: Looking
items up in a dictionary
In this chapter, we’re going to look up lines of text from an input file that start with
the letters provided by the user. The text will come from an input file that will
default to Edward Gorey’s “The Gashlycrumb Tinies,” an abecedarian book that
describes various and ghastly ways in which children expire. For instance, figure 7.1
shows that “N is for Neville who died of ennui.”

Our gashlycrumb.py program will take one or more letters as positional arguments
and will look up the lines of text that start with that letter from an optional input
file. We will look up the letters in a case-insensitive fashion.

 The input file will have the value for each letter on a separate line:

$ head -2 gashlycrumb.txt
A is for Amy who fell down the stairs.
B is for Basil assaulted by bears.

Figure 7.1 N is for Neville who
died of ennui.
118

119Writing gashlycrumb.py
When our unfortunate user runs this program, here is what they will see:

$./gashlycrumb.py e f
E is for Ernest who choked on a peach.
F is for Fanny sucked dry by a leech.

In this exercise, you will

 Accept one or more positional arguments that we’ll call letter.
 Accept an optional --file argument, which must be a readable text file. The

default value will be 'gashlycrumb.txt' (provided).
 Read the file, find the first letter of each line, and build a data structure that

associates the letter to the line of text. (We’ll only be using files where each line
starts with a single, unique letter. This program would fail with any other format
of text.)

 For each letter provided by the user, either print the line of text for the let-
ter if present, or print a message if it isn’t.

 Learn how to “pretty-print” a data structure.

You can draw from several previous programs:

 From chapter 2 you know how to get the first letter of a
bit of text.

 From chapter 4 you know how to build a dictionary and
look up a value.

 From chapter 6 you know how to accept a file input argu-
ment and read it line by line.

Now you’ll put all those skills together to recite morbid poetry!

7.1 Writing gashlycrumb.py
Before you begin writing, I encourage you to run the tests with make test or pytest -xv
test.py in the 07_gashlycrumb directory. The first test should fail:

test.py::test_exists FAILED

This is just a reminder that the first thing you need to do is create the file called gash-
lycrumb.py. You can do this however you like, such as by running new.py gashly-
crumb.py in the 07_gashlycrumb directory, by copying the template/template.py file,
or by just starting a new file from scratch. Run your tests again, and you should pass
the first test and possibly the second if your program produces a usage statement.

 Next, let’s get the arguments straight. Modify your program’s parameters in the
get_args() function so that it will produce the following usage statement when the pro-
gram is run with no arguments or with the -h or --help flags:

$./gashlycrumb.py -h
usage: gashlycrumb.py [-h] [-f FILE] letter [letter ...]

120 CHAPTER 7 Gashlycrumb: Looking items up in a dictionary

Gashlycrumb

positional arguments:
letter Letter(s)

optional arguments:
-h, --help show this help message and exit
-f FILE, --file FILE Input file (default: gashlycrumb.txt)

Figure 7.2 shows a string diagram of how the program will work.

In the main() function, start off by echoing each of the letter arguments:

def main():
args = get_args()
for letter in args.letter:

print(letter)

Try running it to make sure it works:

$./gashlycrumb.py a b
a
b

Next, read the file line by line using a for loop:

def main():
args = get_args()

letter is a required
positional argument
that accepts one or
more values. The -h and --help

arguments are
created automatically
by argparse.

The -f or --file argument is an option with a
default value of gashlycrumb.txt.

Figure 7.2 Our program will accept some letter(s) and possibly a
file. It will then look up the line(s) of the file starting with the given
letter(s).

121Writing gashlycrumb.py
for letter in args.letter:
print(letter)

for line in args.file:
print(line, end='')

Note that I’m using end='' with print() so that it won’t print the newline that’s already
attached to each line of the file:

 Try running it to ensure you can read the input file:

$./gashlycrumb.py a b | head -4
a
b
A is for Amy who fell down the stairs.
B is for Basil assaulted by bears.

Use the alternate.txt file too:

$./gashlycrumb.py a b --file alternate.txt | head -4
a
b
A is for Alfred, poisoned to death.
B is for Bertrand, consumed by meth.

If your program is provided a --file argument that does not exist, it should exit with
an error and message. Note that if you declare the parameter in get_args() using
type=argparse.FileType('rt') as we did in the previous chapter, this error should
be produced automatically by argparse:

$./gashlycrumb.py -f blargh b
usage: gashlycrumb.py [-h] [-f FILE] letter [letter ...]
gashlycrumb.py: error: argument -f/--file: can't open 'blargh': \
[Errno 2] No such file or directory: 'blargh'

Now think about how you can use the first letter of each line to create an entry in a
dict. Use print() to look at your dictionary. Figure out how to check if the given
letter is in (wink, wink, nudge, nudge) your dictionary.

 If your program is given a value that does not exist in
the list of first characters on the lines from the input
file (when searched without regard to case), you should
print a message:

$./gashlycrumb.py 3
I do not know "3".
$./gashlycrumb.py CH
I do not know "CH".

If the given letter is in the dictionary, print the value for it (see figure 7.3):

$./gashlycrumb.py a
A is for Amy who fell down the stairs.

122 CHAPTER 7 Gashlycrumb: Looking items up in a dictionary
$./gashlycrumb.py z
Z is for Zillah who drank too much gin.

Run the test suite to ensure your program meets all the requirements. Read the errors
closely and fix your program.

 Here are some hints:

 Start with new.py and remove everything but the positional letter and optional
--file parameters.

 Use type=argparse.FileType('rt') to validate the --file argument.
 Use nargs='+' to define the positional argument letter so it will require one

or more values.
 A dictionary is a natural data structure for associating a value like the letter

“A” to a phrase like “A is for Amy who fell down the stairs.” Create a new,
empty dict.

 Once you have an open file handle, you can read the file line by line with a
for loop.

 Each line of text is a string. How can you get the first character of a string?
 Create an entry in your dictionary using the first character as the key and the

line itself as the value.
 Iterate through each letter argument. How can you check that a given value is

in the dictionary?

No skipping ahead to the solution until you have written your own version! If you
peek, you will die a horrible death: stampeded by kittens.

7.2 Solution
I really hope you looked at Gorey’s artwork for his book. Now let’s talk about how to
build a dictionary from a file input:

#!/usr/bin/env python3
"""Lookup tables"""

import argparse

Figure 7.3 We need to create a dictionary where the first letter of each line is the key
and the line is the value.

123Discussion

.

Use
to ite
each

ar

If
t

text
lo
t

--
def get_args():

"""get command-line arguments"""

parser = argparse.ArgumentParser(
description='Gashlycrumb',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('letter',
help='Letter(s)',
metavar='letter',
nargs='+',
type=str)

parser.add_argument('-f',
'--file',
help='Input file',
metavar='FILE',
type=argparse.FileType('rt'),
default='gashlycrumb.txt')

return parser.parse_args()

--
def main():

"""Make a jazz noise here"""

args = get_args()

lookup = {}
for line in args.file:

lookup[line[0].upper()] = line.rstrip()

for letter in args.letter:
if letter.upper() in lookup:

print(lookup[letter.upper()])
else:

print(f'I do not know "{letter}".')

--
if __name__ == '__main__':

main()

7.3 Discussion
Did the frightful paws of the kittens hurt much? Let’s talk about how I solved this
problem. Remember, mine is just one of many possible solutions.

7.3.1 Handling the arguments

I prefer to have all the logic for parsing and validating the command-line arguments
in the get_args() function. In particular, argparse can do a fine job of verifying
tedious things, such as an argument being an existing, readable text file, which is why

A positional argument called letter
uses nargs='+' to indicate that
one or more values are required.

The optional --file
argument must be a
readable file because of
type=argparse.FileType('rt')
The default value is
gashlycrumb.txt, which I
know exists.

Create an empty dictionary
to hold the lookup table.

Iterate through each line of
the args.file, which will be
an open file handle.

Uppercase the first
character of the line to
use as the key into the
lookup table and set
the value to be the line
stripped of whitespace
on the right side.

a for loop
rate over
 letter in
gs.letter. Check if the letter is in the

lookup dictionary, using
letter.upper() to disregard case.

 so, print
he line of
 from the
okup for

he letter.

Otherwise, print a
message saying the
letter is unknown.

124 CHAPTER 7 Gashlycrumb: Looking items up in a dictionary
I use type=argparse.FileType('rt') for that argument. If the user doesn’t supply a
valid argument, argparse will throw an error, printing a helpful message along with
the short usage statement, and will exit with an error code.

 By the time I get to the line args = get_args(), I know that I have one or more
“letter” arguments and a valid, open file handle in the args.file slot. In the REPL,
I can use open to get a file handle, which I usually like to call fh. For copyright pur-
poses, I’ll use my alternate text:

>>> fh = open('alternate.txt')

7.3.2 Reading the input file

We want to use a dictionary where the keys are the first letters of each line and the val-
ues are the lines themselves. That means we need to start by creating a new, empty dic-
tionary, either by using the dict() function or by setting a variable equal to an empty
set of curly brackets ({}). Let’s call the variable lookup:

>>> lookup = {}

We can use a for loop to read each line of text. From the Crow’s Nest program in
chapter 2, you know we can use line[0].upper() to get the first letter of line and
uppercase it. We can use that as the key into lookup.

 Each line of text ends with a newline that I’d like to remove. The str.rstrip()
method will strip whitespace from the right side of the line ("rstrip" = right strip). The
result of that will be the value for my lookup:

for line in fh:
lookup[line[0].upper()] = line.rstrip()

Let’s look at the resulting lookup dictionary. We can print() it from the program or
type lookup in the REPL, but it’s going to be hard to read. I encourage you to try it.

 Luckily there is a lovely module called pprint to “pretty-print” data structures.
Here is how you can import the pprint() function from the pprint module with the
alias pp:

>>> from pprint import pprint as pp

Figure 7.4 illustrates how this works.

Figure 7.4 We can specify exactly which
functions to import from a module and even give
the function an alias.

125Discussion
Now let’s take a peek at the lookup table:

>>> pp(lookup)
{'A': 'A is for Alfred, poisoned to death.',
'B': 'B is for Bertrand, consumed by meth.',
'C': 'C is for Cornell, who ate some glass.',
'D': 'D is for Donald, who died from gas.',
'E': 'E is for Edward, hanged by the neck.',
'F': 'F is for Freddy, crushed in a wreck.',
'G': 'G is for Geoffrey, who slit his wrist.',
'H': "H is for Henry, who's neck got a twist.",
'I': 'I is for Ingrid, who tripped down a stair.',
'J': 'J is for Jered, who fell off a chair,',
'K': 'K is for Kevin, bit by a snake.',
'L': 'L is for Lauryl, impaled on a stake.',
'M': 'M is for Moira, hit by a brick.',
'N': 'N is for Norbert, who swallowed a stick.',
'O': 'O is for Orville, who fell in a canyon,',
'P': 'P is for Paul, strangled by his banyan,',
'Q': 'Q is for Quintanna, flayed in the night,',
'R': 'R is for Robert, who died of spite,',
'S': 'S is for Susan, stung by a jelly,',
'T': 'T is for Terrange, kicked in the belly,',
'U': "U is for Uma, who's life was vanquished,",
'V': 'V is for Victor, consumed by anguish,',
'W': "W is for Walter, who's socks were too long,",
'X': 'X is for Xavier, stuck through with a prong,',
'Y': 'Y is for Yoeman, too fat by a piece,',
'Z': 'Z is for Zora, smothered by a fleece.'}

Hey, that looks like a handy data structure. Hooray for us! Please don’t discount the
value of using lots of print() calls when you are trying to write and understand a pro-
gram, and of using the pprint() function whenever you need to see a complex data
structure.

7.3.3 Using a dictionary comprehension

In chapter 4 you saw that you can use a list comprehension to build a list by putting a
for loop inside []. If we change the brackets to curlies ({}), we create a dictionary
comprehension:

>>> fh = open('gashlycrumb.txt')
>>> lookup = { line[0].upper(): line.rstrip() for line in fh }

See in figure 7.5 how we can rearrange three lines of our for loop into a single line
of code.

 If you print the lookup table again, you should see the same output as before. It
may seem like showing off to write one line of code instead of three, but it really does
make a good deal of sense to write compact, idiomatic code. More code always means
more chances for bugs, so I usually try to write code that is as simple as possible (but
no simpler).

126 CHAPTER 7 Gashlycrumb: Looking items up in a dictionary
7.3.4 Dictionary lookups

Now that I have a lookup table, I can ask whether
some value is in the keys. I know the letters are in
uppercase, and since the user could give me a
lowercase letter, I use letter.upper() to only
compare that case:

>>> letter = 'a'
>>> letter.upper() in lookup
True
>>> lookup[letter.upper()]
'A is for Amy who fell down the stairs.'

If the letter is found, I can print the line of text for that letter; otherwise, I can print a
message saying that I don’t know that letter:

>>> letter = '4'
>>> if letter.upper() in lookup:
... print(lookup[letter.upper()])
... else:
... print('I do not know "{}".'.format(letter))
...
I do not know "4".

An even shorter way to write that would be to use the dict.get() method:

def main():
args = get_args()
lookup = {line[0].upper(): line.rstrip() for line in args.file}

for letter in args.letter:
print(lookup.get(letter.upper(), f'I do not know "{letter}".'))

7.4 Going further
 Write a phonebook that reads a file and creates a dictionary from the names of

your friends and their email or phone numbers.
 Create a program that uses a dictionary to count the number of times you see

each word in a document.

Figure 7.5 The for loop we used to build a dictionary can be written using a
dictionary comprehension.

lookup.get() will return the value for letter.upper() or the
warning about a value not being found in our lookup.

127Summary
 Write an interactive version of the program that takes input directly from the
user. Use while True to set up an infinite loop and keep using the input() func-
tion to get the user’s next letter:

$./gashlycrumb_interactive.py
Please provide a letter [! to quit]: t
T is for Titus who flew into bits.
Please provide a letter [! to quit]: 7
I do not know "7".
Please provide a letter [! to quit]: !
Bye

 Interactive programs are fun to write, but how would you go about testing
them? In chapter 17 I’ll show you one way to do this.

Summary
 A dictionary comprehension is a way to build a dictionary in a one-line for loop.
 Defining file input arguments using argparse.FileType saves you time and code.
 Python’s pprint module is used to pretty-print complex data structures.

Apples and Bananas:
Find and replace
Have you ever misspelled a word? I haven’t,
but I’ve heard that many other people often
do. We can use computers to find and
replace all instances of a misspelled word
with the correction. Or maybe you’d like to
replace all mentions of your ex’s name in
your poetry with your new love’s name?
Find and replace is your friend.

 To get us started, let’s consider the chil-
dren’s song “Apples and Bananas,” wherein
we intone our favorite fruits to consume:

I like to eat, eat, eat apples and bananas

Subsequent verses substitute the main vowel sound in the fruits for various other
vowel sounds, such as the long “a” sound (as in “hay”):

I like to ate, ate, ate ay-ples and ba-nay-nays

Or the ever-popular long “e” (as in “knee”):

I like to eat, eat, eat ee-ples and bee-nee-nees

And so forth. In this exercise, we’ll write a Python program called apples.py that
takes some text, given as a single positional argument, and replaces all the vowels in
the text with the given -v or --vowel options (with the default being a).
128

129
 The program should be written in the 08_apples_and_bananas directory and
should handle text on the command line:

$./apples.py foo
faa

And accept the -v or --vowel option:

$./apples.py foo -v i
fii

Your program should preserve the case of the input vowels:

$./apples.py -v i "APPLES AND BANANAS"
IPPLIS IND BININIS

As with the Howler program in chapter 5, the text argument may name a file, in which
case your program should read the contents of the file:

$./apples.py ../inputs/fox.txt
Tha qaack brawn fax jamps avar tha lazy dag.
$./apples.py --vowel e ../inputs/fox.txt
The qeeck brewn fex jemps ever the lezy deg.

Figure 8.1 shows a diagram of the program’s inputs and output.

Here is the usage statement that should print when there are no arguments:

$./apples.py
usage: apples.py [-h] [-v vowel] text
apples.py: error: the following arguments are required: text

And the program should always print usage for the -h and --help flags:

$./apples.py -h
usage: apples.py [-h] [-v vowel] text

Figure 8.1 Our program will accept
some text and possibly a vowel. All the
vowels in the given text will be changed
to the same vowel, resulting in hilarity.

130 CHAPTER 8 Apples and Bananas: Find and replace
Apples and bananas

positional arguments:
text Input text or file

optional arguments:
-h, --help show this help message and exit
-v vowel, --vowel vowel

The vowel to substitute (default: a)

The program should complain if the --vowel argument is
not a single, lowercase vowel:

$./apples.py -v x foo
usage: apples.py [-h] [-v str] str
apples.py: error: argument -v/--vowel: \
invalid choice: 'x' (choose from 'a', 'e', 'i', 'o', 'u')

Your program is going to need to do the following:

 Take a positional argument that might be some plain text or may name a file
 If the argument is a file, use the contents as the input text
 Take an optional -v or --vowel argument that should default to the letter “a”
 Verify that the --vowel option is in the set of vowels “a,” “e,” “i,” “o,” and “u”
 Replace all instances of vowels in the input text with the specified (or default)

--vowel argument
 Print the new text to STDOUT

8.1 Altering strings
So far in our discussions of Python strings, numbers, lists, and dictionaries, we’ve seen
how easily we can change or mutate variables. There is a problem, however, in that
strings are immutable. Suppose we have a text variable that holds our input text:

>>> text = 'The quick brown fox jumps over the lazy dog.'

If we wanted to turn the first “e” (at index 2) into an “i,” we cannot do this:

>>> text[2] = 'i'
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: 'str' object does not support item assignment

To change text, we need to set it equal to an entirely new value. In chapter 4 you saw
that you can use a for loop to iterate over the characters in a string. For instance, I
could laboriously uppercase text like so:

131Altering strings
new = ''
for char in text:

new += char.upper()

We can inspect the value of new to verify that it is all uppercase:

>>> new
'THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG.'

Using this idea, you could iterate through the characters of text and build up a new
string. Whenever the character is a vowel, you could change it for the given vowel;
otherwise, you could use the character itself. We had to identify vowels in chapter 2, so
you can refer back to how you did that.

8.1.1 Using the str.replace() method

In chapter 4 we talked about using the str.replace() method to replace all the num-
bers in a string with a different number. Maybe that would be a good way to solve
this problem? Let’s look at the documentation for that using help(str.replace) in
the REPL:

>>> help(str.replace)
replace(self, old, new, count=-1, /)

Return a copy with all occurrences of substring old replaced by new.

count
Maximum number of occurrences to replace.
-1 (the default value) means replace all occurrences.

If the optional argument count is given, only the first count occurrences
are replaced.

Let’s give that a try. We could replace “T” with “X”:

>>> text.replace('T', 'X')
'Xhe quick brown fox jumps over the lazy dog.'

This seems promising! Can you see a way to replace all the vowels using this idea?
Remember that this method never mutates the given string but instead returns a new
string that you will need to assign to a variable.

8.1.2 Using str.translate()

We also looked at the str.translate() method in chapter 4. There we created a dic-
tionary that described how to turn one character, like “1,” into another string like “9.”
Any character not mentioned in the dictionary was left alone.

Initialize a variable equal
to the empty string. Iterate through each

character in the text.

Append the uppercase version of
the character to the variable.

132 CHAPTER 8 Apples and Bananas: Find and replace
 The documentation for this method is a bit more cryptic:

>>> help(str.translate)
translate(self, table, /)

Replace each character in the string using the given translation table.

table
Translation table, which must be a mapping of Unicode ordinals to
Unicode ordinals, strings, or None.

The table must implement lookup/indexing via __getitem__, for instance a
dictionary or list. If this operation raises LookupError, the character is
left untouched. Characters mapped to None are deleted.

In my solution, I created the following dictionary:

jumper = {'1': '9', '2': '8', '3': '7', '4': '6', '5': '0',
'6': '4', '7': '3', '8': '2', '9': '1', '0': '5'}

That is the argument to the str.maketrans() function, which creates a translation
table that is then used with str.translate() to change all the characters present as
keys in the dictionary to their corresponding values:

>>> '876-5309'.translate(str.maketrans(jumper))
'234-0751'

What keys and values should you have in a dictionary if you want to change all the vow-
els, both lower- and uppercase, to some other value?

8.1.3 Other ways to mutate strings

If you know about regular expressions, that’s a strong solution. If you haven’t heard of
them, don’t worry—I’ll introduce them in the discussion.

 The point is for you to play with this and come up with a solution. I found eight
ways to change all the vowels to a new character, so there are many ways you could
approach this. How many different methods can you find on your own before you look
at my solution?

 Here are a few hints:

 Consider using the choices option in the argparse documentation to con-
strain the --vowel options. Be sure to read section A.4.3 in the appendix for an
example.

 Be sure to change both lower- and uppercase versions of the vowels, preserving
the case of the input characters.

Now is the time to dig in and see what you can do before you look at my solution.

133Solution
8.2 Solution
Here is the first solution I wanted to share. After this, we’ll explore several more.

#!/usr/bin/env python3
"""Apples and Bananas"""

import argparse
import os

--
def get_args():

"""get command-line arguments"""

parser = argparse.ArgumentParser(
description='Apples and bananas',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('text', metavar='text', help='Input text or file')

parser.add_argument('-v',
'--vowel',
help='The vowel(s) allowed',
metavar='vowel',
type=str,
default='a',
choices=list('aeiou'))

args = parser.parse_args()

if os.path.isfile(args.text):
args.text = open(args.text).read().rstrip()

return args

--
def main():

"""Make a jazz noise here"""

args = get_args()
text = args.text
vowel = args.vowel
new_text = []

for char in text:
if char in 'aeiou':

new_text.append(vowel)
elif char in 'AEIOU':

new_text.append(vowel.upper())
else:

new_text.append(char)

The input might be
text or a filename, so I

defined it as a string.

Use “choices” to
restrict the user to one
of the listed vowels.

Check if the text
argument is a file.

If it is, read the file
using str.rstrip() to
remove any trailing
whitespace.

Create a new
list to hold the
characters for the
transformed text.

Iterate through each
character of the text.

Check if the current
character is in the list
of lowercase vowels.

If it is, use the vowel value
instead of the character.

Check if the current character is
in the list of uppercase vowels.

If it is, use the value of vowel.upper()
instead of the character.

Otherwise,
use the

character
itself.

134 CHAPTER 8 Apples and Bananas: Find and replace
print(''.join(new_text))

--
if __name__ == '__main__':

main()

8.3 Discussion
I came up with eight ways to write my solution. All of them start with the same
get_args() function, so let’s look at that first.

8.3.1 Defining the parameters

This is one of those problems that has many valid and interesting solutions. The first
problem to solve is, of course, getting and validating the user’s input. As always, I will
use argparse.

 I usually define all my required parameters first. The text parameter is a posi-
tional string that might be a filename:

parser.add_argument('text', metavar='str', help='Input text or file')

The --vowel option is also a string, and I decided to use the choices option to have
argparse validate that the user’s input is in the list('aeiou'):

parser.add_argument('-v',
'--vowel',
help='The vowel to substitute'',
metavar='str',
type=str,
default='a',
choices=list('aeiou'))

That is, choices wants a list of options. I could pass in ['a', 'e', 'i', 'o', 'u'],
but that’s a lot of typing on my part. It’s much easier to type list('aeiou') and have
Python turn the str “aeiou” into a list of the characters. Both approaches produce
the same results, because list(str) creates a list of the individual characters in a
given string. And remember, the use of single or double quotes doesn’t matter. Any
value enclosed in either type of quotes is a str, even if it’s just one character:

>>> ['a', 'e', 'i', 'o', 'u']
['a', 'e', 'i', 'o', 'u']
>>> list('aeiou')
['a', 'e', 'i', 'o', 'u']

We can even write a test for this. The absence of any error means that it’s OK:

>>> assert ['a', 'e', 'i', 'o', 'u'] == list('aeiou')

The next task is detecting whether text is the name of a file that should be read for
the text, or if it is the text itself. This is the same code I used in chapter 5, and again I

Print a new string made by joining the
new text list on the empty string.

135Discussion
chose to handle the text argument inside the get_args() function so that, by the
time I get text inside main(), it’s all been handled. Figure 8.2 illustrates how we can
chain the open() function to the read() method of a file handle to the rstrip()
method of a string.

if os.path.isfile(args.text):
args.text = open(args.text).read().rstrip()

At this point, the user’s arguments to the program have been fully vetted. We’ve got
text either from the command line or from a file, and we’ve verified that the --vowel
value is one of the allowed characters. To me, this code is a single “unit” where I’ve
handled the arguments. Processing can now go forward by returning the arguments:

return args

8.3.2 Eight ways to replace the vowels

How many ways did you find to replace the vowels? You only needed one, of course, to
pass the tests, but I hope you probed the edges of the language to see how many dif-
ferent techniques there are. I know that the Zen of Python says

There should be one—and preferably only one—obvious way to do it.

www.python.org/dev/peps/pep-0020/

But I really come from the Perl mentality, where “There Is More Than One Way To Do
It” (TIMTOWTDI or “Tim Toady”).

METHOD 1: ITERATING THROUGH EVERY CHARACTER

The first method is similar to what we did in chapter 4, where we used a for loop on a
string to access each character. Here is some code you can copy and paste into the
ipython REPL:

>>> text = 'Apples and Bananas!'
>>> vowel = 'o'
>>> new_text = []
>>> for char in text:

Figure 8.2 We can chain methods together to create
pipelines of operations. The open() returns a file handle
that we can read. The read() operation returns a string
that we strip of whitespace.

Set text to the string
“Apples and Bananas!” Set the vowel variable to the

string “o”. That is, we’ll replace
all the vowels with this one.

Set the new_text variable
to an empty list.

Use a for to iterate text, putting each
character into the char variable.

http://www.python.org/dev/peps/pep-0020/

136 CHAPTER 8 Apples and Bananas: Find and replace
... if char in 'aeiou':

... new_text.append(vowel)

... elif char in 'AEIOU':

... new_text.append(vowel.upper())

... else:

... new_text.append(char)

...
>>> text = ''.join(new_text)
>>> text
'Opplos ond Bononos!'

Note that it would be just fine to start off making new_text an empty string and then
concatenating the new characters. With that approach, you wouldn’t have to str.join()
them at the end. Whatever you prefer:

new_text += vowel

Next I’m going to show you several alternate solutions. They’re all functionally equiva-
lent because they all pass the tests—the point here is to explore the Python language
and understand it. For the alternate solutions, I’ll just show the main() function.

METHOD 2: USING THE STR.REPLACE() METHOD

Here is a way to solve the problem using the str.replace() method:

def main():
args = get_args()
text = args.text
vowel = args.vowel

for v in 'aeiou':
text = text.replace(v, vowel).replace(v.upper(), vowel.upper())

print(text)

Earlier in the chapter, I mentioned the str.replace() method, which will return a
new string with all instances of one string replaced by another:

>>> s = 'foo'
>>> s.replace('o', 'a')
'faa'
>>> s.replace('oo', 'x')
'fx'

Note that the original string remains unchanged:

>>> s
'foo'

You don’t have to chain the two str.replace() methods. It could be written as two
separate statements, as illustrated in figure 8.3.

If the character is in the set of lowercase
vowels, add the vowel “o” to the new text.

If the character is in the set of uppercase
vowels, substitute the vowel.upper()
version “O” into the new text.

Otherwise, add the current
character to the new text.

Turn the new_text list into a new str
by joining it on the empty string ('').

Iterate through the list of vowels. We don’t have
to say list('aeiou') here—Python will automatically
treat the string 'aeiou' like a list because we are
using it in a list context with the for loop.

Use the str.replace() method twice to replace both the
lower- and uppercase versions of the vowel in the text.

137Discussion
METHOD 3: USING THE STR.TRANSLATE() METHOD

Can we use the str.translate() method to solve this? I showed in chapter 4 how you
could use a dictionary called jumper to change a character like “1” to the character
“9.” In this problem, we need to change all the lower- and uppercase vowels (10 total)
to some given vowel. For instance, to change all the vowels into the letter “o,” we
could create a translation table t like so:

t = {'a': 'o',
'e': 'o',
'i': 'o',
'o': 'o',
'u': 'o',
'A': 'O',
'E': 'O',
'I': 'O',
'O': 'O',
'U': 'O'}

We could use t with the str.translate() method:

>>> 'Apples and Bananas'.translate(str.maketrans(t))
'Opplos ond Bononos'

If you read the documentation for str.maketrans(), you will find that another way to
specify the translation table is to supply two strings of equal lengths:

maketrans(x, y=None, z=None, /)
Return a translation table usable for str.translate().

If there is only one argument, it must be a dictionary mapping Unicode
ordinals (integers) or characters to Unicode ordinals, strings or None.
Character keys will be then converted to ordinals.
If there are two arguments, they must be strings of equal length, and
in the resulting dictionary, each character in x will be mapped to the
character at the same position in y. If there is a third argument, it
must be a string, whose characters will be mapped to None in the result.

The first string should contain the letters you want to replace, which are the lower-
and uppercase vowels 'aeiouAEIOU'. The second string is composed of the letters to
use for substitution. We want to use 'ooooo' for 'aeiou' and 'OOOOO' for 'AEIOU'.

Figure 8.3 The chained calls to str.replace() can be written as two separate
statements if you prefer.

138 CHAPTER 8 Apples and Bananas: Find and replace
We can repeat vowel five times using the * operator that you’ll normally associate with
numeric multiplication. This is (sort of) “multiplying” a string, so, OK, I guess:

>>> vowel * 5
'ooooo'

Next we handle the uppercase version:

>>> vowel * 5 + vowel.upper() * 5
'oooooOOOOO'

And now we can make the translation table in one line of code like this:

>>> trans = str.maketrans('aeiouAEIOU', vowel * 5 + vowel.upper() * 5)

Let’s inspect the trans table. We’ll use the pprint.pprint() (pretty-print) function
so we can read it easily:

>>> from pprint import pprint as pp
>>> pp(trans)
{65: 79,
69: 79,
73: 79,
79: 79,
85: 79,
97: 111,
101: 111,
105: 111,
111: 111,
117: 111}

The enclosing curlies {} tell us that trans is a dict. Each character is represented by its
ordinal value, which is the character’s position in the ASCII table (www.asciitable.com).

 You can go back and forth between characters and their ordinal values by using the
chr() and ord() functions. We will explore and use these functions later in chapter 18.
Here are the ord() values for the vowels:

>>> for char in 'aeiou':
... print(char, ord(char))
...
a 97
e 101
i 105
o 111
u 117

You can create the same output by starting with the ord() values to get the chr() values:

>>> for num in [97, 101, 105, 111, 117]:
... print(chr(num), num)
...
a 97
e 101

http://www.asciitable.com

139Discussion
i 105
o 111
u 117
>>>

If you’d like to inspect all the ordinal values for all the printable characters, you can
run this:

>>> import string
>>> for char in string.printable:
... print(char, ord(char))

I haven’t included the output because there are 100 printable characters:

>>> print(len(string.printable))
100

So the trans table is a mapping from one character to another, just like in the “Jump
the Five” exercise in chapter 4. The lowercase vowels (“aeiou”) all map to the ordinal
value 111, which is “o.” The uppercase vowels (“AEIOU”) map to 79, which is “O.” You
can use the dict.items() method to iterate over the key/value pairs of trans to ver-
ify that this is the case:

>>> for x, y in trans.items():
... print(f'{chr(x)} => {chr(y)}')
...
a => o
e => o
i => o
o => o
u => o
A => O
E => O
I => O
O => O
U => O

The original text will be unchanged by the str.translate() method, so we can over-
write text with the new version. Here’s how I wrote that idea in my solution:

def main():
args = get_args()
vowel = args.vowel
trans = str.maketrans('aeiouAEIOU', vowel * 5 + vowel.upper() * 5)
text = args.text.translate(trans)
print(text)

That was a lot of explanation about ord() and chr() and dictionaries and such, but
look how simple and elegant that solution is. This is much shorter than method 1.
Fewer lines of code (LOC) means fewer opportunities for bugs!

Create a translation table from each of the vowels, both lower- and
uppercase, to their respective characters. The lowercase vowels will

be matched to the lowercase vowel argument, and the uppercase
vowels will be matched to the uppercase vowel argument.

Call the str.translate() method
on the text variable, passing the
translation table as an argument.

140 CHAPTER 8 Apples and Bananas: Find and replace
METHOD 4: USING A LIST COMPREHENSION

Following up on method 1, we can use a list comprehension to significantly shorten the for
loop. In chapter 7 we looked at a dictionary comprehension as a one-line method to cre-
ate a new dictionary using a for loop. Here we can do the same, creating a new list:

def main():
args = get_args()
vowel = args.vowel
text = [

vowel if c in 'aeiou' else vowel.upper() if c in 'AEIOU' else c
for c in args.text

]
print(''.join(text))

Let’s talk just a bit more about list comprehensions. As an example, we can generate a
list of the squared values of the numbers 1 through 4 by using the range() function to
get the numbers from a starting number to an ending number (not inclusive). In the
REPL, we must use the list() function to force the production of the values, but usu-
ally your code won’t need to do this:

>>> list(range(1, 5))
[1, 2, 3, 4]

NOTE range() is another example of a lazy function in Python, which means
it won’t actually produce values until your program needs them—a lazy func-
tion is a promise to do something. If your program branches in such a way
that you never need to produce the values, the work is never done, meaning
your code is more efficient.

We can write a for loop to print() the squares:

>>> for num in range(1, 5):
... print(num ** 2)
...
1
4
9
16

Instead of printing the values, imagine that we wanted to create a new list that con-
tains those values. One way to do this would be to create an empty list and then use
list.append() to add each value in a for loop:

>>> squares = []
>>> for num in range(1, 5):
... squares.append(num ** 2)

Now we can verify that we have our squares:

>>> assert len(squares) == 4
>>> assert squares == [1, 4, 9, 16]

Use a list comprehension to process
all the characters in args.text to
create a new list called text.

Use a compound if expression
to handle three cases:

lowercase vowel, uppercase
vowel, and the default.

Print the translated
string by joining the text
list on the empty string.

141Discussion
We can achieve the same result in fewer lines of code using a list comprehension to
generate our new list, as shown in figure 8.4.

>>> [num ** 2 for num in range(1, 5)]
[1, 4, 9, 16]

We can assign this list to the variable squares and verify that we still have what we
expected. Ask yourself which version of the code you’d rather maintain: the longer
one with the for loop, or the shorter one with the list comprehension?

>>> squares = [num ** 2 for num in range(1, 5)]
>>> assert len(squares) == 4
>>> assert squares == [1, 4, 9, 16]

For this version of the program, we’ll condense the if/elif/else logic from method 1
into a compound if expression. First let’s see how we could shorten the for loop
version:

>>> text = 'Apples and Bananas!'
>>> new = []
>>> for c in text:
... new.append(vowel if c in 'aeiou' else vowel.upper() if c in 'AEIOU'

else c)
...
>>> ''.join(new)
'Opplos ond Bononos!'

Figure 8.5 shows how the parts of the expression match up to the original if/elif/
else:

Figure 8.4 A list comprehension creates a new list using a
for loop to iterate over the source values.

Figure 8.5 The three conditional branches can be written using two if expressions.

142 CHAPTER 8 Apples and Bananas: Find and replace

d
o
t
.

Now let’s turn that into a list comprehension:

>>> text = 'Apples and Bananas!'
>>> new_text = [
... vowel if c in 'aeiou' else vowel.upper() if c in 'AEIOU' else c
... for c in text]
...
>>> ''.join(new_text)
'Opplos ond Bononos!'

The code is denser than the previous for loop, but it has advantages in that

 The list comprehension is shorter and generates our list rather than using the
side effects of list.append().

 The compound if expression will not compile if we forget one of the condi-
tional branches.

METHOD 5: USING A LIST COMPREHENSION WITH A FUNCTION

The compound if expression inside the list comprehension is complicated enough
that it probably should be a function. We can define a new function with the def state-
ment and call it new_char(). It accepts a character we’ll call c. After that, we can use
the same compound if expression as before:

def main():
args = get_args()
vowel = args.vowel

def new_char(c):
return vowel if c in 'aeiou' else vowel.upper() if c in 'AEIOU' else c

text = ''.join([new_char(c) for c in args.text])

print(text)

You can play with the new_char() function by putting this into your REPL:

vowel = 'o'
def new_char(c):

return vowel if c in 'aeiou' else vowel.upper() if c in 'AEIOU' else c

It should always return the letter “o” if the argument is a lowercase vowel:

>>> new_char('a')
'o'

It should return “O” if the argument is an uppercase vowel:

>>> new_char('A')
'O'

Otherwise, it should return the given character:

>>> new_char('b')
'b'

Select the character using the
compound if expression.

Perform this action for
each character in the text.

Define a function to choose a new character. Note that it
uses the vowel variable because the function has been
declared in the same scope. This is called a closure,
because new_char() closes over the variable.

Use the compoun
if expression t

select the correc
character

Use a list comprehension to
process all the characters in text.

143Discussion
We can use the new_char() function to process all the characters in text, using a list
comprehension:

>>> text = 'Apples and Bananas!'
>>> text = ''.join([new_char(c) for c in text])
>>> text
'Opplos ond Bononos!'

Note that the new_char() function is declared inside the main() function. Yes, you can
do that! The function is then only “visible” inside the main() function. I’ve done this
because we want to reference the vowel variable inside the function without passing it
as an argument.

 As an example, let’s define a foo() function that has a bar() function inside it. We
can call foo(), and it will call bar(). But from outside of foo(), the bar() function
does not exist (it “is not visible” or “is not in scope”).

>>> def foo():
... def bar():
... print('This is bar')
... bar()
...
>>> foo()
This is bar
>>> bar()
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'bar' is not defined

I declared the new_char() function inside main() because I wanted to reference the
vowel variable inside the function, as shown in figure 8.6. Because new_char() “closes”
around the vowel, it is a special type of function called a closure.

Figure 8.6 The new_char() function can only be seen within the main() function. It creates a closure
because it references the vowel variable. Code outside of main() cannot see or call new_char().

144 CHAPTER 8 Apples and Bananas: Find and replace
If we don’t write this as a closure, we will have to pass the vowel as an argument:

def main():
args = get_args()
print(''.join([new_char(c, args.vowel) for c in args.text]))

def new_char(char, vowel):
return vowel if char in 'aeiou' else \

vowel.upper() if char in 'AEIOU' else char

While the closure method is interesting, this version is arguably easier to under-
stand. It would also be easier to write a unit test for it, which is something we’ll start
doing soon.

METHOD 6: USING THE MAP() FUNCTION

For this method, I’ll introduce the map() function, as it’s quite similar to a list compre-
hension. The map() function accepts two arguments:

 A function
 An iterable like a list, a lazy function, or a generator

I like to think of map() like a paint booth—you load up the booth with, say, blue paint.
Unpainted cars go in, blue paint is applied, and blue cars come out.

 We can create a function to “paint” cars by adding the string “blue” to the beginning:

>>> list(map(lambda car: 'blue ' + car, ['BMW', 'Alfa Romeo', 'Chrysler']))
['blue BMW', 'blue Alfa Romeo', 'blue Chrysler']

The first argument you see here starts with the keyword
lambda, which is used to create an anonymous function.
With the regular def keyword, the function name follows.
With lambda, there is no name, only the list of parameters
and the function body.

 For example, an add1() function that adds 1 to a value
is a regular named function:

def add1(n):
return n + 1

We need to pass
args.vowel as an
argument to the

new_char()
function.

The vowel is only visible inside the main() function. Since new_char() is no
longer declared in the same scope, we need to accept vowel as an argument.

145Discussion
It works as expected:

>>> assert add1(10) == 11
>>> assert add1(add1(10)) == 12

Compare the preceding definition to one created using lambda, which we assign to the
variable add1:

>>> add1 = lambda n: n + 1

This definition of add1 is functionally equivalent to the first version. We call it just like
the add1() function:

>>> assert add1(10) == 11
>>> assert add1(add1(10)) == 12

The body for a lambda is a brief (usually one-line) expression. There is no return
statement because the final evaluation of the expression is returned automatically. In
figure 8.7, you can see that the lambda will return the result of n + 1.

In both versions of the add1 definition, using def and lambda, the argument to the
function is n. In the usual named function, def add(n), the argument is defined in
the parentheses just after the function name. In the lambda n version, there is no func-
tion name and no parentheses around the function’s parameter, n.

Figure 8.7 Both def and lambda
are used to create functions.

146 CHAPTER 8 Apples and Bananas: Find and replace

e

s

a
s
 There is no difference in how you can use the two types of functions. They are
both functions:

>>> type(lambda x: x)
<class 'function'>

If you are comfortable with using add1() in a list comprehension, like this,

>>> [add1(n) for n in [1, 2, 3]]
[2, 3, 4]

it’s a short step to using the map() function.
 The map() function is a lazy function, like the range() function we looked at ear-

lier. It won’t create the values until you actually need them, as compared to a list com-
prehension, which will produce the resulting list immediately. I don’t personally
tend to worry about the performance of the code as much as I do the readability.
When I write code for myself, I prefer to use map(), but you should write code that
makes the most sense for you and your teammates.

 To force the results from map() in the REPL, we need to use the list() function:

>>> list(map(add1, [1, 2, 3]))
[2, 3, 4]

We can write the list comprehension with the add1() code in line:

>>> [n + 1 for n in [1, 2, 3]]
[2, 3, 4]

That looks very similar to the lambda code (as
illustrated in figure 8.8):

>>> list(map(lambda n: n + 1, [1, 2, 3]))
[2, 3, 4]

Here is how we could use map():

def main():
args = get_args()
vowel = args.vowel
text = map(

lambda c: vowel if c in 'aeiou' else vowel.upper()
if c in 'AEIOU' else c, args.text)

print(''.join(text))

Figure 8.8 The map() function will
create a new list from processing each
element of an iterable through a given
function.

The map() function wants a
function for the first argument
and an iterable for the second.

Use lambda to creat
an anonymous
function that accept
a character, c.

args.text is the second argument
to map(). Technically, args.text is
string, but, because map() expect
this argument to be a list, the
string will be coerced to a list.

map() returns a new list
to the text variable. We
join it on the empty
string to print it.

147Discussion
METHOD 7: USING MAP() WITH A NAMED FUNCTION

We are not required to use map() with a lambda expression. Any function at all will
work, so let’s go back to using our new_char() function:

def main():
args = get_args()
vowel = args.vowel

def new_char(c):
return vowel if c in 'aeiou' else vowel.upper() if c in 'AEIOU' else c

print(''.join(map(new_char, args.text)))

Notice that map() uses new_char without parentheses as the first argument. If you added
the parentheses, you’d be calling the function and would see this error:

>>> text = ''.join(map(new_char(), text))
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: new_char() missing 1 required positional argument: 'c'

As shown in figure 8.9, map() takes each character from text and passes it as the argu-
ment to the new_char() function, which decides whether to return a vowel or the
original character. The result of mapping these characters is a new list of characters
that we str.join() on the empty string to create a new version of text.

Higher-order functions
The map() function is called a higher-order function (HOF) because it takes another func-
tion as an argument, which is wicked cool. Later we’ll use another HOF called filter().

Define a function that will return the proper
character. Note that I’m using the closure version
so as to reference the “vowel” argument.

Use map() to apply new_char() to all the characters in
args.text. The result is a list of characters, and we can use

str.join() to turn them into a new string for print().

Figure 8.9 map() will apply a given function to each element of an
iterable. A string will be processed as a list of characters.

148 CHAPTER 8 Apples and Bananas: Find and replace
METHOD 8: USING REGULAR EXPRESSIONS

A regular expression is a way to describe patterns of text. Regular expressions (also
called “regexes”) are a separate domain-specific language (DSL). They really have
nothing whatsoever to do with Python. They have their own syntax and rules, and they
are used in many places, from command-line tools to databases. Regexes are incredi-
bly powerful and well worth the effort to learn.

 To use regular expressions, you must import re in your code to import the regular
expression module:

>>> import re

In this example, we’re trying to find characters that are vowels, which we can define as
the letters “a,” “e,” “i,” “o,” and “u.” To describe this idea using a regular expression,
we put those characters inside square brackets:

>>> pattern = '[aeiou]'

We can use the “substitute” function, re.sub(), to find all the vowels and replace them
with the given vowel. The square brackets around the vowels '[aeiou]' create a charac-
ter class, meaning anything matching one of the characters listed inside the brackets.

 The second argument is the string that will replace the found strings—here it is
the vowel provided by the user. The third argument is the string we want to change,
which is the text from the user:

>>> vowel = 'o'
>>> re.sub(pattern, vowel, 'Apples and bananas!')
'Applos ond bononos!'

That misses the capital “A,” so we’ll have to handle both lower- and uppercase. Here is
how we could write that:

def main():
args = get_args()
text = args.text
vowel = args.vowel
text = re.sub('[aeiou]', vowel, text)
text = re.sub('[AEIOU]', vowel.upper(), text)
print(text)

If you prefer, we could squash the two calls to re.sub() into one, just as we did with
the str.replace() method shown earlier:

>>> text = 'Apples and Bananas!'
>>> text = re.sub('[AEIOU]', vowel.upper(), re.sub('[aeiou]', vowel, text))
>>> text
'Opplos ond Bononos!'

One of the biggest differences between this solution and all the others is that we use
regular expressions to describe what we are looking for. We didn’t have to write the

Substitute any of the lowercase
vowels with the given vowel
(which is lowercase because of
the restrictions in get_args()).

Substitute any of the
uppercase vowels with
the uppercase vowel.

149Summary
code to identify the vowels. This is more along the lines of declarative programming.
We declare what we want, and the computer does the grunt work!

8.4 Refactoring with tests
There are many ways to solve this problem. The most important step is to get your
program to work properly. Tests let you know when you’ve reached that point. From
there, you can explore other ways to solve the problem and keep using the tests to
ensure you still have a correct program.

 Tests provide you with great freedom to be creative. Always be thinking about tests
you can write for your own programs, so that when you change them later, they will
always keep working.

 I showed many ways to solve this seemingly trivial problem. Some of the techniques
using higher-order functions and regular expression are quite advanced techniques. It
might seem like driving a finishing nail with a sledgehammer, but I want to start intro-
ducing you to programming ideas that I’ll visit again and again in later chapters.

 If you only really understood the first few solutions, that’s fine! Just stick with me.
The more times you see these ideas applied in different contexts, the more they will
begin to make sense.

8.5 Going further
Write a version of the program that collapses multiple adjacent vowels into a single
substituted value. For example, “quick” should become “qack” and not “qaack.”

Summary
 You can use argparse to limit an argument’s values to a list of choices that

you define.
 Strings cannot be directly modified, but the str.replace() and str.translate()

methods can create a new, modified string from an existing string.
 A for loop on a string will iterate the characters of the string.
 A list comprehension is a shorthand way to write a for loop inside [] to create a

new list.
 Functions can be defined inside other functions. Their visibility is then limited

to the enclosing function.
 Functions can reference variables declared within the same scope, creating a

closure.
 The map() function is similar to a list comprehension. It will create a new, mod-

ified list by applying some function to every member of a given list. The original
list will not be changed.

 Regular expressions provide a syntax for describing patterns of text with the re
module. The re.sub() method will substitute found patterns with new text.
The original text will be unchanged.

Dial-a-Curse: Generating
random insults from

lists of words
“He or she is a slimy-sided, frog-mouthed, silt-eating slug with the brains of a turtle.”

—Dial-A-Curse

Random events are at the heart of interesting
games and puzzles. Humans quickly grow
bored of things that are always the same. I
think one reason people may choose to have
pets and children is to inject some randomness
into their lives. Let’s learn how to make our
programs more interesting by having them
behave differently each time they are run.

 This exercise will show you how to ran-
domly select one or more elements from lists
of options. To explore randomness, we’ll cre-
ate a program called abuse.py that will insult the user by randomly selecting
adjectives and nouns to create slanderous epithets.

 In order to test randomness, though, we need to control it. It turns out that
“random” events on computers are rarely truly random but only pseudo-random,
which means we can control them by using a “seed.”1 Each time you use the same
seed, you will get the same “random” choices!

 Shakespeare had some of the best insults, so we’ll draw from the vocabulary of
his works. Here is the list of adjectives you should use:

bankrupt base caterwauling corrupt cullionly detestable dishonest false filthsome filthy
foolish foul gross heedless indistinguishable infected insatiate irksome lascivious

1 “The generation of random numbers is too important to be left to chance.”—Robert R. Coveyou
150

151Writing abuse.py
lecherous loathsome lubbery old peevish rascaly rotten ruinous scurilous scurvy slanderous
sodden-witted thin-faced toad-spotted unmannered vile wall-eyed

And these are the nouns:

Judas Satan ape ass barbermonger beggar block boy braggart butt carbuncle coward
coxcomb cur dandy degenerate fiend fishmonger fool gull harpy jack jolthead knave liar
lunatic maw milksop minion ratcatcher recreant rogue scold slave swine traitor varlet
villain worm

For instance, it might produce the following:

$./abuse.py
You slanderous, rotten block!
You lubbery, scurilous ratcatcher!
You rotten, foul liar!

In this exercise, you will learn to

 Use parser.error() from argparse to throw errors
 Control randomness with random seeds
 Take random choices and samples from Python lists
 Iterate an algorithm a specified number of times with a for loop
 Format output strings

9.1 Writing abuse.py
You should go into the 09_abuse directory to create your new program. Let’s start by
looking at the usage statement it should produce:

$./abuse.py -h
usage: abuse.py [-h] [-a adjectives] [-n insults] [-s seed]

Heap abuse

optional arguments:
-h, --help show this help message and exit
-a adjectives, --adjectives adjectives

Number of adjectives (default: 2)
-n insults, --number insults

Number of insults (default: 3)
-s seed, --seed seed Random seed (default: None)

All parameters are options that have default values, so our program will be able to run
with no arguments at all.

 For instance, the -n or --number option will have a default of 3 and will control the
number of insults:

$./abuse.py --number 2
You filthsome, cullionly fiend!
You false, thin-faced minion!

152 CHAPTER 9 Dial-a-Curse: Generating random insults from lists of words
The -a or --adjectives option should default to 2 and will determine how many
adjectives are used in each insult:

$./abuse.py --adjectives 3
You caterwauling, heedless, gross coxcomb!
You sodden-witted, rascaly, lascivious varlet!
You dishonest, lecherous, foolish varlet!

Lastly, the -s or --seed option will control the random choices in the program by set-
ting an initial value. The default should be the special None value, which is like an
undefined value.

 Because the program will use a random seed, the following output should be
exactly reproducible by any user on any machine at any time:

$./abuse.py --seed 1
You filthsome, cullionly fiend!
You false, thin-faced minion!
You sodden-witted, rascaly cur!

When run with no arguments, the program should generate
insults using the defaults:

$./abuse.py
You foul, false varlet!
You filthy, insatiate fool!
You lascivious, corrupt recreant!

I recommend you start by copying the template/template.py file
to abuse/abuse.py or by using new.py to create the abuse.py pro-
gram in the 09_abuse directory of your repository.

 Figure 9.1 is a string diagram that illustrates the parameters for the program.

Figure 9.1 The abuse.py program will accept options for the number of insults
to create, the number of adjectives per insult, and a random seed value.

153Writing abuse.py
9.1.1 Validating arguments

The options for the number of insults and adjectives and the random seed should all
be int values. If you define each using type=int (remember, there are no quotes
around the int), argparse will handle the validation and conversion of the argu-
ments to int values for you. That is, just by defining type=int, the following error will
be generated for you if a string is entered:

$./abuse.py -n foo
usage: abuse.py [-h] [-a adjectives] [-n insults] [-s seed]
abuse.py: error: argument -n/--number: invalid int value: 'foo'

Not only must the value be a number, but it must be an integer which means it must be a
whole number, so argparse will complain if you give it something that looks like a
float. Note that you can use type=float when you actually want a floating-point value:

$./abuse.py -a 2.1
usage: abuse.py [-h] [-a adjectives] [-n insults] [-s seed]
abuse.py: error: argument -a/--adjectives: invalid int value: '2.1'

Additionally, if either --number or --adjectives is less than 1, your program should
exit with an error code and message:

$./abuse.py -a -4
usage: abuse.py [-h] [-a adjectives] [-n insults] [-s seed]
abuse.py: error: --adjectives "-4" must be > 0
$./abuse.py -n -4
usage: abuse.py [-h] [-a adjectives] [-n insults] [-s seed]
abuse.py: error: --number "-4" must be > 0

As you start to write your own programs and tests, I recommend you steal from the
tests I’ve written.2 Let’s take a look at one of the tests in test.py to see how the program
is tested:3

def test_bad_adjective_num():
"""bad_adjectives"""

n = random.choice(range(-10, 0))
rv, out = getstatusoutput(f'{prg} -a {n}')
assert rv != 0
assert re.search(f'--adjectives "{n}" must be > 0', out)

2 “Good composers borrow. Great ones steal.” — Igor Stravinsky
3 The subprocess module allows you to run a command from inside your program. The subprocess
.getoutput() function will capture the output from the command, while the subprocess.getstatus-
output() will capture both the exit value and the output from the command.

The name of the
function must start
with “test_” in
order for Pytest to
find and run it.

Use the random.choice()
function to randomly select a
value from the range() of
numbers from -10 to 0. We
will use this same function in
our program, so note here
how it is called.

Run the program using getstatusoutput() from
the subprocess3 module using a bad -a value. This
function returns the exit value (which I put into
rv for “return value”) and standard out (out).

Assert that the return value (rv) is
not 0, where “0” would indicate
success (or “zero errors”).

Assert that the output somewhere contains
the statement that the --adjectives
argument must be greater than 0.

154 CHAPTER 9 Dial-a-Curse: Generating random insults from lists of words
There’s no simple way to tell argparse that the numbers for adjectives and insults must
be greater than zero, so we’ll have to check those values ourselves. We’ll use the verifica-
tion ideas from section A.4.7 in the appendix. There I introduce the parser.error()
function, which you can call inside the get_args() function to do the following:

1 Print the short usage statement
2 Print an error message to the user
3 Stop execution of the program
4 Exit with a nonzero exit value to indicate an error

That is, get_args() normally finishes with this:

return args.parse_args()

Instead, we’ll put the args into a variable and check the args.adjectives value to see
if it’s less than 1. If it is, we’ll call parser.error() with an error message to report to
the user:

args = parser.parse_args()

if args.adjectives < 1:
parser.error(f'--adjectives "{args.adjectives}" must be > 0')

We’ll also do this for args.number. If they are both fine, you can return the argu-
ments to the calling function:

return args

9.1.2 Importing and seeding the random module

Once you have defined and validated all the program’s arguments, you are ready to
heap scorn upon the user. First, we need to add import random to our program so we
can use functions from that module to select adjectives and nouns. It’s best practice to
list all the import statements, one module at a time, at the top of a program.

 In main(), the first thing we need to do is call get_args() to get our arguments.
The next step is to pass the args.seed value to the random.seed() function:

def main()
args = get_args()
random.seed(args.seed)

You can read about the random.seed() function in the REPL:

>>> import random
>>> help(random.seed)

There you’ll learn that the function will “initialize internal state [of the random mod-
ule] from hashable object.” That is, we set an initial value from some hashable
Python type. Both the int and str types are hashable, but the tests are written with

We call the random.seed() function to set the initial
value of the random module’s state. There is no return
value from random.seed()—the only change is internal
to the random module.

155Writing abuse.py
the expectation that you will define the seed argument as an int. (Remember that
the character '1' is different from the integer value 1!)

 The default value for args.seed should be None. If the user has not indicated any
seed, then setting random.seed(None) is the same as not setting it at all.

 If you look at the test.py program, you will notice that all the tests that expect a par-
ticular output will pass an -s or --seed argument. Here is the first test for output:

def test_01():
out = getoutput(f'{prg} -s 1 -n 1')
assert out.strip() == 'You filthsome, cullionly fiend!'

This means test.py will run your program and capture the output into the out variable:

$./abuse.py -s 1 -n 1
You filthsome, cullionly fiend!

It will then verify that the program did in fact produce the expected number of insults
with the expected selection of words.

9.1.3 Defining the adjectives and nouns

Earlier in the chapter, I gave you a long list of adjectives and nouns that you should
use in your program. You could create a list by individually quoting each word:

>>> adjectives = ['bankrupt', 'base', 'caterwauling']

Or you could save yourself a good bit of typing by using the str.split() method to
create a new list from a str by splitting on spaces:

>>> adjectives = 'bankrupt base caterwauling'.split()
>>> adjectives
['bankrupt', 'base', 'caterwauling']

If you try to make one giant string of all the adjectives, it will be very long and so will
wrap around in your code editor and look ugly. I recommend you use triple quotes
(either single or double quotes), which will allow you to include newlines:

>>> """
... bankrupt base
... caterwauling
... """.split()
['bankrupt', 'base', 'caterwauling']

Once you have variables for adjectives and nouns, you should check that you have
the right number of each:

>>> assert len(adjectives) == 36
>>> assert len(nouns) == 39

Run the program using getoutput() from the subprocess module
using a seed value of 1 and requesting 1 insult. This function

returns only the output from the program.

Verify that the entire output is the one expected insult.

156 CHAPTER 9 Dial-a-Curse: Generating random insults from lists of words
NOTE In order to pass the tests, your adjectives and nouns must be in alpha-
betical order as they were provided.

9.1.4 Taking random samples and choices

In addition to the random.seed() function, we will also
use the random.choice() and random.sample() func-
tions. In the test_bad_adjective_num function in
section 9.1.1, you saw one example of using random
.choice(). We can use it similarly to select a noun
from the list of nouns.

 Notice that this function returns a single item, so,
given a list of str values, it will return a single str:

>>> random.choice(nouns)
'braggart'
>>> random.choice(nouns)
'milksop'

For the adjectives, you should use random.sample(). If you read the help(random
.sample) output, you will see that this function takes some list of items and a k
parameter for how many items to return:

sample(population, k) method of random.Random instance
Chooses k unique random elements from a population sequence or set.

Note that this function returns a new list:

>>> random.sample(adjectives, 2)
['detestable', 'peevish']
>>> random.sample(adjectives, 3)
['slanderous', 'detestable', 'base']

There is also a random.choices() function that works similarly but which might select
the same items twice because it samples “with replacement.” We will not use that.

9.1.5 Formatting the output

The output of the program is a --number of insults, which you could generate using a
for loop and the range() function. It doesn’t matter here that range() starts at zero.
What’s important is that it generates three values:

>>> for n in range(3):
... print(n)
...
0
1
2

You can loop the --number of times needed, select your sample of adjectives and your
noun, and then format the output. Each insult should start with the string “You”, then

157Solution
have the adjectives joined on a comma and a space, then the noun, and finish with an
exclamation point (figure 9.2). You could use either an f-string or the str.format()
function to print() the output to STDOUT.

Here are a few hints:

 Perform the check for positive values for --adjectives and --number inside the
get_args() function, and use parser.error() to throw the error while print-
ing a message and the usage.

 If you set the default of args.seed to None and use type=int, you can directly
pass the value to random.seed(). When the value is None, it will be like not set-
ting the value at all.

 Use a for loop with the range() function to create a loop that will execute the
--number of times to generate each insult.

 Look at the random.sample() and random.choice() functions for help in
selecting some adjectives and a noun.

 You can use three single quotes (''') or double quotes (""") to create a multi-
line string and then use str.split() to get a list of strings. This is easier than
individually quoting a long list of shorter strings (such as the list of adjectives
and nouns).

 To construct an insult to print, you can use the + operator to concatenate
strings, use the str.join() method, or use format strings.

Now give this your best shot before reading ahead to the solution, you snotty-faced
heap of parrot droppings!

9.2 Solution
This is the first solution where I use parser.error() to augment the validation of the
arguments. I also incorporate triple-quoted strings and introduce the random module,
which is quite fun unless you’re a vacuous, coffee-nosed, malodorous git.

#!/usr/bin/env python3
"""Heap abuse"""

import argparse
import random

Figure 9.2 Each insult will combine the chosen
adjectives joined on commas with the selected
noun and some static bits of text.

Bring in the random
module so we can call
functions.

158 CHAPTER 9 Dial-a-Curse: Generating random insults from lists of words

The
see

s

args
--
def get_args():

"""Get command-line arguments"""

parser = argparse.ArgumentParser(
description='Heap abuse',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('-a',
'--adjectives',
help='Number of adjectives',
metavar='adjectives',
type=int,
default=2)

parser.add_argument('-n',
'--number',
help='Number of adjectives',
metavar='adjectives',
type=int,
default=3)

parser.add_argument('-s',
'--seed',
help='Random seed',
metavar='seed',
type=int,
default=None)

args = parser.parse_args()

if args.adjectives < 1:
parser.error('--adjectives "{}" must be > 0'.format(args.adjectives))

if args.number < 1:
parser.error('--number "{}" must be > 0'.format(args.number))

return args

--
def main():

"""Make a jazz noise here"""

args = get_args()
random.seed(args.seed)

adjectives = """
bankrupt base caterwauling corrupt cullionly detestable dishonest false
filthsome filthy foolish foul gross heedless indistinguishable infected

Define the parameter for the
number of adjectives, setting
type=int and the default value.

Similarly define the parameter
for the number of insults as
an integer with a default.

 random
d default
hould be

None. Get the result of parsing the
command-line arguments. The
argparse module will handle errors
such as non-integer values.

Check that args.adjectives is
greater than 0. If there is a
problem, call parser.error()
with the error message.

Similarly
check

.number.
At this point, all the user’s
arguments have been validated, so
return the arguments to the caller.

This is where the program actually begins as
it is the first action inside main(). I always
start off by getting the arguments.

Set random.seed() using whatever value was passed by the user.
Any integer value is valid, and I know that argparse has handled
the validation and conversion of the argument to an integer.

Create a list of adjectives by
splitting the very long string

contained in the triple quotes.

159Discussion
insatiate irksome lascivious lecherous loathsome lubbery old peevish
rascaly rotten ruinous scurilous scurvy slanderous sodden-witted
thin-faced toad-spotted unmannered vile wall-eyed
""".strip().split()

nouns = """
Judas Satan ape ass barbermonger beggar block boy braggart butt
carbuncle coward coxcomb cur dandy degenerate fiend fishmonger fool
gull harpy jack jolthead knave liar lunatic maw milksop minion
ratcatcher recreant rogue scold slave swine traitor varlet villain worm
""".strip().split()

for _ in range(args.number):
adjs = ', '.join(random.sample(adjectives, k=args.adjectives))
print(f'You {adjs} {random.choice(nouns)}!')

--
if __name__ == '__main__':

main()

9.3 Discussion
I trust you did not peek at the solution before you passed all the tests or else you are a
rascaly, filthsome swine.

9.3.1 Defining the arguments

More than half of my solution is defining the program’s arguments to argparse. The
effort is well worth the result. Because I set type=int, argparse will ensure that each
argument is a valid integer value. Notice that there are no quotes around the int—it’s
not the string 'int' but a reference to the class in Python:

parser.add_argument('-a',
'--adjectives',
help='Number of adjectives',
metavar='adjectives',
type=int,
default=2)

I set reasonable defaults for all the program’s options so that no input is required from
the user. The --seed option should default to None so that the default behavior is to
generate pseudo-random insults. This value is only important for testing purposes.

Do the same for the
list of nouns.

Use a for loop over the range() of the args.number.
Since I don’t actually need the value from range(),
I can use the _ to disregard it.

Use the random.sample() function to
select the correct number of

adjectives and join them on the
comma-space string.

Use an f-string to
format the output

to print().

The short flag The long flag

The help message

A description of the parameter

The actual Python type for converting
the input; note that this is the bare
word int for the integer class

The default value for the
number of adjectives per insult

160 CHAPTER 9 Dial-a-Curse: Generating random insults from lists of words
9.3.2 Using parser.error()

I really love the argparse module for all the work it saves me. In particular, I often use
parser.error() when I find there is a problem with an argument. This function will
do four things:

1 Print the short usage of the program to the user
2 Print a specific message about the problem
3 Halt execution of the program
4 Return an error code to the operating system

I’m using parser.error() here because, while I can ask argparse to verify that a
given value is an int, I can’t as easily say that it must be a positive value. I can, however,
inspect the value myself and halt the program if there is a problem. I do all this inside
get_args() so that, by the time I get the args in my main() function, I know they
have been validated.

 I highly recommend you tuck this tip into your back pocket. It can prove quite
handy, saving you loads of time validating user input and generating useful error mes-
sages. (And it’s quite likely that the future user of your program will be you, so you will
really appreciate your efforts.)

9.3.3 Program exit values and STDERR

I would like to highlight the exit value of the program. Under normal circumstances,
programs should exit with a value of 0. In computer science, we often think of 0 as a
False value, but here it’s quite positive. In this instance we should think of it as
“zero errors.”

 If you use sys.exit() in your code to exit a program prematurely, the default exit
value is 0. If you want to indicate to the operating system or some calling program that
your program exited with an error, you should return any value other than 0. You can
also call the function with a string, which will be printed as an error message, and
Python will exit with the value 1. If you run this in the REPL, you will be returned to
the command line:

>>> import sys
>>> sys.exit('You gross, thin-faced worm!')
You gross, thin-faced worm!

Additionally, it’s common for all error messages to be printed not to STDOUT (standard
out) but to STDERR (standard error). Many command shells (like Bash) can segregate
these two output channels using 1 for STDOUT and 2 for STDERR. When using the Bash
shell, note how I can use 2> to redirect STDERR to the file called err so that nothing
appears on STDOUT:

$./abuse.py -a -1 2>err

161Discussion
I can verify that the expected error messages are in the err file:

$ cat err
usage: abuse.py [-h] [-a adjectives] [-n insults] [-s seed]
abuse.py: error: --adjectives "-1" must be > 0

If you were to handle all of this yourself, you would need to write something like this:

if args.adjectives < 1:
parser.print_usage()
print(f'--adjectives "{args.adjectives}" must be > 0', file=sys.stderr)
sys.exit(1)

9.3.4 Controlling randomness with random.seed()

The pseudo-random events in the random module follow from a given starting point.
That is, each time you start from a given state, the events will happen in the same way.
We can use the random.seed() function to set that starting point.

 The seed value must be hashable. According to the Python documentation (https://
docs.python.org/3.1/glossary.html), “all of Python’s immutable built-in objects are
hashable, while no mutable containers (such as lists or dictionaries) are.” In this pro-
gram, we have to use an integer value because the tests were written using integer
seeds. When you write you own programs, you may choose to use a string or other
hashable type.

 The default for our seed is the special None value, which is a bit like an undefined
state. Calling random.seed(None) is essentially the same as not setting the seed at all,
so it makes it safe to write this:

random.seed(args.seed)

Writing pipelines
As you write more and more programs, you may eventually
start chaining them together. We often call these pipelines,
as the output of one program is “piped” to become the
input for the next program. If there is an error in any part
of the pipeline, you’ll generally want the entire operation
to stop so that the problems can be fixed. A nonzero
return value from any program is a warning flag to halt
operations.

Print the short usage. You can also
use parser.print_help() to print the
more verbose output for -h.

Print the error message to the sys.stderr file
handle. This is similar to the sys.stdout file

handle we used in chapter 5.

Exit the program with a
value that is not 0 to
indicate an error.

https://docs.python.org/3.1/glossary.html
https://docs.python.org/3.1/glossary.html
https://docs.python.org/3.1/glossary.html

162 CHAPTER 9 Dial-a-Curse: Generating random insults from lists of words
9.3.5 Iterating with range() and using throwaway variables

To generate some --number of insults, we can use the range() function. Because we
don’t need the numbers returned by range(), we use the underscore (_) as the vari-
able name to indicate this is throwaway value:

>>> num_insults = 2
>>> for _ in range(num_insults):
... print('An insult!')
...
An insult!
An insult!

The underscore is a valid variable name in Python. You can assign to it and use it:

>>> _ = 'You indistinguishable, filthsome carbuncle!'
>>> _
'You indistinguishable, filthsome carbuncle!'

The use of the underscore as a variable name is a convention to indicate that we don’t
intend to use the value. That is, if we had said for num in range(...), some tools like
Pylint will see that the num variable is not used and will report this as a possible error
(and well it could be). The _ indicates that you’re throwing this value away, which is
good information for your future self, some other user, or external tools to know.

 Note that you can use multiple _ variables in the same statement. For instance, I
can unpack a 3-tuple so as to get the middle value:

>>> x = 'Jesus', 'Mary', 'Joseph'
>>> _, name, _ = x
>>> name
'Mary'

9.3.6 Constructing the insults

To create my list of adjectives, I used the str.split() method on a long, multiline
string enclosed in triple quotes. I think this is probably the easiest way to get all these
strings into my program. The triple quotes allow us to enter line breaks, which single
quotes would not allow:

>>> adjectives = """
... bankrupt base caterwauling corrupt cullionly detestable dishonest
... false filthsome filthy foolish foul gross heedless indistinguishable
... infected insatiate irksome lascivious lecherous loathsome lubbery old
... peevish rascaly rotten ruinous scurilous scurvy slanderous
... sodden-witted thin-faced toad-spotted unmannered vile wall-eyed
... """.strip().split()
>>> nouns = """
... Judas Satan ape ass barbermonger beggar block boy braggart butt
... carbuncle coward coxcomb cur dandy degenerate fiend fishmonger fool
... gull harpy jack jolthead knave liar lunatic maw milksop minion
... ratcatcher recreant rogue scold slave swine traitor varlet villain worm
... """.strip().split()

163Summary
>>> len(adjectives)
36
>>> len(nouns)
39

Because we need one or more adjectives, the random.sample() function is a good
choice. It will return a list of items randomly selected from a given list:

>>> import random
>>> random.sample(adjectives, k=3)
['filthsome', 'cullionly', 'insatiate']

The random.choice() function is appropriate for selecting
just one item from a list, such as the noun for our invective:

>>> random.choice(nouns)
'boy'

Next we need to concatenate the epithets using ', ' (a comma
and a space) similar to what we did in chapter 3 for our picnic
items. The str.join() function is perfect for this:

>>> adjs = random.sample(adjectives, k=3)
>>> adjs
['thin-faced', 'scurvy', 'sodden-witted']
>>> ', '.join(adjs)
'thin-faced, scurvy, sodden-witted'

To create the insult, we can combine the adjectives and nouns inside our template
using an f-string:

>>> adjs = ', '.join(random.sample(adjectives, k=3))
>>> print(f'You {adjs} {random.choice(nouns)}!')
You heedless, thin-faced, gross recreant!

And now I have a handy way to make enemies and influence people.

9.4 Going further
 Read your adjectives and nouns from files that are passed as arguments.
 Add tests to verify that the files are processed correctly and new insults are still

stinging.

Summary
 Use the parser.error() function to print a short usage statement, report the

problem, and exit the program with an error value.
 Triple-quoted strings may contain line breaks, unlike regular single- or double-

quoted strings.

164 CHAPTER 9 Dial-a-Curse: Generating random insults from lists of words
 The str.split() method is a useful way to create a list of string values from a
long string.

 The random.seed() function can be used to make reproducible pseudo-random
selections each time a program is run.

 The random.choice() and random.sample() functions are useful for randomly
selecting one or several items from a list of choices, respectively.

Telephone: Randomly
mutating strings
“What we have here is a failure to communicate.”

 —Captain

Now that we’ve played with randomness, let’s apply the
idea to randomly mutating a string. This is interesting,
because strings are actually immutable in Python. We’ll
have to figure out a way around that.

 To explore these ideas, we’ll write a version of the
game of Telephone where a secret message is whispered
through a line or circle of people. Each time the mes-
sage is transmitted, it’s usually changed in some unpre-
dictable way. The last person to receive the message will
say it out loud to compare it to the original message.
Often the results are nonsensical and possibly comical.

 We will write a program called telephone.py that will mimic this game. It will print
“You said: ” and the original text, followed by “I heard: ” with a modified version of
the message. As in chapter 5, the input text may come from the command line:

$./telephone.py 'The quick brown fox jumps over the lazy dog.'
You said: "The quick brown fox jumps over the lazy dog."
I heard : "TheMquick brown fox jumps ovMr t:e lamy dog."

Or it may come from a file:

$./telephone.py ../inputs/fox.txt
You said: "The quick brown fox jumps over the lazy dog."
I heard : "The quick]b'own fox jumps ovek the la[y dog."
165

166 CHAPTER 10 Telephone: Randomly mutating strings
The program should accept an -m or --mutations option, which should be a floating-
point number between 0 and 1 with a default value of 0.1 (10%). This will be the per-
centage of the number of letters that should be altered. For instance, .5 means that
50% of the letters should be changed:

$./telephone.py ../inputs/fox.txt -m .5
You said: "The quick brown fox jumps over the lazy dog."
I heard : "F#eYquJsY ZrHnna"o. Muz/$ Nver t/Relazy dA!."

Because we are using the random module, we’ll accept an int value for the -s or --seed
option, so that we can reproduce our pseudo-random selections:

$./telephone.py ../inputs/fox.txt -s 1
You said: "The quick brown fox jumps over the lazy dog."
I heard : "The 'uicq brown *ox jumps over the l-zy dog."

Figure 10.1 shows a string diagram of the program.

In this exercise, you will learn to

 Round numbers
 Use the string module
 Modify strings and lists to introduce random mutations

Figure 10.1 The telephone program will accept text and possibly some
percentage of mutations, along with a random seed. The output will be a
randomly mutated version of the input text.

167Writing telephone.py
10.1 Writing telephone.py
I recommend you use the new.py program to create a new program called tele-
phone.py in the 10_telephone directory. You could do this from the top level of the
repository like so:

$./bin/new.py 10_telephone/telephone.py

You could also copy template/template.py to 10_telephone/telephone.py. Modify the
get_args() function until your -h output matches the following. I would recommend
you use type=float for the mutations parameter:

$./telephone.py -h
usage: telephone.py [-h] [-s seed] [-m mutations] text

Telephone

positional arguments:
text Input text or file

optional arguments:
-h, --help show this help message and exit
-s seed, --seed seed Random seed (default: None)
-m mutations, --mutations mutations

Percent mutations (default: 0.1)

Now run the test suite. You should pass at least the first two tests (the telephone.py
program exists and prints a usage statement when run with -h or --help).

 The next two tests check that your --seed and --mutations options both reject non-
numeric values. This should happen automatically if you define these parameters using
the int and float types, respectively. That is, your program should behave like this:

$./telephone.py -s blargh foo
usage: telephone.py [-h] [-s seed] [-m mutations] text
telephone.py: error: argument -s/--seed: invalid int value: 'blargh'
$./telephone.py -m blargh foo
usage: telephone.py [-h] [-s seed] [-m mutations] text
telephone.py: error: argument -m/--mutations: invalid float value: 'blargh'

The next test checks if the program rejects values for --mutations outside the range
0–1 (where both bounds are inclusive). This is not a check that you can easily describe
to argparse, so I suggest you look at how we handled the validation of the arguments
in abuse.py in chapter 9. In the get_args() function of that program, we manually
checked the value of the arguments and used the parser.error() function to throw
an error. Note that a --mutations value of 0 is acceptable, in which case we will print
out the input text without modifications. Your program should do this:

$./telephone.py -m -1 foobar
usage: telephone.py [-h] [-s seed] [-m mutations] text
telephone.py: error: --mutations "-1.0" must be between 0 and 1

168 CHAPTER 10 Telephone: Randomly mutating strings
This is another program that accepts input text either from the command line or
from a file, and I suggest you look at the solution in chapter 5. Inside the get_args()
function, you can use os.path.isfile() to detect whether the text argument is a file.
If it is a file, read the contents of the file for the text value.

 Once you have taken care of all the program parameters, start your main() func-
tion with setting the random.seed() and echoing back the given text:

def main():
args = get_args()
random.seed(args.seed)
print(f'You said: "{args.text}"')
print(f'I heard : "{args.text}"')

Your program should handle command-line text:

$./telephone.py 'The quick brown fox jumps over the lazy dog.'
You said: "The quick brown fox jumps over the lazy dog."
I heard : "The quick brown fox jumps over the lazy dog."

And it should handle an input file:

$./telephone.py ../inputs/fox.txt
You said: "The quick brown fox jumps over the lazy dog."
I heard : "The quick brown fox jumps over the lazy dog."

At this point, your code should pass up to test_for_echo(). The next tests start ask-
ing you to mutate the input, so let’s discuss how to do that.

10.1.1 Calculating the number of mutations

The number of letters that need to be changed can be calculated by multiplying the
length of the input text by the args.mutations value. If we want to change 20% of
the characters in “The quick brown fox…” string, we’ll find that it is not a whole
number:

>>> text = 'The quick brown fox jumps over the lazy dog.'
>>> mutations = .20
>>> len(text) * mutations
8.8

We can use the round() function to give us the nearest integer value. Read help(round)
to learn how to round floating-point numbers to a specific number of digits:

>>> round(len(text) * mutations)
9

Note that you could also convert a float to an int by using the int function, but this
truncates the fractional part of the number rather than rounding it:

>>> int(len(text) * mutations)
8

169Writing telephone.py
You will need this value for later, so let’s save it in a variable:

>>> num_mutations = round(len(text) * mutations)
>>> assert num_mutations == 9

10.1.2 The mutation space

When we change a character, what will we change it to? For
this, we’ll use the string module. I encourage you to take a
look at the documentation by importing the module and read-
ing help(string):

>>> import string
>>> help(string)

We can, for instance, get all the lowercase ASCII letters as fol-
lows. Note that this is not a method call as there are no paren-
theses () at the end:

>>> string.ascii_lowercase
'abcdefghijklmnopqrstuvwxyz'

This returns a str:

>>> type(string.ascii_lowercase)
<class 'str'>

For our program, we can use string.ascii_letters and string.punctuation to get
strings of all the letters and punctuation. To concatenate the two strings together, we
can use the + operator. We’ll draw from this string to randomly select a character to
replace another:

>>> alpha = string.ascii_letters + string.punctuation
>>> alpha
'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!"#$%&\'()*+,-

./:;<=>?@[\\]^_`{|}~'

Note that even if we both use the same random seed, you and I will get different
results if our letters are in a different order. To ensure our results match, we’ll both
need to sort the alpha characters so they are in a consistent order.

10.1.3 Selecting the characters to mutate

There are at least two approaches we could take to choosing which characters to
change: a deterministic approach where the results are always guaranteed to be the same
and a non-deterministic approach where we employ chance to get close to a target. Let’s
examine the latter one first.

170 CHAPTER 10 Telephone: Randomly mutating strings
NON-DETERMINISTIC SELECTION

One way to choose the characters to change would be to mimic method 1 in chapter 8.
We could iterate through each of the characters in our text and select a random num-
ber to decide whether to keep the original character or change it to some randomly
selected value. If our random number is less than or equal to our mutations setting,
we should change the character:

new_text = ''
for char in args.text:

new_text += random.choice(alpha) if random.random() <= args.mutations
else char

print(new_text)

We used the random.choice() function in abuse.py in chapter 9 to randomly select
one value from a list of choices. We can use it here to select a character from alpha if
the random.random() value falls within the range of the args.mutation value (which
we know is also a float).

 The problem with this approach is that, by the end of the for loop, we are not
guaranteed to have made exactly the correct number of changes. That is, we calcu-
lated that we should change 9 characters out of 44 when the mutation rate is 20%. We
would expect to end up changing about 20% of the characters with this code, because
a random value from a uniform distribution of values between 0 and 1 should be less
than or equal to 0.2 about 20% of the time. Sometimes we might end up only chang-
ing 8 characters or other times we might change 10. Because of this uncertainty, this is
approach would be considered non-deterministic.

 Still, this is a really useful technique that you should note. Imagine you have an
input file with millions or potentially billions of lines of text, and you want to ran-
domly sample approximately 10% of the lines. The preceding approach would be rea-
sonably fast and accurate. A larger sample size will help you get closer to the desired
number of mutations.

RANDOMLY SAMPLING CHARACTERS

A deterministic approach to the million-line file would require first reading the entire
input to count the number of lines, choosing which lines to take, and then going back
through the file a second time to take those lines. This approach would take much lon-
ger than the method described above. Depending on how large the input file is, how
the program is written, and how much memory your computer has, the program
could possibly even crash your computer!

Initialize new_text as
an empty string.

Iterate through each
character in the text.

Use random.random() to generate a floating-point value from a
uniform distribution between 0 and 1. If that value is less than
or equal to the args.mutation value, we randomly choose from
alpha; otherwise, we use the original character.

Print the resulting
new_text.

171Writing telephone.py
 Our input is rather small, however, so we will use this
algorithm because it has the advantages of being exact and
testable. Rather than focusing on lines of text, though,
we’ll consider indexes of characters. You’ve seen the str
.replace() method (in chapter 8), which allows us to change
all instances of one string to another:

>>> 'foo'.replace('o', 'a')
'faa'

We can’t use str.replace() because it will change every occurrence of some charac-
ter, and we only want to change individual characters. Instead we can use the random
.sample() function to select some indexes of the characters in the text. The first argu-
ment to random.sample() needs to be something like a list. We can give it a range()
of numbers up to the length of our text.

 Suppose our text is 44 characters long:

>>> text
'The quick brown fox jumps over the lazy dog.'
>>> len(text)
44

We can use the range() function to make a list of numbers up to 44:

>>> range(len(text))
range(0, 44)

Note that range() is a lazy function. It won’t actually produce the 44 values until we
force it, which we can do in the REPL using the list() function:

>>> list(range(len(text)))

We calculated earlier that the num_mutations value for altering 20% of text is 9. Here
is one selection of indexes that could be changed:

>>> indexes = random.sample(range(len(text)), num_mutations)
>>> indexes
[13, 6, 31, 1, 24, 27, 0, 28, 17]

I suggest you use a for loop to iterate through each of these index values:

>>> for i in indexes:
... print(f'{i:2} {text[i]}')
...
13 w
6 i

31 t
1 h

24 s

172 CHAPTER 10 Telephone: Randomly mutating strings
27 v
0 T

28 e
17 o

You should replace the character at each index position with a randomly selected char-
acter from alpha:

>>> for i in indexes:
... print(f'{i:2} {text[i]} changes to {random.choice(alpha)}')
...
13 w changes to b
6 i changes to W

31 t changes to B
1 h changes to #

24 s changes to d
27 v changes to :
0 T changes to C

28 e changes to %
17 o changes to ,

I will introduce one other twist—we don’t want the replacement value to ever be the
same as the character it is replacing. Can you figure out how to get a subset of alpha
that does not include the character at the position?

10.1.4 Mutating a string

Python str variables are immutable, meaning we cannot directly modify them. For
instance, suppose we want to change the character 'w' at position 13 to a 'b'. It
would be handy to directly modify text[13], but that will create an exception:

>>> text[13] = 'b'
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: 'str' object does not support item assignment

The only way to modify the str value text is to overwrite it with a new str. We need to
create a new str with the following, as shown in figure 10.2:

 The part of text before a given index
 The randomly selected value from alpha
 The part of text after a given index

Figure 10.2 Create a new string by
selecting the portion of the string up
to the index, a new character, and
the portion of the string after the
index.

173Solution
For 1 and 3, you can use string slices. For example, if the index i is 13, the slice before
it is

>>> text[:13]
'The quick bro'

The part after it is

>>> text[14:]
'n fox jumps over the lazy dog.'

Using the three parts listed earlier, your for loop should be

for i in index:
text = 1 + 2 + 3

Can you figure that out?

10.1.5 Time to write

OK, the lesson is over. You have to go write this now. Use the tests. Solve them one at a
time. You can do this.

10.2 Solution
How different was your solution from mine? Let’s look at one way to write a program
that satisfies the tests:

#!/usr/bin/env python3
"""Telephone"""

import argparse
import os
import random
import string

--
def get_args():

"""Get command-line arguments"""

parser = argparse.ArgumentParser(
description='Telephone',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('text', metavar='text', help='Input text or file')

parser.add_argument('-s',
'--seed',
help='Random seed',
metavar='seed',
type=int,
default=None)

Import the string module
we’ll need to select a
random character.

Define a positional
argument for the text.
This could be either a
string of text or a file

that needs to be read.

The --seed parameter is
an integer value with a
default of None.

174 CHAPTER 10 Telephone: Randomly mutating strings
parser.add_argument('-m',
'--mutations',
help='Percent mutations',
metavar='mutations',
type=float,
default=0.1)

args = parser.parse_args()

if not 0 <= args.mutations <= 1:
parser.error(f'--mutations "{args.mutations}" must be between 0 and 1')

if os.path.isfile(args.text):
args.text = open(args.text).read().rstrip()

return args

--
def main():

"""Make a jazz noise here"""

args = get_args()
text = args.text
random.seed(args.seed)
alpha = ''.join(sorted(string.ascii_letters + string.punctuation))
len_text = len(text)
num_mutations = round(args.mutations * len_text)
new_text = text

for i in random.sample(range(len_text), num_mutations):
new_char = random.choice(alpha.replace(new_text[i], ''))
new_text = new_text[:i] + new_char + new_text[i + 1:]

print(f'You said: "{text}"\nI heard : "{new_text}"')

--
if __name__ == '__main__':

main()

The --mutations parameter
is a floating-point value
with a default of 0.1.

Process the arguments from the
command line. If argparse detects
problems, such as non-numeric values
for the seed or mutations, the program
dies here and the user sees an error
message. If this call succeeds, argparse
has validated the arguments and
converted the values.

If args.mutations is not in the acceptable range of 0–1, use
parser.error() to halt the program and print the given message. Note
the use of feedback to echo the bad args.mutation value to the user.

If args.text names an existing
file, read that file for the
contents and overwrite the
original value of args.text.Return the processed

arguments to the caller.

Set the random.seed() to the value
provided by the user. Remember
that the default value for args.seed
is None, which is the same as not
setting the seed.

Set alpha to be the characters we’ll use for replacements.
The sorted() function will return a new list of the
characters in the right order, and then we can use the
str.join() function to turn that back into a str value.

Since we use len(text) more than
once, we put it into a variable.

Figure the num_mutations by multiplying
the mutation rate by the length of the text.

Make a copy
of text.

Use random.sample () to get num_mutations
indexes to change. This function returns a list

that we can iterate using the for loop.

Use random.choice () to select a new_char from
a string created by replacing the current

character (text[i]) in the alpha variable with
nothing. This ensures that the new character

cannot be the same as the one we are replacing.

Overwrite the text by concatenating the slice
before the current index with the new_char and

then the slice after the current index.

Print the text.

175Discussion
10.3 Discussion
There’s nothing in get_args() that you haven’t seen before. The --seed argument is
an int that we will pass to the random.seed() function so as to control the randomness
for testing. The default seed value is None so that we can call random.seed(args.seed)
where None is the same as not setting it. The --mutations parameter is a float with a
reasonable default, and we use parser.error() to create an error message if the
value is not in the proper range. As in other programs, we test whether the text argu-
ment is a file and read the contents if it is.

10.3.1 Mutating a string

You saw earlier that we can’t just change the text string:

>>> text = 'The quick brown fox jumps over the lazy dog.'
>>> text[13] = 'b'
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: 'str' object does not support item assignment

We have to create a new string using the text before and after i, which we can get with
string slices using text[start:stop]. If you leave out start, Python starts at 0 (the
beginning of the string), and if you leave out stop, it goes to the end, so text[:] is a
copy of the entire string.

 If i is 13, the bit before i is

>>> i = 13
>>> text[:i]
'The quick bro'

The bit after i + 1 is

>>> text[i+1:]
'n fox jumps over the lazy dog.'

Now for what to put in the middle. I noted that we should use random.choice() to
select a character from alpha, which is the combination of all the ASCII letters and
punctuation without the current character. I use the str.replace() method to get rid
of the current letter:

>>> alpha = ''.join(sorted(string.ascii_letters + string.punctuation))
>>> alpha.replace(text[i], '')
'!"#$%&\'()*+,-

./:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvxyz{|}~'

Then I use that to get a new letter that won’t include what it’s replacing:

>>> new_char = random.choice(alpha.replace(text[i], ''))
>>> new_char
'Q'

176 CHAPTER 10 Telephone: Randomly mutating strings
There are many ways to join strings together into new strings. The + operator is per-
haps the simplest:

>>> text = text[:i] + new_char + text[i+1:]
>>> text
'The quick broQn fox jumps over the lazy dog.'

I do this for each index in the random.sample() of indexes, each time overwriting
text. After the for loop is done, I have mutated all the positions of the input string,
and I can print() it.

10.3.2 Using a list instead of a str

Strings are immutable, but lists are not. You’ve seen that a move like text[13] = 'b'
creates an exception, but we can change text into a list and directly modify it with the
same syntax:

>>> text = list(text)
>>> text[13] = 'b'

We can then turn that list back into a str by joining it on the empty string:

>>> ''.join(text)
'The quick brobn fox jumps over the lazy dog.'

Here is a version of main() that uses this approach:

def main():
args = get_args()
text = args.text
random.seed(args.seed)
alpha = ''.join(sorted(string.ascii_letters + string.punctuation))
len_text = len(text)
num_mutations = round(args.mutations * len_text)
new_text = list(text)

for i in random.sample(range(len_text), num_mutations):
new_text[i] = random.choice(alpha.replace(new_text[i], ''))

print('You said: "{}"\nI heard : "{}"'.format(text, ''.join(new_text)))

There’s no particular advantage of one approach over the other, but I would person-
ally choose the second method because I don’t like messing around with slicing
strings. To me, modifying a list in place makes much more sense than repeatedly
chopping up and piecing together a str.

Initialize new_text as a list
of the original text value.

Now we can directly modify
a value in new_text.

Join new_list on the empty
string to make a new str.

177Summary
10.4 Going further
 Apply the mutations to randomly selected words instead of the whole string.
 Perform insertions and deletions in addition to mutations; maybe create argu-

ments for the percentage of each, and choose to add or delete characters at the
indicated frequency.

 Add an option for -o or --output that names a file to write the output to. The
default should be to print to STDOUT.

 Add a flag to limit the replacements to character values only (no punctuation).
 Add tests to test.py for every new feature, and ensure your program works

properly.

Summary
 A string cannot be directly modified, but the

variable containing the string can be repeatedly
overwritten with new values.

 Lists can be directly modified, so it can some-
times help to use list on a string to turn it into a
list, modify that list, and then use str.join()
to change it back to a str.

 The string module has handy definitions of var-
ious strings.

Mutations in DNA
For what it’s worth, this program mimics (kind of, sort of) how DNA changes over time.
The machinery to copy DNA makes mistakes, and mutations randomly occur. Often the
change has no deleterious effect on the organism.

Our example only changes characters to other characters—what biologists call “point
mutations,” “single nucleotide variations” (SNV), or “single nucleotide polymorphisms”
(SNP). We could instead write a version that would also randomly delete or insert new
characters, which are called “in-dels” (insertion-deletions). Mutations (that don’t result
in the demise of the organism) occur at a fairly standard rate, so counting the number of
mutations between a conserved region of any two organisms can allow an estimate of how
long ago they diverged from a common ancestor.

Bottles of Beer Song:
Writing and

testing functions
Few songs are as annoying as “99 Bottles of
Beer on the Wall.” Hopefully you’ve never had
to ride for hours in a van with middle school
boys who like to sing this. I have. It’s a fairly
simple song that we can write an algorithm to
generate. This will give us an opportunity to
play with counting up and down, formatting
strings, and—new to this exercise—writing
functions and tests for those functions!

 Our program will be called bottles.py and
will take one option, -n or --num, which must
be a positive int (the default will be 10). The
program should print all the verses from --num down to 1. There should be two
newlines between each verse to visually separate them, but there must be only one
newline after the last verse (for one bottle), which should print “No more bottles of
beer on the wall” rather than “0 bottles”:

$./bottles.py -n 3
3 bottles of beer on the wall,
3 bottles of beer,
Take one down, pass it around,
2 bottles of beer on the wall!

2 bottles of beer on the wall,
2 bottles of beer,
Take one down, pass it around,
1 bottle of beer on the wall!
178

179Writing bottles.py
1 bottle of beer on the wall,
1 bottle of beer,
Take one down, pass it around,
No more bottles of beer on the wall!

In this exercise, you will

 Learn how to produce a list of numbers decreasing in value
 Write a function to create a verse of the song, using a test to verify when the

verse is correct
 Explore how for loops can be written as list comprehensions, which in turn can

be written with the map() function

11.1 Writing bottles.py
We’ll be working in the 11_bottles_of_beer directory. Start off by copying template.py
or using new.py to create your bottles.py program there. Then modify the get_args()
function until your usage matches the following usage statement. You need to define
only the --num option with type=int and default=10:

$./bottles.py -h
usage: bottles.py [-h] [-n number]

Bottles of beer song

optional arguments:
-h, --help show this help message and exit
-n number, --num number

How many bottles (default: 10)

If the --num argument is not an int value, your program should print an error mes-
sage and exit with an error value. This should happen automatically if you define your
parameter to argparse properly:

$./bottles.py -n foo
usage: bottles.py [-h] [-n number]
bottles.py: error: argument -n/--num: invalid int value: 'foo'
$./bottles.py -n 2.4
usage: bottles.py [-h] [-n number]
bottles.py: error: argument -n/--num: invalid int value: '2.4'

Since we can’t sing zero or fewer verses, we’ll need to check if --num is less than 1. To
handle this, I suggest you use parser.error() inside the get_args() function, as in
previous exercises:

$./bottles.py -n 0
usage: bottles.py [-h] [-n number]
bottles.py: error: --num "0" must be greater than 0

Figure 11.1 shows a string diagram of the inputs and outputs.

180 CHAPTER 11 Bottles of Beer Song: Writing and testing functions
11.1.1 Counting down

The song starts at the given --num value, like 10, and needs to count down to 9, 8, 7,
and so forth. How can we do that in Python? We’ve seen how to use range(start,
stop) to get a list of integers that go up in value. If you give it just one number, that
will be considered the stop, and it will assume 0 as the start:

>>> list(range(5))
[0, 1, 2, 3, 4]

Because this is a lazy function, we must use
the list() function in the REPL to force it to
produce the numbers. Remember that the
stop value is never included in the output, so
the preceding output stopped at 4, not 5.

 If you give range() two numbers, they are
considered to be start and stop:

>>> list(range(1, 5))
[1, 2, 3, 4]

To reverse this sequence, you might be tempted to swap the start and stop values.
Unfortunately, if start is greater than stop, you get an empty list:

>>> list(range(5, 1))
[]

You saw in chapter 3 that we can use the reversed() function to reverse a list. This is
another lazy function, so again I’ll use the list() function to force the values in the
REPL:

>>> list(reversed(range(1, 5)))
[4, 3, 2, 1]

Figure 11.1 The bottles program may take a number for the verse to
start, or it will sing the song starting at 10.

181Writing bottles.py
The range() function can also take an optional third
argument for a step value. For instance, you could use
this to count by fives:

>>> list(range(0, 50, 5))
[0, 5, 10, 15, 20, 25, 30, 35, 40, 45]

Another way to count down is to swap the start and
stop and use -1 for the step:

>>> list(range(5, 0, -1))
[5, 4, 3, 2, 1]

So you have couple of ways to count in reverse.

11.1.2 Writing a function

Up to this point, I’ve suggested that all your code go into the main() function. This is
the first exercise where I suggest you write a function. I would like you to consider
how to write the code to sing just one verse. The function could take the number of the
verse and return the text for that verse.

 You can start off with something like the example in figure 11.2. The def keyword
“defines” a function, and the name of the function follows. Function names should
contain only letters, numbers, and underscores and cannot start with a number. After
the name comes parentheses, which describe any parameters that the function
accepts. Here our function will be called verse(), and it has the parameter bottle
(or number or whatever you want to call it). After the parameters comes a colon to
indicate the end of the def line. The function body comes next, with all lines being
indented at least four spaces.

The docstring in figure 11.2 is a string just after the function definition. It will show
up in the help for your function.

Figure 11.2 The elements of a function definition in Python

182 CHAPTER 11 Bottles of Beer Song: Writing and testing functions
 You can enter this function into the REPL:

>>> def verse(bottle):
... """Sing a verse"""
... return ''
...
>>> help(verse)

When you do, you will see this:

Help on function verse in module __main__:

verse(bottle)
Sing a verse

The return statement tells Python what to send back from the function. It’s not very
interesting right now because it will just send back the empty string:

>>> verse(10)
''

It’s also common practice to use the pass statement for the body of a dummy func-
tion. The pass will do nothing, and the function will return None instead of the empty
string, as we have done here. When you start writing your own functions and tests, you
might like to use pass when you stub out a new function, until you decide what the
function will do.

11.1.3 Writing a test for verse()

In the spirit of test-driven development, let’s write a test for verse() before we go any fur-
ther. The following listing shows a test you can use. Add this code into your bottles.py
program just after your main() function :

def verse(bottle):
"""Sing a verse"""

return ''

def test_verse():
"""Test verse"""

last_verse = verse(1)
assert last_verse == '\n'.join([

'1 bottle of beer on the wall,', '1 bottle of beer,',
'Take one down, pass it around,',
'No more bottles of beer on the wall!'

])

two_bottles = verse(2)
assert two_bottles == '\n'.join([

'2 bottles of beer on the wall,', '2 bottles of beer,',

183Writing bottles.py
'Take one down, pass it around,', '1 bottle of beer on the wall!'
])

There are many, many ways you could write this program. I have
in mind that my verse() function will produce a single verse of
the song, returning a new str value that is the lines of the verse
joined on newlines.

 You don’t have to write your program this way, but I’d like
you to consider what it means to write a function and a unit test.
If you read about software testing, you’ll find that there are
different definitions of what a “unit” of code is. In this book, I
consider a function to be a unit, so my unit tests are tests of indi-
vidual functions.

 Even though the song has potentially hundreds of verses, these two tests should
cover everything you need to check. It may help to look at the musical notation in fig-
ure 11.3 for the song, as this does a nice job of graphically showing the structure of
the song and, hence, our program.

I’ve taken a few liberties with the notation by mixing in some programming ideas. If
you don’t know how to read music, let me briefly explain the important parts. The N is
the current number, like “99” so that (N - 1) would be “98.” The endings are noted
1 - (N - 1), which is a bit confusing because we’re using the hyphen to indicate both a
range and subtraction in the same “equation.” Still, the first ending is used for the first
time through the penultimate repeat. The colon before the bar lines in the first end-
ing means to repeat the song from the beginning. Then the N ending is taken on the
last repeat, and the double bar indicates the end of the song/program.

Figure 11.3 The musical notation for the song shows there are two cases to handle: one for all the
verses up to the last, and then the last one.

184 CHAPTER 11 Bottles of Beer Song: Writing and testing functions
 What we can see from the music is that there are only two cases we need to han-
dle: the last verse, and all the other verses. So first we check the last verse. We’re
looking for “1 bottle” (singular) and not “1 bottles” (plural). We also need to check
that the last line says “No more bottles” instead of “0 bottles.” The second test, for “2
bottles of beer,” is making sure that the numbers are “2 bottles” and then “1 bottle.”
If we managed to pass these two tests, our program ought to be able to handle all
the verses.

 I wrote test_verse() to test just the verse() function. The name of the function
matters because I am using the pytest module to find all the functions in my code
that start with test_ and run them. If your bottles.py program has the preceding func-
tions for verse() and test_verse(), you can run pytest bottles.py.

 Try it, and you should see something like this:

$ pytest bottles.py
============================= test session starts ==============================
...
collected 1 item

bottles.py F [100%]

=================================== FAILURES ===================================
__________________________________ test_verse __________________________________

def test_verse():
"""Test verse"""

last_verse = verse(1)
> assert last_verse == '\n'.join([

'1 bottle of beer on the wall,', '1 bottle of beer,',
'Take one down, pass it around,',
'No more bottles of beer on the wall!'

])
E AssertionError: assert '' == '1 bottle of beer on the wal...ottles of

beer on the wall!'
E + 1 bottle of beer on the wall,
E + 1 bottle of beer,
E + Take one down, pass it around,
E + No more bottles of beer on the wall!

bottles.py:49: AssertionError
=========================== 1 failed in 0.10 seconds ===========================

To pass the first test, you could copy the code for the expected value of last_verse
directly from the test. Change your verse() function to match this:

Call the verse() function
with the argument 1 to get
the last verse of the song.

The > at the beginning of this line indicates
this is the source of the error. The test
checks if the value of last_verse is equal to
an expected str value. Since it’s not, this line
throws an exception, causing the assertion
to fail.

The “E” lines show the difference
between what was received and what
was expected. The value of last_verse

is the empty string (''), which does
not match the expected string “1

bottle of beer…” and so on.

185Writing bottles.py

Assert
this ver
equal to

expe
str
def verse(bottle):
"""Sing a verse"""

return '\n'.join([
'1 bottle of beer on the wall,', '1 bottle of beer,',
'Take one down, pass it around,',
'No more bottles of beer on the wall!'

])

Now run your test again. The first test should pass, and the second one should fail.
Here are the relevant error lines:

=================================== FAILURES ===================================
__________________________________ test_verse __________________________________

def test_verse() -> None:
"""Test verse"""

last_verse = verse(1)
assert last_verse == '\n'.join([

'1 bottle of beer on the wall,', '1 bottle of beer,',
'Take one down, pass it around,',
'No more bottles of beer on the wall!'

])

two_bottles = verse(2)
> assert two_bottles == '\n'.join([

'2 bottles of beer on the wall,', '2 bottles of beer,',
'Take one down, pass it around,', '1 bottle of beer on the wall!'

])
E AssertionError: assert '1 bottle of ... on the wall!' == '2 bottles of

... on the wall!'
E - 1 bottle of beer on the wall,
E ? ^
E + 2 bottles of beer on the wall,
E ? ^ +
E - 1 bottle of beer,
E ? ^
E + 2 bottles of beer,...
E
E ...Full output truncated (7 lines hidden), use '-vv' to show

Go back and look at your verse() definition. Look at figure 11.4 and think about
which parts need to change—the first, second, and fourth lines. The third line is
always the same. You’re given a value for bottle that needs to be used in the first two
lines, along with either “bottle” or “bottles,” depending on the value of bottle. (Hint:
It’s only singular for the value 1; otherwise, it’s plural.) The fourth line needs the
value of bottle - 1 and, again, the proper singular or plural depending on that value.
Can you figure out how to write this?

This test now passes.

Call verse() with the value of 2 to
get the “Two bottles…” verse.that

se is
 the
cted
ing.

These E lines are showing you
the problem. The verse()
function returned '1 bottle'
but the test expected '2
bottles', etc.

186 CHAPTER 11 Bottles of Beer Song: Writing and testing functions
Focus on passing those two tests before you move to the next stage of printing the
whole song. That is, do not attempt anything until you see this:

$ pytest bottles.py
============================= test session starts ==============================
...
collected 1 item

bottles.py . [100%]

=========================== 1 passed in 0.05 seconds ===========================

11.1.4 Using the verse() function

At this point, you know

 That the --num value is a valid integer value greater than 0
 How to count from that --num value backwards down to 0
 That the verse() function will print any one verse properly

Now you need to put them together. I suggest you start by using a for loop with the
range() function to count down. Use each value from that to produce a verse().
There should be two newlines after every verse except for the last.

 You will use pytest -xv test.py (or make test) to test the program at this point.
In the parlance of testing, test.py is an integration test because it checks that the pro-
gram as a whole is working. From this point on, we’ll focus on how to write unit tests to
check individual functions in addition to integration tests to ensure that all the func-
tions work together.

 Once you can pass the test suite using a for loop, try to rewrite it using either a
list comprehension or a map(). Rather than starting again from scratch, I suggest

Figure 11.4 Each verse has four lines, where the first two and last are very similar.
The third line is always the same. Find the parts that vary.

187Solution

P
com

ar

variab
you comment out your working code by adding # to the beginnings of the lines, and
then try other ways to write the algorithm. Use the tests to verify that your code still
passes. If it is at all motivating, my solution is one line long. Can you write a single
line of code that combines the range() and verse() functions to produce the expected
output?

 Here are a few hints:

 Define the --num argument as an int with a default value of 10.
 Use parser.error() to get argparse to print an error message for a negative

--num value.
 Write the verse() function. Use the test_verse() function and Pytest to make

that work properly.
 Combine the verse() function with range() to create all the verses.

Do try your best to write the program before reading the solution. Also feel free to
solve the problem in a completely different way, even writing your own unit tests.

11.2 Solution
I’ve decided to show you a slightly fancy-pants version that uses map(). Later I’ll show
you how to write it using a for loop and a list comprehension.

#!/usr/bin/env python3
"""Bottles of beer song"""

import argparse

--
def get_args():

"""Get command-line arguments"""

parser = argparse.ArgumentParser(
description='Bottles of beer song',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('-n',
'--num',
metavar='number',
type=int,
default=10,
help='How many bottles')

args = parser.parse_args()

if args.num < 1:
parser.error(f'--num "{args.num}" must be greater than 0')

return args

Define the --num
argument as an int with
a default value of 10.

arse the
mand-

line
gument
into the
le args.

If args.num is less than 1, use parser.error()
to display an error message and exit the
program with an error value.

188 CHAPTER 11 Bottles of Beer Song: Writing and testing functions

Defi
func
that
crea

si
ver

Do the s
for s2

second “
depen

on
valu

next_bo

for
nding
 next
t.

Test
ver
the

ver
the
--
def main():

"""Make a jazz noise here"""

args = get_args()
print('\n\n'.join(map(verse, range(args.num, 0, -1))))

--
def verse(bottle):

"""Sing a verse"""

next_bottle = bottle - 1
s1 = '' if bottle == 1 else 's'
s2 = '' if next_bottle == 1 else 's'
num_next = 'No more' if next_bottle == 0 else next_bottle
return '\n'.join([

f'{bottle} bottle{s1} of beer on the wall,',
f'{bottle} bottle{s1} of beer,',
f'Take one down, pass it around,',
f'{num_next} bottle{s2} of beer on the wall!',

])

--
def test_verse():

"""Test verse"""

last_verse = verse(1)
assert last_verse == '\n'.join([

'1 bottle of beer on the wall,', '1 bottle of beer,',
'Take one down, pass it around,',
'No more bottles of beer on the wall!'

])

two_bottles = verse(2)
assert two_bottles == '\n'.join([

'2 bottles of beer on the wall,', '2 bottles of beer,',
'Take one down, pass it around,', '1 bottle of beer on the wall!'

])

--
if __name__ == '__main__':

main()

The map() function expects a function as the first argument and some
iterable as the second argument. Here I feed the descending numbers
from the range() function to my verse() function. The result from map()
is a new list of verses that can be joined on two newlines.

ne a
tion
 can
te a
ngle
se().

Define a next_bottle
that is one less than
the current bottle.

Define an s1 (the first “s”)
that is either the character
's' or the empty string,
depending on the value of
current bottle.

ame
(the
s”),

ding
 the
e of
ttle.

Define a value
next_num depe
on whether the
value is 0 or no

Create a return string by
joining the four lines of
text on the newline.
Substitute in the variables
to create the correct verse.

Define a unit test called test_verse() for the verse()
function. The test_ prefix means that the pytest
module will find this function and execute it. the last

se() with
 value 1.

Test a
se() with
 value 2.

189Discussion
11.3 Discussion
There isn’t anything new in the get_args() function in this program. By this point,
you have had several opportunities to define an optional integer parameter with a
default argument and to use parser.error() to halt your program if the user pro-
vides a bad argument. By relying on argparse to handle so much busy work, you are
saving yourself loads of time as well as ensuring that you have good data to work with.
Let’s move on to the new stuff!

11.3.1 Counting down

You know how to count down from the given --num, and you know you can use a for
loop to iterate:

>>> for n in range(3, 0, -1):
... print(f'{n} bottles of beer')
...
3 bottles of beer
2 bottles of beer
1 bottles of beer

Instead of directly creating each verse inside the for loop, I suggested that you could
create a function called verse() to create any given verse and use that with the
range() of numbers. Up to this point, we’ve been doing all our work in the main()
function. As you grow as a programmer, though, your programs will become longer—
hundreds to even thousands of lines of code (LOC). Long programs and functions
can get very difficult to test and maintain, so you should try to break ideas into small,
functional units that you can understand and test. Ideally, functions should do one
thing. If you understand and trust your small, simple functions, then you know you can
safely compose them into longer, more complicated programs.

11.3.2 Test-driven development

I wanted you to add a test_verse() function to your program to use with Pytest to
create a working verse() function. This idea follows the principles described by Kent
Beck in his book, Test-Driven Development (Addison-Wesley Professional, 2002):

1 Add a new test for an unimplemented unit of functionality.
2 Run all previously written tests and see the newly added test fails.
3 Write code that implements the new functionality.
4 Run all tests and see them succeed.
5 Refactor (rewrite to improve readability or structure).
6 Start at the beginning (repeat).

For instance, suppose we want a function that adds 1 to any given number. We’ll called
it add1() and define the function body as pass to tell Python “nothing to see here”:

def add1(n):
pass

190 CHAPTER 11 Bottles of Beer Song: Writing and testing functions
Now write a test_add1() function where you pass some arguments to the function,
and use assert to verify that you get back the value that you expect:

def test_add1():
assert add1(0) = 1
assert add1(1) = 2
assert add1(-1) = 0

Run pytest (or whatever testing framework you like) and verify that the function does
not work (of course it won’t, because it just executes pass). Then go fill in some func-
tion code that does work (return n + 1 instead of pass). Pass all manner of arguments
you can imagine, including nothing, one thing, and many things.1

11.3.3 The verse() function

I provided you with a test_verse() function that shows
you exactly what is expected for the arguments of 1 and 2.
What I like about writing my tests first is that it gives me an
opportunity to think about how I’d like to use the code,
what I’d like to give as arguments, and what I expect to get
back in return. For instance, what should the function add1()
return if given

 No arguments
 More than one argument
 The value None
 Anything other than a numeric type (int, float, or complex) like a str value

or a dict

You can write tests to pass both good and bad values and decide how you want your
code to behave under both favorable and adverse conditions.

 Here’s the verse() function I wrote, which passes the test_verse() function:

def verse(bottle):
"""Sing a verse"""

next_bottle = bottle - 1
s1 = '' if bottle == 1 else 's'
s2 = '' if next_bottle == 1 else 's'
num_next = 'No more' if next_bottle == 0 else next_bottle
return '\n'.join([

f'{bottle} bottle{s1} of beer on the wall,',
f'{bottle} bottle{s1} of beer,',
f'Take one down, pass it around,',
f'{num_next} bottle{s2} of beer on the wall!',

])

1 A CS professor once told me in office hours to handle the cases of 0, 1, and n (infinity), and that has always
stuck with me.

191Discussion
This code is annotated in section 11.2, but I essentially isolate all the parts of the
return string that change, and I create variables to substitute into those places. I use
bottle and next_bottle to decide if there should be an “s” or not after the “bottle”
strings. I also need to figure out whether to print the next bottle as a number, or if I
should print the string “No more” (when next_bottle is 0). Choosing the values for
s1, s2, and num_next all involve binary decisions, meaning they are a choice between
two values, so I find it best to use an if expression.

 This function passes test_verse(), so I can move on to using it to generate the
song.

11.3.4 Iterating through the verses

I could use a for loop to count down and print() each verse():

>>> for n in range(3, 0, -1):
... print(verse(n))
...
3 bottles of beer on the wall,
3 bottles of beer,
Take one down, pass it around,
2 bottles of beer on the wall!
2 bottles of beer on the wall,
2 bottles of beer,
Take one down, pass it around,
1 bottle of beer on the wall!
1 bottle of beer on the wall,
1 bottle of beer,
Take one down, pass it around,
No more bottles of beer on the wall!

That’s almost correct, but we need two newlines in between all the verses. I could use
the end option to print to include two newlines for all values greater than 1:

>>> for n in range(3, 0, -1):
... print(verse(n), end='\n' * (2 if n > 1 else 1))
...
3 bottles of beer on the wall,
3 bottles of beer,
Take one down, pass it around,
2 bottles of beer on the wall!

2 bottles of beer on the wall,
2 bottles of beer,
Take one down, pass it around,
1 bottle of beer on the wall!

1 bottle of beer on the wall,
1 bottle of beer,
Take one down, pass it around,
No more bottles of beer on the wall!

192 CHAPTER 11 Bottles of Beer Song: Writing and testing functions
I would rather use the str.join() method to put two newlines in between items in a
list. My items are the verses, and I can turn a for loop into a list comprehension as
shown in figure 11.5.

>>> verses = [verse(n) for n in range(3, 0, -1)]
>>> print('\n\n'.join(verses))
3 bottles of beer on the wall,
3 bottles of beer,
Take one down, pass it around,
2 bottles of beer on the wall!

2 bottles of beer on the wall,
2 bottles of beer,
Take one down, pass it around,
1 bottle of beer on the wall!

1 bottle of beer on the wall,
1 bottle of beer,
Take one down, pass it around,
No more bottles of beer on the wall!

That is a fine solution, but I would like you to start noticing a pattern we will see
repeatedly: applying a function to every element of a sequence, which is exactly what
map() does! As shown in figure 11.6, our list comprehension can be rewritten very
concisely using map().

Figure 11.5 A for loop compared to a list comprehension

Figure 11.6 A list comprehension can be replaced with map(). They both return a
new list.

193Discussion
In our case, our sequence is a descending range() of numbers, and we want to apply
our verse() function to each number and collect the resulting verses. It’s like the
paint booth idea in chapter 8, where the function “painted” the cars “blue” by adding
the word “blue” to the start of the string. When we want to apply a function to every
element in a sequence, we might consider refactoring the code using map():

>>> verses = map(verse, range(3, 0, -1))
>>> print('\n\n'.join(verses))
3 bottles of beer on the wall,
3 bottles of beer,
Take one down, pass it around,
2 bottles of beer on the wall!

2 bottles of beer on the wall,
2 bottles of beer,
Take one down, pass it around,
1 bottle of beer on the wall!

1 bottle of beer on the wall,
1 bottle of beer,
Take one down, pass it around,
No more bottles of beer on the wall!

Whenever I need to transform some sequence of items with some function, I like to
start off by thinking about how I’ll handle just one of the items. I find it’s much easier
to write and test one function with one input rather than some possibly huge list of
operations. List comprehensions are often considered more “Pythonic,” but I tend to
favor map() because it usually involves shorter code. If you search the internet for
“python list comprehension map,” you’ll find that some people think list comprehen-
sions are easier to read than map(), but map() might possibly be somewhat faster. I
wouldn’t say either approach is better than the other. It really comes down to taste or
perhaps a discussion with your teammates.

 If you want to use map(), remember that it wants a function as the first argument
and then a sequence of elements that will become arguments to the function. The
verse() function (which you’ve tested!) is the first argument, and the range() pro-
vides the list. The map() function will pass each element of the range() as an argu-
ment to the verse() function, as shown in figure 11.7. The result is a new list with
the return values from all those function calls. Many are the for loops that can be bet-
ter written as mapping a function over a list of arguments!

194 CHAPTER 11 Bottles of Beer Song: Writing and testing functions
11.3.5 1,500 other solutions

There are literally hundreds of ways to solve this prob-
lem. The “99 Bottles of Beer” website (www.99-bottles-
of-beer.net) claims to have 1,500 variations in various
languages. Compare your solution to others there.
Trivial as the program may be, it has allowed us to
explore some really interesting ideas in Python, test-
ing, and algorithms.

11.4 Going further
 Replace the Arabic numbers (1, 2, 3) with text (one, two, three).
 Add a --step option (positive int, default 1) that allows the user to skip num-

bers, like by twos or fives.
 Add a --reverse flag to reverse the order of the verses, counting up instead of

down.

Summary
 Test-driven development (TDD) is central to developing dependable, reproduc-

ible code. Tests also give you the freedom to refactor your code (reorganize and
improve it for speed or clarity), knowing that you can always verify your new ver-
sion still works properly. As you write your code, always write tests!

 The range() function will count backwards if you swap start and stop and
supply the optional third step value of -1.

 A for loop can often be replaced with a list comprehension or a map() for
shorter, more concise code.

Figure 11.7 The map() function will call the verse() function with
each element produced by the range() function. It’s functions all the
way down.

http://www.99-bottles-of-beer.net
http://www.99-bottles-of-beer.net

Ransom: Randomly
capitalizing text
All this hard work writing code is getting on my nerves. I’m
ready to turn to a life of crime! I’ve kidnapped (cat-napped?)
the neighbor’s cat, and I want to send them a ransom note. In
the good old days, I’d cut letters from magazines and paste
them onto a piece of paper to spell out my demands. That
sounds like too much work. Instead, I’m going to write a
Python program called ransom.py that will encode text into
randomly capitalized letters:

$./ransom.py 'give us 2 million dollars or the cat
gets it!'

gIVe US 2 milLION DoLlArs or ThE cAt GEts It!

As you can see, my diabolical program accepts the heinous
input text as a positional argument. Since this program uses
the random module, I want to accept an -s or --seed option so I can replicate the
vile output:

$./ransom.py --seed 3 'give us 2 million dollars or the cat gets it!'
giVE uS 2 MILlioN dolLaRS OR tHe cAt GETS It!

The dastardly positional argument might name
a vicious file, in which case that should be read
for the demoniac input text:

$./ransom.py --seed 2 ../inputs/fox.txt
the qUIck BROWN fOX JUmps ovEr ThE LAZY DOg.
195

196 CHAPTER 12 Ransom: Randomly capitalizing text
If the unlawful program is run with no arguments, it should print a short, infernal
usage statement:

$./ransom.py
usage: ransom.py [-h] [-s int] text
ransom.py: error: the following arguments are required: text

If the nefarious program is run with -h or --help flags, it should print a longer, fiend-
ish usage:

$./ransom.py -h
usage: ransom.py [-h] [-s int] text

Ransom Note

positional arguments:
text Input text or file

optional arguments:
-h, --help show this help message and exit
-s int, --seed int Random seed (default: None)

Figure 12.1 shows a noxious string diagram to visualize the inputs and outputs.

In this chapter, you will

 Learn how to use the random module to figuratively “flip a coin” to decide
between two choices

 Explore ways to generate new strings from an existing one, incorporating ran-
dom decisions

 Study the similarities of for loops, list comprehensions, and the map() function

Figure 12.1 The awful program will transform input text into a ransom note
by randomly capitalizing letters.

197Writing ransom.py
12.1 Writing ransom.py
I suggest starting with new.py or copying the template/template.py file to create ran-
som.py in the 12_ransom directory. This program, like several before it, accepts a
required, positional string for the text and an optional integer (default None) for the
--seed. Also, as in previous exercises, the text argument may name a file that should
be read for the text value.

 To start out, use this for your main() code:

def main():
args = get_args()
random.seed(args.seed)
print(args.text)

If you run this program, it should echo the input from the command line:

$./ransom.py 'your money or your life!'
your money or your life!

Or the text from an input file:

$./ransom.py ../inputs/fox.txt
The quick brown fox jumps over the lazy dog.

The important thing when writing a program is to take baby steps. You should run
your program after every change, checking manually and with the tests to see if you are
progressing.

 Once you have this working, it’s time to think about how to randomly capitalize
this awful message.

12.1.1 Mutating the text

You’ve seen before that you can’t directly modify a str value:

>>> text = 'your money or your life!'
>>> text[0] = 'Y'
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: 'str' object does not support item assignment

So how can we randomly change the case of some of the letters?
 I suggest that instead of thinking about how to change many letters, you should

think about how to change one letter. That is, given a single letter, how can you ran-
domly return the upper- or lowercase version of the letter? Let’s create a dummy
choose() function that accepts a single character. For now, we’ll have the function
return the character unchanged:

def choose(char):
return char

Get the processed
command-line arguments.

Set the random.seed() with the value
from the user. The default is None,
which is the same as not setting it.Start off by echoing

back the input.

198 CHAPTER 12 Ransom: Randomly capitalizing text
Here’s a test for it:

def test_choose():
state = random.getstate()
random.seed(1)
assert choose('a') == 'a'
assert choose('b') == 'b'
assert choose('c') == 'C'
assert choose('d') == 'd'
random.setstate(state)

12.1.2 Flipping a coin

We need to choose() between returning the upper- or lowercase
version of the character you are given. It’s a binary choice, meaning
we have two options, so we can use the analogy of flipping a coin.
Heads or tails? Or, for our purposes, 0 or 1:

>>> import random
>>> random.choice([0, 1])
1

Or True or False if you prefer:

>>> random.choice([False, True])
True

Think about using an if expression where you return the uppercase answer when the
0 or False option is selected and the lowercase version otherwise. My entire choose()
function is this one line.

12.1.3 Creating a new string

Now we need to apply our choose() function to each character in the input string. I
hope this is starting to feel like a familiar tactic. I encourage you to start by mimicking
the first approach from chapter 8 where we used a for loop to iterate through each

Random seeds
Have you wondered how I knew what would be the result of choose() for a given ran-
dom seed? Well, I confess that I wrote the function, then set the seed, and ran it with the
given inputs. I recorded the results as the assertions you see. In the future, these results
should still be the same. If they are not, I’ve changed something and probably broken my
program.

The state of the random module is global to the program.
Any change we make here could affect unknown parts of

the program, so we save our current state.
Set the random seed to a known
value. This is a global change to our
program. Any other calls to
functions from the random module
will be affected!

The choose() function is given a
series of letters, and we use the
assert statement to test if the
value returned by the function
is the expected letter.

Reset the global state to the original value.

199Solution
character of the input text and replace all the vowels with a single vowel. In this pro-
gram, we can iterate through the characters of text and use them as the argument to
the choose() function. The result will be a new list (or str) of the transformed
characters. Once you can pass the test with a for loop, try to rewrite it as a list compre-
hension, and then a map().

 Now off you go! Write the program, pass the tests.

12.2 Solution
We’re going to explore many ways to process all the characters in the input text. We’ll
start off with a for loop that builds up a new list, and I hope to convince you that a list
comprehension is a better way to do this. Finally, I’ll show you how to use map() to cre-
ate a very terse (perhaps even elegant) solution.

#!/usr/bin/env python3
"""Ransom note"""

import argparse
import os
import random

--
def get_args():

"""get command-line arguments"""

parser = argparse.ArgumentParser(
description='Ransom Note',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('text', metavar='text', help='Input text or file')

parser.add_argument('-s',
'--seed',
help='Random seed',
metavar='int',
type=int,
default=None)

args = parser.parse_args()

if os.path.isfile(args.text):
args.text = open(args.text).read().rstrip()

return args

--
def main():

"""Make a jazz noise here"""

args = get_args()
text = args.text

The text argument
is a positional

string value.

The --seed option
is an integer that
defaults to None.

Process the command-line
arguments into the args
variable.

If the args.text is a file,
use the contents of
that as the new
args.text value.Return the arguments

to the caller.

200 CHAPTER 12 Ransom: Randomly capitalizing text

Ap

the

sta

rando
to

valu
pur
random.seed(args.seed)
ransom = []
for char in args.text:

ransom.append(choose(char))

print(''.join(ransom))

--
def choose(char):

"""Randomly choose an upper or lowercase letter to return"""

return char.upper() if random.choice([0, 1]) else char.lower()

--
def test_choose():

"""Test choose"""

state = random.getstate()
random.seed(1)
assert choose('a') == 'a'
assert choose('b') == 'b'
assert choose('c') == 'C'
assert choose('d') == 'd'
random.setstate(state)

--
if __name__ == '__main__':

main()

12.3 Discussion
I like this problem because there are so many interest-
ing ways to solve it. I know, I know, Python likes there
to be “one obvious way” to solve it, but let’s explore,
shall we? There’s nothing in get_args() that we
haven’t seen several times by now, so let’s skip that.

12.3.1 Iterating through elements in a sequence

Assume that we have the following cruel message:

>>> text = '2 million dollars or the cat sleeps with the fishes!'

I want to randomly upper- and lowercase the letters. As suggested in the earlier
description of the problem, we can use a for loop to iterate over each character.

Set the random.seed() to the given args.seed value. The
default is None, which is the same as not setting it. That
means the program will appear random when no seed is

given but will be testable when we do provide a seed value.

Create an empty list to
hold the new ransom
message.

Use a for loop to iterate
through each character
of args.text.pend the

chosen
letter to
 ransom

list.
Join the ransom list on the
empty string to create a
new string to print.

Define a function to
randomly return the
upper- or lowercase
version of a given
character.

Use random.choice()
to select either 0 or 1,
which, in the Boolean

context of the if
expression, evaluates

to False or True,
respectively.

Define a test_choose()
function that will be run by
Pytest. The function takes
no arguments.

Save the
current

te of the
random
module.

Set the
m.seed()
a known
e for the
poses of
the test.

Use the assert statement to verify that we
get the expected result from the choose()
for a known argument.

Reset the random module’s state so that
our changes won’t affect any other part
of the program.

201Discussion
One way to print an uppercase version of the text is to print an uppercase version of
each letter :

for char in text:
print(char.upper(), end='')

That would give me “2 MILLION DOLLARS OR THE CAT
SLEEPS WITH THE FISHES!” Now, instead of always printing
char.upper(), I can randomly choose between char.upper()
and char.lower(). For that, I’ll use random.choice() to choose
between two values like True and False or 0 and 1:

>>> import random
>>> random.choice([True, False])
False
>>> random.choice([0, 1])
0
>>> random.choice(['blue', 'green'])
'blue'

Following the first solution from chapter 8, I created a new list to hold the ransom
message and added these random choices:

ransom = []
for char in text:

if random.choice([False, True]):
ransom.append(char.upper())

else:
ransom.append(char.lower())

Then I joined the new characters on the empty string to print a new string:

print(''.join(ransom))

It’s far less code to write this with an if expression to select whether to take the upper-
or lowercase character, as shown in figure 12.2:

ransom = []
for char in text:

ransom.append(char.upper() if random.choice([False, True]) else char.lower())

Figure 12.2 A binary if/else branch is more succinctly written using an if expression.

202 CHAPTER 12 Ransom: Randomly capitalizing text
You don’t have to use actual Boolean values (False and True). You could use 0 and 1
instead:

ransom = []
for char in text:

ransom.append(char.upper() if random.choice([0, 1]) else char.lower())

When numbers are evaluated in a Boolean context (that is, in a place where Python
expects to see a Boolean value), 0 is considered False, and every other number is True.

12.3.2 Writing a function to choose the letter

The if expression is a bit of code that could be put into a function. I find it hard to
read inside the ransom.append().

 By putting it into a function, I can give it a descriptive name and write a test for it:

def choose(char):
"""Randomly choose an upper or lowercase letter to return"""

return char.upper() if random.choice([0, 1]) else char.lower()

Now I can run the test_choose() function to test that my function does what I think.
This code is much easier to read:

ransom = []
for char in text:

ransom.append(choose(char))

12.3.3 Another way to write list.append()

The solution in section 12.2 creates an empty list, to which I list.append() the return
from choose(). Another way to write list.append() is to use the += operator to add the
right-hand value (the element to add) to the left-hand side (the list), as in figure 12.3.

def main():
args = get_args()
random.seed(args.seed)

ransom = []
for char in args.text:

ransom += choose(char)

print(''.join(ransom))

Figure 12.3 The += operator is another
way to write list.append().

203Discussion
This is the same syntax for concatenating a character to a string or adding a number
to another number.

12.3.4 Using a str instead of a list

The two previous solutions require that the lists be joined on the empty string to make
a new string to print. We could, instead, start off with an empty string and build that
up, one character at a time, using the += operator:

def main():
args = get_args()
random.seed(args.seed)

ransom = ''
for char in args.text:

ransom += choose(char)

print(ransom)

As we just noted, the += operator is another way to append an element to a list. Python
often treats strings and lists interchangeably, often implicitly, for better or worse.

12.3.5 Using a list comprehension

The previous patterns all initialize an empty str or list and then build it up with a
for loop. I’d like to convince you that it’s almost always better to express this using
a list comprehension, because its entire raison d’être is to return a new list. We can
condense our three lines of code to just one:

def main():
args = get_args()
random.seed(args.seed)
ransom = [choose(char) for char in args.text]
print(''.join(ransom))

Or you can skip creating the ransom variable altogether. As a general rule, I only
assign a value to a variable if I use it more than once or if I feel it makes my code more
readable:

def main():
args = get_args()
random.seed(args.seed)
print(''.join([choose(char) for char in args.text]))

A for loop is really for iterating through some sequence and producing side effects, like
printing values or handling lines in a file. If your goal is to create a new list, a list
comprehension is probably the best tool. Any code that would go into the body of the
for loop to process an element is better placed in a function with a test.

204 CHAPTER 12 Ransom: Randomly capitalizing text
12.3.6 Using a map() function

I’ve mentioned before that map() is just like a list comprehension, though usually with
less typing. Both approaches generate a new list from some iterable, as shown in fig-
ure 12.4. In this case, the resulting list from map() is created by applying the choose()
function to each character of args.text:

def main():
args = get_args()
random.seed(args.seed)
ransom = map(choose, args.text)
print(''.join(ransom))

Or, again, you could leave out the ransom assignment and use the list that comes
back from map() directly:

def main():
args = get_args()
random.seed(args.seed)
print(''.join(map(choose, args.text)))

12.4 Comparing methods
It may seem silly to spend so much time working through so many ways to solve what is
essentially a trivial problem, but one of the goals of this book is to explore the various
ideas available in Python. The first solution in section 12.2 is a very imperative solution
that a C or Java programmer would probably write. The version using a list compre-
hension is very idiomatic to Python—it is “Pythonic,” as Pythonistas would say. The
map() solution would look very familiar to someone coming from a purely functional
language like Haskell.

 All these approaches accomplish the same goal, but they embody different aesthet-
ics and programming paradigms. My preferred solution would be the last one, using
map(), but you should choose an approach that makes the most sense to you.

Figure 12.4 The ideas of the list comprehension can be expressed more
succinctly with map().

205Going further
12.5 Going further
Write a version of ransom.py that represents letters in other ways by combining ASCII
characters, such as the following. Feel free to make up your own substitutions. Be sure
to update your tests.

A 4 K |<
B |3 L |_

MapReduce
In 2004, Google released a paper on their “MapReduce” algorithm. The “map” phase
applies some transformation to all the elements in a collection, such as all the pages of
the internet that need to be indexed for searching. These operations can happen in par-
allel, meaning you can use many machines to process the pages separately from each
other and in any order. The “reduce” phase then brings all the processed elements back
together, maybe to put the results into a unified database.

In our ransom.py program, the “map” part selected a randomized case for the given let-
ter, and the “reduce” part was putting all those bits back together into a new string. Con-
ceivably, map() could make use of multiple processors to run the functions in parallel
as opposed to sequentially (like with a for loop), possibly cutting the time to produce
the results.

The ideas of map/reduce can be found in many places, from indexing the internet to our
ransom program.

Learning about MapReduce was, to me, a bit like learning the name of a new bird. I never
even noticed that bird before, but, once I was told its name, I saw it everywhere. Once
you understand this pattern, you’ll begin to see it in many places.

206 CHAPTER 12 Ransom: Randomly capitalizing text
C (M |\/|
D |) N |\|
E 3 P |`
F |= S 5
G (- T +
H |-| V \/
I 1 W \/\/
J _|

Summary
 Whenever you have lots of things to

process, try to think about how you’d
process just one of them.

 Write a test that helps you imagine how
you’d like to use the function to pro-
cess one item. What will you pass in,
and what do you expect back?

 Write your function to pass your test.
Be sure to think about what you’ll do
with both good and bad input.

 To apply your function to each ele-
ment in your input, use a for loop, a list comprehension, or a map().

Twelve Days of Christmas:
Algorithm design
Perhaps one of the worst songs of all time, and the
one that is sure to ruin my Christmas spirit, is “The
Twelve Days of Christmas.” WILL IT EVER STOP!?
AND WHAT IS WITH ALL THE BIRDS?! Still, it’s
pretty interesting to write an algorithm to generate
the song starting from any given day because you
have to count up as you add each verse (day) and
then count down inside the verses (recapitulating
the previous days’ gifts). You’ll be able to build on
what you learned writing the program for “99 Bot-
tles of Beer.”

 Our program in this chapter will be called
twelve_days.py, and it will generate the “Twelve Days
of Christmas” song up to a given day, specified by
the -n or --num argument (default 12). Note that there should be two newlines
between verses but only one at the end:

$./twelve_days.py -n 3
On the first day of Christmas,
My true love gave to me,
A partridge in a pear tree.

On the second day of Christmas,
My true love gave to me,
Two turtle doves,
And a partridge in a pear tree.
207

208 CHAPTER 13 Twelve Days of Christmas: Algorithm design
On the third day of Christmas,
My true love gave to me,
Three French hens,
Two turtle doves,
And a partridge in a pear tree.

The text will be printed to STDOUT unless there is an -o or --outfile argument, in
which case the text should be placed inside a file with the given name. Note that there
should be 113 lines of text for the entire song:

$./twelve_days.py -o song.txt
$ wc -l song.txt

113 song.txt

In this exercise, you will

 Create an algorithm to generate “The Twelve Days of Christmas” from any given
day in the range 1–12

 Reverse a list
 Use the range() function
 Write text to a file or to STDOUT

13.1 Writing twelve_days.py
As always, I suggest you create your program by running new.py or by copying the
template/template.py file. This one must be called twelve_days.py and live in the
13_twelve_days directory.

 Your program should take two options:

 -n or --num—An int with a default of 12
 -o or --outfile—An optional filename for writing the output

For the second option, you can go back to chapter 5 to see how we handled this in
the Howler solution. That program writes its blistering output to the given filename
if one is supplied, and otherwise writes to sys.stdout. For this program, I suggest
you declare the --outfile using type=argparse.FileType('wt') to indicate that
argparse will require an argument to name a writable text file. If the user supplies a
valid argument, args.outfile will be an open, writable file handle. If you also use
a default of sys.stdout, you’ll have quickly handled both options of writing to a
text file or STDOUT!

 The only downside to this approach is that the usage statement for the program
looks a little funny in describing the default for the --outfile parameter:

$./twelve_days.py -h
usage: twelve_days.py [-h] [-n days] [-o FILE]

Twelve Days of Christmas

optional arguments:
-h, --help show this help message and exit

209Writing twelve_days.py
-n days, --num days Number of days to sing (default: 12)
-o FILE, --outfile FILE

Outfile (default: <_io.TextIOWrapper name='<stdout>'
mode='w' encoding='utf-8'>)

Once you’ve completed the usage, your program should pass the first two tests.
 Figure 13.1 shows a holly, jolly string diagram to get you in the mood for writing

the rest of the program.

The program should complain if the --num value is not in the range 1–12. I suggest
you check this inside the get_args() function and use parser.error() to halt with
an error and usage message:

$./twelve_days.py -n 21
usage: twelve_days.py [-h] [-n days] [-o FILE]
twelve_days.py: error: --num "21" must be between 1 and 12

Once you’ve handled the bad --num, you should pass the first three tests.

13.1.1 Counting

In the “99 Bottles of Beer” song, we needed to count down from a given number. Here
we need to count up to --num and then count back down through the gifts. The
range() function will give us what we need, but we must remember to start at 1
because we don’t start singing “On the zeroth day of Christmas.” Keep in mind that
the upper bound is not included:

>>> num = 3
>>> list(range(1, num))
[1, 2]

Figure 13.1 The twelve_days.py program takes options for which day to start on
and an output file to write.

210 CHAPTER 13 Twelve Days of Christmas: Algorithm design
You’ll need to add 1 to whatever you’re given for --num:

>>> list(range(1, num + 1))
[1, 2, 3]

Let’s start by printing something like the first line of each verse:

>>> for day in range(1, num + 1):
... print(f'On the {day} day of Christmas,')
...
On the 1 day of Christmas,
On the 2 day of Christmas,
On the 3 day of Christmas,

At this point, I’m starting to think about how we wrote “99 Bottles of Beer.” There we
ended up creating a verse() function that would generate any one verse. Then we used
str.join() to put them all together with two newlines. I suggest we try the same
approach here, so I’ll move the code inside the for loop into its own function:

def verse(day):
"""Create a verse"""
return f'On the {day} day of Christmas,'

Notice that the function will not print() the string but will return the verse, so that
we can test it:

>>> assert verse(1) == 'On the 1 day of Christmas,'

Let’s see how we can use this verse() function:

>>> for day in range(1, num + 1):
... print(verse(day))
...
On the 1 day of Christmas,
On the 2 day of Christmas,
On the 3 day of Christmas,

Here’s a simple test_verse() function we could start off with:

def test_verse():
""" Test verse """
assert verse(1) == 'On the 1 day of Christmas,'
assert verse(2) == 'On the 2 day of Christmas,'

This is incorrect, of course, because it should say “On the first day” or the “second day,”
not “1 day” or “2 day.” Still, it’s a place to start. Add the verse() and test_verse()
functions to your twelve_days.py program, and then run pytest twelve_days.py to
verify this much works.

211Writing twelve_days.py
13.1.2 Creating the ordinal value

Maybe the first thing to do is to change the numeric value to its ordinal position, that
is “1” to “first,” “2” to “second.” You could use a dictionary like we used in “Jump The
Five” to associate each int value 1–12 with its str value. That is, you might create a
new dict called ordinal:

>>> ordinal = {} # what goes here?

Then you could do this:

>>> ordinal[1]
'first'
>>> ordinal[2]
'second'

You could also use a list, if you think about how you could use each day in the
range() to index into a list of ordinal strings.

>>> ordinal = [] # what goes here?

Your verse() function might look something like this now:

def verse(day):
"""Create a verse"""
ordinal = [] # something here!
return f'On the {ordinal[day]} of Christmas,'

You can update your test with your expectations:

def test_verse():
""" Test verse """
assert verse(1) == 'On the first day of Christmas,'
assert verse(2) == 'On the second day of Christmas,'

Once you have this working, you should be able to replicate something like this:

>>> for day in range(1, num + 1):
... print(verse(day))
...
On the day first day of Christmas,
On the day second day of Christmas,
On the day third day of Christmas,

If you put the test_verse() function inside your twelve_days.py program, you can
verify that your verse() function works by running pytest twelve_days.py. The
pytest module will run any function that has a name starting with test_.

212 CHAPTER 13 Twelve Days of Christmas: Algorithm design
Shadowing
You might be tempted to use the variable name ord, and you would be allowed by Python
to do this. The problem is that Python has a function called ord() that returns “the Uni-
code code point for a one-character string”:

>>> ord('a')
97

Python will not complain if you define a variable or another function with the name ord,

>>> ord = {}

such that you could do this:

>>> ord[1]
'first'

But that overwrites the actual ord function and so breaks a function call:

>>> ord('a')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: 'dict' object is not callable

This is called “shadowing,” and it’s quite dangerous. Any code in the scope of the shad-
owing would be affected by the change.

Tools like Pylint can help you find problems like this in your programs. Assume you have
the following code:

$ cat shadow.py
#!/usr/bin/env python3

ord = {}
print(ord('a'))

Here is what Pylint has to say:

$ pylint shadow.py
************* Module shadow
shadow.py:3:0: W0622: Redefining built-in 'ord' (redefined-builtin)
shadow.py:1:0: C0111: Missing module docstring (missing-docstring)
shadow.py:4:6: E1102: ord is not callable (not-callable)

Your code has been rated at -25.00/10

It’s good to double-check your code with tools like Pylint and Flake8!

213Writing twelve_days.py
13.1.3 Making the verses

Now that we have the basic structure of the program, let’s focus on creating the correct
output. We’ll update test_verse() with the actual values for the first two verses. You
can, of course, add more tests, but presumably if we can manage the first two days, we
can handle all the other days:

def test_verse():
"""Test verse"""

assert verse(1) == '\n'.join([
'On the first day of Christmas,', 'My true love gave to me,',
'A partridge in a pear tree.'

])

assert verse(2) == '\n'.join([
'On the second day of Christmas,', 'My true love gave to me,',
'Two turtle doves,', 'And a partridge in a pear tree.'

])

If you add this to your twelve_days.py program, you can run pytest twelve_days.py
to see how your verse() function is failing:

=================================== FAILURES ===================================
__________________________________ test_verse __________________________________

def test_verse():
"""Test verse"""

> assert verse(1) == '\n'.join([
'On the first day of Christmas,', 'My true love gave to me,',
'A partridge in a pear tree.'

])
E AssertionError: assert 'On the first...of Christmas,' == 'On the first

... a pear tree.'
E - On the first day of Christmas,
E + On the first day of Christmas,
E ? +
E + My true love gave to me,
E + A partridge in a pear tree.

twelve_days.py:88: AssertionError
=========================== 1 failed in 0.11 seconds ===========================

Now we need to supply the rest of the lines for each verse. They all start off the same:

On the {ordinal[day]} day of Christmas,
My true love gave to me,

The leading > shows that this is the
code that is creating an exception. We
are running verse(1) and asking if it’s
equal to the expected verse.

This is the text that verse(1)
actually produced, which is only
the first line of the verse.

The lines following are
what was expected.

214 CHAPTER 13 Twelve Days of Christmas: Algorithm design
Then we need to add these gifts for each day:

1 A partridge in a pear tree
2 Two turtle doves
3 Three French hens
4 Four calling birds
5 Five gold rings
6 Six geese a laying
7 Seven swans a swimming
8 Eight maids a milking
9 Nine ladies dancing

10 Ten lords a leaping
11 Eleven pipers piping
12 Twelve drummers drumming

Note that for every day greater than 1, the last line changes “A partridge…” to “And a
partridge in a pear tree.”

 Each verse needs to count backwards from the given day. For example, if the day
is 3, then the verse lists

1 Three French hens
2 Two turtle doves
3 And a partridge in a pear tree

We talked in chapter 3 about how you can reverse a list, either with the
list.reverse() method or the reversed() function. We also used these ideas in
chapter 11 to get the bottles of beer off the wall, so this code should not be unfamiliar:

>>> day = 3
>>> for n in reversed(range(1, day + 1)):
... print(n)
...
3
2
1

Try to make the function return the first two lines and then the countdown of the days:

>>> print(verse(3))
On the third day of Christmas,
My true love gave to me,
3
2
1

Then, instead of 3 2 1, add the actual gifts:

>>> print(verse(3))
On the third day of Christmas,
My true love gave to me,

215Writing twelve_days.py
Three French hens,
Two turtle doves,
And a partridge in a pear tree.

If you can get that to work, you ought to be able to pass the test_verse() test.

13.1.4 Using the verse() function

Once you have that working, think about a final structure that calls
your verse(). It could be a for loop:

verses = []
for day in range(1, args.num + 1):

verses.append(verse(day))

Since we’re trying to create a list of the verses, a list comprehension
is a better choice:

verses = [verse(day) for day in range(1, args.num + 1)]

Or it could be a map():

verses = map(verse, range(1, args.num + 1))

13.1.5 Printing

Once you have all the verses, you can use the str.join() method to print the output.
The default is to print this to “standard out” (STDOUT), but the program will also take
an optional --outfile that names a file to write the output to. You can copy exactly
what we did in chapter 5, but it’s really worth your time to learn how to declare output
files using type=argparse.FileType('wt'). You can even set the default to sys.stdout
so that you’ll never have to open() the output file yourself!

13.1.6 Time to write

It’s not at all mandatory that you solve the problem the way that I describe. The “cor-
rect” solution is one that you write and understand and that passes the test suite. It’s
fine if you like the idea of creating a function for verse() and using the provided test.
It’s also fine if you want to go another way, but do try to think of writing small func-
tions and tests to solve small parts of your problem, and then combining them to solve
the larger problem.

 If you need more than one sitting or even several days to pass the tests, take your
time. Sometimes a good walk or a nap can do wonders for solving problems. Don’t
neglect your hammock1 or a nice cup of tea.

1 Search the internet for the talk “Hammock Driven Development” by Rich Hickey, the creator of the Clojure
language.

216 CHAPTER 13 Twelve Days of Christmas: Algorithm design

Check
the g

args.nu
in

allo
range1

inclu

Gene
the ve

for
g

args.
of d

s
 is
ut.
13.2 Solution
A person would receive almost 200 birds in this song! Anyway, here is a solution that
uses map(). After that you’ll see versions that use for and list comprehensions.

#!/usr/bin/env python3
"""Twelve Days of Christmas"""

import argparse
import sys

--
def get_args():

"""Get command-line arguments"""

parser = argparse.ArgumentParser(
description='Twelve Days of Christmas',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('-n',
'--num',
help='Number of days to sing',
metavar='days',
type=int,
default=12)

parser.add_argument('-o',
'--outfile',
help='Outfile',
metavar='FILE',
type=argparse.FileType('wt'),
default=sys.stdout)

args = parser.parse_args()

if args.num not in range(1, 13):
parser.error(f'--num "{args.num}" must be between 1 and 12')

return args

--
def main():

"""Make a jazz noise here"""

args = get_args()
verses = map(verse, range(1, args.num + 1))
print('\n\n'.join(verses), file=args.outfile)

--
def verse(day):

"""Create a verse"""

The --num option is an
int with a default of 12.

The --outfile option is a
type=argparse.FileType('wt') with a
default of sys.stdout. If the user supplies
a value, it must be the name of a writable
file, in which case argparse will open the
file for writing.

Capture the results of parsing the command-
line arguments into the args variable.

that
iven
m is
 the
wed
–12,
sive.

If args.num is invalid, use
parser.error() to print a

short usage statement and
the error message to STDERR
and exit the program with an

error value. Note that the
error message includes the
bad value for the user and

explicitly states that a good
value should be in the

range 1–12.

Get the command-line arguments. Remember that all
argument validation happens inside get_args(). If this
call succeeds, we have good arguments from the user.

rate
rses
 the
iven
num
ays.

Join the verses on two newline
and print to args.outfile, which
an open file handle, or sys.stdo

Define a function to create any one
verse from a given number.

217Solution

The
val
lis

T

d
lis

thi
da

Ret
lines

n

ordinal = [
'first', 'second', 'third', 'fourth', 'fifth', 'sixth', 'seventh',
'eighth', 'ninth', 'tenth', 'eleventh', 'twelfth'

]

gifts = [
'A partridge in a pear tree.',
'Two turtle doves,',
'Three French hens,',
'Four calling birds,',
'Five gold rings,',
'Six geese a laying,',
'Seven swans a swimming,',
'Eight maids a milking,',
'Nine ladies dancing,',
'Ten lords a leaping,',
'Eleven pipers piping,',
'Twelve drummers drumming,',

]

lines = [
f'On the {ordinal[day - 1]} day of Christmas,',
'My true love gave to me,'

]

lines.extend(reversed(gifts[:day]))

if day > 1:
lines[-1] = 'And ' + lines[-1].lower()

return '\n'.join(lines)

--
def test_verse():

"""Test verse"""

assert verse(1) == '\n'.join([
'On the first day of Christmas,', 'My true love gave to me,',
'A partridge in a pear tree.'

])

assert verse(2) == '\n'.join([
'On the second day of Christmas,', 'My true love gave to me,',
'Two turtle doves,', 'And a partridge in a pear tree.'

])

--
if __name__ == '__main__':

main()

ordinal
ues is a
t of str
values.

he gifts
for the
ays is a
t of str
values.

The lines of each verse
start off the same,
substituting in the ordinal
value of the given day.

Use the list.extend() method to add
the gifts, which are a slice from the
given day and then reversed().Check if

s is for a
y greater

than 1.

Change the last of the lines to
add “And ” to the beginning,
appended to the lowercased
version of the line.

urn the
 joined
on the
ewline.

The unit test for the
verse() function

218 CHAPTER 13 Twelve Days of Christmas: Algorithm design
13.3 Discussion
Not much in get_args() is new, so we’ll throw it a sidelong, cursory glance. The --num
option is an int value with a default value of 12, and we use parser.error() to halt
the program if the user provides a bad value. The --outfile option is a bit different,
though, as we’re declaring it with type=argparse.FileType('wt') to indicate the
value must be a writable file. This means the value we get from argparse will be an
open, writable file. We set the default to sys.stdout, which is also an open, writable
file, so we’ve handled the two output options entirely through argparse, which is a
real time saver!

13.3.1 Making one verse

I chose to make a function called verse() to create any one verse given an int value
of the day:

def verse(day):
"""Create a verse"""

I decided to use a list to represent the ordinal value of the day:

ordinal = [
'first', 'second', 'third', 'fourth', 'fifth', 'sixth', 'seventh',
'eighth', 'ninth', 'tenth', 'eleventh', 'twelfth'

]

Since the day is based on counting from 1, but Python lists start from 0 (see figure 13.2),
I have to subtract 1:

>>> day = 3
>>> ordinal[day - 1]
'third'

Figure 13.2 Our days start counting
from 1, but Python indexes from 0.

219Discussion
I could just as easily have used a dict:

ordinal = {
1: 'first', 2: 'second', 3: 'third', 4: 'fourth',
5: 'fifth', 6: 'sixth', 7: 'seventh', 8: 'eighth',
9: 'ninth', 10: 'tenth', 11: 'eleventh', 12: 'twelfth',

}

In this case you don’t have to subtract 1. Whatever works for you:

>>> ordinal[3]
'third'

I also used a list for the gifts:

gifts = [
'A partridge in a pear tree.',
'Two turtle doves,',
'Three French hens,',
'Four calling birds,',
'Five gold rings,',
'Six geese a laying,',
'Seven swans a swimming,',
'Eight maids a milking,',
'Nine ladies dancing,',
'Ten lords a leaping,',
'Eleven pipers piping,',
'Twelve drummers drumming,',

]

This makes a bit more sense, as I can use a list slice to get the gifts for a given day
(see figure 13.3):

>>> gifts[:3]
['A partridge in a pear tree.',
'Two turtle doves,',
'Three French hens,']

Figure 13.3 The gifts are listed
by their days in ascending order.

220 CHAPTER 13 Twelve Days of Christmas: Algorithm design
But I want them in reverse order. The reversed() function is lazy, so I need to use the
list() function in the REPL to coerce the values:

>>> list(reversed(gifts[:3]))
['Three French hens,',
'Two turtle doves,',
'A partridge in a pear tree.']

The first two lines of any verse are the same, substituting in the ordinal value for the day:

lines = [
f'On the {ordinal[day - 1]} day of Christmas,',
'My true love gave to me,'

]

I need to put these two lines together with the gifts. Since each verse is made of some
number of lines, I think it will make sense to use a list to represent the entire verse.

 I need to add the gifts to the lines, and I can use the list.extend() method to
do that:

>>> lines.extend(reversed(gifts[:day]))

Now there are five lines:

>>> lines
['On the third day of Christmas,',
'My true love gave to me,',
'Three French hens,',
'Two turtle doves,',
'A partridge in a pear tree.']

>>> assert len(lines) == 5

Note that I cannot use the list.append() method. It’s easy to confuse it with the
list.extend() method, which takes another list as its argument, expands it, and
adds all of the individual elements to the original list. The list.append() method is
meant to add just one element to a list, so if you give it a list, it will tack that entire
list onto the end of the original list!

 Here the reversed() iterator will be added to the end of lines, such that it would
have three elements rather than the desired five:

>>> lines.append(reversed(gifts[:day]))
>>> lines
['On the third day of Christmas,',
'My true love gave to me,',
<list_reverseiterator object at 0x105bc8588>]

Maybe you’re thinking you could coerce reversed() with the list() function?
Thinking you are, young Jedi, but, alas, that will still add a new list to the end:

>>> lines.append(list(reversed(gifts[:day])))
>>> lines

221Discussion
['On the third day of Christmas,',
'My true love gave to me,',
['Three French hens,', 'Two turtle doves,', 'A partridge in a pear tree.']]

And we still have three lines rather than five:

>>> len(lines)
3

If day is greater than 1, I need to change the last line to say “And a” instead of “A”:

if day > 1:
lines[-1] = 'And ' + lines[-1].lower()

Note that this is another good reason to represent the lines as a list, because the
elements of a list are mutable. I could have represented the lines as a str, but strings
are immutable, so it would be much harder to change the last line.

 I want to return a single str value from the function, so I join the lines on a
newline:

>>> print('\n'.join(lines))
On the third day of Christmas,
My true love gave to me,
Three French hens,
Two turtle doves,
A partridge in a pear tree.

My function returns the joined lines and will pass the test_verse() function I
provided.

13.3.2 Generating the verses

Given the verse() function, I can create all the needed verses by iterating from 1 to
the given --num. I could collect them in a list of verses:

day = 3
verses = []
for n in range(1, day + 1):

verses.append(verse(n))

I can test that I have the right number of verses:

>>> assert len(verses) == day

Whenever you see this pattern of creating an empty str or list and then using a for
loop to add to it, consider instead using a list comprehension:

>>> verses = [verse(n) for n in range(1, day + 1)]
>>> assert len(verses) == day

222 CHAPTER 13 Twelve Days of Christmas: Algorithm design
I personally prefer using map() over list comprehensions. See figure 13.4 to review
how the three methods fit together. I need to use the list() function to coerce the
lazy map() function in the REPL, but it’s not necessary in the program code:

>>> verses = list(map(verse, range(1, day + 1)))
>>> assert len(verses) == day

All of these methods will produce the correct number of verses. Choose whichever
one makes the most sense to you.

13.3.3 Printing the verses

Just like with “99 Bottles of Beer” in chapter 11, I want to print() the verses with two
newlines in between. The str.join() method is a good choice:

>>> print('\n\n'.join(verses))
On the first day of Christmas,
My true love gave to me,
A partridge in a pear tree.

On the second day of Christmas,
My true love gave to me,
Two turtle doves,
And a partridge in a pear tree.

On the third day of Christmas,
My true love gave to me,
Three French hens,
Two turtle doves,
And a partridge in a pear tree.

Figure 13.4 Building a list using a for loop, a list comprehension, and map().

223Summary
You can use the print() function with the optional file argument to put the text
into an open file handle. The args.outfile value will be either the file indicated by
the user or sys.stdout:

print('\n\n'.join(verses), file=args.outfile)

Or you can use the fh.write() method, but you need to
remember to add the trailing newline that print() adds for
you:

args.outfile.write('\n\n'.join(verses) + '\n')

There are dozens to hundreds of ways to write this algo-
rithm, just as there are for “99 Bottles of Beer.” If you came
up with an entirely different approach that passed the test,
that’s terrific! Please share it with me. I wanted to stress the
idea of how to write, test, and use a single verse() function,
but I’d love to see other approaches!

13.4 Going further
Install the emoji module (https://pypi.org/project/emoji/) and print various emojis
for the gifts rather than text. For instance, you could use ':bird:' to print for
every bird, like a hen or dove. I also used ':man:', ':woman:', and ':drum:', but you
can use whatever you like:

On the twelfth day of Christmas,
My true love gave to me,
Twelve s drumming,
Eleven s piping,
Ten s a leaping,
Nine s dancing,
Eight s a milking,
Seven s a swimming,
Six s a laying,
Five gold s,
Four calling s,
Three French s,
Two turtle s,
And a in a pear tree.

Summary
 There are many ways to encode algorithms to perform repetitive tasks. In my

version, I wrote and tested a function to handle one task and then mapped a
range of input values over that.

 The range() function will return int values between given start and stop val-
ues, the latter of which is not included.

 You can use the reversed() function to reverse the values returned by range().

224 CHAPTER 13 Twelve Days of Christmas: Algorithm design
 If you use type=argparse.FileType('wt') to define an argument with arg-
parse, you get a file handle that is open for writing text.

 The sys.stdout file handle is always open and available for writing.
 Modeling gifts as a list allowed me to use a list slice to get all the gifts for a

given day. I used the reversed() function to put them into the right order for
the song.

 I modeled lines as a list because a list is mutable, which I needed in order
to change the last line when the day is greater than 1.

 Shadowing a variable or function is reusing an existing variable or function
name. If, for instance, you create a variable with the name of an existing function,
that function is effectively hidden because of the shadow. Avoid shadowing by
using tools like Pylint to find these and many other common coding problems.

Rhymer: Using regular
expressions to create

rhyming words
In the movie The Princess Bride, the
characters Inigo and Fezzik have a
rhyming game they like to play, espe-
cially when their cruel boss, Vizzini,
yells at them:

Inigo: That Vizzini, he can fuss.
Fezzik: I think he likes to scream at us.
Inigo: Probably he means no harm.
Fezzik: He’s really very short on charm.

When I was writing the alternate.txt
for chapter 7, I would come up with a
word like “cyanide” and wonder what
I could rhyme with that. Mentally I started with the first consonant sound of the
alphabet and substituted “b” for “byanide,” skipped “c” because that’s already the
first character, then “d” for “dyanide,” and so forth. This is effective but tedious, so
I decided to write a program to do this for me, as one does.

 This is basically another find-and-replace type of program, like swapping all the
numbers in a string in chapter 4 or all the vowels in a string in chapter 8. We wrote
those programs using very manual, imperative methods, like iterating through all
the characters of a string, comparing them to some wanted value, and possibly
returning a new value.

 In the final solution for chapter 8, we briefly touched on “regular expressions”
(also called “regexes”—pronounced with a soft “g” like in “George”), which give us
225

226 CHAPTER 14 Rhymer: Using regular expressions to create rhyming words
a declarative way to describe patterns of text. The material here may seem a bit of a
reach, but I really want to help you dig into regexes to see what they can do.

 In this chapter, we’re going to take a given word
and create “words” that rhyme. For instance, the
word “bake” rhymes with words like “cake,” “make,”
and “thrake,” the last of which isn’t actually a dic-
tionary word but just a new string I created by
replacing the “b” in “bake” with “thr.”

 The algorithm we’ll use will split a word into
any initial consonants and the rest of the word, so
“bake” is split into “b” and “ake.” We’ll replace the
“b” with all the other consonants from the alphabet
plus these consonant clusters:

bl br ch cl cr dr fl fr gl gr pl pr sc sh sk sl sm sn sp st
sw th tr tw thw wh wr sch scr shr sph spl spr squ str thr

These are the first three words our program will produce for “cake”:

$./rhymer.py cake | head -3
bake
blake
brake

And these are the last three:

$./rhymer.py cake | tail -3
xake
yake
zake

Make sure your output is sorted alphabetically as this is important for the tests.
 We’ll replace any leading consonants with a list of other consonant sounds to cre-

ate a total of 56 words:

$./rhymer.py cake | wc -l
56

Note that we’ll replace all the leading consonants, not just the first one. For instance,
with the word “chair” we need to replace “ch”:

$./rhymer.py chair | tail -3
xair
yair
zair

If a word like “apple” does not start with a consonant, we’ll append all the consonant
sounds to the beginning to create words like “bapple” and “shrapple.”

227Writing rhymer.py
$./rhymer.py apple | head -3
bapple
blapple
brapple

Because there is no consonant to replace, words that start with a vowel will produce 57
rhyming words:

$./rhymer.py apple | wc -l
57

To make this a bit easier, the output should always be all lowercase, even if the input
has uppercase letters:

$./rhymer.py GUITAR | tail -3
xuitar
yuitar
zuitar

If a word contains nothing but consonants, we’ll print a message stating that the word
cannot be rhymed:

$./rhymer.py RDNZL
Cannot rhyme "RDNZL"

The task of finding the initial consonants is made
significantly easier with regexes.

 In this program, you will

 Learn to write and use regular expressions
 Use a guard with a list comprehension
 Explore the similarities of list compre-

hension with a guard to the filter() function
 Entertain ideas of “truthiness” when evaluating Python types in a Boolean

context

14.1 Writing rhymer.py
The program takes a single, positional argument, which is the string to rhyme. Fig-
ure 14.1 shows a snazzy, jazzy, frazzy, thwazzy string diagram.

 If given no arguments or the -h or --help flags, it should print a usage statement:

$./rhymer.py -h
usage: rhymer.py [-h] word

Make rhyming "words"

positional arguments:
word A word to rhyme

optional arguments:
-h, --help show this help message and exit

228 CHAPTER 14 Rhymer: Using regular expressions to create rhyming words
14.1.1 Breaking a word

To my mind, the main problem of the program is breaking the given word into the
leading consonant sounds and the rest—something like the “stem” of the word.

 To start out, we can define a placeholder for a function I call stemmer() that does
nothing right now:

def stemmer():
"""Return leading consonants (if any), and 'stem' of word"""
pass

Then we can define a test_stemmer() function to help us think about the values we
might give the function and what we expect it to return. We want a test with good val-
ues like “cake” and “apple” that can be rhymed as well as values like the empty string
or a number, which cannot:

def test_stemmer():
""" Test stemmer """
assert stemmer('') == ('', '') b

c assert stemmer('cake') == ('c', 'ake')
assert stemmer('chair') == ('ch', 'air') d

e assert stemmer('APPLE') == ('', 'apple')
assert stemmer('RDNZL') == ('rdnzl', '') f

g assert stemmer('123') == ('123', '')

The tests cover the following good and bad inputs:

b The empty string

c A word with a single leading consonant

Figure 14.1 The input for our
rhymer program should be a
word, and the output will be a
list of rhyming words or an error.

The pass statement will do nothing at all. Since
the function does not return a value, Python will
return None by default.

229Writing rhymer.py
d A word with a leading consonant cluster

e A word with no initial consonants; also an uppercase word, so this checks that
lowercase is returned

f A word with no vowels

g Something that isn’t a word at all

I decided that my stemmer() function will always returns a 2-tuple of the (start,
rest) of the word. (You can write a function that does something different, but be
sure to change the test to match.) It’s the second part of that tuple—the rest—that
we can use to create rhyming words. For instance, the word “cake” produces a tuple
with ('c', 'ake'), and “chair” is split into ('ch', 'air'). The argument “APPLE” has
no start and only the rest of the word, which is lowercase.

 When I’m writing tests, I usually try to provide both good and bad data to my func-
tions and programs. Three of the test values cannot be rhymed: the empty string (''),
a string with no vowels ('RDNZL'), and a string with no letters ('123'). The stemmer()
function will still return a tuple containing the lowercased word in the first position
of the tuples and the empty string in the second position for the rest of the word. It is
up to the calling code to deal with a word that has no part that can be used to rhyme.

14.1.2 Using regular expressions

It’s certainly possible to write this program without regular expressions, but I hope
you’ll see how radically different using regexes can be from manually writing your
own search-and-replace code.

 To start off, we need to bring in the re module:

>>> import re

I encourage you to read help(re) to get a feel for all that you can do with regexes.
They are a deep subject with many books and whole branches of academia devoted to
them (Mastering Regular Expressions by Jeffrey Friedl (O’Reilly, 2006) is one book I
would recommend). There are many helpful websites that can further explain regexes,
and some can help you write them (such as https://regexr.com/). We will only scratch
the surface of what you can do with regexes.

 Our goal in this program is to write a regex that will find consonants at the begin-
ning of a string. We can define consonants as the characters of the English alphabet
that are not vowels (“a,” “e,” “i,” “o,” and “u”). Our stemmer() function will only return
lowercase letters, so there are only 21 consonants we need to define. You could write
them out, but I’d rather write a bit of code!

 We can start with string.ascii_lowercase:

>>> import string
>>> string.ascii_lowercase
'abcdefghijklmnopqrstuvwxyz'

https://regexr.com/

230 CHAPTER 14 Rhymer: Using regular expressions to create rhyming words
Next, we can use a list comprehension with a “guard” clause to filter out the vowels. As
we want a str of consonants and not a list, we can use str.join() to make a new
str value:

>>> import string as s
>>> s.ascii_lowercase
'abcdefghijklmnopqrstuvwxyz'
>>> consonants = ''.join([c for c in s.ascii_lowercase if c not in 'aeiou'])
>>> consonants
'bcdfghjklmnpqrstvwxyz'

The longer way to write this with a for loop and an if statement is as follows (see fig-
ure 14.2):

consonants = ''
for c in string.ascii_lowercase:

if c not in 'aeiou':
consonants += c

In chapter 8 we created a “character class” for matching the vowels by listing them in
square brackets, like '[aeiou]'. We can do the same here with our consonants, like so:

>>> pattern = '[' + consonants + ']'
>>> pattern
'[bcdfghjklmnpqrstvwxyz]'

The re module has two search-like functions called re.match() and re.search(),
and I always get them confused. They both look for a pattern (the first argument) in
some text, but the re.match() functions starts from the beginning of the text, whereas
the re.search() function will match starting anywhere in the text.

Figure 14.2 The for loop (top) can be written as a list comprehension
(bottom). This list comprehension includes a guard so that only consonants
are selected, which is like the if statement at the top.

231Writing rhymer.py
 As it happens, re.match() is just fine because we are looking for consonants at the
beginning of a string (see figure 14.3).

>>> text = 'chair'
>>> re.match(pattern, text)
<re.Match object; span=(0, 1), match='c'>

The match='c' shows us that the regular expression found the string 'c' at the begin-
ning. Both the re.match() and re.search() functions will return a re.Match object
on success. You can read help(re.Match) to learn more about all the cool things you
can do with them:

>>> match = re.match(pattern, text)
>>> type(match)
<class 're.Match'>

How do we get our regex to match the letters 'ch'? We can put a '+' sign after the
character class to say we want one or more (see figure 14.4). (Does this sound a bit like
nargs='+' to say one or more arguments?) I will use an f-string here to create the
pattern:

>>> re.match(f'[{consonants}]+', 'chair')
<re.Match object; span=(0, 2), match='ch'>

What does it give us for a string with no leading consonants like “apple,” as in figure 14.5?

>>> re.match(f'[{consonants}]+', 'apple')

Try to match the given pattern in the given text. If
this succeeds, we get a re.Match object; otherwise,
the value None is returned.

The match was successful, so we
see a “stringified” version of the
re.Match object.

Figure 14.3 The character class of
consonants will match the “c” at the
beginning of “chair.”

Figure 14.4 Adding a plus sign to
the class will match one or more
characters.

232 CHAPTER 14 Rhymer: Using regular expressions to create rhyming words
It seems we got nothing back from that. What is the type() of that return value?

>>> type(re.match(f'[{consonants}]+', 'apple'))
<class 'NoneType'>

Both the re.match() and re.search() functions return None to indicate a failure to
match any text. We know that only some words will have a leading consonant sound,
so this is not surprising. We’ll see in a moment how to make this an optional match.

14.1.3 Using capture groups

It’s all well and good to have found (or not) the leading consonants, but the goal here
is to split the text into two parts: the consonants (if any) and the rest of the word.

 We can wrap parts of the regex in parentheses to create “capture groups.” If the
regex matches successfully, we can recover the parts using the re.Match.groups()
method (see figure 14.6):

>>> match = re.match(f'([{consonants}]+)', 'chair')
>>> match.groups()
('ch',)

To capture everything that comes after the consonants, we can use a period (.) to
match anything, and add a plus sign (+) to mean one or more. We can put that into
parentheses to capture it (see figure 14.7):

>>> match = re.match(f'([{consonants}]+)(.+)', 'chair')
>>> match.groups()
('ch', 'air')

Figure 14.5 This regex fails to
match a word that does not start
with a consonant.

Figure 14.6 Adding parentheses around a
pattern causes the matching text to be
available as a capture group.

233Writing rhymer.py
What happens when we try to use this on “apple”? It fails to make the first match on
the consonants, so the whole match fails and returns None (see figure 14.8):

>>> match = re.match(f'([{consonants}]+)(.+)', 'apple')
>>> match.groups()
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AttributeError: 'NoneType' object has no attribute 'groups'

Remember that re.match() returns None when it fails to find the pattern. We can add
a question mark (?) at the end of the consonants pattern to make it optional (see fig-
ure 14.9):

>>> match = re.match(f'([{consonants}]+)?(.+)', 'apple')
>>> match.groups()
(None, 'apple')

Figure 14.7 We define two capture
groups to access the leading consonant
sound and whatever follows.

Figure 14.8 The pattern still fails
when the text starts with a vowel.

234 CHAPTER 14 Rhymer: Using regular expressions to create rhyming words
The match.groups() function returns a tuple containing the matches for each
grouping created by the parentheses. You can also use match.group() (singular) with
a group number to get a specific group. Note that these start numbering from 1:

>>> match.group(1)
>>> match.group(2)
'apple'

If you match on “chair,” there are values for both groups:

>>> match = re.match(f'([{consonants}]+)?(.+)', 'chair')
>>> match.group(1)
'ch'
>>> match.group(2)
'air'

So far we’ve only dealt with lowercase text because our program will always emit lower-
case values. Still, let’s explore what happens when we try to match uppercase text:

>>> match = re.match(f'([{consonants}]+)?(.+)', 'CHAIR')
>>> match.groups()
(None, 'CHAIR')

Not surprisingly, that fails. Our pattern only defines lowercase characters. We could
add all the uppercase consonants, but it’s a bit easier to use a third optional argument
to re.match() to specify case-insensitive searching:

>>> match = re.match(f'([{consonants}]+)?(.+)', 'CHAIR', re.IGNORECASE)
>>> match.groups()
('CH', 'AIR')

Figure 14.9 A question mark after
a pattern makes it optional.

There was no match for the first
group on “apple,” so this is a None.

The second group captured
the entire word.

235Writing rhymer.py
Or you can force the text you are searching to lowercase:

>>> match = re.match(f'([{consonants}]+)?(.+)', 'CHAIR'.lower())
>>> match.groups()
('ch', 'air')

What do you get when you search on text that has nothing but consonants?

>>> match = re.match(f'([{consonants}]+)?(.+)', 'rdnzl')
>>> match.groups()
('rdnz', 'l')

Were you expecting the first group to include all the consonants and the second
group to have nothing? It might seem a bit odd that it decided to split off the “l” into
the last group, as shown in figure 14.10, but we have to think extremely literally about
how the regex engine is working. We described an optional group of one or more con-
sonants that must be followed by one or more of anything else. The “l” counts as one or
more of anything else, so the regex matched exactly what we requested.

If we change the (.+) to (.*) to make it zero or more, it works as expected:

>>> match = re.match(f'([{consonants}]+)?(.*)', 'rdnzl')
>>> match.groups()
('rdnzl', '')

Our regex is not quite complete, as it doesn’t handle matching on something like 123.
That is, it matches too well because the period (.) will match the digits, which we
don’t want:

>>> re.match(f'([{consonants}]+)?(.*)?', '123')
<re.Match object; span=(0, 3), match='123'>

We need to indicate that there should be at least one vowel after the consonants, which
may be followed by anything else. We can use another character class to describe any

Figure 14.10 The regex does
exactly what we ask, but perhaps
not what we wanted.

236 CHAPTER 14 Rhymer: Using regular expressions to create rhyming words
vowel. Since we need to capture this, we’ll put it in parentheses, so ([aeiou]). That
may be followed by zero or more of anything, which also needs to be captured, so (.*),
as shown in figure 14.11.

Let’s go back and try this on values we expect to work:

>>> re.match(f'([{consonants}]+)?([aeiou])(.*)', 'cake').groups()
('c', 'a', 'ke')
>>> re.match(f'([{consonants}]+)?([aeiou])(.*)', 'chair').groups()
('ch', 'a', 'ir')
>>> re.match(f'([{consonants}]+)?([aeiou])(.*)', 'apple').groups()
(None, 'a', 'pple')

As you can see, this fails to match when the string contains no vowels or letters:

>>> type(re.match(f'([{consonants}]+)?([aeiou])(.*)', 'rdnzl'))
<class 'NoneType'>
>>> type(re.match(f'([{consonants}]+)?([aeiou])(.*)', '123'))
<class 'NoneType'>

14.1.4 Truthiness

We know that our program will receive some inputs that cannot be rhymed, so what
should the stemmer() function do with these? Some people like to use exceptions in
cases like this. We’ve encountered exceptions like asking for a list index or a dictio-
nary key that does not exist. If exceptions are not caught and handled, they cause our
programs to crash!

 I try to avoid writing code that creates exceptions. I decided that my stemmer()
function would always return a 2-tuple of (start, rest), and that I would always use

Figure 14.11 The regex now requires the presence of a vowel.

237Writing rhymer.py
the empty string to denote a missing value rather than a None. Here is one way I could
write the code for returning those tuples:

if match:
p1 = match.group(1) or ''
p2 = match.group(2) or ''
p3 = match.group(3) or ''
return (p1, p2 + p3)

else:
return (word, '')

Let’s take a moment to think about the or operator, which we’re using to decide
between something on the left or something on the right. The or will return the first
“truthy” value, the one that—sort of, kind of—evaluates to True in a Boolean context:

>>> True or False
True
>>> False or True
True
>>> 1 or 0
1
>>> 0 or 1
1
>>> 0.0 or 1.0
1.0
>>> '0' or ''
'0'
>>> 0 or False
False
>>> [] or ['foo']
['foo']
>>> {} or dict(foo=1)
{'foo': 1}

You should be able to use these ideas to write a stemmer() function that will pass the
test_stemmer() function. Remember, if both of these functions are in your rhymer.py
program, you can run the test_ functions like so:

$ pytest -xv rhymer.py

The match will be None if the regex
failed, which is “falsey.” If it succeeds,

then it will be “truthy.”

There are three capture groups that we can put
into three variables. We want to ensure we don’t
return any None values, so we can use an “or” to
evaluate the left side as “truthy” and take the
empty string on the right if it’s not.

Return a tuple that has the first part of the word
(maybe consonants) and the “rest” of the word
(the vowel plus anything else).

If the match was None, return a tuple of the word
and an empty string to indicate there is no “rest”
of the word to rhyme.

It’s easiest to see with literal
True and False values.

No matter the order, the
True value will be taken.

In a Boolean context, the integer value 0 is
“falsey,” and any other value is “truthy.”

The number values behave exactly
like actual Boolean values.

Floating-point values also behave like
integer values, where 0.0 is “falsey” and
anything else is “truthy.”

With string values, the empty string is “falsey” and
anything else is “truthy.” It may look odd because
it returns '0', but that’s not the numeric value zero
but the string we use to represent the value of
zero. Wow, so philosophical.

If no value is “truthy,” the last value is returned.

The empty list is “falsey,” so any
non-empty list is “truthy.”

The empty dict is “falsey,”
and any non-empty dict is
“truthy.”

238 CHAPTER 14 Rhymer: Using regular expressions to create rhyming words

the

ack
.

t
pa
w

we
t

14.1.5 Creating the output

Let’s review what the program should do:

1 Take a positional string argument.
2 Try to split it into two parts: any leading consonants and the rest of the word.
3 If the split is successful, combine the “rest” of the word (which might actually be

the entire word if there are no leading consonants) with all the other conso-
nant sounds. Be sure to not include the original consonant sound and to sort
the rhyming strings.

4 If you are unable to split the word, print the message Cannot rhyme "<word>".

Now it’s time to write the program. Have fun storming the castle!

14.2 Solution
“No more rhymes now, I mean it!”
“Anybody want a peanut?”

 Let’s take a look at one way to solve this problem. How different was your solution?

#!/usr/bin/env python3
"""Make rhyming words"""

import argparse
import re
import string

--
def get_args():

"""get command-line arguments"""

parser = argparse.ArgumentParser(
description='Make rhyming "words"',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('word', metavar='word', help='A word to rhyme')

return parser.parse_args()

--
def main():

"""Make a jazz noise here"""

args = get_args()
prefixes = list('bcdfghjklmnpqrstvwxyz') + (

'bl br ch cl cr dr fl fr gl gr pl pr sc '
'sh sk sl sm sn sp st sw th tr tw thw wh wr '
'sch scr shr sph spl spr squ str thr').split()

start, rest = stemmer(args.word)
if rest:

The re module is for
regular expressions.

Get the command-line
arguments.

Define all the prefixes that
will be added to create
rhyming words.

Split the word argument into
two possible parts. Because
stemmer() function always
returns a 2-tuple, we can unp
the values into two variables

Check if
here is a
rt of the
ord that
 can use
o create
rhyming
strings.

239Solution

Lo
t

l

The p
defin

con
litera

tha

toge
one s

bre
the pie
separ

com
eac
th
ex le,

e
n

.

The test
the stemm

func
I usually

to put my
tests dir

after
funct
they
print('\n'.join(sorted([p + rest for p in prefixes if p != start])))
else:

print(f'Cannot rhyme "{args.word}"')

--
def stemmer(word):

"""Return leading consonants (if any), and 'stem' of word"""

word = word.lower()
vowels = 'aeiou'
consonants = ''.join(

[c for c in string.ascii_lowercase if c not in vowels])
pattern = (

'([' + consonants + ']+)?' # capture one or more, optional
'([' + vowels + '])' # capture at least one vowel
'(.*)' # capture zero or more of anything

)

match = re.match(pattern, word)
if match:

p1 = match.group(1) or ''
p2 = match.group(2) or ''
p3 = match.group(3) or ''
return (p1, p2 + p3)

else:
return (word, '')

--
def test_stemmer():

"""test the stemmer"""

assert stemmer('') == ('', '')
assert stemmer('cake') == ('c', 'ake')
assert stemmer('chair') == ('ch', 'air')
assert stemmer('APPLE') == ('', 'apple')
assert stemmer('RDNZL') == ('rdnzl', '')
assert stemmer('123') == ('', '')

--
if __name__ == '__main__':

main()

If there is, use a list comprehension to iterate through all the prefixes and
add them to the stem of the word. Use a guard to ensure that any given
prefix is not the same as the beginning of the word. Sort all the values and
print them, joined on newlines.

If there is nothing for the “rest” of
the word that can be used to create
rhymes, let the user know.

wercase
he word. Since we will use the vowels more

than once, assign them to a variable.
The consonants are
the letters that are
not vowels. We wil
only match to
lowercase letters.

attern is
ed using
secutive
l strings
t Python
will join

ther into
tring. By
aking up
ces onto
ate lines,

we can
ment on
h part of
e regular
pression.

Use the re.match() function to start
matching at the beginning of the word.

The re.match() function
will return None if the
pattern failed to match,
so check if the match is
“truthy” (not None).

Put each group into a variab
always ensuring that we us
the empty string rather tha
None.

Return a new tuple that has
the “first” part of the word
(possible leading consonants)
and the “rest” of the word
(the vowel plus anything else)

If the match failed, return
the word and an empty
string for the “rest” of the
word to indicate there is
nothing to rhyme.

s for
er()

tion.
 like
 unit
ectly
 the
ions
test.

240 CHAPTER 14 Rhymer: Using regular expressions to create rhyming words
14.3 Discussion
There are many ways you could have written this, but, as always, I wanted to break the
problem down into units I could write and test. For me, this came down to splitting
the word into a possible leading consonant sound and the rest of the word. If I can
manage that, I can create rhyming strings; if I cannot, then I need to alert the user.

14.3.1 Stemming a word

For the purposes of this program, the “stem” of a word is the part after any initial con-
sonants, which I define using a list comprehension with a guard to take only the let-
ters that are not vowels:

>>> vowels = 'aeiou'
>>> consonants = ''.join([c for c in string.ascii_lowercase if c not in vowels])

Throughout the chapters, I have shown how a list comprehension is a concise way to
generate a list and is preferable to using a for loop to append to an existing list. Here
we have added an if statement to only include some characters if they are not vowels.
This is called a guard statement, and only those elements that evaluate as “truthy” will
be included in the resulting list.

 We’ve looked at map() several times now and talked about how it is a higher-order func-
tion (HOF) because it takes another function as the first argument and will apply it to all
the elements from some iterable (something that can be iterated, like a list). Here I’d
like to introduce another HOF called filter(), which also takes a function and an iter-
able (see figure 14.12). As with the list comprehension with the guard, only those ele-
ments that return a “truthy” value from the function are allowed in the resulting list.

Here is another way to write the idea of the list comprehension using filter():

>>> consonants = ''.join(filter(lambda c: c not in vowels,
string.ascii_lowercase))

Figure 14.12 The map() and
filter() functions both take a
function and an iterable, and both
produce a new list.

241Discussion
Just as with map(), I use the lambda keyword to create an anonymous function. The c is
the variable that will hold the argument, which, in this case, will be each character
from string.ascii_lowercase. The entire body of the function is the evaluation c not
in vowels. Each of the vowels will return False for this:

>>> 'a' not in vowels
False

And each of the consonants will return True:

>>> 'b' not in vowels
True

Therefore, only the consonants will be allowed to pass through filter(). Think
back to our “blue” cars; let’s write a filter() that only accepts cars that start with
the string “blue”:

>>> cars = ['blue Honda', 'red Chevy', 'blue Ford']
>>> list(filter(lambda car: car.startswith('blue '), cars))
['blue Honda', 'blue Ford']

When the car variable has the value “red Chevy,” the lambda returns False, and that
value is rejected:

>>> car = 'red Chevy'
>>> car.startswith('blue ')
False

Note that if none of the elements from the original iterable are accepted, filter()
will produce an empty list ([]). For example, I could filter() for numbers greater
than 10. Note that filter() is another lazy function that I must coerce using the list
function in the REPL:

>>> list(filter(lambda n: n > 10, range(0, 5)))
[]

A list comprehension would also return an empty list:

>>> [n for n in range(0, 5) if n > 10]
[]

Figure 14.13 shows the relationship between creating a new list called consonants
using an imperative for-loop approach, an idiomatic list comprehension with a guard,
and a purely functional approach using filter(). All of these are perfectly accept-
able, though the most Pythonic technique is probably the list comprehension. The
for loop would be very familiar to a C or Java programmer, while the filter()
approach would be immediately recognizable to the Haskeller or even someone from
a Lisp-like language. The filter() might be slower than the list comprehension,
especially if the iterable were large. Choose whichever way makes more sense for your
style and application.

242 CHAPTER 14 Rhymer: Using regular expressions to create rhyming words
14.3.2 Formatting and commenting the regular expression

We talked in the introduction about the individual parts of the regular expression I
ended up using. I’d like to take a moment to mention the way I formatted the regex in
the code. I used an interesting trick of the Python interpreter that will implicitly con-
catenate adjacent string literals. See how these four strings become one:

>>> this_is_just_to_say = ('I have eaten '
... 'the plums '
... 'that were in '
... 'the icebox')
>>> this_is_just_to_say
'I have eaten the plums that were in the icebox'

Note that there are no commas after each string, as that would create a tuple with
four individual strings:

>>> this_is_just_to_say = ('I have eaten ',
... 'the plums ',
... 'that were in ',
... 'the icebox')
>>> this_is_just_to_say
('I have eaten ', 'the plums ', 'that were in ', 'the icebox')

The advantage of writing out the regular expression on separates lines is that you can
add comments to help your reader understand each part:

pattern = (
'([' + consonants + ']+)?' # capture one or more, optional
'([' + vowels + '])' # capture at least one vowel
'(.*)' # capture zero or more of anything

)

Figure 14.13 Three ways to create a list of consonants: using a for loop with an if statement, a list
comprehension with a guard, and a filter()

243Discussion
The individual strings will be concatenated by Python into a single string:

>>> pattern
'([bcdfghjklmnpqrstvwxyz]+)?([aeiou])(.*)'

I could have written the entire regex on one line, but ask yourself which version would
you rather read and maintain, the preceding version or the following:1

pattern = f'([{consonants}]+)?([{vowels}])(.*)'

14.3.3 Using the stemmer() function outside your program

One of the very interesting things about Python code is that your rhymer.py program
is also—kind of, sort of—a sharable module of code. That is, you haven’t explicitly writ-
ten it to be a container of reusable (and tested!) functions, but it is. You can even run
the functions from inside the REPL.

 For this to work, be sure you run python3 inside the same directory as the
rhymer.py code:

>>> from rhymer import stemmer

Now you can run and test your stemmer() function manually:

>>> stemmer('apple')
('', 'apple')
>>> stemmer('banana')
('b', 'anana')
>>> import string
>>> stemmer(string.punctuation)
('!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~', '')

1 “Looking at code you wrote more than two weeks ago is like looking at code you are seeing for the first
time.”—Dan Hurvitz

The deeper meaning of if __name__ == '__main__':
Note that if you were to change the last two lines of rhymer.py from this,

if __name__ == '__main__':
main()

to this,

main()

the main() function would be run when you try to import the module:

>>> from rhymer import stemmer
usage: [-h] str
: error: the following arguments are required: str

244 CHAPTER 14 Rhymer: Using regular expressions to create rhyming words
If you don’t explicitly import a function, you can use the fully qualified function name
by adding the module name to the front:

>>> import rhymer
>>> rhymer.stemmer('cake')
('c', 'ake')
>>> rhymer.stemmer('chair')
('ch', 'air')

There are many advantages to writing many small
functions rather than long, sprawling programs.
One is that small functions are much easier to
write, understand, and test. Another is that you can
put your tidy, tested functions into modules and
share them across different programs you write.

 As you write more and more programs, you
will find yourself solving some of the same prob-
lems repeatedly. It’s far better to create modules
with reusable code than to copy pieces from one program to another. If you ever find
a bug in a shared function, you can fix it once, and all the programs sharing the func-
tion get the fix. The alternative is to find the duplicated code in every program and
change it (hoping that this doesn’t introduce even more problems because the code is
entangled with other code).

14.3.4 Creating rhyming strings

I decided that my stemmer() function would always return a 2-tuple of the (start,
rest) for any given word. As such, I can unpack the two values into two variables:

>>> start, rest = stemmer('cat')
>>> start
'c'
>>> rest
'at'

If there is a value for rest, I can add all my prefixes to the beginning:

>>> prefixes = list('bcdfghjklmnpqrstvwxyz') + (
... 'bl br ch cl cr dr fl fr gl gr pl pr sc '

(continued)
This is because import rhymer causes Python to execute the rhymer.py file to the end.
If the last line of the module calls main(), then main() will run!

The __name__ variable is set to '__main__' when rhymer.py is being run as a program.
That is the only time main() is executed. When the module is being imported by another
module, then __name__ is equal to rhymer.

245Discussion

Check
are an
prese
... 'sh sk sl sm sn sp st sw th tr tw wh wr'

... 'sch scr shr sph spl spr squ str thr').split()

I decided to use another list comprehension with a guard to skip any prefix that is the
same as the start of the word. The result will be a new list that I pass to the sorted()
function to get the correctly ordered strings:

>>> sorted([p + rest for p in prefixes if p != start])
['bat', 'blat', 'brat', 'chat', 'clat', 'crat', 'dat', 'drat', 'fat',
'flat', 'frat', 'gat', 'glat', 'grat', 'hat', 'jat', 'kat', 'lat',
'mat', 'nat', 'pat', 'plat', 'prat', 'qat', 'rat', 'sat', 'scat',
'schat', 'scrat', 'shat', 'shrat', 'skat', 'slat', 'smat', 'snat',
'spat', 'sphat', 'splat', 'sprat', 'squat', 'stat', 'strat', 'swat',
'tat', 'that', 'thrat', 'thwat', 'trat', 'twat', 'vat', 'wat',
'what', 'wrat', 'xat', 'yat', 'zat']

I then print() that list, joined on newlines. If there is no rest of the given word, I
print() a message that the word cannot be rhymed:

if rest:
print('\n'.join(sorted([p + rest for p in prefixes if p != start])))

else:
print(f'Cannot rhyme "{args.word}"')

14.3.5 Writing stemmer() without regular expressions

It is certainly possible to write a solution that does not use regular expressions. We
could start by finding the first position of a vowel in the given string. If one is present,
we could use a list slice to return the portion of the string up to that position and the
portion starting at that position:

def stemmer(word):
"""Return leading consonants (if any), and 'stem' of word"""
word = word.lower()
vowel_pos = list(map(word.index, filter(lambda v: v in word, 'aeiou')))

if vowel_pos:
first_vowel = min(vowel_pos)
return (word[:first_vowel], word[first_vowel:])

else:
return (word, '')

Lowercase the given word
to avoid dealing with
uppercase letters.

Filter the vowels 'aeiou' to find those in word, and then map the
present vowels to word.index to find their positions. This is one
of the rare instances when we need to use the list() function to
coerce Python into evaluating the lazy map() function because

the next if statement needs a concrete value.

 if there
y vowels
nt in the

word. Find the index
of the first
vowel by taking
the minimum
(min) value
from the
positions.

Return a tuple of a slice
of the word up to the

first vowel, and another
starting at the first

vowel.

Otherwise,
no vowels
were found
in the word.

Return a 2-tuple of the word
and the empty string to indicate
there is no rest of the word to
use for rhyming.

246 CHAPTER 14 Rhymer: Using regular expressions to create rhyming words
This function will also pass the test_stemmer()
function. By writing a test just for the idea of this
one function, and exercising it with all the differ-
ent values I would expect, I’m free to refactor my
code. In my mind, the stemmer() function is a
black box. What goes on inside the function is of
no concern to the code that calls it. As long as
the function passes the tests, it is “correct” (for
certain values of “correct”).

 Small functions and their tests will set you free
to improve your programs. First make something
work, and make it beautiful. Then try to make it better, using your tests to ensure it
keeps working as expected.

14.4 Going further
 Add an --output option to write the words to a given file. The default should

be to write to STDOUT.
 Read an input file and create rhyming words for all the words in the file. You

can borrow from the program in chapter 6 to read a file and break it into
words, then iterate each word, and create an output file for each word with the
rhyming words.

 Write a new program that finds all unique consonant sounds in a dictionary of
English words. (I have included inputs/words.txt.zip, which is a compressed
version of the dictionary from my machine. Unzip the file to use inputs/
words.txt.) Print the output in alphabetical order and use those to expand this
program’s consonants.

 Alter your program to only emit words that are found in the system dictionary
(for example, inputs/words.txt).

 Write a program to create Pig Latin, where you move the initial consonant
sound from the beginning of the word to the end and add “-ay,” so that “cat”
becomes “at-cay.” If a word starts with a vowel, add “-yay” to the end so that
“apple” becomes “apple-yay.”

 Write a program to create spoonerisms, where the initial consonant sounds of
adjacent words are switched, so you get “blushing crow” instead of “crushing
blow.”

Summary
 Regular expressions allow you to declare a pattern that you wish to find. The

regex engine will sort out whether the pattern is found or not. This is a declarative
approach to programming, in contrast to the imperative method of manually
seeking out patterns by writing code ourselves.

247Summary
 You can wrap parts of the pattern in parentheses to “capture” them into groups
that you can fetch from the result of re.match() or re.search().

 You can add a guard to a list comprehension to avoid taking some elements
from an iterable.

 The filter() function is another way to write a list comprehension with a
guard. Like map(), it is a lazy, higher-order function that takes a function that
will be applied to every element of an iterable. Only those elements that are
deemed “truthy” by the function are returned.

 Python can evaluate many types—including strings, numbers, lists, and
dictionaries—in a Boolean context to arrive at a sense of “truthiness.” That is,
you are not restricted to just True and False in if expressions. The empty
string '', the int 0, the float 0.0, the empty list[], and the empty dict{} are
all considered “falsey,” so any non-falsey value from those types, like the non-
empty str, list, or dict, or any numeric value not zero-ish, will be considered
“truthy.”

 You can break long string literals into shorter adjacent strings in your code to
have Python join them into one long string. It’s advisable to break long regexes
into shorter strings and add comments on each line to document the function
of each pattern.

 Write small functions and tests, and share them in modules. Every .py file can
be a module from which you can import functions. Sharing small, tested func-
tions is better than writing long programs and copying/pasting code as needed.

The Kentucky Friar:
More regular expressions
I grew up in the American Deep South
where we tend to drop the final “g” of words
ending in “ing,” like “cookin’” instead of
“cooking.” We also tend to say “y’all” for the
second-person plural pronoun, which makes
sense because Standard English is missing a
distinctive word for this. In this exercise,
we’ll write a program called friar.py that will
accept some input as a single positional
argument and transform the text by replac-
ing the final “g” with an apostrophe (’) for
two-syllable words ending in “ing” and
changing “you” to “y’all.” Granted, we have no way to know if we’re changing the
first- or second-person “you,” but it makes for a fun challenge nonetheless.

 Figure 15.1 is a string diagram that will help you see the inputs and outputs.
When run with no arguments or with the -h or --help flags, your program should
present the following usage statement:

$./friar.py -h
usage: friar.py [-h] text

Southern fry text

positional arguments:
text Input text or file

optional arguments:
-h, --help show this help message and exit
248

249
We will only change “-ing” words with two syllables, so “cooking” becomes “cookin’” but
“swing” will stay the same. Our heuristic for identifying two-syllable “-ing” words is to
inspect the part of the word before the “-ing” ending to see if it contains a vowel,
which in this case will include “y.” We can split “cooking” into “cook” and “ing,” and
because there is an “o” in “cook,” we should drop the final “g”:

$./friar.py Cooking
Cookin'

When we remove “ing” from “swing,” though, we’re left with “sw,” which contains no
vowel, so it will remain the same:

$./friar.py swing
swing

When changing “you” to “y’all,” be mindful to keep the case the same on the first let-
ter. For example, “You” should become “Y’all”:

$./friar.py you
y'all
$./friar.py You
Y'all

As in several previous exercises, the input may name a file, in which case you should
read the file for the input text. To pass the tests, you will need to preserve the line
structure of the input, so I recommend you read the file line by line. Given this input,

Figure 15.1 Our program will modify the input text to give it a Southern lilt.

250 CHAPTER 15 The Kentucky Friar: More regular expressions
$ head -2 inputs/banner.txt
O! Say, can you see, by the dawn's early light,
What so proudly we hailed at the twilight's last gleaming -

the output should have the same line breaks:

$./friar.py inputs/banner.txt | head -2
O! Say, can y'all see, by the dawn's early light,
What so proudly we hailed at the twilight's last gleamin' -

To me, it’s quite amusing to transform texts this way, but maybe I’m just weird:

$./friar.py inputs/raven.txt
Presently my soul grew stronger; hesitatin' then no longer,
“Sir,” said I, “or Madam, truly your forgiveness I implore;
But the fact is I was nappin', and so gently y'all came rappin',
And so faintly y'all came tappin', tappin' at my chamber door,
That I scarce was sure I heard y'all” - here I opened wide the door: -
Darkness there and nothin' more.

In this exercise you will

 Learn more about using
regular expressions

 Use both re.match() and
re.search() to find pat-
terns anchored to the
beginning of a string or
anywhere in the string, respectively

 Learn how the $ symbol in a regex anchors a pattern to the end of a string
 Learn how to use re.split() to split a string
 Explore how to write a manual solution for finding two-syllable “-ing” words or

the word “you”

15.1 Writing friar.py
As usual, I recommend you start with new.py friar.py or copy the template/tem-
plate.py file to 15_friar/friar.py. I suggest you start with a simple version of the pro-
gram that echoes back the input from the command line:

$./friar.py cooking
cooking

Or from a file:

$./friar.py inputs/blake.txt
Father, father, where are you going?
Oh do not walk so fast!

Speak, father, speak to your little boy,
Or else I shall be lost.

251Writing friar.py
We need to process the input line by line, and then word by word. You can use the
str.splitlines() method to get each line of the input, and then use the str.split()
method to break the line on spaces into word-like units. This code,

for line in args.text.splitlines():
print(line.split())

should create this output:

$./friar.py tests/blake.txt
['Father,', 'father,', 'where', 'are', 'you', 'going?']
['Oh', 'do', 'not', 'walk', 'so', 'fast!']
['Speak,', 'father,', 'speak', 'to', 'your', 'little', 'boy,']
['Or', 'else', 'I', 'shall', 'be', 'lost.']

If you look closely, it’s going to be difficult to handle some of these word-like units
because the adjacent punctuation is still attached to the words, as in 'Father,' and
'going?' Splitting the text on spaces is not sufficient, so I’ll show you how to split the
text using a regular expression.

15.1.1 Splitting text using regular expressions

As in chapter 14, we need to import re to use regexes:

>>> import re

For demonstration purposes, I’m going to set text to the first line:

>>> text = 'Father, father, where are you going?'

By default, str.split() breaks text on spaces. Note that whatever text is used for
splitting will be missing from the result, so here there are no spaces:

>>> text.split()
['Father,', 'father,', 'where', 'are', 'you', 'going?']

You can pass an optional value to str.split() to indicate the string you want to use for
splitting. If we choose the comma, we’ll end up with three strings instead of six. Note
that there are no commas in the resulting list, as that is the argument to str.split():

>>> text.split(',')
['Father', ' father', ' where are you going?']

The re module has a function called re.split() that works similarly. I recommend
you read help(re.split), as this is a very powerful and flexible function. Like
re.match(), which we used in chapter 14, this function wants at least a pattern and a
string. We can use re.split() with a comma to get the same output as str.split(),
and, as before, the commas are missing from the result:

>>> re.split(',', text)
['Father', ' father', ' where are you going?']

252 CHAPTER 15 The Kentucky Friar: More regular expressions
15.1.2 Shorthand classes

We are after the things that look like “words,” in that they are composed of the charac-
ters that normally occur in words. The characters that don’t normally occur in words
(things like punctuation) are what we want to use for splitting. You’ve seen before that
we can create a character class by putting literal values inside square brackets, like
'[aeiou]' for the vowels. What if we create a character class where we enumerate all
the non-letter characters? We could do something like this:

>>> import string
>>> ''.join([c for c in string.printable if c not in string.ascii_letters])
'0123456789!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~ \t\n\r\x0b\x0c'

That won’t be necessary, because almost every implementation of regular expression
engines define shorthand character classes. Table 15.1 lists some of the most common
shorthand classes and how they can be written longhand.

NOTE There is a basic flavor of regular expression syntax that is recognized by
everything from Unix command-line tools like awk to regex support inside of
languages like Perl, Python, and Java. Some tools add extensions to their
regexes that may not be understood by other tools. For example, there was a
time when Perl’s regex engine added many new ideas that eventually became
a dialect known as “PCRE” (Perl-Compatible Regular Expressions). Not every
tool that understands regexes will understand every flavor of regex, but in all
my years of writing and using regexes, I’ve rarely found this to be a problem.

The shorthand \d means any digit and is equivalent to '[0123456789]'. I can use the
re.search() method to look anywhere in a string for any digit. In the following exam-
ple, it will find the character '1' in the string 'abc123!' because this is the first digit
in the string (see figure 15.2):

>>> re.search('\d', 'abc123!')
<re.Match object; span=(3, 4), match='1'>

Table 15.1 Regex shorthand classes

Character class Shorthand Other ways to write the class

Digits \d [0123456789], [0-9]

Whitespace \s [\t\n\r\x0b\x0c], same as string.whitespace

Word characters \w [a-zA-Z0-9_-]

Figure 15.2 The digit shorthand will
match any single digit.

253Writing friar.py
That is the same as using the longhand version (see figure 15.3):

>>> re.search('[0123456789]', 'abc123!')
<re.Match object; span=(3, 4), match='1'>

It’s also the same as the version that uses the range of characters '[0-9]' (see fig-
ure 15.4):

>>> re.search('[0-9]', 'abc123!')
<re.Match object; span=(3, 4), match='1'>

To have it find one or more digits in a row, add the + (see figure 15.5):

>>> re.search('\d+', 'abc123!')
<re.Match object; span=(3, 6), match='123'>

The \w shorthand means “any word-like character.” It includes all the Arabic numbers,
the letters of the English alphabet, the dash ('-'), and the underscore ('_'). The
first match in the string is 'a' (see figure 15.6):

>>> re.search('\w', 'abc123!')
<re.Match object; span=(0, 1), match='a'>

Figure 15.3 We can also create a character
class enumerating all the digits.

Figure 15.4 Character classes can use a range
of contiguous values, like 0–9.

Figure 15.5 The plus signs means to match one
or more of the preceding expression.

Figure 15.6 The shorthand for word characters is \w.

254 CHAPTER 15 The Kentucky Friar: More regular expressions
If you add the + as in figure 15.7, it matches one or more word characters in a row,
which includes abc123 but not the exclamation mark (!):

>>> re.search('\w+', 'abc123!')
<re.Match object; span=(0, 6), match='abc123'>

15.1.3 Negated shorthand classes

You can complement or “negate” a character class by putting the caret (^) immediately
inside the character class as in figure 15.8. One or more of any character not a digit is
'[^0-9]+'. With it, 'abc' is found:

>>> re.search('[^0-9]+', 'abc123!')
<re.Match object; span=(0, 3), match='abc'>

The shorthand class of non-digits [^0-9]+ can also be written as \D+ as in figure 15.9:

>>> re.search('\D+', 'abc123!')
<re.Match object; span=(0, 3), match='abc'>

The shorthand for non-word characters is \W, which will match the exclamation point
(see figure 15.10):

>>> re.search('\W', 'abc123!')
<re.Match object; span=(6, 7), match='!'>

Figure 15.7 Add the plus sign to match
one or more word characters.

Figure 15.8 A caret just inside a character class will negate or
complement the characters. This regex matches non-digits.

Figure 15.9 The shorthand \D+ matches
one or more non-digits.

Figure 15.10 The \W will match anything that
is not a letter, digit, underscore, or dash.

255Writing friar.py
Table 15.2 summarizes these shorthand classes and how they can be expanded.

15.1.4 Using re.split() with a captured regex

We can use \W as the argument to re.split():

>>> re.split('\W', 'abc123!')
['abc123', '']

NOTE Pylint will complain if we use '\W' in a regular expression in our pro-
gram, returning the message “Anomalous backslash in string: '\W'. String
constant might be missing an r prefix.” We can use the r prefix to create a
“raw” string, one where Python does not try to interpret the \W as it will, for
instance, interpret \n to mean a newline or \r to mean a carriage return.
From this point on, I will use the r-string syntax to create a raw string.

There is a problem, though, because the result of re.split()omits those strings match-
ing the pattern. Here we’ve lost the exclamation point! If we read help(re.split)
closely, we can find the solution:

If capturing parentheses are used in [the] pattern, then the text of all groups in the
pattern are also returned as part of the resulting list.

We used capturing parentheses in chapter 14 to tell the regex engine to “remember”
certain patterns, like the consonant(s), vowel, and the rest of a word. When the regex
matched, we were able to use match.groups() to retrieve strings that were found by
the patterns. Here we will use the parentheses around the pattern to re.split() so
that the strings matching the pattern will also be returned:

>>> re.split(r'(\W)', 'abc123!')
['abc123', '!', '']

If we try that on our text, the result is a list of strings that match and do not match
the regular expression:

>>> re.split(r'(\W)', text)
['Father', ',', '', ' ', 'father', ',', '', ' ', 'where', ' ', 'are', ' ',

'you', ' ', 'going', '?', '']

Table 15.2 Negated regex shorthand classes

Character class Shorthand Other ways to write the class

Not a digit \D [^0123456789], [^0-9]

Not whitespace \S [^ \t\n\r\x0b\x0c]

Not word characters \W [^a-zA-Z0-9_-]

256 CHAPTER 15 The Kentucky Friar: More regular expressions
I’d like to group all the non-word characters together by adding + to the regex (see
figure 15.11):

>>> re.split(r'(\W+)', text)
['Father', ', ', 'father', ', ', 'where', ' ', 'are', ' ', 'you', ' ', 'going

', '?', '']

That is so cool! Now we have a way to process each actual word and the bits in between
them.

15.1.5 Writing the fry() function

Our next step is to write a function that will decide whether and how to modify just one
word. That is, rather than thinking about how to handle all the text at once, we’ll think
about how to handle one word at a time. We can call this function fry().

 To help us think about how this function should work, let’s start off by writing the
test_fry() function and a stub for the actual fry() function that contains just the
single command pass, which tells Python to do nothing. To get started on this, you
can paste this into your program:

def fry(word):
pass

def test_fry():
assert fry('you') == "y'all"
assert fry('You') == "Y'all"
assert fry('fishing') == "fishin'"
assert fry('Aching') == "Achin'"
assert fry('swing') == "swing"

Figure 15.11 The re.split() function can use a captured regex to return
both the parts that match the regex and those that do not.

pass is a way to do nothing. You might call it a “no-operation”
or “NO-OP,” which kind of looks like “NOPE,” which is another
way to remember that it does nothing. We’re just defining this
fry() function as a placeholder so we can write the test.

The test_fry() function will pass in
words we expect to be changed or not.
We can’t check every word, so we’ll
rely on spot-checking the major cases.

The word “you” should
become “y’all.”

Ensure the word’s
capitalization is
preserved.

This is a two-syllable “-ing” word
that should be changed by dropping
the final “g” for an apostrophe.

This is a two-syllable “-ing” word
that starts with a vowel. It should
likewise be changed.

This is a one-
syllable “-ing”

word that should
not be changed.

257Writing friar.py
Now run pytest friar.py to see that, as expected, the test will fail:

=================================== FAILURES ===================================
___________________________________ test_fry ___________________________________

def test_fry():
> assert fry('you') == "y'all"
E assert None == "y'all"
E + where None = fry('you')

friar.py:47: AssertionError
=========================== 1 failed in 0.08 seconds ===========================

Let’s change our fry() function to handle that string:

def fry(word):
if word == 'you':

return "y'all"

Now let’s run our tests again:

=================================== FAILURES ===================================
___________________________________ test_fry ___________________________________

def test_fry():
assert fry('you') == "y'all"

> assert fry('You') == "Y'all"
E assert None == "Y'all"
E + where None = fry('You')

friar.py:49: AssertionError
=========================== 1 failed in 0.16 seconds ===========================

Let’s handle those:

def fry(word):
if word == 'you':

return "y'all"
elif word == 'You':

return "Y'all"

If you run the tests now, you’ll see that the first two tests pass; however, I’m definitely
not happy with that solution. There is already a good bit of duplicated code. Can we
find a more elegant way to match both “you” and “You” and still return the correctly
capitalized answer? Yes, we can!

def fry(word):
if word.lower() == 'you':

return word[0] + "'all"

The first test is failing.

The result of fry('you') was None,
which does not equal “y’all.”

Now the first test passes.

The second test fails because
the “You” is capitalized.

The function returned None but
should have returned “Y’all.”

258 CHAPTER 15 The Kentucky Friar: More regular expressions
Better still, we can write a regular expression! There is one difference between “you”
and “You”—the “y” or “Y”—that we can represent using the character class '[yY]' (see
figure 15.12). This will match the lowercase version:

>>> re.match('[yY]ou', 'you')
<re.Match object; span=(0, 3), match='you'>

It will also match the capitalized version (see figure 15.13):

>>> re.match('[yY]ou', 'You')
<re.Match object; span=(0, 3), match='You'>

Now we want to reuse the initial character (either “y” or “Y”) in the return value. We
could capture it by placing it into parentheses. Try to rewrite your fry() function using
this idea, and getting it to pass the first two tests again, before moving on:

>>> match = re.match('([yY])ou', 'You')
>>> match.group(1) + "'all"
"Y'all"

The next step is to handle a word like “fishing”:

=================================== FAILURES ===================================
___________________________________ test_fry ___________________________________

def test_fry():
assert fry('you') == "y'all"
assert fry('You') == "Y'all"

> assert fry('fishing') == "fishin'"
E assert None == "fishin'"
E + where None = fry('fishing')

Figure 15.12 We can use a character class
to match lower- and uppercase Y.

Figure 15.13 This regex will match
“you” and “You.”

The third test fails.

The return from fry('fishing')
was None, but the value
“fishin’” was expected.

259Writing friar.py
friar.py:52: AssertionError
=========================== 1 failed in 0.10 seconds ===========================

How can we identify a word that ends with “ing”? With the str.endswith() function:

>>> 'fishing'.endswith('ing')
True

A regular expression to find “ing” at the end of a string would use $ (pronounced
“dollar”) at the end of the expression to anchor the expression to the end of the string
(see figure 15.14):

>>> re.search('ing$', 'fishing')
<re.Match object; span=(4, 7), match='ing'>

As shown in figure 15.15, we can use a string slice to get all the characters up to the
last at index -1 and then append an apostrophe.

Add this to your fry() function and see how many tests you pass:

if word.endswith('ing'):
return word[:-1] + "'"

Or you could use a group within the regex to capture the first part of the word (see
figure 15.16):

>>> match = re.search('(.+)ing$', 'fishing')
>>> match.group(1) + "in'"
"fishin'"

Figure 15.14 The dollar sign indicates
the end of the word.

Figure 15.15 Use a string slice to get all the
letters up to the last one and add an apostrophe.

260 CHAPTER 15 The Kentucky Friar: More regular expressions
You should be able to get results like this:

=================================== FAILURES ===================================
___________________________________ test_fry ___________________________________

def test_fry():
assert fry('you') == "y'all"
assert fry('You') == "Y'all"
assert fry('fishing') == "fishin'"
assert fry('Aching') == "Achin'"

> assert fry('swing') == "swing"
E assert "swin'" == 'swing'
E - swin'
E ? ^
E + swing
E ? ^

friar.py:59: AssertionError
=========================== 1 failed in 0.10 seconds ===========================

We need a way to identify words that have two syllables. I mentioned before that we’ll
use a heuristic that looks for a vowel, '[aeiouy]', in the part of the word before the
“ing” ending, as shown in figure 15.17. Another regex could do the trick:

>>> match = re.search('(.+)ing$', 'fishing')
>>> first = match.group(1)
>>> re.search('[aeiouy]', first)
<re.Match object; span=(1, 2), match='i'>

Figure 15.16 Using a capture group so
we can access the matching string

This test failed.

The result of fry('swing')
was “swin’,” but it should
have been “swing.”

Sometimes the test results will be able to highlight the
exact point of failure. Here you are being shown that
there is an apostrophe (’) where there should be a “g.”

The (.+) will match and capture one or more of anything followed by
the characters “ing.” The return from re.search() will either be a

re.Match object if the pattern was found or None to indicate it was not.

Here we know there will be a match value, so we can use match.group(1) to get
the first capture group, which will be anything immediately before “ing.” In

actual code, we should check that match is not None or we’d trigger an
exception by trying to execute the group method on a None.

We can use re.search()
on the first part of the
string to look for a
vowel.

As the return from re.search() is a re.Match object, we
know there is a vowel in the first part, so the word

looks to have two syllables.

261Writing friar.py
If the word matches this test, return the word with the final “g” replaced with an apos-
trophe; otherwise, return the word unchanged. I suggest you not proceed until you
are passing all of test_fry().

15.1.6 Using the fry() function

Now your program should be able to

1 Read input from the command line or a file
2 Read the input line by line
3 Split each line into words and non-words
4 fry() any individual word

The next step is to apply the fry() function to all the word-like units. I hope you can
see a familiar pattern emerging—applying a function to all elements of a list! You can
use a for loop:

for line in args.text.splitlines():
words = []
for word in re.split(r'(\W+)', line.rstrip()):

words.append(fry(word))
print(''.join(words))

Figure 15.17 A possible way to find two-syllable
words ending in “ing” is to look for a vowel in the
first part of the word.

Preserve the structure of the newlines in
args.text by using str.splitlines(). Create a words variable to

hold the transformed words.

Split each line into
words and non-words.

Add the fried word
to the words list.

Print a new string of
the joined words.

262 CHAPTER 15 The Kentucky Friar: More regular expressions

str.spl
me

prese
line br

the inp

Define a
function

will ha
one w
That (or something like it) should work well enough to pass the tests. Once you
have a version that works, see if you can rewrite the for loop as a list comprehension
and a map().

 Alrighty! Time to bear down and write this.

15.2 Solution
This reminds me of when Robin Hood’s mate Friar Tuck was captured by the Sheriff
of Nottingham. The Friar was sentenced to be boiled in oil, to which he replied “You
can’t boil me, I’m a friar!”

#!/usr/bin/env python3
"""Kentucky Friar"""

import argparse
import os
import re

--
def get_args():

"""get command-line arguments"""
parser = argparse.ArgumentParser(

description='Southern fry text',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('text', metavar='text', help='Input text or file')

args = parser.parse_args()

if os.path.isfile(args.text):
args.text = open(args.text).read()

return args

--
def main():

"""Make a jazz noise here"""

args = get_args()

for line in args.text.splitlines():
print(''.join(map(fry, re.split(r'(\W+)', line.rstrip()))))

--
def fry(word):

"""Drop the `g` from `-ing` words, change `you` to `y'all`"""

If the argument is a file,
replace the text value with
the contents from the file.

Get the command-line arguments.
The text value will either be the
command-line text or the
contents of a file by this point.

Use the
itlines()
thod to
rve the
eaks in
ut text.

Map the pieces of text split by the regular expression through the
fry() function, which will return the words modified as needed. Use

str.join() to turn that resulting list back into a string to print.

 fry()
 that
ndle
ord.

263Discussion
ing_word = re.search('(.+)ing$', word)
you = re.match('([Yy])ou$', word)

if ing_word:
prefix = ing_word.group(1)
if re.search('[aeiouy]', prefix, re.IGNORECASE):

return prefix + "in'"
elif you:

return you.group(1) + "'all"

return word

--
def test_fry():

"""Test fry"""

assert fry('you') == "y'all"
assert fry('You') == "Y'all"
assert fry('fishing') == "fishin'"
assert fry('Aching') == "Achin'"
assert fry('swing') == "swing"

--
if __name__ == '__main__':

main()

15.3 Discussion
Again, there is nothing new in get_args(), so let’s just move to breaking the text into
lines. In several previous exercises, I used a technique of reading an input file into the
args.text value. If the input is coming from a file, there will be newlines separating
each line of text. I suggested using a for loop to handle each line of input text
returned by str.splitlines() to preserve the newlines in the output. I also sug-
gested you start with a second for loop to handle each word-like unit returned by the
re.split():

for line in args.text.splitlines():
words = []
for word in re.split(r'(\W+)', line.rstrip()):

words.append(fry(word))
print(''.join(words))

Search for “ing” anchored to the end of
word. Use a capture group to remember
the part of the string before the “ing.”

Search for “you” or “You” starting
from the beginning of word. Capture
the [yY] alternation in a group.

Check if the search
for “ing” returned
a match.

Get the prefix (the
bit before the
“ing”), which is in
group number 1.

Perform a case-insensitive search for a
vowel (plus “y”) in the prefix. If nothing

is found, None will be returned, which
evaluates to False in this Boolean

context. If a match is returned, the not-
None value will evaluate to True.

Append “in’” to the prefix and
return it to the caller.

Check if the match for
“you” succeeded.

Return the
captured first
character plus
“’all.”

Otherwise, return
the word unaltered.

The tests for the
fry() function

264 CHAPTER 15 The Kentucky Friar: More regular expressions

Ch
w
wi

ue
e
the
e
That’s five lines of code that could be written in two if we replace the second for with
a list comprehension:

for line in args.text.splitlines():
print(''.join([fry(w) for w in re.split(r'(\W+)', line.rstrip())]))

Or it could be slightly shorter using a map():

for line in args.text.splitlines():
print(''.join(map(fry, re.split(r'(\W+)', line.rstrip()))))

One other way to slightly improve readability is to use the re.compile() function to
compile the regular expression. When you use the re.split() function inside the
for loop, the regex must be compiled anew each iteration. By compiling the regex
first, the compilation happens just once, so your code is (maybe just slightly) faster.
More importantly, though, I think this is slightly easier to read, and the benefits are
greater when the regex is more complicated:

splitter = re.compile(r'(\W+)')
for line in args.text.splitlines():

print(''.join(map(fry, splitter.split(line.rstrip()))))

15.3.1 Writing the fry() function manually

You were not required, of course, to write a fry() function. However you wrote your
solution, I hope you wrote tests for it!

 The following version is fairly close to some of the suggestions I made earlier in the
chapter. This version uses no regular expressions:

def fry(word):
"""Drop the `g` from `-ing` words, change `you` to `y'all`"""

if word.lower() == 'you':
return word[0] + "'all"

if word.endswith('ing'):
if any(map(lambda c: c.lower() in 'aeiouy', word[:-3])):

return word[:-1] + "'"
else:

return word

return word

Force the word to lowercase
and see if it matches “you.”

If so, return the first
character (to preserve
the case) plus “’all.”

eck if the
ord ends
th “ing.”

Check if it’s Tr
that any of th
vowels are in
word up to th
“ing” suffix.If so, return the word

up to the last index
plus the apostrophe.

Otherwise, return the
word unchanged.

If the word is neither an “ing” or
“you” word, return it unchanged.

265Discussion
Let’s take a moment to appreciate the any() function as it’s one of my favorites. The
preceding code uses a map() to check if each of the vowels exists in the portion of the
word before the “ing” ending:

>>> word = "cooking"
>>> list(map(lambda c: (c, c.lower() in 'aeiouy'), word[:-3]))
[('c', False), ('o', True), ('o', True), ('k', False)]

The first character of “cooking” is “c,” and it does not appear in the string of vowels.
The next two characters (“o”) do appear in the vowels, but “k” does not.

 Let’s reduce this to just the True/False values:

>>> list(map(lambda c: c.lower() in 'aeiouy', word[:-3]))
[False, True, True, False]

Now we can use any to tell us if any of the values are True:

>>> any([False, True, True, False])
True

It’s the same as joining the values with or:

>>> False or True or True or False
True

The all() function returns True only if all the values are true:

>>> all([False, True, True, False])
False

That’s the same as joining those values on and:

>>> False and True and True and False
False

If it’s True that one of the vowels appears in the first part of the word, we have deter-
mined that this is (probably) a two-syllable word, and we can return the word with the
final “g” replaced with an apostrophe. Otherwise, we return the unaltered word:

if any(map(lambda c: c.lower() in 'aeiouy', word[:-3])):
return word[:-1] + "'"

else:
return word

This approach works fine, but it’s quite manual as we have to write quite a bit of code
to find our patterns.

266 CHAPTER 15 The Kentucky Friar: More regular expressions

ter
as

n
15.3.2 Writing the fry() function with regular expressions

Let’s revisit the version of the fry() function that uses regular expressions:

def fry(word):
"""Drop the `g` from `-ing` words, change `you` to `y'all`"""

ing_word = re.search('(.+)ing$', word)
you = re.match('([Yy])ou$', word)

if ing_word:
prefix = ing_word.group(1)
if re.search('[aeiouy]', prefix, re.IGNORECASE):

return prefix + "in'"
elif you:

return you.group(1) + "'all"

return word

I’ve been using regexes for maybe 20
years, so this version seems much simpler
to me than the manual version. You may
feel differently. If you are completely new
to regexes, trust me that they are so very
worth the effort to learn. I absolutely
would not be able to do much of my
work without them.

15.4 Going further
 You could also replace “your” with “y’all’s.” For instance, “Where are your

britches?” could become “Where are y’all’s britches?”
 Change “getting ready” or “preparing” to “fixin’,” as in “I’m getting ready to

eat” to “I’m fixin’ to eat.” Also change the string “think” to “reckon,” as in “I

The pattern '(.+)ing$' matches one or more of anything followed by
“ing.” The dollar sign anchors the pattern to the end of the string, so

this is looking for a string that ends in “ing,” but the string cannot
just be “ing” as it has to have at least one of something before it. The

parentheses capture the part before the “ing.”

The re.match() starts
matching at the
beginning of the given
word, and it is looking
for either an upper- or
lowercase “y” followed
by “ou” and then the
end of the string ($).

If ing_word is None, that means it failed to
match. If it is not None (so it is “truthy”), that
means it is a re.Match object we can use.

The prefix is the bit before the “ing” that
we wrapped in parentheses. Because it is
the first set of parentheses, we can fetch it
with ing_word.group(1).

We use re.search() to look anywhere in the prefix for any of the vowels
(plus “y”) in a case-insensitive fashion. Remember that re.match()
would start at the beginning of word, which is not what we want.

Return the prefix plus the string
“in’” so as to drop the final “g.”

If re.match() for the “you” pattern
fails, then “you” will be None. If it is
not None, then it matched, and “you”
is a re.Match object.

We used parentheses to capture the first charac
so as to maintain the case. That is, if the word w
“You,” we want to return “Y’all.” Here we retur
that first group plus the string “’all.”

If the word matched neither a two-syllable “ing” pattern
or the word “you,” we return the word unchanged.

267Summary
think this is funny” to “I reckon this is funny.” You should also change “think-
ing” to “reckoning,” which then should become “reckonin’.” That means you
either need to make two passes for the changes or find both “think” and “think-
ing” in the one pass.

 Make a version of the program for another regional dialect. I lived in Boston
for a while and really enjoyed saying “wicked” all the time instead of “very,” as in
“IT’S WICKED COLD OUT!”

Summary
 Regular expressions can be used to find patterns in text. The patterns can be

quite complicated, like a grouping of non-word characters in between group-
ings of word characters.

 The re module has seriously handy functions like re.match() to find a pattern
at the beginning of some text, re.search() to find a pattern anywhere inside
some text, re.split() to break text on a pattern, and re.compile() to compile
a regex so you can use it repeatedly.

 If you use capturing parentheses on the pattern for re.split(), the captured
split pattern will be included in the returned values. This allows you to recon-
struct the original string with the strings that are described by the pattern.

The scrambler:
Randomly reordering
the middles of words
Yuor brian is an azinamg cmiobiaontn of
hdarware and sftraowe. Yoru’e rdineag tihs
rhgit now eevn thgouh the wrdos are a
mses, but yuor biran can mkae snese of it
bceause the frsit and lsat ltrtees of ecah
wrod hvae saeytd the smae. Yuor biran
de’onst atlaulcy raed ecah lteetr of ecah
wrod but rades wlohe wdors. The scamr-
beld wrdos difteienly solw you dwon, but
y’roue not rlleay eevn tyinrg to ulsrmbance
the lrttees, are you? It jsut hnaepps!

 In this chapter, you will write a program called scrambler.py that will scramble each
word of the text given as an argument. The scrambling should only work on words
with four characters or more, and it should only scramble the letters in the middle of
the word, leaving the first and last characters unchanged. The program should take an
-s or --seed option (an int with default None) to pass to random.seed().

 It should handle text on the command line:

$./scrambler.py --seed 1 "foobar bazquux"
faobor buuzaqx

Or text from a file:

$ cat ../inputs/spiders.txt
Don't worry, spiders,
I keep house
casually.
$./scrambler.py ../inputs/spiders.txt
268

269Writing scrambler.py
D'not wrory, sdireps,
I keep hsuoe
csalluay.

Figure 16.1 shows a string diagram to help you think about it.

In this chapter you will

 Use a regular expression to split text into words
 Use the random.shuffle() function to shuffle a list
 Create scrambled versions of words by shuffling the middle letters while leaving

the first and last letters unchanged

16.1 Writing scrambler.py
I recommend you start by using new.py scrambler.py to create the program in the
16_scrambler directory. Alternatively, you can copy template/template.py to 16_scram-
bler/scrambler.py. You can refer to previous exercises, like the one in chapter 5, to
remember how to handle a positional argument that might be text or might be a text
file to read.

 When run with no arguments or the flags -h or --help, scrambler.py should pres-
ent a usage statement:

$./scrambler.py -h
usage: scrambler.py [-h] [-s seed] text

Scramble the letters of words

positional arguments:
text Input text or file

Figure 16.1 Our program will take input text from the command line or a file and
will scramble the letters in words with four or more characters.

270 CHAPTER 16 The scrambler: Randomly reordering the middles of words
optional arguments:
-h, --help show this help message and exit
-s seed, --seed seed Random seed (default: None)

Once your program’s usage statement matches this, change your main() definition as
follows:

def main():
args = get_args()
print(args.text)

Then verify that your program can echo text from the command line:

$./scrambler.py hello
hello

Or from an input file:

$./scrambler.py ../inputs/spiders.txt
Don't worry, spiders,
I keep house
casually.

16.1.1 Breaking the text into lines and words

As in chapter 15, we want to preserve the line breaks of the input text by using str
.splitlines():

for line in args.text.splitlines():
print(line)

If we are reading the spiders.txt haiku, this is the first line:

>>> line = "Don't worry, spiders,"

We need to break the line into words. In chapter 6 we used str.split(), but that
approach leaves punctuation stuck to our words—both worry and spiders have com-
mas:

>>> line.split()
["Don't", 'worry,', 'spiders,']

In chapter 15 we used the re.split() function with the regular expression (\W+) to
split text on one or more non-word characters. Let’s try that:

>>> re.split('(\W+)', line)
['Don', "'", 't', ' ', 'worry', ', ', 'spiders', ',', '']

That won’t work because it splits Don’t into three parts: Don, ', and t.
 Perhaps we could use \b to break on word boundaries. Note that we’d have to put an

r'' in front of the first quote, r'\b', to denote that it is a “raw” string.

271Writing scrambler.py
This still won’t work because \b thinks the apostrophe is a word boundary and so splits
the contracted word:

>>> re.split(r'\b', "Don't worry, spiders,")
['', 'Don', "'", 't', ' ', 'worry', ', ', 'spiders', ',']

While searching the internet for a regex to split this text properly, I found the follow-
ing pattern on a Java discussion board. It perfectly separates words from non-words:1

>>> re.split("([a-zA-Z](?:[a-zA-Z']*[a-zA-Z])?)", "Don't worry, spiders,")
['', "Don't", ' ', 'worry', ', ', 'spiders', ',']

The beautiful thing about regular expressions is that they are their own language—
one that is used inside many other languages from Perl to Haskell. Let’s dig into this
pattern, shown in figure 16.2.

16.1.2 Capturing, non-capturing, and optional groups

In figure 16.2 you can see that groups can contain other groups. For instance, here is
a regex that can capture the entire string “foobarbaz” as well as the substring “bar”:

>>> match = re.match('(foo(bar)baz)', 'foobarbaz')

Capture groups are numbered by the position of their left parenthesis. Since the first
left parenthesis starts the capture starting at “f” and going to “z,” that is group 1:

>>> match.group(1)
'foobarbaz'

1 I would like to stress that a significant part of my job is spent looking for answers both in the books I own but
also on the internet!

Figure 16.2 A regular expression that will find words that include an apostrophe

272 CHAPTER 16 The scrambler: Randomly reordering the middles of words
The second left parenthesis starts just before the “b” and goes to the “r”:

>>> match.group(2)
'bar'

We can also make a group non-capturing by using the starting sequence (?:. If we use
this sequence on the second group, we no longer capture the substring “bar”:

>>> match = re.match('(foo(?:bar)baz)', 'foobarbaz')
>>> match.groups()
('foobarbaz',)

Non-capturing groups are commonly used when you are grouping primarily for the
purpose of making it optional by placing a ? after the closing parenthesis. For
instance, we can make the “bar” optional and then match both “foobarbaz,”

>>> re.match('(foo(?:bar)?baz)', 'foobarbaz')
<re.Match object; span=(0, 9), match='foobarbaz'>

as well as “foobaz”:

>>> re.match('(foo(?:bar)?baz)', 'foobaz')
<re.Match object; span=(0, 6), match='foobaz'>

16.1.3 Compiling a regex

I mentioned the re.compile() function in chapter 15 as a way to incur the cost of com-
piling a regular expression just once. Whenever you use something like re.search() or
re.split(), the regex engine must parse the str value you provide for the regex into
something it understands and can use. This parsing step must happen each time you call
the function. When you compile the regex and assign it to a variable, the parsing step is
done before you call the function, which improves performance.

 I especially like to use re.compile() to assign a regex to a meaningful variable
name and/or reuse the regex in multiple places in my code. Because this regex is
quite long and complicated, I think it makes the code more readable to assign it to a
variable called splitter, which will help me to remember how it will be used:

>>> splitter = re.compile("([a-zA-Z](?:[a-zA-Z']*[a-zA-Z])?)")
>>> splitter.split("Don't worry, spiders,")
['', "Don't", ' ', 'worry', ', ', 'spiders', ',']

273Writing scrambler.py

random
to

v

16.1.4 Scrambling a word

Now that we have a way to process the lines and then
words of the text, let’s think about how we’ll scramble
the words by starting with just one word. You and I will
need to use the same algorithm for scrambling the
words in order to pass the tests, so here are the rules:

 If the word is three characters or shorter,
return the word unchanged.

 Use a string slice to copy the characters, not
including the first and last.

 Use the random.shuffle() method to mix up
the letters in the middle.

 Return the new “word” by combining the first, middle, and last parts.

I recommend you create a function called scramble() that will do all this, and also
create a test for it. Feel free to add this to your program:

def scramble(word):
"""Scramble a word"""
pass

def test_scramble():
"""Test scramble"""
state = random.getstate()
random.seed(1)
assert scramble("a") == "a"
assert scramble("ab") == "ab"
assert scramble("abc") == "abc"
assert scramble("abcd") == "acbd"
assert scramble("abcde") == "acbde"
assert scramble("abcdef") == "aecbdf"
assert scramble("abcde'f") == "abcd'ef"
random.setstate(state)

Inside the scramble() function, we will have a word like “worry.” We can use list slices
to extract part of a string. Since Python starts numbering at 0, we use 1 to indicate the
second character:

>>> word = 'worry'
>>> word[1]
'o'

The pass is a no-op (no operation), so this function
literally does nothing. This is just a placeholder so that
we can write a test and verify that the function fails.

The change we’ll make by setting the
random.seed() in the next line will be a global
change. We’ll want to restore the state after
testing, so here we use random.getstate() to get
the current state of the random module.

Set
.seed()

a known
alue for
testing.

Words with three characters
or fewer should be returned
unchanged.

This word looks unchanged, but that’s
just because with the seed of 1 the
shuffling didn’t end up changing the
middle characters.

Now it’s more evident that the
word is being scrambled.Restore the state to

the previous value.

274 CHAPTER 16 The scrambler: Randomly reordering the middles of words
The last index of any string is -1:

>>> word[-1]
'y'

To get a slice, we use the list[start:stop] syntax. Since the stop position is not
included, we can get the middle like so:

>>> middle = word[1:-1]
>>> middle
'orr'

We can import random to get access to the random.shuffle() function. As with the
list.sort() and list.reverse() methods, the argument will be shuffled in place, and
the function will return None. That is, you might be tempted to write code like this:

>>> import random
>>> x = [1, 2, 3]
>>> shuffled = random.shuffle(x)

What is the value of shuffled? Is it something like [3, 1, 2], or is it None?

>>> type(shuffled)
<class 'NoneType'>

The shuffled value now holds None, while the x list has been shuffled in place (see fig-
ure 16.3):

>>> x
[2, 3, 1]

If you’ve been following along, it turns out that we cannot shuffle the middle like this:

>>> random.shuffle(middle)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/Users/kyclark/anaconda3/lib/python3.7/random.py", line 278, in shuffle
x[i], x[j] = x[j], x[i]

TypeError: 'str' object does not support item assignment

Figure 16.3 The return from
random.shuffle() was None,
so shuffled was assigned None.

275Writing scrambler.py
The middle variable is a str:

>>> type(middle)
<class 'str'>

The random.shuffle() function is trying to directly modify a str value in place, but
str values in Python are immutable. One workaround is to make middle into a new
list of the characters from word:

>>> middle = list(word[1:-1])
>>> middle
['o', 'r', 'r']

That is something we can shuffle:

>>> random.shuffle(middle)
>>> middle
['r', 'o', 'r']

Then it’s a matter of creating a new string with the original first letter, the shuffled
middle, and the last letter. I’ll leave that for you to work out.

 Use pytest scrambler.py to have Pytest execute the test_scramble() function to
see if it works correctly. Run this command after every change to your program. Ensure
that your program always compiles and runs properly. Only make one change at a
time, and then save your program and run the tests.

16.1.5 Scrambling all the words

As in several previous exercises, we’re now down to applying the scramble() function
to all the words. Can you see a familiar pattern?

splitter = re.compile("([a-zA-Z](?:[a-zA-Z']*[a-zA-Z])?)")
for line in args.text.splitlines():

for word in splitter.split(line):
what goes here?

We’ve talked about how to apply a function to each element in a sequence. You might
try a for loop, a list comprehension, or maybe a map(). Think about how you can split
the text into words, feed them to the scramble() function, and then join them back
together to reconstruct the text.

 Note that this approach will pass both the words and the non-words (the bits in
between each word) to the scramble() function. You don’t want to modify the non-
words, so you’ll need a way to check that the argument looks like a word. Maybe a reg-
ular expression?

 That should be enough to go on. Write your solution and use the included tests to
check your program.

276 CHAPTER 16 The scrambler: Randomly reordering the middles of words

S
co

reg
a va
16.2 Solution
To me, the program comes down to properly splitting the words and then figuring out
the scramble() function. Then it’s a matter of applying the function and reconstruct-
ing the text.

#!/usr/bin/env python3
"""Scramble the letters of words"""

import argparse
import os
import re
import random

--
def get_args():

"""Get command-line arguments"""

parser = argparse.ArgumentParser(
description='Scramble the letters of words',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('text', metavar='text', help='Input text or file')

parser.add_argument('-s',
'--seed',
help='Random seed',
metavar='seed',
type=int,
default=None)

args = parser.parse_args()

if os.path.isfile(args.text):
args.text = open(args.text).read().rstrip()

return args

--
def main():

"""Make a jazz noise here"""

args = get_args()
random.seed(args.seed)
splitter = re.compile("([a-zA-Z](?:[a-zA-Z']*[a-zA-Z])?)")

for line in args.text.splitlines():
print(''.join(map(scramble, splitter.split(line))))

The text argument may
be plain text on the

command line or the
name of a file to read.

The seed option is an int
that defaults to None.

Get the arguments so we
can check the text value.

If args.text names an existing file, replace
the value of args.text with the result of
opening and reading the file’s contents.

Return the arguments
to the caller.

Get the
command-line
arguments.

Use args.seed to set the
random.seed() value. If args.seed
is the default None, this is the
same as not setting the seed.

ave the
mpiled
ex into
riable.

Use str.splitlines() to
preserve the line breaks
in the input text.

Use the splitter to break the line into a new
list that map() will feed into the scramble()

function. Join the resulting list on the empty
string to create a new str to print.

277Discussion

Defi
functio
scramb

a si
w

--
def scramble(word):

"""For words over 3 characters, shuffle the letters in the middle"""

if len(word) > 3 and re.match(r'\w+', word):
middle = list(word[1:-1])
random.shuffle(middle)
word = word[0] + ''.join(middle) + word[-1]

return word

--
def test_scramble():

"""Test scramble"""

random.seed(1)
assert scramble("a") == "a"
assert scramble("ab") == "ab"
assert scramble("abc") == "abc"
assert scramble("abcd") == "acbd"
assert scramble("abcde") == "acbde"
assert scramble("abcdef") == "aecbdf"
assert scramble("abcde'f") == "abcd'ef"
random.seed(None)

--
if __name__ == '__main__':

main()

16.3 Discussion
There is nothing new in get_args(), so I trust you’ll understand that code. Refer to
chapter 5 if you want to revisit how to handle the args.text coming from the com-
mand line or from a file.

16.3.1 Processing the text

As mentioned earlier in the chapter, I often assign a compiled regex to a variable. Here
I did it with the splitter:

splitter = re.compile("([a-zA-Z](?:[a-zA-Z']*[a-zA-Z])?)")

The other reason I like to use re.compile() is because I feel it can make my code
more readable. Without it, I would have to write this:

for line in args.text.splitlines():
print(''.join(map(scramble, re.split("([a-zA-Z](?:[a-zA-Z']*[a-zA-
Z])?)", line))))

ne a
n to
le()

ngle
ord.

Only scramble words with
four or more characters if
they contain word
characters.

Copy the second through the
second-to-last characters of
the word into a new list
called middle.

Shuffle the
middle
letters.

Set the word equal to the
first character, plus the
middle, plus the last
character.

Return the word, which
may have been altered if
it met the criteria.

The test for the
scramble() function

278 CHAPTER 16 The scrambler: Randomly reordering the middles of words
That ends up creating a line of code that is 86 characters wide, and the PEP 8 style
guide (www.python.org/dev/peps/pep-0008/) recommends we “limit all lines to a
maximum of 79 characters.” I find the following version much easier to read:

splitter = re.compile("([a-zA-Z](?:[a-zA-Z']*[a-zA-Z])?)")
for line in args.text.splitlines():

print(''.join(map(scramble, splitter.split(line))))

You may still find that code somewhat confusing. Figure 16.4 shows the flow of the
data:

1 First Python will split the string "Don’t worry, spiders,".
2 The splitter creates a new list composed of words (that matched our regex) and

non-words (the bits in between).
3 The map() function will apply the scramble() function to each element of the

list.
4 The result of map() is a new list with the results of each application of the

scramble() function.
5 The result of str.join() is a new string, which is the argument to print().

Figure 16.4 A visualization of how data moves through the map() function

279Discussion
A longer way to write this with a for loop might look like this:

for line in args.text.splitlines():
words = []
for word in splitter.split(line):

words.append(scramble(word))
print(''.join(words))

Because the goal is to create a new list, this is better written as a list comprehension:

for line in args.text.splitlines():
words = [scramble(word) for word in splitter.split(line)]
print(''.join(words))

Or you could go in quite the opposite direction and replace all the for loops with
map():

print('\n'.join(
map(lambda line: ''.join(map(scramble, splitter.split(line))),

args.text.splitlines())))

This last solution reminds me of a programmer I used to work with who would jok-
ingly say, “If it was hard to write, it should be hard to read!” It becomes somewhat
clearer if you rearrange the code. Note that Pylint will complain about assigning a
lambda, but I really don’t agree with that criticism:

scrambler = lambda line: ''.join(map(scramble, splitter.split(line)))
print('\n'.join(map(scrambler, args.text.splitlines())))

Writing code that is correct, tested, and understandable is as much an art as it is a
craft. Choose the version that you (and your teammates!) believe is the most readable.

16.3.2 Scrambling a word

Let’s take a closer look at my scramble() function. I wrote it in a way that would make
it easy to incorporate into map():

def scramble(word):
"""For words over 3 characters, shuffle the letters in the middle"""
if len(word) > 3 and re.match(r'\w+', word):

middle = list(word[1:-1])

Use str.splitlines() to preserve
the original line breaks.

For each line of input, create an empty
list to hold the scrambled words.

Use the splitter
to split the line.

Add the result of
scramble(word) to
the words list.Join the words on the empty string

and pass the result to print().

Check if the given word is one I ought to scramble. First, it must be
longer than three characters. Second, it must contain one or more word
characters because the function will be passed both “word” and “non-
word” strings. If either check returns False, I will return the word
unchanged. The r'\w+' is used to create a “raw” string. Note that the
regex works fine with or without it being a raw string, but Pylint
complains about an “invalid escape character” unless it is a raw string.

Copy the middle
of the word to a

new list called
middle.

280 CHAPTER 16 The scrambler: Randomly reordering the middles of words
random.shuffle(middle)
word = word[0] + ''.join(middle) + word[-1]

return word

16.4 Going further
 Write a version of the program where the scramble() function sorts the middle

letters into alphabetical order rather than shuffling them.
 Write a version that reverses each word rather than scrambles them.
 Write a program to unscramble the text. For this, you need to have a dictionary

of English words, which I have provided as inputs/words.txt.zip. You will need
to split the scrambled text into words and non-words, and then compare each
“word” to the words in your dictionary. I recommend you start by comparing
the words as anagrams (that is, they have the same composition/frequency of
letters) and then using the first and last letters to positively identify the
unscrambled word.

Summary
 The regex we used to split the text into

words was quite complex, but it also gave
us exactly what we needed. Writing the
program without this piece would have
been significantly more difficult. Regexes,
while complex and deep, are wildly power-
ful black magic that can make your pro-
grams incredibly flexible and useful.

 The random.shuffle() function accepts a
list, which is mutated in place.

 List comprehensions and map() can often
lead to more compact code, but going too far can reduce readability. Choose
wisely.

Shuffle the middle in
place. Remember
that this function
returns None.

Reconstruct the word by
joining together the first

character, the shuffled middle,
and the last character.

Return the word, which may or
may not have been shuffled.

Mad Libs:
Using regular expressions
When I was a wee lad, we used to play at
Mad Libs for hours and hours. This was
before computers, mind you, before televi-
sions or radio or even paper! No, scratch
that, we had paper. Anyway, point is we only
had Mad Libs to play, and we loved it! And
now you must play!

 In this chapter, we’ll write a program
called mad.py that will read a file given as a
positional argument and find all the
placeholders in angle brackets, like <verb>
or <adjective>. For each placeholder, we’ll
prompt the user for the part of speech
being requested, like “Give me a verb” and
“Give me an adjective.” (Notice that you’ll
need to use the correct article, just as in chapter 2.) Each value from the user will
then replace the placeholder in the text, so if the user says “drive” for the verb,
then <verb> in the text will be replaced with drive. When all the placeholders have
been replaced with inputs from the user, we’ll print out the new text.

 There is a 17_mad_libs/inputs directory with some sample files you can use,
but I also encourage you to create your own. For instance, here is a version of the
“fox” text:

$ cd 17_mad_libs
$ cat inputs/fox.txt
The quick <adjective> <noun> jumps <preposition> the lazy <noun>.
281

282 CHAPTER 17 Mad Libs: Using regular expressions
When the program is run with this file as the input, it will ask for each of the place-
holders and then print the silliness:

$./mad.py inputs/fox.txt
Give me an adjective: surly
Give me a noun: car
Give me a preposition: under
Give me a noun: bicycle
The quick surly car jumps under the lazy bicycle.

By default, this is an interactive program that will use the input() prompt to ask the
user for their answers, but for testing purposes we will have an -i or --inputs option
so the test suite can pass in all the answers and bypass the interactive input() calls:

$./mad.py inputs/fox.txt -i surly car under bicycle
The quick surly car jumps under the lazy bicycle.

In this exercise, you will

 Learn to use sys.exit() to halt your program and indicate an error status
 Learn about greedy matching with regular expressions
 Use re.findall() to find all matches for a regex
 Use re.sub() to replace found patterns with new text
 Explore ways to write the solution without using regular expressions

17.1 Writing mad.py
To start off, create the program mad.py in the 17_mad_libs directory using new.py or
by copying template/template.py to 17_mad_libs/mad.py. You would also do well to
define the positional file argument as a readable text file using type=argparse
.FileType('rt'). The -i or --inputs option should use nargs='*' to define a list
of zero or more str values.

 After this, your program should be able to produce a usage statement when given
no arguments or the -h or --help flag:

$./mad.py -h
usage: mad.py [-h] [-i [input [input ...]]] FILE

Mad Libs

positional arguments:
FILE Input file

optional arguments:
-h, --help show this help message and exit
-i [input [input ...]], --inputs [input [input ...]]

Inputs (for testing) (default: None)

283Writing mad.py
If the given file argument does not exist, the program should error out:

$./mad.py blargh
usage: mad.py [-h] [-i [str [str ...]]] FILE
mad.py: error: argument FILE: can't open 'blargh': \
[Errno 2] No such file or directory: 'blargh'

If the text of the file contains no <> placeholders, the program should print a message
and exit with an error value (something other than 0). Note that this error does not
need to print a usage statement, so you don’t have to use parser.error() as in previ-
ous exercises:

$ cat no_blanks.txt
This text has no placeholders.
$./mad.py no_blanks.txt
"no_blanks.txt" has no placeholders.

Figure 17.1 shows a string diagram to help you visualize the program.

Figure 17.1 The Mad Libs program must have an input file. It may also have a list of
strings for the substitutions or it will interactively ask the user for the values.

284 CHAPTER 17 Mad Libs: Using regular expressions
17.1.1 Using regular expressions to find the pointy bits

We’ve talked before about the possible dangers of reading an entire file into memory.
Because we’ll be parsing the text to find all the <…> bits in this program, we’ll really
need to read the whole file at once. We can do this by chaining the appropriate func-
tions like so:

>>> text = open('inputs/fox.txt').read().rstrip()
>>> text
'The quick <adjective> <noun> jumps <preposition> the lazy <noun>.'

We’re looking for patterns of text inside angle brackets, so let’s use a regular expres-
sion. We can find a literal < character like so (see figure 17.2):

>>> import re
>>> re.search('<', text)
<re.Match object; span=(10, 11), match='<'>

Now let’s find that bracket’s mate. The . in a regular expression means “anything,”
and we can add a + after it to mean “one or more.” I’ll capture the match so it’s easier
to see:

>>> match = re.search('(<.+>)', text)
>>> match.group(1)
'<adjective> <noun> jumps <preposition> the lazy <noun>'

As shown in figure 17.3, that matched all the way to the end of the string instead of
stopping at the first available >. It’s common when you use * or + for zero, one, or
more for the regex engine to be “greedy” on the or more part. The pattern matches
beyond where we wanted, but it is technically matching exactly what we described.
Remember that . means anything, and a right angle bracket (or greater-than sign) is

Figure 17.2 Matching a literal less-than sign

Figure 17.3 The plus sign to match one or more is a greedy match, matching as many
characters as possible.

285Writing mad.py
“anything.” It matches as many characters as possible until it finds the last right angle
bracket to stop at, which is why this pattern is called “greedy.”

 We can make the regex “non-greedy” by changing + to +? so that it matches the
shortest possible string (see figure 17.4):

>>> re.search('<.+?>', text)
<re.Match object; span=(10, 21), match='<adjective>'>

Rather than using . for “anything,” it would be more accurate to say that we want to
match one or more of anything that is not either of the angle brackets. The character class
[<>] would match either bracket. We can negate (or complement) the class by put-
ting a caret (^) as the first character, so we have [^<>] (see figure 17.5). That will
match anything that is not a left or right angle bracket:

>>> re.search('<[^<>]+>', text)
<re.Match object; span=(10, 21), match='<adjective>'>

Why do we have both brackets inside the negated class? Wouldn’t the right bracket be
enough? Well, I’m guarding against unbalanced brackets. With only the right bracket,
it would match this text (see figure 17.6):

>>> re.search('<[^>]+>', 'foo <<bar> baz')
<re.Match object; span=(4, 10), match='<<bar>'>

Figure 17.4 The question mark after the plus sign makes the regex stop at the shortest
possible match.

Figure 17.5 A negated character class to match anything other than the angle brackets

Figure 17.6 This regex leaves open the possibility of
matching unbalanced brackets.

286 CHAPTER 17 Mad Libs: Using regular expressions
But with both brackets in the negated class, it finds the correct, balanced pair (see fig-
ure 17.7):

>>> re.search('<[^<>]+>', 'foo <<bar> baz')
<re.Match object; span=(5, 10), match='<bar>'>

We’ll add two sets of parentheses (). The first will capture the entire placeholder pat-
tern (see figure 17.8):

>>> match = re.search('(<([^<>]+)>)', text)
>>> match.groups()
('<adjective>', 'adjective')

The other is for the string inside the <> (see figure 17.9):

Figure 17.7 This regex finds the correctly
balanced brackets and contained text.

Figure 17.8 The outer parentheses capture the brackets and text.

Figure 17.9 The inner parentheses capture just the text.

287Writing mad.py
There is a very handy function called re.findall() that will return all matching text
groups as a list of tuple values:

>>> from pprint import pprint
>>> matches = re.findall('(<([^<>]+)>)', text)
>>> pprint(matches)
[('<adjective>', 'adjective'),
('<noun>', 'noun'),
('<preposition>', 'preposition'),
('<noun>', 'noun')]

Note that the capture groups are returned in the order of their opening parentheses,
so the entire placeholder is the first member of each tuple, and the contained text is
the second. We can iterate over this list, unpacking each tuple into variables (see fig-
ure 17.10):

>>> for placeholder, name in matches:
... print(f'Give me {name}')
...
Give me adjective
Give me noun
Give me preposition
Give me noun

You should insert the correct article (“a” or “an,” as you did in chapter 2) to use as the
prompt for input().

17.1.2 Halting and printing errors

If we find there are no placeholders in the text, we need to print an error message. It’s
common to print error messages to STDERR (standard error), and the print() func-
tion allows us to specify a file argument. We’ll use sys.stderr, just as we did in chap-
ter 9. To do that, we need to import that module:

import sys

You may recall that sys.stderr is like an already open file handle, so there’s no need
to open() it:

print('This is an error!', file=sys.stderr)

Figure 17.10 Since the list contains 2-tuples, we can unpack them into two
variables in the for loop.

288 CHAPTER 17 Mad Libs: Using regular expressions
If there really are no placeholders, we should exit the program with an error value to
indicate to the operating system that the program failed to run properly. The normal
exit value for a program is 0, as in “zero errors,” so we need to exit with some int
value that is not 0. I always use 1:

sys.exit(1)

One of the tests checks whether your program can detect missing placeholders and if
your program exits correctly.

 You can also call sys.exit() with a string value, in which case the string will be
printed to sys.stderr and the program will exit with the value 1:

sys.exit('This will kill your program and print an error message!')

17.1.3 Getting the values

For each one of the parts of speech in the text, we need a value that will come either
from the --inputs argument or directly from the user. If we have nothing for --inputs,
we can use the input() function to get an answer from the user.

 The input() function takes a str value to use as a prompt:

>>> value = input('Give me an adjective: ')
Give me an adjective: blue

And it returns a str value of whatever the user typed before pressing the Return key:

>>> value
'blue'

If, however, we have values for the inputs, we can use those and not bother with the
input() function. I’m only making you handle the --inputs option for testing pur-
poses. You can safely assume that you will always have the same number of inputs as
you have placeholders (see figure 17.11).

For instance, you might have the following as the --inputs option to your program
for the fox.txt example:

>>> inputs = ['surly', 'car', 'under', 'bicycle']

Figure 17.11 If given inputs from the command line, they will match up with the
placeholders in the text.

289Solution
You need to remove and return the first string, “surly,” from inputs. The list.pop()
method is what you need, but it wants to remove the last element by default:

>>> inputs.pop()
'bicycle'

The list.pop() method takes an optional argument to indicate the index of the ele-
ment you want to remove. Can you figure out how to make that work? Be sure to read
help(list.pop) if you’re stuck.

17.1.4 Substituting the text

When you have values for each of the placeholders, you will need to substitute them
into the text. I suggest you look into the re.sub() (substitute) function, which will
replace any text matching a given regular expression with some other value. I defi-
nitely recommend you read help(re.sub):

sub(pattern, repl, string, count=0, flags=0)
Return the string obtained by replacing the leftmost
non-overlapping occurrences of the pattern in string by the
replacement repl.

I don’t want to give away the ending, but you will need to use a pattern similar to the
preceding to replace each <placeholder> with each value.

 Note that it’s not a requirement that you use the re.sub() function to solve this. I
challenge you, in fact, to try writing a solution that does not use the re module at all.
Now go write the program, and use the tests to guide you!

17.2 Solution
Are you getting more comfortable with regular expressions? I know they are compli-
cated, but really understanding them will help you more than you might expect.

#!/usr/bin/env python3
"""Mad Libs"""

import argparse
import re
import sys

--
def get_args():

"""Get command-line arguments"""

parser = argparse.ArgumentParser(
description='Mad Libs',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('file',
metavar='FILE',

The file argument should
be a readable text file.

290 CHAPTER 17 Mad Libs: Using regular expressions

ther
place
type=argparse.FileType('rt'),
help='Input file')

parser.add_argument('-i',
'--inputs',
help='Inputs (for testing)',
metavar='input',
type=str,
nargs='*')

return parser.parse_args()

--
def main():

"""Make a jazz noise here"""

args = get_args()
inputs = args.inputs
text = args.file.read().rstrip()
blanks = re.findall('(<([^<>]+)>)', text)

if not blanks:
sys.exit(f'"{args.file.name}" has no placeholders.')

tmpl = 'Give me {} {}: '
for placeholder, pos in blanks:

article = 'an' if pos.lower()[0] in 'aeiou' else 'a'
answer = inputs.pop(0) if inputs else input(tmpl.format(article, pos))
text = re.sub(placeholder, answer, text, count=1)

print(text)

--
if __name__ == '__main__':

main()

17.3 Discussion
We start off by defining our arguments well. The input file should be declared using
type=argparse.FileType('rt') so that argparse will verify that the argument is a
readable text file. The --inputs are optional, so we can use nargs='*' to indicate

The --inputs option may
have zero or more strings.

Open and read the
input file, stripping
off the trailing
newline.

Use a regex to find all
matches for a left angle
bracket, followed by one
or more of anything that
is not a left or right
angle bracket, followed
by a right angle bracket.
Use two capture groups
to capture the entire
expression and the text
inside the brackets.Check if

e are no
holders.

Print a message to STDERR that the specified file contains no placeholders, and exit
the program with a non-zero status to indicate an error to the operating system.

Create a string template for the prompt
to ask for input() from the user.

Iterate through the blanks,
unpacking each tuple into variables.

Choose the correct article
based on the first letter of the

name of the part of speech
(pos): “an” for those starting

with a vowel and “a”
otherwise.

If there are inputs, remove the first one for the answer;
otherwise, use input() to prompt the user for a value.

Replace the current placeholder text with the answer from
the user. Use count=1 to ensure that only the first value is
replaced. Overwrite the existing value of text so that all the
placeholders will be replaced by the end of the loop.

Print the resulting
text to STDOUT.

291Discussion
zero or more strings. If no inputs are provided, the default value will be None, so be
sure you don’t assume it’s a list and try doing list operations on a None.

17.3.1 Substituting with regular expressions

There is a subtle bug waiting for you in using re.sub(). Suppose we have replaced the
first <adjective> with “blue” so that we have this:

>>> text = 'The quick blue <noun> jumps <preposition> the lazy <noun>.'

Now we want to replace <noun> with “dog,” so we try this:

>>> text = re.sub('<noun>', 'dog', text)

Let’s check on the value of text now:

>>> text
'The quick blue dog jumps <preposition> the lazy dog.'

Since there were two instances of the string <noun>, both got replaced with “dog,” as
shown in figure 17.12.

We must use count=1 to ensure that only the first occurrence is changed (see figure 17.13):

>>> text = 'The quick blue <noun> jumps <preposition> the lazy <noun>.'
>>> text = re.sub('<noun>', 'dog', text, count=1)
>>> text
'The quick blue dog jumps <preposition> the lazy <noun>.'

Now we can keep moving on to replace the other placeholders.

17.3.2 Finding the placeholders without regular expressions

I trust the explanation of the regex solution earlier in the chapter was sufficient. I find
that solution fairly elegant, but it is certainly possible to solve this without using
regexes. Here is how I might solve it manually.

Figure 17.12 The re.sub() function will replace all matches.

Figure 17.13 Use the count option to re.sub() to limit the number of replacements.

292 CHAPTER 17 Mad Libs: Using regular expressions
 First I need a way to search the text for <…>. I start off by writing a test that helps
me imagine what I might give to my function and what I might expect in return for
both good and bad values.

 I decide to return None when the pattern is missing and to return a tuple of
(start, stop) indices when the pattern is present:

def test_find_brackets():
"""Test for finding angle brackets"""
assert find_brackets('') is None
assert find_brackets('<>') is None
assert find_brackets('<x>') == (0, 2)
assert find_brackets('foo <bar> baz') == (4, 8)

Now I need to write the code that will satisfy that test. Here is what I wrote:

def find_brackets(text):
"""Find angle brackets"""
start = text.index('<') if '<' in text else -1
stop = text.index('>') if start >= 0 and '>' in text[start + 2:] else -1
return (start, stop) if start >= 0 and stop >= 0 else None

This function works well enough to pass the given tests, but it is not quite correct
because it will return a region that contains unbalanced brackets:

>>> text = 'foo <<bar> baz'
>>> find_brackets(text)
[4, 9]
>>> text[4:10]
'<<bar>'

That may seem unlikely, but I chose angle brackets to make you think of HTML tags
like <head> and . HTML is notorious for being incorrect, maybe because it was
hand generated by a human who messed up a tag or because some tool that generated
the HTML had a bug. The point is that most web browsers have to be fairly relaxed in
parsing HTML, and it would not be unexpected to see a malformed tag like <<head>
instead of the correct <head>.

 The regex version, on the other hand, specifically guards against matching unbal-
anced brackets by using the class [^<>] to define text that cannot contain any angle
brackets. I could write a version of find_brackets() that finds only balanced brack-
ets, but, honestly, it’s just not worth it. This function points out that one of the
strengths of the regex engine is that it can find a partial match (the first left bracket),
see that it’s unable to make a complete match, and start over (at the next left bracket).
Writing this myself would be tedious and, frankly, not that interesting.

There is no text, so it
should return None.

There are angle brackets, but
they lack any text inside, so
this should return None.

The pattern should be found
at the beginning of a string.

The pattern should be found
further into the string.

Find the index of the
left bracket if one is

found in the text.

Find the index of the
right bracket if one is

found starting two
positions after the left.

If both brackets were found, return a tuple of their
start and stop positions; otherwise, return None.

293Going further

t

If t
No

s.
 Still, this function works for all the given test inputs. Note that it only returns one
set of brackets at a time. I will alter the text after I find each set of brackets, which will
likely change the start and stop positions of any following brackets, so it’s best to han-
dle one set at a time.

 Here is how I would incorporate it into the main() function:

def main():
args = get_args()
inputs = args.inputs
text = args.file.read().rstrip()
had_placeholders = False
tmpl = 'Give me {} {}: '

while True:
brackets = find_brackets(text)
if not brackets:

break

start, stop = brackets
placeholder = text[start:stop + 1]
pos = placeholder[1:-1]
article = 'an' if pos.lower()[0] in 'aeiou' else 'a'
answer = inputs.pop(0) if inputs else input(tmpl.format(article, pos))
text = text[0:start] + answer + text[stop + 1:]
had_placeholders = True

if had_placeholders:
print(text)

else:
sys.exit(f'"{args.file.name}" has no placeholders.')

17.4 Going further
 Extend your code to find all the HTML tags enclosed in <…> and </…> in a web

page you download from the internet.
 Write a program that will look for unbalanced open/close pairs for parenthe-

ses (), square brackets [], and curly brackets {}. Create input files that have
balanced and unbalanced text, and write tests that verify your program identi-
fies both.

Create a variable to track
whether we find placeholders.

Assume the worst.
Create a
emplate
for the
input()

prompt.

Start an infinite loop. The while loop will
continue as long as it has a “truthy”
value, which True will always be.

Call the find_brackets() function
with the current value of text.

he return is
ne, this will
be “falsey.”

If there are no
brackets found,
break out of the

while loop.

Now that we know we have found some
brackets, unpack their start and stop value

Find the entire <placeholder> value
by using a string slice with the start
and stop values, adding 1 to the stop
to include that index.

The “part of speech” is the
bit inside, so this will extract
“adjective” from “<adjective>.”

Choose the correct article for the part of speech.

Get the answer from the
inputs or from an input() call.

Overwrite the text using a string slice
up to the start, the answer, and then
the rest of the text from the stop.

Note that we saw a placeholder.

The loop exits when no more
placeholders are found. Now that we’re

done, check if we ever saw placeholders.

If we did see a placeholder, print the new
value of the text with the substitution(s).

If we never saw a placeholder, print an
error message to STDERR and exit with

a non-zero value to indicate an error.

294 CHAPTER 17 Mad Libs: Using regular expressions
Summary
 Regular expressions are almost like functions where we describe the patterns we

want to find. The regex engine will do the work of trying to find the patterns,
handling mismatches and starting over to find the pattern in the text.

 Regex patterns with * or + are “greedy” in that they match as many characters as
possible. Adding a ? after them makes them “non-greedy” so that they match as
few characters as possible.

 The re.findall() function will return a list of all the matching strings or
capture groups for a given pattern.

 The re.sub() function will substitute a pattern in some text with new text.
 You can halt your program at any time using the sys.exit() function. If it’s

given no arguments, the default exit value will be 0 to indicate no errors. If you
wish to indicate there was an error, use any non-zero value such as 1. Or use a
string value, which will be printed to STDERR, and a non-zero exit value will be
used automatically.

Gematria: Numeric
encoding of text using

ASCII values
Gematria is a system for assigning a number to a word
by summing the numeric values of each of the charac-
ters (https://en.wikipedia.org/wiki/Gematria). In the
standard encoding (Mispar hechrechi), each character of
the Hebrew alphabet is assigned a numeric value rang-
ing from 1 to 400, but there are more than a dozen
other methods for calculating the numeric value for
the letters. To encode a word, these values are added
together. Revelation 13:18 from the Christian Bible
says, “Let the one who has insight calculate the number
of the wild beast, for it is a man’s number, and its
number is 666.” Some scholars believe that number is
derived from the encoding of the characters repre-
senting Nero Caesar’s name and title and that it was
used as a way of writing about the Roman emperor
without naming him.

 We will write a program called gematria.py that will numerically encode each
word in a given text by similarly adding numeric values for the characters in each
word. There are many ways we could assign these values. For instance, we could
start by giving “a” the value 1, “b” the value 2, and so forth. Instead, we will use the
ASCII table (https://en.wikipedia.org/wiki/ASCII) to derive a numeric value for
English alphabet characters. For non-English characters, we could consider using a
Unicode value, but this exercise will stick to ASCII letters.

 The input text may be entered on the command line:

$./gematria.py 'foo bar baz'
324 309 317
295

https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/Gematria

296 CHAPTER 18 Gematria: Numeric encoding of text using ASCII values
Or it could be in a file:

$./gematria.py ../inputs/fox.txt
289 541 552 333 559 444 321 448 314

Figure 18.1 shows a string diagram showing how the program should work.

In this exercise, you will

 Learn about the ord() and chr() functions
 Explore how characters are organized in the ASCII table
 Understand character ranges used in regular expressions
 Use the re.sub() function
 Learn how map() can be written without lambda
 Use the sum() function and see how that relates to using reduce()
 Learn how to perform case-insensitive string sorting

18.1 Writing gematria.py
I will always recommend you start your programs in some way that avoids having to type
all the boilerplate text. Either copy template/template.py to 18_gematria/gematria.py
or use new.py gematria.py in the 18_gematria directory to create a starting point.

 Modify the program until it prints the following usage statement if it’s given no
arguments or the -h or --help flag:

$./gematria.py -h
usage: gematria.py [-h] text

Gematria

positional arguments:
text Input text or file

Figure 18.1 The gematria program
will accept input text and will
produce a numeric encoding for
each word.

297Writing gematria.py
optional arguments:
-h, --help show this help message and exit

As in previous exercises, the input may come from the command line or from a file. I
suggest you copy the code you used in chapter 5 to handle this, and then modify your
main() function as follows:

def main():
args = get_args()
print(args.text)

Verify that your program will print text from the command line,

$./gematria.py 'Death smiles at us all, but all a man can do is smile back.'
Death smiles at us all, but all a man can do is smile back.

or from a file:

$./gematria.py ../inputs/spiders.txt
Don't worry, spiders,
I keep house
casually.

18.1.1 Cleaning a word

Let’s discuss how a single word will be encoded, as it will affect how we will break the
text in the next section. In order to be absolutely sure we are only dealing with ASCII
values, let’s remove anything that is not an upper- or lowercase English alphabet char-
acter or any of the Arabic numerals 0–9. We can define that class of characters using
the regular expression [A-Za-z0-9].

 We can use the re.findall() function we used in chapter 17 to find all the charac-
ters in word that match this class. For instance, we should expect to find everything
except the apostrophe in the word “Don’t” (see figure 18.2):

>>> re.findall('[A-Za-z0-9]', "Don't")
['D', 'o', 'n', 't']

If we put a caret (^) as the first character inside the class, like [^A-Za-z0-9], we’ll find
anything that is not one of those characters. Now we would expect to match only the
apostrophe (see figure 18.3):

>>> import re
>>> re.findall('[^A-Za-z0-9]', "Don't")
["'"]

Figure 18.2 This character class
only matches alphanumeric values.

298 CHAPTER 18 Gematria: Numeric encoding of text using ASCII values
We can use the re.sub() function to replace any characters in that second class with
the empty string. As you learned in chapter 17, this will replace all occurrences of the
pattern unless we use the count=n option:

>>> word = re.sub('[^A-Za-z0-9]', '', "Don't")
>>> word
'Dont'

We will want to use this operation to clean each word that we’ll encode, as shown in
figure 18.4.

18.1.2 Ordinal character values and ranges

We will encode a string like “Dont” by converting each character to a numeric value and
then adding them together, so let’s first figure out how to encode a single character.

 Python has a function called ord() that will convert a character to its “ordinal”
value. For all alphanumeric values that we are using, this will be equal to the charac-
ter’s position in the American Standard Code for Information Interchange (ASCII,
pronounced like “as-kee”) table:

>>> ord('D')
68
>>> ord('o')
111

The chr() function works in reverse to convert a number to a character:

>>> chr(68)
'D'
>>> chr(111)
'o'

Figure 18.3 The caret will find the complement of the
character class, so any non-alphanumeric character.

Figure 18.4 The re.sub() function will replace any text
matching a pattern with another value.

299Writing gematria.py
Following is the ASCII table. For simplicity’s sake, I show “NA” (“not available”) for
the values up to index 31 as they are not printable.

$./asciitbl.py
0 NA 16 NA 32 SPACE 48 0 64 @ 80 P 96 ` 112 p
1 NA 17 NA 33 ! 49 1 65 A 81 Q 97 a 113 q
2 NA 18 NA 34 " 50 2 66 B 82 R 98 b 114 r
3 NA 19 NA 35 # 51 3 67 C 83 S 99 c 115 s
4 NA 20 NA 36 $ 52 4 68 D 84 T 100 d 116 t
5 NA 21 NA 37 % 53 5 69 E 85 U 101 e 117 u
6 NA 22 NA 38 & 54 6 70 F 86 V 102 f 118 v
7 NA 23 NA 39 ' 55 7 71 G 87 W 103 g 119 w
8 NA 24 NA 40 (56 8 72 H 88 X 104 h 120 x
9 NA 25 NA 41) 57 9 73 I 89 Y 105 i 121 y
10 NA 26 NA 42 * 58 : 74 J 90 Z 106 j 122 z
11 NA 27 NA 43 + 59 ; 75 K 91 [107 k 123 {
12 NA 28 NA 44 , 60 < 76 L 92 \ 108 l 124 |
13 NA 29 NA 45 - 61 = 77 M 93] 109 m 125 }
14 NA 30 NA 46 . 62 > 78 N 94 ^ 110 n 126 ~
15 NA 31 NA 47 / 63 ? 79 O 95 _ 111 o 127 DEL

NOTE I have included the asciitbl.py program in the 18_gematria directory of
the source code repository.

We can use a for loop to cycle through all the characters in a string:

>>> word = "Dont"
>>> for char in word:
... print(char, ord(char))
...
D 68
o 111
n 110
t 116

Note that upper- and lowercase letters have different ord() values. This makes sense
because they are two different letters:

>>> ord('D')
68
>>> ord('d')
100

We can iterate over the values from “a” to “z” by finding their ord() values:

>>> [chr(n) for n in range(ord('a'), ord('z') + 1)]
['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm',
'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z']

As you can see in the previous ASCII table, the letters “a” through “z” lie contiguously.
The same is true for “A” to “Z” and “0” to “9,” which is why we can use [A-Za-z0-9] as
a regex.

300 CHAPTER 18 Gematria: Numeric encoding of text using ASCII values
 Note that the uppercase letters have lower ordinal values than their lowercase ver-
sions, which is why you cannot use the range [a-Z]. Try this in the REPL and note the
error you get:

>>> re.findall('[a-Z]', word)

If I execute the preceding function in the REPL, the last line of the error I see is this:

re.error: bad character range a-Z at position 1

You can, however, use the range [A-z]:

>>> re.findall('[A-z]', word)
['D', 'o', 'n', 't']

But note that “Z” and “a” are not contiguous:

>>> ord('Z'), ord('a')
(90, 97)

There are other characters in between them:

>>> [chr(n) for n in range(ord('Z') + 1, ord('a'))]
['[', '\\', ']', '^', '_', '`']

If we try to use that range on all the printable characters, you’ll see that it matches
characters that are not letters:

>>> import string
>>> re.findall('[A-z]', string.printable)
['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm',
'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z',
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M',
'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z',
'[', '\\', ']', '^', '_', '`']

That is why it is safest to specify the characters we want as the
three separate ranges, [A-Za-z0-9], which you may sometimes
hear pronounced as “A to Z, a to z, zero to nine,” as it assumes
you understand that there are two “a to z” ranges that are distinct
according to their case.

18.1.3 Summing and reducing

Let’s keep reminding ourselves what the goal is here: convert all the
characters in a word, and then sum those values. There is a handy
Python function called sum() that will add a list of numbers:

>>> sum([1, 2, 3])
6

301Writing gematria.py
We can manually encode the string “Dont” by calling ord() on each letter and passing
the results as a list to sum():

>>> sum([ord('D'), ord('o'), ord('n'), ord('t')])
405

The question is how to apply the function ord() to all the characters in a str and pass
a list to sum(). You’ve seen this pattern many times now. What’s the first tool you’ll
reach for? We can always start with our handy for loop:

>>> word = 'Dont'
>>> vals = []
>>> for char in word:
... vals.append(ord(char))
...
>>> vals
[68, 111, 110, 116]

Can you see how to make that into a single line using a list comprehension?

>>> vals = [ord(char) for char in word]
>>> vals
[68, 111, 110, 116]

From there, we can move to a map():

>>> vals = map(lambda char: ord(char), word)
>>> list(vals)
[68, 111, 110, 116]

Here I’d like to show that the map() version doesn’t need the lambda declaration
because the ord() function expects a single value, which is exactly what it will get from
map(). Here is a nicer way to write it:

>>> vals = map(ord, word)
>>> list(vals)
[68, 111, 110, 116]

To my eye, that is a really beautiful piece of code!
 Now we can sum() that to get a final value for our word:

>>> sum(map(ord, word))
405

That is correct:

>>> sum([68, 111, 110, 116])
405

302 CHAPTER 18 Gematria: Numeric encoding of text using ASCII values
18.1.4 Using functools.reduce

If Python has a sum() function, you might suspect it also has a product() function to
multiply a list of numbers together. Alas, this is not a built-in function, but it does rep-
resent a common idea of reducing a list of values into a single value.

 The reduce() function from the functools module provides a generic way to
reduce a list. Let’s consult the documentation for how to use it:

>>> from functools import reduce
>>> help(reduce)
reduce(...)

reduce(function, sequence[, initial]) -> value

Apply a function of two arguments cumulatively to the items of a sequence,
from left to right, so as to reduce the sequence to a single value.
For example, reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) calculates
((((1+2)+3)+4)+5). If initial is present, it is placed before the items
of the sequence in the calculation, and serves as a default when the
sequence is empty.

This is another higher-order function that wants another function as the first argument,
just like map() and filter(). The documentation shows us how to write our own
sum() function:

>>> reduce(lambda x, y: x + y, [1, 2, 3, 4, 5])
15

If we change the + operator to *, we have a product:

>>> reduce(lambda x, y: x * y, [1, 2, 3, 4, 5])
120

Here is how you might write a function for this:

def product(vals):
return reduce(lambda x, y: x * y, vals)

And now you can call it:

>>> product(range(1,6))
120

Instead of writing our own lambda, we can use any function that expects two argu-
ments. The operator.mul function fits this bill:

>>> import operator
>>> help(operator.mul)
mul(a, b, /)

Same as a * b.

303Writing gematria.py
So it would be easier to write this:

def product(vals):
return reduce(operator.mul, vals)

Fortunately, the math module also contains a prod() function you can use:

>>> import math
>>> math.prod(range(1,6))
120

If you think about it, the str.join() method also reduces a list of strings to a single
str value. Here’s how we can write our own:

def join(sep, vals):
return reduce(lambda x, y: x + sep + y, vals)

I much prefer the syntax of calling this join over the str.join() function:

>>> join(', ', ['Hey', 'Nonny', 'Nonny'])
'Hey, Nonny, Nonny'

Whenever you have a list of values that you want to combine to produce a single
value, consider using the reduce() function.

18.1.5 Encoding the words

That was a lot of work just to get to summing the ordinal values of the characters, but
wasn’t it fascinating to explore? Let’s get back on track, though.

 We can create a function to encapsulate the idea of converting a word into a
numeric value derived from summing the ordinal values of the characters. I call mine
word2num(), and here is my test:

def test_word2num():
"""Test word2num"""
assert word2num("a") == "97"
assert word2num("abc") == "294"
assert word2num("ab'c") == "294"
assert word2num("4a-b'c,") == "346"

Notice that my function returns a str value, not an int. This is because I want to use
the result with the str.join() function that only accepts str values—so '405' instead
of 405:

>>> from gematria import word2num
>>> word2num("Don't")
'405'

To summarize, the word2num() function accepts a word, removes unwanted charac-
ters, converts the remaining characters to ord() values, and returns a str representa-
tion of the sum() of those values.

304 CHAPTER 18 Gematria: Numeric encoding of text using ASCII values
18.1.6 Breaking the text

The tests expect you to maintain the same line breaks as the original text, so I recom-
mend you use str.splitlines() as in other exercises. In chapters 15 and 16, we used
different regexes to split each line into “words,” a process sometimes called “tokeniza-
tion” in programs that deal with natural language processing (NLP). If you write a
word2num() function that passes the tests I’ve provided, then you can use str.split()
to break a line on spaces because the function will ignore anything that is not a charac-
ter or number. You are, of course, welcome to break the line into words using whatever
means you like.

 The following code will maintain the line breaks and reconstruct the text. Can you
modify it to add the word2num() function so that it instead prints out encoded words
as shown in figure 18.5?

def main():
args = get_args()
for line in args.text.splitlines():

for word in line.split():
what goes here?
print(' '.join(line.split()))

The output will be one number for each word:

$./gematria.py ../inputs/fox.txt
289 541 552 333 559 444 321 448 314

Time to finish writing the solution. Be sure to use the tests! See you on the flip side.

18.2 Solution
I do enjoy the ideas of cryptography and encoding messages, and this program is
(sort of) encrypting the input text, albeit in a way that cannot be reversed. Still, it’s
fun to think of other ways you might process some text and transmogrify it to some
other value.

#!/usr/bin/env python3
"""Gematria"""

import argparse
import os
import re

Figure 18.5 Each word of the text
will be cleaned and encoded into a
number.

305Discussion

com

argu

Defi
functio

conve
word
num

Defi
functio

test
word2nu

funct
--
def get_args():

"""Get command-line arguments"""

parser = argparse.ArgumentParser(
description='Gematria',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('text', metavar='text', help='Input text or file')

args = parser.parse_args()

if os.path.isfile(args.text):
args.text = open(args.text).read().rstrip()

return args

--
def main():

"""Make a jazz noise here"""

args = get_args()

for line in args.text.splitlines():
print(' '.join(map(word2num, line.split())))

--
def word2num(word):

"""Sum the ordinal values of all the characters"""

return str(sum(map(ord, re.sub('[^A-Za-z0-9]', '', word))))

--
def test_word2num():

"""Test word2num"""

assert word2num("a") == "97"
assert word2num("abc") == "294"
assert word2num("ab'c") == "294"
assert word2num("4a-b'c,") == "346"

--
if __name__ == '__main__':

main()

18.3 Discussion
I trust you understand get_args(), as we’ve used this exact code several times now.
Let’s jump to the word2num() function.

The text argument is
a string that might

be a filename.

Get the
parsed
mand-

line
ments.

Check if the text argument
is an existing file.

Overwrite the
args.text with the
contents of the file.

Return the arguments.

Get the parsed
arguments. Split args.text on

newlines to retain
line breaks.

Split the line on spaces,
map the result through
word2num(), and then
join that result on
spaces.

ne a
n to
rt a

 to a
ber.

Use re.sub() to remove anything
that’s not an alphanumeric

character. Map the resulting string
through the ord() function, sum

the ordinal values of the
characters, and return a str
representation of the sum.

ne a
n to
 the
m()
ion.

306 CHAPTER 18 Gematria: Numeric encoding of text using ASCII values
18.3.1 Writing word2num()

I could have written the function like this:

def word2num(word):
vals = []
for char in re.sub('[^A-Za-z0-9]', '', word):

vals.append(ord(char))

return str(sum(vals))

That’s four lines of code instead of the one I wrote. I would at least rather use a list
comprehension, which collapses three lines of code into one:

def word2num(word):
vals = [ord(char) for char in re.sub('[^A-Za-z0-9]', '', word)]
return str(sum(vals))

That could be written in one line, though it could be argued that readability suffers:

def word2num(word):
return str(sum([ord(char) for char in re.sub('[^A-Za-z0-9]', '', word)]))

I still think the map() version is the most readable and concise:

def word2num(word):
return str(sum(map(ord, re.sub('[^A-Za-z0-9]', '', word))))

Figure 18.6 shows how the three methods relate to each other.

Initialize an empty list to
hold the ordinal values. Iterate all the

characters returned
from re.sub().

Convert the character to
an ordinal value and
append that to the
values.Sum the values and return a

string representation.

Figure 18.6 How the for loop, a list comprehension, and a map() relate to each other

307Discussion
Figure 18.7 will help you see how the data moves through the map() version with the
string “Don’t.”

1 The re.sub() function will replace any character not in the character class with
the empty string. This will turn a word like “Don’t” into “Dont” (without the
apostrophe).

2 The map() will apply the given function ord() to each element of a sequence.
Here that “sequence” is a str, so it will use each character of the word.

3 The result of map() is a new list, where each character from “Dont” is given to
the ord() function.

4 The results of the calls to ord() will be a list of int values, one for each letter.
5 The sum() function will reduce a list of numbers to a single value by adding

them together.
6 The final value from our function needs to be a str, so we use the str() func-

tion to turn the return from sum() into a string representation of the number.

Figure 18.7 A representation of the
order of operations for the functions

308 CHAPTER 18 Gematria: Numeric encoding of text using ASCII values
18.3.2 Sorting

The point of this exercise was less about the ord() and chr() functions and more
about exploring regular expressions, function application, and how characters are
represented inside programming languages like Python.

 For instance, the sorting of strings is case sensitive because of the relative order of
the ord() values of the characters (because the uppercase letters are defined earlier
in the ASCII table than the lowercase values). Note that the words that begin with
uppercase letters are sorted before those with lowercase letters:

>>> words = 'banana Apple Cherry anchovies cabbage Beets'
>>> sorted(words)
['Apple', 'Beets', 'Cherry', 'anchovies', 'banana', 'cabbage']

This is because all the uppercase ordinal values are lower than those of the lowercase
letters. In order to perform a case sensitive sorting of strings, you can use
key=str.casefold. The str.casefold() function will return “a version of the string
suitable for caseless comparisons.” We are using the function’s name without parenthe-
ses here because we are passing the function itself as the argument for key:

>>> sorted(words, key=str.casefold)
['anchovies', 'Apple', 'banana', 'Beets', 'cabbage', 'Cherry']

If you add the parentheses, it will cause an exception. This is exactly the same way we
pass functions as arguments to map() and filter():

>>> sorted(words, key=str.casefold())
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: descriptor 'casefold' of 'str' object needs an argument

The option is the same with list.sort() if you prefer to sort the list in place:

>>> words.sort(key=str.casefold)
>>> words
['anchovies', 'Apple', 'banana', 'Beets', 'cabbage', 'Cherry']

Command-line tools like the sort program behave in the same way due to the same
representation of characters. Given a file of these same words,

$ cat words.txt
banana
Apple
Cherry
anchovies
cabbage
Beets

309Going further
the sort program on my Mac1 will first sort the uppercase words and then the lower-
case:

$ sort words
Apple
Beets
Cherry
anchovies
banana
cabbage

I have to read the sort manual page (via man sort) to find the -f flag to perform a
case-insensitive sort:

$ sort -f words
anchovies
Apple
banana
Beets
cabbage
Cherry

18.3.3 Testing

I would like to take a moment to point out how often I use my own tests. Every time I
write an alternative version of a function or program, I run my own tests to verify that
I’m not accidentally showing you buggy code. Having a test suite gives me the freedom
and confidence to extensively refactor my programs because I know I can check my
work. If I ever find a bug in my code, I add a test to verify that the bug exists. Then I
fix the bug and verify that it’s handled. I know if I accidentally reintroduce that bug,
my tests will catch it.

 For the purposes of this book, I’ve tried to never write a program over 100 lines.
It’s common for programs to grow to thousands of lines of code spread over dozens of
modules. I recommend you start writing and using tests, no matter how small you
start. It’s a good habit to establish early on, and it will only help you as you write lon-
ger code.

18.4 Going further
 Analyze text files to find other words that sum to the value 666. Are these partic-

ularly scary words?
 Given some text input, find the most frequently occurring value from word2num()

and all the words that reduce to that value.
 Create a version using your own numeric values for each character. For

instance, each letter could be encoded as its position in the alphabet so that “A”

1 The GNU coreutils 8.30 version on one of my Linux machines will perform a case-insensitive sort by default.
How does your sort work?

310 CHAPTER 18 Gematria: Numeric encoding of text using ASCII values
and “a” are 1, “B” and “b” are 2, and so on. Or you might decide to weigh each
consonant as 1 and each vowel as –1. Create your own scheme, and write tests to
ensure your program performs as you expect.

Summary
 The ord() function will return the Unicode code point of a character. For our

alphanumeric values, the ordinal values correspond to their position in the
ASCII table.

 The chr() function will return the character for a given ordinal value.
 You can use character ranges like a-z in regular expressions when ordinal val-

ues of the characters lie contiguously, such as in the ASCII table.
 The re.sub() function will replace matching patterns of text in a string with

new values, such as replacing all non-characters with the empty string to remove
punctuation and whitespace.

 A map() can be written using a function reference instead of a lambda if the
function expects a single positional argument.

 The sum() function reduces a list of numbers using addition. You can manually
write a version of this using the functools.reduce() function.

 To perform a case-insensitive sort of string values, use the key=str.casefold
option with both the sorted() and list.sort() functions.

Workout of the Day:
Parsing CSV files,

creating text table output
Several years ago, I joined a workout group.
We meet several times a week in our coach’s
unpaved driveway. We pick up and drop heavy
things and run around trying to keep Death at
bay for another day. I’m no paragon of
strength and fitness, but it’s been a nice way to
exercise and visit with friends. One of my
favorite parts of going is that our coach will
write a “Workout of the Day” or “WOD” on the
board. Whatever it says is what I do. It doesn’t
matter if I actually want to do 200 push-ups
that day, I just get them done no matter how long it takes.1

In that spirit, we’ll write a program called wod.py to help us create a random daily
workout that we have to do, no questions asked:

$./wod.py
Exercise Reps
------------------ ------
Pushups 40

1 See “More Isn’t Always Better” by Barry Schwartz (https://hbr.org/2006/06/more-isnt-always-better). He
notes that increasing the number of choices given to people actually creates more distress and feelings of
dissatisfaction, whatever choice is made. Imagine an ice cream shop with three flavors: chocolate, vanilla,
and strawberry. If you choose chocolate, you’ll likely be happy with that choice. Now imagine that the shop
has 60 flavors of ice cream, including 20 different fruit creams and sorbets and 12 different chocolate vari-
eties from Rocky Road to Fudgetastic Caramel Tiramisu Ripple. Now when you choose a “chocolate” vari-
ety, you may leave with remorse about the 11 other kinds you could have chosen. Sometimes having no
choice at all provides a sense of calm. Call it fatalism or whatnot.
311

https://hbr.org/2006/06/more-isnt-always-better

312 CHAPTER 19 Workout of the Day: Parsing CSV files, creating text table output
Plank 38
Situps 99
Hand-stand pushups 5

NOTE Each time you run the program, you are required to perform all the
exercises immediately. Heck, even just reading them means you have to do them.
Like NOW. Sorry, I don’t make the rules. Better get going on those sit-ups!

We’ll choose from a list of exercises stored in a delimited text file. In this case, the “delim-
iter” is the comma, and it will separate each field value. Data files that use commas as
delimiters are often described as comma-separated values or CSV files. Usually the first line
of the file names the columns, and each subsequent line represents a row in the table:

$ head -3 inputs/exercises.csv
exercise,reps
Burpees,20-50
Situps,40-100

In this exercise, you will

 Parse delimited text files using the csv module
 Coerce text values to numbers
 Print tabular data using the tabulate module
 Handle missing and malformed data

This chapter and the next are meant to be a step up in how challenging they are. You
will be applying many of the skills you’ve learned in previous chapters, so get ready!

19.1 Writing wod.py
You will be creating a program called wod.py in the 19_wod directory. Let’s start by
taking a look at the usage that should print when it’s run with -h or --help. Modify
your program’s parameters until it produces this:

$./wod.py -h
usage: wod.py [-h] [-f FILE] [-s seed] [-n exercises] [-e]

Create Workout Of (the) Day (WOD)

optional arguments:
-h, --help show this help message and exit
-f FILE, --file FILE CSV input file of exercises (default:

inputs/exercises.csv)
-s seed, --seed seed Random seed (default: None)
-n exercises, --num exercises

Number of exercises (default: 4)
-e, --easy Halve the reps (default: False)

Our program will read an input -f or --file, which should be a readable text file
(default, inputs/exercises.csv). The output will be some -n or --num number of exercises

313Writing wod.py
(default, 4). There might be an -e or --easy flag to indicate that the repetitions of
each exercise should be cut in half. Since we’ll be using the random module to choose
the exercises, we’ll need to accept an -s or --seed option (int with a default of None)
to pass to random.seed() for testing purposes.

19.1.1 Reading delimited text files

We’re going to use the csv module to parse the input file. This is a standard module
that should already be installed on your system. You can verify that by opening a
python3 REPL and trying to import it. If this works, you’re all set:

>>> import csv

We’ll also look at two other modules that you probably will need to install:

 Tools from the csvkit module to look at the input file on the command line
 The tabulate module to format the output table

Run this command to install these modules:

$ python3 -m pip install csvkit tabulate

There is also a requirements.txt file, which is a common way to document the depen-
dencies for a program. Instead of the previous command, you can install all the mod-
ules with this one:

$ python3 -m pip install -r requirements.txt

Despite having “csv” in the name, the csvkit mod-
ule can handle just about any delimited text file.
For instance, it’s typical to use the tab (\t) charac-
ter as a delimiter, too. The module includes many
tools that you can read about in its documenta-
tion (https://csvkit.readthedocs.io/en/1.0.3/). I’ve
included several delimited files in the 19_wod/inputs
directory that you can use to test your program.

 After installing csvkit, you should be able to
use csvlook to parse the inputs/exercises.csv file
into a table structure showing the columns:

$ csvlook --max-rows 3 inputs/exercises.csv
exercise	reps
Burpees	20-50
Situps	40-100
Pushups	25-75
...	...

The “reps” column of the input file will have two numbers separated by a dash, like
10-20 meaning “from 10 to 20 reps.” To select the final value for the reps, you will use

https://csvkit.readthedocs.io/en/1.0.3/

314 CHAPTER 19 Workout of the Day: Parsing CSV files, creating text table output
the random.randint() function to select an integer value between the low and high
values. When run with a seed, your output should exactly match this:

$./wod.py --seed 1 --num 3
Exercise Reps
---------- ------
Pushups 32
Situps 71
Crunches 27

When run with the --easy flag, the reps should be halved:

$./wod.py --seed 1 --num 3 --easy
Exercise Reps
---------- ------
Pushups 16
Situps 35
Crunches 13

The --file option should default to the inputs/exercises.csv file, or we can indicate a
different input file:

$./wod.py --file inputs/silly-exercises.csv
Exercise Reps
----------------- ------
Hanging Chads 46
Squatting Chinups 46
Rock Squats 38
Red Barchettas 32

Figure 19.1 shows our trusty string diagram to help you think about it.

Figure 19.1 The WOD program will randomly select exercises and reps from a CSV
file to create a table listing the workout of the day.

315Writing wod.py

()

19.1.2 Manually reading a CSV file

First I’m going to show you how to manually parse each record from a CSV file into a
list of dictionaries, and then I’ll show you how to use the csv module to do this more
quickly. The reason we want to make a dictionary from each record is so that we can
get at the values for each exercise and the number of reps (repetitions, or how many
times to repeat a given exercise). We’re going to need to split the reps into low and
high values so that we can get a range of numbers from which we’ll randomly select
the number of reps. Finally, we’ll randomly select some exercises along with their reps
to make a workout. Whew, just describing that was a workout!

 Notice that reps is given as a range from a low number to a high number, sepa-
rated by a dash:

$ head -3 inputs/exercises.csv
exercise,reps
Burpees,20-50
Situps,40-100

It would be convenient to read this as a list of dictionaries where the column names in
the first line are combined with each line of data, like this:

$./manual1.py
[{'exercise': 'Burpees', 'reps': '20-50'},
{'exercise': 'Situps', 'reps': '40-100'},
{'exercise': 'Pushups', 'reps': '25-75'},
{'exercise': 'Squats', 'reps': '20-50'},
{'exercise': 'Pullups', 'reps': '10-30'},
{'exercise': 'Hand-stand pushups', 'reps': '5-20'},
{'exercise': 'Lunges', 'reps': '20-40'},
{'exercise': 'Plank', 'reps': '30-60'},
{'exercise': 'Crunches', 'reps': '20-30'}]

It may seem like overkill to use a dictionary for records that contain just two columns,
but I regularly deal with records that contain dozens to hundreds of columns, and then
field names are essential. A dictionary is really the only sane way to handle most delim-
ited text files, so it’s good to learn with a small example like this.

 Let’s look at the manual1.py code that will do this:

#!/usr/bin/env python3

from pprint import pprint

with open('inputs/exercises.csv') as fh:
headers = fh.readline().rstrip().split(',')
records = []
for line in fh:

We will use the
pretty-print module

to print the data
structure.

Use the “with” construct to open the
exercises as the fh variable. One advantage
of using “with” is that the file handle will
be closed automatically when the code
moves beyond the block.

Use fh.readline() to read only the
first line of the file. Remove the
whitespace from the right side
(str.rstrip()), and then use str.split
to split the resulting string on
commas to create a list of strings,
which are the column headers.

Initialize records
as an empty list.

Use a for loop to read the
rest of the lines of fh.

316 CHAPTER 19 Workout of the Day: Parsing CSV files, creating text table output
rec = dict(zip(headers, line.rstrip().split(',')))
records.append(rec)

pprint(records)

Let’s break this down a bit more. First we’ll open() the file and read the first line:

>>> fh = open('exercises.csv')
>>> fh.readline()
'exercise,reps\n'

The line still has a newline stuck to it, so we
can use the str.rstrip() function to remove
that:

>>> fh = open('exercises.csv')
>>> fh.readline().rstrip()
'exercise,reps'

NOTE Note that I need to keep reopen-
ing this file for this demonstration, or each
subsequent call to fh.readline() would read the next line of text.

Now let’s use str.split() to split that line on the comma to get a list of strings:

>>> fh = open('exercises.csv')
>>> headers = fh.readline().rstrip().split(',')
>>> headers
['exercise', 'reps']

We can likewise read the next line of the file to get a list of the field values:

>>> line = fh.readline().rstrip().split(',')
>>> line
['Burpees', '20-50']

Next we use the zip() function to merge the two lists into one list where the ele-
ments of each list have been mated with their counterparts in the same positions.
That might seem complicated, but think about the end of a wedding ceremony when
the bride and groom turn around to face the assembled crowd. Usually they will hold
hands and start walking down the aisle to leave the ceremony. Imagine three grooms-
men ('G') and three bridesmaids ('B') left standing on their respective sides facing
each other:

>>> groomsmen = 'G' * 3
>>> bridesmaids = 'B' * 3

Strip and split the line of text into a list of field
values. Use the zip() function to create a new list of

tuples containing each of the headers paired with
each of the values. Use the dict() function to turn this

list of tuples into a dictionary.

Append the
resulting

dictionary to
the records. Pretty-print

the records.

317Writing wod.py
If there are two lines each containing three people, then we end up with a single line
containing three pairs:

>>> pairs = list(zip(groomsmen, bridesmaids))
>>> pairs
[('G', 'B'), ('G', 'B'), ('G', 'B')]
>>> len(pairs)
3

Or think of two lines of cars merging to exit a parking lot. It’s
customary for one car from one lane (say, “A”) to merge into
traffic, then a car from the other lane (say, “B”). The cars are
combining like the teeth of a zipper, and the result is “A,” “B,”
“A,” “B,” and so forth.

 The zip() function will group the elements of the lists into
tuples, grouping all the elements in the first position together,
then the second position, and so on, as shown in figure 19.2. Note that this is another
lazy function, so I will use list to coerce this in the REPL:

>>> list(zip('abc', '123'))
[('a', '1'), ('b', '2'), ('c', '3')]

The zip() function can handle more than two lists. Note that it will only create group-
ings for the shortest list. In the following example, the first two lists have four elements
(“abcd” and “1234”), but the last has only three (“xyz”), so only three tuples are created:

>>> list(zip('abcd', '1234', 'xyz'))
[('a', '1', 'x'), ('b', '2', 'y'), ('c', '3', 'z')]

In our data, zip() will combine the header “exercise” with the value “Burpees” and
then the header “reps” with the value “20–50” (see figure 19.3):

>>> list(zip(headers, line))
[('exercise', 'Burpees'), ('reps', '20-50')]

Figure 19.2 Zipping two lists
creates a new list with pairs of
elements.

Figure 19.3 Zipping the headers and values together to create
a list of tuples

318 CHAPTER 19 Workout of the Day: Parsing CSV files, creating text table output

.

That created a list of tuple values. Instead of list(), we can use dict() to create a
dictionary:

>>> rec = dict(zip(headers, line))
>>> rec
{'exercise': 'Burpees', 'reps': '20-50'}

Recall that the dict.items() function will turn a dict into a list of tuple (key/value)
pairs, so you can think of these two data structures as being fairly interchangeable:

>>> rec.items()
dict_items([('exercise', 'Burpees'), ('reps', '20-50')])

We can drastically shorten our code by replacing the for loop with a list comprehension:

with open('inputs/exercises.csv') as fh:
headers = fh.readline().rstrip().split(',')
records = [dict(zip(headers, line.rstrip().split(','))) for line in fh]
pprint(records)

We can use map() to write equivalent code:

with open('inputs/exercises.csv') as fh:
headers = fh.readline().rstrip().split(',')
mk_rec = lambda line: dict(zip(headers, line.rstrip().split(',')))
records = map(mk_rec, fh)
pprint(list(records))

In the next section, I’m going to show you how to use the csv module to handle much
of this code, which may lead you to wonder why I bothered showing you how to han-
dle this yourself. Unfortunately, I often have to handle data that is terribly formatted,
such that the first line is not the header, or there are other rows of information
between the header row and the actual data. When you’ve seen as many badly format-
ted Excel files as I have, you’ll come to appreciate that you sometimes have no choice
but to parse the file yourself.

19.1.3 Parsing with the csv module

Parsing delimited text files in this way is extremely common, and it would not make
sense to write or copy this code every time you needed to parse a file. Luckily, the csv
module is a standard module installed with Python, and it can handle all of this very
gracefully.

We still need to break out
the headers separately by
reading the first line.

This combines the three lines of the for loop
into a single list comprehension

Flake8 will complain about assigning this lambda
expression. I generally write my code so as to produce no

warnings, but I do tend to disagree with this suggestion. I quite
like writing one-line functions using a lambda assignment.

319Writing wod.py
 Let’s look at how our code can change if we use csv.DictReader() (see using_csv1.py
in the repo):

#!/usr/bin/env python3

import csv
from pprint import pprint

with open('inputs/exercises.csv') as fh:
reader = csv.DictReader(fh, delimiter=',')
records = []
for rec in reader:

records.append(rec)

pprint(records)

The following code creates the same list of dict values as before, but with far less
code. Note that each record is shown as an OrderedDict, which is a type of dictionary
where the keys are maintained in their insertion order:

$./using_csv1.py
[OrderedDict([('exercise', 'Burpees'), ('reps', '20-50')]),
OrderedDict([('exercise', 'Situps'), ('reps', '40-100')]),
OrderedDict([('exercise', 'Pushups'), ('reps', '25-75')]),
OrderedDict([('exercise', 'Squats'), ('reps', '20-50')]),
OrderedDict([('exercise', 'Pullups'), ('reps', '10-30')]),
OrderedDict([('exercise', 'Hand-stand pushups'), ('reps', '5-20')]),
OrderedDict([('exercise', 'Lunges'), ('reps', '20-40')]),
OrderedDict([('exercise', 'Plank'), ('reps', '30-60')]),
OrderedDict([('exercise', 'Crunches'), ('reps', '20-30')])]

We can remove the entire for loop and use the list() function to coerce the reader
to give us that same list. This code (in using_csv2.py) will print the same output:

with open('inputs/exercises.csv') as fh:
reader = csv.DictReader(fh, delimiter=',')
records = list(reader)
pprint(records)

Import the
csv module.

Create a csv.DictReader() that will
create a dictionary for each record
in the file. It zips the headers in the
first line with the data values in the
subsequent lines. It uses the
delimiter to indicate the string value
for splitting the columns of text.

Initialize an empty list
to hold the records.

Use a for loop to iterate
through each record
returned by the reader.The records will be a dictionary that is

appended to the list of records.

Open the file. Create a csv.DictReader()
to read fh, using the
comma for the delimiter.

Use the list() function to
coerce all the values from
the reader.Pretty-print the records.

320 CHAPTER 19 Workout of the Day: Parsing CSV files, creating text table output
19.1.4 Creating a function to read a CSV file

Let’s try to imagine how we could write and test a function we might call read_csv()
to read in our data. Let’s start with a placeholder for our function and the test_read
_csv() definition:

def read_csv(fh):
"""Read the CSV input"""
pass

def test_read_csv():
"""Test read_csv"""
text = io.StringIO('exercise,reps\nBurpees,20-50\nSitups,40-100')
assert read_csv(text) == [('Burpees', 20, 50), ('Situps', 40, 100)]

Hey, we just did all that work to make a list of dict values, so why am I suggesting
that we now create a list of tuple values? I’m looking ahead here to how we might
use the tabulate module to print out the result, so just trust me here. This is a good
way to go!

 Let’s go back to using csv.DictReader() to parse our file and think about how we
can break the reps value into int values for the low and high:

reader = csv.DictReader(fh, delimiter=',')
exercises = []
for rec in reader:

name, reps = rec['exercise'], rec['reps']
low, high = 0, 0 # what goes here?
exercises.append((name, low, high))

You have a couple of tools at your disposal. Imagine reps is this:

>>> reps = '20-50'

The str.split() function could break that into two strings, “20” and “50”:

>>> reps.split('-')
['20', '50']

How could you turn each of the str values into integers?
 Another way you could go is to use a regular expression. Remember that \d will

match a digit, so \d+ will match one or more digits. (Refer back to chapter 15 to
refresh your memory on \d as a shortcut to the character class of digits.) You can wrap
that expression in parentheses to capture the “low” and “high” values:

>>> match = re.match('(\d+)-(\d+)', reps)
>>> match.groups()
('20', '50')

Use io.StringIO() to create a mock file handle to wrap
around a valid text that we might read from a file. The
\n represents the newlines that break each line in the

input data, and each line uses commas to separate the
fields. We previously used io.StringIO() in the low-

memory version of chapter 5’s program.

Affirm that our imaginary read_csv() file would turn this text into a list of tuple
values with the name of the exercise and the reps, which have been split into low

and high values. Note that these values have been converted to integers.

321Writing wod.py
Can you write a read_csv() function that passes the previous test_read_csv()?

19.1.5 Selecting the exercises

By this point, I’m hoping you’ve got get_args() straight and your read_csv() passes
the given test. Now we can start in main() with printing out the data structure:

def main():
args = get_args()
random.seed(args.seed)
pprint(read_csv(args.file))

If you run the preceding code, you should see this:

$./wod.py
[('Burpees', 20, 50),
('Situps', 40, 100),
('Pushups', 25, 75),
('Squats', 20, 50),
('Pullups', 10, 30),
('Hand-stand pushups', 5, 20),
('Lunges', 20, 40),
('Plank', 30, 60),
('Crunches', 20, 30)]

We will use the random.sample() function to select the --num of exercises indicated
by the user. Add import random to your program and modify your main to match this:

def main():
args = get_args()
random.seed(args.seed)
exercises = read_csv(args.file)
pprint(random.sample(exercises, k=args.num))

Now instead of printing all the exercises, it should print a random sample of the cor-
rect number of exercises. In addition, your sampling should exactly match this output
if you set the random.seed() value:

$./wod.py -s 1
[('Pushups', 25, 75),
('Situps', 40, 100),
('Crunches', 20, 30),
('Burpees', 20, 50)]

We need to iterate through the sample and select a single “reps” value using the
random.randint() function. The first exercise is push-ups, and the range is between
25 and 75 reps:

>>> import random
>>> random.seed(1)

Get the command-line arguments. Set the random.seed()
with the args.seed value.

Read the args.file (which will be an open file
handle) using the read_csv() function and print the
resulting data structure. Note that I’ve imported
the pprint() function for demonstration purposes.

Always set your random
seed before calling
random functions. Read the input file.

Randomly select the given
number of exercises.

322 CHAPTER 19 Workout of the Day: Parsing CSV files, creating text table output
>>> random.randint(25, 75)
33

If args.easy is True, you will need to halve that value. Unfortunately, we cannot have
a fraction of a rep:

>>> 33/2
16.5

You can use the int() function to truncate the number to the integer component:

>>> int(33/2)
16

19.1.6 Formatting the output

Modify your program until it can reproduce this output:

$./wod.py -s 1
[('Pushups', 56), ('Situps', 88), ('Crunches', 27), ('Burpees', 35)]

We will use the tabulate() function from the tabulate module to format this list of
tuple values into a text table:

>>> from tabulate import tabulate
>>> wod = [('Pushups', 56), ('Situps', 88), ('Crunches', 27), ('Burpees', 35)]
>>> print(tabulate(wod))
-------- --
Pushups 56
Situps 88
Crunches 27
Burpees 35
-------- --

If you read help(tabulate), you will see that there is a headers option where you can
specify a list of strings to use for the headers:

>>> print(tabulate(wod, headers=('Exercise', 'Reps')))
Exercise Reps
---------- ------
Pushups 56
Situps 88
Crunches 27
Burpees 35

If you synthesize all these ideas, you should be able to pass the provided tests.

19.1.7 Handling bad data

None of the tests will give your program bad data, but I have provided several “bad”
CSV files in the 19_wod/inputs directory that you might be interested in figuring out
how to handle:

323Solution
 bad-headers-only.csv is well-formed but has no data. It only has headers.
 bad-empty.csv is empty. That is, it is a zero-length file that I created with touch

bad-empty.csv, and it has no data at all.
 bad-headers.csv has headers that are capitalized, so “Exercise” instead of “exer-

cise,” “Reps” instead of “reps.”
 bad-delimiter.tab uses the tab character (\t) instead of the comma (,) as the

field delimiter.
 bad-reps.csv contains reps that are not in the format x-y or which are not

numeric or integer values.

Once your program passes the given tests, trying running it on the “bad” files to see
how your program breaks. What should your program do when there is no usable
data? Should your program print error messages when it encounters bad or missing
values, or should it quietly ignore errors and only print the usable data? These are all
real-world concerns that you will encounter, and it’s up to you to decide what your
program will do. After the solution, I will show you ways I might deal with these files.

19.1.8 Time to write

OK, enough lollygagging. Time to write this program. You must do 10 push-ups every
time you find a bug!

 Here are a few hints:

 Use csv.DictReader() to parse the input CSV files.
 Break the reps field on the - character, coerce the low/high values to int val-

ues, and then use random.randint() to choose a random integer in that range.
 Use random.sample() to select the correct number of exercises.
 Use the tabulate module to format the output into a text table.

19.2 Solution
How did that go for you? Did you manage to modify your program to gracefully han-
dle all the bad input files?

#!/usr/bin/env python3
"""Create Workout Of (the) Day (WOD)"""

import argparse
import csv
import io
import random
from tabulate import tabulate

--
def get_args():

"""Get command-line arguments"""

Import the tabulate
function we will use to
format the output table.

324 CHAPTER 19 Workout of the Day: Parsing CSV files, creating text table output

sele
for

If ar
“tr

t

parser = argparse.ArgumentParser(
description='Create Workout Of (the) Day (WOD)',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('-f',
'--file',
help='CSV input file of exercises',
metavar='FILE',
type=argparse.FileType('rt'),
default='exercises.csv')

parser.add_argument('-s',
'--seed',
help='Random seed',
metavar='seed',
type=int,
default=None)

parser.add_argument('-n',
'--num',
help='Number of exercises',
metavar='exercises',
type=int,
default=4)

parser.add_argument('-e',
'--easy',
help='Halve the reps',
action='store_true')

args = parser.parse_args()

if args.num < 1:

parser.error(f'--num "{args.num}" must be greater than 0')

return args

--
def main():

"""Make a jazz noise here"""

args = get_args()
random.seed(args.seed)
wod = []
exercises = read_csv(args.file)

for name, low, high in random.sample(exercises, k=args.num):
reps = random.randint(low, high)
if args.easy:

reps = int(reps / 2)
wod.append((name, reps))

The --file option, if
provided, must be a
readable text file.

Ensure that args.num
is a positive value.

Initialize wod as
an empty list. Read the input

file into a list of
exercises.

Randomly sample the given
number of exercises. The

result will be a list of tuples
that each contain three

values, which can be
unpacked directly into the

variables name and low and
high values.

Randomly
ct a value
 reps that

is in the
provided

range.

gs.easy is
uthy,” cut
he reps in

half.

Append a tuple containing
the name of the exercise
and the reps to the wod.

325Discussion

Defi
functio

rea
open

file han

th
exerc

the
print(tabulate(wod, headers=('Exercise', 'Reps')))

--
def read_csv(fh):

"""Read the CSV input"""

exercises = []
for row in csv.DictReader(fh, delimiter=','):

low, high = map(int, row['reps'].split('-'))
exercises.append((row['exercise'], low, high))

return exercises

--
def test_read_csv():

"""Test read_csv"""

text = io.StringIO('exercise,reps\nBurpees,20-50\nSitups,40-100')
assert read_csv(text) == [('Burpees', 20, 50), ('Situps', 40, 100)]

--
if __name__ == '__main__':

main()

19.3 Discussion
Almost half the lines of the program are found within the get_args() function! Even
though there’s nothing new to discuss, I really want to point out how much work is
being done to validate the inputs, provide defaults, create the usage statement, and so
forth. Let’s dig into the program, starting with the read_csv() function.

19.3.1 Reading a CSV file

Earlier in the chapter, I left you with one line where you needed to split the reps col-
umn and convert the values to integers. Here is one way:

def read_csv(fh):
exercises = []
for row in csv.DictReader(fh, delimiter=','):

low, high = map(int, row['reps'].split('-'))
exercises.append((row['exercise'], low, high))

return exercises

Use the tabulate() function to format the wod into
a text table using the appropriate headers.

ne a
n to
d an
 CSV
dle.

Initialize exercises
to an empty list.

Iterate through the file handle using the csv.DictReader()
to create a dictionary combining the column names from
the first row with the field values from the rest of the file.

Use the comma as the field delimiter.

Split the “reps” column on the dash,
turn those values into integers, and

assign to low and high variables.

Append a tuple containing the
name of the exercise with the

low and high values.
Return
e list of
ises to
 caller.

Define a function that Pytest will
use to test the read_csv() function.

Create a mock file handle
containing valid sample data.

Verify that read_csv() can
handle valid input data.

Split the reps field on
the dash, map the
values through the int()
function, and assign to
low and high.

326 CHAPTER 19 Workout of the Day: Parsing CSV files, creating text table output
The annotated line works as follows. Assume a reps value like so:

>>> '20-50'.split('-')
['20', '50']

We need to turn each of those into an int value, which is what the int() function will
do. We could use a list comprehension:

>>> [int(x) for x in '20-50'.split('-')]
[20, 50]

But the map() is much shorter and easier to read, in my opinion:

>>> list(map(int, '20-50'.split('-')))
[20, 50]

Since that produces exactly two values, we can assign them to two variables:

>>> low, high = map(int, '20-50'.split('-'))
>>> low, high
(20, 50)

19.3.2 Potential runtime errors

This code makes many, many assumptions that will cause it to fail miserably when the
data doesn’t match the expectations. For instance, what happens if the reps field con-
tains no dash? It will produce one value:

>>> list(map(int, '20'.split('-')))
[20]

That will cause a runtime exception when we try to assign one value to two variables:

>>> low, high = map(int, '20'.split('-'))
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: not enough values to unpack (expected 2, got 1)

What if one or more of the values cannot be coerced to an int? It will cause an excep-
tion, and, again, you won’t discover this until you run the program with bad data:

>>> list(map(int, 'twenty-thirty'.split('-')))
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10: 'twenty'

What happens if there is no reps field in the record, as is the case when the field
names are capitalized?

>>> rec = {'Exercise': 'Pushups', 'Reps': '20-50'}

327Discussion

Then the dictionary access rec['reps'] will cause an exception:

>>> list(map(int, rec['reps'].split('-')))
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
KeyError: 'reps'

The read_csv() function seems to work just fine as long as we pass it well-formed
data, but the real world does not always give us clean datasets. An unfortunately large
part of my job, in fact, is finding and correcting errors like this.

 Earlier in the chapter, I suggested you might use a regular expression to extract
the low and high values from the reps field. A regex has the advantage of inspecting
the entire field, ensuring that it looks correct. Here is a more robust way to implement
read_csv():

def read_csv(fh):
exercises = []
for row in csv.DictReader(fh, delimiter=','):

name, reps = row.get('exercise'), row.get('reps')
if name and reps:

match = re.match('(\d+)-(\d+)', reps)
if match:

low, high = map(int, match.groups())
exercises.append((name, low, high))

return exercises

19.3.3 Using pandas.read_csv() to parse the file

Many people familiar with statistics and data science will likely know the Python
module called pandas, which mimics many ideas from the R programming lan-
guage. I specifically chose the function name read_csv() because this is similar to a
built-in function in R called read.csv, which was in turn used as the model for the
pandas.read_csv() function. Both R and pandas tend to think of the data in delim-
ited/CSV files in terms of a “data frame”—a two-dimensional object that allows you to
deal with columns and rows of data.

 To run the using_pandas.py version, you’ll need to install pandas like so:

$ python3 -m pip install pandas

Initialize
exercises as an
empty list.

Iterate through
the rows of

the data.

Use the dict.get()
function to try to
retrieve the values
for “exercise” and
“reps.”

Check if we have “truthy”
values for the exercise
name and reps.

Use a regex to look for one or more digits,
followed by a dash, followed by one or more
digits. Use capturing parentheses for the
digits so they can be extracted.

Check if there was a match. Remember
that re.match() will return None to
indicate a failure to match.

Unpack the low and
high values from the
two capture groups and
map them through the
int() function to coerce
the str values. This is
safe because we use a
regex to verify that
they look like digits.

Append the name and
low and high values as

a tuple to the exercises.

Return the exercises
to the caller. If no
valid data was found,
we will return an
empty list.

328 CHAPTER 19 Workout of the Day: Parsing CSV files, creating text table output
Now you can try running this program:

import pandas as pd

df = pd.read_csv('inputs/exercises.csv')
print(df)

You’ll see this output:

$./using_pandas.py
exercise reps

0 Burpees 20-50
1 Situps 40-100
2 Pushups 25-75
3 Squats 20-50
4 Pullups 10-30
5 Hand-stand pushups 5-20
6 Lunges 20-40
7 Plank 30-60
8 Crunches 20-30

Learning how to use pandas is far beyond the scope of this book. Mostly I just want
you to be aware that this is a very popular way to parse delimited text files, especially if
you intend to run statistical analyses over various columns of the data.

19.3.4 Formatting the table

Let’s look at the main() function I included in the solution. You may notice a runtime
exception waiting to happen:

def main():
args = get_args()
random.seed(args.seed)
wod = []
exercises = read_csv(args.file)

for name, low, high in random.sample(exercises, k=args.num):
reps = random.randint(low, high)

if args.easy:
reps = int(reps / 2)

wod.append((name, reps))

print(tabulate(wod, headers=('Exercise', 'Reps')))

If you test the given solution with the bad-headers-only.csv file, you will see this error:

$./wod.py -f inputs/bad-headers-only.csv
Traceback (most recent call last):

File "./wod.py", line 93, in <module>
main()

File "./wod.py", line 62, in main
for name, low, high in random.sample(exercises, k=args.num):

File "/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/rando
m.py", line 363, in sample

This line will fail if args.num is
greater than the number of elements

in exercises, such as if read_csv()
returns None or an empty list.

329Discussion

va
raise ValueError("Sample larger than population or is negative")
ValueError: Sample larger than population or is negative

A safer way to handle this is to check that read_csv() returns enough data to pass to
random.sample(). We have a couple of possible errors:

 No usable data was found in the input file.
 We are trying to sample too many records from the file.

Here is a possible way to handle these problems. Remember that calling sys.exit()
with a string value will cause the program to print the message to sys.stderr and exit
with a value of 1 (which is an error value):

def main():
"""Make a jazz noise here"""

args = get_args()
random.seed(args.seed)
exercises = read_csv(args.file)

if not exercises:
sys.exit(f'No usable data in --file "{args.file.name}"')

num_exercises = len(exercises)
if args.num > num_exercises:

sys.exit(f'--num "{args.num}" > exercises "{num_exercises}"')

wod = []
for name, low, high in random.sample(exercises, k=args.num):

reps = random.randint(low, high)
if args.easy:

reps = int(reps / 2)
wod.append((name, reps))

print(tabulate(wod, headers=('Exercise', 'Reps')))

The version in solution2.py has these updated functions and gracefully handles all the
bad input files. Note that I moved the test_read_csv() function to the unit.py file
because it became much longer as I tested with various bad inputs.

 You can run pytest -xv unit.py to run the unit tests. Let’s inspect unit.py to see a
more rigorous testing scheme:

import io
from wod import read_csv

def test_read_csv():
"""Test read_csv"""

good = io.StringIO('exercise,reps\nBurpees,20-50\nSitups,40-100')
assert read_csv(good) == [('Burpees', 20, 50), ('Situps', 40, 100)]

Read the input file into exercises.
The function should only return a
list, possibly empty.

Check if exercises is “falsey,”
such as an empty list.

Check if we are trying to
sample too many records.

Continue after we
verify that we have
enough valid data.

Remember that you can import your own functions from
your own modules into other programs. Here we are
bringing in our read_csv() function. If we had instead used
import wod, we could call wod.read_csv().The

original,
lid input

330 CHAPTER 19 Workout of the Day: Parsing CSV files, creating text table output

d

no_data = io.StringIO('')
assert read_csv(no_data) == []

headers_only = io.StringIO('exercise,reps\n')
assert read_csv(headers_only) == []

bad_headers = io.StringIO('Exercise,Reps\nBurpees,20-50\nSitups,40-100')
assert read_csv(bad_headers) == []

bad_numbers = io.StringIO('exercise,reps\nBurpees,20-50\nSitups,forty-100')
assert read_csv(bad_numbers) == [('Burpees', 20, 50)]

no_dash = io.StringIO('exercise,reps\nBurpees,20\nSitups,40-100')
assert read_csv(no_dash) == [('Situps', 40, 100)]

tabs = io.StringIO('exercise\treps\nBurpees\t20-40\nSitups\t40-100')
assert read_csv(tabs) == []

19.4 Going further
 Add an option to use a different delimiter, or guess

that the delimiter is a tab if the input file extension is
“.tab” as in the bad-delimiter.tab file.

 The tabulate module supports many table formats,
including plain, simple, grid, pipe, orgtbl, rst, media-
wiki, latex, latex_raw, and latex_booktabs. Add an
option to choose a different tabulate format using
these as the valid choices. Choose a reasonable
default value.

Summary
 The csv module is useful for parsing delimited text

data such as CSV and tab-delimited files.
 Text values representing numbers must be coerced to numeric values using

int() or float() in order to be used as numbers inside your program.
 The tabulate module can be used to create text tables to format tabular output.
 Great care must be taken to anticipate and handle bad and missing data values.

Tests can help you imagine all the ways in which your code might fail.

Testing
with no

ata at all

Well-formed file (correct
headers and delimiter),
but no data

The headers are capitalized, but only
lowercase headers are expected.

A string (“forty”) that cannot be
coerced by int() to a numeric value

A “reps” value (“20”)
missing a dash

Well-formed data with
correct headers, but using

a tab for the delimiter

Password strength:
Generating a secure and

memorable password
It’s not easy to create passwords that are both difficult to guess and easy to remem-
ber. An XKCD comic describes an algorithm that provides both security and recall
by suggesting that a password be composed of “four random common words”
(https://xkcd.com/936/). For instance, the comic suggests that the password com-
posed of the words “correct,” “horse,” “battery,” and “staple” would provide “~44
bits of entropy” which would require around 550 years for a computer to guess,
given 1,000 guesses per second.

 We’re going to write a program called password.py that will create passwords by
randomly combining words from some input files. Many computers have a file that
lists thousands of English words, each on a separate line. On most of my systems, I
can find this at /usr/share/dict/words, and it contains over 235,000 words! As the
file can vary by system, I’ve added a version to the repo so that we can use the same
file. This file is a little large, so I’ve compressed to inputs/words.txt.zip. You should
unzip it before using it:

$ unzip inputs/words.txt.zip

Now we should both have the same inputs/words.txt file so that this is reproducible
for you:

$./password.py ../inputs/words.txt --seed 14
CrotalLeavesMeeredLogy
NatalBurrelTizzyOddman
UnbornSignerShodDehort

Hmm, maybe those aren’t going to be the easiest to remember! Perhaps instead we
should be a bit more judicious about the source of our words? We’re drawing from
331

https://xkcd.com/936/

332 CHAPTER 20 Password strength: Generating a secure and memorable password
a pool of over 200,000 words, but the average speaker tends to use somewhere
between 20,000 and 40,000 words.

 We can generate more memorable passwords by drawing from an actual piece of
English text, such as the US Constitution. Note that to use a piece of input text in this
way, we will need to remove any punctuation, as we have done in previous exercises:

$./password.py --seed 8 ../inputs/const.txt
DulyHasHeadsCases
DebtSevenAnswerBest
ChosenEmitTitleMost

Another strategy for generating memorable words could be to limit the pool of words
to the more interesting parts of speech, like nouns, verbs, and adjectives taken from
texts like novels or poetry. I’ve included a program I wrote called harvest.py that uses
a natural language processing library in Python called spaCy (https://spacy.io) that
will extract those parts of speech into files that we can use as input to our program. If

(Image used with permission from xkcd.com.)

http://xkcd.com
https://spacy.io

333
you want to use this program on your own input files, you’ll need to be sure you first
install the module:

$ python3 -m pip install spacy

I ran the harvest.py program on some texts and placed the outputs into directories in
the 20_password directory of the source repo. For instance, here is the output draw-
ing from nouns found in the US Constitution:

$./password.py --seed 5 const/nouns.txt
TaxFourthYearList
TrialYearThingPerson
AidOrdainFifthThing

And here we have passwords generated using only verbs found in The Scarlet Letter by
Nathaniel Hawthorne:

$./password.py --seed 1 scarlet/verbs.txt
CrySpeakBringHold
CouldSeeReplyRun
WearMeanGazeCast

And here are some generated from adjectives extracted from William Shakespeare’s
sonnets:

$./password.py --seed 2 sonnets/adjs.txt
BoldCostlyColdPale
FineMaskedKeenGreen
BarrenWiltFemaleSeldom

Just in case that does not result in a strong enough password, we will also provide a
--l33t flag to further obfuscate the text by

1 Passing the generated password through the ransom.py algorithm from chapter 12
2 Substituting various characters with a given table, as we did in jump_the_five.py

from chapter 4
3 Adding a randomly selected punctuation character to the end

Here is what the Shakespearean passwords look like with this encoding:

$./password.py --seed 2 sonnets/adjs.txt --l33t
B0LDco5TLYColdp@l3,
f1n3M45K3dK3eNGR33N[
B4rReNW1LTFeM4l3seldoM/

In this exercise, you will

 Take a list of one or more input files as positional arguments
 Use a regular expression to remove non-word characters
 Filter words by some minimum length requirement
 Use sets to create unique lists

334 CHAPTER 20 Password strength: Generating a secure and memorable password
 Generate a given number of passwords by combining some given number of
randomly selected words

 Optionally encode text using a combination of algorithms we’ve previously
written

20.1 Writing password.py
Our program should be written in the 20_password directory and will be called pass-
word.py. It will create some --num number of passwords (default, 3) each by randomly
choosing some --num_words number of words (default, 4) from a unique set of words
from one or more input files. As it will use the random module, the program will also
accept a random --seed argument, which should be an integer value with a default of
None. The words from the input files will need to be a --min_word_len minimum
length (default, 3) up to a --max_word_len maximum length (default, 6) after remov-
ing any non-characters.

 As always, our first priority is to sort out the inputs to the program. Do not move
ahead until your program can produce this usage with the -h or --help flags and can
pass the first eight tests:

$./password.py -h
usage: password.py [-h] [-n num_passwords] [-w num_words] [-m minimum]

[-x maximum] [-s seed] [-l]
FILE [FILE ...]

Password maker

positional arguments:
FILE Input file(s)

optional arguments:
-h, --help show this help message and exit
-n num_passwords, --num num_passwords

Number of passwords to generate (default: 3)
-w num_words, --num_words num_words

Number of words to use for password (default: 4)
-m minimum, --min_word_len minimum

Minimum word length (default: 3)
-x maximum, --max_word_len maximum

Maximum word length (default: 6)
-s seed, --seed seed Random seed (default: None)
-l, --l33t Obfuscate letters (default: False)

The words from the input files will be title cased (first letter uppercase, the rest lower-
case), which we can achieve using the str.title() method. This makes it easier to
see and remember the individual words in the output. Note that we can vary the num-
ber of words included in each password as well as the number of passwords generated:

$./password.py --num 2 --num_words 3 --seed 9 sonnets/*
QueenThenceMasked
GullDeemdEven

335Writing password.py
The --min_word_len argument helps to filter out shorter, less interesting words like
“a,” “I,” “an,” “of,” and so on, while the --max_word_len argument prevents the pass-
words from becoming unbearably long. If you increase these values, the passwords
change quite drastically:

$./password.py -n 2 -w 3 -s 9 -m 10 -x 20 sonnets/*
PerspectiveSuccessionIntelligence
DistillationConscienceCountenance

The --l33t flag is a nod to “leet”-speak, where 31337 H4X0R means “ELITE
HACKER”.1 When this flag is present, we’ll encode each of the passwords in two ways.
First, we’ll pass the word through the ransom() algorithm we wrote in chapter 12:

$./ransom.py MessengerRevolutionImportune
MesSENGeRReVolUtIonImpoRtune

Then, we’ll use the following substitution table to substitute characters in the same
way we did in chapter 4:

a => @
A => 4
O => 0
t => +
E => 3
I => 1
S => 5

To cap it off, we’ll use random.choice() to select one character from string.punctu-
ation to add to the end:

$./password.py --num 2 --num_words 3 --seed 9 --min_word_len 10 --max_word_len
20 sonnets/* --l33t

p3RsPeC+1Vesucces5i0niN+3lL1Genc3$
D1s+iLl@+ioNconsc1eNc3coun+eN@Nce^

Figure 20.1 shows a string diagram that summarizes the inputs.

20.1.1 Creating a unique list of words

Let’s start off by making our program print the name of each input file:

def main():
args = get_args()
random.seed(args.seed)

for fh in args.file:
print(fh.name)

1 See the “Leet” Wikipedia page (https://en.wikipedia.org/wiki/Leet) or the Cryptii translator https://cryptii
.com/.

Always set random.seed() right
away as it will globally affect all
actions by the random module.

Iterate through the file arguments.

Print the name of the file.

https://en.wikipedia.org/wiki/Leet
https://cryptii.com/
https://cryptii.com/
https://cryptii.com/

336 CHAPTER 20 Password strength: Generating a secure and memorable password
Let’s test it with the words.txt file:

$./password.py ../inputs/words.txt
../inputs/words.txt

Now let’s try it with some of the other inputs:

$./password.py scarlet/*
scarlet/adjs.txt
scarlet/nouns.txt
scarlet/verbs.txt

Our first goal is to create a unique list of words we can use for sampling. So far we’ve
used lists to keep ordered collections of things like strings and numbers. The ele-
ments in a list do not have to be unique, though. We’ve also used dictionaries to cre-
ate key/value pairs, and the keys of a dictionary are unique. Since we don’t care about
the values, we could set each key of a dictionary equal to some arbitrary value, like 1:

Figure 20.1 Our program has many possible options but requires only one or
more input files. The output will be unbreakable passwords.

337Writing password.py
def main():
args = get_args()
random.seed(args.seed)
words = {}

for fh in args.file:
for line in fh:

for word in line.lower().split():
words[word] = 1

print(words)

If you run this on the US Constitution, you should see a fairly large list of words (some
output elided here):

$./password.py ../inputs/const.txt
{'we': 1, 'the': 1, 'people': 1, 'of': 1, 'united': 1, 'states,': 1, ...}

I can spot one problem, in that the word 'states,' has a comma attached to it. If we try
in the REPL with the first bit of text from the Constitution, we can see the problem:

>>> 'We the People of the United States,'.lower().split()
['we', 'the', 'people', 'of', 'the', 'united', 'states,']

How can we get rid of the punctuation?

20.1.2 Cleaning the text

We’ve seen several times that splitting on spaces leaves punctuation, but splitting on
non-word characters can break contracted words like “Don’t” in two. We’d like a func-
tion that will clean() a word.

 First let’s imagine the test for it. Note that in this exercise, I’ll put all my unit tests
into a file called unit.py, which I can run with pytest -xv unit.py.

 Here is the test for our clean() function:

def test_clean():
assert clean('') == ''
assert clean("states,") == 'states'
assert clean("Don't") == 'Dont'

I would like to apply this to all the elements returned by splitting each line into words,
and map() is a fine way to do that. We often use a lambda when writing map(), as in fig-
ure 20.2.

Create an empty dict to
hold the unique words.

Iterate through the files.

Iterate through the
lines of the file.

Lowercase the line
and split it on spaces
into words.

Set the key words[word] equal to 1 to indicate
we saw it. We’re only using a dict to get the
unique keys. We don’t care about the values,
so you could use whatever value you like.

It’s always good to test your functions on nothing,
just to make sure it does something sane.

The function should
remove punctuation at
the end of a string.The function should not split a

contracted word in two.

338 CHAPTER 20 Password strength: Generating a secure and memorable password
We don’t actually need to write a lambda for map() here because the clean() function
expects a single argument, as shown in figure 20.3.

See how it integrates with the code:

def main():
args = get_args()
random.seed(args.seed)
words = {}

for fh in args.file:
for line in fh:

for word in map(clean, line.lower().split()):
words[word] = 1

print(words)

If we run that on the US Constitution again, we can see that 'states' has been fixed:

$./password.py ../inputs/const.txt
{'we': 1, 'the': 1, 'people': 1, 'of': 1, 'united': 1, 'states': 1, ...}

Figure 20.2 Writing map() using a lambda to accept each word from splitting a string

Figure 20.3 Writing the map() without the lambda because the function expects a single value

Use map() to apply the clean() function to
the results of splitting the line on spaces.

No lambda is required because clean()
expects a single argument.

339Writing password.py
I’ll leave it to you to write a clean() function that will satisfy that test. You might use a
list comprehension, a filter(), or maybe a regular expression. The choice is yours,
so long as it passes the test.

20.1.3 Using a set

There is a better data structure than a dict to use for our purposes here. It’s called a
set, and you can think of it as being like a unique list or just the keys of a dict. Here
is how we could change our code to use a set to keep track of unique words:

def main():
args = get_args()
random.seed(args.seed)
words = set()

for fh in args.file:
for line in fh:

for word in map(clean, line.lower().split()):
words.add(word)

print(words)

If you run this code now, you will see slightly different output, where Python shows
you a data structure in curly brackets ({}) that will make you think of a dict, but
you’ll notice that the contents look more like a list (as pointed out in figure 20.4):

$./password.py ../inputs/const.txt
{'', 'impartial', 'imposed', 'jared', 'levying', ...}

We’re using sets here because they so easily allow us to keep a unique list of words, but
sets are much more powerful than this. For instance, you can find the shared values
between two lists by using set.intersection():

>>> nums1 = set(range(1, 10))
>>> nums2 = set(range(5, 15))
>>> nums1.intersection(nums2)
{5, 6, 7, 8, 9}

You can read help(set) in the REPL or in the documentation online to learn about
all the amazing things you can do with sets.

Use the set() function to
create an empty set.

Use set.add() to
add a value to a set.

Figure 20.4 A set looks like a cross
between a dictionary and a list.

340 CHAPTER 20 Password strength: Generating a secure and memorable password
20.1.4 Filtering the words

If we look again at the output we have, we’ll see that the empty string is the first element:

$./password.py ../inputs/const.txt
{'', 'impartial', 'imposed', 'jared', 'levying', ...}

We need a way to filter out unwanted values like strings that are too short. In chapter
14 we looked at the filter() function, which is a higher-order function that takes two
arguments:

 A function that accepts one element and returns True if the element should be
kept or False if the element should be excluded

 Some “iterable” (like a list or map()) that produces a sequence of elements to
be filtered

In our case, we want to accept only words that have a length greater than or equal to
the --min_word_len argument, and less than or equal to --max_word_len. In the
REPL, we can use a lambda to create an anonymous function that accepts a word and
makes these comparisons. The result of that comparison is either True or False. Only
words with a length from 3 to 6 are allowed, so this has the effect of removing short,
uninteresting words. Remember that filter() is lazy, so I have to coerce it using the
list function in the REPL to see the output:

>>> shorter = ['', 'a', 'an', 'the', 'this']
>>> min_word_len = 3
>>> max_word_len = 6
>>> list(filter(lambda word: min_word_len <= len(word) <= max_word_len, shorter))
['the', 'this']

This filter() will also remove longer words that would make our passwords
cumbersome:

>>> longer = ['that', 'other', 'egalitarian', 'disequilibrium']
>>> list(filter(lambda word: min_word_len <= len(word) <= max_word_len, longer))
['that', 'other']

One way we could incorporate the filter() is to create a word_len() function that
encapsulates the preceding lambda. Note that I defined it inside main() in order to
create a closure, because I want to reference the values of args.min_word_len and
args.max_word_len:

def main():
args = get_args()
random.seed(args.seed)
words = set()

def word_len(word):
return args.min_word_len <= len(word) <= args.max_word_len

This function will return True
if the length of the given word
is in the allowed range.

341Writing password.py
for fh in args.file:
for line in fh:

for word in filter(word_len, map(clean, line.lower().split())):
words.add(word)

print(words)

We can again try our program to see what it produces:

$./password.py ../inputs/const.txt
{'measures', 'richard', 'deprived', 'equal', ...}

Try it on multiple inputs, such as all the nouns, adjectives,
and verbs from The Scarlet Letter:

$./password.py scarlet/*
{'walk', 'lose', 'could', 'law', ...}

20.1.5 Titlecasing the words

We used the line.lower() function to lowercase all the input, but the passwords we
generate will need each word to be in “Title Case,” where the first letter is uppercase
and the rest of the word is lowercase. Can you figure out how to change the program
to produce this output?

$./password.py scarlet/*
{'Dark', 'Sinful', 'Life', 'Native', ...}

Now we have a way to process any number of files to produce a unique list of title-cased
words that have non-word characters removed and have been filtered to remove the ones
that are too short or long. That’s quite a lot of power packed into a few lines of code!

20.1.6 Sampling and making a password

We’re going to use the random.sample() function to randomly choose --num number
of words from our set to create an unbreakable, yet memorable, password. We’ve
talked before about the importance of using a random seed to test that our “random”
selections are reproducible. It’s also quite important that the items from which we
sample always be ordered in the same way so that the same selections are made. If we
use the sorted() function on a set, we get back a sorted list, which is perfect for
using with random.sample().

 We can add this line to the code from before:

words = sorted(words)
print(random.sample(words, args.num_words))

Now when I run the program with The Scarlet Letter input, I will get a list of words that
might make an interesting password:

$./password.py scarlet/*
['Lose', 'Figure', 'Heart', 'Bad']

We can use word_len (without the parentheses!)
as the function argument to filter().

342 CHAPTER 20 Password strength: Generating a secure and memorable password
The result of random.sample() is a list that you can join on the empty string in
order to make a new password:

>>> ''.join(random.sample(words, num_words))
'TokenBeholdMarketBegin'

You will need to create the number of passwords indicated by the user, similar to how
we created some number of insults in chapter 9. How will you do that?

20.1.7 l33t-ify

The last piece of our program involves creating an l33t() function that will obfuscate
the password. The first step is to convert the password with the same algorithm we
wrote for ransom.py. I’m going to create a ransom() function for this, and here is the
test that is in unit.py:

def test_ransom():
state = random.getstate()
random.seed(1)
assert ransom('Money') == 'moNeY'
assert ransom('Dollars') == 'DOLlaRs'
random.setstate(state)

I’ll leave it to you to create the function that satisfies this test.

NOTE You can run pytest -xv unit.py to run the unit tests. The program
will import the various functions from your password.py file to test. Open
unit.py and inspect it to understand how this happens.

Next I will replace some of the characters according to the following table. I recom-
mend you revisit chapter 4 to see how you did that:

a => @
A => 4
O => 0
t => +
E => 3
I => 1
S => 5

I wrote an l33t() function that combines ransom() with the preceding substitution and
then adds a punctuation character by appending random.choice(string.punctuation).

 Here is the test_l33t() function you can use to write your function. It works
almost identically to the previous test, so I shall eschew commentary:

def test_l33t():
state = random.getstate()
random.seed(1)
assert l33t('Money') == 'moNeY{'
assert l33t('Dollars') == 'D0ll4r5`'
random.setstate(state)

Save the current
global state.

Set random.seed()
to a known value
for the test.

Restore the state.

343Solution
20.1.8 Putting it all together

Without giving away the ending, I’d like to say that you need to be really careful about
the order of operations that include the random module. My first implementation
would print different passwords given the same seed when I used the --l33t flag.
Here was the output for plain passwords:

$./password.py -s 1 -w 2 sonnets/*
EagerCarcanet
LilyDial
WantTempest

I would have expected the exact same passwords, only encoded. Here is what my pro-
gram produced instead:

$./password.py -s 1 -w 2 sonnets/* --l33t
3@G3RC@rC@N3+{
m4dnes5iNcoN5+4n+|
MouTh45s15T4nCe^

The first password looks OK, but what are those other two? I modified my code to
print both the original password and the l33ted one:

$./password.py -s 1 -w 2 sonnets/* --l33t
3@G3RC@rC@N3+{ (EagerCarcanet)
m4dnes5iNcoN5+4n+| (MadnessInconstant)
MouTh45s15T4nCe^ (MouthAssistance)

The random module uses a global state to make each of its “random” choices. In my
first implementation, I was modifying this state after choosing the first password by
immediately modifying the new password with the l33t() function. Because the
l33t() function also uses random functions, the state was altered for the next pass-
word. My solution was to first generate all the passwords and then alter them using the
l33t() function, if necessary.

 Those are all the pieces you should need to write your program. You have the unit
tests to help you verify the functions, and you have the integration tests to ensure your
program works as a whole.

20.2 Solution
I hope you will use your program to generate your passwords. Be sure to share them
with your author, especially the ones to your bank account and favorite shopping sites!

#!/usr/bin/env python3
"""Password maker, https://xkcd.com/936/"""

import argparse
import random
import re
import string

344 CHAPTER 20 Password strength: Generating a secure and memorable password
--
def get_args():

"""Get command-line arguments"""

parser = argparse.ArgumentParser(
description='Password maker',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('file',
metavar='FILE',
type=argparse.FileType('rt'),
nargs='+',
help='Input file(s)')

parser.add_argument('-n',
'--num',
metavar='num_passwords',
type=int,
default=3,
help='Number of passwords to generate')

parser.add_argument('-w',
'--num_words',
metavar='num_words',
type=int,
default=4,
help='Number of words to use for password')

parser.add_argument('-m',
'--min_word_len',
metavar='minimum',
type=int,
default=3,
help='Minimum word length')

parser.add_argument('-x',
'--max_word_len',
metavar='maximum',
type=int,
default=6,
help='Maximum word length')

parser.add_argument('-s',
'--seed',
metavar='seed',
type=int,
help='Random seed')

parser.add_argument('-l',
'--l33t',
action='store_true',
help='Obfuscate letters')

return parser.parse_args()

345Solution

ea
file

Ti

Defin
funct
to l33
a wo
--
def main():

args = get_args()
random.seed(args.seed)
words = set()

def word_len(word):
return args.min_word_len <= len(word) <= args.max_word_len

for fh in args.file:
for line in fh:

for word in filter(word_len, map(clean, line.lower().split())):
words.add(word.title())

words = sorted(words)
passwords = [

''.join(random.sample(words, args.num_words)) for _ in range(args.num)
]

if args.l33t:
passwords = map(l33t, passwords)

print('\n'.join(passwords))

--
def clean(word):

"""Remove non-word characters from word"""

return re.sub('[^a-zA-Z]', '', word)

--
def l33t(text):

"""l33t"""

text = ransom(text)
xform = str.maketrans({

'a': '@', 'A': '4', 'O': '0', 't': '+', 'E': '3', 'I': '1', 'S': '5'
})
return text.translate(xform) + random.choice(string.punctuation)

Set the random.seed() to the given
value or the default None, which is
the same as not setting the seed.

Create an empty set
to hold all the unique
words we’ll extract
from the texts.

Create a word_len() function
for filter() that returns True
if the word’s length is in the
allowed range and False
otherwise.Iterate

through
ch open
 handle. Iterate through each line

of text in the file handle.

Iterate through each word generated by splitting
the lowercased line on spaces, removing non-

word characters with the clean() function, and
filtering for words of an acceptable length.

tle-case the word
before adding it

to the set.

Use the sorted() function to order
words into a new list.

Use a list comprehension with a range to create the
correct number of passwords. Since I don’t need the
actual value from range, I can use _ to ignore the value.

See if the args.l33t
flag is True.

Use map() to run all the passwords
through the l33t() function to produce
a new list of passwords. It’s safe to call
the l33t() function here. If we had used
the function in the list comprehension,
it would have altered the global state
of the random module, thereby
altering the following passwords.

Print the passwords
joined on newlines.

Define a function
to clean() a word.

Use a regular expression to
substitute the empty string for
anything that is not an English
alphabet character.e a

ion
t()
rd.

Use the ransom()
function to randomly
capitalize letters.

Make a translation
table/dict for character
substitutions.

Use the str.translate() function to perform the substitutions
and append a random piece of punctuation.

346 CHAPTER 20 Password strength: Generating a secure and memorable password
--
def ransom(text):

"""Randomly choose an upper or lowercase letter to return"""

return ''.join(
map(lambda c: c.upper() if random.choice([0, 1]) else c.lower(), text))

--
if __name__ == '__main__':

main()

20.3 Discussion
I hope you found this program challenging and interesting. There wasn’t anything
new in get_args(), but, again, about half the lines of code are found just in this func-
tion. I feel this is indicative of just how important it is to correctly define and validate
the inputs to a program!

 Now, let’s get on with talking about the auxiliary functions.

20.3.1 Cleaning the text

I chose to use a regular expression to remove any characters that are outside the set of
lower- and uppercase English characters:

def clean(word):
"""Remove non-word characters from word"""
return re.sub('[^a-zA-Z]', '', word)

Recall from chapter 18 that we can write the character class [a-zA-Z] to define the
characters in the ASCII table bounded by those two ranges. We can then negate or
complement that class by placing a caret (^) as the first character inside that class, so
[^a-zA-Z] can be read as “any character not matching a to z or A to Z.”

 It’s perhaps easier to see it in action in the REPL. In the following example, only
the letters “AbCd” will be left from the text “A1b*C!d4”:

>>> import re
>>> re.sub('[^a-zA-Z]', '', 'A1b*C!d4')
'AbCd'

If the only goal were to match ASCII letters, it would be possible to solve it by looking
for membership in string.ascii_letters:

>>> import string
>>> text = 'A1b*C!d4'
>>> [c for c in text if c in string.ascii_letters]
['A', 'b', 'C', 'd']

Define a function for the
ransom() algorithm

from chapter 12.

Return a new string created by randomly
upper- or lowercasing each letter in a word.

The re.sub() function will substitute
any text matching the pattern (the
first argument) found in the given text
(the third argument) with the value
given by the second argument.

347Discussion
A list comprehension with a guard can also be written using filter():

>>> list(filter(lambda c: c in string.ascii_letters, text))
['A', 'b', 'C', 'd']

Both of the non-regex versions seem like more effort to me. Additionally, if the func-
tion ever needed to be changed to allow, say, numbers and a few specific pieces of
punctuation, the regular expression version becomes significantly easier to write and
maintain.

20.3.2 A king’s ransom

The ransom() function was taken straight from the ransom.py program in chapter 12,
so there isn’t too much to say about it except, hey, look how far we’ve come! What was
the idea for an entire chapter is now a single line in a much longer and more compli-
cated program:

def ransom(text):
"""Randomly choose an upper or lowercase letter to return"""
return ''.join(

map(lambda c: c.upper() if random.choice([0, 1]) else c.lower(), text))

20.3.3 How to l33t()

The l33t() function builds on ransom() and then adds a text substitution that is
straight out of chapter 4. I like the str.translate() version of that program, so I
used it again here:

def l33t(text):
"""l33t"""
text = ransom(text)
xform = str.maketrans({

'a': '@', 'A': '4', 'O': '0', 't': '+', 'E': '3', 'I': '1', 'S': '5'
})
return text.translate(xform) + random.choice(string.punctuation)

20.3.4 Processing the files

To use these functions, we need to create a unique set of all the words in our input
files. I wrote this bit of code with an eye both on performance and on style:

words = set()
for fh in args.file:

for line in fh:

Join the resulting list from the
map() on the empty string to
create a new string.

Use map() to iterate through each character in the text and
select either the upper- or lowercase version of the character

based on a “coin toss,” using random.choice() to select
between a “truthy” value (1) or a “falsey” value (0).

Randomly
capitalize the
given text.

Make a translation table from the given dict
that describes how to modify one character
to another. Any characters not listed in the
keys of this dict will be ignored.

Use the str.translate() method to make all the character
substitutions. Use random.choice() to select one additional

character from string.punctuation to append to the end.

Iterate through
each open file
handle.

Read the file handle line by line with
a for loop, not with a method like
fh.read(), which will read the entire
contents of the file at once.

348 CHAPTER 20 Password strength: Generating a secure and memorable password
for word in filter(word_len, map(clean, line.lower().split())):
words.add(word.title())

Figure 20.5 shows a diagram of that for line.

1 line.lower() will return a lowercase version of line.
2 The str.split() method will break the text on whitespace to return words.
3 Each word is fed into the clean() function to remove any character that is not

in the English alphabet.
4 The cleaned words are filtered by the word_len() function.
5 The resulting word has been transformed, cleaned, and filtered.

If you don’t like the map() and filter() functions, you might rewrite the code like so:

words = set()
for fh in args.file:

for line in fh:
for word in line.lower().split():

word = map(clean)
if args.min_word_len <= len(word) <= args.max_word_len:

words.add(word.title()

However you choose to process the files, at this point you should have a complete set
of all the unique, title-cased words from the input files.

20.3.5 Sampling and creating the passwords

As noted earlier, it’s vital to sort the words for our tests so that we can verify that we are
making consistent choices. If you only wanted random choices and didn’t care about
testing, you would not need to worry about sorting—but then you’d also be a morally

Reading this code requires starting at the
end where I split line.lower() on spaces. Each
word from str.split() goes into clean(), which
then must pass through the filter() function.

Title-case the word before
adding it to the set.

Figure 20.5 A visualization of the order of operations for the various functions

Iterate through each
open file handle. Iterate

through each
line of the file
handle.

Iterate through each
“word” from splitting the
lowercased line on spaces.

Remove
unwanted

characters. Check if the word
is an acceptable

length.
Add the title-cased

word to the set.

349Going further
deficient person for not testing, so perish the thought! I chose to use the sorted()
function, as there is no other way to sort a set:

words = sorted(words)

We need to create a given number of passwords, and I thought it might be easiest to
use a for loop with a range(). In my code, I used for _ in range(…) just as in chapter
9 because I don’t need to know the value each time through the loop. The underscore
(_) is a way to indicate that you are ignoring the value. It’s fine to say for i in
range(…) if you want, but some linters might complain if they see that your code
declares the variable i but never uses it. That could legitimately be a bug, so it’s best to
use the _ to show that you mean to ignore this value.

 Here is the first way I wrote the code that led to the bug I mentioned earlier, where
different passwords would be chosen even when I used the same random seed. Can
you spot the bug?

for _ in range(args.num):
password = ''.join(random.sample(words, args.num_words))
print(l33t(password) if args.l33t else password)

The solution is to separate the concerns of generating the passwords and possibly
modifying them:

passwords = [
''.join(random.sample(words, args.num_words)) for _ in range(args.num)

]

if args.l33t:
passwords = map(l33t, passwords)

print('\n'.join(passwords))

20.4 Going further
 The substitution part of the l33t() function changes every available character,

which perhaps makes the password too difficult to remember. It would be better
to modify only maybe 10% of the password, much like how we changed the
input strings in chapter 10’s Telephone exercise.

There is no set.sort() function. Sets are
ordered internally by Python. Calling sorted()
on a set will create a new, sorted list.

Iterate through the args.num
of passwords to create.

Each password will be based on a random sampling from
words, and I will choose the value given in args.num_words.
The random.sample() function returns a list of words that I

str.join() on the empty string to create a new string.

If the args.l33t flag is True, we’ll print the l33t version of the password; otherwise, I’ll print
the password as is. This is the bug! Calling l33t() here modifies the global state used by the

random module, so the next time I call random.sample(), I get a different sample.

Use a list comprehension to iterate through
range(args.num) to generate the correct
number of passwords.

If the args.leet flag is True, use the l33t()
function to modify the passwords.

Print the passwords
joined on newlines.

350 CHAPTER 20 Password strength: Generating a secure and memorable password
 Create programs that combine other skills you’ve learned. Like maybe a lyrics
generator that randomly selects lines from files of songs by your favorite bands,
then encodes the text as in chapter 15, then changes all the vowels to one vowel
as in chapter 8, and then SHOUTS IT OUT as in chapter 5?

Summary
 A set is a unique collection of values. Sets can

interact with other sets to create differences, inter-
sections, unions, and more.

 Changing the order of operations using the
random module can change the output of a pro-
gram because the global state of the random mod-
ule may be affected.

 Short, tested functions can be composed to create
more complicated, tested programs. Here we com-
bined many ideas from previous exercises in con-
cise, powerful expressions.

Tic-Tac-Toe:
Exploring state
One of my favorite movies is the 1983
release War Games starring Matthew
Broderick, whose character, David,
plays a young hacker who enjoys
cracking into computer systems rang-
ing from his school’s grade book to a
Pentagon server that has the poten-
tial to launch intercontinental ballis-
tic missiles. Central to the plot is the
game of Tic-Tac-Toe, a game so sim-
ple that it usually ends in a draw
between the two players.

 In the movie, David engages
Joshua, an artificial intelligence (AI)
agent, who is capable of playing lots
of nice games like chess. David would rather play the game Global Thermonu-
clear War with Joshua. Eventually David realizes that Joshua is using the simula-
tion of a war game to trick the US military into initiating a nuclear first strike
against the Soviet Union. Understanding the mutually assured destruction
(MAD) doctrine, David asks Joshua to play himself at Tic-Tac-Toe so that he can
explore the futility of games that can never result in victory. After hundreds or
thousands of rounds all ending in draws, Joshua concludes that “the only winning
move is not to play,” at which point Joshua stops trying to destroy the Earth and
suggests instead that they could play “a nice game of chess.”
351

352 CHAPTER 21 Tic-Tac-Toe: Exploring state
 I assume you already know the game of Tic-Tac-Toe, but we’ll review briefly in case
your childhood missed countless games of this with your friends. The game starts out
with a 3-by-3 square grid. There are two players who take turns marking first X and
then O in the cells. A player wins by placing their mark in any three squares in a
straight line, horizontally, vertically, or diagonally. This is usually impossible, as each
player will generally use their moves to block a potential win by their opponent.

 We will spend the last two chapters writing Tic-Tac-Toe. We will explore ideas for
representing and tracking program state, which is a way of thinking about how the
pieces of a program change over time. For instance, we’ll start off with a blank board,
and the first player to go is X. Play alternates between the X and O, and after each
round two cells on the board will have been taken by the two players. We’ll need to
keep track of these moves and more, so that, at any moment, we always know the state
of the game.

 If you recall, the hidden state of the random module proved to be a problem in
chapter 20, where an early solution we explored produced inconsistent results
depending on the order of the operations that used the module. In this exercise,
we’re going to think about ways to make the state of our game, and any changes to
it, explicit.

 In this chapter, we’ll write a program that plays just one turn of the game; then in
the next chapter we’ll expand the program to handle a full game. This version of the
program will be given a string that represents the state of the playing board at any
time during a game. The default is the empty board at the beginning of the game,
before either player has made a move. The program may also be given one move to
add to that board. It will print a picture of the board and report if there is a winner
after making the move.

 For this program, we need to track at least two ideas in our state:

 The board, identifying which player has marked which squares of the grid
 The winner, if there is one

For the next version, we’ll write an interactive version of the game where we will need
to track and update several more items in the state through a complete game of
Tic-Tac-Toe.

 In this exercise, you will

 Consider how to use elements like strings and lists to represent aspects of a pro-
gram’s state

 Enforce the rules of a game in code, such as preventing a player from playing in
a cell that has already been taken

 Use a regular expression to validate the initial board
 Use and and or to reduce combinations of Boolean values to a single value
 Use lists of lists to find a winning board
 Use the enumerate() function to iterate a list with the index and value

353Writing tictactoe.py
21.1 Writing tictactoe.py
You will create a program called tictactoe.py in the 21_tictactoe directory. As usual, I
would recommend you start the program using new.py or template.py. Let’s discuss
the parameters for the program.

 The initial state of the board will come from a -b or --board option that describes
which cells are occupied by which players. Since there are nine cells, we’ll use a string
that is nine characters long, composed only of the characters X and O, or the period
(.) to indicate that the cell is open. The default board will be a string of nine dots.
When you display the board, you will either display the player’s mark in a cell or the
cell’s number, from one to nine. In the next version of the game, this number will be
used by the player to identify a cell for their move. As there is no winner for the
default board, the program should print “No winner”:

$./tictactoe.py

| 1 | 2 | 3 |

| 4 | 5 | 6 |

| 7 | 8 | 9 |

No winner.

The --board option will describe which cells should be
marked for which player, where the positions in the string
describe the different cells, ascending from 1 to 9. In the
string X.O..O..X, the positions 1 and 9 are occupied by “X”
and positions 3 and 6 by “O” (see figure 21.1).

 Here is how that grid would be rendered by the program:

$./tictactoe.py -b X.O..O..X

| X | 2 | O |

| 4 | 5 | O |

| 7 | 8 | X |

No winner.

We can additionally modify the given --board by passing a -c or --cell option of 1–9
and a -p or --player option of “X” or “O.” For instance, we can mark the first cell as
“X” like so:

$./tictactoe.py --cell 1 --player X

| X | 2 | 3 |

Figure 21.1 The board is
nine characters describing
the nine cells of the board.

354 CHAPTER 21 Tic-Tac-Toe: Exploring state
| 4 | 5 | 6 |

| 7 | 8 | 9 |

No winner.

The winner, if any, should be declared with gusto:

$./tictactoe.py -b XXXOO....

| X | X | X |

| O | O | 6 |

| 7 | 8 | 9 |

X has won!

As usual, we’ll use a test suite to ensure that our program works properly. Figure 21.2
shows the string diagram.

Figure 21.2 Our Tic-Tac-Toe program will play one turn of the game
using a board, player, and cell. It should print the board and winner.

355Writing tictactoe.py
21.1.1 Validating user input

There’s a fair bit of input validation that needs to happen. The --board needs to
ensure that any argument is exactly 9 characters and is composed only of X, O, and .:

$./tictactoe.py --board XXXOOO..
usage: tictactoe.py [-h] [-b board] [-p player] [-c cell]
tictactoe.py: error: --board "XXXOOO.." must be 9 characters of ., X, O

Likewise, the --player can only be X or O:

$./tictactoe.py --player A --cell 1
usage: tictactoe.py [-h] [-b board] [-p player] [-c cell]
tictactoe.py: error: argument -p/--player: \
invalid choice: 'A' (choose from 'X', 'O')

And the --cell can only be an integer value from 1 to 9:

$./tictactoe.py --player X --cell 10
usage: tictactoe.py [-h] [-b board] [-p player] [-c cell]
tictactoe.py: error: argument -c/--cell: \
invalid choice: 10 (choose from 1, 2, 3, 4, 5, 6, 7, 8, 9)

Both --player and --cell must be present together, or neither can be present:

$./tictactoe.py --player X
usage: tictactoe.py [-h] [-b board] [-p player] [-c cell]
tictactoe.py: error: Must provide both --player and --cell

Lastly, if the --cell specified is already occupied by an X or an O, the program should
error out:

$./tictactoe.py --player X --cell 1 --board X..O.....
usage: tictactoe.py [-h] [-b board] [-p player] [-c cell]
tictactoe.py: error: --cell "1" already taken

I would recommend you put all this error checking into get_args() so that you can
use parser.error() to throw the errors and halt the program.

21.1.2 Altering the board

The initial board, once validated, describes which cells are occupied by which player.
This board can be altered by adding the --player and --cell arguments. It may
seem silly to not just pass in the already altered --board, but this is necessary practice
for writing the interactive version.

 If you represent board as a str value, like 'XX.O.O..X', and you need to change
cell 3 to an X, for instance, how will you do that? For one thing, cell 3 is not found at
index 3 in the given board—the index is one less than the cell number. The other issue
is that a str is immutable. Just as in chapter 10’s Telephone program, you’ll need to
figure out a way to modify one character in the board value.

356 CHAPTER 21 Tic-Tac-Toe: Exploring state
21.1.3 Printing the board

Once you have a board, you’ll need to format it with ASCII characters to create a grid.
I recommend you make a function called format_board() that takes the board string
as an argument and returns a str that uses dashes (-) and vertical pipes (|) to create
a table. I have provided a unit.py file that contains the following test for the default,
unoccupied grid:

def test_board_no_board():
"""makes default board"""

board = """

| 1 | 2 | 3 |

| 4 | 5 | 6 |

| 7 | 8 | 9 |

""".strip()

assert format_board('.' * 9) == board

Now try formatting a board with some other combination. Here’s another test I wrote
that you might like to use, but feel free to write your own:

def test_board_with_board():
"""makes board"""

board = """

| 1 | 2 | 3 |

| O | X | X |

| 7 | 8 | 9 |

""".strip()

assert format_board('...OXX...') == board

It would be impractical to test every possible combination for the board. When you’re
writing tests, you’ll often have to rely on spot-checking your code. Here I am checking
the empty board and a non-empty board. Presumably if the function can handle these
two arguments, it can handle any others.

21.1.4 Determining a winner

Once you have validated the input and printed the board, your last task is to declare a
winner if there is one. I chose to write a function called find_winner() that returns
either X or O if one of those is the winner, or returns None if there is no winner. To test

Use triple quotes because
the string has embedded
newlines. The final str.strip()
call will remove the trailing
newline used to format the
code.

If you multiply a string by an
integer value, Python will repeat
the given string that number of
times. Here we create a string of
nine dots as the input to
format_board(). We expect the
return should be an empty board
as formatted here.

The given board should
have the first and third
rows open and the second
row with “OXX.”

357Solution

Ch
both

X

.

o
c

Cha
“p
th

the
this, I wrote out every possible winning board, to test my function with values for both
players. You are welcome to use this test:

def test_winning():
"""test winning boards"""

wins = [('PPP......'), ('...PPP...'), ('......PPP'), ('P..P..P..'),
('.P..P..P.'), ('..P..P..P'), ('P...P...P'), ('..P.P.P..')]

for player in 'XO':
other_player = 'O' if player == 'X' else 'X'

for board in wins:
board = board.replace('P', player)
dots = [i for i in range(len(board)) if board[i] == '.']
mut = random.sample(dots, k=2)
test_board = ''.join([

other_player if i in mut else board[i]
for i in range(len(board))

])
assert find_winner(test_board) == player

I also wanted to be sure I would not falsely claim that a losing board is winning, so I
also wrote the following test to ensure that None is returned when there is no winner:

def test_losing():
"""test losing boards"""

losing_board = list('XXOO.....')

for _ in range(10):
random.shuffle(losing_board)
assert find_winner(''.join(losing_board)) is None

If you choose the same function names as I did, you can run pytest -xv unit.py to
run the unit tests I wrote. If you wish to write different functions, you can create your
own unit tests either inside your tictactoe.py file or in another unit file.

 After printing the board, be sure to print “{Winner} has won!” or “No winner”
depending on the outcome. All righty, you have your orders, so get marching!

21.2 Solution
We’re taking baby steps towards the full, interactive game in the next chapter. Right
now we need to cement some basics on how just one turn will be played. It’s good to
make iterations of difficult programs, where you start as simply as possible and slowly
add features to build a more complex idea.

This is a list of the board indexes that, if
occupied by the same player, would win.

eck for
players,
 and O.

Determine which is the
opposite player from X or O

Iterate
through each
f the winning
ombinations.

nge all the P (for
layer”) values in
e given board to

player that we’re
checking. Find the indexes

of the open cells
(indicated by a dot).

Randomly sample
two open cells. We
will mutate these, so
I call them mut.

Alter the board to change
the two selected mut cells
to other_player.

Assert that find_winner() will
determine that this board
wins for the given player.

No matter how this board is arranged,
it cannot win, as there are only two
marks for each player.

Run 10
tests. Shuffle the losing board into

another configuration.

Assert that, no matter how the board is
arranged, we will still find no winner.

358 CHAPTER 21 Tic-Tac-Toe: Exploring state

Use
exp

c

c

ch
#!/usr/bin/env python3
"""Tic-Tac-Toe"""

import argparse
import re

--
def get_args():

"""Get command-line arguments"""

parser = argparse.ArgumentParser(
description='Tic-Tac-Toe',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('-b',
'--board',
help='The state of the board',
metavar='board',
type=str,
default='.' * 9)

parser.add_argument('-p',
'--player',
help='Player',
choices='XO',
metavar='player',
type=str,
default=None)

parser.add_argument('-c',
'--cell',
help='Cell 1-9',
metavar='cell',
type=int,
choices=range(1, 10),
default=None)

args = parser.parse_args()

if any([args.player, args.cell]) and not all([args.player, args.cell]):
parser.error('Must provide both --player and --cell')

if not re.search('^[.XO]{9}$', args.board):
parser.error (f'--board "{args.board}" must be 9 characters of ., X, O')

if args.player and args.cell and args.board[args.cell - 1] in 'XO':
parser.error(f'--cell "{args.cell}" already taken')

return args

The --board will default to
nine dots. If you use the
multiplication operator (*)
with a string value and an
integer (in any order), the
result is the string value
repeated that many times.
So “'.' * 9” will produce
'………'.

The --player must be either
X or O, which can be
validated using choices.

The --cell must be an integer from
1 to 9, which can be validated with
type=int and choices=range(1, 10),
remembering that the upper bound
(10) is not included.

The combination of any() and all() is a
way to test that both arguments are

present or neither is.
 a regular
ression to
heck that
--board is
omprised
of exactly
nine valid
aracters.

If both --player and --cell are present
and valid, verify that the cell in the

board is not currently occupied.

359Solution

Loo
wi

the

t

pla
--
def main():

"""Make a jazz noise here"""

args = get_args()
board = list(args.board)

if args.player and args.cell:
board[args.cell - 1] = args.player

print(format_board(board))
winner = find_winner(board)
print(f'{winner} has won!' if winner else 'No winner.')

--
def format_board(board):

"""Format the board"""

cells = [str(i) if c == '.' else c for i, c in enumerate(board, 1)]
bar = '-------------'
cells_tmpl = '| {} | {} | {} |'
return '\n'.join([

cells_tmpl.format(*cells[:3]), bar,
cells_tmpl.format(*cells[3:6]), bar,
cells_tmpl.format(*cells[6:]), bar

])

--
def find_winner(board):

"""Return the winner"""

winning = [[0, 1, 2], [3, 4, 5], [6, 7, 8], [0, 3, 6], [1, 4, 7],
[2, 5, 8], [0, 4, 8], [2, 4, 6]]

for player in ['X', 'O']:
for i, j, k in winning:

Since we may need to
alter the board, it’s
easiest to convert it
to a list.

Modify the board if both cell and player are “truthy.” Since the
arguments are validated in get_args(), it’s safe to use them here. That is,
I won’t accidentally assign an index value that is out of range because I
have taken the time to check that the cell value is acceptable.

Since the cells start
numbering at 1,
subtract 1 from the
cell to change the
correct index in
board.

Print the board.
k for a

nner in
 board.

Print the outcome of the game. The
find_winner() function returns either X or

O if one of the players has won, or None
to no indicate no winner.

Define a function to format the board. The
function does not print() the board because that
would make it hard to test. The function returns
a new string value that can be printed or tested.

Iterate through the cells in the
board and decide whether to print

the player, if the cell is occupied,
or the cell number, if it is not.

The return from the function is a
new string created by joining all
the lines of the grid on newlines.

Define a function that returns a winner or the value
None if there is no winner. Again, the function does
not print() the winner but only returns an answer
that can be printed or tested.

There are eight winning boards,
which are defined as eight lists
of the cells that need to be
occupied by the same player.
Note that I chose here to
represent the actual zero-offset
index values and not the 1-based
values I expect from the user.

Iterate
hrough

both
yers, X
and O.

Iterate through each
winning combination of
cells, unpacking them into
the variables i, j, and k.

360 CHAPTER 21 Tic-Tac-Toe: Exploring state
combo = [board[i], board[j], board[k]]
if combo == [player, player, player]:

return player

--
if __name__ == '__main__':

main()

21.2.1 Validating the arguments and mutating the board

Most of the validation can be handled by using argparse effectively. Both the --player
and --cell options can be handled by the choices option. It’s worth taking time to
appreciate the use of any() and all() in this code:

if any([args.player, args.cell]) and not all([args.player, args.cell]):
parser.error('Must provide both --player and --cell')

We can play with these functions in the REPL. The any() function is the same as using
or in between Boolean values:

>>> True or False or True
True

If any of the items in a given list is “truthy,” the whole expression will evaluate to
True:

>>> any([True, False, True])
True

If cell is a non-zero value, and player is not the empty string, they are both “truthy”:

>>> cell = 1
>>> player = 'X'
>>> any([cell, player])
True

The all() function is the same as using and in between all the elements in a list, so
all of the elements need to be “truthy” in order for the whole expression to be True:

>>> cell and player
'X'

Why does that return X? It returns the last “truthy” value, which is the player value, so
if we reverse the arguments, we’ll get the cell value:

>>> player and cell
1

Create a combo that is
the value of the board
for each of i, j, and k.

Check if the combo is
the same player in
every position.

If that is True, return the player. If this is
never True for any of the combinations, we
exit the function without returning a value,

and so None is returned by default.

361Solution
If we use all(), it evaluates the truthiness of anding the values, which will be True:

>>> all([cell, player])
True

We are trying to figure out if the user has provided only one of the arguments for
--player and --cell, because we need both or we want neither. So we pretend cell
is None (the default) but player is X. It’s true that any() of those values is “truthy”:

>>> cell = None
>>> player = 'X'
>>> any([cell, player])
True

But it’s not true that they both are:

>>> all([cell, player])
False

So when we and those two expressions, they return False,

>>> any([cell, player]) and all([cell, player])
False

because that is the same as saying this:

>>> True and False
False

The default for --board is provided as nine dots, and we can use a regular expression
to verify that it’s correct:

>>> board = '.' * 9
>>> import re
>>> re.search('^[.XO]{9}$', board)
<re.Match object; span=(0, 9), match='.........'>

Our regular expression creates a character class composed of the dot (.), “X,” and
“O” by using [.XO]. The {9} indicates that there must be exactly 9 characters, and
the ^ and $ characters anchor the expression to the beginning and end of the string,
respectively (see figure 21.3).

Figure 21.3 We can use a regular
expression to exactly describe a valid
--board.

362 CHAPTER 21 Tic-Tac-Toe: Exploring state
You could manually validate this using the magic of all() again:

 Is the length of board exactly 9 characters?
 Is it true that each of the characters is one of those allowed?

Here is one way to write it:

>>> board = '...XXXOOO'
>>> len(board) == 9 and all([c in '.XO' for c in board])
True

The all() part is checking this:

>>> [c in '.XO' for c in board]
[True, True, True, True, True, True, True, True, True]

Since each character c (“cell”) in board is in the allowed set of characters, all the com-
parisons are True. If we change one of the characters, a False will show up:

>>> board = '...XXXOOA'
>>> [c in '.XO' for c in board]
[True, True, True, True, True, True, True, True, False]

Any False value in an all() expression will return False:

>>> all([c in '.XO' for c in board])
False

The last piece of validation checks if the --cell being set to --player is already
occupied:

if args.player and args.cell and args.board[args.cell - 1] in 'XO':
parser.error(f'--cell "{args.cell}" already taken')

Because --cell starts counting from 1 instead of 0, we must subtract 1 when we use it
as an index into the --board argument. Given the following inputs, the first cell has
been set to X, and now O wants the same cell:

>>> board = 'X........'
>>> cell = 1
>>> player = 'O'

We can ask if the value in board at cell - 1 has already been set:

>>> board[cell - 1] in 'XO'
True

Or you could instead check if that position is not a dot:

>>> boards[cell - 1] != '.'
True

363Solution

o
d
e
I

e
a
s
t
.

It’s rather exhausting to validate all the inputs, but this is the only way to ensure that
the game is played properly.

 In the main() function, we might need to alter the board of the game if there are
arguments for both cell and player. I decided to make board into a list precisely
because I might need to alter it in this way:

if player and cell:
board[cell - 1] = player

21.2.2 Formatting the board

Now it’s time to create the grid. I chose to create a function that returns a string value
that I could test rather than directly printing the grid. Here is my version:

def format_board(board):
"""Format the board"""

cells = [str(i) if c == '.' else c for i, c in enumerate(board, start=1)]
bar = '-------------'
cells_tmpl = '| {} | {} | {} |'
return '\n'.join([

bar,
cells_tmpl.format(*cells[:3]), bar,
cells_tmpl.format(*cells[3:6]), bar,
cells_tmpl.format(*cells[6:]), bar

])

The “splat” syntax of *cell[:3] is a shorter way of writing the code, like so:

return '\n'.join([
bar,
cells_tmpl.format(cells[0], cells[1], cells[2]), bar,
cells_tmpl.format(cells[3], cells[4], cells[5]), bar,
cells_tmpl.format(cells[6], cells[7], cells[8]), bar

])

The enumerate() function returns a list of tuples that include the index and value
of each element in a list (see figure 21.4). Since it’s a lazy function, I must use the
list() function in the REPL to view the values:

>>> board = 'XX.O.O...'
>>> list(enumerate(board))
[(0, 'X'), (1, 'X'), (2, '.'), (3, 'O'), (4, '.'), (5, 'O'), (6, '.'), (7, '.'),

(8, '.')]

In this instance, I would rather start counting at 1, so I can use the start=1 option:

>>> list(enumerate(board, start=1))
[(1, 'X'), (2, 'X'), (3, '.'), (4, 'O'), (5, '.'), (6, 'O'), (7, '.'), (8, '.'),

(9, '.')]

I used a list comprehension t
iterate through each position an

character of board using th
enumerate() function. Because

would rather start counting from
index position 1 than 0, I used th

start=1 option. If the character is
dot, I want to print the position a
the cell number; otherwise, I prin

the character, which will be X or O

The asterisk, or “splat” (*), is shorthand to
expand the list returned by the list slice operation
into values that the str.format() function can use.

364 CHAPTER 21 Tic-Tac-Toe: Exploring state
This list comprehension could alternatively be written as a for loop:

cells = []
for i, char in enumerate(board, start=1):

cells.append(str(i) if char == '.' else char)

Figure 21.5 illustrates how enumerate() is unpacked into i and char.

This version of format_board() passes all the tests found in unit.py.

21.2.3 Finding the winner

The last major piece to this program is determining if either player has won by placing
three of their marks in a row horizontally, vertically, or diagonally.

def find_winner(board):
"""Return the winner"""

winning = [[0, 1, 2], [3, 4, 5], [6, 7, 8], [0, 3, 6], [1, 4, 7],
[2, 5, 8], [0, 4, 8], [2, 4, 6]]

Figure 21.4 The enumerate() function
will return the index and value of items in a
series. By default, the initial index is 0.

Initialize an empty
list to hold the cells.

Unpack each tuple of the index
(starting at 1) and value of each
character in board into the variables
i (for “integer”) and char.

If the char is a dot, use the string version of the
i value; otherwise, use the char value.

Figure 21.5 The tuples containing the indexes and values returned by
enumerate() can be assigned to two variables in the for loop.

There are eight winning positions—the three horizontal
rows, the three vertical columns, and the two diagonals—so I
decided to create a list where each element is also a list that

contains the three cells in a winning configuration.

365Solution
for player in ['X', 'O']:
for i, j, k in winning:

combo = [board[i], board[j], board[k]]
if combo == [player, player, player]:

return player

The rest of the code checks if either X or O is the only character at each of the three
positions. I worked out half a dozen ways to write this, but I’ll just share this one alter-
nate version that uses two of my favorite functions, all() and map():

for combo in winning:
group = list(map(lambda i: board[i], combo))
for player in ['X', 'O']:

if all(x == player for x in group):
return player

If a function has no explicit return or never executes a return, as would be the case
here when there is no winner, Python will use the None value as the default return.
We’ll interpret None to mean there is no winner when we print the outcome of the
game:

winner = find_winner(board)
print(f'{winner} has won!' if winner else 'No winner.')

That covers this version of the game that plays just one turn of Tic-Tac-Toe. In the
next chapter, we’ll expand these ideas into an interactive version that starts with a
blank board and dynamically requests user input to play the game.

It’s typical to use i as a variable name for “integer” values, especially when their life is rather brief, as
here. When more similar names are needed in the same scope, it’s also common to use j, k, l, etc. You
may prefer to use names like cell1, cell2, and cell3, which are more descriptive but also longer to type.
The unpacking of the cell values is exactly the same as the unpacking of the tuples in the previous
enumerate() code (see figure 21.6).

Figure 21.6 As with the unpacking of the enumerate()
tuples, each list of three elements can be unpacked into
three variables in the for loop.

Iterate through each combination
of cells in winning.

Use map() to get the value
of board at each position in

the combination. Check for
each player,
X and O.

See if all the values in the
group are equal to the
given player.

If so, return
that player.

366 CHAPTER 21 Tic-Tac-Toe: Exploring state
21.3 Going further
 Write a game that will play one hand of a card game like Blackjack (Twenty-

one) or War.

Summary
 This program uses a str value to represent the Tic-Tac-Toe board with nine

characters representing X, O, or . to indicate a taken or empty cell. We some-
times convert that to a list to make it easier to modify.

 A regular expression is a handy way to validate the initial board. We can declar-
atively describe that it should be a string exactly nine characters long composed
only of the characters ., X, and O.

 The any() function is like chaining or between multiple Boolean values. It will
return True if any of the values is “truthy.”

 The all() function is like using and between multiple Boolean values. It will
return True only if every one of the values is “truthy.”

 The enumerate() function will return the list index and value for each element
in an iterable like a list.

Tic-Tac-Toe redux:
An interactive version

with type hints
In this last exercise, we’re going to revisit
the Tic-Tac-Toe game from the previous
chapter. That version played one turn of
the game by accepting an initial --board
and then modifying it if there were also
valid options for --player and --cell. It
printed the one board and the winner, if
any. We’re going to extend those ideas into
a version that will always start from an
empty board and will play as many turns as
needed to complete a game, ending with a
winner or a draw.

 This program will be different from all the other programs in this book because
it will accept no command-line arguments. The game will always start with a blank
“board” and with the X player going first. It will use the input() function to inter-
actively ask each player, X and then O, for a move. Any invalid move, such as choos-
ing an occupied or non-existing cell, will be rejected. At the end of each turn, the
game will decide to stop if it determines there is a win or a draw.

 In this chapter you will

 Use and break out of an infinite loop
 Add type hints to your code
 Explore tuples, named tuples, and typed dictionaries
 Use mypy to analyze code for errors, especially misuse of types
367

368 CHAPTER 22 Tic-Tac-Toe redux: An interactive version with type hints
22.1 Writing itictactoe.py
This is the one program where I won’t provide an integration test. The program
doesn’t take any arguments, and I can’t easily write tests that will interact dynami-
cally with the program. This also makes it difficult to show a string diagram, because
the output of the program will be different depending on the moves you make. Still,
figure 22.1 is an approximation of how you could think of the program starting with
no inputs and then looping until some outcome is determined, or the player quits.

I encourage you to start off by running the solution1.py program to play a few rounds
of the game. The first thing you may notice is that the program clears the screen of
any text and shows you an empty board, along with a prompt for the X player’s move.
I’ll type 1 and press Enter:

| 1 | 2 | 3 |

| 4 | 5 | 6 |

| 7 | 8 | 9 |

Player X, what is your move? [q to quit]: 1

Then you will see that cell 1 is now occupied by X, and the player has switched to O:

| X | 2 | 3 |

| 4 | 5 | 6 |

| 7 | 8 | 9 |

Player O, what is your move? [q to quit]:

If I choose 1 again, I am told that cell is already taken:

| X | 2 | 3 |

| 4 | 5 | 6 |

Figure 22.1 This version of
Tic-Tac-Toe accepts no
arguments and will play in
an infinite loop until some
conclusion like a win, draw,
or forfeit.

369Writing itictactoe.py

| 7 | 8 | 9 |

Cell “1” already taken
Player O, what is your move? [q to quit]:

Note that the player is still O because the previous move was invalid. The same hap-
pens if I put in some value that cannot be converted to an integer:

| X | 2 | 3 |

| 4 | 5 | 6 |

| 7 | 8 | 9 |

Invalid cell “biscuit”, please use 1-9
Player O, what is your move? [q to quit]:

Or if I enter an integer that is out of range:

| X | 2 | 3 |

| 4 | 5 | 6 |

| 7 | 8 | 9 |

Invalid cell “10”, please use 1-9
Player O, what is your move? [q to quit]:

You should be able to reuse many of the ideas from chapter 21’s version of the game
to validate the user input.

 If I play the game to a conclusion where one player gets three in a row, it prints the
winning board and proclaims the victor:

| X | O | 3 |

| 4 | X | 6 |

| 7 | O | X |

X has won!

22.1.1 Tuple talk

In this version, we’ll write an interactive game that always starts with an empty grid and
plays as many rounds as necessary to reach a conclusion with a win or a draw. The idea
of “state” in the last game was limited to the board—which players were in which cells.
This version requires us to track quite a few more variables in our game state:

370 CHAPTER 22 Tic-Tac-Toe redux: An interactive version with type hints
 The cells of the board, like ..XO..X.O
 The current player, either X or O
 Any error, such as the player entering a cell that is occupied or that does not

exist or a value that cannot be converted to a number
 Whether the user wishes to quit the game early
 Whether the game is a draw, which happens when all the cells of the grid are

occupied but there is no winner
 The winner, if any, so we know when the game is over

You don’t need to write your program exactly the way I wrote mine, but you still may
find yourself needing to keep track of many items. A dict is a natural data structure
for that, but I’d like to introduce a new data structure called a “named tuple,” as it
plays nicely with Python’s type hints, which will figure prominently in my solution.

 We’ve encountered tuples throughout the exercises. They’ve been returned by
something like match.groups() when a regular expression contains capturing paren-
theses, like in chapters 14 and 17; when using zip to combine two lists, like in chapter
19; or when using enumerate() to get a list of index values and elements from a list.
A tuple is an immutable list, and we’ll explore how that immutability can prevent us
from introducing subtle bugs into our programs.

 You create a tuple whenever you put commas between values:

>>> cell, player
(1, 'X')

It’s most common to put parentheses around them to make it more explicit:

>>> (cell, player)
(1, 'X')

We could assign this to a variable called state:

>>> state = (cell, player)
>>> type(state)
<class 'tuple'>

We index into a tuple using list index values:

>>> state[0]
1
>>> state[1]
'X'

Unlike with a list, we cannot change any of the values inside the tuple:

>>> state[1] = 'O'
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment

371Writing itictactoe.py
It’s going to be inconvenient remembering that the first position is the cell and the
second position is the player, and it will get much worse when we add all the other
fields. We could switch to using a dict so that we can use strings to access the values of
state, but dictionaries are mutable, and it’s also easy to misspell a key name.

22.1.2 Named tuples

It would be nice to combine the safety of an immutable tuple with named fields,
which is exactly what we get with the namedtuple() function. First, you must import it
from the collections module:

>>> from collections import namedtuple

The namedtuple() function allows us to describe a new class for values. Let’s say we
want to create a class that describes the idea of State. A class is a group of variables,
data, and functions that together can be used to represent some idea. The Python lan-
guage itself, for example, has the str class, which represents the idea of a sequence of
characters that can be contained in a variable that has some len (length), and which
can be converted to uppercase with str.upper(), can be iterated with a for loop, and
so forth. All these ideas are grouped into the str class, and we’ve used help(str) to
read the documentation for that class inside the REPL.

 The class name is the first argument we pass to namedtuple(), and the second
argument is a list of the field names in the class. It’s common practice to capitalize
class names:

>>> State = namedtuple('State', ['cell', 'player'])

We’ve just created a new type called State!

>>> type(State)
<class 'type'>

Just as there is a function called list() to create a list type, we can now use the
State() function to create a named tuple of the type State that has two named fields,
cell and player:

>>> state = State(1, 'X')
>>> type(state)
<class '__main__.State'>

We can still access the fields with index values, like any list or tuple:

>>> state[0]
1
>>> state[1]
'X'

372 CHAPTER 22 Tic-Tac-Toe redux: An interactive version with type hints
But we can also use their names, which is much nicer. Notice that there are no paren-
theses at the end, as we are accessing a field, not calling a method:

>>> state.cell
1
>>> state.player
'X'

Because state is a tuple, we cannot mutate the value once it has been created:

>>> state.cell = 1
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AttributeError: can't set attribute

This is actually good in many instances. It’s often quite dangerous to change your data
values once your program has started. You should use tuples or named tuples when-
ever you want a list- or dictionary-like structure that cannot be accidentally modified.

 There is a problem, however, in that there’s nothing to prevent us from instantiat-
ing a state with the fields out of order and of the wrong types—cell should be an int,
and player should be a str!

>>> state2 = State('O', 2)
>>> state2
State(cell='O', player=2)

In order to avoid that, you can use the field names, so that their order no longer
matters:

>>> state2 = State(player='O', cell=2)
>>> state2
State(cell=2, player='O')

Now you have a data structure that looks like a dict but has the immutability of a
tuple!

22.1.3 Adding type hints

We still have a big problem in that there’s nothing preventing us from assigning a str
to the cell, which ought to be an int, and vice versa for int and player:

>>> state3 = State(player=3, cell='X')
>>> state3
State(cell='X', player=3)

Starting in Python 3.6, the typing module allows you to add type hints to describe the
data types for variables. You should read PEP 484 (www.python.org/dev/peps/pep-
0484/) for more information, but the basic idea is that we can use this module to
describe the appropriate types for variables and type signatures for functions.

373Writing itictactoe.py
 I’m going to improve our State class by using the NamedTuple class from the
typing module as the base class. First we need to import from the typing module
the classes we’ll need, such as NamedTuple, List, and Optional, the last of which
describes a type that could be None or some other class like a str:

from typing import List, NamedTuple, Optional

Now we can specify a State class with named fields, types, and even default values to
represent the initial state of the game where the board is empty (all dots) and player
X goes first. Note that I decided to store the board as a list of characters rather
than a str:

class State(NamedTuple):
board: List[str] = list('.' * 9)
player: str = 'X'
quit: bool = False
draw: bool = False
error: Optional[str] = None
winner: Optional[str] = None

We can use the State() function to create a new value that’s set to the initial state:

>>> state = State()
>>> state.board
['.', '.', '.', '.', '.', '.', '.', '.', '.']
>>> state.player
'X'

You can override any default value by providing the field name and a value. For
instance, we could start the game off with player O by specifying player='O'. Any field
we don’t specify will use the default:

>>> state = State(player='O')
>>> state.board
['.', '.', '.', '.', '.', '.', '.', '.', '.']
>>> state.player
'O'

We get an exception if we misspell a field name, like playre instead of player:

>>> state = State(playre='O')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: __new__() got an unexpected keyword argument 'playre'

22.1.4 Type verification with Mypy

As nice as all the above is, Python will not generate a runtime error if we assign an incorrect
type. For instance, I can assign quit a str value of 'True' instead of the bool value
True, and nothing at all happens:

374 CHAPTER 22 Tic-Tac-Toe redux: An interactive version with type hints
>>> state = State(quit='True')
>>> state.quit
'True'

The benefit of type hints comes from using a program like Mypy to check our code.
Let’s place all this code into a small program called typehints.py in the repo:

#!/usr/bin/env python3
""" Demonstrating type hints """

from typing import List, NamedTuple, Optional

class State(NamedTuple):
board: List[str] = list('.' * 9)
player: str = 'X'
quit: bool = False
draw: bool = False
error: Optional[str] = None
winner: Optional[str] = None

state = State(quit='False')

print(state)

The program will execute with no errors :

$./typehints.py
State(board=['.', '.', '.', '.', '.', '.', '.', '.', '.'], player='X', \
quit='False', draw=False, error=None, winner=None)

But the Mypy program will report the error of our ways:

$ mypy typehints.py
typehints.py:16: error: Argument "quit" to "State" has incompatible type

"str"; expected "bool"
Found 1 error in 1 file (checked 1 source file)

If I correct the program like so,

#!/usr/bin/env python3
""" Demonstrating type hints """

from typing import List, NamedTuple, Optional

class State(NamedTuple):
board: List[str] = list('.' * 9)
player: str = 'X'
quit: bool = False
draw: bool = False
error: Optional[str] = None
winner: Optional[str] = None

quit is defined as a bool, which
means it should only allow
values of True and False.

We are assigning the str value 'True' instead of the
bool value True, which might be an easy mistake to
make, especially in a very large program. We’d like
to know this type of error will be caught!

Again, quit is a bool value.

375Writing itictactoe.py
state = State(quit=True)

print(state)

now Mypy will be satisfied:

$ mypy typehints2.py
Success: no issues found in 1 source file

22.1.5 Updating immutable structures

If one of the advantages of using NamedTuples is their immutability, how will we keep
track of changes to our program? Consider our initial state of an empty grid with the
player X going first:

>>> state = State()

Imagine X takes cell 1, so we need to change board to X........ and the player to O.
We can’t directly modify state:

>>> state.board=list('X.........')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AttributeError: can't set attribute

We could use the State() function to create a new value to overwrite the existing state.
That is, since we can’t change anything inside the state variable, we could instead point
state to an entirely new value. We did this in the second solution in chapter 8, where we
needed to change a str value, because they are also immutable in Python.

 To do this, we can copy all the current values that haven’t changed and combine
them with the changed values:

>>> state = State(board=list('X.........'), player='O', quit=state.quit, \
draw=state.draw, error=state.error, winner=state.winner)

The namedtuple._replace() method, however, provides a much simpler way to do
this. Only the values we provide are changed, and the result is a new State:

>>> state = state._replace(board=list('X.........'), player='O')

We overwrite our state variable with the return from state._replace(), just as we
have repeatedly overwritten string variables with new values:

>>> state
State(board=['X', '.', '.', '.', '.', '.', '.', '.', '.', '.'], player='O', \

quit=False, draw=False, error=None, winner=None)

This is much more convenient than having to list all the fields—we only need to spec-
ify the fields that have changed. We are also prevented from accidentally modifying

We have to assign an actual
bool value in order to pass
muster with Mypy.

376 CHAPTER 22 Tic-Tac-Toe redux: An interactive version with type hints
any of the other fields, and we are likewise prevented from forgetting or misspelling
any fields or setting them to the wrong types.

22.1.6 Adding type hints to function definitions

Now let’s look at how we can add type hints to our function definitions. For an exam-
ple, we can modify our format_board() function to indicate that it takes a parameter
called board, which is a list of string values, by adding board: List[str]. Additionally,
the function returns a str value, so we can add -> str after the colon on the def to
indicate this, as in figure 22.2.

The annotation for main() indicates that the None value is returned, as shown in fig-
ure 22.3.

What’s really terrific is that we can define a function that takes a value of the type State,
and Mypy will check that this kind of value is actually being passed (see figure 22.4).

 Try playing my version of the game and then writing your own that behaves simi-
larly. Then take a look at how I wrote an interactive solution that incorporates these
ideas of data immutability and type safety.

Figure 22.2 Adding type hints to
describe the type of the parameter
and the return value

Figure 22.3 The main() function accepts
no parameters and returns None.

377Solution
22.2 Solution
This is the last program! I hope that writing the simpler version in the previous chap-
ter gave you ideas for making this work. Did the type hints and unit tests also help?

#!/usr/bin/env python3
""" Interactive Tic-Tac-Toe using NamedTuple """

from typing import List, NamedTuple, Optional

class State(NamedTuple):
board: List[str] = list('.' * 9)
player: str = 'X'
quit: bool = False
draw: bool = False
error: Optional[str] = None
winner: Optional[str] = None

--
def main() -> None:

"""Make a jazz noise here"""

state = State()

while True:
print("\033[H\033[J")
print(format_board(state.board))

if state.error:
print(state.error)

elif state.winner:
print(f'{state.winner} has won!')
break

state = get_move(state)

Figure 22.4 We can use custom types in
type hints. This function takes and returns
a value of the type State.

Import the classes we’ll
need from the typing
module.

Declare a class that is based
on the NamedTuple class.
Define field names, types,
and defaults for the values
this class can hold.

Instantiate the initial state
as an empty grid and the
first player as X.

Start an infinite loop. When we
have a reason to stop, we can
break out of the loop.

Print a special sequence that
most terminals will interpret as
a command to clear the screen.

Print the
current

state of the
board.

Print any errors, such as the
user not choosing a valid cell.

If there is a winner, proclaim the
victor and break out of the loop.

Get the next move from the player. The get_move()
function accepts a State type and returns one too.
We overwrite the existing state variable each time
through the loop.

378 CHAPTER 22 Tic-Tac-Toe redux: An interactive version with type hints
if state.quit:
print('You lose, loser!')
break

elif state.draw:
print("All right, we'll call it a draw.")
break

--
def get_move(state: State) -> State:

"""Get the player's move"""

player = state.player
cell = input(f'Player {player}, what is your move? [q to quit]: ')

if cell == 'q':
return state._replace(quit=True)

if not (cell.isdigit() and int(cell) in range(1, 10)):
return state._replace(error=f'Invalid cell "{cell}", please use 1-9')

cell_num = int(cell)
if state.board[cell_num - 1] in 'XO':

return state._replace(error=f'Cell "{cell}" already taken')

board = state.board
board[cell_num - 1] = player
return state._replace(board=board,

player='O' if player == 'X' else 'X',
winner=find_winner(board),
draw='.' not in board,
error=None)

If the user has decided to withdraw from
the game prematurely, insult them, and
break from the loop.

If the game has reached
a stalemate where all
cells are occupied but
there is no winner,
declare a draw and
break from the loop.

Define a get_move()
function that takes and

returns a State type.

Copy the player from the state,
since we’ll refer to it several
times in the function body.

Use the input()
function to ask the

player for their next
move. Tell them how to
quit the game early so
they don’t have to use
Ctrl-C to interrupt the

program.

First check if the user
wants to quit.

If so, replace the quit value of the state with
True and return with the new state. Note that
no other values in the state are modified.

Check if the user entered a value that can
be converted to a digit using str.isdigit()

and if the integer version of the value is in
the valid range.

If not, return an updated state that has
an error. Note that the current state and
player remain unchanged so that the
same player has a retry with the same
board until they provide valid input.

After we have verified that
cell is a valid integer value,
convert it to an integer.

See if the board is open
at the indicated cell.

If not, return an updated state with an error. Again,
nothing else about the state is changed, so we retry

the round with the same player and state.

Copy the current board
because we need to modify it

and state.board is immutable.

Use the cell value to update the
board with the current player.

Return a new state value with the new board
value, the current player switched to the other

player, and if there is a winner or a draw.

379Solution
--
def format_board(board: List[str]) -> str:

"""Format the board"""

cells = [str(i) if c == '.' else c for i, c in enumerate(board, 1)]
bar = '-------------'
cells_tmpl = '| {} | {} | {} |'
return '\n'.join([

bar,
cells_tmpl.format(*cells[:3]), bar,
cells_tmpl.format(*cells[3:6]), bar,
cells_tmpl.format(*cells[6:]), bar

])

--
def find_winner(board: List[str]) -> Optional[str]:

"""Return the winner"""

winning = [[0, 1, 2], [3, 4, 5], [6, 7, 8], [0, 3, 6], [1, 4, 7],
[2, 5, 8], [0, 4, 8], [2, 4, 6]]

for player in ['X', 'O']:
for i, j, k in winning:

combo = [board[i], board[j], board[k]]
if combo == [player, player, player]:

return player

return None

--
if __name__ == '__main__':

main()

22.2.1 A version using TypedDict

New to Python 3.8 is the TypedDict class, which looks very similar to a NamedTuple.
Let’s look at how using this as the base class changes parts of our program. One cru-
cial difference is that you cannot (yet) set default values for the fields:

#!/usr/bin/env python3
""" Interactive Tic-Tac-Toe using TypedDict """

from typing import List, Optional, TypedDict

class State(TypedDict):
board: str
player: str
quit: bool
draw: bool
error: Optional[str]
winner: Optional[str]

The only change from the previous
version of this function is the

addition of type hints. The
function accepts a list of string
values (the current board) and
returns a formatted grid of the

board state.

This is also the same
function as before, but

with type hints. The
function accepts the

board as a list of strings
and returns an optional

string value, which
means it could also

return None.

Import TypedDict instead
of NamedTuple.

Base State on
a TypedDict.

380 CHAPTER 22 Tic-Tac-Toe redux: An interactive version with type hints
We have to set our initial values when we instantiate a new state:

def main() -> None:
"""Make a jazz noise here"""

state = State(board='.' * 9,
player='X',
quit=False,
draw=False,
error=None,
winner=None)

Syntactically, I prefer using state.board with the named tuple rather than the dictio-
nary access of state['board']:

while True:
print("\033[H\033[J")
print(format_board(state['board']))

if state['error']:
print(state['error'])

elif state['winner']:
print(f"{state['winner']} has won!")
break

state = get_move(state)

if state['quit']:
print('You lose, loser!')
break

elif state['draw']:
print('No winner.')
break

Beyond the convenience of accessing the fields, I prefer the read-only nature of the
NamedTuple to the mutable TypedDict. Note how in the get_move() function, we can
change the state:

def get_move(state: State) -> State:
"""Get the player's move"""

player = state['player']
cell = input(f'Player {player}, what is your move? [q to quit]: ')

if cell == 'q':
state['quit'] = True
return state

if not (cell.isdigit() and int(cell) in range(1, 10)):
state['error'] = f'Invalid cell "{cell}", please use 1-9'
return state

cell_num = int(cell)
if state['board'][cell_num - 1] in 'XO':

Here we are directly modifying the TypedDict, whereas
the NamedTuple version used state._replace() to return
an entirely new state value.

Another place where the state
is directly modifiable. You may

prefer this approach.

381Going further
state['error'] = f'Cell "{cell}" already taken'
return state

board = list(state['board'])
board[cell_num - 1] = player

return State(
board=''.join(board),
player='O' if player == 'X' else 'X',
winner=find_winner(board),
draw='.' not in board,
error=None,
quit=False,

)

In my opinion, a NamedTuple has nicer syntax, default values, and immutability over
the TypedDict version, so I prefer it. Regardless of which you choose, the greater les-
son I hope to impart is that we should try to be explicit about the “state” of the pro-
gram and when and how it changes.

22.2.2 Thinking about state

The idea of program state is that a program can remember
changes to variables over time. In the previous chapter, our
program accepted a given --board and possible values for
--cell and --player that might alter the board. Then the
game printed a representation of the board. In this chap-
ter’s interactive version, the board always begins as an empty
grid and changes with each turn, which we modeled as an
infinite loop.

 It is common in programs like this to see programmers
use global variables that are declared at the top of the pro-
gram outside of any function definitions so that they are glob-
ally visible throughout the program. While common, it’s not
considered a best practice, and I would discourage you from ever using globals unless
you can see no other way. I would suggest, instead, that you stick to using small func-
tions that accept all the values required and return a single type of value. I would also
suggest you use data structures like typed, named tuples to represent program state,
and that you guard the changes to state very carefully.

22.3 Going further
 Incorporate spicier insults. Maybe bring in the Shakespearean generator?
 Write a version that allows the user to start a new game without quitting and

restarting the program.
 Write other games like Hangman.

382 CHAPTER 22 Tic-Tac-Toe redux: An interactive version with type hints
Summary
 Type hints allow you to annotate variables as well as function parameters and

return values with the types of the values.
 Python itself will ignore type hints at runtime, but Mypy can use type hints to

find errors in your code before you ever run it.
 A NamedTuple behaves a bit like a dictionary and a bit like an object but retains

the immutability of tuples.
 Both NamedTuple and TypedDict allow you to create a novel type with defined

fields and types that you can use as type hints to your own functions.
 Our program used a NamedTuple to create a complex data structure to repre-

sent the state of our program. The state included many variables, such as the
current board, the current player, any errors, the winner, and so on, each of
which was described using type hints.

 While it is difficult to write integration tests for an interactive program, we
can still break a program into small functions (such as format_board() or
get_winner()) for which we write and run unit tests.

Epilogue
Well, that’s the whole book. We came a long way, from writing the crow’s nest pro-
gram in chapter 2 to chapter 22’s interactive Tic-Tac-Toe game, incorporating a
custom class based on named tuples and using type hints. I hope you can see now
how much you can do with Python’s strings, lists, tuples, dictionaries, sets, and func-
tions. I especially hope I’ve convinced you that, above all, you should always write
programs that are

 Flexible, by taking command-line arguments
 Documented, by using something like argparse to parse your arguments and

produce usage statements
 Tested, by writing both unit tests for your functions and integration tests for

your program as a whole

The people using your programs will really appreciate knowing how to use your
program and how to make it behave differently. They’ll also appreciate that you
took the time to verify that your program is correct. Let’s be honest, though. The
person most likely to be using and modifying your programs will be you, several
months from now. I’ve heard it said that “documentation is a love letter to your
future self.” All this work you put into making your programs good will be very
appreciated by you when you come back to your code.

 Now that you’ve worked through all the exercises and seen how to use the tests
I’ve written, I challenge you to go back to the beginning and read the test.py pro-
grams. If you intend to adopt test-driven development, you may find that you can
steal many ideas and techniques from those programs.

 Further, each chapter included suggestions for how to extend the ideas and
exercises presented. Go back and think about how you can use ideas you learned
later in the book to improve or extend earlier programs. Here are some ideas:
383

384 Epilogue
 Chapter 2 (The crow’s nest)—Add an option to randomly select a greeting
other than “Hello” from a list like “Hello,” “Hola,” “Salut,” and “Ciao.”

 Chapter 3 (Going on a picnic)—Allow the program to take one or more
options and incorporate those into the output with the correct articles for each
item joined on the Oxford comma.

 Chapter 7 (Gashlycrumb)—Download The Devil’s Dictionary by Ambrose Bierce
from Project Gutenberg. Write a program that will look up a word’s definition if
it appears in the text.

 Chapter 16 (The scrambler)—Use the scrambled text as the basis for encrypt-
ing messages. Force the scrambled words to uppercase, remove all the punctua-
tion and spaces, and then format the text into “words” of five characters
followed by a space, with no more than five per line. Pad the end so that the
text completely fills the last line. Can you make sense of the output?

 new.py—I first wrote a program to create a new program when I was a green-
horn Perl hacker. My new-pl program would add a random quote from the
poetry of William Blake (yes, really—I also went through phases with the Bron-
tes and Dickinson). Alter your version of new.py to add a random quote or joke
or to customize it in some way for your programs.

I hope you’ve had as much fun writing the
programs as I’ve had creating and teaching
them. I want you to feel you now have dozens
of programs and tests with ideas and functions
you can steal to create even more programs.

 All the best to you in your coding adven-
tures!

appendix
Using argparse

Often, getting the right data
into your program is a real
chore. The argparse module
makes it much easier to validate
arguments from users and to
generate useful error messages
when they provide bad input. It’s
like your program’s “bouncer,”
only allowing the right kinds of
values into the program. Defin-
ing the arguments properly with
argparse is the crucial first step
to making the programs in this
book work.

 For instance, chapter 1 discusses a very flexible program that can extend warm
salutations to an optionally named entity, such as the “World” or “Universe”:

$./hello.py
Hello, World!
$./hello.py --name Universe
Hello, Universe!

The program will respond to the -h and --help flags with helpful documentation:

$./hello.py -h
usage: hello.py [-h] [-n str]

When the program runs with no input values,
it will use “World” for the entity to greet.

The program can take an optional
--name value to override the default.

The argument to the program is -h,
which is the “short” flag to ask for help.

This line shows a summary of all the options the
program accepts. The square brackets [] around
the arguments show that they are optional.
385

386 APPENDIX Using argparse
Say hello

optional arguments:
-h, --help show this help message and exit
-n str, --name str The name to greet (default: World)

All of this is created by just two lines of code in the hello.py program:

parser = argparse.ArgumentParser(description='Say hello')
parser.add_argument('-n', '--name', default='World', help='Name to greet')

NOTE You do not need to define the -h or --help flags. Those are generated
automatically by argparse. In fact, you should never try to use those for other
values because they are almost universal options that most users will expect.

The argparse module helps us define a parser for the arguments and generates help
messages, saving us loads of time and making our programs look professional. Every
program in this book is tested on different inputs, so you’ll really understand how to
use this module by the end. I recommend you look over the argparse documentation
(https://docs.python.org/3/library/argparse.html).

 Now let’s dig further into what this module can do for us. In this appendix, you will

■ Learn how to use argparse to handle positional parameters, options, and flags
■ Set default values for options
■ Use type to force the user to provide values like numbers or files
■ Use choices to restrict the values for an option

A.1 Types of arguments
Command-line arguments can be classified as follows:

■ Positional arguments—The order and number of the arguments is what deter-
mines their meaning. Some programs might expect, for instance, a filename as
the first argument and an output directory as the second. Positional arguments
are generally required (not optional) arguments. Making them optional is diffi-
cult—how would you write a program that accepts two or three arguments
where the second and third ones are independent and optional? In the first ver-
sion of hello.py in chapter 1, the name to greet was provided as a positional
argument.

■ Named options—Most command-line programs define a short name like -n (one
dash and a single character) and a long name like --name (two dashes and a
word) followed by some value, like the name in the hello.py program. Named

This is the description
of the program.

We can use either the “short” name -h
or the “long” name --help to ask the
program for help on how to run it.

The optional “name”
parameter also has short and
long names of -n and --name.

The parser will parse the arguments for us. If the user provides unknown arguments
or the wrong number of arguments, the program will halt with a usage statement.

The only argument to this program is an optional --name value.

https://docs.python.org/3/library/argparse.html

387Using a template to start a program
options allow arguments to be provided in any order—their position is not rele-
vant. This makes them the right choice when the user is not required to provide
them (they are options, after all). It’s good to provide reasonable default values
for options. When we changed the required positional name argument of
hello.py to the optional --name argument, we used “World” for the default so
that the program could run with no input from the user. Note that some other
languages, like Java, might define long names with a single dash, like -jar.

■ Flags—A Boolean value like “yes”/“no” or True/False is indicated by something
that starts off looking like a named option, but there is no value after the name;
for example, the -d or --debug flag to turn on debugging. Typically the presence
of the flag indicates a True value for the argument, and its absence would mean
False, so --debug turns on debugging, whereas its absence means it is off.

A.2 Using a template to start a program
It’s not easy to remember all the syntax for defining parameters using argparse, so
I’ve created a way for you to write new programs from a template that includes this
plus some other structure that will make your programs easier to read and run.

 One way to start a new program is to use the new.py program. From the top level of
the repository, you can execute this command:

$ bin/new.py foo.py

Alternatively, you could copy the template:

$ cp template/template.py foo.py

The resulting program will be identical no matter how you create it, and it will have
examples of how to declare each of the argument types outlined in the previous sec-
tion. Additionally, you can use argparse to validate the input, such as making sure
that one argument is a number while another argument is a file.

 Let’s look at the help generated by our new program:

$./foo.py -h
usage: foo.py [-h] [-a str] [-i int] [-f FILE] [-o] str

Rock the Casbah

positional arguments:
str A positional argument

optional arguments:
-h, --help show this help message and exit

Every program should
respond to -h and --help
with a help message.

This a brief summary of the
options that are described

in greater detail below.

This is the description
of the entire program.

This program defines one positional parameter,
but you could have many more. You’ll see how
to define those shortly.

Optional arguments can be left out, so you should
provide reasonable default values for them.

The -h and --help arguments are always present when
you use argparse; you do not need to define them.

388 APPENDIX Using argparse

-a str, --arg str A named string argument (default:)
-i int, --int int A named integer argument (default: 0)
-f FILE, --file FILE A readable file (default: None)
-o, --on A boolean flag (default: False)

A.3 Using argparse
The code to generate the preceding usage is found in a function, called get_args(),
that looks like the following:

def get_args():
"""Get command-line arguments"""

parser = argparse.ArgumentParser(
description='Rock the Casbah',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('positional',
metavar='str',
help='A positional argument')

parser.add_argument('-a',
'--arg',
help='A named string argument',
metavar='str',
type=str,
default='')

parser.add_argument('-i',
'--int',
help='A named integer argument',
metavar='int',
type=int,
default=0)

parser.add_argument('-f',
'--file',
help='A readable file',
metavar='FILE',
type=argparse.FileType('r'),
default=None)

parser.add_argument('-o',
'--on',
help='A boolean flag',
action='store_true')

return parser.parse_args()

The -a or --arg option accepts some
text, which is often called a “string.”

The -i or --int option must be an integer
value. If the user provides “one” or
“4.2,” these will be rejected.

The -f or --file
option must
be a valid,
readable file.

The -o or --on is a flag. Notice how the -f
FILE description specifies that a “FILE”

value should follow the -f, but for this flag
no value follows the option. The flag is

either present or absent, and so it’s
either True or False, respectively.

389Using argparse
You are welcome to put this code wherever you like, but defining and validating the
arguments can sometimes get rather long. I like to separate this code out into a func-
tion I call get_args(), and I always define this function first in my program. That way
I can see it immediately when I’m reading the source code.

 The get_args() function is defined like this:

def get_args():
"""Get command-line arguments"""

A.3.1 Creating the parser

The following snippet creates a parser that will deal with the arguments from the
command line. To “parse” here means to derive some meaning from the order and
syntax of the bits of text provided as arguments:

parser = argparse.ArgumentParser(
description='Argparse Python script',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

You should read the documentation for argparse to see all the other options you can use
to define a parser or the parameters. In the REPL, you can start with help(argparse),
or you could look up the docs on the internet at https://docs.python.org/3/library/
argparse.html.

A.3.2 Creating a positional parameter

The following line will create a new positional parameter:

parser.add_argument('positional',
metavar='str',
help='A positional argument')

Remember that the parameter is not positional because the name is “positional.”
That’s just there to remind you that it is a positional parameter. argparse inter-
prets the string 'positional' as a positional parameter because the name does not
start with any dashes.

The def keyword defines a new function, and the arguments to the
function are listed in the parentheses. Even though the get_args()
function takes no arguments, the parentheses are still required.

The triple-quoted line after the function def is the “docstring,” which serves as
a bit of documentation for the function. Docstrings are not required, but they

are good style, and Pylint will complain if you leave them out.

Call the argparse.ArgumentParser()
function to create a new parser.

A short summary of your
program’s purpose.

The formatter_class argument tells argparse
to show the default values in usage.

The lack of leading dashes makes this a
positional parameter, not the name “positional.” Provide a hint to the user about

the data type. By default, all
arguments are strings.

A brief description of the parameter for the usage

https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html

390 APPENDIX Using argparse
A.3.3 Creating an optional string parameter

The following line creates an optional parameter with a short name of -a and a long
name of --arg. It will be a str with a default value of '' (the empty string).

parser.add_argument('-a',
'--arg',
help='A named string argument',
metavar='str',
type=str,
default='')

NOTE You can leave out either the short or long name in your own pro-
grams, but it’s good form to provide both. Most of the tests in this book will
test your programs using both short and long option names.

If you wanted to make this a required, named parameter, you would remove the
default and add required=True.

A.3.4 Creating an optional numeric parameter

The following line creates an option called -i or --int that accepts an int (integer)
with a default value of 0. If the user provides anything that cannot be interpreted as an
integer, the argparse module will stop processing the arguments and will print an error
message and a short usage statement.

parser.add_argument('-i',
'--int',
help='A named integer argument',
metavar='int',
type=int,
default=0)

One of the big reasons to define numeric arguments in this way is that argparse will
convert the input to the correct type. All values coming from the command are
strings, and it’s the job of the program to convert each value to an actual numeric
value. If you tell argparse that the option should be type=int, it will have already
been converted to an actual int value when you ask the parser for the value.

 If the value provided by the user cannot be converted to an int, the value will be
rejected. Note that you can also use type=float to accept and convert the input to a
floating-point value. That saves you a lot of time and effort.

A.3.5 Creating an optional file parameter

The following line creates an option called -f or --file that will only accept a valid,
readable file. This argument alone is worth the price of admission, as it will save you
oodles of time validating the input from your user. Note that pretty much every exercise

The short name

The long name Brief description
for the usage

Type hint for usage
The actual Python data type
(note the lack of quotes
around str)

The default value

The short name

The long name A brief description for
the usage statementA type hint for the

usage statement
A Python data type that the string must be converted
to. You can also use float for a floating point value
(a number with a fractional component like 3.14).

The default value

391Using argparse
that has a file as input will have tests that pass invalid file arguments to ensure that
your program rejects them.

parser.add_argument('-f',
'--file',
help='A readable file',
metavar='FILE',
type=argparse.FileType('r'),
default=None)

The person running the program is responsible for providing the location of the file.
For instance, if you created the foo.py program in the top level of the repository, there
will be a README.md file there. We could use that as the input to our program, and it
would be accepted as a valid argument:

$./foo.py -f README.md foo
str_arg = ""
int_arg = "0"
file_arg = "README.md"
flag_arg = "False"
positional = "foo"

If we provide a bogus --file argument, like “blargh,” we will get an error message:

$./foo.py -f blargh foo
usage: foo.py [-h] [-a str] [-i int] [-f FILE] [-o] str
foo.py: error: argument -f/--file: can't open 'blargh': \
[Errno 2] No such file or directory: 'blargh'

A.3.6 Creating a flag option

The flag option is slightly different in that it does not take a value like a string or inte-
ger. Flags are either present or not, and they usually indicate that some idea is True
or False.

 You’ve already seen the -h and --help flags. They are not followed by any values.
They either are present, in which case the program should print a “usage” statement,
or they are absent, in which case the program should not. For all the exercises in this
book, I use flags to indicate a True value when they are present and False otherwise,
which we can represent using action='store_true'.

 For instance, new.py shows an example of this kind of a flag called -o or --on:

parser.add_argument('-o',
'--on',
help='A boolean flag',
action='store_true')

The short name

The long name A brief usage
statement

A type suggestion
Says that the argument
must name a readable
('r') file

The default value

Short name

Long name Brief usage
statement

What to do when this flag is present. When it is present, we use the value
True for on. The default value will be False when the flag is not present.

392 APPENDIX Using argparse
It’s not always the case that a “flag” like this should be interpreted as True when pres-
ent. You could instead use action='store_false', in which case on would be False
when the flag is present, and the default value would be True. You could also store
one or more constant values when the flag is present.

 Read the argparse documentation for the various ways you can define this param-
eter. For the purposes of this book, we will only use a flag to turn “on” some behavior.

A.3.7 Returning from get_args

The final statement in get_args() is return, which returns the result of having the
parser object parse the arguments. That is, the code that calls get_args() will receive
the result of this expression:

return parser.parse_args()

This expression could fail because argparse finds that the user provided invalid argu-
ments, such as a string value when it expected a float or perhaps a misspelled file-
name. If the parsing succeeds, we will be able to access all the values the user provided
from inside our program.

 Additionally, the values of the arguments will be of the types that we indicated. That
is, if we indicated that the --int argument should be an int, then when we ask for
args.int, it will already be an int. If we define a file argument, we’ll get an open file
handle. That may not seem impressive now, but it’s really enormously helpful.

 If you refer to the foo.py program we generated, you’ll see that the main() func-
tion calls get_args(), so the return from get_args() goes back to main(). From
there, we can access all the values we just defined using the names of the positional
parameters or the long names of the optional parameters:

def main():
args = get_args()
str_arg = args.arg
int_arg = args.int
file_arg = args.file
flag_arg = args.on
pos_arg = args.positional

A.4 Examples using argparse
Many of the program tests in this book can be satisfied by learning how to use argparse
effectively to validate the arguments to your programs. I think of the command line as
the boundary of your program, and you need to be judicious about what you let into
your program. You should always expect and defend against every argument being
wrong.1 Our hello.py program in chapter 1 is an example of a single, positional argu-
ment and then a single, optional argument. Let’s look at some more examples of how
you can use argparse.

1 I always think of the kid who will type “fart” for every input.

393Examples using argparse
A.4.1 A single positional argument

This is the first version of chapter 1’s hello.py program, which requires a single argu-
ment specifying the name to greet:

#!/usr/bin/env python3
"""A single positional argument"""

import argparse

--
def get_args():

"""Get command-line arguments"""

parser = argparse.ArgumentParser(
description='A single positional argument',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('name', metavar='name', help='The name to greet')

return parser.parse_args()

--
def main():

"""Make a jazz noise here"""

args = get_args()
print('Hello, ' + args.name + '!')

--
if __name__ == '__main__':

main()

This program will not print the “Hello” line if it’s not provided exactly one argument.
If given nothing, it will print a brief usage statement about the proper way to invoke
the program:

$./one_arg.py
usage: one_arg.py [-h] name
one_arg.py: error: the following arguments are required: name

If we provide more than one argument, it complains again. Here “Emily” and “Bronte”
are two arguments because spaces separate arguments on the command line. The pro-
gram complains about getting a second argument that has not been defined:

$./one_arg.py Emily Bronte
usage: one_arg.py [-h] name
one_arg.py: error: unrecognized arguments: Bronte

The name parameter does
not start with dashes, so this

is a positional parameter.
The metavar will show up in

the help to let the user know
what this argument is

supposed to be.

Whatever is provided as the
first positional argument to
the program will be available
in the args.name slot.

394 APPENDIX Using argparse
Only when we give the program exactly one argument will it run:

$./one_arg.py "Emily Bronte"
Hello, Emily Bronte!

While it may seem like overkill to use argparse for such a simple program, it shows
that argparse can do quite a bit of error checking and validation of arguments for us.

A.4.2 Two different positional arguments

Imagine you want two different positional arguments, like the color and size of an item to
order. The color should be a str, and the size should be an int value. When you
define them positionally, the order in which you declare them is the order in which
the user must supply the arguments. Here we define color first, and then size:

#!/usr/bin/env python3
"""Two positional arguments"""

import argparse

--
def get_args():

"""get args"""

parser = argparse.ArgumentParser(
description='Two positional arguments',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('color',
metavar='color',
type=str,
help='The color of the garment')

parser.add_argument('size',
metavar='size',
type=int,
help='The size of the garment')

return parser.parse_args()

--
def main():

"""main"""

args = get_args()
print('color =', args.color)
print('size =', args.size)

--
if __name__ == '__main__':

main()

This will be the first of the
positional arguments

because it is defined first.
Notice that metavar has

been set to 'color' instead of
'str' as it’s more descriptive

of the kind of string we
expect—one that describes
the “color” of the garment.

This will be the second
of the positional
arguments. Here
metavar='size', which
could be a number like
4 or a string like 'small',
so it’s still ambiguous.

The “color” argument is
accessed via the name of
the color parameter.

The “size” argument is
accessed via the name of
the size parameter.

395Examples using argparse
Again, the user must provide exactly two positional arguments. Entering no argu-
ments triggers a short usage statement:

$./two_args.py
usage: two_args.py [-h] color size
two_args.py: error: the following arguments are required: color, size

Just entering one argument won’t cut it either. We are told that “size” is missing:

$./two_args.py blue
usage: two_args.py [-h] color size
two_args.py: error: the following arguments are required: size

If we give it two strings, like “blue” for the color and “small” for the size, the size value
will be rejected because it needs to be an integer value:

$./two_args.py blue small
usage: two_args.py [-h] color size
two_args.py: error: argument size: invalid int value: 'small'

If we give it two arguments, the second of which can be inter-
preted as an int, all is well:

$./two_args.py blue 4
color = blue
size = 4

Remember that all the arguments coming from the com-
mand line are strings. The command line doesn’t require
quotes around blue or the 4 to make them strings the way
that Python does. On the command line, everything is a
string, and all arguments are passed to Python as strings.

 When we tell argparse that the second argument needs
to be an int, argparse will attempt to convert the string '4' to the integer 4. If you
provide 4.1, that will be rejected too:

$./two_args.py blue 4.1
usage: two_args.py [-h] str int
two_args.py: error: argument int: invalid int value: '4.1'

Positional arguments require the user to remember the
correct order of the arguments. If we mistakenly switch
around str and int arguments, argparse will detect
invalid values:

$./two_args.py 4 blue
usage: two_args.py [-h] COLOR SIZE
two_args.py: error: argument SIZE: invalid int
value: 'blue'

396 APPENDIX Using argparse

.

f
Imagine, however, a case of two strings or two numbers that represent two different val-
ues, like a car’s make and model or a person’s height and weight. How could you
detect that the arguments are reversed?

 Generally speaking, I only ever create programs that take exactly one positional
argument or one or more of the same thing, like a list of files to process.

A.4.3 Restricting values using the choices option

In our previous example, there was nothing stopping the user from providing two inte-
ger values:

$./two_args.py 1 2
color = 1
size = 2

The 1 is a string. It may look like a number to you, but it is actually the character '1'.
That is a valid string value, so our program accepts it.

 Our program would also accept a “size” of -4, which clearly is not a valid size:

$./two_args.py blue -4
color = blue
size = -4

How can we ensure that the user provides both a valid color and size? Let’s say we
only offer shirts in primary colors. We can pass in a list of valid values using the
choices option.

 In the following example, we restrict the color to “red,” “yellow,” or “blue.” Addi-
tionally, we can use range(1, 11) to generate a list of numbers from 1 to 10 (11 isn’t
included!) as the valid sizes for our shirts:

#!/usr/bin/env python3
"""Choices"""

import argparse

--
def get_args():

"""get args"""

parser = argparse.ArgumentParser(
description='Choices',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('color',
metavar='str',
help='Color',
choices=['red', 'yellow', 'blue'])

parser.add_argument('size',
metavar='size',

The choices option
takes a list of values
argparse stops the
program if the user
fails to supply one o
these.

397Examples using argparse
type=int,
choices=range(1, 11),
help='The size of the garment')

return parser.parse_args()

--
def main():

"""main"""

args = get_args()
print('color =', args.color)
print('size =', args.size)

--
if __name__ == '__main__':

main()

Any value not present in the list will be rejected, and the user will be shown the valid
choices. Again, no value is rejected:

$./choices.py
usage: choices.py [-h] color size
choices.py: error: the following arguments are required: color, size

If we provide “purple,” it will be rejected because it is not in the choices we defined.
The error message that argparse produces tells the user the problem (“invalid
choice”) and even lists the acceptable colors:

$./choices.py purple 1
usage: choices.py [-h] color size
choices.py: error: argument color: \
invalid choice: 'purple' (choose from 'red', 'yellow', 'blue')

Likewise with a negative size argument:

$./choices.py red -1
usage: choices.py [-h] color size

The user must choose
from the numbers 1–10
or argparse will stop
with an error.

If our program makes it to this point, we
know that args.color will definitely be one
of those values and that args.size is an
integer value in the range of 1–10. The
program will never get to this point unless
both arguments are valid.

398 APPENDIX Using argparse
choices.py: error: argument size: \
invalid choice: -1 (choose from 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

Only when both arguments are valid may we continue:

$./choices.py red 4
color = red
size = 4

That’s really quite a bit of error checking and feedback that you never have to write.
The best code is code you don’t write!

A.4.4 Two of the same positional arguments

If we were writing a program that adds two numbers, we could define them as two
positional arguments, like number1 and number2. But since they are the same kinds of
arguments (two numbers that we will add), it might make more sense to use the nargs
option to tell argparse that you want exactly two of a thing:

#!/usr/bin/env python3
"""nargs=2"""

import argparse

--
def get_args():

"""get args"""

parser = argparse.ArgumentParser(
description='nargs=2',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('numbers',
metavar='int',
nargs=2,
type=int,
help='Numbers')

return parser.parse_args()

--
def main():

"""main"""

args = get_args()
n1, n2 = args.numbers
print(f'{n1} + {n2} = {n1 + n2}')

--
if __name__ == '__main__':

main()

The nargs=2 will require
exactly two values.

Each value must be parsable
as an integer value, or the
program will error out.

Since we defined that there are
exactly two values for numbers, we
can copy them into two variables.

Because these are actual int values, the
result of + will be numeric addition and
not string concatenation.

399Examples using argparse
The help indicates we want two numbers:

$./nargs2.py
usage: nargs2.py [-h] int int
nargs2.py: error: the following arguments are required: int

When we provide two good integer values, we get their sum:

$./nargs2.py 3 5
3 + 5 = 8

Notice that argparse converts the n1 and n2 values to
actual integer values. If you change the type=int to
type=str, you’ll see that the program will print 35 instead
of 8 because the + operator in Python both adds numbers
and concatenates strings!

>>> 3 + 5
8
>>> '3' + '5'
'35'

A.4.5 One or more of the same positional arguments

You could expand your two-number adding program into one that sums as many
numbers as you provide. When you want one or more of some argument, you can use
nargs='+':

#!/usr/bin/env python3
"""nargs=+"""

import argparse

--
def get_args():

"""get args"""

parser = argparse.ArgumentParser(
description='nargs=+',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('numbers',
metavar='int',
nargs='+',
type=int,
help='Numbers')

return parser.parse_args()

--
def main():

"""main"""

The + will make nargs accept
one or more values.

The int means that all the
values must be integer
values.

400 APPENDIX Using argparse

ed
args = get_args()
numbers = args.numbers

print('{} = {}'.format(' + '.join(map(str, numbers)), sum(numbers)))

--
if __name__ == '__main__':

main()

Note that this will mean args.numbers is always a list. Even if the user provides just
one argument, args.numbers will be a list containing that one value:

$./nargs+.py 5
5 = 5
$./nargs+.py 1 2 3 4
1 + 2 + 3 + 4 = 10

You can also use nargs='*' to indicate zero or more of an argument, and nargs='?'
means zero or one of the argument.

A.4.6 File arguments

So far you’ve seen how you can specify that an argument should be of a type like str
(which is the default), int, or float. There are also many exercises that require a file
as input, and for that you can use the type of argparse.FileType('r') to indicate
that the argument must be a file that is readable (the 'r' part).

 If, additionally, you want to require that the file be text (as opposed to a binary file),
you would add a 't'. These options will make more sense after you’ve read chapter 5.

 Here is an implementation in Python of the command cat -n, where cat will con-
catenate a readable text file, and the -n says to number the lines of output:

#!/usr/bin/env python3
"""Python version of `cat -n`"""

import argparse

--
def get_args():

"""Get command-line arguments"""

parser = argparse.ArgumentParser(
description='Python version of `cat -n`',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('file',
metavar='FILE',
type=argparse.FileType('rt'),
help='Input file')

return parser.parse_args()

numbers will be a list with
at least one element.

Don’t worry if you don’t
understand this line.

You will by the end of
the book.

The argument will be reject
if it does not name a valid,
readable text file.

401Examples using argparse

Inter
arg
--
def main():

"""Make a jazz noise here"""

args = get_args()

for i, line in enumerate(args.file, start=1):
print(f'{i:6} {line}', end='')

--
if __name__ == '__main__':

main():

When we define an argument as type=int, we get back an actual int value. Here, we
define the file argument as a FileType, so we receive an open file handle. If we had
defined the file argument as a string, we would have to manually check if it were a
file and then use open() to get a file handle:

#!/usr/bin/env python3
"""Python version of `cat -n`, manually checking file argument"""

import argparse
import os

--
def get_args():

"""Get command-line arguments"""

parser = argparse.ArgumentParser(
description='Python version of `cat -n`',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('file', metavar='str', type=str, help='Input file')

args = parser.parse_args()

if not os.path.isfile(args.file):
parser.error(f'"{args.file}" is not a file')

args.file = open(args.file)

return args

--
def main():

"""Make a jazz noise here"""

args = get_args()

for i, line in enumerate(args.file, start=1):
print(f'{i:6} {line}', end='')

The value of args.file is an
open file handle that we can
directly read. Again, don’t
worry if you don’t understand
this code. We’ll talk all about
file handles in the chapters.

cept the
uments.

Check if the file
argument is not a file.

Print an error
message and exit the
program with a non-
zero value.

Replace the file with
an open file handle.

402 APPENDIX Using argparse
--
if __name__ == '__main__':

main()

With the FileType definition, you don’t have to write any of this code.
 You can also use argparse.FileType('w') to indicate that you want the name of

a file that can be opened for writing (the 'w'). You can pass additional arguments
specifying how to open the file, like the encoding. See the documentation for more
information.

A.4.7 Manually checking arguments

It’s also possible to manually validate arguments before we return from get_args().
For instance, we can define that --int should be an int, but how can we require that
it must be between 1 and 10?

 One fairly simple way to do this is to manually check the value. If there is a prob-
lem, you can use the parser.error() function to halt execution of the program,
print an error message along with the short usage statement, and then exit with an
error value:

#!/usr/bin/env python3
"""Manually check an argument"""

import argparse

--
def get_args():

"""Get command-line arguments"""

parser = argparse.ArgumentParser(
description='Manually check an argument',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('-v',
'--val',
help='Integer value between 1 and 10',
metavar='int',
type=int,
default=5)

args = parser.parse_args()
if not 1 <= args.val <= 10:

parser.error(f'--val "{args.val}" must be between 1 and 10')

return args

--
def main():

"""Make a jazz noise here"""

Parse the arguments.

Check if the args.int value is
not between 1 and 10.

Call parser.error() with an
error message. The error

message and the brief
usage statement will be

shown to the user, and the
program will immediately
exit with a non-zero value

to indicate an error.

If we get here, everything
was OK, and the program
will continue as normal.

403Examples using argparse
args = get_args()
print(f'val = "{args.val}"')

--
if __name__ == '__main__':

main()

If we provide a good --val, all is well:

$./manual.py -v 7
val = "7"

If we run this program with a value like 20, we get an error message:

$./manual.py -v 20
usage: manual.py [-h] [-v int]
manual.py: error: --val "20" must be between 1 and 10

It’s not possible to tell here, but the parser.error() also caused the program to exit
with a non-zero status. In the command-line world, an exit status of 0 indicates “zero
errors,” so anything not 0 is considered an error. You may not realize yet just how won-
derful that is, but trust me. It is.

A.4.8 Automatic help

When you define a program’s parameters using argparse, the -h and --help flags will
be reserved for generating help documentation. You do not need to add these, nor
are you allowed to use these flags for other purposes.

 I think of this documentation as being like a door into
your program. Doors are how we get into buildings and
cars and such. Have you ever come across a door that you
can’t figure out how to open? Or one that requires a
“PUSH” sign when clearly the handle is designed to “pull”?
The book The Design of Everyday Things by Don Norman
(Basic Books, 2013) uses the term affordances to describe
the interfaces that objects present to us that do or do not
inherently describe how we should use them.

 The usage statement of your program is like the handle
of the door. It should let users know exactly how to use it.
When I encounter a program I’ve never used, I either run
it with no arguments or with -h or --help. I expect to see some sort of usage statement.
The only alternative would be to open the source code itself and study how to make
the program run and how I can alter it, and this is a truly unacceptable way to write
and distribute software!

404 APPENDIX Using argparse
 When you start creating a new program with new.py foo.py, this is the help that
will be generated:

$./foo.py -h
usage: foo.py [-h] [-a str] [-i int] [-f FILE] [-o] str

Rock the Casbah

positional arguments:
str A positional argument

optional arguments:
-h, --help show this help message and exit
-a str, --arg str A named string argument (default:)
-i int, --int int A named integer argument (default: 0)
-f FILE, --file FILE A readable file (default: None)
-o, --on A boolean flag (default: False)

Without writing a single line of code, you have

■ An executable Python program
■ A variety of command-line arguments
■ A standard and useful help message

This is the “handle” to your program, and you don’t have to write a single line of code
to get it!

Summary
■ Positional parameters typically are required parameters. If you have two or

more positional parameters representing different ideas, it would be better to
make them named options.

■ Optional parameters can be named, like --file fox.txt where fox.txt is the
value for the --file option. It is recommended that you always define a default
value for options.

■ argparse can enforce many argument types, including numbers like int and
float, or even files.

■ Flags like --help do not have an associated value. They are (usually) consid-
ered True if present and False if not.

■ The -h and --help flags are reserved for use by argparse. If you use argparse,
your program will automatically respond to these flags with a usage statement.

index
Symbols

$ character 250, 361
: (colon) 113
'' (single quotes) 42, 157
"" (double quotes) 42, 157
[] (square brackets) 43, 59, 78,

80, 89, 125, 293, 385
[<>] character class 285
{} (curly brackets) 48, 52, 78–79,

113, 124–125, 293, 339
* (asterisk) character 108, 363
* (multiplication operator) 358
. (period) character 235, 284,

353, 361
^ (caret) character 254, 285,

297, 346
- (hyphen character) 40
+ operator 176
+= sign 88–89, 203
= (equal sign) 41, 46, 57
>>> prompt 41, 87
| (pipe operator) 108, 356

A

abuse.py (Dial-a-Curse
program) 150–164

constructing insults
162–163

defining adjectives and
nouns 155–156

defining arguments 159
exit values 160–161
final program 157–159
formatting output 156–157

importing and seeding ran-
dom module 154–155

parser.error() function 160
random.seed() function 161
range() function 162
STDERR (standard

error) 160–161
taking random samples and

choices 156
throwaway variables 162
validating arguments 153–154
writing program 151–157

add1() function 145, 189–190
affordances 403
AI (artificial intelligence) 351
algorithm design 207–224

counting 209–210
creating ordinal value 211–212
final program 216–217
generating verses 221–222
making verses 213–215,

218–221
printing verses 215, 222
verse() function 215
writing program 208–215

all() function 358, 360, 365
alpha characters 169
anonymous function 144, 241
any() function 358, 360
append() function 61
apples.py (Apples and Bananas

program) 128–149
altering strings 130–132

str.replace() method 131
str.translate() method

131–132

defining parameters 134–135
final program 133–134
refactoring with tests 149
replacing vowels 135–149

iterating through every
character 135–136

list comprehensions
140–142

list comprehensions with
functions 142–144

map() function 144–147
map() function with named

functions 147
regular expressions 148–149
str.replace() method 136
str.translate() method

137–139
argparse module 385–404

creating flag option 391–392
creating optional file

parameter 390–391
creating optional numeric

parameter 390
creating optional string

parameter 390
creating parser 389
creating positional

parameter 389
returning from get_args()

function 392
types of arguments 386–387
use cases 392–404

automatic help 403–404
file arguments 400–402
manually checking

arguments 402–403
405

INDEX406
argparse module (continued)
one or more of the same

positional arguments
399–400

restricting values using
choices option
396–398

single positional
argument 393–394

two different positional
arguments 394–396

two of the same positional
arguments 398–399

using template.py to start
programs 387–388

argparse.ArgumentParser()
function 389

arguments
abuse.py 153–154, 159
crowsnest.py 39–40, 50–51
file 400–402
gashlycrumb.py 123–124
hello.py 24–25
howler.py 102
manually checking

402–403
picnic.py 73
positional

one or more of the
same 399–400

single 393–394
two different 394–396
two of the same 398–399

tictactoe.py 360–363
types of 386–387
wc.py 115

artificial intelligence (AI) 351
ASCII values 295–310

breaking text 304
cleaning words 297–298
encoding words 303
final program 304–305
functools.reduce()

function 302–303
ordinal character values and

ranges 298–300
sorting 308–309
summing and reducing

300–301
testing 309
word2num() function

306–307
writing program 296–304

assert statements 60, 83
asterisk (*) character 108, 363

B

binary decisions 191, 198
Black tool 28–29
Boolean values 202
bottles.py (Bottles of Beer

program) 178–194
counting down 180–181, 189
final program 187–188
iterating through verses

191–193
other solutions 194
test-driven development

189–190
verse() function 190–191

using 186–187
writing 181–182
writing tests for 182–186

writing program 179–187
breaking text 270–271, 304

C

capture groups 232–236
caret (^) character 254, 285,

297, 346
chmod (change mode)

command 20
choices option 132, 134, 360,

386, 396–398
choose() function 197–199,

202, 204
chr() function 296, 298
class, defined 42
clean() function 337–338, 348
cleaning text 297–298, 337–339,

346–347
colon (:) 113
comma-separated values files.

See CSV (comma-separated
values) files

comment lines 16
adding shebang line 18–19
regular expressions 242–243

conditional branching 47–48,
70–71

consonants pattern 233
copy (cp) command 33
counting down 180–181, 189
cp (copy) command 33
crowsnest.py (Crow’s Nest

program) 35–54
classifying first character of

words 51–52
concatenating strings 41–42

conditional branching 47–48
defining arguments 39–40,

50–51
final program 49–50
getting individual characters

of strings 43–44
main() function 51
printing results 52
REPL (Read-Evaluate-Print-

Loop) 44
starting with new.py 37–38
string comparisons 45–47
string formatting 48
string methods 44–45
test-driven development

52–53
variable types 42
writing and testing little by

little 38–39
writing program 49

crowsnest.py file 38
CSV (comma-separated values)

files 311–330
final program 323–325
formatting output 322
formatting table 328–330
handling bad data 322–323
parsing

with csv module 318–319
with pandas.read_csv()

function 327–328
potential runtime errors

326–327
reading 313–314, 325–326

creating function to
read 320–321

manually 315–318
selecting exercises 321–322
writing program 312–323

csv module 312, 315, 318–319
csv.DictReader() function

319–320, 323, 325
csvkit module 313
curly brackets ({}) 48, 52, 78–79,

113, 124–125, 293, 339

D

declarative programming 149
def (defines) 28, 181
delimited text file 312
deterministic approach 169
Dial-a-Curse program. See

abuse.py (Dial-a-Curse
program)

INDEX 407
dict() function 78–79, 124
dict.get() method 80, 84, 87,

126, 327
dictionaries 77–82

accessing values 80
creating 78–79
defining parameters 85
dictionary

comprehensions 125
looking up items in 124–126
methods 81–82
processing items in series

86–90
turning for loop into

list comprehension
89–90

using for loop to build new
list 89

using for loop to build new
string 88

using for loop to print()
each character 86–88

using str.translate()
function 90

using for encoding 85
dict.items() method 81, 318
dict.keys() method 81
dict.pop() function 82
dict.values() method 81
domain-specific language

(DSL) 148
double quotes ("") 42, 157
double-under methods 60
DSL (domain-specific

language) 148
dynamically typed language 48

E

enumerate() function 352,
363–364

env command 18–19
equal sign (=) 46, 57
error checking 287–288

hello.py 28–29
executability, making programs

executable 20
exit values 160–161
extend() function 62

F

fh (file handle) 94–95
fh.read() method 94–95, 103,

111

fh.readline() function 315–316
fh.seek(0) method 95
fh.write() method 223
file arguments 400–402
file handle (fh) 94–95
file parameter (argparse)

390–391
files

choosing output file
handle 104

printing output 104
reading 93–97
reading input from file

or command line
103–104

reading using for loops
115–117

writing 97–99
FileType 401–402
filter() function 45, 147, 227,

240–241, 339–340, 348
find_brackets() function

292–293
find_winner() function

356–357, 359
flag option 31, 391–392
flags 387
Flake8 program 28
float type 82, 167
floating-point values 237
foo() function 143
foo.py program 391
for loops

building new lists with 89
building new strings with 88
printing each character

with 86–88
reading files using 115–117
turning into list

comprehensions 89–90
format_board() function 356
formatting

CSV output 322
game board 363–364
list items 73–74
output 156–157
regular expressions 242–243
strings 48, 112–114
text tables 328–330

friar.py (Kentucky Friar
program) 248–267

final program 262–263
fry() function

using 261–262
writing manually 264–265

writing with regular
expressions 256–261,
266

negated shorthand
classes 254–255

re.split() with captured
regex 255–256

shorthand classes 252
splitting text 251
writing program 250–262

fry() function
using 261–262
writing manually 264–265
writing with regular

expressions 256–261, 266
f-strings 40, 49, 52, 113, 159
functions

adding type hints to
definition 376

using 186–187
writing 181–182
writing tests for 182–186

functools module 302
functools.reduce()

function 302–303

G

gashlycrumb.py (Gashlycrumb
Tinies program) 118–127

dictionary comprehensions
125

dictionary lookups 126
final program 122–123
handling arguments

123–124
reading input file 124–125
writing program 119–122

gematria.py (Gematria
program) 295–310

breaking text 304
cleaning words 297–298
encoding words 303
final program 304–305
functools.reduce()

function 302–303
ordinal character values and

ranges 298–300
sorting 308–309
summing and reducing

300–301
testing 309
word2num() function

306–307
writing program 296–304

INDEX408
get_args() function 39, 49–50,
57, 71, 84–85, 100, 102, 104,
119, 121, 123, 134–135, 154,
157, 167–168, 179, 189, 200,
209, 263, 277, 305, 321, 325,
346, 355, 359, 388–389, 402

adding 27–29
defining arguments with

50–51
returning from 392

getoutput() function 40
global changes 198
guard statement 240

H

hashable values 161
hello.py (Hello, World!

program) 15–16
adding get_args()

function 27–29
adding help messages 22–24
adding main() function 26–27
adding parameters 22–24
comment lines 16
error checking 28–29
making argument

optional 24–25
making program

executable 20
$PATH variable 20–22
shebang line 18–19
style checking 28–29
testing 17–18, 26, 29–30

help messages
adding 22–24

higher-order function. See HOF
(higher-order function)

HOF (higher-order
function) 147, 240, 302

$HOME variable 18, 21
howler.py (Howler program) 92

defining arguments 102
files

choosing output file
handle 104

printing output 104
reading 93–97
reading input from file or

command line 103–104
writing 97–99

final program 101–102
low-memory version 104–106
writing program 99–101

hyphen character (-) 40

I

if expressions 47, 52, 142, 202
if/elif/else statements, condi-

tional branching with
70–71

if/else statements 47, 70
immutable strings 130, 165
immutable values 275
imperative methods 225
import statements 154
import sys command 101
in-dels (insertion-deletions) 177
index method 64
indexing 63
indexing lists 63–64
input handles 94
input() function 127, 288
input-output (io) module 105
int type 82, 167
int values 153, 166
int() function 322, 326–327
integer values 153, 365
integration tests 186, 383
io (input-output) module 105
io.StringIO() function 105–106,

320
IPython 41, 59, 78
iterator object 68
itictactoe.py (Interactive Tic-Tac-

Toe program) 367–382
final program 377–381
state 381
tuples 369–372
type hints 372–373

adding to function
definitions 376

type verification with
Mypy 373–375

updating immutable
structures 375–376

version using TypedDict
379–381

writing program 368–376

J

joining
lists 70
strings 41

jump.py (Jump the Five
program) 76–91

dictionaries 77–82
accessing values 80
creating 78–79

defining parameters 85
methods 81–82
processing items in

series 86–90
using for encoding 85

final program 84–85
writing program 82–84

Jupyter Notebook 41, 59, 78

K

Kentucky Friar program. See
friar.py (Kentucky Friar
program)

L

l33t() function 342–343, 345,
347, 349

lambda keyword 144, 241
lazy functions 140, 180, 317
len() function 45, 60, 63, 72, 81,

112, 116
lines of code (LOC) 189
line.split() method 114, 116
linters 28
list comprehensions

replacing vowels 140–142
turning for loops into 89–90
with functions 142–144

list context 136
list variable 55
list() function 59, 68, 140, 171,

180, 220, 245, 319, 363
list.append() function 60, 140,

142, 202–203, 220
list.extend() method 62, 217,

220
list.index() method 64
list.insert() method 62
list.pop() method 65, 289
list.remove() method 66
list.reverse() method 67, 69,

214, 274
lists 59–70

adding many elements to
61–63

adding one element to 60–61
building with for loops 89
finding elements in 64–65
formatting items 73–74
indexing 63–64
iterating 111
joining 70
mutability of 69–70

INDEX 409
lists (continued)
mutating 176–177
printing items 74
removing elements from 65–

67
reversing 67–69
slicing 64
sorting items 67–69, 73

list.sort() method 67–69, 274,
308

LOC (lines of code) 189

M

MAD (mutually assured destruc-
tion) doctrine 351

mad.py (Mad Libs
program) 281–294

final program 289–290
finding placeholders 284–287
finding placeholders without

regular expressions
291–293

getting values 288–289
halting and printing

errors 287–288
limiting replacements 291
substituting text 289
writing program 282–289

main namespace 50
main() function 26–27, 32,

49–51, 72, 85, 104, 120, 136,
143, 158, 160, 168, 181–182,
189, 244, 270, 293, 297,
328

make directory (mkdir)
command 21

make program 29
make test command 29, 36, 49,

56, 119, 186
Makefile 29
map() function 45, 144, 146,

179, 186–188, 192, 196, 199,
222, 262, 265, 276, 296, 301,
306, 318, 337, 340, 347,
365

ransom.py 204
replacing vowels 144–147
with named functions 147

MapReduce 205
match.groups() function 234,

255
Mispar hechrechi 295
mkdir (make directory)

command 21

multiplication operator (*) 358
mutable elements 221
mutating

game board 360–363
lists 69–70, 176–177
strings 165–177

calculating number of
mutations 168–169

final program 173–174
mutation space 169
selecting characters to

mutate 169–172
writing program 167–173

text 197–198
updating immutable

structures 375–376
- -mutations option 166–167
- -mutations parameter

174–175
mutually assured destruction

(MAD) doctrine 351
Mypy 373–375

N

- -name option 24–25, 31
name parameter 23
- -name value 385
named options 386
nargs option 71, 398
natural language processing

(NLP) 304
negative index numbers 43
new_char() function 142–144,

147
newline character 98–99
new.py file 30, 38, 56
new.py, starting new program

with 30–33, 37–38
NLP (natural language

processing) 304
non-capturing groups 272
non-deterministic selection

170
non-greedy regex 285
no-op (no operation) 273
numeric encoding of text

295–310
breaking text 304
cleaning words 297–298
encoding words 303
final program 304–305
functools.reduce 302–303
ordinal character values and

ranges 298–300

sorting 308–309
summing and reducing

300–301
testing 309
word2num() function

306–307
writing program 296–304

numeric parameter
(argparse) 390

O

open file handles 110, 115,
392

open() method 94, 104–105,
135, 215, 401

operating system (os)
module 93

operator.mul function 302
optional arguments 23, 25
optional parameters 25
ord() function 138, 212, 296,

298–299, 301, 307
OrderedDict 319
ordinal value 138
os (operating system)

module 93
os.path.basename() method

94
os.path.dirname() method 93
os.path.isfile() function 98, 103,

110, 168
output handles 94
overwritten files 98

P

pandas.read_csv()
function 327–328

parallel operations 205
parameters

apples.py 134–135
argparse

file 390–391
numeric 390
positional 389
string 390

jump.py 85
parser.add_argument()

function 50
parser.error() function 151,

154, 157–158, 160, 167, 179,
187, 189, 209, 216, 283, 355,
402–403

pass statement 182

INDEX410
password.py (Secure Password
Generator program)
331–350

cleaning text 337–339,
346–347

creating unique list of
words 335–337

filtering words 340–341
final program 343–346
l33t() function 342, 347
processing files 347–348
ransom() function 347
sampling and creating

passwords 341–342,
348–349

title-casing words 341
using sets 339
writing program 334–343

$PATH variable 20–22
PCRE (Perl-Compatible Regular

Expressions) 252
period (.) character 232, 235,

284, 353, 361
Perl-Compatible Regular Expres-

sions (PCRE) 252
picnic.py (Picnic List

program) 55–75
defining arguments 73
final program 71–72
lists 59–70

adding many elements
to 61–63

adding one element to
60–61

conditional branching with
if/elif/else statements
70–71

finding elements in 64–65
formatting items 73–74
indexing 63–64
joining 70
mutability of 69–70
printing items 74
removing elements from

65–67
slicing 64
sorting items 67–69, 73

starting new program
56–58

writing program 58–59
pip module 28
pipe operator (|) 108, 356
placeholders

finding with regular
expressions 284–287

finding without regular
expressions 291–293

positional arguments 23, 25, 32,
39, 50, 386

one or more of the same
399–400

single 393–394
two different 394–396
two of the same 398–399

positional parameters 25, 389
pprint module 124
pprint() function 124–125
pprint.pprint() function 138
print() function 42, 59, 74, 84,

86, 88, 98, 116, 121, 124,
140, 157, 159, 210, 222, 278,
287

printf() function 113
printing

characters with for loops
86–88

errors 287–288
game board 356
list items 74
output 52, 104, 215, 222
REPL (Read-Evaluate-Print-

Loop) 44
product() function 302
pseudo-random events 150
PyCharm 15, 29
python3 18–19, 243

R

random events
capitalizing text 195

comparing methods
204–205

creating new strings
198–199

final program 199–200
flipping coin 198
iterating through elements

in sequence 200–202
list.append() function

202–203
map() function 204
mutating text 197–198
using list comprehensions

203
using strings instead of

lists 203
writing function to choose

letter 202
writing program 197–199

mutating strings 165–177
calculating number of

mutations 168–169
final program 173–174
mutation space 169
selecting characters to

mutate 169–172
using lists instead of

strings 176–177
writing program 167–173

reordering middles of
words 268–280

breaking text into lines and
words 270–271

capturing, non-capturing,
and optional
groups 271–272

compiling regexes 272
final program 276–277
processing text 277–279
scrambling all words 275
scrambling words 273–275,

279–280
writing program 269–275

word generation 150–164
constructing insults 162–163
defining adjectives and

nouns 155–156
defining arguments 159
exit values 160–161
final program 157–159
formatting output 156–157
importing and seeding ran-

dom module 154–155
parser.error() function 160
random.seed() function 161
range() function 162
STDERR (standard

error) 160–161
taking random samples and

choices 156
throwaway variables 162
validating arguments

153–154
writing program 151–157

random module 161, 166, 313,
343, 352

random seeds 198
random.choice() function 153,

156–157, 163, 170, 174–175,
335

random.choices() function 156
random.getstate() function 273
random.randint() function 314,

321, 323

INDEX 411
random.random() function 170
random.sample() function

156–157, 159, 163, 171, 174,
176, 321, 323, 329, 341–342

random.seed() function 154,
156–158, 161, 168, 175, 197,
200, 268, 273, 276, 313, 321,
335, 342, 345

random.shuffle() function 269,
273–275

range() function 140, 146, 153,
156–157, 159, 162, 180,
186–187, 193, 208–209, 211,
349

ransom() function 335, 342,
345–347

ransom.py (Ransom Note
program) 195

comparing methods 204–205
creating new strings 198–199
final program 199–200
flipping coin 198
iterating through elements in

sequence 200–202
list.append() function 202–203
map() function 204
mutating text 197–198
using list

comprehensions 203
using strings instead of

lists 203
writing function to choose

letter 202
writing program 197–199

Read the Fine Manual
(RTFM) 44

read() method 94, 96, 135
read_csv() function 320–321,

325, 327, 329
re.compile() function 264, 272
reduce() function 296, 302–303
refactoring 149
re.findall() function 282, 287,

297
regular expressions 148–149

captured 255–256
compiling 272
friar.py 248–267

final program 262–263
fry() function 256–262,

264–266
negated shorthand

classes 254–255
re.split() with captured

regex 255–256

shorthand classes 252
splitting text 251
writing program 250–262

mad.py 281–294
final program 289–290
finding placeholders

284–287
finding placeholders with-

out regular
expressions 291–293

getting values 288–289
halting and printing

errors 287–288
substituting text 289
substituting with regular

expressions 291
writing program 282–289

rhymer.py 225–247
commenting 242–243
creating output 238
creating rhyming

strings 244–245
final program 238–239
formatting 242–243
stemmer() function 228–

229, 240–241, 243, 245
truthiness 236–237
using 229–232
using capture groups 232–

236
writing rhymer.py 227–238

re.Match object 260
re.match() function 230, 232,

234, 239, 250–251, 266, 272,
327

re.Match.groups() method 232
Repl.it 20, 29
requirements.txt file 313
re.search() function 230, 232,

250, 252, 260, 266, 272
re.split() function 250, 255–256,

263–264, 270
re.sub() function 148, 282, 291,

296, 298, 305, 307, 346
return statement 182
reversed() function 68, 180,

214, 220
reversing lists 67–69
rhymer.py (Rhymer

program) 225–247
commenting 242–243
creating output 238
creating rhyming strings

244–245
final program 238–239

formatting 242–243
stemmer() function 240–241

rhymer.py 228–229
using outside rhymer.py 243
writing without regular

expressions 245
truthiness 236–237
using capture groups 232–236
using regular

expressions 229–232
writing program 227–238

round() function 168
round-tripping 91
rstrip() method 135
RTFM (Read the Fine

Manual) 44

S

scramble() function 273, 275,
277–278

scrambler.py (Scrambler
program) 268–280

breaking text into lines and
words 270–271

capturing, non-capturing, and
optional groups 271–272

compiling regexes 272
final program 276–277
processing text 277–279
scrambling all words 275
scrambling words 273–275,

279–280
writing program 269–275

secure password
generation 331–350

cleaning text 337–339,
346–347

creating unique list of
words 335–337

filtering words 340–341
final program 343–346
l33t() function 342, 347
processing files 347–348
ransom() function 347
sampling and creating

passwords 341–342,
348–349

title-casing words 341
using sets 339
writing program 334–343

Secure Password Generator pro-
gram. See password.py
(Secure Password Genera-
tor program)

INDEX412
sep argument 86
set() function 339
set.add() function 339
set.intersection() function 339
sets 339
set.sort() function 349
shebang (#!) line 18–19
shorthand classes 252, 254–255
shuffled value 274
single quotes ('') 42, 157
slice notation 43
slices 173
slicing lists 64
SNP (single nucleotide

polymorphisms) 177
SNV (single nucleotide

variations) 177
sorted() function 68–69, 174,

245, 345, 349
sorting

list items 67–69, 73
strings 308–309

spaCy library 332
square brackets ([]) 43, 59, 78,

80, 89, 125, 293, 385
state 351–366, 381

altering board 355
determining winner 356–357,

364–365
final program 357–365
mutating board 360–363
printing board 356
validating arguments

360–363
validating user input 355
writing tictactoe.py 353–357

static typing 48
STDERR (standard error)

160–161, 287, 290, 293
STDIN (standard in) 110
STDOUT (standard out) 97,

101, 108, 110, 130, 157, 160,
208, 246, 290

choosing output file handle
104

writing files 97–99
stemmer() function 228–229,

236, 238, 244
rhymer.py 228–229, 240–241
using outside rhymer.py

243
writing without regular

expressions 245
step value 181
stop value 43, 180, 292

str class 42, 44–45, 60, 63, 85,
90, 96, 134, 172, 183, 197,
303, 320, 394

str.casefold() function 308
str.endswith() function 259
str.format() method 48, 52, 72,

112–113, 157, 363
string module 169
string parameter (argparse)

390
string slices 173
string.ascii_letters 169
string.ascii_lowercase 241
string.punctuation 169, 335
strings

altering 130–132
str.replace() method 131
str.translate() method

131–132
building with for loops 88
comparisons of 45–47
concatenating 41–42
creating new 198–199
formatting 48, 112–114
getting individual characters

of strings 43–44
methods for 44–45
mutating 172–173, 175–176
using instead of lists 203

str.isupper() function 45
str.join() method 70, 89, 136,

147, 157, 163, 192, 210, 215,
222, 230, 278, 303, 349

str.lower() method 49
str.maketrans() function 132,

137
str.replace() method 84, 90–91,

131, 171, 175
altering strings 131
replacing vowels 136

str.rstrip() method 97, 103, 124,
133, 315–316

str.split() method 112, 155, 157,
162, 251, 270, 316, 348

str.splitlines() function 261,
263, 270, 276

str.splitlines() method 251, 262
str.strip() function 356
str.title() method 334
str.translate() function 90–91,

139, 345, 347
str.translate() method 90

altering strings 131–132
replacing vowels 137–139

str.upper() function 44, 49, 97

sum() function 296, 300, 302,
307

sys.exit() function 160, 282,
288, 329

sys.stderr 287
sys.stdout file 101–102, 208

T

tab character 323
tabulate module 312–313, 320,

323, 330
tabulate() function 322, 325
TDD (test-driven

development) 53, 182
telephone.py (Telephone

program) 165–177
calculating number of

mutations 168–169
final program 173–174
mutating strings 172–173,

175–176
mutation space 169
selecting characters to

mutate 169–172
non-deterministic

selection 170
randomly sampling

characters 170–172
using lists instead of

strings 176–177
writing program 167–173

template.py, starting new pro-
grams with 387–388

test-driven development 52–53,
189–190

testing
apples.py 149
gematria.py 309
hello.py 17–18, 26, 29–30
writing and testing little by

little 38–39
writing tests for functions

182–186
test.py 17–18, 30
TextIOWrapper class 96
Tic-Tac-Toe program. See itictac-

toe.py (Interactive Tic-Tac-
Toe program)

tictactoe.py (Tic-Tac-Toe
program) 351–366

altering board 355
determining winner 356–357,

364–365
final program 357–365

INDEX 413
tictactoe.py (Tic-Tac-Toe pro-
gram) (continued)

formatting board
363–364

mutating board 360–363
printing board 356
validating arguments

360–363
validating user input 355
writing program

353–357
TIMTOWTDI (There Is More

Than One Way To Do
It) 135

title-casing 341
truthiness 236–237
tuples 369–372
twelve_days.py (Twelve Days of

Christmas program)
207–224

counting 209–210
creating ordinal value

211–212
final program 216–217
generating verses 221–222
making verses 213–215,

218–221
printing verses 215, 222
verse() function 215
writing program 208–215

two equal signs (==) 46
type hints 372–373

adding to function
definitions 376

type verification with
Mypy 373–375

type() function 42, 45, 60, 78,
80, 97

TypedDict 379–381

U

unbalanced brackets 285
unit tests 183, 186, 383
unit.py file 356
usage statement 23
user input validation 355

V

variables
$PATH variable 20–22
throwaway 162
types of 42

verbose output 17
verse() function 187–189, 193,

210–211, 217, 221
twelve_days.py 215
using 186–187
writing 181–182
writing tests for 182–186

VS Code 15, 29

W

wc.py (Word Count
program) 107–117

defining arguments 115
defining file inputs 110
final program 114–115
formatting results 112–114
iterating lists 111
reading files using for

loops 115–117
what's being counted 111–112
writing program 109–114

which command 19–20
wildcard 108
wod.py (Workout of the Day

program) 311–330
final program 323–325
formatting text table

output 322, 328–330
handling bad data 322–323
parsing delimited text files

with csv module 318–319
with pandas.read_csv()

function 327–328
potential runtime errors

326–327
reading delimited text

files 313–314, 325–326
creating function to

read 320–321
manually 315–318

selecting exercises 321–322
writing program 312–323

wod.read_csv() function 329
Word Count program. See wc.py

(Word Count program)
word variable 41–44, 48, 51, 116
word2num() function 303–307,

309
write() method 96, 98
writing programs 15–34,

353–357
abuse.py 151–157
bottles.py 179–187
crowsnest.py 49
friar.py 250–262
gashlycrumb.py 119–122
gematria.py 296–304
hello.py 15–30
howler.py 99–101
itictactoe.py 368–376
jump.py 82–84
mad.py 282–289
password.py 334–343
picnic.py 58–59, 71
ransom.py 197–199
rhymer.py 227–238
scrambler.py 269–275
starting new program with

new.py 30–33
starting new program with

template.py 33
telephone.py 167–173
twelve_days.py 208–215
wc.py 109–114
wod.py 312–323
writing and testing little by

little 38–39
wt (writing text) 104

Y

YAPF 28–29

Z

zero-offset indexing 63
zip() function 316–317

Ken Youens-Clark

ISBN: 978-1-61729-751-9

W
ho says learning to program has to be boring? The
21 activities in this book teach Python fundamentals
through puzzles and games. Not only will you be enter-

tained with every exercise, but you’ll learn about text manipu-
lation, basic algorithms, and lists and dictionaries as you go.
It’s the ideal way for any Python newbie to gain confi dence
and experience.

The projects are tiny, but the rewards are big: each chapter
in Tiny Python Projects challenges you with a new Python
program, including a password creator, a word rhymer, and a
Shakespearean insult generator. As you complete these enter-
taining exercises, you’ll graduate from a Python beginner to a
confi dent programmer—and you’ll have a good time doing it!

What’s Inside
● Write command-line Python programs
● Manipulate Python data structures
● Use and control randomness
● Write and run tests for programs and functions
● Download testing suites for each project

For readers with beginner programming skills.

Ken Youens-Clark is a Senior Scientifi c Programmer at the Uni-
versity of Arizona. He has an MS in Biosystems Engineering
and has been programming for over 20 years.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/tiny-python-projects

$39.99 / Can $52.99 [INCLUDING eBOOK]

Tiny Python Projects

PYTHON/PROGRAMMING LANGUAGES

M A N N I N G

“Tiny Python Projects is a
gentle, amusing introduction
to Python that will fi rm up
several key concepts while

occasionally making
 you snicker.”
—Amanda Debler

Schaeffl er Technologies

“Knowledge meets humor
meets succinctness. A gem.”—Mafi nar Khan, theScore

“Learning based on doing
small projects is effective,
and that’s why this book

is perfect.”—Marcin Sęk, e-Xim IT

“Excellent pick for those
who want to improve coding

skills with Python.”—José Apablaza, Steadfast

See first page

	Tiny Python Projects
	brief contents
	contents
	preface
	Why write Python?
	Why did I write this book?

	acknowledgments
	about this book
	Who should read this book
	How this book is organized: A roadmap
	About the code
	Software/hardware requirements
	iiveBook discussion forum
	Other online resources

	about the author
	about the cover
	Getting started: Introduction and installation guide
	Writing command-line programs
	Using test-driven development
	Setting up your environment
	Code examples
	Getting the code
	Installing modules
	Code formatters
	Code linters
	How to start writing new programs
	Why not Notebooks?
	The scope of topics we’ll cover
	Why not object-oriented programming?
	A note about the lingo

	1 How to write and test a Python program
	1.1 Creating your first program
	1.2 Comment lines
	1.3 Testing your program
	1.4 Adding the #! (shebang) line
	1.5 Making a program executable
	1.6 Understanding $PATH
	1.6.1 Altering your $PATH

	1.7 Adding a parameter and help
	1.8 Making the argument optional
	1.9 Running our tests
	1.10 Adding the main() function
	1.11 Adding the get_args() function
	1.11.1 Checking style and errors

	1.12 Testing hello.py
	1.13 Starting a new program with new.py
	1.14 Using template.py as an alternative to new.py
	Summary

	2 The crow’s nest: Working with strings
	2.1 Getting started
	2.1.1 How to use the tests
	2.1.2 Creating programs with new.py
	2.1.3 Write, test, repeat
	2.1.4 Defining your arguments
	2.1.5 Concatenating strings
	2.1.6 Variable types
	2.1.7 Getting just part of a string
	2.1.8 Finding help in the REPL
	2.1.9 String methods
	2.1.10 String comparisons
	2.1.11 Conditional branching
	2.1.12 String formatting
	2.1.13 Time to write

	2.2 Solution
	2.3 Discussion
	2.3.1 Defining the arguments with get_args()
	2.3.2 The main() thing
	2.3.3 Classifying the first character of a word
	2.3.4 Printing the results
	2.3.5 Running the test suite

	2.4 Going further
	Summary

	3 Going on a picnic: Working with lists
	3.1 Starting the program
	3.2 Writing picnic.py
	3.3 Introducing lists
	3.3.1 Adding one element to a list
	3.3.2 Adding many elements to a list
	3.3.3 Indexing lists
	3.3.4 Slicing lists
	3.3.5 Finding elements in a list
	3.3.6 Removing elements from a list
	3.3.7 Sorting and reversing a list
	3.3.8 Lists are mutable
	3.3.9 Joining a list

	3.4 Conditional branching with if/elif/else
	3.4.1 Time to write

	3.5 Solution
	3.6 Discussion
	3.6.1 Defining the arguments
	3.6.2 Assigning and sorting the items
	3.6.3 Formatting the items
	3.6.4 Printing the items

	3.7 Going further
	Summary

	4 Jump the Five: Working with dictionaries
	4.1 Dictionaries
	4.1.1 Creating a dictionary
	4.1.2 Accessing dictionary values
	4.1.3 Other dictionary methods

	4.2 Writing jump.py
	4.3 Solution
	4.4 Discussion
	4.4.1 Defining the parameters
	4.4.2 Using a dict for encoding
	4.4.3 Various ways to process items in a series
	4.4.4 (Not) using str.replace()

	4.5 Going further
	Summary

	5 Howler: Working with files and STDOUT
	5.1 Reading files
	5.2 Writing files
	5.3 Writing howler.py
	5.4 Solution
	5.5 Discussion
	5.5.1 Defining the arguments
	5.5.2 Reading input from a file or the command line
	5.5.3 Choosing the output file handle
	5.5.4 Printing the output
	5.5.5 A low-memory version

	5.6 Going further
	Summary

	6 Words count: Reading files and STDIN, iterating lists, formatting strings
	6.1 Writing wc.py
	6.1.1 Defining file inputs
	6.1.2 Iterating lists
	6.1.3 What you’re counting
	6.1.4 Formatting your results

	6.2 Solution
	6.3 Discussion
	6.3.1 Defining the arguments
	6.3.2 Reading a file using a for loop

	6.4 Going further
	Summary

	7 Gashlycrumb: Looking items up in a dictionary
	7.1 Writing gashlycrumb.py
	7.2 Solution
	7.3 Discussion
	7.3.1 Handling the arguments
	7.3.2 Reading the input file
	7.3.3 Using a dictionary comprehension
	7.3.4 Dictionary lookups

	7.4 Going further
	Summary

	8 Apples and Bananas: Find and replace
	8.1 Altering strings
	8.1.1 Using the str.replace() method
	8.1.2 Using str.translate()
	8.1.3 Other ways to mutate strings

	8.2 Solution
	8.3 Discussion
	8.3.1 Defining the parameters
	8.3.2 Eight ways to replace the vowels

	8.4 Refactoring with tests
	8.5 Going further
	Summary

	9 Dial-a-Curse: Generating random insults from lists of words
	9.1 Writing abuse.py
	9.1.1 Validating arguments
	9.1.2 Importing and seeding the random module
	9.1.3 Defining the adjectives and nouns
	9.1.4 Taking random samples and choices
	9.1.5 Formatting the output

	9.2 Solution
	9.3 Discussion
	9.3.1 Defining the arguments
	9.3.2 Using parser.error()
	9.3.3 Program exit values and STDERR
	9.3.4 Controlling randomness with random.seed()
	9.3.5 Iterating with range() and using throwaway variables
	9.3.6 Constructing the insults

	9.4 Going further
	Summary

	10 Telephone: Randomly mutating strings
	10.1 Writing telephone.py
	10.1.1 Calculating the number of mutations
	10.1.2 The mutation space
	10.1.3 Selecting the characters to mutate
	10.1.4 Mutating a string
	10.1.5 Time to write

	10.2 Solution
	10.3 Discussion
	10.3.1 Mutating a string
	10.3.2 Using a list instead of a str

	10.4 Going further
	Summary

	11 Bottles of Beer Song: Writing and testing functions
	11.1 Writing bottles.py
	11.1.1 Counting down
	11.1.2 Writing a function
	11.1.3 Writing a test for verse()
	11.1.4 Using the verse() function

	11.2 Solution
	11.3 Discussion
	11.3.1 Counting down
	11.3.2 Test-driven development
	11.3.3 The verse() function
	11.3.4 Iterating through the verses
	11.3.5 1,500 other solutions

	11.4 Going further
	Summary

	12 Ransom: Randomly capitalizing text
	12.1 Writing ransom.py
	12.1.1 Mutating the text
	12.1.2 Flipping a coin
	12.1.3 Creating a new string

	12.2 Solution
	12.3 Discussion
	12.3.1 Iterating through elements in a sequence
	12.3.2 Writing a function to choose the letter
	12.3.3 Another way to write list.append()
	12.3.4 Using a str instead of a list
	12.3.5 Using a list comprehension
	12.3.6 Using a map() function

	12.4 Comparing methods
	12.5 Going further
	Summary

	13 Twelve Days of Christmas: Algorithm design
	13.1 Writing twelve_days.py
	13.1.1 Counting
	13.1.2 Creating the ordinal value
	13.1.3 Making the verses
	13.1.4 Using the verse() function
	13.1.5 Printing
	13.1.6 Time to write

	13.2 Solution
	13.3 Discussion
	13.3.1 Making one verse
	13.3.2 Generating the verses
	13.3.3 Printing the verses

	13.4 Going further
	Summary

	14 Rhymer: Using regular expressions to create rhyming words
	14.1 Writing rhymer.py
	14.1.1 Breaking a word
	14.1.2 Using regular expressions
	14.1.3 Using capture groups
	14.1.4 Truthiness
	14.1.5 Creating the output

	14.2 Solution
	14.3 Discussion
	14.3.1 Stemming a word
	14.3.2 Formatting and commenting the regular expression
	14.3.3 Using the stemmer() function outside your program
	14.3.4 Creating rhyming strings
	14.3.5 Writing stemmer() without regular expressions

	14.4 Going further
	Summary

	15 The Kentucky Friar: More regular expressions
	15.1 Writing friar.py
	15.1.1 Splitting text using regular expressions
	15.1.2 Shorthand classes
	15.1.3 Negated shorthand classes
	15.1.4 Using re.split() with a captured regex
	15.1.5 Writing the fry() function
	15.1.6 Using the fry() function

	15.2 Solution
	15.3 Discussion
	15.3.1 Writing the fry() function manually
	15.3.2 Writing the fry() function with regular expressions

	15.4 Going further
	Summary

	16 The scrambler: Randomly reordering the middles of words
	16.1 Writing scrambler.py
	16.1.1 Breaking the text into lines and words
	16.1.2 Capturing, non-capturing, and optional groups
	16.1.3 Compiling a regex
	16.1.4 Scrambling a word
	16.1.5 Scrambling all the words

	16.2 Solution
	16.3 Discussion
	16.3.1 Processing the text
	16.3.2 Scrambling a word

	16.4 Going further
	Summary

	17 Mad Libs: Using regular expressions
	17.1 Writing mad.py
	17.1.1 Using regular expressions to find the pointy bits
	17.1.2 Halting and printing errors
	17.1.3 Getting the values
	17.1.4 Substituting the text

	17.2 Solution
	17.3 Discussion
	17.3.1 Substituting with regular expressions
	17.3.2 Finding the placeholders without regular expressions

	17.4 Going further
	Summary

	18 Gematria: Numeric encoding of text using ASCII values
	18.1 Writing gematria.py
	18.1.1 Cleaning a word
	18.1.2 Ordinal character values and ranges
	18.1.3 Summing and reducing
	18.1.4 Using functools.reduce
	18.1.5 Encoding the words
	18.1.6 Breaking the text

	18.2 Solution
	18.3 Discussion
	18.3.1 Writing word2num()
	18.3.2 Sorting
	18.3.3 Testing

	18.4 Going further
	Summary

	19 Workout of the Day: Parsing CSV files, creating text table output
	19.1 Writing wod.py
	19.1.1 Reading delimited text files
	19.1.2 Manually reading a CSV file
	19.1.3 Parsing with the csv module
	19.1.4 Creating a function to read a CSV file
	19.1.5 Selecting the exercises
	19.1.6 Formatting the output
	19.1.7 Handling bad data
	19.1.8 Time to write

	19.2 Solution
	19.3 Discussion
	19.3.1 Reading a CSV file
	19.3.2 Potential runtime errors
	19.3.3 Using pandas.read_csv() to parse the file
	19.3.4 Formatting the table

	19.4 Going further
	Summary

	20 Password strength: Generating a secure and memorable password
	20.1 Writing password.py
	20.1.1 Creating a unique list of words
	20.1.2 Cleaning the text
	20.1.3 Using a set
	20.1.4 Filtering the words
	20.1.5 Titlecasing the words
	20.1.6 Sampling and making a password
	20.1.7 l33t-ify
	20.1.8 Putting it all together

	20.2 Solution
	20.3 Discussion
	20.3.1 Cleaning the text
	20.3.2 A king’s ransom
	20.3.3 How to l33t()
	20.3.4 Processing the files
	20.3.5 Sampling and creating the passwords

	20.4 Going further
	Summary

	21 Tic-Tac-Toe: Exploring state
	21.1 Writing tictactoe.py
	21.1.1 Validating user input
	21.1.2 Altering the board
	21.1.3 Printing the board
	21.1.4 Determining a winner

	21.2 Solution
	21.2.1 Validating the arguments and mutating the board
	21.2.2 Formatting the board
	21.2.3 Finding the winner

	21.3 Going further
	Summary

	22 Tic-Tac-Toe redux: An interactive version with type hints
	22.1 Writing itictactoe.py
	22.1.1 Tuple talk
	22.1.2 Named tuples
	22.1.3 Adding type hints
	22.1.4 Type verification with Mypy
	22.1.5 Updating immutable structures
	22.1.6 Adding type hints to function definitions

	22.2 Solution
	22.2.1 A version using TypedDict
	22.2.2 Thinking about state

	22.3 Going further
	Summary

	Epilogue
	Appendix—Using argparse
	A.1 Types of arguments
	A.2 Using a template to start a program
	A.3 Using argparse
	A.3.1 Creating the parser
	A.3.2 Creating a positional parameter
	A.3.3 Creating an optional string parameter
	A.3.4 Creating an optional numeric parameter
	A.3.5 Creating an optional file parameter
	A.3.6 Creating a flag option
	A.3.7 Returning from get_args

	A.4 Examples using argparse
	A.4.1 A single positional argument
	A.4.2 Two different positional arguments
	A.4.3 Restricting values using the choices option
	A.4.4 Two of the same positional arguments
	A.4.5 One or more of the same positional arguments
	A.4.6 File arguments
	A.4.7 Manually checking arguments
	A.4.8 Automatic help

	Summary

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y
	Z

