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CHAPTER 1

Introduction
Data science is an interdisciplinary field encompassing scientific methods, 

processes, and systems to extract knowledge or insights from data in 

various forms, either structured or unstructured. It draws principles from 

mathematics, statistics, information science, computer science, machine 

learning, visualization, data mining, and predictive analytics. However, it is 

fundamentally grounded in mathematics.

This book explains and applies the fundamentals of data science 

crucial for technical professionals such as DBAs and developers who are 

making career moves toward practicing data science. It is an example-

driven book providing complete Python coding examples to complement 

and clarify data science concepts, and enrich the learning experience. 

Coding examples include visualizations whenever appropriate. The book 

is a necessary precursor to applying and implementing machine learning 

algorithms, because it introduces the reader to foundational principles of 

the science of data.

The book is self-contained. All the math, statistics, stochastic, and 

programming skills required to master the content are covered in the 

book. In-depth knowledge of object-oriented programming isn’t required, 

because working and complete examples are provided and explained. 

The examples are in-depth and complex when necessary to ensure the 

acquisition of appropriate data science acumen. The book helps you 

to build the foundational skills necessary to work with and understand 

complex data science algorithms.
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Data Science Fundamentals by Example is an excellent starting point 

for those interested in pursuing a career in data science. Like any science, 

the fundamentals of data science are prerequisite to competency. Without 

proficiency in mathematics, statistics, data manipulation, and coding, 

the path to success is “rocky” at best. The coding examples in this book 

are concise, accurate, and complete, and perfectly complement the data 

science concepts introduced.

The book is organized into six chapters. Chapter 1 introduces the 

programming fundamentals with “Python” necessary to work with, 

transform, and process data for data science applications. Chapter 2  

introduces Monte Carlo simulation for decision making, and data 

distributions for statistical processing. Chapter 3 introduces linear algebra 

applied with vectors and matrices. Chapter 4 introduces the gradient 

descent algorithm that minimizes (or maximizes) functions, which is 

very important because most data science problems are optimization 

problems. Chapter 5 focuses on munging, cleaning, and transforming data 

for solving data science problems. Chapter 6 focusing on exploring data by 

dimensionality reduction, web scraping, and working with large data sets 

efficiently.

Python programming code for all coding examples and data files are 

available for viewing and download through Apress at www.apress.com/ 

9781484235966. Specific linking instructions are included on the 

copyright pages of the book.

To install a Python module, pip is the preferred installer program. So, 

to install the matplotlib module from an Anaconda prompt: pip install 

matplotlib. Anaconda is a widely popular open source distribution of 

Python (and R) for large-scale data processing, predictive analytics, 

and scientific computing that simplifies package management and 

deployment. I have worked with other distributions with unsatisfactory 

results, so I highly recommend Anaconda.

Chapter 1  Introduction
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�Python Fundamentals
Python has several features that make it well suited for learning and doing 

data science. It’s free, relatively simple to code, easy to understand, and 

has many useful libraries to facilitate data science problem solving. It 

also allows quick prototyping of virtually any data science scenario and 

demonstration of data science concepts in a clear, easy to understand 

manner.

The goal of this chapter is not to teach Python as a whole, but present, 

explain, and clarify fundamental features of the language (such as logic, 

data structures, and libraries) that help prototype, apply, and/or solve data 

science problems.

Python fundamentals are covered with a wide spectrum of activities 

with associated coding examples as follows:

	 1.	 functions and strings

	 2.	 lists, tuples, and dictionaries

	 3.	 reading and writing data

	 4.	 list comprehension

	 5.	 generators

	 6.	 data randomization

	 7.	 MongoDB and JSON

	 8.	 visualization

�Functions and Strings
Python functions are first-class functions, which means they can be used 

as parameters, a return value, assigned to variable, and stored in data 

structures. Simply, functions work like a typical variable. Functions can be 

Chapter 1  Introduction
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either custom or built-in. Custom are created by the programmer, while 

built-in are part of the language. Strings are very popular types enclosed in 

either single or double quotes.

The following code example defines custom functions and uses built-

in ones:

def num_to_str(n):

    return str(n)

def str_to_int(s):

    return int(s)

def str_to_float(f):

    return float(f)

if __name__ == "__main__":

    # hash symbol allows single-line comments

    '''

    triple quotes allow multi-line comments

    '''

    float_num = 999.01

    int_num = 87

    float_str = '23.09'

    int_str = '19'

    string = 'how now brown cow'

    s_float = num_to_str(float_num)

    s_int = num_to_str(int_num)

    i_str = str_to_int(int_str)

    f_str = str_to_float(float_str)

    print (s_float, 'is', type(s_float))

    print (s_int, 'is', type(s_int))

    print (f_str, 'is', type(f_str))

    print (i_str, 'is', type(i_str))

Chapter 1  Introduction
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    �print ('\nstring', '"' + string + '" has', len(string), 

'characters')

    str_ls = string.split()

    print ('split string:', str_ls)

    print ('joined list:', ' '.join(str_ls))

Output:

 

A popular coding style is to present library importation and functions 

first, followed by the main block of code. The code example begins 

with three custom functions that convert numbers to strings, strings to 

numbers, and strings to float respectively. Each custom function returns a 

built-in function to let Python do the conversion. The main block begins 

with comments. Single-line comments are denoted with the # (hash) 

symbol. Multiline comments are denoted with three consecutive single 

quotes. The next five lines assign values to variables. The following four 

lines convert each variable type to another type. For instance, function 

num_to_str() converts variable float_num to string type. The next five lines 

print variables with their associated Python data type. Built-in function 

type() returns type of given object. The remaining four lines print and 

manipulate a string variable.

Chapter 1  Introduction
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�Lists, Tuples, and Dictionaries
Lists are ordered collections with comma-separated values between 

square brackets. Indices start at 0 (zero). List items need not be of the 

same type and can be sliced, concatenated, and manipulated in many 

ways.

The following code example creates a list, manipulates and slices it, 

creates a new list and adds elements to it from another list, and creates a 

matrix from two lists:

import numpy as np

if __name__ == "__main__":

    ls = ['orange', 'banana', 10, 'leaf', 77.009, 'tree', 'cat']

    print ('list length:', len(ls), 'items')

    �print ('cat count:', ls.count('cat'), ',', 'cat index:', 

ls.index('cat'))

    print ('\nmanipulate list:')

    cat = ls.pop(6)

    print ('cat:', cat, ', list:', ls)

    ls.insert(0, 'cat')

    ls.append(99)

    print (ls)

    ls[7] = '11'

    print (ls)

    ls.pop(1)

    print (ls)

Chapter 1  Introduction
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    ls.pop()

    print (ls)

    print ('\nslice list:')

    print ('1st 3 elements:', ls[:3])

    print ('last 3 elements:', ls[3:])

    print ('start at 2nd to index 5:', ls[1:5])

    print ('start 3 from end to end of list:', ls[-3:])

    print ('start from 2nd to next to end of list:', ls[1:-1])

    print ('\ncreate new list from another list:')

    print ('list:', ls)

    fruit = ['orange']

    more_fruit = ['apple', 'kiwi', 'pear']

    fruit.append(more_fruit)

    print ('appended:', fruit)

    fruit.pop(1)

    fruit.extend(more_fruit)

    print ('extended:', fruit)

    a, b = fruit[2], fruit[1]

    print ('slices:', a, b)

    print ('\ncreate matrix from two lists:')

    matrix = np.array([ls, fruit])

    print (matrix)

    print ('1st row:', matrix[0])

    print ('2nd row:', matrix[1])

Chapter 1  Introduction
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Output:

 

The code example begins by importing NumPy, which is the 

fundamental package (library, module) for scientific computing. It is 

useful for linear algebra, which is fundamental to data science. Think 

of Python libraries as giant classes with many methods. The main block 

begins by creating list ls, printing its length, number of elements (items), 

number of cat elements, and index of the cat element. The code continues 

by manipulating ls. First, the 7th element (index 6) is popped and assigned 

to variable cat. Remember, list indices start at 0. Function pop() removes 

cat from ls. Second, cat is added back to ls at the 1st position (index 0) and 

99 is appended to the end of the list. Function append() adds an object to  

the end of a list. Third, string ‘11’ is substituted for the 8th element (index 7).  

Finally, the 2nd element and the last element are popped from ls. The 

code continues by slicing ls. First, print the 1st three elements with ls[:3]. 

Chapter 1  Introduction
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Second, print the last three elements with ls[3:]. Third, print starting with 

the 2nd element to elements with indices up to 5 with ls[1:5]. Fourth, print 

starting three elements from the end to the end with ls[-3:]. Fifth, print 

starting from the 2nd element to next to the last element with ls[1:-1].  

The code continues by creating a new list from another. First, create fruit 

with one element. Second append list more_fruit to fruit. Notice that 

append adds list more_fruit as the 2nd element of fruit, which may not be 

what you want. So, third, pop 2nd element of fruit and extend more_fruit 

to fruit. Function extend() unravels a list before it adds it. This way, fruit 

now has four elements. Fourth, assign 3rd element to a and 2nd element 

to b and print slices. Python allows assignment of multiple variables on 

one line, which is very convenient and concise. The code ends by creating 

a matrix from two lists—ls and fruit—and printing it. A Python matrix is a 

two-dimensional (2-D) array consisting of rows and columns, where each 

row is a list.

A tuple is a sequence of immutable Python objects enclosed by 

parentheses. Unlike lists, tuples cannot be changed. Tuples are convenient 

with functions that return multiple values.

The following code example creates a tuple, slices it, creates a list, and 

creates a matrix from tuple and list:

import numpy as np

if __name__ == "__main__":

    tup = ('orange', 'banana', 'grape', 'apple', 'grape')

    print ('tuple length:', len(tup))

    print ('grape count:', tup.count('grape'))

    print ('\nslice tuple:')

    print ('1st 3 elements:', tup[:3])

    print ('last 3 elements', tup[3:])

    print ('start at 2nd to index 5', tup[1:5])

    print ('start 3 from end to end of tuple:', tup[-3:])

Chapter 1  Introduction
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    print ('start from 2nd to next to end of tuple:', tup[1:-1])

    print ('\ncreate list and create matrix from it and tuple:')

    fruit = ['pear', 'grapefruit', 'cantaloupe', 'kiwi', 'plum']

    matrix = np.array([tup, fruit])

    print (matrix)

Output:

 

The code begins by importing NumPy. The main block begins by 

creating tuple tup, printing its length, number of elements (items), number 

of grape elements, and index of grape. The code continues by slicing 

tup. First, print the 1st three elements with tup[:3]. Second, print the last 

three elements with tup[3:]. Third, print starting with the 2nd element to 

elements with indices up to 5 with tup[1:5]. Fourth, print starting three 

elements from the end to the end with tup[-3:]. Fifth, print starting from 

the 2nd element to next to the last element with tup[1:-1]. The code 

continues by creating a new fruit list and creating a matrix from tup and fruit.

A dictionary is an unordered collection of items identified by a key/

value pair. It is an extremely important data structure for working with 

data. The following example is very simple, but the next section presents a 

more complex example based on a dataset.

Chapter 1  Introduction



11

The following code example creates a dictionary, deletes an element, 

adds an element, creates a list of dictionary elements, and traverses the list:

if __name__ == "__main__":

    audio = {'amp':'Linn', 'preamp':'Luxman', 'speakers':'Energy',

             'ic':'Crystal Ultra', 'pc':'JPS', 'power':'Equi-Tech',

             'sp':'Crystal Ultra', 'cdp':'Nagra', 'up':'Esoteric'}

    del audio['up']

    print ('dict "deleted" element;')

    print (audio, '\n')

    print ('dict "added" element;')

    audio['up'] = 'Oppo'

    print (audio, '\n')

    print ('universal player:', audio['up'], '\n')

    dict_ls = [audio]

    video = {'tv':'LG 65C7 OLED', 'stp':'DISH', 'HDMI':'DH Labs',

             'cable' : 'coax'}

    print ('list of dict elements;')

    dict_ls.append(video)

    for i, row in enumerate(dict_ls):

        print ('row', i, ':')

        print (row)

Output:

 

Chapter 1  Introduction
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The main block begins by creating dictionary audio with several 

elements. It continues by deleting an element with key up and value 

Esoteric, and displaying. Next, a new element with key up and element 

Oppo is added back and displayed. The next part creates a list with 

dictionary audio, creates dictionary video, and adds the new dictionary 

to the list. The final part uses a for loop to traverse the dictionary list and 

display the two dictionaries. A very useful function that can be used with a 

loop statement is enumerate(). It adds a counter to an iterable. An iterable 

is an object that can be iterated. Function enumerate() is very useful 

because a counter is automatically created and incremented, which means 

less code.

�Reading and Writing Data
The ability to read and write data is fundamental to any data science 

endeavor. All data files are available on the website. The most basic types 

of data are text and CSV (Comma Separated Values). So, this is where we 

will start.

The following code example reads a text file and cleans it for 

processing. It then reads the precleansed text file, saves it as a CSV file, 

reads the CSV file, converts it to a list of OrderedDict elements, and 

converts this list to a list of regular dictionary elements.

import csv

def read_txt(f):

    with open(f, 'r') as f:

        d = f.readlines()

        return [x.strip() for x in d]

def conv_csv(t, c):

    data = read_txt(t)

    with open(c, 'w', newline='') as csv_file:
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        writer = csv.writer(csv_file)

        for line in data:

            ls = line.split()

            writer.writerow(ls)

def read_csv(f):

    contents = ''

    with open(f, 'r') as f:

        reader = csv.reader(f)

        return list(reader)

def read_dict(f, h):

    input_file = csv.DictReader(open(f), fieldnames=h)

    return input_file

def od_to_d(od):

    return dict(od)

if __name__ == "__main__":

    f = 'data/names.txt'

    data = read_txt(f)

    print ('text file data sample:')

    for i, row in enumerate(data):

        if i < 3:

            print (row)

    csv_f = 'data/names.csv'

    conv_csv(f, csv_f)

    r_csv = read_csv(csv_f)

    print ('\ntext to csv sample:')

    for i, row in enumerate(r_csv):

        if i < 3:

            print (row)

    headers = ['first', 'last']
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    r_dict = read_dict(csv_f, headers)

    dict_ls = []

    print ('\ncsv to ordered dict sample:')

    for i, row in enumerate(r_dict):

        r = od_to_d(row)

        dict_ls.append(r)

        if i < 3:

            print (row)

    print ('\nlist of dictionary elements sample:')

    for i, row in enumerate(dict_ls):

        if i < 3:

            print (row)

Output:

 

The code begins by importing the csv library, which implements 

classes to read and write tabular data in CSV format. It continues with five 

functions. Function read_txt() reads a text (.txt) file and strips (removes) 

extraneous characters with list comprehension, which is an elegant way 

Chapter 1  Introduction



15

to define and create a list in Python. List comprehension is covered later 

in the next section. Function conv_csv() converts a text to a CSV file and 

saves it to disk. Function read_csv() reads a CSV file and returns it as a 

list. Function read_dict() reads a CSV file and returns a list of OrderedDict 

elements. An OrderedDict is a dictionary subclass that remembers the 

order in which its contents are added, whereas a regular dictionary doesn’t 

track insertion order. Finally, function od_to_d() converts an OrderedDict 

element to a regular dictionary element. Working with a regular dictionary 

element is much more intuitive in my opinion. The main block begins by 

reading a text file and cleaning it for processing. However, no processing is 

done with this cleansed file in the code. It is only included in case you want 

to know how to accomplish this task. The code continues by converting a 

text file to CSV, which is saved to disk. The CSV file is then read from disk 

and a few records are displayed. Next, a headers list is created to store keys 

for a dictionary yet to be created. List dict_ls is created to hold dictionary 

elements. The code continues by creating an OrderedDict list r_dict. The 

OrderedDict list is then iterated so that each element can be converted to 

a regular dictionary element and appended to dict_ls. A few records are 

displayed during iteration. Finally, dict_ls is iterated and a few records 

are displayed. I highly recommend that you take some time to familiarize 

yourself with these data structures, as they are used extensively in data 

science application.

�List Comprehension
List comprehension provides a concise way to create lists. Its logic is 

enclosed in square brackets that contain an expression followed by a for 

clause and can be augmented by more for or if clauses.

The read_txt() function in the previous section included the following 

list comprehension:

[x.strip() for x in d]
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The logic strips extraneous characters from string in iterable d. In this 

case, d is a list of strings.

The following code example converts miles to kilometers, manipulates 

pets, and calculates bonuses with list comprehension:

if __name__ == "__main__":

    miles = [100, 10, 9.5, 1000, 30]

    kilometers = [x * 1.60934 for x in miles]

    print ('miles to kilometers:')

    for i, row in enumerate(kilometers):

        print ('{:>4} {:>8}{:>8} {:>2}'.

               format(miles[i],'miles is', round(row,2), 'km'))

    print ('\npet:')

    pet = ['cat', 'dog', 'rabbit', 'parrot', 'guinea pig', 'fish']

    print (pet)

    print ('\npets:')

    pets = [x + 's' if x != 'fish' else x for x in pet]

    print (pets)

    subset = [x for x in pets if x != 'fish' and x != 'rabbits'

              and x != 'parrots' and x != 'guinea pigs']

    print ('\nmost common pets:')

    print (subset[1], 'and', subset[0])

    sales = [9000, 20000, 50000, 100000]

    print ('\nbonuses:')

    �bonus = [0 if x < 10000 else x * .02 if x >= 10000  

and x <= 20000

             else x * .03 for x in sales]

    print (bonus)

    print ('\nbonus dict:')

    people = ['dave', 'sue', 'al', 'sukki']

    d = {}

    for i, row in enumerate(people):
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        d[row] = bonus[i]

    print (d, '\n')

    print ('{:<5} {:<5}'.format('emp', 'bonus'))

    for k, y in d.items():

        print ('{:<5} {:>6}'.format(k, y))

Output:

 

The main block begins by creating two lists—miles and kilometers. The 

kilometers list is created with list comprehension, which multiplies each 

mile value by 1.60934. At first, list comprehension may seem confusing, but 

practice makes it easier over time. The main block continues by printing 

miles and associated kilometers. Function format() provides sophisticated 

formatting options. Each mile value is ({:>4}) with up to four characters 

right justified. Each string for miles and kilometers is right justified ({:>8}) 
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with up to eight characters. Finally, each string for km is right justified 

({:>2}) with up to two characters. This may seem a bit complicated at first, 

but it is really quite logical (and elegant) once you get used to it. The main 

block continues by creating pet and pets lists. The pets list is created with 

list comprehension, which makes a pet plural if it is not a fish. I advise you 

to study this list comprehension before you go forward, because they just 

get more complex. The code continues by creating a subset list with list 

comprehension, which only includes dogs and cats. The next part creates 

two lists—sales and bonus. Bonus is created with list comprehension 

that calculates bonus for each sales value. If sales are less than 10,000, 

no bonus is paid. If sales are between 10,000 and 20,000 (inclusive), the 

bonus is 2% of sales. Finally, if sales if greater than 20,000, the bonus is 3% 

of sales. At first I was confused with this list comprehension but it makes 

sense to me now. So, try some of your own and you will get the gist of 

it. The final part creates a people list to associate with each sales value, 

continues by creating a dictionary to hold bonus for each person, and 

ends by iterating dictionary elements. The formatting is quite elegant. 

The header left justifies emp and bonus properly. Each item is formatted 

so that the person is left justified with up to five characters ({:<5}) and the 

bonus is right justified with up to six characters ({:>6}).

�Generators
A generator is a special type of iterator, but much faster because values 

are only produced as needed. This process is known as lazy (or deferred) 

evaluation. Typical iterators are much slower because they are fully built 

into memory. While regular functions return values, generators yield 

them. The best way to traverse and access values from a generator is to use 

a loop. Finally, a list comprehension can be converted to a generator by 

replacing square brackets with parentheses.
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The following code example reads a CSV file and creates a list of 

OrderedDict elements. It then converts the list elements into regular 

dictionary elements. The code continues by simulating times for list 

comprehension, generator comprehension, and generators. During 

simulation, a list of times for each is created. Simulation is the imitation of 

a real-world process or system over time, and it is used extensively in data 

science.

import csv, time, numpy as np

def read_dict(f, h):

    input_file = csv.DictReader(open(f), fieldnames=h)

    return (input_file)

def conv_reg_dict(d):

    return [dict(x) for x in d]

def sim_times(d, n):

    i = 0

    lsd, lsgc = [], []

    while i < n:

        start = time.clock()

        [x for x in d]

        time_d = time.clock() - start

        lsd.append(time_d)

        start = time.clock()

        (x for x in d)

        time_gc = time.clock() - start

        lsgc.append(time_gc)

        i += 1

    return (lsd, lsgc)
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def gen(d):

    yield (x for x in d)

def sim_gen(d, n):

    i = 0

    lsg = []

    generator = gen(d)

    while i < n:

        start = time.clock()

        for row in generator:

            None

        time_g = time.clock() - start

        lsg.append(time_g)

        i += 1

        generator = gen(d)        

    return lsg

def avg_ls(ls):

    return np.mean(ls)

if __name__ == '__main__':

    f = 'data/names.csv'

    headers = ['first', 'last']

    r_dict = read_dict(f, headers)

    dict_ls = conv_reg_dict(r_dict)

    n = 1000

    ls_times, gc_times = sim_times(dict_ls, n)

    g_times = sim_gen(dict_ls, n)

    avg_ls = np.mean(ls_times)

    avg_gc = np.mean(gc_times)

    avg_g = np.mean(g_times)

    gc_ls = round((avg_ls / avg_gc), 2)

    g_ls = round((avg_ls / avg_g), 2)
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    print ('generator comprehension:')

    print (gc_ls, 'times faster than list comprehension\n')

    print ('generator:')

    print (g_ls, 'times faster than list comprehension')

Output:

 

The code begins by importing csv, time, and numpy libraries. Function 

read_dict() converts a CSV (.csv) file to a list of OrderedDict elements. 

Function conv_reg_dict() converts a list of OrderedDict elements to a list of 

regular dictionary elements (for easier processing). Function sim_times() 

runs a simulation that creates two lists—lsd and lsgc. List lsd contains 

n run times for list comprension and list lsgc contains n run times for 

generator comprehension. Using simulation provides a more accurate 

picture of the true time it takes for both of these processes by running 

them over and over (n times). In this case, the simulation is run 1,000 times 

(n =1000). Of course, you can run the simulations as many or few times as 

you wish. Functions gen() and sim_gen() work together. Function gen() 

creates a generator. Function sim_gen() simulates the generator n times. I 

had to create these two functions because yielding a generator requires 

a different process than creating a generator comprehension. Function 

avg_ls() returns the mean (average) of a list of numbers. The main block 

begins by reading a CSV file (the one we created earlier in the chapter) 

into a list of OrderedDict elements, and converting it to a list of regular 

dictionary elements. The code continues by simulating run times of list 

comprehension and generator comprehension 1,000 times (n = 1000). 

The 1st simulation calculates 1,000 runtimes for traversing the dictionary 

list created earlier for both list and generator comprehension, and returns 

Chapter 1  Introduction



22

a list of those runtimes for each. The 2nd simulation calculates 1,000 

runtimes by traversing the dictionary list for a generator, and returns a 

list of those runtimes. The code concludes by calculating the average 

runtime for each of the three techniques—list comprehension, generator 

comprehension, and generators—and comparing those averages.

The simulations verify that generator comprehension is more than 

ten times, and generators are more than eight times faster than list 

comprehension (runtimes will vary based on your PC). This makes sense 

because list comprehension stores all data in memory, while generators 

evaluate (lazily) as data is needed. Naturally, the speed advantage 

of generators becomes more important with big data sets. Without 

simulation, runtimes cannot be verified because we are randomly getting 

internal system clock times.

�Data Randomization
A stochastic process is a family of random variables from some probability 

space into a state space (whew!). Simply, it is a random process through 

time. Data randomization is the process of selecting values from a sample 

in an unpredictable manner with the goal of simulating reality. Simulation 

allows application of data randomization in data science. The previous 

section demonstrated how simulation can be used to realistically compare 

iterables (list comprehension, generator comprehension, and generators).

In Python, pseudorandom numbers are used to simulate data 

randomness (reality). They are not truly random because the 1st 

generation has no previous number. We have to provide a seed (or random 

seed) to initialize a pseudorandom number generator. The random 

library implements pseudorandom number generators for various data 

distributions, and random.seed() is used to generate the initial  

(1st generation) seed number.
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The following code example reads a CSV file and converts it to a list 

of regular dictionary elements. The code continues by creating a random 

number used to retrieve a random element from the list. Next, a generator 

of three randomly selected elements is created and displayed. The code 

continues by displaying three randomly shuffled elements from the list. 

The next section of code deterministically seeds the random number 

generator, which means that all generated random numbers will be the 

same based on the seed. So, the elements displayed will always be the 

same ones unless the seed is changed. The code then uses the system’s 

time to nondeterministically generate random numbers and display those 

three elements. Next, nondeterministic random numbers are generated 

by another method and those three elements are displayed. The final part 

creates a names list so random choice and sampling methods can be used 

to display elements.

import csv, random, time

def read_dict(f, h):

    input_file = csv.DictReader(open(f), fieldnames=h)

    return (input_file)

def conv_reg_dict(d):

    return [dict(x) for x in d]

def r_inds(ls, n):

    length = len(ls) - 1

    yield [random.randrange(length) for _ in range(n)]

def get_slice(ls, n):

    return ls[:n]

def p_line():

    print ()
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if __name__ == '__main__':

    f = 'data/names.csv'

    headers = ['first', 'last']

    r_dict = read_dict(f, headers)

    dict_ls = conv_reg_dict(r_dict)

    n = len(dict_ls)

    r = random.randrange(0, n-1)

    print ('randomly selected index:', r)

    print ('randomly selected element:', dict_ls[r])    

    elements = 3

    generator = next(r_inds(dict_ls, elements))

    p_line()

    print (elements, 'randomly generated indicies:', generator)

    print (elements, 'elements based on indicies:')

    for row in generator:

        print (dict_ls[row])

    x = [[i] for i in range(n-1)]

    random.shuffle(x)

    p_line()

    print ('1st', elements, 'shuffled elements:')

    ind = get_slice(x, elements)

    for row in ind:

        print (dict_ls[row[0]])

    seed = 1

    random_seed = random.seed(seed)

    rs1 = random.randrange(0, n-1)

    p_line()

    print ('deterministic seed', str(seed) + ':', rs1)

    print ('corresponding element:', dict_ls[rs1])

    t = time.time()

    random_seed = random.seed(t)

Chapter 1  Introduction



25

    rs2 = random.randrange(0, n-1)

    p_line()

    print ('non-deterministic time seed', str(t) + ' index:', rs2)

    print ('corresponding element:', dict_ls[rs2], '\n')

    print (elements, 'random elements seeded with time:')

    for i in range(elements):

        r = random.randint(0, n-1)

        print (dict_ls[r], r)

    random_seed = random.seed()

    rs3 = random.randrange(0, n-1)

    p_line()

    print ('non-deterministic auto seed:', rs3)

    print ('corresponding element:', dict_ls[rs3], '\n')

    print (elements, 'random elements auto seed:')

    for i in range(elements):

        r = random.randint(0, n-1)

        print (dict_ls[r], r)

    names = []

    for row in dict_ls:

        name = row['last'] + ', ' + row['first']

        names.append(name)

    p_line()

    print (elements, 'names with "random.choice()":')

    for row in range(elements):

        print (random.choice(names))

    p_line()

    print (elements, 'names with "random.sample()":')

    print (random.sample(names, elements))
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Output:

 

The code begins by importing csv, random, and time libraries. 

Functions read_dict() and conv_reg_dict() have already been explained. 

Function r_inds() generates a random list of n elements from the 

dictionary list. To get the proper length, one is subtracted because Python 

Chapter 1  Introduction



27

lists begin at index zero. Function get_slice() creates a randomly shuffled 

list of n elements from the dictionary list. Function p_line() prints a blank 

line. The main block begins by reading a CSV file and converting it into 

a list of regular dictionary elements. The code continues by creating 

a random number with random.randrange() based on the number of 

indices from the dictionary list, and displays the index and associated 

dictionary element. Next, a generator is created and populated with three 

randomly determined elements. The indices and associated elements are 

printed from the generator. The next part of the code randomly shuffles 

the indicies and puts them in list x. An index value is created by slicing 

three random elements based on the shuffled indices stored in list x. 

The three elements are then displayed. The code continues by creating a 

deterministic random seed using a fixed number (seed) in the function. 

So, the random number generated by this seed will be the same each time 

the program is run. This means that the dictionary element displayed will 

be also be the same. Next, two methods for creating nondeterministic 

random numbers are presented—random.seed(t) and random.seed()—

where t varies by system time and using no parameter automatically varies 

random numbers. Randomly generated elements are displayed for each 

method. The final part of the code creates a list of names to hold just first 

and last names, so random.choice() and random.sample() can be used.

�MongoDB and JSON
MongoDB is a document-based database classified as NoSQL. NoSQL 

(Not Only SQL database) is an approach to database design that can 

accommodate a wide variety of data models, including key-value, 

document, columnar, and graph formats. It uses JSON-like documents 

with schemas. It integrates extremely well with Python. A MongoDB 

collection is conceptually like a table in a relational database, and 
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a document is conceptually like a row. JSON is a lightweight data-

interchange format that is easy for humans to read and write. It is also easy 

for machines to parse and generate.

Database queries from MongoDB are handled by PyMongo. PyMongo 

is a Python distribution containing tools for working with MongoDB. It 

is the most efficient tool for working with MongoDB using the utilities of 

Python. PyMongo was created to leverage the advantages of Python as a 

programming language and MongoDB as a database. The pymongo library 

is a native driver for MongoDB, which means it is it is built into Python 

language. Since it is native, the pymongo library is automatically available 

(doesn’t have to be imported into the code).

The following code example reads a CSV file and converts it to a 

list of regular dictionary elements. The code continues by creating a 

JSON file from the dictionary list and saving it to disk. Next, the code 

connects to MongoDB and inserts the JSON data. The final part of the 

code manipulates data from the MongoDB database. First, all data in the 

database is queried and a few records are displayed. Second, the database 

is rewound. Rewind sets the pointer to back to the 1st database record. 

Finally, various queries are performed.

import json, csv, sys, os

sys.path.append(os.getcwd()+'/classes')

import conn

def read_dict(f, h):

    input_file = csv.DictReader(open(f), fieldnames=h)

    return (input_file)

def conv_reg_dict(d):

    return [dict(x) for x in d]
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def dump_json(f, d):

    with open(f, 'w') as f:

        json.dump(d, f)

def read_json(f):

    with open(f) as f:

        return json.load(f)

if __name__ == '__main__':

    f = 'data/names.csv'

    headers = ['first', 'last']

    r_dict = read_dict(f, headers)

    dict_ls = conv_reg_dict(r_dict)

    json_file = 'data/names.json'

    dump_json(json_file, dict_ls)

    data = read_json(json_file)

    obj = conn.conn('test')

    db = obj.getDB()

    names = db.names

    names.drop()

    for i, row in enumerate(data):

        row['_id'] = i

        names.insert_one(row)

    n = 3

    print('1st', n, 'names:')

    people = names.find()

    for i, row in enumerate(people):

        if i < n:

            print (row)

    people.rewind()

    print('\n1st', n, 'names with rewind:')    

    for i, row in enumerate(people):
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        if i < n:

            print (row)

    print ('\nquery 1st', n, 'names')

    first_n = names.find().limit(n)

    for row in first_n:

        print (row)

    print ('\nquery last', n, 'names')

    length = names.find().count()

    last_n = names.find().skip(length - n)

    for row in last_n:

        print (row)

    fnames = ['Ella', 'Lou']

    lnames = ['Vader', 'Pole']    

    print ('\nquery Ella:')

    query_1st_in_list = names.find( {'first':{'$in':[fnames[0]]}})

    for row in query_1st_in_list:

        print (row)

    print ('\nquery Ella or Lou:')

    query_1st = names.find( {'first':{'$in':fnames}} )

    for row in query_1st:

        print (row)

    print ('\nquery Lou Pole:')

    query_and = names.find( {'first':fnames[1], 'last':lnames[1]} )

    for row in query_and:

        print (row)

    print ('\nquery first name Ella or last name Pole:')

    �query_or = names.find( {'$or':[{'first':fnames[0]}, 

{'last':lnames[1]}]} )
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    for row in query_or:

        print (row)

    pattern = '^Sch'

    print ('\nquery regex pattern:')

    query_like = names.find( {'last':{'$regex':pattern}} )

    for row in query_like:

        print (row)

    pid = names.count()

    doc = {'_id':pid, 'first':'Wendy', 'last':'Day'}

    names.insert_one(doc)

    print ('\ndisplay added document:')

    q_added = names.find({'first':'Wendy'})

    print (q_added.next())

    print ('\nquery last n documents:')

    q_n = names.find().skip((pid-n)+1)

    for _ in range(n):

        print (q_n.next())

Class conn:

class conn:

    from pymongo import MongoClient

    client = MongoClient('localhost', port=27017)

    def __init__(self, dbname):

        self.db = conn.client[dbname]

    def getDB(self):

        return self.db
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Output:
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The code begins by importing json, csv, sys, and os libraries. Next, a 

path (sys.path.append) to the class conn is established. Method getcwd() 

(from the os library) gets the current working directory for classes. Class 

conn is then imported. I built this class to simplify connectivity to the 

database from any program. The code continues with four functions. 

Functions read_dict() and conv_reg_dict() were explained earlier. 

Function dump_json() writes JSON data to disk. Function read_json() 

reads JSON data from disk. The main block begins by reading a CSV file 

and converting it into a list of regular dictionary elements. Next, the list 

is dumped to disk as JSON. The code continues by creating a PyMongo 

connection instance test as an object and assigning it to variable obj. You 

can create any instance you wish, but test is the default. Next, the database 

instance is assigned to db by method getDB() from obj. Collection names 

is then created in MongoDB and assigned to variable names. When 

prototyping, I always drop the collection before manipulating it. This 

eliminates duplicate key errors. The code continues by inserting the JSON 

data into the collection. For each document in a MongoDB collection, I 

explicitly create primary key values by assigning sequential numbers to 

_id. MongoDB exclusively uses _id as the primary key identifier for each 

document in a collection. If you don’t name it yourself, a system identifier 

is automatically created, which is messy to work with in my opinion. The 

code continues with PyMongo query names.find(), which retrieves all 

documents from the names collection. Three records are displayed just 

to verify that the query is working. To reuse a query that has already been 

accessed, rewind() must be issued. The next PyMongo query accesses and 

displays three (n = 3) documents. The next query accesses and displays 

the last three documents. Next, we move into more complex queries. 

First, access documents with first name Ella. Second, access documents 

with first names Ella or Lou. Third, access document Lou Pole. Fourth, 

access documents with first name Ella or last name Pole. Next, a regular 

expression is used to access documents with last names beginning with 
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Sch. A regular expression is a sequence of characters that define a search 

pattern. Finally, add a new document, display it, and display the last three 

documents in the collection.

�Visualization
Visualization is the process of representing data graphically and leveraging 

these representations to gain insight into the data. Visualization is one of 

the most important skills in data science because it facilitates the way we 

process large amounts of complex data.

The following code example creates and plots a normally distributed 

set of data. It then shifts data to the left (and plots) and shifts data to the 

right (and plots). A normal distribution is a probability distribution that 

is symmetrical about the mean, and is very important to data science 

because it is an excellent model of how events naturally occur in reality.

import matplotlib.pyplot as plt

from scipy.stats import norm

import numpy as np

if __name__ == '__main__':

    x = np.linspace(norm.ppf(0.01), norm.ppf(0.99), num=100)

    x_left = x - 1

    x_right = x + 1

    y = norm.pdf(x)

    plt.ylim(0.02, 0.41)

    plt.scatter(x, y, color='crimson')

    plt.fill_between(x, y, color='crimson')

    plt.scatter(x_left, y, color='chartreuse')

    plt.scatter(x_right, y, color='cyan')

    plt.show()
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Output:

The code example (Figure 1-1) begins by importing matplotlib, scipy, 

and numpy libraries. The matplotlib library is a 2-D plotting module that 

produces publication quality figures in a variety of hardcopy formats and 

interactive environments across platforms. The SciPy library provides 

user-friendly and efficient numerical routings for numerical integration 

and optimization. The main block begins by creating a sequence of 100 

numbers between 0.01 and 0.99. The reason is the normal distribution is 

based on probabilities, which must be between zero and one. The code 

continues by shifting the sequence one unit to the left and one to the right 

for later plotting. The ylim() method is used to pull the chart to the bottom 

(x-axis). A scatter plot is created for the original data, one unit to the left, 

and one to the right, with different colors for effect.

Figure 1-1.  Normally distributed data
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On the 1st line of the main block in the linespace() function, increase 

the number of data points from num = 100 to num = 1000 and see what 

happens. The result is a smoothing of the normal distribution, because 

more data provides a more realistic picture of the natural world.

Output:

Smoothing works (Figure 1-2) because a normal distribution consists 

of continuous random variables. A continuous random variable is a 

random variable with a set of infinite and uncountable values. So, more 

data creates more predictive realism. Since we cannot add infinite data, 

we work with as much data as we can. The tradeoff is more data increases 

computer processing resources and execution time. Data scientists must 

thereby weigh this tradeoff when conducting their tradecraft.

Figure 1-2.  Smoothing normally distributed data
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CHAPTER 2

Monte Carlo 
Simulation and 
Density Functions
Monte Carlo simulation (MCS) applies repeated random sampling 

(randomness) to obtain numerical results for deterministic problem 

solving. It is widely used in optimization, numerical integration, and 

risk-based decision making. Probability and cumulative density functions 

are statistical measures that apply probability distributions for random 

variables, and can be used in conjunction with MCS to solve deterministic 

problem.

Note  Reader can refer to the download source code file to see color 
figs in this chapter.

�Stock Simulations
The 1st example is hypothetical and simple, but useful in demonstrating 

data randomization. It begins with a fictitious stock priced at $20. It then 

projects price out 200 days and plots.
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import matplotlib.pyplot as plt, numpy as np

from scipy import stats

def cum_price(p, d, m, s):

    data = []

    for d in range(d):

            prob = stats.norm.rvs(loc=m, scale=s)

            price = (p * prob)

            data.append(price)

            p = price

    return data

if __name__ == "__main__":

    stk_price, days, mean, s = 20, 200, 1.001, 0.005

    data = cum_price(stk_price, days, mean, s)

    plt.plot(data, color='lime')

    plt.ylabel('Price')

    plt.xlabel('days')

    plt.title('stock closing prices')

    plt.show()
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Output:

The code begins by importing matplotlib, numpy, and scipy libraries. 

It continues with function cum_price(), which generates 200 normally 

distributed random numbers (one for each day) with norm_rvs(). Data 

randomness is key. The main block creates the variables. Mean is set a 

bit over 1 and standard deviation (s) at a very small number to generate a 

slowly increasing stock price. Mean (mu) is the average change in value. 

Standard deviation is the variation or dispersion in the data. With s of 

0.005, our data has very little variation. That is, the numbers in our data set 

are very close to each other. Remember that this is not a real scenario! The 

code continues by plotting results as shown in Figure 2-1.

Figure 2-1.  Simple random plot
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The next example adds MCS into the mix with a while loop that iterates 

100 times:

import matplotlib.pyplot as plt, numpy as np

from scipy import stats

def cum_price(p, d, m, s):

    data = []

    for d in range(d):

            prob = stats.norm.rvs(loc=m, scale=s)

            price = (p * prob)

            data.append(price)

            p = price

    return data

if __name__ == "__main__":

    stk_price, days, mu, sigma = 20, 200, 1.001, 0.005

    x = 0

    while x < 100:

        data = cum_price(stk_price, days, mu, sigma)

        plt.plot(data)

        x += 1

    plt.ylabel('Price')

    plt.xlabel('day')

    plt.title('Stock closing price')

    plt.show()
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Output:

The while loop allows us to visualize (as shown in Figure 2-2) 100 

possible stock price outcomes over 200 days. Notice that mu (mean) and 

sigma (standard deviation) are used. This example demonstrates the 

power of MCS for decision making.

Figure 2-2.  Monte Carlo simulation augmented plot
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�What-If Analysis
What-If analysis changes values in an algorithm to see how they impact 

outcomes. Be sure to only change one variable at a time, otherwise you 

won’t know which caused the change. In the previous example, what if we 

change days to 500 while keeping all else constant (the same)? Plotting this 

change results in the following (Figure 2-3):

Figure 2-3.  What-If analysis for 500 days
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Figure 2-4.  What-If analysis for mu = 1.002

Notice that the change in price is slower. Changing mu (mean) to 1.002 

(don’t forget to change days back to 200) results in faster change (larger 

averages) as follows (Figure 2-4):
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Changing sigma to 0.02 results in more variation as follows (Figure 2-5):

�Product Demand Simulation
A discrete probability is the probability of each discrete random value 

occurring in a sample space or population. A random variable assumes 

different values determined by chance. A discrete random variable can 

only assume a countable number of values. In contrast, a continuous 

random variable can assume an uncountable number of values in a line 

interval such as a normal distribution.

In the code example, demand for a fictitious product is predicted by 

four discrete probability outcomes: 10% that random variable is 10,000 

units, 35% that random variable is 20,000 units, 30% that random variable 

is 40,000 units, and 25% that random variable is 60,000 units. Simply,  

Figure 2-5.  What-If analysis for sigma = 0.02
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10% of the time demand is 10,000, 35% of the time demand is 20,000, 30% 

of the time demand is 40,000, and 25% of the time demand is 60,000.  

Discrete outcomes must total 100%. The code runs MCS on a production 

algorithm that determines profit for each discrete outcome, and plots the 

results.

import matplotlib.pyplot as plt, numpy as np

def demand():

    p = np.random.uniform(0,1)

    if p < 0.10:

        return 10000

    elif p >= 0.10 and p < 0.45:

        return 20000

    elif p >= 0.45 and p < 0.75:

        return 40000

    else:

        return 60000

def production(demand, units, price, unit_cost, disposal):

    units_sold = min(units, demand)

    revenue = units_sold * price

    total_cost = units * unit_cost

    units_not_sold = units - demand

    if units_not_sold > 0:

        disposal_cost = disposal * units_not_sold

    else:

        disposal_cost = 0

    profit = revenue - total_cost - disposal_cost

    return profit
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def mcs(x, n, units, price, unit_cost, disposal):

    profit = []

    while x <= n:

        d = demand()

        v = production(d, units, price, unit_cost, disposal)

        profit.append(v)

        x += 1

    return profit

def max_bar(ls):

    tup = max(enumerate(ls))

    return tup[0] - 1

if __name__ == "__main__":

    units = [10000, 20000, 40000, 60000]

    price, unit_cost, disposal = 4, 1.5, 0.2

    avg_p = []

    x, n = 1, 10000

    profit_10 = mcs(x, n, units[0], price, unit_cost, disposal)

    avg_p.append(np.mean(profit_10))

    print ('Profit for {:,.0f}'.format(units[0]),

          'units: ${:,.2f}'.format(np.mean(profit_10)))

    profit_20 = mcs(x, n, units[1], price, unit_cost, disposal)

    avg_p.append(np.mean(np.mean(profit_20)))

    print ('Profit for {:,.0f}'.format(units[1]),

          'units: ${:,.2f}'.format(np.mean(profit_20)))

    profit_40 = mcs(x, n, units[2], price, unit_cost, disposal)

    avg_p.append(np.mean(profit_40))

    print ('Profit for {:,.0f}'.format(units[2]),

          'units: ${:,.2f}'.format(np.mean(profit_40)))

    profit_60 = mcs(x, n, units[3], price, unit_cost, disposal)

    avg_p.append(np.mean(profit_60))
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    print ('Profit for {:,.0f}'.format(units[3]),

          'units: ${:,.2f}'.format(np.mean(profit_60)))

    labels = ['10000','20000','40000','60000']

    pos = np.arange(len(labels))

    width = 0.75 # set less than 1.0 for spaces between bins

    plt.figure(2)

    ax = plt.axes()

    ax.set_xticks(pos + (width / 2))

    ax.set_xticklabels(labels)

    barlist = plt.bar(pos, avg_p, width, color='aquamarine')

    barlist[max_bar(avg_p)].set_color('orchid')

    plt.ylabel('Profit')

    plt.xlabel('Production Quantity')

    plt.title('Production Quantity by Demand')

    plt.show()

Output:
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The code begins by importing matplotlib and numpy libraries. It 

continues with four functions. Function demand() begins by randomly 

generating a uniformly distributed probability. It continues by returning 

one of the four discrete probability outcomes established by the problem 

we wish to solve. Function production() returns profit based on an 

algorithm that I devised. Keep in mind that any profit-base algorithm can 

be substitued, which illuminates the incredible flexibility of MCS. Function 

mcs() runs the simulation 10,000 times. Increasing the number of runs 

provides better prediction accuracy with costs being more computer 

processing resources and runtime. Function max_bar() establishes the 

highest bar in the bar chart for better illumination. The main block begins 

by simulating profit for each discrete probability outcome, and printing 

and visualizing results. MCS predicts that production quantity of 40,000 

units yields the highest profit, as shown in Figure 2-6.

Figure 2-6.  Production quantity visualization
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Increasing the number of MCS simulations results in a more 

accurate prediction of reality because it is based on stochastic reasoning 

(data randomization). You can also substitute any discrete probability 

distribution based on your problem-solving needs with this code structure. 

As alluded to earlier, you can use any algorithm you wish to predict with 

MCS, making it an incredibly flexible tool for data scientists.

We can further enhance accuracy by running an MCS on an MCS. The 

code example uses the same algorithm and process as before, but adds an 

MCS on the original MCS to get a more accurate prediction:

import matplotlib.pyplot as plt, numpy as np

def demand():

    p = np.random.uniform(0,1)

    if p < 0.10:

        return 10000

    elif p >= 0.10 and p < 0.45:

        return 20000

    elif p >= 0.45 and p < 0.75:

        return 40000

    else:

        return 60000

def production(demand, units, price, unit_cost, disposal):

    units_sold = min(units, demand)

    revenue = units_sold * price

    total_cost = units * unit_cost

    units_not_sold = units - demand

    if units_not_sold > 0:

        disposal_cost = disposal * units_not_sold
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    else:

        disposal_cost = 0

    profit = revenue - total_cost - disposal_cost

    return profit

def mcs(x, n, units, price, unit_cost, disposal):

    profit = []

    while x <= n:

        d = demand()

        v = production(d, units, price, unit_cost, disposal)

        profit.append(v)

        x += 1

    return profit

def display(p, i):

    print ('Profit for {:,.0f}'.format(units[i]),

           'units: ${:,.2f}'.format(np.mean(p)))

if __name__ == "__main__":

    units = [10000, 20000, 40000, 60000]

    price, unit_cost, disposal = 4, 1.5, 0.2

    avg_ls = []

    x, n, y, z = 1, 10000, 1, 1000

    while y <= z:

        �profit_10 = mcs(x, n, units[0], price, unit_cost, 

disposal)

        �profit_20 = mcs(x, n, units[1], price, unit_cost, 

disposal)

        avg_profit = np.mean(profit_20)

        �profit_40 = mcs(x, n, units[2], price, unit_cost, 

disposal)

        avg_profit = np.mean(profit_40)

        �profit_60 = mcs(x, n, units[3], price, unit_cost, 

disposal)
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        avg_profit = np.mean(profit_60)

        avg_ls.append({'p10':np.mean(profit_10),

                       'p20':np.mean(profit_20),

                       'p40':np.mean(profit_40),

                       'p60':np.mean(profit_60)})

        y += 1

    mcs_p10, mcs_p20, mcs_p40, mcs_p60 = [], [], [], []

    for row in avg_ls:

        mcs_p10.append(row['p10'])

        mcs_p20.append(row['p20'])

        mcs_p40.append(row['p40'])

        mcs_p60.append(row['p60'])

    display(np.mean(mcs_p10), 0)

    display(np.mean(mcs_p20), 1)

    display(np.mean(mcs_p40), 2)

    display(np.mean(mcs_p60), 3)

Output:

 

The code for this example is the same as the previous one, except for 

the MCS while loop (while y <= z). In this loop, profits are calculated as 

before using function mcs(), but each simulation result is appended to list 

avg_ls. So, avg_ls contains 1,000 (z = 1000) simulation results of the original 

simulation results. Accuracy is increased, but more computer resources 

and runtime are required. Running 1,000 simulations on the original MCS 

takes a bit over one minute, which is a lot of processing time!
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�Randomness Using Probability 
and Cumulative Density Functions
Randomness masquerades as reality (the natural world) in data science, 

since the future cannot be predicted. That is, randomization is the way 

data scientists simulate reality. More data means better accuracy and 

prediction (more realism). It plays a key role in discrete event simulation 

and deterministic problem solving. Randomization is used in many fields 

such as statistics, MCS, cryptography, statistics, medicine, and science.

The density of a continuous random variable is its probability density 

function (PDF). PDF is the probability that a random variable has the 

value x, where x is a point within the interval of a sample. This probability 

is determined by the integral of the random variable’s PDF over the range 

(interval) of the sample. That is, the probability is given by the area under 

the density function, but above the horizontal axis and between the lowest 

and highest values of range. An integral (integration) is a mathematical 

object that can be interpreted as an area under a normal distribution 

curve. A cumulative distribution function (CDF) is the probability 

that a random variable has a value less than or equal to x. That is, CDF 

accumulates all of the probabilities less than or equal to x. The percent 

point function (PPF) is the inverse of the CDF. It is commonly referred 

to as the inverse cumulative distribution function (ICDF). ICDF is very 

useful in data science because it is the actual value associated with an area 

under the PDF. Please refer to www.itl.nist.gov/div898/handbook/eda/

section3/eda362.htm for an excellent explanation of density functions.

As stated earlier, a probability is determined by the integral of the 

random variable’s PDF over the interval of a sample. That is, integrals 

are used to determine the probability of some random variable falling 

within a certain range (sample). In calculus, the integral represents a class 

of functions (the antiderivative) whose derivative is the integrand. The 

integral symbol represents integration, while an integrand is the function 
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being integrated in either a definite or indefinite integral. The fundamental 

theorem of calculus relates the evaluation of definitive integrals to 

indefinite integrals. The only reason I include this information here is to 

emphasize the importance of calculus to data science. Another aspect of 

calculus important to data science, “gradient descent,” is presented later in 

Chapter 4.

Although theoretical explanations are invaluable, they may not be 

intuitive. A great way to better understand these concepts is to look at an 

example.

In the code example, 2-D charts are created for PDF, CDF, and ICDF 

(PPF). The idea of a colormap is included in the example. A colormap is a 

lookup table specifying the colors to be used in rendering palettized image. 

A palettized image is one that is efficiently encoded by mapping its pixels 

to a palette containing only those colors that are actually present in the 

image. The matplotlib library includes a myriad of colormaps. Please refer 

to https://matplotlib.org/examples/color/colormaps_reference.html 

for available colormaps.

import matplotlib.pyplot as plt

from scipy.stats import norm

import numpy as np

if __name__ == '__main__':

    x = np.linspace(norm.ppf(0.01), norm.ppf(0.99), num=1000)

    y1 = norm.pdf(x)

    plt.figure('PDF')

    plt.xlim(x.min()-.1, x.max()+0.1)

    plt.ylim(y1.min(), y1.max()+0.01)

    plt.xlabel('x')

    plt.ylabel('Probability Density')

    plt.title('Normal PDF')

    plt.scatter(x, y1, c=x, cmap='jet')
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    plt.fill_between(x, y1, color='thistle')

    plt.show()

    plt.close('PDF')

    plt.figure('CDF')

    plt.xlabel('x')

    plt.ylabel('Probability')

    plt.title('Normal CDF')

    y2 = norm.cdf(x)

    plt.scatter(x, y2, c=x, cmap='jet')

    plt.show()

    plt.close('CDF')

    plt.figure('ICDF')

    plt.xlabel('Probability')

    plt.ylabel('x')

    plt.title('Normal ICDF (PPF)')

    y3 = norm.ppf(x)

    plt.scatter(x, y3, c=x, cmap='jet')

    plt.show()

    plt.close('ICDF')
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Figure 2-7.  Normal probability density function visualization

Figure 2-8.  Normal cumulative distribution function visualization

Output:
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The code begins by importing three libraries—matplotlib, scipy, and 

numpy. The main block begins by creating a sequence of 1,000 x values 

between 0.01 and 0.99 (because probabilities must fall between 0 and 1). 

Next, a sequence of PDF y values is created based on the x values. The 

code continues by plotting the resultant PDF shown in Figure 2-7. Next, a 

sequence of CDF (Figure 2-8) and ICDF (Figure 2-9) values are created and 

plotted. From the visualization, it is easier to see that the PDF represents 

all of the possible x values (probabilities) that exist under the normal 

distribution. It is also easier to visualize the CDF because it represents 

the accumulation of all the possible probabilities. Finally, the ICDF is 

easier to understand through visualization (see Figure 2-9) because the 

x-axis represents probabilities, while the y-axis represents the actual value 

associated with those probabilities.

Figure 2-9.  Normal inverse cumulative distribution function 
visualization
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Let’s apply ICDF. Suppose you are a data scientist at Apple and your 

boss asks you to determine Apple iPhone 8 failure rates so she can develop 

a mockup presentation for her superiors. For this hypothetical example, 

your boss expects four calculations: time it takes 5% of phones to fail, time 

interval (range) where 95% of phones fail, time where 5% of phones survive 

(don’t fail), and time interval where 95% of phones survive. In all cases, 

report time in hours. From data exploration, you ascertain average (mu) 

failure time is 1,000 hours and standard deviation (sigma) is 300 hours.

The code example calculates ICDF for the four scenarios and displays 

the results in an easy to understand format for your boss:

from scipy.stats import norm

import numpy as np

def np_rstrip(v):

    return np.char.rstrip(v.astype(str), '.0')

def transform(t):

    one, two = round(t[0]), round(t[1])

    return (np_rstrip(one), np_rstrip(two))

if __name__ == "__main__":

    mu, sigma = 1000, 300

    print ('Expected failure rates:')

    fail = np_rstrip(round(norm.ppf(0.05, loc=mu, scale=sigma)))

    print ('5% fail within', fail, 'hours')

    fail_range = norm.interval(0.95, loc=mu, scale=sigma)

    lo, hi = transform(fail_range)

    print ('95% fail between', lo, 'and', hi, end=' ')

    print ('hours of usage')

    print ('\nExpected survival rates:')    

    last = np_rstrip(round(norm.ppf(0.95, loc=mu, scale=sigma)))

    print ('5% survive up to', last, 'hours of usage')
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    last_range = norm.interval(0.05, loc=mu, scale=sigma)

    lo, hi = transform(last_range)

    print ('95% survive between', lo, 'and', hi, 'hours of usage')

Output:

 

The code example begins by importing scipy and numpy libraries. It 

continues with two functions. Function np_rstrip() converts numpy float 

to string and removes extraneous characters. Function transform() rounds 

and returns a tuple. Both are just used to round numbers to no decimal 

places to make it user-friendly for your fictitious boss. The main block 

begins by initializing mu and sigma to 1,000 (failures) and 300 (variates). 

That is, on average, our smartphones fail within 1,000 hours, and failures 

vary between 700 and 1,300 hours. Next, find the ICDF value for a 5% 

failure rate and an interval where 95% fail with norm.ppf(). So, 5% of all 

phones are expected to fail within 507 hours, while 95% fail between 412 

and 1,588 hours of usage. Next, find the ICDF value for a 5% survival rate 

and an interval where 95% survive. So, 5% of all phones survive up to 1,493 

hours, while 95% survive between 981 and 1,019 hours of usage.

Simply, ICDF allows you to work backward from a known probability 

to find an x value! Please refer to http://support.minitab.com/en-us/

minitab-express/1/help-and-how-to/basic-statistics/probability-

distributions/supporting-topics/basics/using-the-inverse-

cumulative-distribution-function-icdf/#what-is-an-inverse-

cumulative-distribution-function-icdf for more information.
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Let’s try What-if analysis. What if we reduce error rate (sigma)  

from 300 to 30?

 

Now, 5% of all phones are expected to fail within 951 hours, while 95% 

fail between 941 and 1,059 hours of usage. And, 5% of all phones survive 

up to 1,049 hours, while 95% survive between 998 and 1,002 hours of 

usage. What does this mean? Less variation (error) shows that values are 

much closer to the average for both failure and survival rates. This makes 

sense because variation is calculated from a mean of 1,000.

Let’s shift to a simulation example. Suppose your boss asks you to find 

the optimal monthly order quantity for a type of car given that demand is 

normally distributed (it must, because PDF is based on this assumption), 

average demand (mu) is 200, and variation (sigma) is 30. Each car costs 

$25,000, sells for $45,000, and half of the cars not sold at full price can be 

sold for $30,000. Like other MCS experiments, you can modify the profit 

algorithm to enhance realism. By suppliers, you are limited to order 

quantities of 160, 180, 200, 220, 240, 260, or 280.

MCS is used to find the profit for each order based on the information 

provided. Demand is generated randomly for each iteration of the 

simulation. Profit calculations by order are automated by running MCS for 

each order.

import numpy as np

import matplotlib.pyplot as plt

def str_int(s):

    val = "%.2f" % profit

    return float(val)
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if __name__ == "__main__":

    orders = [180, 200, 220, 240, 260, 280, 300]

    mu, sigma, n = 200, 30, 10000

    cost, price, discount = 25000, 45000, 30000

    profit_ls = []

    for order in orders:

        x = 1

        profit_val = []

        inv_cost = order * cost

        while x <= n:

            demand = round(np.random.normal(mu, sigma))

            if demand < order:

                diff = order - demand

                if diff > 0:

                    damt = round(abs(diff) / 2) * discount

                    profit = (demand * price) - inv_cost + damt

                else:

                    profit = (order * price) - inv_cost

            else:

                profit = (order * price) - inv_cost

            profit = str_int(profit)

            profit_val.append(profit)

            x += 1

        avg_profit = np.mean(profit_val)

        profit_ls.append(avg_profit)

        print ('${0:,.2f}'.format(avg_profit), '(profit)',

               'for order:', order)

    max_profit = max(profit_ls)

    profit_np = np.array(profit_ls)

    max_ind = np.where(profit_np == profit_np.max())

    print ('\nMaximum profit', '${0:,.2f}'.format(max_profit),
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          'for order', orders[int(max_ind[0])])

    barlist = plt.bar(orders, profit_ls, width=15, 

color='thistle')

    barlist[int(max_ind[0])].set_color('lime')

    plt.title('Profits by Order Quantity')

    plt.xlabel('orders')

    plt.ylabel('profit')

    plt.tight_layout()

    plt.show()

Output:
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The code begins by importing numpy and matplotlib. It continues with 

a function (str_int()) that converts a string to float. The main block begins 

by initializing orders, mu, sigma, n, cost, price, discount, and list of profits 

by order. It continues by looping through each order quantity and running 

MCS with 10,000 iterations. A randomly generated demand probability is 

used to calculate profit for each iteration of the simulation. The technique 

for calculating profit is pretty simple, but you can substitute your own 

algorithm. You can also modify any of the given information based on your 

own data. After calculating profit for each order through MCS, the code 

continues by finding the order quantity with the highest profit. Finally, the 

code generates a bar chart to illuminate results though visualization shown 

in Figure 2-10.

Figure 2-10.  Profits by order quantity visualization

Chapter 2  Monte Carlo Simulation and Density Functions



63

The final code example creates a PDF visualization:

import matplotlib.pyplot as plt, numpy as np

from scipy.stats import norm

if __name__ == '__main__':

    n = 100

    x = np.linspace(norm.ppf(0.01), norm.ppf(0.99), num=n)

    y = norm.pdf(x)

    dic = {}

    for i, row in enumerate(y):

        dic[x[i]] = [np.random.uniform(0, row) for _ in range(n)]

    xs = []

    ys = []

    for key, vals in dic.items():

        for y in vals:

            xs.append(key)

            ys.append(y)

    plt.xlim(min(xs), max(xs))

    plt.ylim(0, max(ys)+0.02)

    plt.title('Normal PDF')

    plt.xlabel('x')

    plt.ylabel('Probability Density')

    plt.scatter(xs, ys, c=xs, cmap='rainbow')

    plt.show()

Chapter 2  Monte Carlo Simulation and Density Functions



64

Output:

The code begins by importing matplotlib, numpy, and scipy libraries. 

The main block begins by initializing the number of points you wish to 

plot, PDF x and y values, and a dictionary. To plot all PDF probabilities, a 

set of randomly generated values for each point on the x-axis is created. To 

accomplish this task, the code assigns 100 (n = 100) values to x from 0.01 

to 0.99. It continues by assigning 100 PDF values to y. Next, a dictionary 

element is populated by a (key, value) pair consisting of each x value as 

key and a list of 100 (n = 100) randomly generated numbers between 0 and 

pdf(x) as value associated with x. Although the code creating the dictionary 

is simple, please think carefully about what is happening because it 

is pretty abstract. The code continues by building (x, y) pairs from the 

dictionary. The result is 10,000 (100 X 100) (x, y) pairs, where each 100 x 

values has 100 associated y values visualized in Figure 2-11.

Figure 2-11.  All PDF probabilities with 100 simulations
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To smooth out the visualization increase n to 1,000 (n = 1000) at the 

beginning of the main block:

By increasing n to 1000, 1,000,000 (1,000 X 1,000) (x, y) pairs are plotted 

as shown in Figure 2-12!

Figure 2-12.  All PDF probabilities with 1,000 simulations
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CHAPTER 3

Linear Algebra
Linear algebra is a branch of mathematics concerning vector spaces 

and linear mappings between such spaces. Simply, it explores linelike 

relationships. Practically every area of modern science approximates 

modeling equations with linear algebra. In particular, data science relies 

on linear algebra for machine learning, mathematical modeling, and 

dimensional distribution problem solving.

�Vector Spaces
A vector space is a collection of vectors. A vector is any quantity with 

magnitude and direction that determines the position of one point in 

space relative to another. Magnitude is the size of an object measured by 

movement, length, and/or velocity. Vectors can be added and multiplied 

(by scalars) to form new vectors. A scalar is any quantity with magnitude 

(size). In application, vectors are points in finite space.

Vector examples include breathing, walking, and displacement. 

Breathing requires diaphragm muscles to exert a force that has 

magnitude and direction. Walking requires movement in some direction. 

Displacement measures how far an object moves in a certain direction.
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�Vector Math
In vector math, a vector is depicted as a directed line segment whose length 

is its magnitude vector with an arrow indicating direction from tail to head. 

Tail is where the line segment begins and head is where it ends (the arrow). 

Vectors are the same if they have the same magnitude and direction.

To add two vectors a and b, start b where a finishes, and complete the 

triangle. Visually, start at some point of origin, draw a (Figure 3-1), start b 

(Figure 3-2) from head of a, and the result c (Figure 3-3) is a line from tail 

of a to head of b. The 1st example illustrates vector addition as well as a 

graphic depiction of the process:

import matplotlib.pyplot as plt, numpy as np

def vector_add(a, b):

    return np.add(a, b)

def set_up():

    plt.figure()

    plt.xlim(-.05, add_vectors[0]+0.4)

    plt.ylim(-1.1, add_vectors[1]+0.4)

if __name__ == "__main__":

    v1, v2 = np.array([3, -1]), np.array([2, 3])

    add_vectors = vector_add(v1, v2)

    set_up()

    ax = plt.axes()

    ax.arrow(0, 0, 3, -1, head_width=0.1, fc='b', ec='b')

    ax.text(1.5, -0.35, 'a')

    ax.set_facecolor('honeydew')

    set_up()

    ax = plt.axes()

    ax.arrow(0, 0, 3, -1, head_width=0.1, fc='b', ec='b')

    �ax.arrow(3, -1, 2, 3, head_width=0.1, fc='crimson', 

ec='crimson')

Chapter 3  Linear Algebra



69

    ax.text(1.5, -0.35, 'a')

    ax.text(4, -0.1, 'b')

    ax.set_facecolor('honeydew')

    set_up()

    ax = plt.axes()

    ax.arrow(0, 0, 3, -1, head_width=0.1, fc='b', ec='b')

    �ax.arrow(3, -1, 2, 3, head_width=0.1, fc='crimson', 

ec='crimson')

    �ax.arrow(0, 0, 5, 2, head_width=0.1, fc='springgreen', 

ec='springgreen')

    ax.text(1.5, -0.35, 'a')

    ax.text(4, -0.1, 'b')

    ax.text(2.3, 1.2, 'a + b')

    ax.text(4.5, 2.08, add_vectors, color='fuchsia')

    ax.set_facecolor('honeydew')

    plt.show()

Output:

Figure 3-1.  Vector a from the origin (0, 0) to (3, -1)
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Figure 3-2.  Vector b from (3, -1) to (5, 2)

Figure 3-3.  Vector c from (0, 0) to (5, 2)

Chapter 3  Linear Algebra



71

The code begins by importing matplotlib and numpy libraries. 

Library matplotlib is a plotting library used for high quality visualization. 

Library numpy is the fundamental package for scientific computing. It 

is a wonderful library for working with vectors and matrices. The code 

continues with two functions—vector_add() and set_up(). Function 

vector_add() adds two vectors. Function set_up() sets up the figure for 

plotting. The main block begins by creating two vectors and adding them. 

The remainder of the code demonstrates graphically how vector addition 

works. First, it creates an axes() object with an arrow representing vector a 

beginning at origin (0, 0) and ending at (3, -1). It continues by adding text 

and a background color. Next, it creates a 2nd axes() object with the same 

arrow a, but adds arrow b (vector b) starting at (3, -1) and continuing to  

(2, 3). Finally, it creates a 3rd axes() object with the same arrows a and b, 

but adds arrow c (a + b) starting at (0, 0) and ending at (5, 2).

The 2nd example modifies the previous example by using subplots 

(Figure 3-4). Subplots divide a figure into an m × n grid for a different 

visualization experience.

import matplotlib.pyplot as plt, numpy as np

def vector_add(a, b):

    return np.add(a, b)

if __name__ == "__main__":

    v1, v2 = np.array([3, -1]), np.array([2, 3])

    add_vectors = vector_add(v1, v2)

    f, ax = plt.subplots(3)

    x, y = [0, 3], [0, -1]

    ax[0].set_xlim([-0.05, 3.1])

    ax[0].set_ylim([-1.1, 0.1])

    ax[0].scatter(x,y,s=1)

    ax[0].arrow(0, 0, 3, -1, head_width=0.1, head_length=0.07,

                fc='b', ec='b')
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    ax[0].text(1.5, -0.35, 'a')

    ax[0].set_facecolor('honeydew')

    x, y = ([0, 3, 5]), ([0, -1, 2])

    ax[1].set_xlim([-0.05, 5.1])

    ax[1].set_ylim([-1.2, 2.2])

    ax[1].scatter(x,y,s=0.5)

    ax[1].arrow(0, 0, 3, -1, head_width=0.2, head_length=0.1,

                fc='b', ec='b')

    ax[1].arrow(3, -1, 2, 3, head_width=0.16, head_length=0.1,

                fc='crimson', ec='crimson')

    ax[1].text(1.5, -0.35, 'a')

    ax[1].text(4, -0.1, 'b')

    ax[1].set_facecolor('honeydew')

    x, y = ([0, 3, 5]), ([0, -1, 2])

    ax[2].set_xlim([-0.05, 5.25])

    ax[2].set_ylim([-1.2, 2.3])

    ax[2].scatter(x,y,s=0.5)

    ax[2].arrow(0, 0, 3, -1, head_width=0.15, head_length=0.1,

                fc='b', ec='b')

    ax[2].arrow(3, -1, 2, 3, head_width=0.15, head_length=0.1,

                fc='crimson', ec='crimson')

    ax[2].arrow(0, 0, 5, 2, head_width=0.1, head_length=0.1,

                fc='springgreen', ec='springgreen')

    ax[2].text(1.5, -0.35, 'a')

    ax[2].text(4, -0.1, 'b')

    ax[2].text(2.3, 1.2, 'a + b')

    ax[2].text(4.9, 1.4, add_vectors, color='fuchsia')

    ax[2].set_facecolor('honeydew')

    plt.tight_layout()

    plt.show()
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Output:

The code begins by importing matplotlib and numpy libraries. It 

continues with the same vector_add() function. The main block creates 

three subplots with plt.subplots(3) and assigns to f and ax, where f 

represents the figure and ax represents each subplot (ax[0], ax[1], and ax[2]). 

Instead of working with one figure, the code builds each subplot by indexing 

ax. The code uses plt.tight_layout() to automatically align each subplot.

The 3rd example adds vector subtraction. Subtracting two vectors is 

addition with the opposite (negation) of a vector. So, vector a minus vector 

b is the same as a + (-b). The code example demonstrates vector addition 

and subtraction for both 2- and 3-D vectors:

import numpy as np

def vector_add(a, b):

    return np.add(a, b)

def vector_sub(a, b):

    return np.subtract(a, b)

Figure 3-4.  Subplot Visualization of Vector Addition
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if __name__ == "__main__":

    v1, v2 = np.array([3, -1]), np.array([2, 3])

    add = vector_add(v1, v2)

    sub = vector_sub(v1, v2)

    print ('2D vectors:')

    print (v1, '+', v2, '=', add)

    print (v1, '-', v2, '=', sub)

    v1 = np.array([1, 3, -5])

    v2 = np.array([2, -1, 3])

    add = vector_add(v1, v2)

    sub = vector_sub(v1, v2)

    print ('\n3D vectors:')

    print (v1, '+', v2, '=', add)

    print (v1, '-', v2, '=', sub)

Output:

 

The code begins by importing the numpy library. It continues with 

functions vector_add() and vector_subtract(), which add and subtract vectors 

respectively. The main block begins by creating two 2-D vectors, and adding 

and subtracting them. It continues by adding and subtracting two 3-D vectors. 

Any n-dimensional can be added and subtracted in the same manner.

Magnitude is measured by the distance formula. Magnitude of a single 

vector is measured from the origin (0, 0) to the vector. Magnitude between 

two vectors is measured from the 1st vector to the 2nd vector. The distance 

formula is the square root of ((the 1st value from the 2nd vector minus the 

1st value from the 1st vector squared) plus (the 2nd value from the 2nd vector 

minus the 2nd value from the 1st vector squared)).
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�Matrix Math
A matrix is an array of numbers. Many operations can be performed on 

a matrix such as addition, subtraction, negation, multiplication, and 

division. The dimension of a matrix is its size in number of rows and 

columns in that order. That is, a 2 × 3 matrix has two rows and three 

columns. Generally, an m × n matrix has m rows and n columns. An 

element is an entry in a matrix. Specifically, an element in rowi and 

columnj of matrix A is denoted as ai,j. Finally, a vector in a matrix is 

typically viewed as a column. So, a 2 × 3 matrix has three vectors (columns) 

each with two elements. This is a very important concept to understand 

when performing matrix multiplication and/or using matrices in data 

science algorithms.

The 1st code example creates a numpy matrix, multiplies it by a scalar, 

calculates means row- and column-wise, creates a numpy matrix from 

numpy arrays, and displays it by row and element:

import numpy as np

def mult_scalar(m, s):

    matrix = np.empty(m.shape)

    m_shape = m.shape

    for i, v in enumerate(range(m_shape[0])):

        result = [x * s for x in m[v]]

        x = np.array(result[0])

        matrix[i] = x

    return matrix

def display(m):

    s = np.shape(m)

    cols = s[1]
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    for i, row in enumerate(m):

        print ('row', str(i) + ':', row, 'elements:', end=' ')

        for col in range(cols):

            print (row[col], end=' ')

        print ()

if __name__ == "__main__":

    v1, v2, v3 = [1, 7, -4], [2, -3, 10], [3, 5, 6]

    A = np.matrix([v1, v2, v3])

    print ('matrix A:\n', A)

    scalar = 0.5

    B = mult_scalar(A, scalar)

    print ('\nmatrix B:\n', B)

    mu_col = np.mean(A, axis=0, dtype=np.float64)

    print ('\nmean A (column-wise):\n', mu_col)

    mu_row = np.mean(A, axis=1, dtype=np.float64)

    print ('\nmean A (row-wise):\n', mu_row)

    print ('\nmatrix C:')

    C = np.array([[2, 14, -8], [4, -6, 20], [6, 10, 12]])

    print (C)

    print ('\ndisplay each row and element:')    

    display(C)
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Output:

 

The code begins by importing numpy. It continues with two 

 functions—mult_scalar() and display(). Function mult_scalar() multiplies 

a matrix by a scalar. Function display() displays a matrix by row and each 

element of a row. The main block creates three vectors and adds them to 

numpy matrix A. B is created by multiplying scalar 0.5 by A. Next, means 

for A are calculated by column and row. Finally, numpy matrix C is created 

from three numpy arrays and displayed by row and element.

The 2nd code example creates a numpy matrix A, sums its columns 

and rows, calculates the dot product of two vectors, and calculates the 

dot product of two matrices. Dot product multiplies two vectors to get 

magnitude that can be used to compute lengths of vectors and angles 

between vectors. Specifically, the dot product of two vectors a and b is  

ax × bx + ay × by.
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For matrix multiplication, dot product produces matrix C from two 

matrices A and B. However, two vectors cannot be multiplied when both 

are viewed as column matrices. To rectify this problem, transpose the 1st 

vector from A, turning it into a 1 × n row matrix so it can be multiplied 

by the 1st vector from B and summed. The product is now well defined 

because the product of a 1 × n matrix with an n × 1 matrix is a 1 × 1 matrix 

(a scalar). To get the dot product, repeat this process for the remaining 

vectors from A and B. Numpy includes a handy function that calculates dot 

product for you, which greatly simplifies matrix multiplication.

import numpy as np

def sum_cols(matrix):

    return np.sum(matrix, axis=0)

def sum_rows(matrix):

    return np.sum(matrix, axis=1)

def dot(v, w):

    return np.dot(v, w)

if __name__ == "__main__":

    v1, v2, v3 = [1, 7, -4], [2, -3, 10], [3, 5, 6]

    A = np.matrix([v1, v2, v3])

    print ('matrix A:\n', A)

    v_cols = sum_cols(A)

    print ('\nsum A by column:\n', v_cols)

    v_rows = sum_rows(A)

    print ('\nsum A by row:\n', v_rows)

    dot_product = dot(v1, v2)

    print ('\nvector 1:', v1)

    print ('vector 2:', v2)

    print ('\ndot product v1 and v2:')

    print (dot_product)

Chapter 3  Linear Algebra



79

    v1, v2, v3 = [-2, 5, 4], [1, 2, 9], [10, -9, 3]

    B = np.matrix([v1, v2, v3])

    print ('\nmatrix B:\n', B)

    C = A.dot(B)

    print ('\nmatrix C (dot product A and B):\n', C)

    print ('\nC by row:')

    for i, row in enumerate(C):

        print ('row', str(i) + ': ', end='')

        for v in np.nditer(row):

            print (v, end=' ')

        print()

Output:
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The code begins by importing numpy. It continues with three functions—

sum_cols(), sum_rows(), and dot(). Function sum_cols() sums each column 

and returns a row with these values. Function sum_rows() sums each row 

and returns a column with these values. Function dot() calculates the dot 

product. The main block begins by creating three vectors that are then 

used to create matrix A. Columns and rows are summed for A. Dot product 

is then calculated for two vectors (v1 and v2). Next, three new vectors 

are created that are then used to create matrix B. Matrix C is created by 

calculating the dot product for A and B. Finally, each row of C is displayed.

The 3rd code example illuminates a realistic scenario. Suppose a 

company sells three types of pies—beef, chicken, and vegetable. Beef pies 

cost $3 each, chicken pies cost $4 dollars each, and vegetable pies cost 

$2 dollars each. The vector representation for pie cost is [3, 4, 2]. You also 

know sales by pie for Monday through Thursday. Beef sales are 13 for 

Monday, 9 for Tuesday, 7 for Wednesday, and 15 for Thursday. The vector 

for beef sales is thereby [13, 9, 7, 15]. Using the same logic, the vectors 

for chicken sales are [8, 7, 4, 6] and [6, 4, 0, 3], respectively. The goal is to 

calculate total sales for four days (Monday–Thursday).

import numpy as np

def dot(v, w):

    return np.dot(v, w)

def display(m):

    for i, row in enumerate(m):

        print ('total sales by day:\n', end='')

        for v in np.nditer(row):

            print (v, end=' ')

        print()
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if __name__ == "__main__":

    a = [3, 4, 2]

    A = np.matrix([a])

    print ('cost matrix A:\n', A)

    v1, v2, v3 = [13, 9, 7, 15], [8, 7, 4, 6], [6, 4, 0, 3]

    B = np.matrix([v1, v2, v3])

    print ('\ndaily sales by item matrix B:\n', B)    

    C = A.dot(B)

    print ('\ndot product matrix C:\n', C, '\n')

    display(C)

Output:

 

The code begins by importing numpy. It continues with function dot() 

that calculates the dot product, and function display() that displays the 

elements of a matrix, row by row. The main block begins by creating a 

vector that holds the cost of each type of pie. It continues by converting  

the vector into matrix A. Next, three vectors are created that represent sales 

for each type of pie for Monday through Friday. The code continues by 

converting the three vectors into matrix B. Matrix C is created by finding 

the dot product of A and B. This scenario demonstrates how dot product 

can be used for solving business problems.
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The 4th code example calculates the magnitude (distance) and 

direction (angle) with a single vector and between two vectors:

import math, numpy as np

def sqrt_sum_squares(ls):

    return math.sqrt(sum(map(lambda x:x*x,ls)))

def mag(v):

    return np.linalg.norm(v)

def a_tang(v):

    return math.degrees(math.atan(v[1]/v[0]))

def dist(v, w):

    return math.sqrt(((w[0]-v[0])** 2) + ((w[1]-v[1])** 2))

def mags(v, w):

    return np.linalg.norm(v - w)

def a_tangs(v, w):

    val = (w[1] - v[1]) / (w[0] - v[0])

    return math.degrees(math.atan(val))

if __name__ == "__main__":

    v = np.array([3, 4])

    print ('single vector', str(v) + ':')

    print ('magnitude:', sqrt_sum_squares(v))

    print ('NumPY magnitude:', mag(v))

    print ('direction:', round(a_tang(v)), 'degrees\n')

    v1, v2 = np.array([2, 3]), np.array([5, 8])

    print ('two vectors', str(v1) + ' and ' + str(v2) + ':')

    print ('magnitude', round(dist(v1, v2),2))    

    print ('NumPY magnitude:', round(mags(v1, v2),2))

    print ('direction:', round(a_tangs(v1, v2)), 'degrees\n')

    v1, v2 = np.array([0, 0]), np.array([3, 4])
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    print ('use origin (0,0) as 1st vector:')

    print ('"two vectors', str(v1) + ' and ' + str(v2) + '"')

    print ('magnitude:', round(mags(v1, v2),2))

    print ('direction:', round(a_tangs(v1, v2)), 'degrees')    

Output:

 

The code begins by importing math and numpy libraries. It continues 

with six functions. Function sqrt_sum_squares() calculates magnitude for 

one vector from scratch. Function mag() does the same but uses numpy. 

Function a_tang() calculates the arctangent of a vector, which is the 

direction (angle) of a vector from the origin (0,0). Function dist() calculates 

magnitude between two vectors from scratch. Function mags() does the 

same but uses numpy. Function a_tangs() calculates the arctangent of 

two vectors. The main block creates a vector, calculates magnitude and 

direction, and displays. Next, magnitude and direction are calculated and 

displayed for two vectors. Finally, magnitude and direction for a single 

vector are calculated using the two vector formulas. This is accomplished 

by using the origin (0,0) as the 1st vector. So, functions that calculate 

magnitude and direction for a single vector are not needed, because any 

single vector always begins from the origin (0,0). Therefore, a vector is 

simply a point in space measured either from the origin (0,0) or in relation 

to another vector by magnitude and direction.
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�Basic Matrix Transformations
The 1st code example introduces the identity matrix, which is a square 

matrix with ones on the main diagonal and zeros elsewhere. The product 

of matrix A and its identity matrix is A, which is important mathematically 

because the identity property of multiplication states that any number 

multiplied by 1 is equal to itself.

import numpy as np

def slice_row(M, i):

    return M[i,:]

def slice_col(M, j):

    return M[:, j]

def to_int(M):

    return M.astype(np.int64)

if __name__ == "__main__":    

    A = [[1, 9, 3, 6, 7],

         [4, 8, 6, 2, 1],

         [9, 8, 7, 1, 2],

         [1, 1, 9, 2, 4],

         [9, 1, 1, 3, 5]]

    A = np.matrix(A)

    print ('A:\n', A)    

    print ('\n1st row: ', slice_row(A, 0))

    print ('\n3rd column:\n', slice_col(A, 2))

    shapeA = np.shape(A)

    I = np.identity(np.shape(A)[0])

    I = to_int(I)

    print ('\nI:\n', I)

    dot_product = np.dot(A, I)
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    print ('\nA * I = A:\n', dot_product)

    print ('\nA\':\n', A.I)

    A_by_Ainv = np.round(np.dot(A, A.I), decimals=0, out=None)

    A_by_Ainv = to_int(A_by_Ainv)

    print ('\nA * A\':\n', A_by_Ainv)

Output:

 

The code begins by importing numpy. It continues with three 

functions. Function slice_row() slices a row from a matrix. Function 

slice_col() slices a column from a matrix. Function to_int() converts matrix 
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elements to integers. The main block begins by creating matrix A.  

It continues by creating the identity matrix for A. Finally, it creates the 

identity matrix for A by using the dot product of A with A' (inverse of A).

The 2nd code example converts a list of lists into a numpy matrix and 

traverses it:

import numpy as np

if __name__ == "__main__":

    data = [

        [41, 72, 180], [27, 66, 140],

        [18, 59, 101], [57, 72, 160],

        [21, 59, 112], [29, 77, 250],

        [55, 60, 120], [28, 72, 110],

        [19, 59, 99], [32, 68, 125],

        [31, 79, 322], [36, 69, 111]

        ]

    A = np.matrix(data)

    print ('manual traversal:')

    for p in range(A.shape[0]):

        for q in range(A.shape[1]):

            print (A[p,q], end=' ')

        print ()

Output:
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The code begins by importing numpy. The main block begins by 

creating a list of lists, converting it into numpy matrix A, and traversing A.  

Although I have demonstrated several methods for traversing a numpy 

matrix, this is my favorite method.

The 3rd code example converts a list of lists into numpy matrix A.  

It then slices and dices A:

import numpy as np

if __name__ == "__main__":

    points_3D_space = [

        [0, 0, 0],

        [1, 2, 3],

        [2, 2, 2],

        [9, 9, 9] ]

    A = np.matrix(points_3D_space)

    print ('slice entire A:')

    print (A[:])

    print ('\nslice 2nd column:')

    print (A[0:4, 1])

    print ('\nslice 2nd column (alt method):')

    print (A[:, 1])

    print ('\nslice 2nd & 3rd value 3rd column:')

    print (A[1:3, 2])

    print ('\nslice last row:')

    print (A[-1])

    print ('\nslice last row (alt method):')

    print (A[3])

    print ('\nslice 1st row:')

    print (A[0, :])

    print ('\nslice 2nd row; 2nd & 3rd value:')

    print (A[1, 1:3])
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Output:

 

The code begins by importing numpy. The main block begins by 

creating a list of lists and converting it into numpy matrix A. The code 

continues by slicing and dicing the matrix.

�Pandas Matrix Applications
The pandas library provides high-performance, easy-to-use data 

structure and analysis tools. The most commonly used pandas object is a 

DataFrame (df). A df is a 2-D structure with labeled axes (row and column) 

of potentially different types. Math operations align on both row and 

column labels. A df can be conceptualized by column or row. To view by 
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column, use axis = 0 or axis = ‘index’. To view by row, use axis = 1 or axis =  

‘columns’. This may seem counterintuitive when working with rows, but 

this is the way pandas implemented this feature.

A pandas df is much easier to work with than a numpy matrix, but it is 

also less efficient. That is, it takes a lot more resources to process a pandas 

df. The numpy library is optimized for processing large amounts of data 

and numerical calculations.

The 1st example creates a list of lists, places it into a pandas df, and 

displays some data:

import pandas as pd

if __name__ == "__main__":

    data = [

        [41, 72, 180], [27, 66, 140],

        [18, 59, 101], [57, 72, 160],

        [21, 59, 112], [29, 77, 250],

        [55, 60, 120], [28, 72, 110],

        [19, 59, 99], [32, 68, 125],

        [31, 79, 322], [36, 69, 111]

        ]

    headers = ['age', 'height', 'weight']

    df = pd.DataFrame(data, columns=headers)

    n = 3

    print ('First', n, '"df" rows:\n', df.head(n))

    print ('\nFirst "df" row:')

    print (df[0:1])

    print ('\nRows 2 through 4')

    print (df[2:5])

    print ('\nFirst', n, 'rows "age" column')

    print (df[['age']].head(n))

    print ('\nLast', n, 'rows "weight" and "age" columns')

    print (df[['weight', 'age']].tail(n))
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    print ('\nRows 3 through 6 "weight" and "age" columns')

    print (df.ix[3:6, ['weight', 'age']])

Output:

 

The code begins by importing pandas. The main block begins by 

creating a list of lists and adding it to a pandas df. It is a good idea to create 

your own headers as we do here. Method head() and tail() automatically 

display the 1st five records and last five records respectively unless a value 

is included. In this case, we display the 1st and last three records. Using 

head() and tail() are very useful, especially with a large df. Notice how easy 

it is to slice and dice the df. Also, notice how easy it is to display column 

data of your choice.
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The 2nd example creates a list of lists, places it into numpy matrix A, 

and puts A into a pandas df. This ability is very important because it shows 

how easy it is to create a df from a numpy matrix. So, you can be working 

with numpy matrices for precision and performance, and then convert to 

pandas for slicing, dicing, and other operations.

import pandas as pd, numpy as np

if __name__ == "__main__":

    data = [

        [41, 72, 180], [27, 66, 140],

        [18, 59, 101], [57, 72, 160],

        [21, 59, 112], [29, 77, 250],

        [55, 60, 120], [28, 72, 110],

        [19, 59, 99], [32, 68, 125],

        [31, 79, 322], [36, 69, 111]

        ]

    A = np.matrix(data)

    headers = ['age', 'height', 'weight']

    df = pd.DataFrame(A, columns=headers)

    print ('Entire "df":')

    print (df, '\n')

    print ('Sliced by "age" and "height":')

    print (df[['age', 'height']])
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Output:

 

The code begins by importing pandas and numpy. The main block 

begins by creating a list of lists, converting it to numpy matrix A, and then 

adding A to a pandas df.

The 3rd example creates a list of lists, places it into a list of dictionary 

elements, and puts it into a pandas df. This ability is also very important 

because dictionaries are very efficient data structures when working with 

data science applications.
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import pandas as pd

if __name__ == "__main__":

    data = [

        [41, 72, 180], [27, 66, 140],

        [18, 59, 101], [57, 72, 160],

        [21, 59, 112], [29, 77, 250],

        [55, 60, 120], [28, 72, 110],

        [19, 59, 99], [32, 68, 125],

        [31, 79, 322], [36, 69, 111]

        ]

    d = {}

    dls = []

    key = ['age', 'height', 'weight']

    for row in data:

        for i, num in enumerate(row):

            d[key[i]] = num

        dls.append(d)

        d = {}

    df = pd.DataFrame(dls)

    print ('dict elements from list:')

    for row in dls:

        print (row)

    print ('\nheight from 1st dict element is:', end=' ')

    print (dls[0]['height'])

    print ('\n"df" converted from dict list:\n', df)

    print ('\nheight 1st df element:\n', df[['height']].head(1))
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Output:

 

The 4th code example creates two lists of lists—data and scores. The 

data list holds ages, heights, and weights for 12 athletes. The scores list 

holds three exam scores for 12 students. The data list is put directly into 

df1, and the scores list is put directly into df2. Averages are computed and 

displayed.

import pandas as pd, numpy as np

if __name__ == "__main__":

    data = [

        [41, 72, 180], [27, 66, 140],

        [18, 59, 101], [57, 72, 160],

        [21, 59, 112], [29, 77, 250],
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        [55, 60, 120], [28, 72, 110],

        [19, 59, 99], [32, 68, 125],

        [31, 79, 322], [36, 69, 111]

        ]

    scores = [

        [99, 90, 88], [77, 66, 81], [78, 77, 83],

        [75, 72, 79], [88, 77, 93], [88, 77, 94],

        [100, 99, 93], [94, 74, 90], [98, 97, 99],

        [73, 68, 77], [55, 50, 68], [36, 77, 90]

        ]

    n = 3

    key1 = ['age', 'height', 'weight']

    df1 = pd.DataFrame(data, columns=key1)

    print ('df1 slice:\n', df1.head(n))

    avg_cols = df1.apply(np.mean, axis=0)

    print ('\naverage by columns:')

    print (avg_cols)

    avg_wt = df1[['weight']].apply(np.mean, axis='index')

    print ('\naverage weight')

    print (avg_wt)

    key2 = ['exam1', 'exam2', 'exam3']

    df2 = pd.DataFrame(scores, columns=key2)

    print ('\ndf2 slice:\n', df2.head(n))    

    avg_scores = df2.apply(np.mean, axis=1)

    print ('\naverage scores for 1st', n, 'students (rows):')

    print (avg_scores.head(n))

    �avg_slice = df2[['exam1','exam3']].apply(np.mean, 

axis='columns')

    �print ('\naverage "exam1" & "exam3" 1st', n, 'students 

(rows):')

    print (avg_slice[0:n])
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Output:

 

The code begins by importing pandas and numpy. The main block 

creates the data and scores lists and puts them in df1 and df2, respectively. 

With df1 (data), we average by column because our goal is to return the 

average age, height, and weight for all athletes. With df2 (scores), we 

average by row because our goal is to return the average overall exam 

score for each student. We could average by column for df2 if the goal is to 

calculate the average overall score for one of the exams. Try this if you wish.
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CHAPTER 4

Gradient Descent
Gradient descent (GD) is an algorithm that minimizes (or maximizes) 

functions. To apply, start at an initial set of a function’s parameter values 

and iteratively move toward a set of parameter values that minimize the 

function. Iterative minimization is achieved using calculus by taking 

steps in the negative direction of the function’s gradient. GD is important 

because optimization is a big part of machine learning. Also, GD is easy to 

implement, generic, and efficient (fast).

�Simple Function Minimization  
(and Maximization)
GD is a 1st order iterative optimization algorithm for finding the minimum 

of a function f. A function can be denoted as f or f(x). Simply, GD finds the 

minimum error by minimizing (or maximizing) a cost function. A cost 

function is something that you want to minimize.

Let’s begin with a minimization example. To find the local minimum 

of f, take steps proportional to the negative of the gradient of f at the 

current point. The gradient is the derivative (rate of change) of f. The 

only weakness of GD is that it finds the local minimum rather than the 

minimum for the whole function.
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The power rule is used to differentiate functions of the form f(x) = xr:

	
d

dx
x nxn n= -1 	

So, the derivative of xn equals nxn−1. Simply, the derivative is the 

product of the exponent times x with the exponent reduced by 1. To 

minimize f(x) = x4 – 3x3 + 2 find the derivative, which is f'(x) = 4x3 – 9x2. So, 

the 1st step is always to find the derivative f'(x). The 2nd step is to plot the 

original function to get an idea of its shape. The 3rd step is to run GD. The 

4th step is to plot the local minimum.

The 1st example finds the local minimum of f(x) and displays f(x), f'(x), 

and minimum in the subplot as seen in Figure 4-1:

import matplotlib.pyplot as plt, numpy as np

def f(x):

    return x**4 - 3 * x**3 + 2

def df(x):

    return 4 * x**3 - 9 * x**2

if __name__ == "__main__":

    x = np.arange(-5, 5, 0.2)

    y, y_dx = f(x), df(x)

    f, axarr = plt.subplots(3, sharex=True)

    axarr[0].plot(x, y, color='mediumspringgreen')

    axarr[0].set_xlabel('x')

    axarr[0].set_ylabel('f(x)')

    axarr[0].set_title('f(x)')

    axarr[1].plot(x, y_dx, color='coral')

    axarr[1].set_xlabel('x')

    axarr[1].set_ylabel('dy/dx(x)')

    axarr[1].set_title('derivative of f(x)')

    axarr[2].set_xlabel('x')

    axarr[2].set_ylabel('GD')
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    axarr[2].set_title('local minimum')

    iterations, cur_x, gamma, precision = 0, 6, 0.01, 0.00001

    previous_step_size = cur_x

    while previous_step_size > precision:

        prev_x = cur_x

        cur_x += -gamma * df(prev_x)

        previous_step_size = abs(cur_x - prev_x)

        iterations += 1

        axarr[2].plot(prev_x, cur_x, "o")

    f.subplots_adjust(hspace=0.3)

    f.tight_layout()

    plt.show()

    print ('minimum:', cur_x, '\niterations:', iterations)

Output:

 

Figure 4-1.  Subplot visualization of f(x), f'(x), and the local minimum
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The code example begins by importing matplotlib and numpy. It 

continues with function f(x) used to plot the original function and function 

df(x) used to plot the derivative. The main block begins by creating values 

for f(x). It continues by creating a subplot. GD begins by initializing 

variables. Variable cur_x is the starting point for the simulation. Variable 

gamma is the step size. Variable precision is the tolerance. Smaller 

tolerance translates into more precision, but requires more iterations 

(resources). The simulation continues until previous_step_size is greater 

than precision. Each iteration multiplies -gamma (step_size) by the 

gradient (derivative) at the current point to move it to the local minimum. 

Variable previous_step_size is then assigned the difference between cur_x 

and prev_x. Each point is plotted. The minimum for f(x) solving for x is 

approximately 2.25. I know this result is correct because I calculated it by 

hand. Check out http://www.dummies.com/education/math/calculus/

how-to-find-local-extrema-with-the-first-derivative-test/ for a 

nice lesson on how to calculate by hand.

The 2nd example finds the local minimum and maximum of  

f(x) = x3 – 6x2 + 9x + 15. First find f'(x), which is 3x2 – 12x + 9. Next, find the 

local minimum, plot, local maximum, and plot. I don’t use a subplot in this 

case because the visualization is not as rich. That is, it is much easier to see 

the approximate local minimum and maximum by looking at a plot of f(x), 

and easier to see how the GD process works its magic.

import matplotlib.pyplot as plt, numpy as np

def f(x):

    return x**3 - 6 * x**2 + 9 * x + 15

def df(x):

    return 3 * x**2 - 12 * x + 9

if __name__ == "__main__":

    x = np.arange(-0.5, 5, 0.2)

    y = f(x)

    plt.figure('f(x)')
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    plt.xlabel('x')

    plt.ylabel('f(x)')

    plt.title('f(x)')

    plt.plot(x, y, color='blueviolet')

    plt.figure('local minimum')

    plt.xlabel('x')

    plt.ylabel('GD')

    plt.title('local minimum')

    iterations, cur_x, gamma, precision = 0, 6, 0.01, 0.00001

    previous_step_size = cur_x

    while previous_step_size > precision:

        prev_x = cur_x

        cur_x += -gamma * df(prev_x)

        previous_step_size = abs(cur_x - prev_x)

        iterations += 1

        plt.plot(prev_x, cur_x, "o")

    local_min = cur_x

    print ('minimum:', local_min, 'iterations:', iterations)

    plt.figure('local maximum')

    plt.xlabel('x')

    plt.ylabel('GD')

    plt.title('local maximum')

    iterations, cur_x, gamma, precision = 0, 0.5, 0.01, 0.00001

    previous_step_size = cur_x

    while previous_step_size > precision:

        prev_x = cur_x

        cur_x += -gamma * -df(prev_x)

        previous_step_size = abs(cur_x - prev_x)

        iterations += 1

        plt.plot(prev_x, cur_x, "o")

    local_max = cur_x

    print ('maximum:', local_max, 'iterations:', iterations)

    plt.show()
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Output:

 

Figure 4-2.  Function f(x)

Figure 4-3.  Local minimum for function f(x)
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Figure 4-4.  Local maximum for function f(x)

The code begins by importing matplotlib and numpy libraries. It 

continues with functions f(x) and df(x), which represent the original 

function and its derivative algorithmically. The main block begins by 

creating data for f(x) and plotting it. It continues by finding the local 

minimum and maximum, and plotting them. Notice the cur_x (the 

beginning point) for local minimum is 6, while it is 0.5 for local maximum. 

This is where data science is more of an art than a science, because I 

found these points by trial and error. Also notice that GD for the local 

maximum is the negation of the derivative. Again, I know that the results 

are correct because I calculated both local minimum and maximum by 

hand. The main reason that I used separate plots rather than a subplot for 

this example is to demonstrate why it is so important to plot f(x). Just by 

looking at the plot, you can tell that the local maximum of x for f(x) is close 

to one, and the local minimum of x for f(x) is close to 3. In addition, you 

can see that the function has an overall maximum that is greater than 1 

from this plot. Figures 4-2, 4-3, and 4-4 provide the visualizations.
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�Sigmoid Function Minimization  
(and Maximization)
A sigmoid function is a mathematical function with an S-shaped or 

sigmoid curve. It is very important in data science for several reasons. First, 

it is easily differentiable with respect to network parameters, which are 

pivotal in training neural networks. Second, the cumulative distribution 

functions for many common probability distributions are sigmoidal. Third, 

many natural processes (e.g., complex learning curves) follow a sigmoidal 

curve over time. So, a sigmoid function is often used if no specific 

mathematical model is available.

The 1st example finds the local minimum of the sigmoid function:

import matplotlib.pyplot as plt, numpy as np

def sigmoid(x):

    return 1 / (1 + np.exp(-x))

def df(x):

    return x * (1-x)

if __name__ == "__main__":

    x = np.arange(-10., 10., 0.2)

    y, y_dx = sigmoid(x), df(x)

    f, axarr = plt.subplots(3, sharex=True)

    axarr[0].plot(x, y, color='lime')

    axarr[0].set_xlabel('x')

    axarr[0].set_ylabel('f(x)')

    axarr[0].set_title('Sigmoid Function')

    axarr[1].plot(x, y_dx, color='coral')

    axarr[1].set_xlabel('x')
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    axarr[1].set_ylabel('dy/dx(x)')

    axarr[1].set_title('Derivative of f(x)')

    axarr[2].set_xlabel('x')

    axarr[2].set_ylabel('GD')

    axarr[2].set_title('local minimum')

    iterations, cur_x, gamma, precision = 0, 0.01, 0.01, 0.00001

    previous_step_size = cur_x

    while previous_step_size > precision:

        prev_x = cur_x

        cur_x += -gamma * df(prev_x)

        previous_step_size = abs(cur_x - prev_x)

        iterations += 1

        plt.plot(prev_x, cur_x, "o")

    f.subplots_adjust(hspace=0.3)

    f.tight_layout()

    print ('minimum:', cur_x, '\niterations:', iterations)

    plt.show()
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Output:

 

The code begins by importing matplotlib and numpy. It continues with 

functions sigmoid(x) and df(x), which represent the sigmoid function and 

its derivative algorithmically. The main block begins by creating data for 

f(x) and f'(x). It continues by creating subplots for f(x), f'(x), and the local 

minimum. In this case, using subplots was fine for visualization. It is easy 

to see from the f(x) and f'(x) plots (Figure 4-5) that the local minimum is 

close to 0. Next, the code runs GD to find the local minimum and plots it.  

Figure 4-5.  Subplot of f(x), f'(x), and local minimum
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Again, the starting point for GD, cur_x, was found by trial and error. If 

you start cur_x further from the local minimum (you can estimate this by 

looking at the subplot of f'(x)), the number of iterations increases because 

it takes longer for the GD algorithm to converge on the local minimum. As 

expected, the local minimum is approximately 0.

The 2nd example finds the local maximum of the sigmoid function:

import matplotlib.pyplot as plt, numpy as np

def sigmoid(x):

    return 1 / (1 + np.exp(-x))

def df(x):

    return x * (1-x)

if __name__ == "__main__":

    x = np.arange(-10., 10., 0.2)

    y, y_dx = sigmoid(x), df(x)

    f, axarr = plt.subplots(3, sharex=True)

    axarr[0].plot(x, y, color='lime')

    axarr[0].set_xlabel('x')

    axarr[0].set_ylabel('f(x)')

    axarr[0].set_title('Sigmoid Function')

    axarr[1].plot(x, y_dx, color='coral')

    axarr[1].set_xlabel('x')

    axarr[1].set_ylabel('dy/dx(x)')

    axarr[1].set_title('Derivative of f(x)')

    axarr[2].set_xlabel('x')

    axarr[2].set_ylabel('GD')

    axarr[2].set_title('local maximum')

    iterations, cur_x, gamma, precision = 0, 0.01, 0.01, 0.00001

    previous_step_size = cur_x
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    while previous_step_size > precision:

        prev_x = cur_x

        cur_x += -gamma * -df(prev_x)

        previous_step_size = abs(cur_x - prev_x)

        iterations += 1

        plt.plot(prev_x, cur_x, "o")    

    f.subplots_adjust(hspace=0.3)

    f.tight_layout()

    print ('maximum:', cur_x, '\niterations:', iterations)

    plt.show()

Output:

 

Figure 4-6.  Subplot of f(x), f'(x), and local maximum
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The code begins by importing matplotlib and numpy. It continues with 

functions sigmoid(x) and df(x), which represent the sigmoid function and 

its derivative algorithmically. The main block begins by creating data for 

f(x) and f'(x). It continues by creating subplots for f(x), f'(x), and the local 

maximum (Figure 4-6). It is easy to see from the f(x) plot that the local 

maximum is close to 1. Next, the code runs GD to find the local maximum 

and plots it. Again, the starting point for GD, cur_x, was found by trial and 

error. If you start cur_x further from the local maximum (you can estimate 

this by looking at the subplot of f(x)), the number of iterations increases 

because it takes longer for the GD algorithm to converge on the local 

maximum. As expected, the local maximum is approximately 1.

�Euclidean Distance Minimization 
Controlling for Step Size
Euclidean distance is the ordinary straight-line distance between two 

points in Euclidean space. With this distance, Euclidean space becomes 

a metric space. The associated norm is the Euclidean norm (EN). The 

EN assigns each vector the length of its arrow. So, EN is really just the 

magnitude of a vector. A vector space on which a norm is defined is the 

normed vector space.

To find the local minimum of f(x) in three-dimensional (3-D) space, 

the 1st step is to find the minimum for all 3-D vectors. The 2nd step is 

to create a random 3-D vector [x, y, z]. The 3rd step is to pick a random 

starting point, and then take tiny steps in the opposite direction of the 

gradient f'(x) until a point is reached where the gradient is very small. Each 

tiny step (from the current vector to the next vector) is measured with the 

ED metric. The ED metric is the distance between two points in Euclidean 

space. The metric is required because we need to know how to move 

for each tiny step. So, the ED metric supplements GD to find the local 

minimum in 3-D space.
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The code example finds the local minimum of the sigmoid function in 

3-D space:

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

import random, numpy as np

from scipy.spatial import distance

def step(v, direction, step_size):

    return [v_i + step_size * direction_i

            for v_i, direction_i in zip(v, direction)]

def sigmoid_gradient(v):

    return [v_i * (1-v_i) for v_i in v]

def mod_vector(v):

    for i, v_i in enumerate(v):

        if v_i == float("inf") or v_i == float("-inf"):

            v[i] = random.randint(-1, 1)

    return v

if __name__ == "__main__":

    v = [random.randint(-10, 10) for i in range(3)]

    tolerance = 0.0000001

    iterations = 1

    fig = plt.figure('Euclidean')

    ax = fig.add_subplot(111, projection='3d')

    while True:

        gradient = sigmoid_gradient(v)

        next_v = step(v, gradient, -0.01)

        xs = gradient[0]

        ys = gradient[1]

        zs = gradient[2]

        ax.scatter(xs, ys, zs, c='lime', marker='o')
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        v = mod_vector(v)

        next_v = mod_vector(next_v)

        test_v = distance.euclidean(v, next_v)

        if test_v < tolerance:

            break

        v = next_v

        iterations += 1

    print ('minimum:', test_v, '\niterations:', iterations)

    ax.set_xlabel('X axis')

    ax.set_ylabel('Y axis')

    ax.set_zlabel('Z axis')

    plt.tight_layout()

    plt.show()

Output:

 

Figure 4-7.  3-D rendition of local minimum
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The code begins by importing matplotlib, mpl_toolkits, random, 

numpy, and scipy libraries. Function step() moves a vector in a direction 

(based on the gradient), by a step size. Function sigmoid_gradient() is 

the f'(sigmoid) returned as a point in 3-D space. Function mod_vector() 

ensures that an erroneous vector generated by the simulation is handled 

properly. The main block begins by creating a randomly generated 3-D 

vector [x, y, z] as a starting point for the simulation. It continues by creating 

a tolerance (precision). A smaller tolerance results in a more accurate 

result. A subplot is created to hold a 3-D rendering of the local minimum 

(Figure 4-7). The GD simulation creates a set of 3-D vectors influenced by 

the sigmoid gradient until the gradient is very small. The size (magnitude) 

of the gradient is calculated by the ED metric. The local minimum, as 

expected is close to 0.

�Stabilizing Euclidean Distance Minimization 
with Monte Carlo Simulation
The Euclidean distance experiment in the previous example is anchored 

by a stochastic process. Namely, the starting vector v is stochastically 

generated by randomint(). As a result, each run of the GD experiment 

generates a different result for number of iterations. From Chapter 2, 

we already know that Monte Carlo simulation (MCS) efficiently models 

stochastic (random) processes. However, MCS can also stabilize stochastic 

experiments.

The code example first wraps the GD experiment in a loop that runs 

n number of simulations. With n simulations, an average number of 

iterations is calculated. The resultant code is then wrapped in another 

loop that runs m trials. With m trials, an average gap between each average 

number of iterations, is calculated. Gap is calculated by subtracting the 

minimum from the maximum average iteration. The smaller the gap, 

the more stable (accurate) the result. To increase accuracy, increase 
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simulations (n). The only limitation is computing power. That is, running 

1,000 simulations takes a lot more computing power than 100. Stable 

(accurate) results allow comparison to alternative experiments.

import random, numpy as np

from scipy.spatial import distance

def step(v, direction, step_size):

    return [v_i + step_size * direction_i

            for v_i, direction_i in zip(v, direction)]

def sigmoid_gradient(v):

    return [v_i * (1-v_i) for v_i in v]

def mod_vector(v):

    for i, v_i in enumerate(v):

        if v_i == float("inf") or v_i == float("-inf"):

            v[i] = random.randint(-1, 1)

    return v

if __name__ == "__main__":

    trials= 10

    sims = 10

    avg_its = []

    for _ in range(trials):

        its = []        

        for _ in range(sims):

            v = [random.randint(-10, 10) for i in range(3)]

            tolerance = 0.0000001

            iterations = 0

            while True:

                gradient = sigmoid_gradient(v)

                next_v = step(v, gradient, -0.01)

                v = mod_vector(v)
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                next_v = mod_vector(next_v)

                test_v = distance.euclidean(v, next_v)

                if test_v < tolerance:

                    break

                v = next_v

                iterations += 1

            its.append(iterations)

        a = round(np.mean(its))

        avg_its.append(a)

    gap = np.max(avg_its) - np.min(avg_its)

    print (trials, 'trials with', sims, 'simulations each:')

    print ('gap', gap)

    print ('avg iterations', round(np.mean(avg_its)))

Output:

 

 

 

Output is for 10, 100, and 1,000 simulations. By running 1,000 

simulations ten times (trials), the gap is down to 13. So, confidence is 

high that the number of iterations required to minimize the function is 

close to 1,089. We can further stabilize by wrapping the code in another 

loop to decrease variation in gap and number of iterations. However, 

computer processing time becomes an issue. Leveraging MCS for this type 

of experiment makes a strong case for cloud computing. It may be tough to 

get your head around this application of MCS, but it is a very powerful tool 

for working with and solving data science problems.

Chapter 4  Gradient Descent



115

�Substituting a NumPy Method to Hasten 
Euclidean Distance Minimization
Since numpy arrays are faster than Python lists, it follows that using a 

numpy method would be more efficient for calculating Euclidean distance. 

The code example substitutes np.linalg.norm() for distance.euclidean() to 

calculate Euclidean distance for the GD experiment.

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

import random, numpy as np

def step(v, direction, step_size):

    return [v_i + step_size * direction_i

            for v_i, direction_i in zip(v, direction)]

def sigmoid_gradient(v):

    return [v_i * (1-v_i) for v_i in v]

def round_v(v):

    return np.round(v, decimals=3)

if __name__ == "__main__":

    v = [random.randint(-10, 10) for i in range(3)]

    tolerance = 0.0000001

    iterations = 1

    fig = plt.figure('norm')

    ax = fig.add_subplot(111, projection='3d')

    while True:

        gradient = sigmoid_gradient(v)

        next_v = step(v, gradient, -0.01)

        round_gradient = round_v(gradient)

        xs = round_gradient[0]

        ys = round_gradient[1]
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        zs = round_gradient[2]

        ax.scatter(xs, ys, zs, c='lime', marker='o')

        norm_v = np.linalg.norm(v)

        norm_next_v = np.linalg.norm(next_v)

        test_v = norm_v - norm_next_v

        if test_v < tolerance:

            break

        v = next_v

        iterations += 1

    print ('minimum:', test_v, '\niterations:', iterations)

    ax.set_xlabel('X axis')

    ax.set_ylabel('Y axis')

    ax.set_zlabel('Z axis')

    plt.show()

Output:

 

Figure 4-8.  Numpy 3-D rendition of local minimum
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The number of iterations is much lower at 31 (Figure 4-8). However, 

given that the GD experiment is stochastic, we can use MCS for objective 

comparison.

Using the same MCS methodology, the code example first wraps the 

GD experiment in a loop that runs n number of simulations. The resultant 

code is then wrapped in another loop that runs m trials.

import random, numpy as np

def step(v, direction, step_size):

    return [v_i + step_size * direction_i

            for v_i, direction_i in zip(v, direction)]

def sigmoid_gradient(v):

    return [v_i * (1-v_i) for v_i in v]

def round_v(v):

    return np.round(v, decimals=3)

if __name__ == "__main__":

    trials= 10

    sims = 10

    avg_its = []

    for _ in range(trials):

        its = []        

        for _ in range(sims):

            v = [random.randint(-10, 10) for i in range(3)]

            tolerance = 0.0000001

            iterations = 0

            while True:

                gradient = sigmoid_gradient(v)

                next_v = step(v, gradient, -0.01)

                norm_v = np.linalg.norm(v)

                norm_next_v = np.linalg.norm(next_v)
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                test_v = norm_v - norm_next_v

                if test_v < tolerance:

                    break

                v = next_v

                iterations += 1

            its.append(iterations)

        a = round(np.mean(its))

        avg_its.append(a)

    gap = np.max(avg_its) - np.min(avg_its)

    print (trials, 'trials with', sims, 'simulations each:')

    print ('gap', gap)

    print ('avg iterations', round(np.mean(avg_its)))

Output:

 

 

 

Processing is much faster using numpy. The average number of 

iterations is close to 193. As such, using the numpy alternative for 

calculating Euclidean distance is more than five times faster!

�Stochastic Gradient Descent Minimization 
and Maximization
Up to this point in the chapter, optimization experiments used batch GD. 

Batch GD computes the gradient using the whole dataset. Stochastic GD 

computes the gradient using a single sample, so it is computationally 
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much faster. It is called stochastic GD because the gradient is 

randomly determined. However, unlike batch GD, stochastic GD is an 

approximation. If the exact gradient is required, stochastic GD is not 

optimal. Another issue with stochastic GD is that it can hover around the 

minimum forever without actually converging. So, it is important to plot 

progress of the simulation to see what is happening.

Let’s change direction and optimize another important function—

residual sum of squares (RSS). A RSS function is a statistical technique 

that measures the amount of error (variance) remaining between the 

regression function and the data set. Regression analysis is an algorithm 

that estimates relationships between variables. It is widely used for 

prediction and forecasting. It is also a popular modeling and predictive 

algorithm for data science applications.

The 1st code example generates a sample, runs the GD experiment n 

times, and processes the sample randomly:

import matplotlib.pyplot as plt

import random, numpy as np

def rnd():

    return [random.randint(-10,10) for i in range(3)]

def random_vectors(n):

    ls = []

    for v in range(n):

        ls.append(rnd())

    return ls

def sos(v):

    return sum(v_i ** 2 for v_i in v)

def sos_gradient(v):

    return [2 * v_i for v_i in v]
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def in_random_order(data):

    indexes = [i for i, _ in enumerate(data)]

    random.shuffle(indexes)

    for i in indexes:

        yield data[i]

if __name__ == "__main__":

    v, x, y = rnd(), random_vectors(3), random_vectors(3)

    data = list(zip(x, y))

    theta = v

    alpha, value = 0.01, 0

    min_theta, min_value = None, float("inf")

    iterations_with_no_improvement = 0

    n, x = 30, 1

    for i, _ in enumerate(range(n)):

        y = np.linalg.norm(theta)

        plt.scatter(x, y, c='r')

        x = x + 1

        s = []

        for x_i, y_i in data:

            s.extend([sos(theta), sos(x_i), sos(y_i)])

        value = sum(s)

        if value < min_value:

            min_theta, min_value = theta, value

            iterations_with_no_improvement = 0

            alpha = 0.01

        else:

            iterations_with_no_improvement += 1

            alpha *= 0.9

        g = []
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        for x_i, y_i in in_random_order(data):

            g.extend([sos_gradient(theta), sos_gradient(x_i),

                      sos_gradient(y_i)])

            for v in g:

                �theta = np.around(np.subtract(theta,alpha*np.

array(v)),3)

            g = []

    print ('minimum:', np.around(min_theta, 4),

           'with', i+1, 'iterations')

    print ('iterations with no improvement:',

           iterations_with_no_improvement)

    print ('magnitude of min vector:', np.linalg.norm(min_theta))

    plt.show()

Output:

 

Figure 4-9.  RSS minimization

Chapter 4  Gradient Descent



122

The code begins by importing matplotlib, random, and numpy. It 

continues with function rnd(), which returns a list of random integers from 

–10 to 10. Function random_vectors() generates a list (random sample) 

of n numbers. Function sos() returns the RSS for a vector. Function sos_

gradient() returns the derivative (gradient) of RSS for a vector. Function 

in_random_order() generates a list of randomly shuffled indexes. This 

function adds the stochastic flavor to the GD algorithm. The main block 

begins by generating a random vector v as the starting point for the 

simulation. It continues by creating a sample of x and y vectors of size 3. 

Next, the vector is assigned to theta, which is a common name for a vector 

of some general probability distribution. We can call the vector anything 

we want, but a common data science problem is to find the value(s) of 

theta. The code continues with a fixed step size alpha, minimum theta 

value, minimum ending value, iterations with no improvement, number of 

simulations n, and a plot value for the x-coordinate (Figure 4-9).

The simulation begins by assigning y the magnitude of theta. Next, it 

plots the current x and y coordinates. The x-coordinate is incremented 

by 1 to plot the convergence to the minimum for each y-coordinate. The 

next block of code finds the RSS for each theta, and the sample of x and 

y values. This value determines if the simulation is hovering around the 

local minimum rather than converging. The final part of the code traverses 

the sample data points in random (stochastic) order, finds the gradient of 

theta, x and y, places these three values in list g, and traverses this vector to 

find the next theta value.

Whew! This is not simple, but this is how stochastic GD operates. 

Notice that the minimum generated is 2.87, which is not the true minimum 

of 0. So, stochastic GD requires few iterations but does not produce the 

true minimum.

The previous simulation can be refined by adjusting the algorithm for 

finding the next theta. In the previous example, the next theta is calculated 

for the gradient based on the current theta, x value, and y value for each 

sample. However, the actual new theta is based on the 3rd data point in the 
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sample. So, the 2nd example is refined by taking the minimum theta from 

the entire sample rather than the 3rd data point:

import matplotlib.pyplot as plt

import random, numpy as np

def rnd():

    return [random.randint(-10,10) for i in range(3)]

def random_vectors(n):

    ls = []

    for v in range(n):

        ls.append([random.randint(-10,10) for i in range(3)])

    return ls

def sos(v):

    return sum(v_i ** 2 for v_i in v)

def sos_gradient(v):

    return [2 * v_i for v_i in v]

def in_random_order(data):

    indexes = [i for i, _ in enumerate(data)]

    random.shuffle(indexes)

    for i in indexes:

        yield data[i]

if __name__ == "__main__":

    v, x, y = rnd(), random_vectors(3), random_vectors(3)

    data = list(zip(x, y))

    theta = v

    alpha, value = 0.01, 0

    min_theta, min_value = None, float("inf")

    iterations_with_no_improvement = 0

    n, x = 60, 1
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    for i, _ in enumerate(range(n)):

        y = np.linalg.norm(theta)

        plt.scatter(x, y, c='r')

        x = x + 1

        s = []

        for x_i, y_i in data:

            s.extend([sos(theta), sos(x_i), sos(y_i)])

        value = sum(s)

        if value < min_value:

            min_theta, min_value = theta, value

            iterations_with_no_improvement = 0

            alpha = 0.01

        else:

            iterations_with_no_improvement += 1

            alpha *= 0.9

        g, t, m = [], [], []

        for x_i, y_i in in_random_order(data):

            g.extend([sos_gradient(theta), sos_gradient(x_i),

                      sos_gradient(y_i)])

            m = np.around([np.linalg.norm(x) for x in g], 2)

            for v in g:

                �theta = np.around(np.subtract(theta,alpha*np.

array(v)),3)

                t.append(np.around(theta,2))

            mm = np.argmin(m)

            theta = t[mm]

            g, m, t = [], [], []

    print ('minimum:', np.around(min_theta, 4),

           'with', i+1, 'iterations')
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    print ('iterations with no improvement:',

           iterations_with_no_improvement)

    print ('magnitude of min vector:', np.linalg.norm(min_theta))

    plt.show()

Output:

 

The only difference in the code is toward the bottom where the 

minimum theta is calculated (Figure 4-10). Although it took 60 iterations, 

the minimum is much closer to 0 and much more stable. That is, the prior 

example deviates quite a bit more each time the experiment is run.

Figure 4-10.  Modified RSS minimization
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The 3rd example finds the maximum:

import matplotlib.pyplot as plt

import random, numpy as np

def rnd():

    return [random.randint(-10,10) for i in range(3)]

def random_vectors(n):

    ls = []

    for v in range(n):

        ls.append([random.randint(-10,10) for i in range(3)])

    return ls

def sos_gradient(v):

    return [2 * v_i for v_i in v]

def negate(function):

    def new_function(*args, **kwargs):

        return np.negative(function(*args, **kwargs))

    return new_function

def in_random_order(data):

    indexes = [i for i, _ in enumerate(data)]

    random.shuffle(indexes)

    for i in indexes:

        yield data[i]

if __name__ == "__main__":

    v, x, y = rnd(), random_vectors(3), random_vectors(3)

    data = list(zip(x, y))

    theta, alpha = v, 0.01

    neg_gradient = negate(sos_gradient)

    n, x = 100, 1

Chapter 4  Gradient Descent



127

    for i, row in enumerate(range(n)):

        y = np.linalg.norm(theta)

        plt.scatter(x, y, c='r')

        x = x + 1

        g = []

        for x_i, y_i in in_random_order(data):

            g.extend([neg_gradient(theta), neg_gradient(x_i),

                      neg_gradient(y_i)])

            for v in g:

                �theta = np.around(np.subtract(theta,alpha*np.

array(v)),3)

            g = []

    print ('maximum:', np.around(theta, 4),

           'with', i+1, 'iterations')

    print ('magnitude of max vector:', np.linalg.norm(theta))

    plt.show()

Output:
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The only difference in the code from the 1st example is the negate() 

function, which negates the gradient to find the maximum. Since the 

maximum of RSS is infinity (we can tell by the visualization in Figure 4-11), 

we can stop at 100 iterations. Try 1,000 iterations and see what happens.

Figure 4-11.  RSS maximization
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CHAPTER 5

Working with Data
Working with data details the earliest processes of data science problem 

solving. The 1st step is to identify the problem, which determines all else 

that needs to be done. The 2nd step is to gather data. The 3rd step is to 

wrangle (munge) data, which is critical. Wrangling is getting data into a 

form that is useful for machine learning and other data science problems. 

Of course, wrangled data will probably have to be cleaned. The 4th step 

is to visualize the data. Visualization helps you get to know the data and, 

hopefully, identify patterns.

�One-Dimensional Data Example
The code example generates visualizations of two very common data 

distributions—uniform and normal. The uniform distribution has constant 

probability. That is, all events that belong to the distribution are equally 

probable. The normal distribution is symmetrical about the center, which 

means that 50% of its values are less than the mean and 50% of its values 

are greater than the mean. Its shape resembles a bell curve. The normal 

distribution is extremely important because it models many naturally 

occurring events.
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import matplotlib.pyplot as plt

import numpy as np

if __name__ == "__main__":

    plt.figure('Uniform Distribution')

    uniform = np.random.uniform(-3, 3, 1000)

    �count, bins, ignored = plt.hist(uniform, 20, facecolor='lime')

    plt.xlabel('Interval: [-3, 3]')

    plt.ylabel('Frequency')

    plt.title('Uniform Distribution')

    plt.axis([-3,3,0,100])

    plt.grid(True)

    plt.figure('Normal Distribution')

    normal = np.random.normal(0, 1, 1000)

    �count, bins, ignored = plt.hist(normal, 20, 

facecolor='fuchsia')

    plt.xlabel('Interval: [-3, 3]')

    plt.ylabel('Frequency')

    plt.title('Normal Distribution')

    plt.axis([-3,3,0,140])

    plt.grid(True)

    plt.show()
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Output:

Figure 5-1.  Uniform distribution

Figure 5-2.  Normal distribution
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The code example begins by importing matplotlib and numpy. The 

main block begins by creating a figure and data for a uniform distribution. 

Next, a histogram is created and plotted based on the data. A figure for a 

normal distribution is then created and plotted. See Figures 5-1 and 5-2.

�Two-Dimensional Data Example
Modeling 2-D data offers a more realistic picture of naturally occurring 

events. The code example compares two normally distributed distributions of 

randomly generated data with the same mean and standard deviation (SD). 

SD measures the amount of variation (dispersion) of a set of data values. 

Although both data sets are normally distributed with the same mean and 

SD, each has a very different joint distribution (correlation). Correlation is the 

interdependence of two variables.

import matplotlib.pyplot as plt

import matplotlib.gridspec as gridspec

import numpy as np, random

from scipy.special import ndtri

def inverse_normal_cdf(r):

    return ndtri(r)

def random_normal():

    return inverse_normal_cdf(random.random())

def scatter(loc):

    plt.scatter(xs, ys1, marker='.', color='black', label='ys1')

    plt.scatter(xs, ys2, marker='.', color='gray',  label='ys2')

    plt.xlabel('xs')

    plt.ylabel('ys')

    plt.legend(loc=loc)

    plt.tight_layout()
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if __name__ == "__main__":

    xs = [random_normal() for _ in range(1000)]

    ys1 = [ x + random_normal() / 2 for x in xs]

    ys2 = [-x + random_normal() / 2 for x in xs]

    gs = gridspec.GridSpec(2, 2)

    fig = plt.figure()

    ax1 = fig.add_subplot(gs[0,0])

    plt.title('ys1 data')

    n, bins, ignored = plt.hist(ys1, 50, normed=1,

                                �facecolor='chartreuse', 

alpha=0.75)

    ax2 = fig.add_subplot(gs[0,1])

    plt.title('ys2 data')

    n, bins, ignored = plt.hist(ys2, 50, normed=1,

                                �facecolor='fuchsia', 

alpha=0.75)

    ax3 = fig.add_subplot(gs[1,:])

    plt.title('Correlation')

    scatter(6)

    print (np.corrcoef(xs, ys1)[0, 1])

    print (np.corrcoef(xs, ys2)[0, 1])

    plt.show()
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Output:

 

The code example begins by importing matplotlib, numpy, random, 

and scipy libraries. Method gridspec specifies the geometry of a grid 

where a subplot will be placed. Method ndtri returns the standard 

normal cumulative distribution function (CDF). CDF is the probability 

that a random variable X takes on a value less than or equal to x, where 

x represents the area under a normal distribution. The code continues 

with three functions. Function inverse_normal_cdf() returns the CDF 

based on a random variable. Function random_normal() calls function 

inverse_normal_cdf() with a randomly generated value X and returns the 

CDF. Function scatter() creates a scatter plot. The main block begins by 

Figure 5-3.  Subplot of normal distributions and correlation
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creating randomly generated x and y values xs, ys1, and ys2. A gridspec() 

is created to hold the distributions. Histograms are created for xs, ys1 

and xs, ys2 data, respectively. Next, a correlation plot is created for both 

distributions. Finally, correlations are generated for the two distributions. 

Figure 5-3 shows plots.

The code example spawns two important lessons. First, creating a set 

of randomly generated numbers with ndtri() creates a normally distributed 

dataset. That is, function ndtri() returns the CDF of a randomly generated 

value. Second, two normally distributed datasets are not necessarily 

similar even though they look alike. In this case, the correlations are 

opposite. So, visualization and correlations are required to demonstrate 

the difference between the datasets.

�Data Correlation and Basic Statistics
Correlation is the extent that two or more variables fluctuate (move) 

together. A correlation matrix is a table showing correlation coefficients 

between sets of variables. Correlation coefficients measure strength of 

association between two or more variables.

The code example creates three datasets with x and y coordinates, 

calculates correlations, and plots. The 1st dataset represents a positive 

correlation; the 2nd, a negative correlation; and the 3rd, a weak correlation.

import random, numpy as np

import matplotlib.pyplot as plt

import matplotlib.gridspec as gridspec

if __name__ == "__main__":

    np.random.seed(0)

    x = np.random.randint(0, 50, 1000)

    y = x + np.random.normal(0, 10, 1000)
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    print ('highly positive:\n', np.corrcoef(x, y))

    gs = gridspec.GridSpec(2, 2)

    fig = plt.figure()

    ax1 = fig.add_subplot(gs[0,0])

    plt.title('positive correlation')

    plt.scatter(x, y, color='springgreen')

    y = 100 - x + np.random.normal(0, 10, 1000)

    print ('\nhighly negative:\n', np.corrcoef(x, y))

    ax2 = fig.add_subplot(gs[0,1])

    plt.title('negative correlation')

    plt.scatter(x, y, color='crimson')

    y = np.random.normal(0, 10, 1000)

    print ('\nno/weak:\n', np.corrcoef(x, y))

    ax3 = fig.add_subplot(gs[1,:])

    plt.title('weak correlation')

    plt.scatter(x, y, color='peachpuff')

    plt.tight_layout()

    plt.show()

Chapter 5  Working with Data



137

Output:

 

Figure 5-4.  Subplot of correlations

The code example begins by importing random, numpy, and matplotlib 

libraries. The main block begins by generating x and y coordinates with a 

positive correlation and displaying the correlation matrix. It continues by 

creating a grid to hold the subplot, the 1st subplot grid, and a scatterplot. 

Next, x and y coordinates are created with a negative correlation and the 

correlation matrix is displayed. The 2nd subplot grid is created and plotted. 

Finally, x and y coordinates are created with a weak correlation and the 

correlation matrix is displayed. The 3rd subplot grid is created and plotted, 

and all three scatterplots are displayed. Figure 5-4 shows the plots.
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�Pandas Correlation and Heat Map Examples
Pandas is a Python package that provides fast, flexible, and expressive data 

structures to make working with virtually any type of data easy, intuitive, 

and practical in real-world data analysis. A DataFrame (df) is a 2-D labeled 

data structure and the most commonly used object in pandas.

The 1st code example creates a correlation matrix with an associated 

visualization:

import random, numpy as np, pandas as pd

import matplotlib.pyplot as plt

import matplotlib.cm as cm

import matplotlib.colors as colors

if __name__ == "__main__":

    np.random.seed(0)

    df = pd.DataFrame({'a': np.random.randint(0, 50, 1000)})

    df['b'] = df['a'] + np.random.normal(0, 10, 1000)

    df['c'] = 100 - df['a'] + np.random.normal(0, 5, 1000)

    df['d'] = np.random.randint(0, 50, 1000)

    colormap = cm.viridis

    colorlist = [colors.rgb2hex(colormap(i))

                 for i in np.linspace(0, 1, len(df['a']))]

    df['colors'] = colorlist

    print (df.corr())

    �pd.plotting.scatter_matrix(�df, c=df['colors'], 

diagonal='d',

                               figsize=(10, 6))

    plt.show()
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Output:

 

Figure 5-5.  Correlation matrix visualization

The code example begins by importing random, numpy, pandas, 

and matplotlib libraries. The main block begins by creating a df with four 

columns populated by various random number possibilities. It continues 

by creating a color map of the correlations between each column, printing 

the correlation matrix, and plotting the color map (Figure 5-5).

We can see from the correlation matrix that the most highly correlated 

variables are a and b (0.83), a and c (–0.95), and b and c (–0.79). From the 

color map, we can see that a and b are positively correlated, a and c are 

negatively correlated, and b and c are negatively correlated. However, the 

actual correlation values are not apparent from the visualiztion.

Chapter 5  Working with Data



140

A Heat map is a graphical representation of data where individual 

values in a matrix are represented as colors. It is a popular visualization 

technique in data science. With pandas, a Heat map provides a 

sophisticated visualization of correlations where each variable is 

represented by its own color.

The 2nd code example uses a Heat map to visualize variable 

correlations. You need to install library seaborn if you don’t already have it 

installed on your computer (e.g., pip install seaborn).

import random, numpy as np, pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

if __name__ == "__main__":

    np.random.seed(0)

    df = pd.DataFrame({'a': np.random.randint(0, 50, 1000)})

    df['b'] = df['a'] + np.random.normal(0, 10, 1000)

    df['c'] = 100 - df['a'] + np.random.normal(0, 5, 1000)

    df['d'] = np.random.randint(0, 50, 1000)

    plt.figure()

    sns.heatmap(df.corr(), annot=True, cmap='OrRd')

    plt.show()
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Output:

Figure 5-6.  Heat map

The code begins by importing random, numpy, pandas, matplotlib, 

and seaborn libraries. Seaborn is a Python visualization library based 

on matplotlib. The main block begins by generating four columns of 

data (variables), and plots a Heat map (Figure 5-6). Attribute cmap uses 

a colormap. A list of matplotlib colormaps can be found at: https://

matplotlib.org/examples/color/colormaps_reference.html.

�Various Visualization Examples
The 1st code example introduces the Andrews curve, which is a way to 

visualize structure in high-dimensional data. Data for this example is the 

Iris dataset, which is one of the best known in the pattern recognition 

literature. The Iris dataset consists of three different types of irises’ (Setosa, 

Versicolour, and Virginica) petal and sepal lengths.

Andrews curves allow multivariate data plotting as a large number 

of curves that are created using the attributes (variable) of samples as 

coefficients. By coloring the curves differently for each class, it is possible 
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to visualize data clustering. Curves belonging to samples of the same class 

will usually be closer together and form larger structures. Raw data for the 

iris dataset is located at the following URL:

https://raw.githubusercontent.com/pandas-dev/pandas/master/

pandas/tests/data/iris.csv

import matplotlib.pyplot as plt

import pandas as pd

from pandas.plotting import andrews_curves

if __name__ == "__main__":

    data = pd.read_csv('data/iris.csv')

    plt.figure()

    andrews_curves(data, 'Name',

                   color=['b','mediumspringgreen','r'])

    plt.show()

Output:

Figure 5-7.  Andrews curves
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The code example begins by importing matplotlib and pandas. The 

main block begins by reading the iris dataset into pandas df data. Next, 

Andrews curves are plotted for each class—Iris-setosa, Iris-versicolor, and 

Iris-virginica (Figure 5-7). From this visualization, it is difficult to see which 

attributes distinctly define each class.

The 2nd code example introduces parallel coordinates:

import matplotlib.pyplot as plt

import pandas as pd

from pandas.plotting import parallel_coordinates

if __name__ == "__main__":

    data = pd.read_csv('data/iris.csv')

    plt.figure()

    parallel_coordinates(data, 'Name',

                         color=['b','mediumspringgreen','r'])

    plt.show()

Output:

Figure 5-8.  Parallel coordinates
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Parallel coordinates is another technique for plotting multivariate 

data. It allows visualization of clusters in data and estimation of other 

statistics visually. Points are represented as connected line segments. Each 

vertical line represents one attribute. One set of connected line segments 

represents one data point. Points that tend to cluster appear closer together.

The code example begins by importing matplotlib and pandas. The 

main block begins by reading the iris dataset into pandas df data. Next, 

parallel coordinates are plotted for each class (Figure 5-8). From this 

visualization, attributes PetalLength and PetalWidth are most distinct for 

the three species (classes of Iris). So, PetalLength and PetalWidth are the 

best classifiers for species of Iris. Andrews curves just don’t clearly provide 

this important information.

Here is a useful URL:

http://wilkelab.org/classes/SDS348/2016_spring/worksheets/

class9.html

The 3rd code example introduces RadViz:

import matplotlib.pyplot as plt

import pandas as pd

from pandas.plotting import radviz

if __name__ == "__main__":

    data = pd.read_csv('data/iris.csv')

    plt.figure()

    radviz(data, 'Name',

           color=['b','mediumspringgreen','r'])

    plt.show()
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Output:

RadVis is yet another technique for visualizing multivariate data. 

The code example begins by importing matplotlib and pandas. The 

main block begins by reading the iris dataset into pandas df data. 

Next, RadVis coordinates are plotted for each class (Figure 5-9). With 

this visualization, it is not easy to see any distinctions. So, the parallel 

coordinates technique appears to be the best of the three in terms of 

recognizing variation (for this example).

Figure 5-9.  RadVis
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�Cleaning a CSV File with Pandas and JSON
The code example loads a dirty CSV file into a Pandas df and displays to 

locate bad data. It then loads the same CSV file into a list of dictionary 

elements for cleaning. Finally, the cleansed data is saved to JSON.

import csv, pandas as pd, json

def to_dict(d):

    return [dict(row) for row in d]

def dump_json(f, d):

    with open(f, 'w') as f:

        json.dump(d, f)

def read_json(f):

    with open(f) as f:

        return json.load(f)

if __name__ == "__main__":

    df = pd.read_csv("data/audio.csv")

    print (df, '\n')

    data = csv.DictReader(open('data/audio.csv'))

    d = to_dict(data)

    for row in d:

        if (row['pno'][0] not in ['a', 'c', 'p', 's']):

            if (row['pno'][0] == '8'):

                row['pno'] = 'a' + row['pno']

            elif (row['pno'][0] == '7'):

                row['pno'] = 'p' + row['pno']

            elif (row['pno'][0] == '5'):

                row['pno'] = 's' + row['pno']

Chapter 5  Working with Data



147

        if (row['color']) == '-':

            row['color'] = 'silver'

        if row['model'] == '-':

            row['model'] = 'S1'

        if (row['mfg']) == '100':

            row['mfg'] = 'Linn'

        if (row['desc'] == '0') and row['pno'][0] == 'p':

            row['desc'] = 'preamplifier'

        elif (row['desc'] == '-') and row['pno'][0] == 's':

            row['desc'] = 'speakers'

        if (row['price'][0] == '$'):

            row['price'] =\

            row['price'].translate({ord(i): None for i in '$,.'})

    json_file = 'data/audio.json'

    dump_json(json_file, d)

    data = read_json(json_file)

    for i, row in enumerate(data):

        if i < 5:

            print (row)

Output:
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The code example begins by importing csv, pandas, and json libraries. 

Function to_dict() converts a list of OrderedDict elements to a list of 

regular dictionary elements for easier processing. Function dump_json() 

saves data to a JSON file. Function read_json() reads JSON data into a 

Python list. The main block begins by loading a CSV file into a Pandas df 

and displaying it to visualize dirty data. It continues by loading the same 

CSV file into a list of dictionary elements for easier cleansing. Next, all 

dirty data is cleansed. The code continues by saving the cleansed data to 

JSON file audio.json. Finally, audio.json is loaded and a few records are 

displayed to ensure that everything worked properly.

�Slicing and Dicing
Slicing and dicing is breaking data into smaller parts or views to better 

understand and present it as information in a variety of different and 

useful ways. A slice in multidimensional arrays is a column of data 

corresponding to a single value for one or more members of the dimension 

of interest. While a slice filters on a particular attribute, a dice is like a 

zoom feature that selects a subset of all dimensions, but only for specific 

values of the dimension.

The code example loads audio.json into a Pandas df, slices data by 

column and row, and displays:

import pandas as pd

if __name__ == "__main__":

    df = pd.read_json("data/audio.json")    

    amps = df[df.desc == 'amplifier']

    print (amps, '\n')

    price = df.query('price >= 40000')

    print (price, '\n')

    between = df.query('4999 < price < 6000')

    print (between, '\n')
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    row = df.loc[[0, 10, 19]]

    print (row)  

Output:

 

The code example begins by importing Pandas. The main block begins 

by loading audio.json into a Pandas df. Next, the df is sliced by amplifier 

from the desc column. The code continues by slicing by the price column 

for equipment more expensive than $40,000. The next slice is by price 

column for equipment between $5,000 and $6,000. The final slice is by 

rows 0, 10, and 19.

�Data Cubes
A data cube is an n-dimensional array of values. Since it is hard to 

conceptualize an n-dimensional cube, most are 3-D in practice.

Let’s build a cube that holds three stocks—GOOGL, AMZ, and MKL. For 

each stock, include five days of data. Each day includes data for open, 

high, low, close, adj close, and volume values. So, the three dimensions are 

stock, day, and values. Data was garnered from actual stock quotes.
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The code example creates a cube, saves it to a JSON file, reads the 

JSON, and displays some information:

import json

def dump_json(f, d):

    with open(f, 'w') as f:

        json.dump(d, f)

def read_json(f):

    with open(f) as f:

        return json.load(f)

def rnd(n):

    return '{:.2f}'.format(n)

if __name__ == "__main__":

    d = dict()

    googl = dict()

    googl['2017-09-25'] =\

    {'Open':939.450012, 'High':939.750000, 'Low':924.510010,

     �'Close':934.280029, 'Adj Close':934.280029, 

'Volume':1873400}

    googl['2017-09-26'] =\

    {'Open':936.690002, 'High':944.080017, 'Low':935.119995,

     �'Close':937.429993, 'Adj Close':937.429993, 

'Volume':1672700}

    googl['2017-09-27'] =\

    {'Open':942.739990, 'High':965.429993, 'Low':941.950012,

     �'Close':959.900024, 'Adj Close':959.900024, 

'Volume':2334600}

    googl['2017-09-28'] =\

    {'Open':956.250000, 'High':966.179993, 'Low':955.549988,

     �'Close':964.809998, 'Adj Close':964.809998, 'Volume':1400900}
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    googl['2017-09-29'] =\

    {'Open':966.000000, 'High':975.809998, 'Low':966.000000,

     �'Close':973.719971, 'Adj Close':973.719971, 

'Volume':2031100}

    amzn = dict()

    amzn['2017-09-25'] =\

    {'Open':949.309998, 'High':949.419983, 'Low':932.890015,

     �'Close':939.789978, 'Adj Close':939.789978, 

'Volume':5124000}

    amzn['2017-09-26'] =\

    {'Open':945.489990, 'High':948.630005, 'Low':931.750000,

     �'Close':937.429993, 'Adj Close':938.599976, 

'Volume':3564800}

    amzn['2017-09-27'] =\

    {'Open':948.000000, 'High':955.299988, 'Low':943.299988,

     �'Close':950.869995, 'Adj Close':950.869995, 

'Volume':3148900}

    amzn['2017-09-28'] =\

    {'Open':951.859985, 'High':959.700012, 'Low':950.099976,

     �'Close':956.400024, 'Adj Close':956.400024, 

'Volume':2522600}

    amzn['2017-09-29'] =\

    {'Open':960.109985, 'High':964.830017, 'Low':958.380005,

     �'Close':961.349976, 'Adj Close':961.349976, 

'Volume':2543800}

    mkl = dict()

    mkl['2017-09-25'] =\

    {'Open':1056.199951, 'High':1060.089966, 'Low':1047.930054,

     �'Close':1050.250000, 'Adj Close':1050.250000, 

'Volume':23300}
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    mkl['2017-09-26'] =\

    {'Open':1052.729980, 'High':1058.520020, 'Low':1045.000000,

     �'Close':1045.130005, 'Adj Close':1045.130005, 

'Volume':25800}

    mkl['2017-09-27'] =\

    {'Open':1047.560059, 'High':1069.099976, 'Low':1047.010010,

     �'Close':1064.040039, 'Adj Close':1064.040039, 

'Volume':21100}

    mkl['2017-09-28'] =\

    {'Open':1064.130005, 'High':1073.000000, 'Low':1058.079956,

     �'Close':1070.550049, 'Adj Close':1070.550049, 

'Volume':23500}

    mkl['2017-09-29'] =\

    {'Open':1068.439941, 'High':1073.000000, 'Low':1060.069946,

     �'Close':1067.979980, 'Adj Close':1067.979980 , 

'Volume':20700}

    d['GOOGL'], d['AMZN'], d['MKL'] = googl, amzn, mkl

    json_file = 'data/cube.json'

    dump_json(json_file, d)

    d = read_json(json_file)

    s = ' '

    print ('\'Adj Close\' slice:')

    print (10*s, 'AMZN', s, 'GOOGL', s, 'MKL')

    print ('Date')

    �print ('2017-09-25', rnd(d['AMZN']['2017-09-25'] 

['Adj Close']),

           rnd(d['GOOGL']['2017-09-25']['Adj Close']),

           rnd(d['MKL']['2017-09-25']['Adj Close']))

    �print ('2017-09-26', rnd(d['AMZN']['2017-09-26'] 

['Adj Close']),
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           rnd(d['GOOGL']['2017-09-26']['Adj Close']),

           rnd(d['MKL']['2017-09-26']['Adj Close']))

    print �('2017-09-27', rnd(d['AMZN']['2017-09-27'] 

['Adj Close']),

           rnd(d['GOOGL']['2017-09-27']['Adj Close']),

           rnd(d['MKL']['2017-09-27']['Adj Close']))

    print �('2017-09-28', rnd(d['AMZN']['2017-09-28'] 

['Adj Close']),

           rnd(d['GOOGL']['2017-09-28']['Adj Close']),

           rnd(d['MKL']['2017-09-28']['Adj Close']))

    print �('2017-09-29', rnd(d['AMZN']['2017-09-29'] 

['Adj Close']),

           rnd(d['GOOGL']['2017-09-29']['Adj Close']),

           rnd(d['MKL']['2017-09-29']['Adj Close']))

Output:

 

The code example begins by importing json. Function dump_json() 

and read_json() save and read JSON data respectively. The main block 

creates a cube by creating a dictionary d, dictionaries for each stock, 

and adding data by day and attribute to each stock dictionary. The code 

continues by saving the cube to JSON file cube.json. Finally, the code reads 

cube.json and displays a slice from the cube.
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�Data Scaling and Wrangling
Data scaling is changing type, spread, and/or position to compare data 

that are otherwise incomparable. Data scaling is very common in data 

science. Mean centering is the 1st technique, which transforms data by 

subtracting out the mean. Normalization is the 2nd technique, which 

transforms data to fall within the range between 0 and 1. Standardization is 

the 3rd technique, which transforms data to zero mean and unit variance 

(SD = 1), which is commonly referred to as standard normal.

The 1st code example generates and centers a normal distribution:

import numpy as np

import matplotlib.pyplot as plt

def rnd_nrml(m, s, n):

    return np.random.normal(m, s, n)

def ctr(d):

    return [x-np.mean(d) for x in d]

if __name__ == "__main__":

    mu, sigma, n, c1, c2, b = 10, 15, 100, 'pink',\

                              'springgreen', True

    s = rnd_nrml(mu, sigma, n)

    plt.figure()

    ax = plt.subplot(211)

    ax.set_title('normal distribution')

    count, bins, ignored = plt.hist(s, 30, color=c1, normed=b)

    sc = ctr(s)

    ax = plt.subplot(212)

    ax.set_title('normal distribution "centered"')

    count, bins, ignored = plt.hist(sc, 30, color=c2, normed=b)

    plt.tight_layout()

    plt.show()
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Output:

Figure 5-10.  Subplot for centering data

The code example begins by importing numpy and matplotlib. 

Function rnd_nrml() generates a normal distribution based on mean 

(mu), SD (sigma), and n number of data points. Function ctr() subtracts 

out the mean from every data point. The main block begins by creating 

the normal distribution. The code continues by plotting the original and 

centered distributions (Figure 5-10). Notice that the distributions are 

exactly the same, but the 2nd distribution is centered with mean of 0.

The 2nd code example generates and normalizes a normal distribution:

import numpy as np

import matplotlib.pyplot as plt

def rnd_nrml(m, s, n):

    return np.random.normal(m, s, n)

def nrml(d):

    return [(x-np.amin(d))/(np.amax(d)-np.amin(d)) for x in d]
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if __name__ == "__main__":

    mu, sigma, n, c1, c2, b = 10, 15, 100, 'orchid',\

                              'royalblue', True

    s = rnd_nrml(mu, sigma, n)

    plt.figure()

    ax = plt.subplot(211)

    ax.set_title('normal distribution')

    count, bins, ignored = plt.hist(s, 30, color=c1, normed=b)

    sn = nrml(s)

    ax = plt.subplot(212)

    ax.set_title('normal distribution "normalized"')

    count, bins, ignored = plt.hist(sn, 30, color=c2, normed=b)

    plt.tight_layout()

    plt.show()

Output:

Figure 5-11.  Subplot for normalizing data
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The code example begins by importing numpy and matplotlib. 

Function rnd_nrml() generates a normal distribution based on mean (mu), 

SD (sigma), and n number of data points. Function nrml() transforms data 

to fall within the range between 0 and 1. The main block begins by creating 

the normal distribution. The code continues by plotting the original and 

normalized distributions (Figure 5-11). Notice that the distributions are 

exactly the same, but the 2nd distribution is normalized between 0 and 1.

The 3rd code example transforms data to zero mean and unit variance 

(standard normal):

import numpy as np, csv

import matplotlib.pyplot as plt

def rnd_nrml(m, s, n):

    return np.random.normal(m, s, n)

def std_nrml(d, m, s):

    return [(x-m)/s for x in d]

if __name__ == "__main__":

    mu, sigma, n, b = 0, 1, 1000, True

    c1, c2 = 'peachpuff', 'lime'

    s = rnd_nrml(mu, sigma, n)

    plt.figure(1)

    plt.title('standard normal distribution')

    count, bins, ignored = plt.hist(s, 30, color=c1, normed=b)

    plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *

             np.exp( - (bins - mu)**2 / (2 * sigma**2) ),

             linewidth=2, color=c2)

    start1, start2 = 5, 600

    mu1, sigma1, n, b = 10, 15, 500, True

    x1 = np.arange(start1, n+start1, 1)

    y1 = rnd_nrml(mu1, sigma1, n)

    mu2, sigma2, n, b = 25, 5, 500, True
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    x2 = np.arange(start2, n+start2, 1)

    y2 = rnd_nrml(mu2, sigma2, n)

    plt.figure(2)

    ax = plt.subplot(211)

    ax.set_title('dataset1 (mu=10, sigma=15)')

    count, bins, ignored = plt.hist(y1, 30, color='r', normed=b)

    ax = plt.subplot(212)

    ax.set_title('dataset2 (mu=5, sigma=5)')

    count, bins, ignored = plt.hist(y2, 30, color='g', normed=b)

    plt.tight_layout()

    plt.figure(3)

    ax = plt.subplot(211)

    ax.set_title('Normal Distributions')

    g1, g2 = (x1, y1), (x2, y2)

    data = (g1, g2)

    colors = ('red', 'green')

    groups = ('dataset1', 'dataset2')

    for data, color, group in zip(data, colors, groups):

        x, y = data

        ax.scatter(x, y, alpha=0.8, c=color, edgecolors='none',

                   s=30, label=group)

    plt.legend(loc=4)

    ax = plt.subplot(212)

    ax.set_title('Standard Normal Distributions')    

    ds1 = (x1, std_nrml(y1, mu1, sigma1))

    y1_sn = ds1[1]

    ds2 = (x2, std_nrml(y2, mu2, sigma2))

    y2_sn = ds2[1]

    g1, g2 = (x1, y1_sn), (x2, y2_sn)

    data = (g1, g2)
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    for data, color, group in zip(data, colors, groups):

        x, y = data

        ax.scatter(x, y, alpha=0.8, c=color, edgecolors='none',

                   s=30, label=group)

    plt.tight_layout()        

    plt.show()

Output:

Figure 5-12.  Standard normal distribution
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Figure 5-14.  Normal and standard normal distributions

Figure 5-13.  Normal distributions
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The code example begins by importing numpy and matplotlib. 

Function rnd_nrml() generates a normal distribution based on mean 

(mu), SD (sigma), and n number of data points. Function std_nrml() 

transforms data to standard normal. The main block begins by creating a 

standard normal distribution as a histogram and a line (Figure 5-12). The 

code continues by creating and plotting two different normally distributed 

datasets (Figure 5-13). Next, both data sets are rescaled to standard 

normal and plotted (Figure 5-14). Now, the datasets can be compared with 

each other. Although the original plots of the datasets appear to be very 

different, they are actually very similar distributions.

The 4th code example reads a CSV dataset, saves it to JSON, wrangles 

it, and prints a few records. The URL for the data is: https://community.

tableau.com/docs/DOC-1236. However, the data on this site changes, so 

please use the data from our website to work with this example:

import csv, json

def read_dict(f):

    return csv.DictReader(open(f))

def to_dict(d):

    return [dict(row) for row in d]

def dump_json(f, d):

    with open(f, 'w') as fout:

        json.dump(d, fout)

def read_json(f):

    with open(f) as f:

        return json.load(f)
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def mk_data(d):

    for i, row in enumerate(d):

        e = {}

        e['_id'] = i

        e['cust'] = row['Customer Name']

        e['item'] = row['Sub-Category']

        e['sale'] = rnd(row['Sales'])

        e['quan'] = row['Quantity']

        e['disc'] = row['Discount']

        e['prof'] = rnd(row['Profit'])        

        e['segm'] = row['Segment']

        yield e

def rnd(v):

    return str(round(float(v),2))

if __name__ == "__main__":

    f= 'data/superstore.csv'

    d = read_dict(f)

    data = to_dict(d)

    jsonf = 'data/superstore.json'

    dump_json(jsonf, data)

    print ('"superstore" data added to JSON\n')

    json_data = read_json(jsonf)

    print ("{:20s} {:15s} {:10s} {:3s} {:5s} {:12s} {:10s}".

           format('CUSTOMER', 'ITEM', 'SALES', 'Q', 'DISC',

                  'PROFIT', 'SEGMENT'))

    generator = mk_data(json_data)

    for i, row in enumerate(generator):

        if i < 10:

            �print (�"{:20s} {:15s}".format(row['cust'], 

row['item']),
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                   �"{:10s} {:3s}".format(row['sale'], 

row['quan']),

                   �"{:5s} {:12s}".format(row['disc'], 

row['prof']),

                   "{:10s}".format(row['segm']))

        else:

            break

Output:

 

The code example begins by importing csv and json libraries. Function 

read_dict() reads a CSV file as an OrderedDict. Function to_dict() converts 

an OrderedDict to a regular dictionary. Function dump_json() saves a 

file to JSON. Function read_json() reads a JSON file. Function mk_data() 

creates a generator object consisting of wrangled data from the JSON file. 

Function rnd() rounds a number to 2 decimal places. The main block 

begins by reading a CSV file and converting it to JSON. The code continues 

by reading the newly created JSON data. Next, a generator object is created 

from the JSON data. The generator object is critical because it speeds 

processing orders of magnitude faster than a list. Since the dataset is close 

to 10,000 records, speed is important. To verify that the data was created 

correctly, the generator object is iterated a few times to print some of the 

wrangled records.
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The 5th and final code example reads the JSON file created in the 

previous example, wrangles it, and saves the wrangled data set to JSON:

import json

def read_json(f):

    with open(f) as f:

        return json.load(f)

def mk_data(d):

    for i, row in enumerate(d):

        e = {}

        e['_id'] = i

        e['cust'] = row['Customer Name']

        e['item'] = row['Sub-Category']

        e['sale'] = rnd(row['Sales'])

        e['quan'] = row['Quantity']

        e['disc'] = row['Discount']

        e['prof'] = rnd(row['Profit'])        

        e['segm'] = row['Segment']

        yield e

def rnd(v):

    return str(round(float(v),2))

if __name__ == "__main__":

    jsonf = 'data/superstore.json'

    json_data = read_json(jsonf)

    l = len(list(mk_data(json_data)))

    generator = mk_data(json_data)

    jsonf= 'data/wrangled.json'

    with open(jsonf, 'w') as f:

        f.write('[')

    for i, row in enumerate(generator):

        j = json.dumps(row)
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        if i < l - 1:

            with open(jsonf, 'a') as f:

                f.write(j)

                f.write(',')

        else:

            with open(jsonf, 'a') as f:

                f.write(j)

                f.write(']')            

    json_data = read_json(jsonf)

    for i, row in enumerate(json_data):

        if i < 5:

            print (row['cust'], row['item'], row['sale'])

        else:

            break

Output:

 

The code example imports json. Function read_json() reads a JSON 

file. Function mk_data() creates a generator object consisting of wrangled 

data from the JSON file. Function rnd() rounds a number to two decimal 

places. The main block begins by reading a JSON file. A generator object 

must be created twice. The 1st generator allows us to find the length 

of the JSON file. The 2nd generator consists of wrangled data from the 

JSON file. Next, the generator is traversed so we can create a JSON file of 

the wrangled data. Although the generator object is created and can be 

traversed very fast, it takes a bit of time to create a JSON file consisting 

of close to 10,000 wrangled records. On my machine, it took a bit over 33 

seconds, so be patient.
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CHAPTER 6

Exploring Data
Exploring probes deeper into the realm of data. An important topic in 

data science is dimensionality reduction. This chapter borrows munged 

data from Chapter 5 to demonstrate how this works. Another topic is 

speed simulation. When working with large datasets, speed is of great 

importance. Big data is explored with a popular dataset used by academics 

and industry. Finally, Twitter and Web scraping are two important data 

sources for exploration.

�Heat Maps
Heat maps were introduced in Chapter 5, but one wasn’t created for the 

munged dataset. So, we start by creating a Heat map visualization of the 

wrangled.json data.

import json, pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

def read_json(f):

    with open(f) as f:

        return json.load(f)

def verify_keys(d, **kwargs):

    data = d[0].items()

    k1 = set([tup[0] for tup in data])
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    s = kwargs.items()

    k2 = set([tup[1] for tup in s])

    return list(k1.intersection(k2))

def build_ls(k, d):

    return [{k: row[k] for k in (keys)} for row in d]

def get_rows(d, n):

    [print(row) for i, row in enumerate(d) if i < n]

def conv_float(d):

    return [dict([k, float(v)] for k, v in row.items()) for row 

in d]

if __name__ == "__main__":

    f= 'data/wrangled.json'

    data = read_json(f)

    �keys = verify_keys(data, c1='sale', c2='quan', c3='disc', 

c4='prof')

    heat = build_ls(keys, data)

    print ('1st row in "heat":')

    get_rows(heat, 1)

    heat = conv_float(heat)

    print ('\n1st row in "heat" converted to float:')

    get_rows(heat, 1)

    df = pd.DataFrame(heat)

    plt.figure()

    sns.heatmap(df.corr(), annot=True, cmap='OrRd')

    plt.show()

Output:
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The code example begins by importing json, pandas, matplotlib, 

and seaborn libraries. Function read_json() reads a JSON file. Function 

verify_keys() ensures that the keys of interest exist in the JSON file. This 

is important because we can only create a Heat map based on numerical 

variables, and the only candidates from the JSON file are sales, quantity, 

discount, and profit. Function build_ls() builds a list of dictionary elements 

based on the numerical variables. Function get_rows() returns n rows 

from a list. Function conv_float() converts dictionary elements to float. 

The main block begins by reading JSON file wrangled.json. It continues 

by getting keys for only numerical variables. Next, it builds list a list of 

dictionary elements (heat) based on the appropriate keys. The code 

displays the 1st row in heat to verify that all values are float. Since they are 

not, the code converts them to float. The code then creates a df from heat 

and plots the Heat map (Figure 6-1).

Figure 6-1.  Heat map
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�Principal Component Analysis
Principal Component Analysis (PCA) finds the principal components 

of data. Principal components represent the underlying structure in the 

data because they uncover the directions where the data has the most 

variance (most spread out). PCA leverages eigenvectors and eigenvalues to 

uncover data variance. An eigenvector is a direction, while an eigenvalue 

is a number that indicates variance (in the data) in the direction of the 

eigenvector. The eigenvector with the highest eigenvalue is the principal 

component. A dataset can be deconstructed into eigenvectors and 

eigenvalues. The amount of eigenvectors (and eigenvalues) in a dataset 

equals the number of dimensions. Since the wrangled.json dataset has 

four dimensions (variables), it has four eigenvectors/eigenvalues.

The 1st code example runs PCA on the wrangled.json dataset. 

However, PCA only works with numeric data, so the dataset is distilled 

down to only those features.

import matplotlib.pyplot as plt, pandas as pd

import numpy as np, json, random as rnd

from sklearn.preprocessing import StandardScaler

from pandas.plotting import parallel_coordinates

def read_json(f):

    with open(f) as f:

        return json.load(f)

def unique_features(k, d):

    return list(set([dic[k] for dic in d]))

def sire_features(k, d):

    return [{k: row[k] for k in (k)} for row in d]

def sire_numeric(k, d):

    s = conv_float(sire_features(k, d))

    return s
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def sire_sample(k, v, d, m):

    indices = np.arange(0, len(d), 1)

    s = [d[i] for i in indices if d[i][k] == v]

    n = len(s)

    num_keys = ['sale', 'quan', 'disc', 'prof']

    for i, row in enumerate(s):

        for k in num_keys:

            row[k] = float(row[k])

    s = rnd_sample(m, len(s), s)

    return (s, n)

def rnd_sample(m, n, d):

    indices = sorted(rnd.sample(range(n), m))

    return [d[i] for i in indices]

def conv_float(d):

    �return [dict([k, float(v)] for k, v in row.items()) for row 

in d]

if __name__ == "__main__":

    f = 'data/wrangled.json'

    data = read_json(f)

    segm = unique_features('segm', data)

    print ('classes in "segm" feature:')

    print (segm)

    keys = ['sale', 'quan', 'disc', 'prof', 'segm']

    features = sire_features(keys, data)

    num_keys = ['sale', 'quan', 'disc', 'prof']

    numeric_data = sire_numeric(num_keys, features)

    k, v = "segm", "Home Office"

    m = 100

    s_home = sire_sample(k, v, features, m)

    v = "Consumer"

    s_cons = sire_sample(k, v, features, m)
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    v = "Corporate"

    s_corp = sire_sample(k, v, features, m)

    print ('\nHome Office slice:', s_home[1])

    print('Consumer slice:', s_cons[1])

    print ('Coporate slice:', s_corp[1])

    print ('sample size:', m)

    df_home = pd.DataFrame(s_home[0])

    df_cons = pd.DataFrame(s_cons[0])

    df_corp = pd.DataFrame(s_corp[0])

    frames = [df_home, df_cons, df_corp]

    result = pd.concat(frames)

    plt.figure()

    parallel_coordinates(result, 'segm', color=

                         ['orange','lime','fuchsia'])

    df = pd.DataFrame(numeric_data)

    X = df.ix[:].values

    X_std = StandardScaler().fit_transform(X)

    mean_vec = np.mean(X_std, axis=0)

    cov_mat = np.cov(X_std.T)

    print ('\ncovariance matrix:\n', cov_mat)

    eig_vals, eig_vecs = np.linalg.eig(cov_mat)

    print ('\nEigenvectors:\n', eig_vecs)

    print ('\nEigenvalues:\n', np.sort(eig_vals)[::-1])

    tot = sum(eig_vals)

    �var_exp = [(i / tot)*100 for i in sorted(eig_vals, 

reverse=True)]

    print ('\nvariance explained:\n', var_exp)

    corr_mat = np.corrcoef(X.T)

    print ('\ncorrelation matrix:\n', corr_mat)    

    eig_vals, eig_vecs = np.linalg.eig(corr_mat)

    print ('\nEigenvectors:\n', eig_vecs)

    print ('\nEigenvalues:\n', np.sort(eig_vals)[::-1])
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    tot = sum(eig_vals)

    �var_exp = [(i / tot)*100 for i in sorted(eig_vals, 

reverse=True)]

    print ('\nvariance explained:\n', var_exp)

    cum_var_exp = np.cumsum(var_exp)

    fig, ax = plt.subplots()

    labels = ['PC1', 'PC2', 'PC3', 'PC4']

    width = 0.35

    index = np.arange(len(var_exp))

    ax.bar(index, var_exp,

           color=['fuchsia', 'lime', 'thistle', 'thistle'])

    for i, v in enumerate(var_exp):

        v = round(v, 2)

        val = str(v) + '%'

        ax.text(i, v+0.5, val, ha='center', color='b',

                fontsize=9, fontweight='bold')

    plt.xticks(index, labels)

    plt.title('Variance Explained')

    plt.show()

Output:
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Figure 6-2.  Parallel coordinates
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The code example begins by importing matplotlib, pandas, numpy, 

json, random, and sklearn libraries. Function read_json() reads a JSON 

file. Function unique_features() distills unique categories (classes) from 

a dimension (feature). In this case, it distills three classes—Home Office, 

Corporate, and Consumer—from the segm feature. Since the dataset is 

close to 10,000 records, I wanted to be sure what classes are in it. Function 

sire_features() distills a new dataset with only features of interest. Function 

sire_numeric() converts numeric strings to float. Function sire_sample() 

returns a random sample of n records filtered for a class. Function rnd_

sample() creates a random sample. Function convert_float() converts 

numeric string data to float.

The main block begins by reading wrangled.json and creating 

dataset features with only features of interest. The code continues by 

creating dataset numeric that only includes features with numeric data. 

Dataset numeric is used to generate PCA. Next, three samples of size 

100 are created; one for each class. The samples are used to create the 

Figure 6-3.  Variance explained
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parallel coordinates visualization (Figure 6-2). Code for PCA follows by 

standardizing and transforming the numeric dataset. A covariance matrix 

is created so that eigenvectors and eigenvalues can be generated. I include 

PCA using the correlation matrix because some disciplines prefer it. 

Finally, a visualization of the principal components is created.

Parallel coordinates show that prof (profit) and sale (sales) are the 

most important features. The PCA visualization (Figure 6-3) shows that 

the 1st principal component accounts for 39.75%, 2nd 26.47%, 3rd 22.03%, 

and 4th 11.75%. PCA analysis is not very useful in this case, since all four 

principal components are necessary, especially the 1st three. So, we 

cannot drop any of the dimensions from future analysis.

The 2nd code example uses the iris dataset for PCA:

import matplotlib.pyplot as plt, pandas as pd, numpy as np

from sklearn.preprocessing import StandardScaler

from pandas.plotting import parallel_coordinates

def conv_float(d):

    return d.astype(float)

if __name__ == "__main__":

    df = pd.read_csv('data/iris.csv')

    X = df.ix[:,0:4].values

    y = df.ix[:,4].values

    X_std = StandardScaler().fit_transform(X)

    mean_vec = np.mean(X_std, axis=0)

    cov_mat = np.cov(X_std.T)

    eig_vals, eig_vecs = np.linalg.eig(cov_mat)

    print ('Eigenvectors:\n', eig_vecs)

    print ('\nEigenvalues:\n', eig_vals)

    plt.figure()

    parallel_coordinates(df, 'Name', color=

                         ['orange','lime','fuchsia'])
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    tot = sum(eig_vals)

    �var_exp = [(i / tot)*100 for i in sorted(eig_vals, 

reverse=True)]

    cum_var_exp = np.cumsum(var_exp)

    fig, ax = plt.subplots()

    labels = ['PC1', 'PC2', 'PC3', 'PC4']

    width = 0.35

    index = np.arange(len(var_exp))

    ax.bar(index, var_exp,

           color=['fuchsia', 'lime', 'thistle', 'thistle'])

    for i, v in enumerate(var_exp):

        v = round(v, 2)

        val = str(v) + '%'

        ax.text(i, v+0.5, val, ha='center', color='b',

                fontsize=9, fontweight='bold')

    plt.xticks(index, labels)

    plt.title('Variance Explained')

    plt.show()

Output:
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Figure 6-4.  Parallel coordinates

Figure 6-5.  Variance explained
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The code example is much shorter than the previous one, because 

we didn’t have to wrangle, clean (as much), and create random samples 

(for Parallel Coordinates visualization). The code begins by importing 

matplotlib, pandas, numpy, and sklearn libraries. Function conv_float() 

converts numeric strings to float. The main block begins by reading the 

iris dataset. It continues by standardizing and transforming the data for 

PCA. Parallel Coordinates and variance explained are then displayed.

Parallel Coordinates shows that PetalLength and PetalWidth are the 

most important features (Figure 6-4). The PCA visualization (Variance 

Explained) shows that the 1st principal component accounts for 72.77%, 

2nd 23.03%, 3rd 3.68%, and 4th 0.52% (Figure 6-5). PCA analysis is very 

useful in this case because the 1st two principal components account 

for over 95% of the variance. So, we can drop PC3 and PC4 from further 

consideration.

For clarity, the 1st step for PCA is to explore the eigenvectors and 

eigenvalues. The eigenvectors with the lowest eigenvalues bear the least 

information about the distribution of the data, so they can be dropped. 

In this example, the 1st two eigenvalues are much higher, especially PC1. 

Dropping PC3 and PC4 are thereby in order. The 2nd step is to measure 

explained variance, which can be calculated from the eigenvalues. 

Explained variance tells us how much information (variance) can be 

attributed to each of the principal components. Looking at explained 

variance confirms that PC3 and PC4 are not important.

�Speed Simulation
Speed in data science is important, especially as datasets become bigger. 

Generators are helpful in memory optimization, because a generator 

function returns one item at a time (as needed) rather than all items at once.
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The code example contrasts speed between a list and a generator:

import json, humanfriendly as hf

from time import clock

def read_json(f):

    with open(f) as f:

        return json.load(f)

def mk_gen(k, d):

    for row in d:

        dic = {}

        for key in k:

            dic[key] = float(row[key])

        yield dic

def conv_float(keys, d):

    return [dict([k, float(v)] for k, v in row.items()

                 if k in keys) for row in d]

if __name__ == "__main__":

    f = 'data/wrangled.json'

    data = read_json(f)

    keys = ['sale', 'quan', 'disc', 'prof']

    print ('create, convert, and display list:')

    start = clock()

    data = conv_float(keys, data)

    for i, row in enumerate(data):

        if i < 5:

            print (row)

    end = clock()

    elapsed_ls = end - start

    print (hf.format_timespan(elapsed_ls, detailed=True))

    print ('\ncreate, convert, and display generator:')
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    start = clock()

    generator = mk_gen(keys, data)

    for i, row in enumerate(generator):

        if i < 5:

            print (row)

    end = clock()

    elapsed_gen = end - start

    print (hf.format_timespan(elapsed_gen, detailed=True))

    speed = round(elapsed_ls / elapsed_gen, 2)

    print ('\ngenerator is', speed, 'times faster')

Output:

 

The code example begins by importing json, humanfriendly, and 

time libraries. You may have to install humanfriendly like I did as so: 

pip install humanfriendly. Function read_json() reads JSON. Function 

mk_gen() creates a generator based on four features from wrangled.json 

and converts values to float. Function conv_float() converts dictionary 

values from a list to float. The main block begins by reading wrangled.

json into a list. The code continues by timing the process of creating a new 

list from keys and converting values to float. Next, a generator is created 

that mimics the list creating and conversion process. The generator is 2.26 

times faster (on my computer).
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�Big Data
Big data is the rage of the 21st century. So, let’s work with a relatively big 

dataset. GroupLens is a website that offers access to large social computing 

datasets for theory and practice. GroupLens has collected and made 

available rating datasets from the MovieLens website:

https://grouplens.org/datasets/movielens/. We are going to 

explore the 1M dataset, which contains approximately one million ratings 

from six thousand users on four thousand movies. I was hesitant to 

wrangle, cleanse, and process a dataset over one million because of the 

limited processing power of my relatively new PC.

The 1st code example reads, cleans, sizes, and dumps MovieLens data 

to JSON:

import json, csv

def read_dat(h, f):

    return csv.DictReader((line.replace('::', ':')

                           for line in open(f)),

                          delimiter=':', fieldnames=h,

                          quoting=csv.QUOTE_NONE)

def gen_dict(d):

    for row in d:

        yield dict(row)

def dump_json(f, l, d):

    f = open(f, 'w')

    f.write('[')

    for i, row in enumerate(d):

        j = json.dumps(row)

        f.write(j)

        if i < l - 1:

            f.write(',')
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        else:

            f.write(']')

    f.close()

def read_json(f):

    with open(f) as f:

        return json.load(f)

def display(n, f):

    for i, row in enumerate(f):

        if i < n:

            print (row)

    print()

if __name__ == "__main__":

    print ('... sizing data ...\n')

    u_dat = 'data/ml-1m/users.dat'

    m_dat = 'data/ml-1m/movies.dat'

    r_dat = 'data/ml-1m/ratings.dat'

    unames = ['user_id', 'gender', 'age', 'occupation', 'zip']

    mnames = ['movie_id', 'title', 'genres']

    rnames = ['user_id', 'movie_id', 'rating', 'timestamp']

    users = read_dat(unames, u_dat)

    ul = len(list(gen_dict(users)))

    movies = read_dat(mnames, m_dat)

    ml = len(list(gen_dict(movies)))

    ratings = read_dat(rnames, r_dat)

    rl = len(list(gen_dict(ratings)))

    print ('size of datasets:')

    print ('users', ul)

    print ('movies', ml)

    print ('ratings', rl)

    print ('\n... dumping data ...\n')
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    users = read_dat(unames, u_dat)

    users = gen_dict(users)

    movies = read_dat(mnames, m_dat)

    movies = gen_dict(movies)

    ratings = read_dat(rnames, r_dat)

    ratings = gen_dict(ratings)

    uf = 'data/users.json'

    dump_json(uf, ul, users)

    mf = 'data/movies.json'

    dump_json(mf, ml, movies)

    rf = 'data/ratings.json'

    dump_json(rf, rl, ratings)

    print ('\n... verifying data ...\n')

    u = read_json(uf)

    m = read_json(mf)

    r = read_json(rf)

    n = 1

    display(n, u)

    display(n, m)

    display(n, r)

Output:
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The code example begins by importing json and csv libraries. Function 

read_dat() reads and cleans the data (replaces double colons with single 

colons as delimiters). Function gen_dict() converts an OrderedDict list to 

a regular dictionary list for easier processing. Function dump_json() is a 

custom function that I wrote to dump data to JSON. Function read_json() 

reads JSON. Function display() displays some data for verification. The main 

block begins by reading the three datasets and finding their sizes. It continues 

by rereading the datasets and dumping to JSON. The datasets need to be 

reread, because a generator can only be traversed once. Since the ratings 

dataset is over one million records, it takes a few seconds to process.

The 2nd code example cleans the movie dataset, which requires 

extensive additional cleaning:

import json, numpy as np

def read_json(f):

    with open(f) as f:

        return json.load(f)

def dump_json(f, d):

    with open(f, 'w') as fout:

        json.dump(d, fout)    

def display(n, d):

    [print (row) for i,row in enumerate(d) if i < n]

def get_indx(k, d):

    return [row[k] for row in d if 'null' in row]

def get_data(k, l, d):

    return [row for i, row in enumerate(d) if row[k] in l]

def get_unique(key, d):

    s = set()

    for row in d:
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        for k, v in row.items():

            if k in key:

                s.add(v)

    return np.sort(list(s))

if __name__ == "__main__":

    mf = 'data/movies.json'

    m = read_json(mf)

    n = 20

    display(n, m)

    print ()

    indx = get_indx('movie_id', m)

    for row in m:

        if row['movie_id'] in indx:

            row['title'] = row['title'] + ':' + row['genres']

            row['genres'] = row['null'][0]

            del row['null']

        title = row['title'].split(" ")

        year = title.pop()

        year = ''.join(c for c in year if c not in '()')

        row['title'] = ' '.join(title)

        row['year'] = year

    data = get_data('movie_id', indx, m)

    n = 2

    display(n, data)

    s = get_unique('year', m)

    print ('\n', s, '\n')

    rec = get_data('year', ['Assignment'], m)

    print (rec[0])

Chapter 6  Exploring Data



187

    rec = get_data('year', ["L'Associe1982"], m)

    print (rec[0], '\n')

    b1, b2, cnt = False, False, 0

    for row in m:

        if row['movie_id'] in ['1001']:

            row['year'] = '1982'

            print (row)

            b1 = True

        elif row['movie_id'] in ['2382']:

            �row['title'] = 'Police Academy 5: Assignment: Miami 

Beach'

            row['genres'] = 'Comedy'

            row['year'] = '1988'

            print (row)

            b2 = True

        elif b1 and b2: break

        cnt += 1

    print ('\n', cnt, len(m))

    mf = 'data/cmovies.json'    

    dump_json(mf, m)

    m = read_json(mf)

    display(n, m)
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Output:

 

The code example begins by importing json and numpy libraries. 

Function read_json() reads JSON. Function dump_json() saves 

JSON. Function display() displays n records. Function get_indx() returns 

indices of dictionary elements with a null key. Function get_data() returns 

a dataset filtered by indices and movie_id key. Function get_unique() 

returns a list of unique values from a list of dictionary elements. The main 

block begins by reading movies.json and displaying for inspection. Records 

12 and 19 have a null key. The code continues by finding all movie_id 

indices with a null key. The next several lines clean all movies. Those with 

a null key require added logic to fully clean, but all records have modified 

titles and a new year key. To verify, records 12 and 19 are displayed. 

To be sure that all is well, the code finds all unique keys based on year. 

Chapter 6  Exploring Data



189

Notice that there are two records that don’t have a legitimate year. So, the 

code cleans the two records. The 2nd elif was added to the code to stop 

processing once the two dirty records were cleaned. Although not included 

in the code, I checked movie_id, title, and genres keys but found no issues.

The code to connect to MongoDB is as follows:

class conn:

    from pymongo import MongoClient

    client = MongoClient('localhost', port=27017)

    def __init__(self, dbname):

        self.db = conn.client[dbname]

    def getDB(self):

        return self.db

I created directory ‘classes’ and saved the code in ‘conn.py’

The 3rd code example generates useful information from the three 

datasets:

import json, numpy as np, sys, os, humanfriendly as hf

from time import clock

sys.path.append(os.getcwd()+'/classes')

import conn

def read_json(f):

    with open(f) as f:

        return json.load(f)

def get_column(A, v):

    return [A_i[v] for A_i in A]

def remove_nr(v1, v2):

    set_v1 = set(v1)

    set_v2 = set(v2)

    diff = list(set_v1 - set_v2)

    return diff
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def get_info(*args):

    a = [arg for arg in args]

    �ratings = [int(row[a[0][1]]) for row in a[2] if row[a[0]

[0]] == a[1]]

    �uids = [row[a[0][3]] for row in a[2] if row[a[0][0]] == a[1]]

    �title = [row[a[0][2]] for row in a[3] if row[a[0][0]] == a[1]]

    �age = [int(row[a[0][4]]) for col in uids for row in a[4] if 

col == row[a[0][3]]]

    �gender = [row[a[0][5]] for col in uids for row in users if 

col == row[a[0][3]]]

    return (ratings, title[0], uids, age, gender)

def generate(k, v, r, m, u):

   for i, mid in enumerate(v):

       dic = {}

       rec = get_info(k, mid, r, m, u)

       �dic = {'_id':i, 'mid':mid, 'title':rec[1], 'avg_

rating':np.mean(rec[0]),

              �'n_ratings':len(rec[0]), 'avg_age':np.

mean(rec[3]),

              'M':rec[4].count('M'), 'F':rec[4].count('F')}

       �dic['avg_rating'] = round(float(str(dic['avg_rating'])

[:6]),2)

       dic['avg_age'] = round(float(str(dic['avg_age'])[:6]))

       yield dic

def gen_ls(g):

    for i, row in enumerate(g):

        yield row
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if __name__ == "__main__":

    print ('... creating datasets ...\n')

    m = 'data/cmovies.json'

    movies = np.array(read_json(m))

    r = 'data/ratings.json'

    ratings = np.array(read_json(r))

    r = 'data/users.json'

    users = np.array(read_json(r))

    print ('... creating movie indicies vector data ...\n')

    mv = get_column(movies, 'movie_id')

    rv = get_column(ratings, 'movie_id')

    print ('... creating unrated movie indicies vector ...\n')

    nrv = remove_nr(mv, rv)

    diff = [int(row) for row in nrv]

    print (np.sort(diff), '\n')

    new_mv = [x for x in mv if x not in nrv]

    mid = '1'

    �keys = ('movie_id', 'rating', 'title', 'user_id', 'age', 

'gender')

    stats = get_info(keys, mid, ratings, movies, users)

    avg_rating = np.mean(stats[0])

    avg_age = np.mean(stats[3])

    n_ratings = len(stats[0])

    title = stats[1]

    M, F = stats[4].count('M'), stats[4].count('F')

    print ('avg rating for:', end=' "')

    print (title + '" is', round(avg_rating, 2), end=' (')

    print (n_ratings, 'ratings)\n')

    gen = generate(keys, new_mv, ratings, movies, users)

    gls = gen_ls(gen)

    obj = conn.conn('test')
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    db = obj.getDB()

    movie_info = db.movie_info

    movie_info.drop()

    print ('... saving movie_info to MongoDB ...\n')

    start = clock()

    for row in gls:

        movie_info.insert(row)

    end = clock()

    elapsed_ls = end - start

    print (hf.format_timespan(elapsed_ls, detailed=True))

Output:

 

The code example begins by importing json, numpy, sys, os, 

humanfriendly, time, and conn (a custom class I created to connect to 

MongoDB). Function read_json() reads JSON. Function get_column() 

returns a column vector. Function remove_nr() removes movie_id values 

that are not rated. Function get_info() returns ratings, users, age, and 

gender as column vectors as well as title of a movie. The function is very 

complex, because each vector is created by traversing one of the data sets 
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and making comparisons. To make it more concise, list comprehension 

was used extensively. Function generate() generates a dictionary element 

that contains average rating, average age, number of males and females 

raters, number of ratings, movie_id, and title of each movie. Function gen_

ls() generates each dictionary element generated by function generate(). 

The main block begins by reading the three JSON datasets. It continues 

by getting two column vectors—each movie_id from movies dataset and 

movie_id from ratings dataset. Each column vector is converted to a set 

to remove duplicates. Column vectors are used instead of full records for 

faster processing. Next, a new column vector is returned containing only 

movies that are rated. The code continues by getting title and column 

vectors for ratings, and users, age, and gender for each movie with movie_

id of 1. The average rating for this movie is displayed with its title and 

number of ratings. The final part of the code creates a generator containing 

a list of dictionary elements. Each dictionary element contains the movie_

id, title, average rating, average age, number of ratings, number of male 

raters, and number of female raters. Next, another generator is created to 

generate the list. Creating the generators is instantaneous, but unraveling 

(unfolding) contents takes time. Keep in mind that the 1st generator 

runs billions of processes and 2nd generator runs the 1st one. So, saving 

contents to MongoDB takes close to half an hour.

To verify results, let’s look at the data in MongoDB. The command show 

collections is the 1st that I run to check if collection movie_info was created:

 

Next, I run db.movie_info.count() to check the number of documents:
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Now that I know the number of documents, I can display the first and 

last five records:

 

 

 

 

From data exploration, it appears that the movie_info collection was 

created correctly.

The 4th code example saves the three datasets—users.json, cmovies.

json, and ratings.json—to MongoDB:

import sys, os, json, humanfriendly as hf

from time import clock

sys.path.append(os.getcwd() + '/classes')

import conn

def read_json(f):

    with open(f) as f:

        return json.load(f)

def create_db(c, d):

    c = db[c]

    c.drop()
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    for i, row in enumerate(d):

        row['_id'] = i

        c.insert(row)

if __name__ == "__main__":

    u = read_json('data/users.json')

    m = read_json('data/cmovies.json')

    r = read_json('data/ratings.json')

    obj = conn.conn('test')

    db = obj.getDB()

    print ('... creating MongoDB collections ...\n')

    start = clock()

    create_db('users', u)

    create_db('movies', m)

    create_db('ratings', r)

    end = clock()

    elapsed_ls = end - start

    print (hf.format_timespan(elapsed_ls, detailed=True))

Output:

 

The code example begins by importing sys, os, json, humanfriendly, 

time, and custom class conn. Function read_json reads JSON. Function 

create_db() creates MongoDB collections. The main block begins by 

reading the three datasets—users.json, cmovies.json, and ratings.json—and 

saving them to MongoDB collections. Since the ratings.json dataset is over 

one million records, it takes some time to save it to the database.
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The 5th code example introduces the aggregation pipeline, which is 

a MongoDB framework for data aggregation modeled on the concept of 

data processing pipelines. Documents enter a multistage pipeline that 

transforms them into aggregated results. In addition to grouping and 

sorting documents by specific field or fields and aggregating contents 

of arrays, pipeline stages can use operators for tasks such as calculating 

averages or concatenating strings. The pipeline provides efficient data 

aggregation using native MongoDB operations, and is the preferred 

method for data aggregation in MongoDB.

import sys, os

sys.path.append(os.getcwd() + '/classes')

import conn

def match_item(k, v, d):

    pipeline = [ {'$match' : { k : v }} ]

    q = db.command('aggregate',d,pipeline=pipeline)

    return q

if __name__ == "__main__":

    obj = conn.conn('test')

    db = obj.getDB()

    movie = 'Toy Story'

    q = match_item('title', movie, 'movie_info')

    r = q['result'][0]

    print (movie, 'document:')

    print (r)

    print ('average rating', r['avg_rating'], '\n')

    user_id = '3'

    print ('*** user', user_id, '***')

    q = match_item('user_id', user_id, 'users')

    r = q['result'][0]    
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    �print ('age', r['age'], 'gender', r['gender'], 

'occupation',\

          r['occupation'], 'zip', r['zip'], '\n')

    print ('*** "user 3" movie ratings of 5 ***')

    q = match_item('user_id', user_id, 'ratings')

    mid = q['result']

    for row in mid:

        if row['rating'] == '5':

            q = match_item('movie_id', row['movie_id'], 'movies')

            title = q['result'][0]['title']

            genre = q['result'][0]['genres']

            print (row['movie_id'], title, genre)

    mid = '1136'

    q = match_item('mid', mid, 'movie_info')

    title = q['result'][0]['title']

    avg_rating = q['result'][0]['avg_rating']

    print ()

    print ('"' + title + '"', 'average rating:', avg_rating)

Output:
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The code example begins by importing sys, os, and custom class conn. 

Function match_item() uses the aggregation pipeline to match records to 

criteria. The main block begins by using the aggregation pipeline to return 

the Toy Story document from collection movie_info. The code continues 

by using the pipeline to return the user 3 document from collection users. 

Next, the aggregation pipeline is used to return all movie ratings of 5 for 

user 3. Finally, the pipeline is used to return the average rating for Monty 

Python and the Holy Grail from collection movie_info. The aggregation 

pipeline is efficient and offers a vast array of functionality.

The 6th code example demonstrates a multistage aggregation pipeline:

import sys, os

sys.path.append(os.getcwd() + '/classes')

import conn

def stages(k, v, r, d):

    pipeline = [ {'$match' : { '$and' : [ { k : v },

                   {'rating':{'$eq':r} }] } },

                 {'$project' : {

                     '_id' : 1,

                     'user_id' : 1,

                     'movie_id' : 1,

                     'rating' : 1 } },

                 {'$limit' : 100}]

    q = db.command('aggregate',d,pipeline=pipeline)

    return q
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def match_item(k, v, d):

    pipeline = [ {'$match' : { k : v }} ]

    q = db.command('aggregate',d,pipeline=pipeline)

    return q

if __name__ == "__main__":

    obj = conn.conn('test')

    db = obj.getDB()

    u = '3'

    r = '5'

    q = stages('user_id', u, r, 'ratings')

    result = q['result']

    print ('ratings of', r, 'for user ' + str(u) + ':')

    for i, row in enumerate(result):

        print (row)

    n = i+1

    print ()

    print (n, 'associated movie titles:')

    for i, row in enumerate(result):

        q = match_item('movie_id', row['movie_id'], 'movies')

        r = q['result'][0]

        print (r['title'])
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Output:

 

The code example begins by importing sys, os, and custom class conn. 

Function stages() uses a three-stage aggregation pipeline. The 1st stage 

finds all ratings of 5 from user 3. The 2nd stage projects the fields to be 

displayed. The 3rd stage limits the number of documents returned. It is 

important to include a limit stage, because the results database is big and 

pipelines have size limitations. Function match_item() uses the aggregation 

pipeline to match records to criteria. The main block begins by using the 

stages() pipeline to return all ratings of 5 from user 3. The code continues by 

iterating this data and using the match_item() pipeline to get the titles that 

user 3 rated as 5. The pipeline is an efficient method to query documents 

from MongoDB, but takes practice to get acquainted with its syntax.
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�Twitter
Twitter is a fantastic source of data because you can get data about almost 

anything. To access data from Twitter, you need to connect to the Twitter 

Streaming API. Connection requires four pieces of information from Twitter—

API key, API secret, Access token, and Access token secret (encrypted). After 

you register and get your credentials, you need to install a Twitter API. I 

chose the Twitter API TwitterSearch, but there are many others.

The 1st code example creates JSON to hold my Twitter credentials 

(insert your credentials into each variable):

import json

if __name__ == '__main__':

    consumer_key = ''

    consumer_secret = ''

    access_token = ''

    access_encrypted = ''

    data = {}

    data['ck'] = consumer_key

    data['cs'] = consumer_secret

    data['at'] = access_token

    data['ae'] = access_encrypted

    json_data = json.dumps(data)

    header = '[\n'

    ender = ']'

    obj = open('data/credentials.json', 'w')

    obj.write(header)

    obj.write(json_data + '\n')

    obj.write(ender)

    obj.close()  
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I chose to save credentials in JSON to hide them from view. The code 

example imports the json library. The main block saves credentials into JSON.

The 2nd code example streams Twitter data using the TwitterSearch 

API. To install: pip install TwitterSearchAPI.

from TwitterSearch import *

import json, sys

class twitSearch:

    def __init__(self, cred, ls, limit):

        self.cred = cred

        self.ls = ls

        self.limit = limit

    def search(self):

        num = 0

        dt = []

        dic = {}

        try:

            tso = TwitterSearchOrder()

            tso.set_keywords(self.ls)

            tso.set_language('en')

            tso.set_include_entities(False)

            ts = TwitterSearch(

                consumer_key = self.cred[0]['ck'],

                consumer_secret = self.cred[0]['cs'],

                access_token = self.cred[0]['at'],

                access_token_secret = self.cred[0]['ae']

                )

            for tweet in ts.search_tweets_iterable(tso):

                if num <= self.limit:

                    dic['_id'] = num

                    dic['tweeter'] = tweet['user']['screen_name']

                    dic['tweet_text'] = tweet['text']
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                    dt.append(dic)

                    dic = {}

                else:

                    break

                num += 1

        except TwitterSearchException as e:

            print (e)

        return dt

def get_creds():

    with open('data/credentials.json') as json_data:

        d = json.load(json_data)

        json_data.close()

    return d

def write_json(f, d):

    with open(f, 'w') as fout:

        json.dump(d, fout)

def translate():

    �return dict.fromkeys(range(0x10000, sys.maxunicode + 1), 

0xfffd)

def read_json(f):

    with open(f) as f:

        return json.load(f)

if __name__ == '__main__':

    cred = get_creds()

    ls = ['machine', 'learning']

    limit = 10

    obj = twitSearch(cred, ls, limit)

    data = obj.search()

    f = 'data/TwitterSearch.json'
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    write_json(f, data)

    non_bmp_map = translate()

    print ('twitter data:')

    for row in data:

        �row['tweet_text'] = str(row['tweet_text']).

translate(non_bmp_map)

        tweet_text = row['tweet_text'][0:50]

        �print ('{:<3}{:18s}{}'.format(row['_id'], 

row['tweeter'], tweet_text))

    print ('\nverify JSON:')

    read_data = read_json(f)

    for i, p in enumerate(read_data):

        if i < 3:

            �p['tweet_text'] = str(p['tweet_text']).

translate(non_bmp_map)

            tweet_text = p['tweet_text'][0:50]

            �print ('{:<3}{:18s}{}'.format(p['_id'], 

p['tweeter'], tweet_text))

Output:
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The code example begins by importing TwitterSearch, json, and 

sys libraries. Class twitSearch streams Twitter data based on Twitter 

credentials, a list of keywords, and a limit. Function get_cred() returns 

Twitter credentials from JSON. Function write_json() writes data to 

JSON. Function translate() converts streamed data outside the Basic 

Multilingual Plane (BMP) to a usable format. Emojis, for example, are 

outside the BMP. Function read_json() reads JSON. The main block begins 

by getting Twitter credentials, creating a list of search keywords, and a 

limit. In this case, the list of search keywords holds machine and learning, 

because I wanted to stream data about machine learning. Limit of ten 

restricts streamed records to ten tweets. The code continues by writing 

Twitter data to JSON, translating tweets to control for non-BMP data, and 

printing the tweet. Finally, the code reads JSON to verify that the tweets 

were saved properly and prints a few.

�Web Scraping
Web scraping is a programmatic approach for extracting information 

from websites. It focuses on transforming unstructured HTML formatted 

data into structured data. Web scraping is programmatically intensive 

because of the unstructured nature of HTML. That is, HTML has few if any 

structural rules, which means that HTML structural patterns tend to differ 

from one website to another. So, get ready to write custom code for each 

Web scraping adventure.

The code example scrapes book information from a popular technical 

book publishing company. The 1st step is to locate the webpage. The 2nd 

step is to open a window with the source code. The 3rd step is to traverse 

the source code to identify the data to scrape. The 4th step is to scrape.

With Google Chrome, click More tools and then Developer tools to 

open the source code window. Next, hover the mouse cursor over the 

source until you find the data. Move down the source code tree to find the 

tags you want to scrape. Finally, scrape the data.
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To install ‘BeautifulSoup’, pip intall BeautifulSoup.

from bs4 import BeautifulSoup

import requests, json

def build_title(t):

    t = t.text

    t = t.split()

    ls = []

    for row in t:

        if row != '-':

            ls.append(row)

        elif row == '-':

            break

    return ' '.join(ls)

def release_date(r):

    r = r.text

    r = r.split()

    prefix = r[0] + s + r[1]

    if len(r) == 5:

        date = r[2] + s + r[3] + s + r[4]

    else:

        date = r[2] + s + r[3]

    return prefix, date        

def write_json(f, d):

    with open(f, 'w') as fout:

        json.dump(d, fout)

def read_json(f):

    with open(f) as f:

        return json.load(f)
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if __name__ == '__main__':

    s = ' '

    dic_ls = []

    base_url = "https://ssearch.oreilly.com/?q=data+science"

    soup = BeautifulSoup(requests.get(base_url).text, 'lxml')

    books = soup.find_all('article')

    for i, row in enumerate(books):

        dic = {}

        tag = row.name

        tag_val = row['class']

        title = row.find('p', {'class' : 'title'})

        title = build_title(title)

        url = row.find('a', {'class' : 'learn-more'})

        learn_more = url.get('href')

        author = row.find('p', {'class' : 'note'}).text

        release = row.find('p', {'class' : 'note date2'})

        prefix, date = release_date(release)

        if len(tag_val) == 2:

            �publisher = row.find('p', {'class' : 'note 

publisher'}).text

            item = row.find('img', {'class' : 'book'})

            cat = item.get('class')[0]

        else:

            publisher, cat = None, None

            �desc = row.find('p', {'class' : 'description'}).

text.split()

            desc = [row for i, row in enumerate(desc) if i < 7]

            desc = ' '.join(desc) + ' ...'

        dic['title'] = title

        dic['learn_more'] = learn_more

        if author[0:3] != 'Pub':
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            dic['author'] = author

        if publisher is not None:

            dic['publisher'] = publisher

            dic['category'] = cat

        else:

            dic['event'] = desc

        dic['date'] = date

        dic_ls.append(dic)

    f = 'data/scraped.json'

    write_json(f, dic_ls)

    data = read_json(f)

    for i, row in enumerate(data):

        if i < 6:

            print (row['title'])

            if 'author' in row.keys():

                print (row['author'])

            if 'publisher' in row.keys():

                print (row['publisher'])

            if 'category' in row.keys():

                print ('Category:', row['category'])

                print ('Release Date:', row['date'])

            if 'event' in row.keys():

                print ('Event:', row['event'])

                print ('Publish Date:', row['date'])

            print ('Learn more:', row['learn_more'])

            print ()
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Output:

 

The code example begins by importing BeautifulSoup, request, and 

json libraries. Function build_title() builds scraped title data into a string. 

Function release_date() builds scraped date data into a string. Function 

write_json() and read_json() write and read JSON respectively. The main 

block begins by converting the URL page into a BeautifulSoup object. 

The code continues by placing all article tags into variable books. From 

exploration, I found that the article tags contained the information I 

wanted to scrape. Next, each article tag is traversed. Scraping would have 

been much easier if the information in each article tag was structured 

consistently. Since it was not, the logic to extract each piece of information 

is extensive. Each piece of information is placed in a dictionary element, 

which is subsequently appended to a list. Finally, the list is saved to JSON. 

The JSON is read and a few records are displayed to verify that all is well.
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