
Data Science
Fundamentals
for Python and
MongoDB

—
David Paper

www.allitebooks.com

http://www.allitebooks.org

Data Science
Fundamentals for

Python and MongoDB

David Paper

www.allitebooks.com

http://www.allitebooks.org

Data Science Fundamentals for Python and MongoDB

ISBN-13 (pbk): 978-1-4842-3596-6		 ISBN-13 (electronic): 978-1-4842-3597-3
https://doi.org/10.1007/978-1-4842-3597-3

Library of Congress Control Number: 2018941864

Copyright © 2018 by David Paper

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image, we use
the names, logos, and images only in an editorial fashion and to the benefit of the
trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress
Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit
http://www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
9781484235966. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

David Paper
Logan, Utah, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3597-3
http://www.allitebooks.org

To Lady, Sam, Bruce, Malik, John, Moonshadow, and
Moonbeam whose support and love is and always has been

unconditional. To the Apress staff for all of your support
and hard work in making this project happen. Finally,

a special shout-out to Jonathan for finding me on Amazon,
Jill for putting up with a compulsive author, and Mark for

a thourough and constructive technical review.

www.allitebooks.com

http://www.allitebooks.org

v

Table of Contents

Chapter 1: �Introduction���1

Python Fundamentals��3

Functions and Strings��3

Lists, Tuples, and Dictionaries��6

Reading and Writing Data��12

List Comprehension���15

Generators���18

Data Randomization���22

MongoDB and JSON���27

Visualization���34

Chapter 2: �Monte Carlo Simulation and Density Functions�����������������37

Stock Simulations��37

What-If Analysis���42

Product Demand Simulation��44

Randomness Using Probability and Cumulative Density Functions���������������������52

About the Author��ix

About the Technical Reviewer��xi

Acknowledgments��xiii

www.allitebooks.com

http://www.allitebooks.org

vi

Chapter 3: �Linear Algebra��67

Vector Spaces��67

Vector Math��68

Matrix Math��75

Basic Matrix Transformations��84

Pandas Matrix Applications��88

Chapter 4: �Gradient Descent��97

Simple Function Minimization (and Maximization)��97

Sigmoid Function Minimization (and Maximization)��104

Euclidean Distance Minimization Controlling for Step Size�������������������������������109

Stabilizing Euclidean Distance Minimization with
Monte Carlo Simulation��112

Substituting a NumPy Method to Hasten Euclidean
Distance Minimization��115

Stochastic Gradient Descent Minimization and Maximization���������������������������118

Chapter 5: �Working with Data���129

One-Dimensional Data Example��129

Two-Dimensional Data Example��132

Data Correlation and Basic Statistics���135

Pandas Correlation and Heat Map Examples���138

Various Visualization Examples��141

Cleaning a CSV File with Pandas and JSON���146

Slicing and Dicing��148

Data Cubes���149

Data Scaling and Wrangling���154

Table of ContentsTable of Contents

vii

Chapter 6: �Exploring Data��167

Heat Maps��167

Principal Component Analysis��170

Speed Simulation���179

Big Data���182

Twitter��201

Web Scraping���205

Index��211

Table of ContentsTable of Contents

ix

About the Author

David Paper is a full professor at Utah

State University in the Management

Information Systems department. His

book Web Programming for Business: PHP

Object-Oriented Programming with Oracle

was published in 2015 by Routledge. He

also has over 70 publications in refereed

journals such as Organizational Research

Methods, Communications of the ACM,

Information & Management, Information Resource Management Journal,

Communications of the AIS, Journal of Information Technology Case and

Application Research, and Long Range Planning. He has also served on

several editorial boards in various capacities, including associate editor.

Besides growing up in family businesses, Dr. Paper has worked for Texas

Instruments, DLS, Inc., and the Phoenix Small Business Administration.

He has performed IS consulting work for IBM, AT&T, Octel, Utah

Department of Transportation, and the Space Dynamics Laboratory.

Dr. Paper's teaching and research interests include data science, machine

learning, process reengineering, object-oriented programming, electronic

customer relationship management, change management, e-commerce,

and enterprise integration.  

xi

About the Technical Reviewer

Mark Furman, MBA is a systems engineer, author, teacher, and

entrepreneur. For the last 16 years he has worked in the Information

Technology field, with a focus on Linux-based systems and programming

in Python, working for a range of companies including Host Gator,

Interland, Suntrust Bank, AT&T, and Winn-Dixie. Currently he has been

focusing his career on the maker movement and has launched Tech Forge

(techforge.org), which will focus on helping people start a makerspace and

help sustain current spaces. He holds a Master of Business Administration

from Ohio University. You can follow him on Twitter @mfurman.

xiii

Acknowledgments

My entrée into data analysis started by exploring Python for Data Analysis

by Wes McKinney, which I highly recommend to everyone. My entrée into

data science started by exploring Data Science from Scratch by Joel Grus.

Joel’s book may not be for the faint of heart, but it is definitely a challenge

that I am glad that I accepted! Finally, I thank all of the contributors to

stackoverflow, whose programming solutions are indispensable.

1© David Paper 2018
D. Paper, Data Science Fundamentals for Python and MongoDB,
https://doi.org/10.1007/978-1-4842-3597-3_1

CHAPTER 1

Introduction
Data science is an interdisciplinary field encompassing scientific methods,

processes, and systems to extract knowledge or insights from data in

various forms, either structured or unstructured. It draws principles from

mathematics, statistics, information science, computer science, machine

learning, visualization, data mining, and predictive analytics. However, it is

fundamentally grounded in mathematics.

This book explains and applies the fundamentals of data science

crucial for technical professionals such as DBAs and developers who are

making career moves toward practicing data science. It is an example-

driven book providing complete Python coding examples to complement

and clarify data science concepts, and enrich the learning experience.

Coding examples include visualizations whenever appropriate. The book

is a necessary precursor to applying and implementing machine learning

algorithms, because it introduces the reader to foundational principles of

the science of data.

The book is self-contained. All the math, statistics, stochastic, and

programming skills required to master the content are covered in the

book. In-depth knowledge of object-oriented programming isn’t required,

because working and complete examples are provided and explained.

The examples are in-depth and complex when necessary to ensure the

acquisition of appropriate data science acumen. The book helps you

to build the foundational skills necessary to work with and understand

complex data science algorithms.

2

Data Science Fundamentals by Example is an excellent starting point

for those interested in pursuing a career in data science. Like any science,

the fundamentals of data science are prerequisite to competency. Without

proficiency in mathematics, statistics, data manipulation, and coding,

the path to success is “rocky” at best. The coding examples in this book

are concise, accurate, and complete, and perfectly complement the data

science concepts introduced.

The book is organized into six chapters. Chapter 1 introduces the

programming fundamentals with “Python” necessary to work with,

transform, and process data for data science applications. Chapter 2

introduces Monte Carlo simulation for decision making, and data

distributions for statistical processing. Chapter 3 introduces linear algebra

applied with vectors and matrices. Chapter 4 introduces the gradient

descent algorithm that minimizes (or maximizes) functions, which is

very important because most data science problems are optimization

problems. Chapter 5 focuses on munging, cleaning, and transforming data

for solving data science problems. Chapter 6 focusing on exploring data by

dimensionality reduction, web scraping, and working with large data sets

efficiently.

Python programming code for all coding examples and data files are

available for viewing and download through Apress at www.apress.com/

9781484235966. Specific linking instructions are included on the

copyright pages of the book.

To install a Python module, pip is the preferred installer program. So,

to install the matplotlib module from an Anaconda prompt: pip install

matplotlib. Anaconda is a widely popular open source distribution of

Python (and R) for large-scale data processing, predictive analytics,

and scientific computing that simplifies package management and

deployment. I have worked with other distributions with unsatisfactory

results, so I highly recommend Anaconda.

Chapter 1 Introduction

http://www.apress.com/9781484235966
http://www.apress.com/9781484235966

3

�Python Fundamentals
Python has several features that make it well suited for learning and doing

data science. It’s free, relatively simple to code, easy to understand, and

has many useful libraries to facilitate data science problem solving. It

also allows quick prototyping of virtually any data science scenario and

demonstration of data science concepts in a clear, easy to understand

manner.

The goal of this chapter is not to teach Python as a whole, but present,

explain, and clarify fundamental features of the language (such as logic,

data structures, and libraries) that help prototype, apply, and/or solve data

science problems.

Python fundamentals are covered with a wide spectrum of activities

with associated coding examples as follows:

	 1.	 functions and strings

	 2.	 lists, tuples, and dictionaries

	 3.	 reading and writing data

	 4.	 list comprehension

	 5.	 generators

	 6.	 data randomization

	 7.	 MongoDB and JSON

	 8.	 visualization

�Functions and Strings
Python functions are first-class functions, which means they can be used

as parameters, a return value, assigned to variable, and stored in data

structures. Simply, functions work like a typical variable. Functions can be

Chapter 1 Introduction

4

either custom or built-in. Custom are created by the programmer, while

built-in are part of the language. Strings are very popular types enclosed in

either single or double quotes.

The following code example defines custom functions and uses built-

in ones:

def num_to_str(n):

 return str(n)

def str_to_int(s):

 return int(s)

def str_to_float(f):

 return float(f)

if __name__ == "__main__":

 # hash symbol allows single-line comments

 '''

 triple quotes allow multi-line comments

 '''

 float_num = 999.01

 int_num = 87

 float_str = '23.09'

 int_str = '19'

 string = 'how now brown cow'

 s_float = num_to_str(float_num)

 s_int = num_to_str(int_num)

 i_str = str_to_int(int_str)

 f_str = str_to_float(float_str)

 print (s_float, 'is', type(s_float))

 print (s_int, 'is', type(s_int))

 print (f_str, 'is', type(f_str))

 print (i_str, 'is', type(i_str))

Chapter 1 Introduction

5

 �print ('\nstring', '"' + string + '" has', len(string),

'characters')

 str_ls = string.split()

 print ('split string:', str_ls)

 print ('joined list:', ' '.join(str_ls))

Output:

A popular coding style is to present library importation and functions

first, followed by the main block of code. The code example begins

with three custom functions that convert numbers to strings, strings to

numbers, and strings to float respectively. Each custom function returns a

built-in function to let Python do the conversion. The main block begins

with comments. Single-line comments are denoted with the # (hash)

symbol. Multiline comments are denoted with three consecutive single

quotes. The next five lines assign values to variables. The following four

lines convert each variable type to another type. For instance, function

num_to_str() converts variable float_num to string type. The next five lines

print variables with their associated Python data type. Built-in function

type() returns type of given object. The remaining four lines print and

manipulate a string variable.

Chapter 1 Introduction

6

�Lists, Tuples, and Dictionaries
Lists are ordered collections with comma-separated values between

square brackets. Indices start at 0 (zero). List items need not be of the

same type and can be sliced, concatenated, and manipulated in many

ways.

The following code example creates a list, manipulates and slices it,

creates a new list and adds elements to it from another list, and creates a

matrix from two lists:

import numpy as np

if __name__ == "__main__":

 ls = ['orange', 'banana', 10, 'leaf', 77.009, 'tree', 'cat']

 print ('list length:', len(ls), 'items')

 �print ('cat count:', ls.count('cat'), ',', 'cat index:',

ls.index('cat'))

 print ('\nmanipulate list:')

 cat = ls.pop(6)

 print ('cat:', cat, ', list:', ls)

 ls.insert(0, 'cat')

 ls.append(99)

 print (ls)

 ls[7] = '11'

 print (ls)

 ls.pop(1)

 print (ls)

Chapter 1 Introduction

7

 ls.pop()

 print (ls)

 print ('\nslice list:')

 print ('1st 3 elements:', ls[:3])

 print ('last 3 elements:', ls[3:])

 print ('start at 2nd to index 5:', ls[1:5])

 print ('start 3 from end to end of list:', ls[-3:])

 print ('start from 2nd to next to end of list:', ls[1:-1])

 print ('\ncreate new list from another list:')

 print ('list:', ls)

 fruit = ['orange']

 more_fruit = ['apple', 'kiwi', 'pear']

 fruit.append(more_fruit)

 print ('appended:', fruit)

 fruit.pop(1)

 fruit.extend(more_fruit)

 print ('extended:', fruit)

 a, b = fruit[2], fruit[1]

 print ('slices:', a, b)

 print ('\ncreate matrix from two lists:')

 matrix = np.array([ls, fruit])

 print (matrix)

 print ('1st row:', matrix[0])

 print ('2nd row:', matrix[1])

Chapter 1 Introduction

8

Output:

The code example begins by importing NumPy, which is the

fundamental package (library, module) for scientific computing. It is

useful for linear algebra, which is fundamental to data science. Think

of Python libraries as giant classes with many methods. The main block

begins by creating list ls, printing its length, number of elements (items),

number of cat elements, and index of the cat element. The code continues

by manipulating ls. First, the 7th element (index 6) is popped and assigned

to variable cat. Remember, list indices start at 0. Function pop() removes

cat from ls. Second, cat is added back to ls at the 1st position (index 0) and

99 is appended to the end of the list. Function append() adds an object to

the end of a list. Third, string ‘11’ is substituted for the 8th element (index 7).

Finally, the 2nd element and the last element are popped from ls. The

code continues by slicing ls. First, print the 1st three elements with ls[:3].

Chapter 1 Introduction

9

Second, print the last three elements with ls[3:]. Third, print starting with

the 2nd element to elements with indices up to 5 with ls[1:5]. Fourth, print

starting three elements from the end to the end with ls[-3:]. Fifth, print

starting from the 2nd element to next to the last element with ls[1:-1].

The code continues by creating a new list from another. First, create fruit

with one element. Second append list more_fruit to fruit. Notice that

append adds list more_fruit as the 2nd element of fruit, which may not be

what you want. So, third, pop 2nd element of fruit and extend more_fruit

to fruit. Function extend() unravels a list before it adds it. This way, fruit

now has four elements. Fourth, assign 3rd element to a and 2nd element

to b and print slices. Python allows assignment of multiple variables on

one line, which is very convenient and concise. The code ends by creating

a matrix from two lists—ls and fruit—and printing it. A Python matrix is a

two-dimensional (2-D) array consisting of rows and columns, where each

row is a list.

A tuple is a sequence of immutable Python objects enclosed by

parentheses. Unlike lists, tuples cannot be changed. Tuples are convenient

with functions that return multiple values.

The following code example creates a tuple, slices it, creates a list, and

creates a matrix from tuple and list:

import numpy as np

if __name__ == "__main__":

 tup = ('orange', 'banana', 'grape', 'apple', 'grape')

 print ('tuple length:', len(tup))

 print ('grape count:', tup.count('grape'))

 print ('\nslice tuple:')

 print ('1st 3 elements:', tup[:3])

 print ('last 3 elements', tup[3:])

 print ('start at 2nd to index 5', tup[1:5])

 print ('start 3 from end to end of tuple:', tup[-3:])

Chapter 1 Introduction

10

 print ('start from 2nd to next to end of tuple:', tup[1:-1])

 print ('\ncreate list and create matrix from it and tuple:')

 fruit = ['pear', 'grapefruit', 'cantaloupe', 'kiwi', 'plum']

 matrix = np.array([tup, fruit])

 print (matrix)

Output:

The code begins by importing NumPy. The main block begins by

creating tuple tup, printing its length, number of elements (items), number

of grape elements, and index of grape. The code continues by slicing

tup. First, print the 1st three elements with tup[:3]. Second, print the last

three elements with tup[3:]. Third, print starting with the 2nd element to

elements with indices up to 5 with tup[1:5]. Fourth, print starting three

elements from the end to the end with tup[-3:]. Fifth, print starting from

the 2nd element to next to the last element with tup[1:-1]. The code

continues by creating a new fruit list and creating a matrix from tup and fruit.

A dictionary is an unordered collection of items identified by a key/

value pair. It is an extremely important data structure for working with

data. The following example is very simple, but the next section presents a

more complex example based on a dataset.

Chapter 1 Introduction

11

The following code example creates a dictionary, deletes an element,

adds an element, creates a list of dictionary elements, and traverses the list:

if __name__ == "__main__":

 audio = {'amp':'Linn', 'preamp':'Luxman', 'speakers':'Energy',

 'ic':'Crystal Ultra', 'pc':'JPS', 'power':'Equi-Tech',

 'sp':'Crystal Ultra', 'cdp':'Nagra', 'up':'Esoteric'}

 del audio['up']

 print ('dict "deleted" element;')

 print (audio, '\n')

 print ('dict "added" element;')

 audio['up'] = 'Oppo'

 print (audio, '\n')

 print ('universal player:', audio['up'], '\n')

 dict_ls = [audio]

 video = {'tv':'LG 65C7 OLED', 'stp':'DISH', 'HDMI':'DH Labs',

 'cable' : 'coax'}

 print ('list of dict elements;')

 dict_ls.append(video)

 for i, row in enumerate(dict_ls):

 print ('row', i, ':')

 print (row)

Output:

Chapter 1 Introduction

12

The main block begins by creating dictionary audio with several

elements. It continues by deleting an element with key up and value

Esoteric, and displaying. Next, a new element with key up and element

Oppo is added back and displayed. The next part creates a list with

dictionary audio, creates dictionary video, and adds the new dictionary

to the list. The final part uses a for loop to traverse the dictionary list and

display the two dictionaries. A very useful function that can be used with a

loop statement is enumerate(). It adds a counter to an iterable. An iterable

is an object that can be iterated. Function enumerate() is very useful

because a counter is automatically created and incremented, which means

less code.

�Reading and Writing Data
The ability to read and write data is fundamental to any data science

endeavor. All data files are available on the website. The most basic types

of data are text and CSV (Comma Separated Values). So, this is where we

will start.

The following code example reads a text file and cleans it for

processing. It then reads the precleansed text file, saves it as a CSV file,

reads the CSV file, converts it to a list of OrderedDict elements, and

converts this list to a list of regular dictionary elements.

import csv

def read_txt(f):

 with open(f, 'r') as f:

 d = f.readlines()

 return [x.strip() for x in d]

def conv_csv(t, c):

 data = read_txt(t)

 with open(c, 'w', newline='') as csv_file:

Chapter 1 Introduction

13

 writer = csv.writer(csv_file)

 for line in data:

 ls = line.split()

 writer.writerow(ls)

def read_csv(f):

 contents = ''

 with open(f, 'r') as f:

 reader = csv.reader(f)

 return list(reader)

def read_dict(f, h):

 input_file = csv.DictReader(open(f), fieldnames=h)

 return input_file

def od_to_d(od):

 return dict(od)

if __name__ == "__main__":

 f = 'data/names.txt'

 data = read_txt(f)

 print ('text file data sample:')

 for i, row in enumerate(data):

 if i < 3:

 print (row)

 csv_f = 'data/names.csv'

 conv_csv(f, csv_f)

 r_csv = read_csv(csv_f)

 print ('\ntext to csv sample:')

 for i, row in enumerate(r_csv):

 if i < 3:

 print (row)

 headers = ['first', 'last']

Chapter 1 Introduction

14

 r_dict = read_dict(csv_f, headers)

 dict_ls = []

 print ('\ncsv to ordered dict sample:')

 for i, row in enumerate(r_dict):

 r = od_to_d(row)

 dict_ls.append(r)

 if i < 3:

 print (row)

 print ('\nlist of dictionary elements sample:')

 for i, row in enumerate(dict_ls):

 if i < 3:

 print (row)

Output:

The code begins by importing the csv library, which implements

classes to read and write tabular data in CSV format. It continues with five

functions. Function read_txt() reads a text (.txt) file and strips (removes)

extraneous characters with list comprehension, which is an elegant way

Chapter 1 Introduction

15

to define and create a list in Python. List comprehension is covered later

in the next section. Function conv_csv() converts a text to a CSV file and

saves it to disk. Function read_csv() reads a CSV file and returns it as a

list. Function read_dict() reads a CSV file and returns a list of OrderedDict

elements. An OrderedDict is a dictionary subclass that remembers the

order in which its contents are added, whereas a regular dictionary doesn’t

track insertion order. Finally, function od_to_d() converts an OrderedDict

element to a regular dictionary element. Working with a regular dictionary

element is much more intuitive in my opinion. The main block begins by

reading a text file and cleaning it for processing. However, no processing is

done with this cleansed file in the code. It is only included in case you want

to know how to accomplish this task. The code continues by converting a

text file to CSV, which is saved to disk. The CSV file is then read from disk

and a few records are displayed. Next, a headers list is created to store keys

for a dictionary yet to be created. List dict_ls is created to hold dictionary

elements. The code continues by creating an OrderedDict list r_dict. The

OrderedDict list is then iterated so that each element can be converted to

a regular dictionary element and appended to dict_ls. A few records are

displayed during iteration. Finally, dict_ls is iterated and a few records

are displayed. I highly recommend that you take some time to familiarize

yourself with these data structures, as they are used extensively in data

science application.

�List Comprehension
List comprehension provides a concise way to create lists. Its logic is

enclosed in square brackets that contain an expression followed by a for

clause and can be augmented by more for or if clauses.

The read_txt() function in the previous section included the following

list comprehension:

[x.strip() for x in d]

Chapter 1 Introduction

16

The logic strips extraneous characters from string in iterable d. In this

case, d is a list of strings.

The following code example converts miles to kilometers, manipulates

pets, and calculates bonuses with list comprehension:

if __name__ == "__main__":

 miles = [100, 10, 9.5, 1000, 30]

 kilometers = [x * 1.60934 for x in miles]

 print ('miles to kilometers:')

 for i, row in enumerate(kilometers):

 print ('{:>4} {:>8}{:>8} {:>2}'.

 format(miles[i],'miles is', round(row,2), 'km'))

 print ('\npet:')

 pet = ['cat', 'dog', 'rabbit', 'parrot', 'guinea pig', 'fish']

 print (pet)

 print ('\npets:')

 pets = [x + 's' if x != 'fish' else x for x in pet]

 print (pets)

 subset = [x for x in pets if x != 'fish' and x != 'rabbits'

 and x != 'parrots' and x != 'guinea pigs']

 print ('\nmost common pets:')

 print (subset[1], 'and', subset[0])

 sales = [9000, 20000, 50000, 100000]

 print ('\nbonuses:')

 �bonus = [0 if x < 10000 else x * .02 if x >= 10000

and x <= 20000

 else x * .03 for x in sales]

 print (bonus)

 print ('\nbonus dict:')

 people = ['dave', 'sue', 'al', 'sukki']

 d = {}

 for i, row in enumerate(people):

Chapter 1 Introduction

17

 d[row] = bonus[i]

 print (d, '\n')

 print ('{:<5} {:<5}'.format('emp', 'bonus'))

 for k, y in d.items():

 print ('{:<5} {:>6}'.format(k, y))

Output:

The main block begins by creating two lists—miles and kilometers. The

kilometers list is created with list comprehension, which multiplies each

mile value by 1.60934. At first, list comprehension may seem confusing, but

practice makes it easier over time. The main block continues by printing

miles and associated kilometers. Function format() provides sophisticated

formatting options. Each mile value is ({:>4}) with up to four characters

right justified. Each string for miles and kilometers is right justified ({:>8})

Chapter 1 Introduction

18

with up to eight characters. Finally, each string for km is right justified

({:>2}) with up to two characters. This may seem a bit complicated at first,

but it is really quite logical (and elegant) once you get used to it. The main

block continues by creating pet and pets lists. The pets list is created with

list comprehension, which makes a pet plural if it is not a fish. I advise you

to study this list comprehension before you go forward, because they just

get more complex. The code continues by creating a subset list with list

comprehension, which only includes dogs and cats. The next part creates

two lists—sales and bonus. Bonus is created with list comprehension

that calculates bonus for each sales value. If sales are less than 10,000,

no bonus is paid. If sales are between 10,000 and 20,000 (inclusive), the

bonus is 2% of sales. Finally, if sales if greater than 20,000, the bonus is 3%

of sales. At first I was confused with this list comprehension but it makes

sense to me now. So, try some of your own and you will get the gist of

it. The final part creates a people list to associate with each sales value,

continues by creating a dictionary to hold bonus for each person, and

ends by iterating dictionary elements. The formatting is quite elegant.

The header left justifies emp and bonus properly. Each item is formatted

so that the person is left justified with up to five characters ({:<5}) and the

bonus is right justified with up to six characters ({:>6}).

�Generators
A generator is a special type of iterator, but much faster because values

are only produced as needed. This process is known as lazy (or deferred)

evaluation. Typical iterators are much slower because they are fully built

into memory. While regular functions return values, generators yield

them. The best way to traverse and access values from a generator is to use

a loop. Finally, a list comprehension can be converted to a generator by

replacing square brackets with parentheses.

Chapter 1 Introduction

19

The following code example reads a CSV file and creates a list of

OrderedDict elements. It then converts the list elements into regular

dictionary elements. The code continues by simulating times for list

comprehension, generator comprehension, and generators. During

simulation, a list of times for each is created. Simulation is the imitation of

a real-world process or system over time, and it is used extensively in data

science.

import csv, time, numpy as np

def read_dict(f, h):

 input_file = csv.DictReader(open(f), fieldnames=h)

 return (input_file)

def conv_reg_dict(d):

 return [dict(x) for x in d]

def sim_times(d, n):

 i = 0

 lsd, lsgc = [], []

 while i < n:

 start = time.clock()

 [x for x in d]

 time_d = time.clock() - start

 lsd.append(time_d)

 start = time.clock()

 (x for x in d)

 time_gc = time.clock() - start

 lsgc.append(time_gc)

 i += 1

 return (lsd, lsgc)

Chapter 1 Introduction

20

def gen(d):

 yield (x for x in d)

def sim_gen(d, n):

 i = 0

 lsg = []

 generator = gen(d)

 while i < n:

 start = time.clock()

 for row in generator:

 None

 time_g = time.clock() - start

 lsg.append(time_g)

 i += 1

 generator = gen(d)

 return lsg

def avg_ls(ls):

 return np.mean(ls)

if __name__ == '__main__':

 f = 'data/names.csv'

 headers = ['first', 'last']

 r_dict = read_dict(f, headers)

 dict_ls = conv_reg_dict(r_dict)

 n = 1000

 ls_times, gc_times = sim_times(dict_ls, n)

 g_times = sim_gen(dict_ls, n)

 avg_ls = np.mean(ls_times)

 avg_gc = np.mean(gc_times)

 avg_g = np.mean(g_times)

 gc_ls = round((avg_ls / avg_gc), 2)

 g_ls = round((avg_ls / avg_g), 2)

Chapter 1 Introduction

21

 print ('generator comprehension:')

 print (gc_ls, 'times faster than list comprehension\n')

 print ('generator:')

 print (g_ls, 'times faster than list comprehension')

Output:

The code begins by importing csv, time, and numpy libraries. Function

read_dict() converts a CSV (.csv) file to a list of OrderedDict elements.

Function conv_reg_dict() converts a list of OrderedDict elements to a list of

regular dictionary elements (for easier processing). Function sim_times()

runs a simulation that creates two lists—lsd and lsgc. List lsd contains

n run times for list comprension and list lsgc contains n run times for

generator comprehension. Using simulation provides a more accurate

picture of the true time it takes for both of these processes by running

them over and over (n times). In this case, the simulation is run 1,000 times

(n =1000). Of course, you can run the simulations as many or few times as

you wish. Functions gen() and sim_gen() work together. Function gen()

creates a generator. Function sim_gen() simulates the generator n times. I

had to create these two functions because yielding a generator requires

a different process than creating a generator comprehension. Function

avg_ls() returns the mean (average) of a list of numbers. The main block

begins by reading a CSV file (the one we created earlier in the chapter)

into a list of OrderedDict elements, and converting it to a list of regular

dictionary elements. The code continues by simulating run times of list

comprehension and generator comprehension 1,000 times (n = 1000).

The 1st simulation calculates 1,000 runtimes for traversing the dictionary

list created earlier for both list and generator comprehension, and returns

Chapter 1 Introduction

22

a list of those runtimes for each. The 2nd simulation calculates 1,000

runtimes by traversing the dictionary list for a generator, and returns a

list of those runtimes. The code concludes by calculating the average

runtime for each of the three techniques—list comprehension, generator

comprehension, and generators—and comparing those averages.

The simulations verify that generator comprehension is more than

ten times, and generators are more than eight times faster than list

comprehension (runtimes will vary based on your PC). This makes sense

because list comprehension stores all data in memory, while generators

evaluate (lazily) as data is needed. Naturally, the speed advantage

of generators becomes more important with big data sets. Without

simulation, runtimes cannot be verified because we are randomly getting

internal system clock times.

�Data Randomization
A stochastic process is a family of random variables from some probability

space into a state space (whew!). Simply, it is a random process through

time. Data randomization is the process of selecting values from a sample

in an unpredictable manner with the goal of simulating reality. Simulation

allows application of data randomization in data science. The previous

section demonstrated how simulation can be used to realistically compare

iterables (list comprehension, generator comprehension, and generators).

In Python, pseudorandom numbers are used to simulate data

randomness (reality). They are not truly random because the 1st

generation has no previous number. We have to provide a seed (or random

seed) to initialize a pseudorandom number generator. The random

library implements pseudorandom number generators for various data

distributions, and random.seed() is used to generate the initial

(1st generation) seed number.

Chapter 1 Introduction

23

The following code example reads a CSV file and converts it to a list

of regular dictionary elements. The code continues by creating a random

number used to retrieve a random element from the list. Next, a generator

of three randomly selected elements is created and displayed. The code

continues by displaying three randomly shuffled elements from the list.

The next section of code deterministically seeds the random number

generator, which means that all generated random numbers will be the

same based on the seed. So, the elements displayed will always be the

same ones unless the seed is changed. The code then uses the system’s

time to nondeterministically generate random numbers and display those

three elements. Next, nondeterministic random numbers are generated

by another method and those three elements are displayed. The final part

creates a names list so random choice and sampling methods can be used

to display elements.

import csv, random, time

def read_dict(f, h):

 input_file = csv.DictReader(open(f), fieldnames=h)

 return (input_file)

def conv_reg_dict(d):

 return [dict(x) for x in d]

def r_inds(ls, n):

 length = len(ls) - 1

 yield [random.randrange(length) for _ in range(n)]

def get_slice(ls, n):

 return ls[:n]

def p_line():

 print ()

Chapter 1 Introduction

24

if __name__ == '__main__':

 f = 'data/names.csv'

 headers = ['first', 'last']

 r_dict = read_dict(f, headers)

 dict_ls = conv_reg_dict(r_dict)

 n = len(dict_ls)

 r = random.randrange(0, n-1)

 print ('randomly selected index:', r)

 print ('randomly selected element:', dict_ls[r])

 elements = 3

 generator = next(r_inds(dict_ls, elements))

 p_line()

 print (elements, 'randomly generated indicies:', generator)

 print (elements, 'elements based on indicies:')

 for row in generator:

 print (dict_ls[row])

 x = [[i] for i in range(n-1)]

 random.shuffle(x)

 p_line()

 print ('1st', elements, 'shuffled elements:')

 ind = get_slice(x, elements)

 for row in ind:

 print (dict_ls[row[0]])

 seed = 1

 random_seed = random.seed(seed)

 rs1 = random.randrange(0, n-1)

 p_line()

 print ('deterministic seed', str(seed) + ':', rs1)

 print ('corresponding element:', dict_ls[rs1])

 t = time.time()

 random_seed = random.seed(t)

Chapter 1 Introduction

25

 rs2 = random.randrange(0, n-1)

 p_line()

 print ('non-deterministic time seed', str(t) + ' index:', rs2)

 print ('corresponding element:', dict_ls[rs2], '\n')

 print (elements, 'random elements seeded with time:')

 for i in range(elements):

 r = random.randint(0, n-1)

 print (dict_ls[r], r)

 random_seed = random.seed()

 rs3 = random.randrange(0, n-1)

 p_line()

 print ('non-deterministic auto seed:', rs3)

 print ('corresponding element:', dict_ls[rs3], '\n')

 print (elements, 'random elements auto seed:')

 for i in range(elements):

 r = random.randint(0, n-1)

 print (dict_ls[r], r)

 names = []

 for row in dict_ls:

 name = row['last'] + ', ' + row['first']

 names.append(name)

 p_line()

 print (elements, 'names with "random.choice()":')

 for row in range(elements):

 print (random.choice(names))

 p_line()

 print (elements, 'names with "random.sample()":')

 print (random.sample(names, elements))

Chapter 1 Introduction

26

Output:

The code begins by importing csv, random, and time libraries.

Functions read_dict() and conv_reg_dict() have already been explained.

Function r_inds() generates a random list of n elements from the

dictionary list. To get the proper length, one is subtracted because Python

Chapter 1 Introduction

27

lists begin at index zero. Function get_slice() creates a randomly shuffled

list of n elements from the dictionary list. Function p_line() prints a blank

line. The main block begins by reading a CSV file and converting it into

a list of regular dictionary elements. The code continues by creating

a random number with random.randrange() based on the number of

indices from the dictionary list, and displays the index and associated

dictionary element. Next, a generator is created and populated with three

randomly determined elements. The indices and associated elements are

printed from the generator. The next part of the code randomly shuffles

the indicies and puts them in list x. An index value is created by slicing

three random elements based on the shuffled indices stored in list x.

The three elements are then displayed. The code continues by creating a

deterministic random seed using a fixed number (seed) in the function.

So, the random number generated by this seed will be the same each time

the program is run. This means that the dictionary element displayed will

be also be the same. Next, two methods for creating nondeterministic

random numbers are presented—random.seed(t) and random.seed()—

where t varies by system time and using no parameter automatically varies

random numbers. Randomly generated elements are displayed for each

method. The final part of the code creates a list of names to hold just first

and last names, so random.choice() and random.sample() can be used.

�MongoDB and JSON
MongoDB is a document-based database classified as NoSQL. NoSQL

(Not Only SQL database) is an approach to database design that can

accommodate a wide variety of data models, including key-value,

document, columnar, and graph formats. It uses JSON-like documents

with schemas. It integrates extremely well with Python. A MongoDB

collection is conceptually like a table in a relational database, and

Chapter 1 Introduction

28

a document is conceptually like a row. JSON is a lightweight data-

interchange format that is easy for humans to read and write. It is also easy

for machines to parse and generate.

Database queries from MongoDB are handled by PyMongo. PyMongo

is a Python distribution containing tools for working with MongoDB. It

is the most efficient tool for working with MongoDB using the utilities of

Python. PyMongo was created to leverage the advantages of Python as a

programming language and MongoDB as a database. The pymongo library

is a native driver for MongoDB, which means it is it is built into Python

language. Since it is native, the pymongo library is automatically available

(doesn’t have to be imported into the code).

The following code example reads a CSV file and converts it to a

list of regular dictionary elements. The code continues by creating a

JSON file from the dictionary list and saving it to disk. Next, the code

connects to MongoDB and inserts the JSON data. The final part of the

code manipulates data from the MongoDB database. First, all data in the

database is queried and a few records are displayed. Second, the database

is rewound. Rewind sets the pointer to back to the 1st database record.

Finally, various queries are performed.

import json, csv, sys, os

sys.path.append(os.getcwd()+'/classes')

import conn

def read_dict(f, h):

 input_file = csv.DictReader(open(f), fieldnames=h)

 return (input_file)

def conv_reg_dict(d):

 return [dict(x) for x in d]

Chapter 1 Introduction

29

def dump_json(f, d):

 with open(f, 'w') as f:

 json.dump(d, f)

def read_json(f):

 with open(f) as f:

 return json.load(f)

if __name__ == '__main__':

 f = 'data/names.csv'

 headers = ['first', 'last']

 r_dict = read_dict(f, headers)

 dict_ls = conv_reg_dict(r_dict)

 json_file = 'data/names.json'

 dump_json(json_file, dict_ls)

 data = read_json(json_file)

 obj = conn.conn('test')

 db = obj.getDB()

 names = db.names

 names.drop()

 for i, row in enumerate(data):

 row['_id'] = i

 names.insert_one(row)

 n = 3

 print('1st', n, 'names:')

 people = names.find()

 for i, row in enumerate(people):

 if i < n:

 print (row)

 people.rewind()

 print('\n1st', n, 'names with rewind:')

 for i, row in enumerate(people):

Chapter 1 Introduction

30

 if i < n:

 print (row)

 print ('\nquery 1st', n, 'names')

 first_n = names.find().limit(n)

 for row in first_n:

 print (row)

 print ('\nquery last', n, 'names')

 length = names.find().count()

 last_n = names.find().skip(length - n)

 for row in last_n:

 print (row)

 fnames = ['Ella', 'Lou']

 lnames = ['Vader', 'Pole']

 print ('\nquery Ella:')

 query_1st_in_list = names.find({'first':{'$in':[fnames[0]]}})

 for row in query_1st_in_list:

 print (row)

 print ('\nquery Ella or Lou:')

 query_1st = names.find({'first':{'$in':fnames}})

 for row in query_1st:

 print (row)

 print ('\nquery Lou Pole:')

 query_and = names.find({'first':fnames[1], 'last':lnames[1]})

 for row in query_and:

 print (row)

 print ('\nquery first name Ella or last name Pole:')

 �query_or = names.find({'$or':[{'first':fnames[0]},

{'last':lnames[1]}]})

Chapter 1 Introduction

31

 for row in query_or:

 print (row)

 pattern = '^Sch'

 print ('\nquery regex pattern:')

 query_like = names.find({'last':{'$regex':pattern}})

 for row in query_like:

 print (row)

 pid = names.count()

 doc = {'_id':pid, 'first':'Wendy', 'last':'Day'}

 names.insert_one(doc)

 print ('\ndisplay added document:')

 q_added = names.find({'first':'Wendy'})

 print (q_added.next())

 print ('\nquery last n documents:')

 q_n = names.find().skip((pid-n)+1)

 for _ in range(n):

 print (q_n.next())

Class conn:

class conn:

 from pymongo import MongoClient

 client = MongoClient('localhost', port=27017)

 def __init__(self, dbname):

 self.db = conn.client[dbname]

 def getDB(self):

 return self.db

Chapter 1 Introduction

32

Output:

Chapter 1 Introduction

33

The code begins by importing json, csv, sys, and os libraries. Next, a

path (sys.path.append) to the class conn is established. Method getcwd()

(from the os library) gets the current working directory for classes. Class

conn is then imported. I built this class to simplify connectivity to the

database from any program. The code continues with four functions.

Functions read_dict() and conv_reg_dict() were explained earlier.

Function dump_json() writes JSON data to disk. Function read_json()

reads JSON data from disk. The main block begins by reading a CSV file

and converting it into a list of regular dictionary elements. Next, the list

is dumped to disk as JSON. The code continues by creating a PyMongo

connection instance test as an object and assigning it to variable obj. You

can create any instance you wish, but test is the default. Next, the database

instance is assigned to db by method getDB() from obj. Collection names

is then created in MongoDB and assigned to variable names. When

prototyping, I always drop the collection before manipulating it. This

eliminates duplicate key errors. The code continues by inserting the JSON

data into the collection. For each document in a MongoDB collection, I

explicitly create primary key values by assigning sequential numbers to

_id. MongoDB exclusively uses _id as the primary key identifier for each

document in a collection. If you don’t name it yourself, a system identifier

is automatically created, which is messy to work with in my opinion. The

code continues with PyMongo query names.find(), which retrieves all

documents from the names collection. Three records are displayed just

to verify that the query is working. To reuse a query that has already been

accessed, rewind() must be issued. The next PyMongo query accesses and

displays three (n = 3) documents. The next query accesses and displays

the last three documents. Next, we move into more complex queries.

First, access documents with first name Ella. Second, access documents

with first names Ella or Lou. Third, access document Lou Pole. Fourth,

access documents with first name Ella or last name Pole. Next, a regular

expression is used to access documents with last names beginning with

Chapter 1 Introduction

34

Sch. A regular expression is a sequence of characters that define a search

pattern. Finally, add a new document, display it, and display the last three

documents in the collection.

�Visualization
Visualization is the process of representing data graphically and leveraging

these representations to gain insight into the data. Visualization is one of

the most important skills in data science because it facilitates the way we

process large amounts of complex data.

The following code example creates and plots a normally distributed

set of data. It then shifts data to the left (and plots) and shifts data to the

right (and plots). A normal distribution is a probability distribution that

is symmetrical about the mean, and is very important to data science

because it is an excellent model of how events naturally occur in reality.

import matplotlib.pyplot as plt

from scipy.stats import norm

import numpy as np

if __name__ == '__main__':

 x = np.linspace(norm.ppf(0.01), norm.ppf(0.99), num=100)

 x_left = x - 1

 x_right = x + 1

 y = norm.pdf(x)

 plt.ylim(0.02, 0.41)

 plt.scatter(x, y, color='crimson')

 plt.fill_between(x, y, color='crimson')

 plt.scatter(x_left, y, color='chartreuse')

 plt.scatter(x_right, y, color='cyan')

 plt.show()

Chapter 1 Introduction

35

Output:

The code example (Figure 1-1) begins by importing matplotlib, scipy,

and numpy libraries. The matplotlib library is a 2-D plotting module that

produces publication quality figures in a variety of hardcopy formats and

interactive environments across platforms. The SciPy library provides

user-friendly and efficient numerical routings for numerical integration

and optimization. The main block begins by creating a sequence of 100

numbers between 0.01 and 0.99. The reason is the normal distribution is

based on probabilities, which must be between zero and one. The code

continues by shifting the sequence one unit to the left and one to the right

for later plotting. The ylim() method is used to pull the chart to the bottom

(x-axis). A scatter plot is created for the original data, one unit to the left,

and one to the right, with different colors for effect.

Figure 1-1.  Normally distributed data

Chapter 1 Introduction

36

On the 1st line of the main block in the linespace() function, increase

the number of data points from num = 100 to num = 1000 and see what

happens. The result is a smoothing of the normal distribution, because

more data provides a more realistic picture of the natural world.

Output:

Smoothing works (Figure 1-2) because a normal distribution consists

of continuous random variables. A continuous random variable is a

random variable with a set of infinite and uncountable values. So, more

data creates more predictive realism. Since we cannot add infinite data,

we work with as much data as we can. The tradeoff is more data increases

computer processing resources and execution time. Data scientists must

thereby weigh this tradeoff when conducting their tradecraft.

Figure 1-2.  Smoothing normally distributed data

Chapter 1 Introduction

37© David Paper 2018
D. Paper, Data Science Fundamentals for Python and MongoDB,
https://doi.org/10.1007/978-1-4842-3597-3_2

CHAPTER 2

Monte Carlo
Simulation and
Density Functions
Monte Carlo simulation (MCS) applies repeated random sampling

(randomness) to obtain numerical results for deterministic problem

solving. It is widely used in optimization, numerical integration, and

risk-based decision making. Probability and cumulative density functions

are statistical measures that apply probability distributions for random

variables, and can be used in conjunction with MCS to solve deterministic

problem.

Note  Reader can refer to the download source code file to see color
figs in this chapter.

�Stock Simulations
The 1st example is hypothetical and simple, but useful in demonstrating

data randomization. It begins with a fictitious stock priced at $20. It then

projects price out 200 days and plots.

38

import matplotlib.pyplot as plt, numpy as np

from scipy import stats

def cum_price(p, d, m, s):

 data = []

 for d in range(d):

 prob = stats.norm.rvs(loc=m, scale=s)

 price = (p * prob)

 data.append(price)

 p = price

 return data

if __name__ == "__main__":

 stk_price, days, mean, s = 20, 200, 1.001, 0.005

 data = cum_price(stk_price, days, mean, s)

 plt.plot(data, color='lime')

 plt.ylabel('Price')

 plt.xlabel('days')

 plt.title('stock closing prices')

 plt.show()

Chapter 2 Monte Carlo Simulation and Density Functions

39

Output:

The code begins by importing matplotlib, numpy, and scipy libraries.

It continues with function cum_price(), which generates 200 normally

distributed random numbers (one for each day) with norm_rvs(). Data

randomness is key. The main block creates the variables. Mean is set a

bit over 1 and standard deviation (s) at a very small number to generate a

slowly increasing stock price. Mean (mu) is the average change in value.

Standard deviation is the variation or dispersion in the data. With s of

0.005, our data has very little variation. That is, the numbers in our data set

are very close to each other. Remember that this is not a real scenario! The

code continues by plotting results as shown in Figure 2-1.

Figure 2-1.  Simple random plot

Chapter 2 Monte Carlo Simulation and Density Functions

40

The next example adds MCS into the mix with a while loop that iterates

100 times:

import matplotlib.pyplot as plt, numpy as np

from scipy import stats

def cum_price(p, d, m, s):

 data = []

 for d in range(d):

 prob = stats.norm.rvs(loc=m, scale=s)

 price = (p * prob)

 data.append(price)

 p = price

 return data

if __name__ == "__main__":

 stk_price, days, mu, sigma = 20, 200, 1.001, 0.005

 x = 0

 while x < 100:

 data = cum_price(stk_price, days, mu, sigma)

 plt.plot(data)

 x += 1

 plt.ylabel('Price')

 plt.xlabel('day')

 plt.title('Stock closing price')

 plt.show()

Chapter 2 Monte Carlo Simulation and Density Functions

41

Output:

The while loop allows us to visualize (as shown in Figure 2-2) 100

possible stock price outcomes over 200 days. Notice that mu (mean) and

sigma (standard deviation) are used. This example demonstrates the

power of MCS for decision making.

Figure 2-2.  Monte Carlo simulation augmented plot

Chapter 2 Monte Carlo Simulation and Density Functions

42

�What-If Analysis
What-If analysis changes values in an algorithm to see how they impact

outcomes. Be sure to only change one variable at a time, otherwise you

won’t know which caused the change. In the previous example, what if we

change days to 500 while keeping all else constant (the same)? Plotting this

change results in the following (Figure 2-3):

Figure 2-3.  What-If analysis for 500 days

Chapter 2 Monte Carlo Simulation and Density Functions

43

Figure 2-4.  What-If analysis for mu = 1.002

Notice that the change in price is slower. Changing mu (mean) to 1.002

(don’t forget to change days back to 200) results in faster change (larger

averages) as follows (Figure 2-4):

Chapter 2 Monte Carlo Simulation and Density Functions

44

Changing sigma to 0.02 results in more variation as follows (Figure 2-5):

�Product Demand Simulation
A discrete probability is the probability of each discrete random value

occurring in a sample space or population. A random variable assumes

different values determined by chance. A discrete random variable can

only assume a countable number of values. In contrast, a continuous

random variable can assume an uncountable number of values in a line

interval such as a normal distribution.

In the code example, demand for a fictitious product is predicted by

four discrete probability outcomes: 10% that random variable is 10,000

units, 35% that random variable is 20,000 units, 30% that random variable

is 40,000 units, and 25% that random variable is 60,000 units. Simply,

Figure 2-5.  What-If analysis for sigma = 0.02

Chapter 2 Monte Carlo Simulation and Density Functions

45

10% of the time demand is 10,000, 35% of the time demand is 20,000, 30%

of the time demand is 40,000, and 25% of the time demand is 60,000.

Discrete outcomes must total 100%. The code runs MCS on a production

algorithm that determines profit for each discrete outcome, and plots the

results.

import matplotlib.pyplot as plt, numpy as np

def demand():

 p = np.random.uniform(0,1)

 if p < 0.10:

 return 10000

 elif p >= 0.10 and p < 0.45:

 return 20000

 elif p >= 0.45 and p < 0.75:

 return 40000

 else:

 return 60000

def production(demand, units, price, unit_cost, disposal):

 units_sold = min(units, demand)

 revenue = units_sold * price

 total_cost = units * unit_cost

 units_not_sold = units - demand

 if units_not_sold > 0:

 disposal_cost = disposal * units_not_sold

 else:

 disposal_cost = 0

 profit = revenue - total_cost - disposal_cost

 return profit

Chapter 2 Monte Carlo Simulation and Density Functions

46

def mcs(x, n, units, price, unit_cost, disposal):

 profit = []

 while x <= n:

 d = demand()

 v = production(d, units, price, unit_cost, disposal)

 profit.append(v)

 x += 1

 return profit

def max_bar(ls):

 tup = max(enumerate(ls))

 return tup[0] - 1

if __name__ == "__main__":

 units = [10000, 20000, 40000, 60000]

 price, unit_cost, disposal = 4, 1.5, 0.2

 avg_p = []

 x, n = 1, 10000

 profit_10 = mcs(x, n, units[0], price, unit_cost, disposal)

 avg_p.append(np.mean(profit_10))

 print ('Profit for {:,.0f}'.format(units[0]),

 'units: ${:,.2f}'.format(np.mean(profit_10)))

 profit_20 = mcs(x, n, units[1], price, unit_cost, disposal)

 avg_p.append(np.mean(np.mean(profit_20)))

 print ('Profit for {:,.0f}'.format(units[1]),

 'units: ${:,.2f}'.format(np.mean(profit_20)))

 profit_40 = mcs(x, n, units[2], price, unit_cost, disposal)

 avg_p.append(np.mean(profit_40))

 print ('Profit for {:,.0f}'.format(units[2]),

 'units: ${:,.2f}'.format(np.mean(profit_40)))

 profit_60 = mcs(x, n, units[3], price, unit_cost, disposal)

 avg_p.append(np.mean(profit_60))

Chapter 2 Monte Carlo Simulation and Density Functions

47

 print ('Profit for {:,.0f}'.format(units[3]),

 'units: ${:,.2f}'.format(np.mean(profit_60)))

 labels = ['10000','20000','40000','60000']

 pos = np.arange(len(labels))

 width = 0.75 # set less than 1.0 for spaces between bins

 plt.figure(2)

 ax = plt.axes()

 ax.set_xticks(pos + (width / 2))

 ax.set_xticklabels(labels)

 barlist = plt.bar(pos, avg_p, width, color='aquamarine')

 barlist[max_bar(avg_p)].set_color('orchid')

 plt.ylabel('Profit')

 plt.xlabel('Production Quantity')

 plt.title('Production Quantity by Demand')

 plt.show()

Output:

Chapter 2 Monte Carlo Simulation and Density Functions

48

The code begins by importing matplotlib and numpy libraries. It

continues with four functions. Function demand() begins by randomly

generating a uniformly distributed probability. It continues by returning

one of the four discrete probability outcomes established by the problem

we wish to solve. Function production() returns profit based on an

algorithm that I devised. Keep in mind that any profit-base algorithm can

be substitued, which illuminates the incredible flexibility of MCS. Function

mcs() runs the simulation 10,000 times. Increasing the number of runs

provides better prediction accuracy with costs being more computer

processing resources and runtime. Function max_bar() establishes the

highest bar in the bar chart for better illumination. The main block begins

by simulating profit for each discrete probability outcome, and printing

and visualizing results. MCS predicts that production quantity of 40,000

units yields the highest profit, as shown in Figure 2-6.

Figure 2-6.  Production quantity visualization

Chapter 2 Monte Carlo Simulation and Density Functions

49

Increasing the number of MCS simulations results in a more

accurate prediction of reality because it is based on stochastic reasoning

(data randomization). You can also substitute any discrete probability

distribution based on your problem-solving needs with this code structure.

As alluded to earlier, you can use any algorithm you wish to predict with

MCS, making it an incredibly flexible tool for data scientists.

We can further enhance accuracy by running an MCS on an MCS. The

code example uses the same algorithm and process as before, but adds an

MCS on the original MCS to get a more accurate prediction:

import matplotlib.pyplot as plt, numpy as np

def demand():

 p = np.random.uniform(0,1)

 if p < 0.10:

 return 10000

 elif p >= 0.10 and p < 0.45:

 return 20000

 elif p >= 0.45 and p < 0.75:

 return 40000

 else:

 return 60000

def production(demand, units, price, unit_cost, disposal):

 units_sold = min(units, demand)

 revenue = units_sold * price

 total_cost = units * unit_cost

 units_not_sold = units - demand

 if units_not_sold > 0:

 disposal_cost = disposal * units_not_sold

Chapter 2 Monte Carlo Simulation and Density Functions

50

 else:

 disposal_cost = 0

 profit = revenue - total_cost - disposal_cost

 return profit

def mcs(x, n, units, price, unit_cost, disposal):

 profit = []

 while x <= n:

 d = demand()

 v = production(d, units, price, unit_cost, disposal)

 profit.append(v)

 x += 1

 return profit

def display(p, i):

 print ('Profit for {:,.0f}'.format(units[i]),

 'units: ${:,.2f}'.format(np.mean(p)))

if __name__ == "__main__":

 units = [10000, 20000, 40000, 60000]

 price, unit_cost, disposal = 4, 1.5, 0.2

 avg_ls = []

 x, n, y, z = 1, 10000, 1, 1000

 while y <= z:

 �profit_10 = mcs(x, n, units[0], price, unit_cost,

disposal)

 �profit_20 = mcs(x, n, units[1], price, unit_cost,

disposal)

 avg_profit = np.mean(profit_20)

 �profit_40 = mcs(x, n, units[2], price, unit_cost,

disposal)

 avg_profit = np.mean(profit_40)

 �profit_60 = mcs(x, n, units[3], price, unit_cost,

disposal)

Chapter 2 Monte Carlo Simulation and Density Functions

51

 avg_profit = np.mean(profit_60)

 avg_ls.append({'p10':np.mean(profit_10),

 'p20':np.mean(profit_20),

 'p40':np.mean(profit_40),

 'p60':np.mean(profit_60)})

 y += 1

 mcs_p10, mcs_p20, mcs_p40, mcs_p60 = [], [], [], []

 for row in avg_ls:

 mcs_p10.append(row['p10'])

 mcs_p20.append(row['p20'])

 mcs_p40.append(row['p40'])

 mcs_p60.append(row['p60'])

 display(np.mean(mcs_p10), 0)

 display(np.mean(mcs_p20), 1)

 display(np.mean(mcs_p40), 2)

 display(np.mean(mcs_p60), 3)

Output:

The code for this example is the same as the previous one, except for

the MCS while loop (while y <= z). In this loop, profits are calculated as

before using function mcs(), but each simulation result is appended to list

avg_ls. So, avg_ls contains 1,000 (z = 1000) simulation results of the original

simulation results. Accuracy is increased, but more computer resources

and runtime are required. Running 1,000 simulations on the original MCS

takes a bit over one minute, which is a lot of processing time!

Chapter 2 Monte Carlo Simulation and Density Functions

52

�Randomness Using Probability
and Cumulative Density Functions
Randomness masquerades as reality (the natural world) in data science,

since the future cannot be predicted. That is, randomization is the way

data scientists simulate reality. More data means better accuracy and

prediction (more realism). It plays a key role in discrete event simulation

and deterministic problem solving. Randomization is used in many fields

such as statistics, MCS, cryptography, statistics, medicine, and science.

The density of a continuous random variable is its probability density

function (PDF). PDF is the probability that a random variable has the

value x, where x is a point within the interval of a sample. This probability

is determined by the integral of the random variable’s PDF over the range

(interval) of the sample. That is, the probability is given by the area under

the density function, but above the horizontal axis and between the lowest

and highest values of range. An integral (integration) is a mathematical

object that can be interpreted as an area under a normal distribution

curve. A cumulative distribution function (CDF) is the probability

that a random variable has a value less than or equal to x. That is, CDF

accumulates all of the probabilities less than or equal to x. The percent

point function (PPF) is the inverse of the CDF. It is commonly referred

to as the inverse cumulative distribution function (ICDF). ICDF is very

useful in data science because it is the actual value associated with an area

under the PDF. Please refer to www.itl.nist.gov/div898/handbook/eda/

section3/eda362.htm for an excellent explanation of density functions.

As stated earlier, a probability is determined by the integral of the

random variable’s PDF over the interval of a sample. That is, integrals

are used to determine the probability of some random variable falling

within a certain range (sample). In calculus, the integral represents a class

of functions (the antiderivative) whose derivative is the integrand. The

integral symbol represents integration, while an integrand is the function

Chapter 2 Monte Carlo Simulation and Density Functions

http://www.itl.nist.gov/div898/handbook/eda/section3/eda362.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda362.htm

53

being integrated in either a definite or indefinite integral. The fundamental

theorem of calculus relates the evaluation of definitive integrals to

indefinite integrals. The only reason I include this information here is to

emphasize the importance of calculus to data science. Another aspect of

calculus important to data science, “gradient descent,” is presented later in

Chapter 4.

Although theoretical explanations are invaluable, they may not be

intuitive. A great way to better understand these concepts is to look at an

example.

In the code example, 2-D charts are created for PDF, CDF, and ICDF

(PPF). The idea of a colormap is included in the example. A colormap is a

lookup table specifying the colors to be used in rendering palettized image.

A palettized image is one that is efficiently encoded by mapping its pixels

to a palette containing only those colors that are actually present in the

image. The matplotlib library includes a myriad of colormaps. Please refer

to https://matplotlib.org/examples/color/colormaps_reference.html

for available colormaps.

import matplotlib.pyplot as plt

from scipy.stats import norm

import numpy as np

if __name__ == '__main__':

 x = np.linspace(norm.ppf(0.01), norm.ppf(0.99), num=1000)

 y1 = norm.pdf(x)

 plt.figure('PDF')

 plt.xlim(x.min()-.1, x.max()+0.1)

 plt.ylim(y1.min(), y1.max()+0.01)

 plt.xlabel('x')

 plt.ylabel('Probability Density')

 plt.title('Normal PDF')

 plt.scatter(x, y1, c=x, cmap='jet')

Chapter 2 Monte Carlo Simulation and Density Functions

https://matplotlib.org/examples/color/colormaps_reference.html

54

 plt.fill_between(x, y1, color='thistle')

 plt.show()

 plt.close('PDF')

 plt.figure('CDF')

 plt.xlabel('x')

 plt.ylabel('Probability')

 plt.title('Normal CDF')

 y2 = norm.cdf(x)

 plt.scatter(x, y2, c=x, cmap='jet')

 plt.show()

 plt.close('CDF')

 plt.figure('ICDF')

 plt.xlabel('Probability')

 plt.ylabel('x')

 plt.title('Normal ICDF (PPF)')

 y3 = norm.ppf(x)

 plt.scatter(x, y3, c=x, cmap='jet')

 plt.show()

 plt.close('ICDF')

Chapter 2 Monte Carlo Simulation and Density Functions

55

Figure 2-7.  Normal probability density function visualization

Figure 2-8.  Normal cumulative distribution function visualization

Output:

Chapter 2 Monte Carlo Simulation and Density Functions

56

The code begins by importing three libraries—matplotlib, scipy, and

numpy. The main block begins by creating a sequence of 1,000 x values

between 0.01 and 0.99 (because probabilities must fall between 0 and 1).

Next, a sequence of PDF y values is created based on the x values. The

code continues by plotting the resultant PDF shown in Figure 2-7. Next, a

sequence of CDF (Figure 2-8) and ICDF (Figure 2-9) values are created and

plotted. From the visualization, it is easier to see that the PDF represents

all of the possible x values (probabilities) that exist under the normal

distribution. It is also easier to visualize the CDF because it represents

the accumulation of all the possible probabilities. Finally, the ICDF is

easier to understand through visualization (see Figure 2-9) because the

x-axis represents probabilities, while the y-axis represents the actual value

associated with those probabilities.

Figure 2-9.  Normal inverse cumulative distribution function
visualization

Chapter 2 Monte Carlo Simulation and Density Functions

57

Let’s apply ICDF. Suppose you are a data scientist at Apple and your

boss asks you to determine Apple iPhone 8 failure rates so she can develop

a mockup presentation for her superiors. For this hypothetical example,

your boss expects four calculations: time it takes 5% of phones to fail, time

interval (range) where 95% of phones fail, time where 5% of phones survive

(don’t fail), and time interval where 95% of phones survive. In all cases,

report time in hours. From data exploration, you ascertain average (mu)

failure time is 1,000 hours and standard deviation (sigma) is 300 hours.

The code example calculates ICDF for the four scenarios and displays

the results in an easy to understand format for your boss:

from scipy.stats import norm

import numpy as np

def np_rstrip(v):

 return np.char.rstrip(v.astype(str), '.0')

def transform(t):

 one, two = round(t[0]), round(t[1])

 return (np_rstrip(one), np_rstrip(two))

if __name__ == "__main__":

 mu, sigma = 1000, 300

 print ('Expected failure rates:')

 fail = np_rstrip(round(norm.ppf(0.05, loc=mu, scale=sigma)))

 print ('5% fail within', fail, 'hours')

 fail_range = norm.interval(0.95, loc=mu, scale=sigma)

 lo, hi = transform(fail_range)

 print ('95% fail between', lo, 'and', hi, end=' ')

 print ('hours of usage')

 print ('\nExpected survival rates:')

 last = np_rstrip(round(norm.ppf(0.95, loc=mu, scale=sigma)))

 print ('5% survive up to', last, 'hours of usage')

Chapter 2 Monte Carlo Simulation and Density Functions

58

 last_range = norm.interval(0.05, loc=mu, scale=sigma)

 lo, hi = transform(last_range)

 print ('95% survive between', lo, 'and', hi, 'hours of usage')

Output:

The code example begins by importing scipy and numpy libraries. It

continues with two functions. Function np_rstrip() converts numpy float

to string and removes extraneous characters. Function transform() rounds

and returns a tuple. Both are just used to round numbers to no decimal

places to make it user-friendly for your fictitious boss. The main block

begins by initializing mu and sigma to 1,000 (failures) and 300 (variates).

That is, on average, our smartphones fail within 1,000 hours, and failures

vary between 700 and 1,300 hours. Next, find the ICDF value for a 5%

failure rate and an interval where 95% fail with norm.ppf(). So, 5% of all

phones are expected to fail within 507 hours, while 95% fail between 412

and 1,588 hours of usage. Next, find the ICDF value for a 5% survival rate

and an interval where 95% survive. So, 5% of all phones survive up to 1,493

hours, while 95% survive between 981 and 1,019 hours of usage.

Simply, ICDF allows you to work backward from a known probability

to find an x value! Please refer to http://support.minitab.com/en-us/

minitab-express/1/help-and-how-to/basic-statistics/probability-

distributions/supporting-topics/basics/using-the-inverse-

cumulative-distribution-function-icdf/#what-is-an-inverse-

cumulative-distribution-function-icdf for more information.

Chapter 2 Monte Carlo Simulation and Density Functions

http://support.minitab.com/en-us/minitab-express/1/help-and-how-to/basic-statistics/probability-distributions/supporting-topics/basics/using-the-inverse-cumulative-distribution-function-icdf/#what-is-an-inverse-cumulative-distribution-function-icdf
http://support.minitab.com/en-us/minitab-express/1/help-and-how-to/basic-statistics/probability-distributions/supporting-topics/basics/using-the-inverse-cumulative-distribution-function-icdf/#what-is-an-inverse-cumulative-distribution-function-icdf
http://support.minitab.com/en-us/minitab-express/1/help-and-how-to/basic-statistics/probability-distributions/supporting-topics/basics/using-the-inverse-cumulative-distribution-function-icdf/#what-is-an-inverse-cumulative-distribution-function-icdf
http://support.minitab.com/en-us/minitab-express/1/help-and-how-to/basic-statistics/probability-distributions/supporting-topics/basics/using-the-inverse-cumulative-distribution-function-icdf/#what-is-an-inverse-cumulative-distribution-function-icdf
http://support.minitab.com/en-us/minitab-express/1/help-and-how-to/basic-statistics/probability-distributions/supporting-topics/basics/using-the-inverse-cumulative-distribution-function-icdf/#what-is-an-inverse-cumulative-distribution-function-icdf

59

Let’s try What-if analysis. What if we reduce error rate (sigma)

from 300 to 30?

Now, 5% of all phones are expected to fail within 951 hours, while 95%

fail between 941 and 1,059 hours of usage. And, 5% of all phones survive

up to 1,049 hours, while 95% survive between 998 and 1,002 hours of

usage. What does this mean? Less variation (error) shows that values are

much closer to the average for both failure and survival rates. This makes

sense because variation is calculated from a mean of 1,000.

Let’s shift to a simulation example. Suppose your boss asks you to find

the optimal monthly order quantity for a type of car given that demand is

normally distributed (it must, because PDF is based on this assumption),

average demand (mu) is 200, and variation (sigma) is 30. Each car costs

$25,000, sells for $45,000, and half of the cars not sold at full price can be

sold for $30,000. Like other MCS experiments, you can modify the profit

algorithm to enhance realism. By suppliers, you are limited to order

quantities of 160, 180, 200, 220, 240, 260, or 280.

MCS is used to find the profit for each order based on the information

provided. Demand is generated randomly for each iteration of the

simulation. Profit calculations by order are automated by running MCS for

each order.

import numpy as np

import matplotlib.pyplot as plt

def str_int(s):

 val = "%.2f" % profit

 return float(val)

Chapter 2 Monte Carlo Simulation and Density Functions

60

if __name__ == "__main__":

 orders = [180, 200, 220, 240, 260, 280, 300]

 mu, sigma, n = 200, 30, 10000

 cost, price, discount = 25000, 45000, 30000

 profit_ls = []

 for order in orders:

 x = 1

 profit_val = []

 inv_cost = order * cost

 while x <= n:

 demand = round(np.random.normal(mu, sigma))

 if demand < order:

 diff = order - demand

 if diff > 0:

 damt = round(abs(diff) / 2) * discount

 profit = (demand * price) - inv_cost + damt

 else:

 profit = (order * price) - inv_cost

 else:

 profit = (order * price) - inv_cost

 profit = str_int(profit)

 profit_val.append(profit)

 x += 1

 avg_profit = np.mean(profit_val)

 profit_ls.append(avg_profit)

 print ('${0:,.2f}'.format(avg_profit), '(profit)',

 'for order:', order)

 max_profit = max(profit_ls)

 profit_np = np.array(profit_ls)

 max_ind = np.where(profit_np == profit_np.max())

 print ('\nMaximum profit', '${0:,.2f}'.format(max_profit),

Chapter 2 Monte Carlo Simulation and Density Functions

61

 'for order', orders[int(max_ind[0])])

 barlist = plt.bar(orders, profit_ls, width=15,

color='thistle')

 barlist[int(max_ind[0])].set_color('lime')

 plt.title('Profits by Order Quantity')

 plt.xlabel('orders')

 plt.ylabel('profit')

 plt.tight_layout()

 plt.show()

Output:

Chapter 2 Monte Carlo Simulation and Density Functions

62

The code begins by importing numpy and matplotlib. It continues with

a function (str_int()) that converts a string to float. The main block begins

by initializing orders, mu, sigma, n, cost, price, discount, and list of profits

by order. It continues by looping through each order quantity and running

MCS with 10,000 iterations. A randomly generated demand probability is

used to calculate profit for each iteration of the simulation. The technique

for calculating profit is pretty simple, but you can substitute your own

algorithm. You can also modify any of the given information based on your

own data. After calculating profit for each order through MCS, the code

continues by finding the order quantity with the highest profit. Finally, the

code generates a bar chart to illuminate results though visualization shown

in Figure 2-10.

Figure 2-10.  Profits by order quantity visualization

Chapter 2 Monte Carlo Simulation and Density Functions

63

The final code example creates a PDF visualization:

import matplotlib.pyplot as plt, numpy as np

from scipy.stats import norm

if __name__ == '__main__':

 n = 100

 x = np.linspace(norm.ppf(0.01), norm.ppf(0.99), num=n)

 y = norm.pdf(x)

 dic = {}

 for i, row in enumerate(y):

 dic[x[i]] = [np.random.uniform(0, row) for _ in range(n)]

 xs = []

 ys = []

 for key, vals in dic.items():

 for y in vals:

 xs.append(key)

 ys.append(y)

 plt.xlim(min(xs), max(xs))

 plt.ylim(0, max(ys)+0.02)

 plt.title('Normal PDF')

 plt.xlabel('x')

 plt.ylabel('Probability Density')

 plt.scatter(xs, ys, c=xs, cmap='rainbow')

 plt.show()

Chapter 2 Monte Carlo Simulation and Density Functions

64

Output:

The code begins by importing matplotlib, numpy, and scipy libraries.

The main block begins by initializing the number of points you wish to

plot, PDF x and y values, and a dictionary. To plot all PDF probabilities, a

set of randomly generated values for each point on the x-axis is created. To

accomplish this task, the code assigns 100 (n = 100) values to x from 0.01

to 0.99. It continues by assigning 100 PDF values to y. Next, a dictionary

element is populated by a (key, value) pair consisting of each x value as

key and a list of 100 (n = 100) randomly generated numbers between 0 and

pdf(x) as value associated with x. Although the code creating the dictionary

is simple, please think carefully about what is happening because it

is pretty abstract. The code continues by building (x, y) pairs from the

dictionary. The result is 10,000 (100 X 100) (x, y) pairs, where each 100 x

values has 100 associated y values visualized in Figure 2-11.

Figure 2-11.  All PDF probabilities with 100 simulations

Chapter 2 Monte Carlo Simulation and Density Functions

65

To smooth out the visualization increase n to 1,000 (n = 1000) at the

beginning of the main block:

By increasing n to 1000, 1,000,000 (1,000 X 1,000) (x, y) pairs are plotted

as shown in Figure 2-12!

Figure 2-12.  All PDF probabilities with 1,000 simulations

Chapter 2 Monte Carlo Simulation and Density Functions

67© David Paper 2018
D. Paper, Data Science Fundamentals for Python and MongoDB,
https://doi.org/10.1007/978-1-4842-3597-3_3

CHAPTER 3

Linear Algebra
Linear algebra is a branch of mathematics concerning vector spaces

and linear mappings between such spaces. Simply, it explores linelike

relationships. Practically every area of modern science approximates

modeling equations with linear algebra. In particular, data science relies

on linear algebra for machine learning, mathematical modeling, and

dimensional distribution problem solving.

�Vector Spaces
A vector space is a collection of vectors. A vector is any quantity with

magnitude and direction that determines the position of one point in

space relative to another. Magnitude is the size of an object measured by

movement, length, and/or velocity. Vectors can be added and multiplied

(by scalars) to form new vectors. A scalar is any quantity with magnitude

(size). In application, vectors are points in finite space.

Vector examples include breathing, walking, and displacement.

Breathing requires diaphragm muscles to exert a force that has

magnitude and direction. Walking requires movement in some direction.

Displacement measures how far an object moves in a certain direction.

68

�Vector Math
In vector math, a vector is depicted as a directed line segment whose length

is its magnitude vector with an arrow indicating direction from tail to head.

Tail is where the line segment begins and head is where it ends (the arrow).

Vectors are the same if they have the same magnitude and direction.

To add two vectors a and b, start b where a finishes, and complete the

triangle. Visually, start at some point of origin, draw a (Figure 3-1), start b

(Figure 3-2) from head of a, and the result c (Figure 3-3) is a line from tail

of a to head of b. The 1st example illustrates vector addition as well as a

graphic depiction of the process:

import matplotlib.pyplot as plt, numpy as np

def vector_add(a, b):

 return np.add(a, b)

def set_up():

 plt.figure()

 plt.xlim(-.05, add_vectors[0]+0.4)

 plt.ylim(-1.1, add_vectors[1]+0.4)

if __name__ == "__main__":

 v1, v2 = np.array([3, -1]), np.array([2, 3])

 add_vectors = vector_add(v1, v2)

 set_up()

 ax = plt.axes()

 ax.arrow(0, 0, 3, -1, head_width=0.1, fc='b', ec='b')

 ax.text(1.5, -0.35, 'a')

 ax.set_facecolor('honeydew')

 set_up()

 ax = plt.axes()

 ax.arrow(0, 0, 3, -1, head_width=0.1, fc='b', ec='b')

 �ax.arrow(3, -1, 2, 3, head_width=0.1, fc='crimson',

ec='crimson')

Chapter 3 Linear Algebra

69

 ax.text(1.5, -0.35, 'a')

 ax.text(4, -0.1, 'b')

 ax.set_facecolor('honeydew')

 set_up()

 ax = plt.axes()

 ax.arrow(0, 0, 3, -1, head_width=0.1, fc='b', ec='b')

 �ax.arrow(3, -1, 2, 3, head_width=0.1, fc='crimson',

ec='crimson')

 �ax.arrow(0, 0, 5, 2, head_width=0.1, fc='springgreen',

ec='springgreen')

 ax.text(1.5, -0.35, 'a')

 ax.text(4, -0.1, 'b')

 ax.text(2.3, 1.2, 'a + b')

 ax.text(4.5, 2.08, add_vectors, color='fuchsia')

 ax.set_facecolor('honeydew')

 plt.show()

Output:

Figure 3-1.  Vector a from the origin (0, 0) to (3, -1)

Chapter 3 Linear Algebra

70

Figure 3-2.  Vector b from (3, -1) to (5, 2)

Figure 3-3.  Vector c from (0, 0) to (5, 2)

Chapter 3 Linear Algebra

71

The code begins by importing matplotlib and numpy libraries.

Library matplotlib is a plotting library used for high quality visualization.

Library numpy is the fundamental package for scientific computing. It

is a wonderful library for working with vectors and matrices. The code

continues with two functions—vector_add() and set_up(). Function

vector_add() adds two vectors. Function set_up() sets up the figure for

plotting. The main block begins by creating two vectors and adding them.

The remainder of the code demonstrates graphically how vector addition

works. First, it creates an axes() object with an arrow representing vector a

beginning at origin (0, 0) and ending at (3, -1). It continues by adding text

and a background color. Next, it creates a 2nd axes() object with the same

arrow a, but adds arrow b (vector b) starting at (3, -1) and continuing to

(2, 3). Finally, it creates a 3rd axes() object with the same arrows a and b,

but adds arrow c (a + b) starting at (0, 0) and ending at (5, 2).

The 2nd example modifies the previous example by using subplots

(Figure 3-4). Subplots divide a figure into an m × n grid for a different

visualization experience.

import matplotlib.pyplot as plt, numpy as np

def vector_add(a, b):

 return np.add(a, b)

if __name__ == "__main__":

 v1, v2 = np.array([3, -1]), np.array([2, 3])

 add_vectors = vector_add(v1, v2)

 f, ax = plt.subplots(3)

 x, y = [0, 3], [0, -1]

 ax[0].set_xlim([-0.05, 3.1])

 ax[0].set_ylim([-1.1, 0.1])

 ax[0].scatter(x,y,s=1)

 ax[0].arrow(0, 0, 3, -1, head_width=0.1, head_length=0.07,

 fc='b', ec='b')

Chapter 3 Linear Algebra

72

 ax[0].text(1.5, -0.35, 'a')

 ax[0].set_facecolor('honeydew')

 x, y = ([0, 3, 5]), ([0, -1, 2])

 ax[1].set_xlim([-0.05, 5.1])

 ax[1].set_ylim([-1.2, 2.2])

 ax[1].scatter(x,y,s=0.5)

 ax[1].arrow(0, 0, 3, -1, head_width=0.2, head_length=0.1,

 fc='b', ec='b')

 ax[1].arrow(3, -1, 2, 3, head_width=0.16, head_length=0.1,

 fc='crimson', ec='crimson')

 ax[1].text(1.5, -0.35, 'a')

 ax[1].text(4, -0.1, 'b')

 ax[1].set_facecolor('honeydew')

 x, y = ([0, 3, 5]), ([0, -1, 2])

 ax[2].set_xlim([-0.05, 5.25])

 ax[2].set_ylim([-1.2, 2.3])

 ax[2].scatter(x,y,s=0.5)

 ax[2].arrow(0, 0, 3, -1, head_width=0.15, head_length=0.1,

 fc='b', ec='b')

 ax[2].arrow(3, -1, 2, 3, head_width=0.15, head_length=0.1,

 fc='crimson', ec='crimson')

 ax[2].arrow(0, 0, 5, 2, head_width=0.1, head_length=0.1,

 fc='springgreen', ec='springgreen')

 ax[2].text(1.5, -0.35, 'a')

 ax[2].text(4, -0.1, 'b')

 ax[2].text(2.3, 1.2, 'a + b')

 ax[2].text(4.9, 1.4, add_vectors, color='fuchsia')

 ax[2].set_facecolor('honeydew')

 plt.tight_layout()

 plt.show()

Chapter 3 Linear Algebra

73

Output:

The code begins by importing matplotlib and numpy libraries. It

continues with the same vector_add() function. The main block creates

three subplots with plt.subplots(3) and assigns to f and ax, where f

represents the figure and ax represents each subplot (ax[0], ax[1], and ax[2]).

Instead of working with one figure, the code builds each subplot by indexing

ax. The code uses plt.tight_layout() to automatically align each subplot.

The 3rd example adds vector subtraction. Subtracting two vectors is

addition with the opposite (negation) of a vector. So, vector a minus vector

b is the same as a + (-b). The code example demonstrates vector addition

and subtraction for both 2- and 3-D vectors:

import numpy as np

def vector_add(a, b):

 return np.add(a, b)

def vector_sub(a, b):

 return np.subtract(a, b)

Figure 3-4.  Subplot Visualization of Vector Addition

Chapter 3 Linear Algebra

74

if __name__ == "__main__":

 v1, v2 = np.array([3, -1]), np.array([2, 3])

 add = vector_add(v1, v2)

 sub = vector_sub(v1, v2)

 print ('2D vectors:')

 print (v1, '+', v2, '=', add)

 print (v1, '-', v2, '=', sub)

 v1 = np.array([1, 3, -5])

 v2 = np.array([2, -1, 3])

 add = vector_add(v1, v2)

 sub = vector_sub(v1, v2)

 print ('\n3D vectors:')

 print (v1, '+', v2, '=', add)

 print (v1, '-', v2, '=', sub)

Output:

The code begins by importing the numpy library. It continues with

functions vector_add() and vector_subtract(), which add and subtract vectors

respectively. The main block begins by creating two 2-D vectors, and adding

and subtracting them. It continues by adding and subtracting two 3-D vectors.

Any n-dimensional can be added and subtracted in the same manner.

Magnitude is measured by the distance formula. Magnitude of a single

vector is measured from the origin (0, 0) to the vector. Magnitude between

two vectors is measured from the 1st vector to the 2nd vector. The distance

formula is the square root of ((the 1st value from the 2nd vector minus the

1st value from the 1st vector squared) plus (the 2nd value from the 2nd vector

minus the 2nd value from the 1st vector squared)).

Chapter 3 Linear Algebra

75

�Matrix Math
A matrix is an array of numbers. Many operations can be performed on

a matrix such as addition, subtraction, negation, multiplication, and

division. The dimension of a matrix is its size in number of rows and

columns in that order. That is, a 2 × 3 matrix has two rows and three

columns. Generally, an m × n matrix has m rows and n columns. An

element is an entry in a matrix. Specifically, an element in rowi and

columnj of matrix A is denoted as ai,j. Finally, a vector in a matrix is

typically viewed as a column. So, a 2 × 3 matrix has three vectors (columns)

each with two elements. This is a very important concept to understand

when performing matrix multiplication and/or using matrices in data

science algorithms.

The 1st code example creates a numpy matrix, multiplies it by a scalar,

calculates means row- and column-wise, creates a numpy matrix from

numpy arrays, and displays it by row and element:

import numpy as np

def mult_scalar(m, s):

 matrix = np.empty(m.shape)

 m_shape = m.shape

 for i, v in enumerate(range(m_shape[0])):

 result = [x * s for x in m[v]]

 x = np.array(result[0])

 matrix[i] = x

 return matrix

def display(m):

 s = np.shape(m)

 cols = s[1]

Chapter 3 Linear Algebra

76

 for i, row in enumerate(m):

 print ('row', str(i) + ':', row, 'elements:', end=' ')

 for col in range(cols):

 print (row[col], end=' ')

 print ()

if __name__ == "__main__":

 v1, v2, v3 = [1, 7, -4], [2, -3, 10], [3, 5, 6]

 A = np.matrix([v1, v2, v3])

 print ('matrix A:\n', A)

 scalar = 0.5

 B = mult_scalar(A, scalar)

 print ('\nmatrix B:\n', B)

 mu_col = np.mean(A, axis=0, dtype=np.float64)

 print ('\nmean A (column-wise):\n', mu_col)

 mu_row = np.mean(A, axis=1, dtype=np.float64)

 print ('\nmean A (row-wise):\n', mu_row)

 print ('\nmatrix C:')

 C = np.array([[2, 14, -8], [4, -6, 20], [6, 10, 12]])

 print (C)

 print ('\ndisplay each row and element:')

 display(C)

Chapter 3 Linear Algebra

77

Output:

The code begins by importing numpy. It continues with two

 functions—mult_scalar() and display(). Function mult_scalar() multiplies

a matrix by a scalar. Function display() displays a matrix by row and each

element of a row. The main block creates three vectors and adds them to

numpy matrix A. B is created by multiplying scalar 0.5 by A. Next, means

for A are calculated by column and row. Finally, numpy matrix C is created

from three numpy arrays and displayed by row and element.

The 2nd code example creates a numpy matrix A, sums its columns

and rows, calculates the dot product of two vectors, and calculates the

dot product of two matrices. Dot product multiplies two vectors to get

magnitude that can be used to compute lengths of vectors and angles

between vectors. Specifically, the dot product of two vectors a and b is

ax × bx + ay × by.

Chapter 3 Linear Algebra

78

For matrix multiplication, dot product produces matrix C from two

matrices A and B. However, two vectors cannot be multiplied when both

are viewed as column matrices. To rectify this problem, transpose the 1st

vector from A, turning it into a 1 × n row matrix so it can be multiplied

by the 1st vector from B and summed. The product is now well defined

because the product of a 1 × n matrix with an n × 1 matrix is a 1 × 1 matrix

(a scalar). To get the dot product, repeat this process for the remaining

vectors from A and B. Numpy includes a handy function that calculates dot

product for you, which greatly simplifies matrix multiplication.

import numpy as np

def sum_cols(matrix):

 return np.sum(matrix, axis=0)

def sum_rows(matrix):

 return np.sum(matrix, axis=1)

def dot(v, w):

 return np.dot(v, w)

if __name__ == "__main__":

 v1, v2, v3 = [1, 7, -4], [2, -3, 10], [3, 5, 6]

 A = np.matrix([v1, v2, v3])

 print ('matrix A:\n', A)

 v_cols = sum_cols(A)

 print ('\nsum A by column:\n', v_cols)

 v_rows = sum_rows(A)

 print ('\nsum A by row:\n', v_rows)

 dot_product = dot(v1, v2)

 print ('\nvector 1:', v1)

 print ('vector 2:', v2)

 print ('\ndot product v1 and v2:')

 print (dot_product)

Chapter 3 Linear Algebra

79

 v1, v2, v3 = [-2, 5, 4], [1, 2, 9], [10, -9, 3]

 B = np.matrix([v1, v2, v3])

 print ('\nmatrix B:\n', B)

 C = A.dot(B)

 print ('\nmatrix C (dot product A and B):\n', C)

 print ('\nC by row:')

 for i, row in enumerate(C):

 print ('row', str(i) + ': ', end='')

 for v in np.nditer(row):

 print (v, end=' ')

 print()

Output:

Chapter 3 Linear Algebra

80

The code begins by importing numpy. It continues with three functions—

sum_cols(), sum_rows(), and dot(). Function sum_cols() sums each column

and returns a row with these values. Function sum_rows() sums each row

and returns a column with these values. Function dot() calculates the dot

product. The main block begins by creating three vectors that are then

used to create matrix A. Columns and rows are summed for A. Dot product

is then calculated for two vectors (v1 and v2). Next, three new vectors

are created that are then used to create matrix B. Matrix C is created by

calculating the dot product for A and B. Finally, each row of C is displayed.

The 3rd code example illuminates a realistic scenario. Suppose a

company sells three types of pies—beef, chicken, and vegetable. Beef pies

cost $3 each, chicken pies cost $4 dollars each, and vegetable pies cost

$2 dollars each. The vector representation for pie cost is [3, 4, 2]. You also

know sales by pie for Monday through Thursday. Beef sales are 13 for

Monday, 9 for Tuesday, 7 for Wednesday, and 15 for Thursday. The vector

for beef sales is thereby [13, 9, 7, 15]. Using the same logic, the vectors

for chicken sales are [8, 7, 4, 6] and [6, 4, 0, 3], respectively. The goal is to

calculate total sales for four days (Monday–Thursday).

import numpy as np

def dot(v, w):

 return np.dot(v, w)

def display(m):

 for i, row in enumerate(m):

 print ('total sales by day:\n', end='')

 for v in np.nditer(row):

 print (v, end=' ')

 print()

Chapter 3 Linear Algebra

81

if __name__ == "__main__":

 a = [3, 4, 2]

 A = np.matrix([a])

 print ('cost matrix A:\n', A)

 v1, v2, v3 = [13, 9, 7, 15], [8, 7, 4, 6], [6, 4, 0, 3]

 B = np.matrix([v1, v2, v3])

 print ('\ndaily sales by item matrix B:\n', B)

 C = A.dot(B)

 print ('\ndot product matrix C:\n', C, '\n')

 display(C)

Output:

The code begins by importing numpy. It continues with function dot()

that calculates the dot product, and function display() that displays the

elements of a matrix, row by row. The main block begins by creating a

vector that holds the cost of each type of pie. It continues by converting

the vector into matrix A. Next, three vectors are created that represent sales

for each type of pie for Monday through Friday. The code continues by

converting the three vectors into matrix B. Matrix C is created by finding

the dot product of A and B. This scenario demonstrates how dot product

can be used for solving business problems.

Chapter 3 Linear Algebra

82

The 4th code example calculates the magnitude (distance) and

direction (angle) with a single vector and between two vectors:

import math, numpy as np

def sqrt_sum_squares(ls):

 return math.sqrt(sum(map(lambda x:x*x,ls)))

def mag(v):

 return np.linalg.norm(v)

def a_tang(v):

 return math.degrees(math.atan(v[1]/v[0]))

def dist(v, w):

 return math.sqrt(((w[0]-v[0])** 2) + ((w[1]-v[1])** 2))

def mags(v, w):

 return np.linalg.norm(v - w)

def a_tangs(v, w):

 val = (w[1] - v[1]) / (w[0] - v[0])

 return math.degrees(math.atan(val))

if __name__ == "__main__":

 v = np.array([3, 4])

 print ('single vector', str(v) + ':')

 print ('magnitude:', sqrt_sum_squares(v))

 print ('NumPY magnitude:', mag(v))

 print ('direction:', round(a_tang(v)), 'degrees\n')

 v1, v2 = np.array([2, 3]), np.array([5, 8])

 print ('two vectors', str(v1) + ' and ' + str(v2) + ':')

 print ('magnitude', round(dist(v1, v2),2))

 print ('NumPY magnitude:', round(mags(v1, v2),2))

 print ('direction:', round(a_tangs(v1, v2)), 'degrees\n')

 v1, v2 = np.array([0, 0]), np.array([3, 4])

Chapter 3 Linear Algebra

83

 print ('use origin (0,0) as 1st vector:')

 print ('"two vectors', str(v1) + ' and ' + str(v2) + '"')

 print ('magnitude:', round(mags(v1, v2),2))

 print ('direction:', round(a_tangs(v1, v2)), 'degrees')

Output:

The code begins by importing math and numpy libraries. It continues

with six functions. Function sqrt_sum_squares() calculates magnitude for

one vector from scratch. Function mag() does the same but uses numpy.

Function a_tang() calculates the arctangent of a vector, which is the

direction (angle) of a vector from the origin (0,0). Function dist() calculates

magnitude between two vectors from scratch. Function mags() does the

same but uses numpy. Function a_tangs() calculates the arctangent of

two vectors. The main block creates a vector, calculates magnitude and

direction, and displays. Next, magnitude and direction are calculated and

displayed for two vectors. Finally, magnitude and direction for a single

vector are calculated using the two vector formulas. This is accomplished

by using the origin (0,0) as the 1st vector. So, functions that calculate

magnitude and direction for a single vector are not needed, because any

single vector always begins from the origin (0,0). Therefore, a vector is

simply a point in space measured either from the origin (0,0) or in relation

to another vector by magnitude and direction.

Chapter 3 Linear Algebra

84

�Basic Matrix Transformations
The 1st code example introduces the identity matrix, which is a square

matrix with ones on the main diagonal and zeros elsewhere. The product

of matrix A and its identity matrix is A, which is important mathematically

because the identity property of multiplication states that any number

multiplied by 1 is equal to itself.

import numpy as np

def slice_row(M, i):

 return M[i,:]

def slice_col(M, j):

 return M[:, j]

def to_int(M):

 return M.astype(np.int64)

if __name__ == "__main__":

 A = [[1, 9, 3, 6, 7],

 [4, 8, 6, 2, 1],

 [9, 8, 7, 1, 2],

 [1, 1, 9, 2, 4],

 [9, 1, 1, 3, 5]]

 A = np.matrix(A)

 print ('A:\n', A)

 print ('\n1st row: ', slice_row(A, 0))

 print ('\n3rd column:\n', slice_col(A, 2))

 shapeA = np.shape(A)

 I = np.identity(np.shape(A)[0])

 I = to_int(I)

 print ('\nI:\n', I)

 dot_product = np.dot(A, I)

Chapter 3 Linear Algebra

85

 print ('\nA * I = A:\n', dot_product)

 print ('\nA\':\n', A.I)

 A_by_Ainv = np.round(np.dot(A, A.I), decimals=0, out=None)

 A_by_Ainv = to_int(A_by_Ainv)

 print ('\nA * A\':\n', A_by_Ainv)

Output:

The code begins by importing numpy. It continues with three

functions. Function slice_row() slices a row from a matrix. Function

slice_col() slices a column from a matrix. Function to_int() converts matrix

Chapter 3 Linear Algebra

86

elements to integers. The main block begins by creating matrix A.

It continues by creating the identity matrix for A. Finally, it creates the

identity matrix for A by using the dot product of A with A' (inverse of A).

The 2nd code example converts a list of lists into a numpy matrix and

traverses it:

import numpy as np

if __name__ == "__main__":

 data = [

 [41, 72, 180], [27, 66, 140],

 [18, 59, 101], [57, 72, 160],

 [21, 59, 112], [29, 77, 250],

 [55, 60, 120], [28, 72, 110],

 [19, 59, 99], [32, 68, 125],

 [31, 79, 322], [36, 69, 111]

]

 A = np.matrix(data)

 print ('manual traversal:')

 for p in range(A.shape[0]):

 for q in range(A.shape[1]):

 print (A[p,q], end=' ')

 print ()

Output:

Chapter 3 Linear Algebra

87

The code begins by importing numpy. The main block begins by

creating a list of lists, converting it into numpy matrix A, and traversing A.

Although I have demonstrated several methods for traversing a numpy

matrix, this is my favorite method.

The 3rd code example converts a list of lists into numpy matrix A.

It then slices and dices A:

import numpy as np

if __name__ == "__main__":

 points_3D_space = [

 [0, 0, 0],

 [1, 2, 3],

 [2, 2, 2],

 [9, 9, 9]]

 A = np.matrix(points_3D_space)

 print ('slice entire A:')

 print (A[:])

 print ('\nslice 2nd column:')

 print (A[0:4, 1])

 print ('\nslice 2nd column (alt method):')

 print (A[:, 1])

 print ('\nslice 2nd & 3rd value 3rd column:')

 print (A[1:3, 2])

 print ('\nslice last row:')

 print (A[-1])

 print ('\nslice last row (alt method):')

 print (A[3])

 print ('\nslice 1st row:')

 print (A[0, :])

 print ('\nslice 2nd row; 2nd & 3rd value:')

 print (A[1, 1:3])

Chapter 3 Linear Algebra

88

Output:

The code begins by importing numpy. The main block begins by

creating a list of lists and converting it into numpy matrix A. The code

continues by slicing and dicing the matrix.

�Pandas Matrix Applications
The pandas library provides high-performance, easy-to-use data

structure and analysis tools. The most commonly used pandas object is a

DataFrame (df). A df is a 2-D structure with labeled axes (row and column)

of potentially different types. Math operations align on both row and

column labels. A df can be conceptualized by column or row. To view by

Chapter 3 Linear Algebra

89

column, use axis = 0 or axis = ‘index’. To view by row, use axis = 1 or axis =

‘columns’. This may seem counterintuitive when working with rows, but

this is the way pandas implemented this feature.

A pandas df is much easier to work with than a numpy matrix, but it is

also less efficient. That is, it takes a lot more resources to process a pandas

df. The numpy library is optimized for processing large amounts of data

and numerical calculations.

The 1st example creates a list of lists, places it into a pandas df, and

displays some data:

import pandas as pd

if __name__ == "__main__":

 data = [

 [41, 72, 180], [27, 66, 140],

 [18, 59, 101], [57, 72, 160],

 [21, 59, 112], [29, 77, 250],

 [55, 60, 120], [28, 72, 110],

 [19, 59, 99], [32, 68, 125],

 [31, 79, 322], [36, 69, 111]

]

 headers = ['age', 'height', 'weight']

 df = pd.DataFrame(data, columns=headers)

 n = 3

 print ('First', n, '"df" rows:\n', df.head(n))

 print ('\nFirst "df" row:')

 print (df[0:1])

 print ('\nRows 2 through 4')

 print (df[2:5])

 print ('\nFirst', n, 'rows "age" column')

 print (df[['age']].head(n))

 print ('\nLast', n, 'rows "weight" and "age" columns')

 print (df[['weight', 'age']].tail(n))

Chapter 3 Linear Algebra

90

 print ('\nRows 3 through 6 "weight" and "age" columns')

 print (df.ix[3:6, ['weight', 'age']])

Output:

The code begins by importing pandas. The main block begins by

creating a list of lists and adding it to a pandas df. It is a good idea to create

your own headers as we do here. Method head() and tail() automatically

display the 1st five records and last five records respectively unless a value

is included. In this case, we display the 1st and last three records. Using

head() and tail() are very useful, especially with a large df. Notice how easy

it is to slice and dice the df. Also, notice how easy it is to display column

data of your choice.

Chapter 3 Linear Algebra

91

The 2nd example creates a list of lists, places it into numpy matrix A,

and puts A into a pandas df. This ability is very important because it shows

how easy it is to create a df from a numpy matrix. So, you can be working

with numpy matrices for precision and performance, and then convert to

pandas for slicing, dicing, and other operations.

import pandas as pd, numpy as np

if __name__ == "__main__":

 data = [

 [41, 72, 180], [27, 66, 140],

 [18, 59, 101], [57, 72, 160],

 [21, 59, 112], [29, 77, 250],

 [55, 60, 120], [28, 72, 110],

 [19, 59, 99], [32, 68, 125],

 [31, 79, 322], [36, 69, 111]

]

 A = np.matrix(data)

 headers = ['age', 'height', 'weight']

 df = pd.DataFrame(A, columns=headers)

 print ('Entire "df":')

 print (df, '\n')

 print ('Sliced by "age" and "height":')

 print (df[['age', 'height']])

Chapter 3 Linear Algebra

92

Output:

The code begins by importing pandas and numpy. The main block

begins by creating a list of lists, converting it to numpy matrix A, and then

adding A to a pandas df.

The 3rd example creates a list of lists, places it into a list of dictionary

elements, and puts it into a pandas df. This ability is also very important

because dictionaries are very efficient data structures when working with

data science applications.

Chapter 3 Linear Algebra

93

import pandas as pd

if __name__ == "__main__":

 data = [

 [41, 72, 180], [27, 66, 140],

 [18, 59, 101], [57, 72, 160],

 [21, 59, 112], [29, 77, 250],

 [55, 60, 120], [28, 72, 110],

 [19, 59, 99], [32, 68, 125],

 [31, 79, 322], [36, 69, 111]

]

 d = {}

 dls = []

 key = ['age', 'height', 'weight']

 for row in data:

 for i, num in enumerate(row):

 d[key[i]] = num

 dls.append(d)

 d = {}

 df = pd.DataFrame(dls)

 print ('dict elements from list:')

 for row in dls:

 print (row)

 print ('\nheight from 1st dict element is:', end=' ')

 print (dls[0]['height'])

 print ('\n"df" converted from dict list:\n', df)

 print ('\nheight 1st df element:\n', df[['height']].head(1))

Chapter 3 Linear Algebra

94

Output:

The 4th code example creates two lists of lists—data and scores. The

data list holds ages, heights, and weights for 12 athletes. The scores list

holds three exam scores for 12 students. The data list is put directly into

df1, and the scores list is put directly into df2. Averages are computed and

displayed.

import pandas as pd, numpy as np

if __name__ == "__main__":

 data = [

 [41, 72, 180], [27, 66, 140],

 [18, 59, 101], [57, 72, 160],

 [21, 59, 112], [29, 77, 250],

Chapter 3 Linear Algebra

95

 [55, 60, 120], [28, 72, 110],

 [19, 59, 99], [32, 68, 125],

 [31, 79, 322], [36, 69, 111]

]

 scores = [

 [99, 90, 88], [77, 66, 81], [78, 77, 83],

 [75, 72, 79], [88, 77, 93], [88, 77, 94],

 [100, 99, 93], [94, 74, 90], [98, 97, 99],

 [73, 68, 77], [55, 50, 68], [36, 77, 90]

]

 n = 3

 key1 = ['age', 'height', 'weight']

 df1 = pd.DataFrame(data, columns=key1)

 print ('df1 slice:\n', df1.head(n))

 avg_cols = df1.apply(np.mean, axis=0)

 print ('\naverage by columns:')

 print (avg_cols)

 avg_wt = df1[['weight']].apply(np.mean, axis='index')

 print ('\naverage weight')

 print (avg_wt)

 key2 = ['exam1', 'exam2', 'exam3']

 df2 = pd.DataFrame(scores, columns=key2)

 print ('\ndf2 slice:\n', df2.head(n))

 avg_scores = df2.apply(np.mean, axis=1)

 print ('\naverage scores for 1st', n, 'students (rows):')

 print (avg_scores.head(n))

 �avg_slice = df2[['exam1','exam3']].apply(np.mean,

axis='columns')

 �print ('\naverage "exam1" & "exam3" 1st', n, 'students

(rows):')

 print (avg_slice[0:n])

Chapter 3 Linear Algebra

96

Output:

The code begins by importing pandas and numpy. The main block

creates the data and scores lists and puts them in df1 and df2, respectively.

With df1 (data), we average by column because our goal is to return the

average age, height, and weight for all athletes. With df2 (scores), we

average by row because our goal is to return the average overall exam

score for each student. We could average by column for df2 if the goal is to

calculate the average overall score for one of the exams. Try this if you wish.

Chapter 3 Linear Algebra

97© David Paper 2018
D. Paper, Data Science Fundamentals for Python and MongoDB,
https://doi.org/10.1007/978-1-4842-3597-3_4

CHAPTER 4

Gradient Descent
Gradient descent (GD) is an algorithm that minimizes (or maximizes)

functions. To apply, start at an initial set of a function’s parameter values

and iteratively move toward a set of parameter values that minimize the

function. Iterative minimization is achieved using calculus by taking

steps in the negative direction of the function’s gradient. GD is important

because optimization is a big part of machine learning. Also, GD is easy to

implement, generic, and efficient (fast).

�Simple Function Minimization
(and Maximization)
GD is a 1st order iterative optimization algorithm for finding the minimum

of a function f. A function can be denoted as f or f(x). Simply, GD finds the

minimum error by minimizing (or maximizing) a cost function. A cost

function is something that you want to minimize.

Let’s begin with a minimization example. To find the local minimum

of f, take steps proportional to the negative of the gradient of f at the

current point. The gradient is the derivative (rate of change) of f. The

only weakness of GD is that it finds the local minimum rather than the

minimum for the whole function.

98

The power rule is used to differentiate functions of the form f(x) = xr:

	
d

dx
x nxn n= -1 	

So, the derivative of xn equals nxn−1. Simply, the derivative is the

product of the exponent times x with the exponent reduced by 1. To

minimize f(x) = x4 – 3x3 + 2 find the derivative, which is f'(x) = 4x3 – 9x2. So,

the 1st step is always to find the derivative f'(x). The 2nd step is to plot the

original function to get an idea of its shape. The 3rd step is to run GD. The

4th step is to plot the local minimum.

The 1st example finds the local minimum of f(x) and displays f(x), f'(x),

and minimum in the subplot as seen in Figure 4-1:

import matplotlib.pyplot as plt, numpy as np

def f(x):

 return x**4 - 3 * x**3 + 2

def df(x):

 return 4 * x**3 - 9 * x**2

if __name__ == "__main__":

 x = np.arange(-5, 5, 0.2)

 y, y_dx = f(x), df(x)

 f, axarr = plt.subplots(3, sharex=True)

 axarr[0].plot(x, y, color='mediumspringgreen')

 axarr[0].set_xlabel('x')

 axarr[0].set_ylabel('f(x)')

 axarr[0].set_title('f(x)')

 axarr[1].plot(x, y_dx, color='coral')

 axarr[1].set_xlabel('x')

 axarr[1].set_ylabel('dy/dx(x)')

 axarr[1].set_title('derivative of f(x)')

 axarr[2].set_xlabel('x')

 axarr[2].set_ylabel('GD')

Chapter 4 Gradient Descent

99

 axarr[2].set_title('local minimum')

 iterations, cur_x, gamma, precision = 0, 6, 0.01, 0.00001

 previous_step_size = cur_x

 while previous_step_size > precision:

 prev_x = cur_x

 cur_x += -gamma * df(prev_x)

 previous_step_size = abs(cur_x - prev_x)

 iterations += 1

 axarr[2].plot(prev_x, cur_x, "o")

 f.subplots_adjust(hspace=0.3)

 f.tight_layout()

 plt.show()

 print ('minimum:', cur_x, '\niterations:', iterations)

Output:

Figure 4-1.  Subplot visualization of f(x), f'(x), and the local minimum

Chapter 4 Gradient Descent

100

The code example begins by importing matplotlib and numpy. It

continues with function f(x) used to plot the original function and function

df(x) used to plot the derivative. The main block begins by creating values

for f(x). It continues by creating a subplot. GD begins by initializing

variables. Variable cur_x is the starting point for the simulation. Variable

gamma is the step size. Variable precision is the tolerance. Smaller

tolerance translates into more precision, but requires more iterations

(resources). The simulation continues until previous_step_size is greater

than precision. Each iteration multiplies -gamma (step_size) by the

gradient (derivative) at the current point to move it to the local minimum.

Variable previous_step_size is then assigned the difference between cur_x

and prev_x. Each point is plotted. The minimum for f(x) solving for x is

approximately 2.25. I know this result is correct because I calculated it by

hand. Check out http://www.dummies.com/education/math/calculus/

how-to-find-local-extrema-with-the-first-derivative-test/ for a

nice lesson on how to calculate by hand.

The 2nd example finds the local minimum and maximum of

f(x) = x3 – 6x2 + 9x + 15. First find f'(x), which is 3x2 – 12x + 9. Next, find the

local minimum, plot, local maximum, and plot. I don’t use a subplot in this

case because the visualization is not as rich. That is, it is much easier to see

the approximate local minimum and maximum by looking at a plot of f(x),

and easier to see how the GD process works its magic.

import matplotlib.pyplot as plt, numpy as np

def f(x):

 return x**3 - 6 * x**2 + 9 * x + 15

def df(x):

 return 3 * x**2 - 12 * x + 9

if __name__ == "__main__":

 x = np.arange(-0.5, 5, 0.2)

 y = f(x)

 plt.figure('f(x)')

Chapter 4 Gradient Descent

http://www.dummies.com/education/math/calculus/how-to-find-local-extrema-with-the-first-derivative-test/
http://www.dummies.com/education/math/calculus/how-to-find-local-extrema-with-the-first-derivative-test/

101

 plt.xlabel('x')

 plt.ylabel('f(x)')

 plt.title('f(x)')

 plt.plot(x, y, color='blueviolet')

 plt.figure('local minimum')

 plt.xlabel('x')

 plt.ylabel('GD')

 plt.title('local minimum')

 iterations, cur_x, gamma, precision = 0, 6, 0.01, 0.00001

 previous_step_size = cur_x

 while previous_step_size > precision:

 prev_x = cur_x

 cur_x += -gamma * df(prev_x)

 previous_step_size = abs(cur_x - prev_x)

 iterations += 1

 plt.plot(prev_x, cur_x, "o")

 local_min = cur_x

 print ('minimum:', local_min, 'iterations:', iterations)

 plt.figure('local maximum')

 plt.xlabel('x')

 plt.ylabel('GD')

 plt.title('local maximum')

 iterations, cur_x, gamma, precision = 0, 0.5, 0.01, 0.00001

 previous_step_size = cur_x

 while previous_step_size > precision:

 prev_x = cur_x

 cur_x += -gamma * -df(prev_x)

 previous_step_size = abs(cur_x - prev_x)

 iterations += 1

 plt.plot(prev_x, cur_x, "o")

 local_max = cur_x

 print ('maximum:', local_max, 'iterations:', iterations)

 plt.show()

Chapter 4 Gradient Descent

102

Output:

Figure 4-2.  Function f(x)

Figure 4-3.  Local minimum for function f(x)

Chapter 4 Gradient Descent

103

Figure 4-4.  Local maximum for function f(x)

The code begins by importing matplotlib and numpy libraries. It

continues with functions f(x) and df(x), which represent the original

function and its derivative algorithmically. The main block begins by

creating data for f(x) and plotting it. It continues by finding the local

minimum and maximum, and plotting them. Notice the cur_x (the

beginning point) for local minimum is 6, while it is 0.5 for local maximum.

This is where data science is more of an art than a science, because I

found these points by trial and error. Also notice that GD for the local

maximum is the negation of the derivative. Again, I know that the results

are correct because I calculated both local minimum and maximum by

hand. The main reason that I used separate plots rather than a subplot for

this example is to demonstrate why it is so important to plot f(x). Just by

looking at the plot, you can tell that the local maximum of x for f(x) is close

to one, and the local minimum of x for f(x) is close to 3. In addition, you

can see that the function has an overall maximum that is greater than 1

from this plot. Figures 4-2, 4-3, and 4-4 provide the visualizations.

Chapter 4 Gradient Descent

104

�Sigmoid Function Minimization
(and Maximization)
A sigmoid function is a mathematical function with an S-shaped or

sigmoid curve. It is very important in data science for several reasons. First,

it is easily differentiable with respect to network parameters, which are

pivotal in training neural networks. Second, the cumulative distribution

functions for many common probability distributions are sigmoidal. Third,

many natural processes (e.g., complex learning curves) follow a sigmoidal

curve over time. So, a sigmoid function is often used if no specific

mathematical model is available.

The 1st example finds the local minimum of the sigmoid function:

import matplotlib.pyplot as plt, numpy as np

def sigmoid(x):

 return 1 / (1 + np.exp(-x))

def df(x):

 return x * (1-x)

if __name__ == "__main__":

 x = np.arange(-10., 10., 0.2)

 y, y_dx = sigmoid(x), df(x)

 f, axarr = plt.subplots(3, sharex=True)

 axarr[0].plot(x, y, color='lime')

 axarr[0].set_xlabel('x')

 axarr[0].set_ylabel('f(x)')

 axarr[0].set_title('Sigmoid Function')

 axarr[1].plot(x, y_dx, color='coral')

 axarr[1].set_xlabel('x')

Chapter 4 Gradient Descent

105

 axarr[1].set_ylabel('dy/dx(x)')

 axarr[1].set_title('Derivative of f(x)')

 axarr[2].set_xlabel('x')

 axarr[2].set_ylabel('GD')

 axarr[2].set_title('local minimum')

 iterations, cur_x, gamma, precision = 0, 0.01, 0.01, 0.00001

 previous_step_size = cur_x

 while previous_step_size > precision:

 prev_x = cur_x

 cur_x += -gamma * df(prev_x)

 previous_step_size = abs(cur_x - prev_x)

 iterations += 1

 plt.plot(prev_x, cur_x, "o")

 f.subplots_adjust(hspace=0.3)

 f.tight_layout()

 print ('minimum:', cur_x, '\niterations:', iterations)

 plt.show()

Chapter 4 Gradient Descent

106

Output:

The code begins by importing matplotlib and numpy. It continues with

functions sigmoid(x) and df(x), which represent the sigmoid function and

its derivative algorithmically. The main block begins by creating data for

f(x) and f'(x). It continues by creating subplots for f(x), f'(x), and the local

minimum. In this case, using subplots was fine for visualization. It is easy

to see from the f(x) and f'(x) plots (Figure 4-5) that the local minimum is

close to 0. Next, the code runs GD to find the local minimum and plots it.

Figure 4-5.  Subplot of f(x), f'(x), and local minimum

Chapter 4 Gradient Descent

107

Again, the starting point for GD, cur_x, was found by trial and error. If

you start cur_x further from the local minimum (you can estimate this by

looking at the subplot of f'(x)), the number of iterations increases because

it takes longer for the GD algorithm to converge on the local minimum. As

expected, the local minimum is approximately 0.

The 2nd example finds the local maximum of the sigmoid function:

import matplotlib.pyplot as plt, numpy as np

def sigmoid(x):

 return 1 / (1 + np.exp(-x))

def df(x):

 return x * (1-x)

if __name__ == "__main__":

 x = np.arange(-10., 10., 0.2)

 y, y_dx = sigmoid(x), df(x)

 f, axarr = plt.subplots(3, sharex=True)

 axarr[0].plot(x, y, color='lime')

 axarr[0].set_xlabel('x')

 axarr[0].set_ylabel('f(x)')

 axarr[0].set_title('Sigmoid Function')

 axarr[1].plot(x, y_dx, color='coral')

 axarr[1].set_xlabel('x')

 axarr[1].set_ylabel('dy/dx(x)')

 axarr[1].set_title('Derivative of f(x)')

 axarr[2].set_xlabel('x')

 axarr[2].set_ylabel('GD')

 axarr[2].set_title('local maximum')

 iterations, cur_x, gamma, precision = 0, 0.01, 0.01, 0.00001

 previous_step_size = cur_x

Chapter 4 Gradient Descent

108

 while previous_step_size > precision:

 prev_x = cur_x

 cur_x += -gamma * -df(prev_x)

 previous_step_size = abs(cur_x - prev_x)

 iterations += 1

 plt.plot(prev_x, cur_x, "o")

 f.subplots_adjust(hspace=0.3)

 f.tight_layout()

 print ('maximum:', cur_x, '\niterations:', iterations)

 plt.show()

Output:

Figure 4-6.  Subplot of f(x), f'(x), and local maximum

Chapter 4 Gradient Descent

109

The code begins by importing matplotlib and numpy. It continues with

functions sigmoid(x) and df(x), which represent the sigmoid function and

its derivative algorithmically. The main block begins by creating data for

f(x) and f'(x). It continues by creating subplots for f(x), f'(x), and the local

maximum (Figure 4-6). It is easy to see from the f(x) plot that the local

maximum is close to 1. Next, the code runs GD to find the local maximum

and plots it. Again, the starting point for GD, cur_x, was found by trial and

error. If you start cur_x further from the local maximum (you can estimate

this by looking at the subplot of f(x)), the number of iterations increases

because it takes longer for the GD algorithm to converge on the local

maximum. As expected, the local maximum is approximately 1.

�Euclidean Distance Minimization
Controlling for Step Size
Euclidean distance is the ordinary straight-line distance between two

points in Euclidean space. With this distance, Euclidean space becomes

a metric space. The associated norm is the Euclidean norm (EN). The

EN assigns each vector the length of its arrow. So, EN is really just the

magnitude of a vector. A vector space on which a norm is defined is the

normed vector space.

To find the local minimum of f(x) in three-dimensional (3-D) space,

the 1st step is to find the minimum for all 3-D vectors. The 2nd step is

to create a random 3-D vector [x, y, z]. The 3rd step is to pick a random

starting point, and then take tiny steps in the opposite direction of the

gradient f'(x) until a point is reached where the gradient is very small. Each

tiny step (from the current vector to the next vector) is measured with the

ED metric. The ED metric is the distance between two points in Euclidean

space. The metric is required because we need to know how to move

for each tiny step. So, the ED metric supplements GD to find the local

minimum in 3-D space.

Chapter 4 Gradient Descent

110

The code example finds the local minimum of the sigmoid function in

3-D space:

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

import random, numpy as np

from scipy.spatial import distance

def step(v, direction, step_size):

 return [v_i + step_size * direction_i

 for v_i, direction_i in zip(v, direction)]

def sigmoid_gradient(v):

 return [v_i * (1-v_i) for v_i in v]

def mod_vector(v):

 for i, v_i in enumerate(v):

 if v_i == float("inf") or v_i == float("-inf"):

 v[i] = random.randint(-1, 1)

 return v

if __name__ == "__main__":

 v = [random.randint(-10, 10) for i in range(3)]

 tolerance = 0.0000001

 iterations = 1

 fig = plt.figure('Euclidean')

 ax = fig.add_subplot(111, projection='3d')

 while True:

 gradient = sigmoid_gradient(v)

 next_v = step(v, gradient, -0.01)

 xs = gradient[0]

 ys = gradient[1]

 zs = gradient[2]

 ax.scatter(xs, ys, zs, c='lime', marker='o')

Chapter 4 Gradient Descent

111

 v = mod_vector(v)

 next_v = mod_vector(next_v)

 test_v = distance.euclidean(v, next_v)

 if test_v < tolerance:

 break

 v = next_v

 iterations += 1

 print ('minimum:', test_v, '\niterations:', iterations)

 ax.set_xlabel('X axis')

 ax.set_ylabel('Y axis')

 ax.set_zlabel('Z axis')

 plt.tight_layout()

 plt.show()

Output:

Figure 4-7.  3-D rendition of local minimum

Chapter 4 Gradient Descent

112

The code begins by importing matplotlib, mpl_toolkits, random,

numpy, and scipy libraries. Function step() moves a vector in a direction

(based on the gradient), by a step size. Function sigmoid_gradient() is

the f'(sigmoid) returned as a point in 3-D space. Function mod_vector()

ensures that an erroneous vector generated by the simulation is handled

properly. The main block begins by creating a randomly generated 3-D

vector [x, y, z] as a starting point for the simulation. It continues by creating

a tolerance (precision). A smaller tolerance results in a more accurate

result. A subplot is created to hold a 3-D rendering of the local minimum

(Figure 4-7). The GD simulation creates a set of 3-D vectors influenced by

the sigmoid gradient until the gradient is very small. The size (magnitude)

of the gradient is calculated by the ED metric. The local minimum, as

expected is close to 0.

�Stabilizing Euclidean Distance Minimization
with Monte Carlo Simulation
The Euclidean distance experiment in the previous example is anchored

by a stochastic process. Namely, the starting vector v is stochastically

generated by randomint(). As a result, each run of the GD experiment

generates a different result for number of iterations. From Chapter 2,

we already know that Monte Carlo simulation (MCS) efficiently models

stochastic (random) processes. However, MCS can also stabilize stochastic

experiments.

The code example first wraps the GD experiment in a loop that runs

n number of simulations. With n simulations, an average number of

iterations is calculated. The resultant code is then wrapped in another

loop that runs m trials. With m trials, an average gap between each average

number of iterations, is calculated. Gap is calculated by subtracting the

minimum from the maximum average iteration. The smaller the gap,

the more stable (accurate) the result. To increase accuracy, increase

Chapter 4 Gradient Descent

113

simulations (n). The only limitation is computing power. That is, running

1,000 simulations takes a lot more computing power than 100. Stable

(accurate) results allow comparison to alternative experiments.

import random, numpy as np

from scipy.spatial import distance

def step(v, direction, step_size):

 return [v_i + step_size * direction_i

 for v_i, direction_i in zip(v, direction)]

def sigmoid_gradient(v):

 return [v_i * (1-v_i) for v_i in v]

def mod_vector(v):

 for i, v_i in enumerate(v):

 if v_i == float("inf") or v_i == float("-inf"):

 v[i] = random.randint(-1, 1)

 return v

if __name__ == "__main__":

 trials= 10

 sims = 10

 avg_its = []

 for _ in range(trials):

 its = []

 for _ in range(sims):

 v = [random.randint(-10, 10) for i in range(3)]

 tolerance = 0.0000001

 iterations = 0

 while True:

 gradient = sigmoid_gradient(v)

 next_v = step(v, gradient, -0.01)

 v = mod_vector(v)

Chapter 4 Gradient Descent

114

 next_v = mod_vector(next_v)

 test_v = distance.euclidean(v, next_v)

 if test_v < tolerance:

 break

 v = next_v

 iterations += 1

 its.append(iterations)

 a = round(np.mean(its))

 avg_its.append(a)

 gap = np.max(avg_its) - np.min(avg_its)

 print (trials, 'trials with', sims, 'simulations each:')

 print ('gap', gap)

 print ('avg iterations', round(np.mean(avg_its)))

Output:

Output is for 10, 100, and 1,000 simulations. By running 1,000

simulations ten times (trials), the gap is down to 13. So, confidence is

high that the number of iterations required to minimize the function is

close to 1,089. We can further stabilize by wrapping the code in another

loop to decrease variation in gap and number of iterations. However,

computer processing time becomes an issue. Leveraging MCS for this type

of experiment makes a strong case for cloud computing. It may be tough to

get your head around this application of MCS, but it is a very powerful tool

for working with and solving data science problems.

Chapter 4 Gradient Descent

115

�Substituting a NumPy Method to Hasten
Euclidean Distance Minimization
Since numpy arrays are faster than Python lists, it follows that using a

numpy method would be more efficient for calculating Euclidean distance.

The code example substitutes np.linalg.norm() for distance.euclidean() to

calculate Euclidean distance for the GD experiment.

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

import random, numpy as np

def step(v, direction, step_size):

 return [v_i + step_size * direction_i

 for v_i, direction_i in zip(v, direction)]

def sigmoid_gradient(v):

 return [v_i * (1-v_i) for v_i in v]

def round_v(v):

 return np.round(v, decimals=3)

if __name__ == "__main__":

 v = [random.randint(-10, 10) for i in range(3)]

 tolerance = 0.0000001

 iterations = 1

 fig = plt.figure('norm')

 ax = fig.add_subplot(111, projection='3d')

 while True:

 gradient = sigmoid_gradient(v)

 next_v = step(v, gradient, -0.01)

 round_gradient = round_v(gradient)

 xs = round_gradient[0]

 ys = round_gradient[1]

Chapter 4 Gradient Descent

116

 zs = round_gradient[2]

 ax.scatter(xs, ys, zs, c='lime', marker='o')

 norm_v = np.linalg.norm(v)

 norm_next_v = np.linalg.norm(next_v)

 test_v = norm_v - norm_next_v

 if test_v < tolerance:

 break

 v = next_v

 iterations += 1

 print ('minimum:', test_v, '\niterations:', iterations)

 ax.set_xlabel('X axis')

 ax.set_ylabel('Y axis')

 ax.set_zlabel('Z axis')

 plt.show()

Output:

Figure 4-8.  Numpy 3-D rendition of local minimum

Chapter 4 Gradient Descent

117

The number of iterations is much lower at 31 (Figure 4-8). However,

given that the GD experiment is stochastic, we can use MCS for objective

comparison.

Using the same MCS methodology, the code example first wraps the

GD experiment in a loop that runs n number of simulations. The resultant

code is then wrapped in another loop that runs m trials.

import random, numpy as np

def step(v, direction, step_size):

 return [v_i + step_size * direction_i

 for v_i, direction_i in zip(v, direction)]

def sigmoid_gradient(v):

 return [v_i * (1-v_i) for v_i in v]

def round_v(v):

 return np.round(v, decimals=3)

if __name__ == "__main__":

 trials= 10

 sims = 10

 avg_its = []

 for _ in range(trials):

 its = []

 for _ in range(sims):

 v = [random.randint(-10, 10) for i in range(3)]

 tolerance = 0.0000001

 iterations = 0

 while True:

 gradient = sigmoid_gradient(v)

 next_v = step(v, gradient, -0.01)

 norm_v = np.linalg.norm(v)

 norm_next_v = np.linalg.norm(next_v)

Chapter 4 Gradient Descent

118

 test_v = norm_v - norm_next_v

 if test_v < tolerance:

 break

 v = next_v

 iterations += 1

 its.append(iterations)

 a = round(np.mean(its))

 avg_its.append(a)

 gap = np.max(avg_its) - np.min(avg_its)

 print (trials, 'trials with', sims, 'simulations each:')

 print ('gap', gap)

 print ('avg iterations', round(np.mean(avg_its)))

Output:

Processing is much faster using numpy. The average number of

iterations is close to 193. As such, using the numpy alternative for

calculating Euclidean distance is more than five times faster!

�Stochastic Gradient Descent Minimization
and Maximization
Up to this point in the chapter, optimization experiments used batch GD.

Batch GD computes the gradient using the whole dataset. Stochastic GD

computes the gradient using a single sample, so it is computationally

Chapter 4 Gradient Descent

119

much faster. It is called stochastic GD because the gradient is

randomly determined. However, unlike batch GD, stochastic GD is an

approximation. If the exact gradient is required, stochastic GD is not

optimal. Another issue with stochastic GD is that it can hover around the

minimum forever without actually converging. So, it is important to plot

progress of the simulation to see what is happening.

Let’s change direction and optimize another important function—

residual sum of squares (RSS). A RSS function is a statistical technique

that measures the amount of error (variance) remaining between the

regression function and the data set. Regression analysis is an algorithm

that estimates relationships between variables. It is widely used for

prediction and forecasting. It is also a popular modeling and predictive

algorithm for data science applications.

The 1st code example generates a sample, runs the GD experiment n

times, and processes the sample randomly:

import matplotlib.pyplot as plt

import random, numpy as np

def rnd():

 return [random.randint(-10,10) for i in range(3)]

def random_vectors(n):

 ls = []

 for v in range(n):

 ls.append(rnd())

 return ls

def sos(v):

 return sum(v_i ** 2 for v_i in v)

def sos_gradient(v):

 return [2 * v_i for v_i in v]

Chapter 4 Gradient Descent

120

def in_random_order(data):

 indexes = [i for i, _ in enumerate(data)]

 random.shuffle(indexes)

 for i in indexes:

 yield data[i]

if __name__ == "__main__":

 v, x, y = rnd(), random_vectors(3), random_vectors(3)

 data = list(zip(x, y))

 theta = v

 alpha, value = 0.01, 0

 min_theta, min_value = None, float("inf")

 iterations_with_no_improvement = 0

 n, x = 30, 1

 for i, _ in enumerate(range(n)):

 y = np.linalg.norm(theta)

 plt.scatter(x, y, c='r')

 x = x + 1

 s = []

 for x_i, y_i in data:

 s.extend([sos(theta), sos(x_i), sos(y_i)])

 value = sum(s)

 if value < min_value:

 min_theta, min_value = theta, value

 iterations_with_no_improvement = 0

 alpha = 0.01

 else:

 iterations_with_no_improvement += 1

 alpha *= 0.9

 g = []

Chapter 4 Gradient Descent

121

 for x_i, y_i in in_random_order(data):

 g.extend([sos_gradient(theta), sos_gradient(x_i),

 sos_gradient(y_i)])

 for v in g:

 �theta = np.around(np.subtract(theta,alpha*np.

array(v)),3)

 g = []

 print ('minimum:', np.around(min_theta, 4),

 'with', i+1, 'iterations')

 print ('iterations with no improvement:',

 iterations_with_no_improvement)

 print ('magnitude of min vector:', np.linalg.norm(min_theta))

 plt.show()

Output:

Figure 4-9.  RSS minimization

Chapter 4 Gradient Descent

122

The code begins by importing matplotlib, random, and numpy. It

continues with function rnd(), which returns a list of random integers from

–10 to 10. Function random_vectors() generates a list (random sample)

of n numbers. Function sos() returns the RSS for a vector. Function sos_

gradient() returns the derivative (gradient) of RSS for a vector. Function

in_random_order() generates a list of randomly shuffled indexes. This

function adds the stochastic flavor to the GD algorithm. The main block

begins by generating a random vector v as the starting point for the

simulation. It continues by creating a sample of x and y vectors of size 3.

Next, the vector is assigned to theta, which is a common name for a vector

of some general probability distribution. We can call the vector anything

we want, but a common data science problem is to find the value(s) of

theta. The code continues with a fixed step size alpha, minimum theta

value, minimum ending value, iterations with no improvement, number of

simulations n, and a plot value for the x-coordinate (Figure 4-9).

The simulation begins by assigning y the magnitude of theta. Next, it

plots the current x and y coordinates. The x-coordinate is incremented

by 1 to plot the convergence to the minimum for each y-coordinate. The

next block of code finds the RSS for each theta, and the sample of x and

y values. This value determines if the simulation is hovering around the

local minimum rather than converging. The final part of the code traverses

the sample data points in random (stochastic) order, finds the gradient of

theta, x and y, places these three values in list g, and traverses this vector to

find the next theta value.

Whew! This is not simple, but this is how stochastic GD operates.

Notice that the minimum generated is 2.87, which is not the true minimum

of 0. So, stochastic GD requires few iterations but does not produce the

true minimum.

The previous simulation can be refined by adjusting the algorithm for

finding the next theta. In the previous example, the next theta is calculated

for the gradient based on the current theta, x value, and y value for each

sample. However, the actual new theta is based on the 3rd data point in the

Chapter 4 Gradient Descent

123

sample. So, the 2nd example is refined by taking the minimum theta from

the entire sample rather than the 3rd data point:

import matplotlib.pyplot as plt

import random, numpy as np

def rnd():

 return [random.randint(-10,10) for i in range(3)]

def random_vectors(n):

 ls = []

 for v in range(n):

 ls.append([random.randint(-10,10) for i in range(3)])

 return ls

def sos(v):

 return sum(v_i ** 2 for v_i in v)

def sos_gradient(v):

 return [2 * v_i for v_i in v]

def in_random_order(data):

 indexes = [i for i, _ in enumerate(data)]

 random.shuffle(indexes)

 for i in indexes:

 yield data[i]

if __name__ == "__main__":

 v, x, y = rnd(), random_vectors(3), random_vectors(3)

 data = list(zip(x, y))

 theta = v

 alpha, value = 0.01, 0

 min_theta, min_value = None, float("inf")

 iterations_with_no_improvement = 0

 n, x = 60, 1

Chapter 4 Gradient Descent

124

 for i, _ in enumerate(range(n)):

 y = np.linalg.norm(theta)

 plt.scatter(x, y, c='r')

 x = x + 1

 s = []

 for x_i, y_i in data:

 s.extend([sos(theta), sos(x_i), sos(y_i)])

 value = sum(s)

 if value < min_value:

 min_theta, min_value = theta, value

 iterations_with_no_improvement = 0

 alpha = 0.01

 else:

 iterations_with_no_improvement += 1

 alpha *= 0.9

 g, t, m = [], [], []

 for x_i, y_i in in_random_order(data):

 g.extend([sos_gradient(theta), sos_gradient(x_i),

 sos_gradient(y_i)])

 m = np.around([np.linalg.norm(x) for x in g], 2)

 for v in g:

 �theta = np.around(np.subtract(theta,alpha*np.

array(v)),3)

 t.append(np.around(theta,2))

 mm = np.argmin(m)

 theta = t[mm]

 g, m, t = [], [], []

 print ('minimum:', np.around(min_theta, 4),

 'with', i+1, 'iterations')

Chapter 4 Gradient Descent

125

 print ('iterations with no improvement:',

 iterations_with_no_improvement)

 print ('magnitude of min vector:', np.linalg.norm(min_theta))

 plt.show()

Output:

The only difference in the code is toward the bottom where the

minimum theta is calculated (Figure 4-10). Although it took 60 iterations,

the minimum is much closer to 0 and much more stable. That is, the prior

example deviates quite a bit more each time the experiment is run.

Figure 4-10.  Modified RSS minimization

Chapter 4 Gradient Descent

126

The 3rd example finds the maximum:

import matplotlib.pyplot as plt

import random, numpy as np

def rnd():

 return [random.randint(-10,10) for i in range(3)]

def random_vectors(n):

 ls = []

 for v in range(n):

 ls.append([random.randint(-10,10) for i in range(3)])

 return ls

def sos_gradient(v):

 return [2 * v_i for v_i in v]

def negate(function):

 def new_function(*args, **kwargs):

 return np.negative(function(*args, **kwargs))

 return new_function

def in_random_order(data):

 indexes = [i for i, _ in enumerate(data)]

 random.shuffle(indexes)

 for i in indexes:

 yield data[i]

if __name__ == "__main__":

 v, x, y = rnd(), random_vectors(3), random_vectors(3)

 data = list(zip(x, y))

 theta, alpha = v, 0.01

 neg_gradient = negate(sos_gradient)

 n, x = 100, 1

Chapter 4 Gradient Descent

127

 for i, row in enumerate(range(n)):

 y = np.linalg.norm(theta)

 plt.scatter(x, y, c='r')

 x = x + 1

 g = []

 for x_i, y_i in in_random_order(data):

 g.extend([neg_gradient(theta), neg_gradient(x_i),

 neg_gradient(y_i)])

 for v in g:

 �theta = np.around(np.subtract(theta,alpha*np.

array(v)),3)

 g = []

 print ('maximum:', np.around(theta, 4),

 'with', i+1, 'iterations')

 print ('magnitude of max vector:', np.linalg.norm(theta))

 plt.show()

Output:

Chapter 4 Gradient Descent

128

The only difference in the code from the 1st example is the negate()

function, which negates the gradient to find the maximum. Since the

maximum of RSS is infinity (we can tell by the visualization in Figure 4-11),

we can stop at 100 iterations. Try 1,000 iterations and see what happens.

Figure 4-11.  RSS maximization

Chapter 4 Gradient Descent

129© David Paper 2018
D. Paper, Data Science Fundamentals for Python and MongoDB,
https://doi.org/10.1007/978-1-4842-3597-3_5

CHAPTER 5

Working with Data
Working with data details the earliest processes of data science problem

solving. The 1st step is to identify the problem, which determines all else

that needs to be done. The 2nd step is to gather data. The 3rd step is to

wrangle (munge) data, which is critical. Wrangling is getting data into a

form that is useful for machine learning and other data science problems.

Of course, wrangled data will probably have to be cleaned. The 4th step

is to visualize the data. Visualization helps you get to know the data and,

hopefully, identify patterns.

�One-Dimensional Data Example
The code example generates visualizations of two very common data

distributions—uniform and normal. The uniform distribution has constant

probability. That is, all events that belong to the distribution are equally

probable. The normal distribution is symmetrical about the center, which

means that 50% of its values are less than the mean and 50% of its values

are greater than the mean. Its shape resembles a bell curve. The normal

distribution is extremely important because it models many naturally

occurring events.

130

import matplotlib.pyplot as plt

import numpy as np

if __name__ == "__main__":

 plt.figure('Uniform Distribution')

 uniform = np.random.uniform(-3, 3, 1000)

 �count, bins, ignored = plt.hist(uniform, 20, facecolor='lime')

 plt.xlabel('Interval: [-3, 3]')

 plt.ylabel('Frequency')

 plt.title('Uniform Distribution')

 plt.axis([-3,3,0,100])

 plt.grid(True)

 plt.figure('Normal Distribution')

 normal = np.random.normal(0, 1, 1000)

 �count, bins, ignored = plt.hist(normal, 20,

facecolor='fuchsia')

 plt.xlabel('Interval: [-3, 3]')

 plt.ylabel('Frequency')

 plt.title('Normal Distribution')

 plt.axis([-3,3,0,140])

 plt.grid(True)

 plt.show()

Chapter 5 Working with Data

131

Output:

Figure 5-1.  Uniform distribution

Figure 5-2.  Normal distribution

Chapter 5 Working with Data

132

The code example begins by importing matplotlib and numpy. The

main block begins by creating a figure and data for a uniform distribution.

Next, a histogram is created and plotted based on the data. A figure for a

normal distribution is then created and plotted. See Figures 5-1 and 5-2.

�Two-Dimensional Data Example
Modeling 2-D data offers a more realistic picture of naturally occurring

events. The code example compares two normally distributed distributions of

randomly generated data with the same mean and standard deviation (SD).

SD measures the amount of variation (dispersion) of a set of data values.

Although both data sets are normally distributed with the same mean and

SD, each has a very different joint distribution (correlation). Correlation is the

interdependence of two variables.

import matplotlib.pyplot as plt

import matplotlib.gridspec as gridspec

import numpy as np, random

from scipy.special import ndtri

def inverse_normal_cdf(r):

 return ndtri(r)

def random_normal():

 return inverse_normal_cdf(random.random())

def scatter(loc):

 plt.scatter(xs, ys1, marker='.', color='black', label='ys1')

 plt.scatter(xs, ys2, marker='.', color='gray', label='ys2')

 plt.xlabel('xs')

 plt.ylabel('ys')

 plt.legend(loc=loc)

 plt.tight_layout()

Chapter 5 Working with Data

133

if __name__ == "__main__":

 xs = [random_normal() for _ in range(1000)]

 ys1 = [x + random_normal() / 2 for x in xs]

 ys2 = [-x + random_normal() / 2 for x in xs]

 gs = gridspec.GridSpec(2, 2)

 fig = plt.figure()

 ax1 = fig.add_subplot(gs[0,0])

 plt.title('ys1 data')

 n, bins, ignored = plt.hist(ys1, 50, normed=1,

 �facecolor='chartreuse',

alpha=0.75)

 ax2 = fig.add_subplot(gs[0,1])

 plt.title('ys2 data')

 n, bins, ignored = plt.hist(ys2, 50, normed=1,

 �facecolor='fuchsia',

alpha=0.75)

 ax3 = fig.add_subplot(gs[1,:])

 plt.title('Correlation')

 scatter(6)

 print (np.corrcoef(xs, ys1)[0, 1])

 print (np.corrcoef(xs, ys2)[0, 1])

 plt.show()

Chapter 5 Working with Data

134

Output:

The code example begins by importing matplotlib, numpy, random,

and scipy libraries. Method gridspec specifies the geometry of a grid

where a subplot will be placed. Method ndtri returns the standard

normal cumulative distribution function (CDF). CDF is the probability

that a random variable X takes on a value less than or equal to x, where

x represents the area under a normal distribution. The code continues

with three functions. Function inverse_normal_cdf() returns the CDF

based on a random variable. Function random_normal() calls function

inverse_normal_cdf() with a randomly generated value X and returns the

CDF. Function scatter() creates a scatter plot. The main block begins by

Figure 5-3.  Subplot of normal distributions and correlation

Chapter 5 Working with Data

135

creating randomly generated x and y values xs, ys1, and ys2. A gridspec()

is created to hold the distributions. Histograms are created for xs, ys1

and xs, ys2 data, respectively. Next, a correlation plot is created for both

distributions. Finally, correlations are generated for the two distributions.

Figure 5-3 shows plots.

The code example spawns two important lessons. First, creating a set

of randomly generated numbers with ndtri() creates a normally distributed

dataset. That is, function ndtri() returns the CDF of a randomly generated

value. Second, two normally distributed datasets are not necessarily

similar even though they look alike. In this case, the correlations are

opposite. So, visualization and correlations are required to demonstrate

the difference between the datasets.

�Data Correlation and Basic Statistics
Correlation is the extent that two or more variables fluctuate (move)

together. A correlation matrix is a table showing correlation coefficients

between sets of variables. Correlation coefficients measure strength of

association between two or more variables.

The code example creates three datasets with x and y coordinates,

calculates correlations, and plots. The 1st dataset represents a positive

correlation; the 2nd, a negative correlation; and the 3rd, a weak correlation.

import random, numpy as np

import matplotlib.pyplot as plt

import matplotlib.gridspec as gridspec

if __name__ == "__main__":

 np.random.seed(0)

 x = np.random.randint(0, 50, 1000)

 y = x + np.random.normal(0, 10, 1000)

Chapter 5 Working with Data

136

 print ('highly positive:\n', np.corrcoef(x, y))

 gs = gridspec.GridSpec(2, 2)

 fig = plt.figure()

 ax1 = fig.add_subplot(gs[0,0])

 plt.title('positive correlation')

 plt.scatter(x, y, color='springgreen')

 y = 100 - x + np.random.normal(0, 10, 1000)

 print ('\nhighly negative:\n', np.corrcoef(x, y))

 ax2 = fig.add_subplot(gs[0,1])

 plt.title('negative correlation')

 plt.scatter(x, y, color='crimson')

 y = np.random.normal(0, 10, 1000)

 print ('\nno/weak:\n', np.corrcoef(x, y))

 ax3 = fig.add_subplot(gs[1,:])

 plt.title('weak correlation')

 plt.scatter(x, y, color='peachpuff')

 plt.tight_layout()

 plt.show()

Chapter 5 Working with Data

137

Output:

Figure 5-4.  Subplot of correlations

The code example begins by importing random, numpy, and matplotlib

libraries. The main block begins by generating x and y coordinates with a

positive correlation and displaying the correlation matrix. It continues by

creating a grid to hold the subplot, the 1st subplot grid, and a scatterplot.

Next, x and y coordinates are created with a negative correlation and the

correlation matrix is displayed. The 2nd subplot grid is created and plotted.

Finally, x and y coordinates are created with a weak correlation and the

correlation matrix is displayed. The 3rd subplot grid is created and plotted,

and all three scatterplots are displayed. Figure 5-4 shows the plots.

Chapter 5 Working with Data

138

�Pandas Correlation and Heat Map Examples
Pandas is a Python package that provides fast, flexible, and expressive data

structures to make working with virtually any type of data easy, intuitive,

and practical in real-world data analysis. A DataFrame (df) is a 2-D labeled

data structure and the most commonly used object in pandas.

The 1st code example creates a correlation matrix with an associated

visualization:

import random, numpy as np, pandas as pd

import matplotlib.pyplot as plt

import matplotlib.cm as cm

import matplotlib.colors as colors

if __name__ == "__main__":

 np.random.seed(0)

 df = pd.DataFrame({'a': np.random.randint(0, 50, 1000)})

 df['b'] = df['a'] + np.random.normal(0, 10, 1000)

 df['c'] = 100 - df['a'] + np.random.normal(0, 5, 1000)

 df['d'] = np.random.randint(0, 50, 1000)

 colormap = cm.viridis

 colorlist = [colors.rgb2hex(colormap(i))

 for i in np.linspace(0, 1, len(df['a']))]

 df['colors'] = colorlist

 print (df.corr())

 �pd.plotting.scatter_matrix(�df, c=df['colors'],

diagonal='d',

 figsize=(10, 6))

 plt.show()

Chapter 5 Working with Data

139

Output:

Figure 5-5.  Correlation matrix visualization

The code example begins by importing random, numpy, pandas,

and matplotlib libraries. The main block begins by creating a df with four

columns populated by various random number possibilities. It continues

by creating a color map of the correlations between each column, printing

the correlation matrix, and plotting the color map (Figure 5-5).

We can see from the correlation matrix that the most highly correlated

variables are a and b (0.83), a and c (–0.95), and b and c (–0.79). From the

color map, we can see that a and b are positively correlated, a and c are

negatively correlated, and b and c are negatively correlated. However, the

actual correlation values are not apparent from the visualiztion.

Chapter 5 Working with Data

140

A Heat map is a graphical representation of data where individual

values in a matrix are represented as colors. It is a popular visualization

technique in data science. With pandas, a Heat map provides a

sophisticated visualization of correlations where each variable is

represented by its own color.

The 2nd code example uses a Heat map to visualize variable

correlations. You need to install library seaborn if you don’t already have it

installed on your computer (e.g., pip install seaborn).

import random, numpy as np, pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

if __name__ == "__main__":

 np.random.seed(0)

 df = pd.DataFrame({'a': np.random.randint(0, 50, 1000)})

 df['b'] = df['a'] + np.random.normal(0, 10, 1000)

 df['c'] = 100 - df['a'] + np.random.normal(0, 5, 1000)

 df['d'] = np.random.randint(0, 50, 1000)

 plt.figure()

 sns.heatmap(df.corr(), annot=True, cmap='OrRd')

 plt.show()

Chapter 5 Working with Data

141

Output:

Figure 5-6.  Heat map

The code begins by importing random, numpy, pandas, matplotlib,

and seaborn libraries. Seaborn is a Python visualization library based

on matplotlib. The main block begins by generating four columns of

data (variables), and plots a Heat map (Figure 5-6). Attribute cmap uses

a colormap. A list of matplotlib colormaps can be found at: https://

matplotlib.org/examples/color/colormaps_reference.html.

�Various Visualization Examples
The 1st code example introduces the Andrews curve, which is a way to

visualize structure in high-dimensional data. Data for this example is the

Iris dataset, which is one of the best known in the pattern recognition

literature. The Iris dataset consists of three different types of irises’ (Setosa,

Versicolour, and Virginica) petal and sepal lengths.

Andrews curves allow multivariate data plotting as a large number

of curves that are created using the attributes (variable) of samples as

coefficients. By coloring the curves differently for each class, it is possible

Chapter 5 Working with Data

https://matplotlib.org/examples/color/colormaps_reference.html
https://matplotlib.org/examples/color/colormaps_reference.html

142

to visualize data clustering. Curves belonging to samples of the same class

will usually be closer together and form larger structures. Raw data for the

iris dataset is located at the following URL:

https://raw.githubusercontent.com/pandas-dev/pandas/master/

pandas/tests/data/iris.csv

import matplotlib.pyplot as plt

import pandas as pd

from pandas.plotting import andrews_curves

if __name__ == "__main__":

 data = pd.read_csv('data/iris.csv')

 plt.figure()

 andrews_curves(data, 'Name',

 color=['b','mediumspringgreen','r'])

 plt.show()

Output:

Figure 5-7.  Andrews curves

Chapter 5 Working with Data

https://raw.githubusercontent.com/pandas-dev/pandas/master/pandas/tests/data/iris.csv
https://raw.githubusercontent.com/pandas-dev/pandas/master/pandas/tests/data/iris.csv

143

The code example begins by importing matplotlib and pandas. The

main block begins by reading the iris dataset into pandas df data. Next,

Andrews curves are plotted for each class—Iris-setosa, Iris-versicolor, and

Iris-virginica (Figure 5-7). From this visualization, it is difficult to see which

attributes distinctly define each class.

The 2nd code example introduces parallel coordinates:

import matplotlib.pyplot as plt

import pandas as pd

from pandas.plotting import parallel_coordinates

if __name__ == "__main__":

 data = pd.read_csv('data/iris.csv')

 plt.figure()

 parallel_coordinates(data, 'Name',

 color=['b','mediumspringgreen','r'])

 plt.show()

Output:

Figure 5-8.  Parallel coordinates

Chapter 5 Working with Data

144

Parallel coordinates is another technique for plotting multivariate

data. It allows visualization of clusters in data and estimation of other

statistics visually. Points are represented as connected line segments. Each

vertical line represents one attribute. One set of connected line segments

represents one data point. Points that tend to cluster appear closer together.

The code example begins by importing matplotlib and pandas. The

main block begins by reading the iris dataset into pandas df data. Next,

parallel coordinates are plotted for each class (Figure 5-8). From this

visualization, attributes PetalLength and PetalWidth are most distinct for

the three species (classes of Iris). So, PetalLength and PetalWidth are the

best classifiers for species of Iris. Andrews curves just don’t clearly provide

this important information.

Here is a useful URL:

http://wilkelab.org/classes/SDS348/2016_spring/worksheets/

class9.html

The 3rd code example introduces RadViz:

import matplotlib.pyplot as plt

import pandas as pd

from pandas.plotting import radviz

if __name__ == "__main__":

 data = pd.read_csv('data/iris.csv')

 plt.figure()

 radviz(data, 'Name',

 color=['b','mediumspringgreen','r'])

 plt.show()

Chapter 5 Working with Data

http://wilkelab.org/classes/SDS348/2016_spring/worksheets/class9.html
http://wilkelab.org/classes/SDS348/2016_spring/worksheets/class9.html

145

Output:

RadVis is yet another technique for visualizing multivariate data.

The code example begins by importing matplotlib and pandas. The

main block begins by reading the iris dataset into pandas df data.

Next, RadVis coordinates are plotted for each class (Figure 5-9). With

this visualization, it is not easy to see any distinctions. So, the parallel

coordinates technique appears to be the best of the three in terms of

recognizing variation (for this example).

Figure 5-9.  RadVis

Chapter 5 Working with Data

146

�Cleaning a CSV File with Pandas and JSON
The code example loads a dirty CSV file into a Pandas df and displays to

locate bad data. It then loads the same CSV file into a list of dictionary

elements for cleaning. Finally, the cleansed data is saved to JSON.

import csv, pandas as pd, json

def to_dict(d):

 return [dict(row) for row in d]

def dump_json(f, d):

 with open(f, 'w') as f:

 json.dump(d, f)

def read_json(f):

 with open(f) as f:

 return json.load(f)

if __name__ == "__main__":

 df = pd.read_csv("data/audio.csv")

 print (df, '\n')

 data = csv.DictReader(open('data/audio.csv'))

 d = to_dict(data)

 for row in d:

 if (row['pno'][0] not in ['a', 'c', 'p', 's']):

 if (row['pno'][0] == '8'):

 row['pno'] = 'a' + row['pno']

 elif (row['pno'][0] == '7'):

 row['pno'] = 'p' + row['pno']

 elif (row['pno'][0] == '5'):

 row['pno'] = 's' + row['pno']

Chapter 5 Working with Data

147

 if (row['color']) == '-':

 row['color'] = 'silver'

 if row['model'] == '-':

 row['model'] = 'S1'

 if (row['mfg']) == '100':

 row['mfg'] = 'Linn'

 if (row['desc'] == '0') and row['pno'][0] == 'p':

 row['desc'] = 'preamplifier'

 elif (row['desc'] == '-') and row['pno'][0] == 's':

 row['desc'] = 'speakers'

 if (row['price'][0] == '$'):

 row['price'] =\

 row['price'].translate({ord(i): None for i in '$,.'})

 json_file = 'data/audio.json'

 dump_json(json_file, d)

 data = read_json(json_file)

 for i, row in enumerate(data):

 if i < 5:

 print (row)

Output:

Chapter 5 Working with Data

148

The code example begins by importing csv, pandas, and json libraries.

Function to_dict() converts a list of OrderedDict elements to a list of

regular dictionary elements for easier processing. Function dump_json()

saves data to a JSON file. Function read_json() reads JSON data into a

Python list. The main block begins by loading a CSV file into a Pandas df

and displaying it to visualize dirty data. It continues by loading the same

CSV file into a list of dictionary elements for easier cleansing. Next, all

dirty data is cleansed. The code continues by saving the cleansed data to

JSON file audio.json. Finally, audio.json is loaded and a few records are

displayed to ensure that everything worked properly.

�Slicing and Dicing
Slicing and dicing is breaking data into smaller parts or views to better

understand and present it as information in a variety of different and

useful ways. A slice in multidimensional arrays is a column of data

corresponding to a single value for one or more members of the dimension

of interest. While a slice filters on a particular attribute, a dice is like a

zoom feature that selects a subset of all dimensions, but only for specific

values of the dimension.

The code example loads audio.json into a Pandas df, slices data by

column and row, and displays:

import pandas as pd

if __name__ == "__main__":

 df = pd.read_json("data/audio.json")

 amps = df[df.desc == 'amplifier']

 print (amps, '\n')

 price = df.query('price >= 40000')

 print (price, '\n')

 between = df.query('4999 < price < 6000')

 print (between, '\n')

Chapter 5 Working with Data

149

 row = df.loc[[0, 10, 19]]

 print (row)

Output:

The code example begins by importing Pandas. The main block begins

by loading audio.json into a Pandas df. Next, the df is sliced by amplifier

from the desc column. The code continues by slicing by the price column

for equipment more expensive than $40,000. The next slice is by price

column for equipment between $5,000 and $6,000. The final slice is by

rows 0, 10, and 19.

�Data Cubes
A data cube is an n-dimensional array of values. Since it is hard to

conceptualize an n-dimensional cube, most are 3-D in practice.

Let’s build a cube that holds three stocks—GOOGL, AMZ, and MKL. For

each stock, include five days of data. Each day includes data for open,

high, low, close, adj close, and volume values. So, the three dimensions are

stock, day, and values. Data was garnered from actual stock quotes.

Chapter 5 Working with Data

150

The code example creates a cube, saves it to a JSON file, reads the

JSON, and displays some information:

import json

def dump_json(f, d):

 with open(f, 'w') as f:

 json.dump(d, f)

def read_json(f):

 with open(f) as f:

 return json.load(f)

def rnd(n):

 return '{:.2f}'.format(n)

if __name__ == "__main__":

 d = dict()

 googl = dict()

 googl['2017-09-25'] =\

 {'Open':939.450012, 'High':939.750000, 'Low':924.510010,

 �'Close':934.280029, 'Adj Close':934.280029,

'Volume':1873400}

 googl['2017-09-26'] =\

 {'Open':936.690002, 'High':944.080017, 'Low':935.119995,

 �'Close':937.429993, 'Adj Close':937.429993,

'Volume':1672700}

 googl['2017-09-27'] =\

 {'Open':942.739990, 'High':965.429993, 'Low':941.950012,

 �'Close':959.900024, 'Adj Close':959.900024,

'Volume':2334600}

 googl['2017-09-28'] =\

 {'Open':956.250000, 'High':966.179993, 'Low':955.549988,

 �'Close':964.809998, 'Adj Close':964.809998, 'Volume':1400900}

Chapter 5 Working with Data

151

 googl['2017-09-29'] =\

 {'Open':966.000000, 'High':975.809998, 'Low':966.000000,

 �'Close':973.719971, 'Adj Close':973.719971,

'Volume':2031100}

 amzn = dict()

 amzn['2017-09-25'] =\

 {'Open':949.309998, 'High':949.419983, 'Low':932.890015,

 �'Close':939.789978, 'Adj Close':939.789978,

'Volume':5124000}

 amzn['2017-09-26'] =\

 {'Open':945.489990, 'High':948.630005, 'Low':931.750000,

 �'Close':937.429993, 'Adj Close':938.599976,

'Volume':3564800}

 amzn['2017-09-27'] =\

 {'Open':948.000000, 'High':955.299988, 'Low':943.299988,

 �'Close':950.869995, 'Adj Close':950.869995,

'Volume':3148900}

 amzn['2017-09-28'] =\

 {'Open':951.859985, 'High':959.700012, 'Low':950.099976,

 �'Close':956.400024, 'Adj Close':956.400024,

'Volume':2522600}

 amzn['2017-09-29'] =\

 {'Open':960.109985, 'High':964.830017, 'Low':958.380005,

 �'Close':961.349976, 'Adj Close':961.349976,

'Volume':2543800}

 mkl = dict()

 mkl['2017-09-25'] =\

 {'Open':1056.199951, 'High':1060.089966, 'Low':1047.930054,

 �'Close':1050.250000, 'Adj Close':1050.250000,

'Volume':23300}

Chapter 5 Working with Data

152

 mkl['2017-09-26'] =\

 {'Open':1052.729980, 'High':1058.520020, 'Low':1045.000000,

 �'Close':1045.130005, 'Adj Close':1045.130005,

'Volume':25800}

 mkl['2017-09-27'] =\

 {'Open':1047.560059, 'High':1069.099976, 'Low':1047.010010,

 �'Close':1064.040039, 'Adj Close':1064.040039,

'Volume':21100}

 mkl['2017-09-28'] =\

 {'Open':1064.130005, 'High':1073.000000, 'Low':1058.079956,

 �'Close':1070.550049, 'Adj Close':1070.550049,

'Volume':23500}

 mkl['2017-09-29'] =\

 {'Open':1068.439941, 'High':1073.000000, 'Low':1060.069946,

 �'Close':1067.979980, 'Adj Close':1067.979980 ,

'Volume':20700}

 d['GOOGL'], d['AMZN'], d['MKL'] = googl, amzn, mkl

 json_file = 'data/cube.json'

 dump_json(json_file, d)

 d = read_json(json_file)

 s = ' '

 print ('\'Adj Close\' slice:')

 print (10*s, 'AMZN', s, 'GOOGL', s, 'MKL')

 print ('Date')

 �print ('2017-09-25', rnd(d['AMZN']['2017-09-25']

['Adj Close']),

 rnd(d['GOOGL']['2017-09-25']['Adj Close']),

 rnd(d['MKL']['2017-09-25']['Adj Close']))

 �print ('2017-09-26', rnd(d['AMZN']['2017-09-26']

['Adj Close']),

Chapter 5 Working with Data

153

 rnd(d['GOOGL']['2017-09-26']['Adj Close']),

 rnd(d['MKL']['2017-09-26']['Adj Close']))

 print �('2017-09-27', rnd(d['AMZN']['2017-09-27']

['Adj Close']),

 rnd(d['GOOGL']['2017-09-27']['Adj Close']),

 rnd(d['MKL']['2017-09-27']['Adj Close']))

 print �('2017-09-28', rnd(d['AMZN']['2017-09-28']

['Adj Close']),

 rnd(d['GOOGL']['2017-09-28']['Adj Close']),

 rnd(d['MKL']['2017-09-28']['Adj Close']))

 print �('2017-09-29', rnd(d['AMZN']['2017-09-29']

['Adj Close']),

 rnd(d['GOOGL']['2017-09-29']['Adj Close']),

 rnd(d['MKL']['2017-09-29']['Adj Close']))

Output:

The code example begins by importing json. Function dump_json()

and read_json() save and read JSON data respectively. The main block

creates a cube by creating a dictionary d, dictionaries for each stock,

and adding data by day and attribute to each stock dictionary. The code

continues by saving the cube to JSON file cube.json. Finally, the code reads

cube.json and displays a slice from the cube.

Chapter 5 Working with Data

154

�Data Scaling and Wrangling
Data scaling is changing type, spread, and/or position to compare data

that are otherwise incomparable. Data scaling is very common in data

science. Mean centering is the 1st technique, which transforms data by

subtracting out the mean. Normalization is the 2nd technique, which

transforms data to fall within the range between 0 and 1. Standardization is

the 3rd technique, which transforms data to zero mean and unit variance

(SD = 1), which is commonly referred to as standard normal.

The 1st code example generates and centers a normal distribution:

import numpy as np

import matplotlib.pyplot as plt

def rnd_nrml(m, s, n):

 return np.random.normal(m, s, n)

def ctr(d):

 return [x-np.mean(d) for x in d]

if __name__ == "__main__":

 mu, sigma, n, c1, c2, b = 10, 15, 100, 'pink',\

 'springgreen', True

 s = rnd_nrml(mu, sigma, n)

 plt.figure()

 ax = plt.subplot(211)

 ax.set_title('normal distribution')

 count, bins, ignored = plt.hist(s, 30, color=c1, normed=b)

 sc = ctr(s)

 ax = plt.subplot(212)

 ax.set_title('normal distribution "centered"')

 count, bins, ignored = plt.hist(sc, 30, color=c2, normed=b)

 plt.tight_layout()

 plt.show()

Chapter 5 Working with Data

155

Output:

Figure 5-10.  Subplot for centering data

The code example begins by importing numpy and matplotlib.

Function rnd_nrml() generates a normal distribution based on mean

(mu), SD (sigma), and n number of data points. Function ctr() subtracts

out the mean from every data point. The main block begins by creating

the normal distribution. The code continues by plotting the original and

centered distributions (Figure 5-10). Notice that the distributions are

exactly the same, but the 2nd distribution is centered with mean of 0.

The 2nd code example generates and normalizes a normal distribution:

import numpy as np

import matplotlib.pyplot as plt

def rnd_nrml(m, s, n):

 return np.random.normal(m, s, n)

def nrml(d):

 return [(x-np.amin(d))/(np.amax(d)-np.amin(d)) for x in d]

Chapter 5 Working with Data

156

if __name__ == "__main__":

 mu, sigma, n, c1, c2, b = 10, 15, 100, 'orchid',\

 'royalblue', True

 s = rnd_nrml(mu, sigma, n)

 plt.figure()

 ax = plt.subplot(211)

 ax.set_title('normal distribution')

 count, bins, ignored = plt.hist(s, 30, color=c1, normed=b)

 sn = nrml(s)

 ax = plt.subplot(212)

 ax.set_title('normal distribution "normalized"')

 count, bins, ignored = plt.hist(sn, 30, color=c2, normed=b)

 plt.tight_layout()

 plt.show()

Output:

Figure 5-11.  Subplot for normalizing data

Chapter 5 Working with Data

157

The code example begins by importing numpy and matplotlib.

Function rnd_nrml() generates a normal distribution based on mean (mu),

SD (sigma), and n number of data points. Function nrml() transforms data

to fall within the range between 0 and 1. The main block begins by creating

the normal distribution. The code continues by plotting the original and

normalized distributions (Figure 5-11). Notice that the distributions are

exactly the same, but the 2nd distribution is normalized between 0 and 1.

The 3rd code example transforms data to zero mean and unit variance

(standard normal):

import numpy as np, csv

import matplotlib.pyplot as plt

def rnd_nrml(m, s, n):

 return np.random.normal(m, s, n)

def std_nrml(d, m, s):

 return [(x-m)/s for x in d]

if __name__ == "__main__":

 mu, sigma, n, b = 0, 1, 1000, True

 c1, c2 = 'peachpuff', 'lime'

 s = rnd_nrml(mu, sigma, n)

 plt.figure(1)

 plt.title('standard normal distribution')

 count, bins, ignored = plt.hist(s, 30, color=c1, normed=b)

 plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *

 np.exp(- (bins - mu)**2 / (2 * sigma**2)),

 linewidth=2, color=c2)

 start1, start2 = 5, 600

 mu1, sigma1, n, b = 10, 15, 500, True

 x1 = np.arange(start1, n+start1, 1)

 y1 = rnd_nrml(mu1, sigma1, n)

 mu2, sigma2, n, b = 25, 5, 500, True

Chapter 5 Working with Data

158

 x2 = np.arange(start2, n+start2, 1)

 y2 = rnd_nrml(mu2, sigma2, n)

 plt.figure(2)

 ax = plt.subplot(211)

 ax.set_title('dataset1 (mu=10, sigma=15)')

 count, bins, ignored = plt.hist(y1, 30, color='r', normed=b)

 ax = plt.subplot(212)

 ax.set_title('dataset2 (mu=5, sigma=5)')

 count, bins, ignored = plt.hist(y2, 30, color='g', normed=b)

 plt.tight_layout()

 plt.figure(3)

 ax = plt.subplot(211)

 ax.set_title('Normal Distributions')

 g1, g2 = (x1, y1), (x2, y2)

 data = (g1, g2)

 colors = ('red', 'green')

 groups = ('dataset1', 'dataset2')

 for data, color, group in zip(data, colors, groups):

 x, y = data

 ax.scatter(x, y, alpha=0.8, c=color, edgecolors='none',

 s=30, label=group)

 plt.legend(loc=4)

 ax = plt.subplot(212)

 ax.set_title('Standard Normal Distributions')

 ds1 = (x1, std_nrml(y1, mu1, sigma1))

 y1_sn = ds1[1]

 ds2 = (x2, std_nrml(y2, mu2, sigma2))

 y2_sn = ds2[1]

 g1, g2 = (x1, y1_sn), (x2, y2_sn)

 data = (g1, g2)

Chapter 5 Working with Data

159

 for data, color, group in zip(data, colors, groups):

 x, y = data

 ax.scatter(x, y, alpha=0.8, c=color, edgecolors='none',

 s=30, label=group)

 plt.tight_layout()

 plt.show()

Output:

Figure 5-12.  Standard normal distribution

Chapter 5 Working with Data

160

Figure 5-14.  Normal and standard normal distributions

Figure 5-13.  Normal distributions

Chapter 5 Working with Data

161

The code example begins by importing numpy and matplotlib.

Function rnd_nrml() generates a normal distribution based on mean

(mu), SD (sigma), and n number of data points. Function std_nrml()

transforms data to standard normal. The main block begins by creating a

standard normal distribution as a histogram and a line (Figure 5-12). The

code continues by creating and plotting two different normally distributed

datasets (Figure 5-13). Next, both data sets are rescaled to standard

normal and plotted (Figure 5-14). Now, the datasets can be compared with

each other. Although the original plots of the datasets appear to be very

different, they are actually very similar distributions.

The 4th code example reads a CSV dataset, saves it to JSON, wrangles

it, and prints a few records. The URL for the data is: https://community.

tableau.com/docs/DOC-1236. However, the data on this site changes, so

please use the data from our website to work with this example:

import csv, json

def read_dict(f):

 return csv.DictReader(open(f))

def to_dict(d):

 return [dict(row) for row in d]

def dump_json(f, d):

 with open(f, 'w') as fout:

 json.dump(d, fout)

def read_json(f):

 with open(f) as f:

 return json.load(f)

Chapter 5 Working with Data

https://community.tableau.com/docs/DOC-1236
https://community.tableau.com/docs/DOC-1236
https://community.tableau.com/docs/DOC-1236
https://community.tableau.com/docs/DOC-1236

162

def mk_data(d):

 for i, row in enumerate(d):

 e = {}

 e['_id'] = i

 e['cust'] = row['Customer Name']

 e['item'] = row['Sub-Category']

 e['sale'] = rnd(row['Sales'])

 e['quan'] = row['Quantity']

 e['disc'] = row['Discount']

 e['prof'] = rnd(row['Profit'])

 e['segm'] = row['Segment']

 yield e

def rnd(v):

 return str(round(float(v),2))

if __name__ == "__main__":

 f= 'data/superstore.csv'

 d = read_dict(f)

 data = to_dict(d)

 jsonf = 'data/superstore.json'

 dump_json(jsonf, data)

 print ('"superstore" data added to JSON\n')

 json_data = read_json(jsonf)

 print ("{:20s} {:15s} {:10s} {:3s} {:5s} {:12s} {:10s}".

 format('CUSTOMER', 'ITEM', 'SALES', 'Q', 'DISC',

 'PROFIT', 'SEGMENT'))

 generator = mk_data(json_data)

 for i, row in enumerate(generator):

 if i < 10:

 �print (�"{:20s} {:15s}".format(row['cust'],

row['item']),

Chapter 5 Working with Data

163

 �"{:10s} {:3s}".format(row['sale'],

row['quan']),

 �"{:5s} {:12s}".format(row['disc'],

row['prof']),

 "{:10s}".format(row['segm']))

 else:

 break

Output:

The code example begins by importing csv and json libraries. Function

read_dict() reads a CSV file as an OrderedDict. Function to_dict() converts

an OrderedDict to a regular dictionary. Function dump_json() saves a

file to JSON. Function read_json() reads a JSON file. Function mk_data()

creates a generator object consisting of wrangled data from the JSON file.

Function rnd() rounds a number to 2 decimal places. The main block

begins by reading a CSV file and converting it to JSON. The code continues

by reading the newly created JSON data. Next, a generator object is created

from the JSON data. The generator object is critical because it speeds

processing orders of magnitude faster than a list. Since the dataset is close

to 10,000 records, speed is important. To verify that the data was created

correctly, the generator object is iterated a few times to print some of the

wrangled records.

Chapter 5 Working with Data

164

The 5th and final code example reads the JSON file created in the

previous example, wrangles it, and saves the wrangled data set to JSON:

import json

def read_json(f):

 with open(f) as f:

 return json.load(f)

def mk_data(d):

 for i, row in enumerate(d):

 e = {}

 e['_id'] = i

 e['cust'] = row['Customer Name']

 e['item'] = row['Sub-Category']

 e['sale'] = rnd(row['Sales'])

 e['quan'] = row['Quantity']

 e['disc'] = row['Discount']

 e['prof'] = rnd(row['Profit'])

 e['segm'] = row['Segment']

 yield e

def rnd(v):

 return str(round(float(v),2))

if __name__ == "__main__":

 jsonf = 'data/superstore.json'

 json_data = read_json(jsonf)

 l = len(list(mk_data(json_data)))

 generator = mk_data(json_data)

 jsonf= 'data/wrangled.json'

 with open(jsonf, 'w') as f:

 f.write('[')

 for i, row in enumerate(generator):

 j = json.dumps(row)

Chapter 5 Working with Data

165

 if i < l - 1:

 with open(jsonf, 'a') as f:

 f.write(j)

 f.write(',')

 else:

 with open(jsonf, 'a') as f:

 f.write(j)

 f.write(']')

 json_data = read_json(jsonf)

 for i, row in enumerate(json_data):

 if i < 5:

 print (row['cust'], row['item'], row['sale'])

 else:

 break

Output:

The code example imports json. Function read_json() reads a JSON

file. Function mk_data() creates a generator object consisting of wrangled

data from the JSON file. Function rnd() rounds a number to two decimal

places. The main block begins by reading a JSON file. A generator object

must be created twice. The 1st generator allows us to find the length

of the JSON file. The 2nd generator consists of wrangled data from the

JSON file. Next, the generator is traversed so we can create a JSON file of

the wrangled data. Although the generator object is created and can be

traversed very fast, it takes a bit of time to create a JSON file consisting

of close to 10,000 wrangled records. On my machine, it took a bit over 33

seconds, so be patient.

Chapter 5 Working with Data

167© David Paper 2018
D. Paper, Data Science Fundamentals for Python and MongoDB,
https://doi.org/10.1007/978-1-4842-3597-3_6

CHAPTER 6

Exploring Data
Exploring probes deeper into the realm of data. An important topic in

data science is dimensionality reduction. This chapter borrows munged

data from Chapter 5 to demonstrate how this works. Another topic is

speed simulation. When working with large datasets, speed is of great

importance. Big data is explored with a popular dataset used by academics

and industry. Finally, Twitter and Web scraping are two important data

sources for exploration.

�Heat Maps
Heat maps were introduced in Chapter 5, but one wasn’t created for the

munged dataset. So, we start by creating a Heat map visualization of the

wrangled.json data.

import json, pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

def read_json(f):

 with open(f) as f:

 return json.load(f)

def verify_keys(d, **kwargs):

 data = d[0].items()

 k1 = set([tup[0] for tup in data])

168

 s = kwargs.items()

 k2 = set([tup[1] for tup in s])

 return list(k1.intersection(k2))

def build_ls(k, d):

 return [{k: row[k] for k in (keys)} for row in d]

def get_rows(d, n):

 [print(row) for i, row in enumerate(d) if i < n]

def conv_float(d):

 return [dict([k, float(v)] for k, v in row.items()) for row

in d]

if __name__ == "__main__":

 f= 'data/wrangled.json'

 data = read_json(f)

 �keys = verify_keys(data, c1='sale', c2='quan', c3='disc',

c4='prof')

 heat = build_ls(keys, data)

 print ('1st row in "heat":')

 get_rows(heat, 1)

 heat = conv_float(heat)

 print ('\n1st row in "heat" converted to float:')

 get_rows(heat, 1)

 df = pd.DataFrame(heat)

 plt.figure()

 sns.heatmap(df.corr(), annot=True, cmap='OrRd')

 plt.show()

Output:

Chapter 6 Exploring Data

169

The code example begins by importing json, pandas, matplotlib,

and seaborn libraries. Function read_json() reads a JSON file. Function

verify_keys() ensures that the keys of interest exist in the JSON file. This

is important because we can only create a Heat map based on numerical

variables, and the only candidates from the JSON file are sales, quantity,

discount, and profit. Function build_ls() builds a list of dictionary elements

based on the numerical variables. Function get_rows() returns n rows

from a list. Function conv_float() converts dictionary elements to float.

The main block begins by reading JSON file wrangled.json. It continues

by getting keys for only numerical variables. Next, it builds list a list of

dictionary elements (heat) based on the appropriate keys. The code

displays the 1st row in heat to verify that all values are float. Since they are

not, the code converts them to float. The code then creates a df from heat

and plots the Heat map (Figure 6-1).

Figure 6-1.  Heat map

Chapter 6 Exploring Data

170

�Principal Component Analysis
Principal Component Analysis (PCA) finds the principal components

of data. Principal components represent the underlying structure in the

data because they uncover the directions where the data has the most

variance (most spread out). PCA leverages eigenvectors and eigenvalues to

uncover data variance. An eigenvector is a direction, while an eigenvalue

is a number that indicates variance (in the data) in the direction of the

eigenvector. The eigenvector with the highest eigenvalue is the principal

component. A dataset can be deconstructed into eigenvectors and

eigenvalues. The amount of eigenvectors (and eigenvalues) in a dataset

equals the number of dimensions. Since the wrangled.json dataset has

four dimensions (variables), it has four eigenvectors/eigenvalues.

The 1st code example runs PCA on the wrangled.json dataset.

However, PCA only works with numeric data, so the dataset is distilled

down to only those features.

import matplotlib.pyplot as plt, pandas as pd

import numpy as np, json, random as rnd

from sklearn.preprocessing import StandardScaler

from pandas.plotting import parallel_coordinates

def read_json(f):

 with open(f) as f:

 return json.load(f)

def unique_features(k, d):

 return list(set([dic[k] for dic in d]))

def sire_features(k, d):

 return [{k: row[k] for k in (k)} for row in d]

def sire_numeric(k, d):

 s = conv_float(sire_features(k, d))

 return s

Chapter 6 Exploring Data

171

def sire_sample(k, v, d, m):

 indices = np.arange(0, len(d), 1)

 s = [d[i] for i in indices if d[i][k] == v]

 n = len(s)

 num_keys = ['sale', 'quan', 'disc', 'prof']

 for i, row in enumerate(s):

 for k in num_keys:

 row[k] = float(row[k])

 s = rnd_sample(m, len(s), s)

 return (s, n)

def rnd_sample(m, n, d):

 indices = sorted(rnd.sample(range(n), m))

 return [d[i] for i in indices]

def conv_float(d):

 �return [dict([k, float(v)] for k, v in row.items()) for row

in d]

if __name__ == "__main__":

 f = 'data/wrangled.json'

 data = read_json(f)

 segm = unique_features('segm', data)

 print ('classes in "segm" feature:')

 print (segm)

 keys = ['sale', 'quan', 'disc', 'prof', 'segm']

 features = sire_features(keys, data)

 num_keys = ['sale', 'quan', 'disc', 'prof']

 numeric_data = sire_numeric(num_keys, features)

 k, v = "segm", "Home Office"

 m = 100

 s_home = sire_sample(k, v, features, m)

 v = "Consumer"

 s_cons = sire_sample(k, v, features, m)

Chapter 6 Exploring Data

172

 v = "Corporate"

 s_corp = sire_sample(k, v, features, m)

 print ('\nHome Office slice:', s_home[1])

 print('Consumer slice:', s_cons[1])

 print ('Coporate slice:', s_corp[1])

 print ('sample size:', m)

 df_home = pd.DataFrame(s_home[0])

 df_cons = pd.DataFrame(s_cons[0])

 df_corp = pd.DataFrame(s_corp[0])

 frames = [df_home, df_cons, df_corp]

 result = pd.concat(frames)

 plt.figure()

 parallel_coordinates(result, 'segm', color=

 ['orange','lime','fuchsia'])

 df = pd.DataFrame(numeric_data)

 X = df.ix[:].values

 X_std = StandardScaler().fit_transform(X)

 mean_vec = np.mean(X_std, axis=0)

 cov_mat = np.cov(X_std.T)

 print ('\ncovariance matrix:\n', cov_mat)

 eig_vals, eig_vecs = np.linalg.eig(cov_mat)

 print ('\nEigenvectors:\n', eig_vecs)

 print ('\nEigenvalues:\n', np.sort(eig_vals)[::-1])

 tot = sum(eig_vals)

 �var_exp = [(i / tot)*100 for i in sorted(eig_vals,

reverse=True)]

 print ('\nvariance explained:\n', var_exp)

 corr_mat = np.corrcoef(X.T)

 print ('\ncorrelation matrix:\n', corr_mat)

 eig_vals, eig_vecs = np.linalg.eig(corr_mat)

 print ('\nEigenvectors:\n', eig_vecs)

 print ('\nEigenvalues:\n', np.sort(eig_vals)[::-1])

Chapter 6 Exploring Data

173

 tot = sum(eig_vals)

 �var_exp = [(i / tot)*100 for i in sorted(eig_vals,

reverse=True)]

 print ('\nvariance explained:\n', var_exp)

 cum_var_exp = np.cumsum(var_exp)

 fig, ax = plt.subplots()

 labels = ['PC1', 'PC2', 'PC3', 'PC4']

 width = 0.35

 index = np.arange(len(var_exp))

 ax.bar(index, var_exp,

 color=['fuchsia', 'lime', 'thistle', 'thistle'])

 for i, v in enumerate(var_exp):

 v = round(v, 2)

 val = str(v) + '%'

 ax.text(i, v+0.5, val, ha='center', color='b',

 fontsize=9, fontweight='bold')

 plt.xticks(index, labels)

 plt.title('Variance Explained')

 plt.show()

Output:

Chapter 6 Exploring Data

174

Figure 6-2.  Parallel coordinates

Chapter 6 Exploring Data

175

The code example begins by importing matplotlib, pandas, numpy,

json, random, and sklearn libraries. Function read_json() reads a JSON

file. Function unique_features() distills unique categories (classes) from

a dimension (feature). In this case, it distills three classes—Home Office,

Corporate, and Consumer—from the segm feature. Since the dataset is

close to 10,000 records, I wanted to be sure what classes are in it. Function

sire_features() distills a new dataset with only features of interest. Function

sire_numeric() converts numeric strings to float. Function sire_sample()

returns a random sample of n records filtered for a class. Function rnd_

sample() creates a random sample. Function convert_float() converts

numeric string data to float.

The main block begins by reading wrangled.json and creating

dataset features with only features of interest. The code continues by

creating dataset numeric that only includes features with numeric data.

Dataset numeric is used to generate PCA. Next, three samples of size

100 are created; one for each class. The samples are used to create the

Figure 6-3.  Variance explained

Chapter 6 Exploring Data

176

parallel coordinates visualization (Figure 6-2). Code for PCA follows by

standardizing and transforming the numeric dataset. A covariance matrix

is created so that eigenvectors and eigenvalues can be generated. I include

PCA using the correlation matrix because some disciplines prefer it.

Finally, a visualization of the principal components is created.

Parallel coordinates show that prof (profit) and sale (sales) are the

most important features. The PCA visualization (Figure 6-3) shows that

the 1st principal component accounts for 39.75%, 2nd 26.47%, 3rd 22.03%,

and 4th 11.75%. PCA analysis is not very useful in this case, since all four

principal components are necessary, especially the 1st three. So, we

cannot drop any of the dimensions from future analysis.

The 2nd code example uses the iris dataset for PCA:

import matplotlib.pyplot as plt, pandas as pd, numpy as np

from sklearn.preprocessing import StandardScaler

from pandas.plotting import parallel_coordinates

def conv_float(d):

 return d.astype(float)

if __name__ == "__main__":

 df = pd.read_csv('data/iris.csv')

 X = df.ix[:,0:4].values

 y = df.ix[:,4].values

 X_std = StandardScaler().fit_transform(X)

 mean_vec = np.mean(X_std, axis=0)

 cov_mat = np.cov(X_std.T)

 eig_vals, eig_vecs = np.linalg.eig(cov_mat)

 print ('Eigenvectors:\n', eig_vecs)

 print ('\nEigenvalues:\n', eig_vals)

 plt.figure()

 parallel_coordinates(df, 'Name', color=

 ['orange','lime','fuchsia'])

Chapter 6 Exploring Data

177

 tot = sum(eig_vals)

 �var_exp = [(i / tot)*100 for i in sorted(eig_vals,

reverse=True)]

 cum_var_exp = np.cumsum(var_exp)

 fig, ax = plt.subplots()

 labels = ['PC1', 'PC2', 'PC3', 'PC4']

 width = 0.35

 index = np.arange(len(var_exp))

 ax.bar(index, var_exp,

 color=['fuchsia', 'lime', 'thistle', 'thistle'])

 for i, v in enumerate(var_exp):

 v = round(v, 2)

 val = str(v) + '%'

 ax.text(i, v+0.5, val, ha='center', color='b',

 fontsize=9, fontweight='bold')

 plt.xticks(index, labels)

 plt.title('Variance Explained')

 plt.show()

Output:

Chapter 6 Exploring Data

178

Figure 6-4.  Parallel coordinates

Figure 6-5.  Variance explained

Chapter 6 Exploring Data

179

The code example is much shorter than the previous one, because

we didn’t have to wrangle, clean (as much), and create random samples

(for Parallel Coordinates visualization). The code begins by importing

matplotlib, pandas, numpy, and sklearn libraries. Function conv_float()

converts numeric strings to float. The main block begins by reading the

iris dataset. It continues by standardizing and transforming the data for

PCA. Parallel Coordinates and variance explained are then displayed.

Parallel Coordinates shows that PetalLength and PetalWidth are the

most important features (Figure 6-4). The PCA visualization (Variance

Explained) shows that the 1st principal component accounts for 72.77%,

2nd 23.03%, 3rd 3.68%, and 4th 0.52% (Figure 6-5). PCA analysis is very

useful in this case because the 1st two principal components account

for over 95% of the variance. So, we can drop PC3 and PC4 from further

consideration.

For clarity, the 1st step for PCA is to explore the eigenvectors and

eigenvalues. The eigenvectors with the lowest eigenvalues bear the least

information about the distribution of the data, so they can be dropped.

In this example, the 1st two eigenvalues are much higher, especially PC1.

Dropping PC3 and PC4 are thereby in order. The 2nd step is to measure

explained variance, which can be calculated from the eigenvalues.

Explained variance tells us how much information (variance) can be

attributed to each of the principal components. Looking at explained

variance confirms that PC3 and PC4 are not important.

�Speed Simulation
Speed in data science is important, especially as datasets become bigger.

Generators are helpful in memory optimization, because a generator

function returns one item at a time (as needed) rather than all items at once.

Chapter 6 Exploring Data

180

The code example contrasts speed between a list and a generator:

import json, humanfriendly as hf

from time import clock

def read_json(f):

 with open(f) as f:

 return json.load(f)

def mk_gen(k, d):

 for row in d:

 dic = {}

 for key in k:

 dic[key] = float(row[key])

 yield dic

def conv_float(keys, d):

 return [dict([k, float(v)] for k, v in row.items()

 if k in keys) for row in d]

if __name__ == "__main__":

 f = 'data/wrangled.json'

 data = read_json(f)

 keys = ['sale', 'quan', 'disc', 'prof']

 print ('create, convert, and display list:')

 start = clock()

 data = conv_float(keys, data)

 for i, row in enumerate(data):

 if i < 5:

 print (row)

 end = clock()

 elapsed_ls = end - start

 print (hf.format_timespan(elapsed_ls, detailed=True))

 print ('\ncreate, convert, and display generator:')

Chapter 6 Exploring Data

181

 start = clock()

 generator = mk_gen(keys, data)

 for i, row in enumerate(generator):

 if i < 5:

 print (row)

 end = clock()

 elapsed_gen = end - start

 print (hf.format_timespan(elapsed_gen, detailed=True))

 speed = round(elapsed_ls / elapsed_gen, 2)

 print ('\ngenerator is', speed, 'times faster')

Output:

The code example begins by importing json, humanfriendly, and

time libraries. You may have to install humanfriendly like I did as so:

pip install humanfriendly. Function read_json() reads JSON. Function

mk_gen() creates a generator based on four features from wrangled.json

and converts values to float. Function conv_float() converts dictionary

values from a list to float. The main block begins by reading wrangled.

json into a list. The code continues by timing the process of creating a new

list from keys and converting values to float. Next, a generator is created

that mimics the list creating and conversion process. The generator is 2.26

times faster (on my computer).

Chapter 6 Exploring Data

182

�Big Data
Big data is the rage of the 21st century. So, let’s work with a relatively big

dataset. GroupLens is a website that offers access to large social computing

datasets for theory and practice. GroupLens has collected and made

available rating datasets from the MovieLens website:

https://grouplens.org/datasets/movielens/. We are going to

explore the 1M dataset, which contains approximately one million ratings

from six thousand users on four thousand movies. I was hesitant to

wrangle, cleanse, and process a dataset over one million because of the

limited processing power of my relatively new PC.

The 1st code example reads, cleans, sizes, and dumps MovieLens data

to JSON:

import json, csv

def read_dat(h, f):

 return csv.DictReader((line.replace('::', ':')

 for line in open(f)),

 delimiter=':', fieldnames=h,

 quoting=csv.QUOTE_NONE)

def gen_dict(d):

 for row in d:

 yield dict(row)

def dump_json(f, l, d):

 f = open(f, 'w')

 f.write('[')

 for i, row in enumerate(d):

 j = json.dumps(row)

 f.write(j)

 if i < l - 1:

 f.write(',')

Chapter 6 Exploring Data

https://grouplens.org/datasets/movielens/

183

 else:

 f.write(']')

 f.close()

def read_json(f):

 with open(f) as f:

 return json.load(f)

def display(n, f):

 for i, row in enumerate(f):

 if i < n:

 print (row)

 print()

if __name__ == "__main__":

 print ('... sizing data ...\n')

 u_dat = 'data/ml-1m/users.dat'

 m_dat = 'data/ml-1m/movies.dat'

 r_dat = 'data/ml-1m/ratings.dat'

 unames = ['user_id', 'gender', 'age', 'occupation', 'zip']

 mnames = ['movie_id', 'title', 'genres']

 rnames = ['user_id', 'movie_id', 'rating', 'timestamp']

 users = read_dat(unames, u_dat)

 ul = len(list(gen_dict(users)))

 movies = read_dat(mnames, m_dat)

 ml = len(list(gen_dict(movies)))

 ratings = read_dat(rnames, r_dat)

 rl = len(list(gen_dict(ratings)))

 print ('size of datasets:')

 print ('users', ul)

 print ('movies', ml)

 print ('ratings', rl)

 print ('\n... dumping data ...\n')

Chapter 6 Exploring Data

184

 users = read_dat(unames, u_dat)

 users = gen_dict(users)

 movies = read_dat(mnames, m_dat)

 movies = gen_dict(movies)

 ratings = read_dat(rnames, r_dat)

 ratings = gen_dict(ratings)

 uf = 'data/users.json'

 dump_json(uf, ul, users)

 mf = 'data/movies.json'

 dump_json(mf, ml, movies)

 rf = 'data/ratings.json'

 dump_json(rf, rl, ratings)

 print ('\n... verifying data ...\n')

 u = read_json(uf)

 m = read_json(mf)

 r = read_json(rf)

 n = 1

 display(n, u)

 display(n, m)

 display(n, r)

Output:

Chapter 6 Exploring Data

185

The code example begins by importing json and csv libraries. Function

read_dat() reads and cleans the data (replaces double colons with single

colons as delimiters). Function gen_dict() converts an OrderedDict list to

a regular dictionary list for easier processing. Function dump_json() is a

custom function that I wrote to dump data to JSON. Function read_json()

reads JSON. Function display() displays some data for verification. The main

block begins by reading the three datasets and finding their sizes. It continues

by rereading the datasets and dumping to JSON. The datasets need to be

reread, because a generator can only be traversed once. Since the ratings

dataset is over one million records, it takes a few seconds to process.

The 2nd code example cleans the movie dataset, which requires

extensive additional cleaning:

import json, numpy as np

def read_json(f):

 with open(f) as f:

 return json.load(f)

def dump_json(f, d):

 with open(f, 'w') as fout:

 json.dump(d, fout)

def display(n, d):

 [print (row) for i,row in enumerate(d) if i < n]

def get_indx(k, d):

 return [row[k] for row in d if 'null' in row]

def get_data(k, l, d):

 return [row for i, row in enumerate(d) if row[k] in l]

def get_unique(key, d):

 s = set()

 for row in d:

Chapter 6 Exploring Data

186

 for k, v in row.items():

 if k in key:

 s.add(v)

 return np.sort(list(s))

if __name__ == "__main__":

 mf = 'data/movies.json'

 m = read_json(mf)

 n = 20

 display(n, m)

 print ()

 indx = get_indx('movie_id', m)

 for row in m:

 if row['movie_id'] in indx:

 row['title'] = row['title'] + ':' + row['genres']

 row['genres'] = row['null'][0]

 del row['null']

 title = row['title'].split(" ")

 year = title.pop()

 year = ''.join(c for c in year if c not in '()')

 row['title'] = ' '.join(title)

 row['year'] = year

 data = get_data('movie_id', indx, m)

 n = 2

 display(n, data)

 s = get_unique('year', m)

 print ('\n', s, '\n')

 rec = get_data('year', ['Assignment'], m)

 print (rec[0])

Chapter 6 Exploring Data

187

 rec = get_data('year', ["L'Associe1982"], m)

 print (rec[0], '\n')

 b1, b2, cnt = False, False, 0

 for row in m:

 if row['movie_id'] in ['1001']:

 row['year'] = '1982'

 print (row)

 b1 = True

 elif row['movie_id'] in ['2382']:

 �row['title'] = 'Police Academy 5: Assignment: Miami

Beach'

 row['genres'] = 'Comedy'

 row['year'] = '1988'

 print (row)

 b2 = True

 elif b1 and b2: break

 cnt += 1

 print ('\n', cnt, len(m))

 mf = 'data/cmovies.json'

 dump_json(mf, m)

 m = read_json(mf)

 display(n, m)

Chapter 6 Exploring Data

188

Output:

The code example begins by importing json and numpy libraries.

Function read_json() reads JSON. Function dump_json() saves

JSON. Function display() displays n records. Function get_indx() returns

indices of dictionary elements with a null key. Function get_data() returns

a dataset filtered by indices and movie_id key. Function get_unique()

returns a list of unique values from a list of dictionary elements. The main

block begins by reading movies.json and displaying for inspection. Records

12 and 19 have a null key. The code continues by finding all movie_id

indices with a null key. The next several lines clean all movies. Those with

a null key require added logic to fully clean, but all records have modified

titles and a new year key. To verify, records 12 and 19 are displayed.

To be sure that all is well, the code finds all unique keys based on year.

Chapter 6 Exploring Data

189

Notice that there are two records that don’t have a legitimate year. So, the

code cleans the two records. The 2nd elif was added to the code to stop

processing once the two dirty records were cleaned. Although not included

in the code, I checked movie_id, title, and genres keys but found no issues.

The code to connect to MongoDB is as follows:

class conn:

 from pymongo import MongoClient

 client = MongoClient('localhost', port=27017)

 def __init__(self, dbname):

 self.db = conn.client[dbname]

 def getDB(self):

 return self.db

I created directory ‘classes’ and saved the code in ‘conn.py’

The 3rd code example generates useful information from the three

datasets:

import json, numpy as np, sys, os, humanfriendly as hf

from time import clock

sys.path.append(os.getcwd()+'/classes')

import conn

def read_json(f):

 with open(f) as f:

 return json.load(f)

def get_column(A, v):

 return [A_i[v] for A_i in A]

def remove_nr(v1, v2):

 set_v1 = set(v1)

 set_v2 = set(v2)

 diff = list(set_v1 - set_v2)

 return diff

Chapter 6 Exploring Data

190

def get_info(*args):

 a = [arg for arg in args]

 �ratings = [int(row[a[0][1]]) for row in a[2] if row[a[0]

[0]] == a[1]]

 �uids = [row[a[0][3]] for row in a[2] if row[a[0][0]] == a[1]]

 �title = [row[a[0][2]] for row in a[3] if row[a[0][0]] == a[1]]

 �age = [int(row[a[0][4]]) for col in uids for row in a[4] if

col == row[a[0][3]]]

 �gender = [row[a[0][5]] for col in uids for row in users if

col == row[a[0][3]]]

 return (ratings, title[0], uids, age, gender)

def generate(k, v, r, m, u):

 for i, mid in enumerate(v):

 dic = {}

 rec = get_info(k, mid, r, m, u)

 �dic = {'_id':i, 'mid':mid, 'title':rec[1], 'avg_

rating':np.mean(rec[0]),

 �'n_ratings':len(rec[0]), 'avg_age':np.

mean(rec[3]),

 'M':rec[4].count('M'), 'F':rec[4].count('F')}

 �dic['avg_rating'] = round(float(str(dic['avg_rating'])

[:6]),2)

 dic['avg_age'] = round(float(str(dic['avg_age'])[:6]))

 yield dic

def gen_ls(g):

 for i, row in enumerate(g):

 yield row

Chapter 6 Exploring Data

191

if __name__ == "__main__":

 print ('... creating datasets ...\n')

 m = 'data/cmovies.json'

 movies = np.array(read_json(m))

 r = 'data/ratings.json'

 ratings = np.array(read_json(r))

 r = 'data/users.json'

 users = np.array(read_json(r))

 print ('... creating movie indicies vector data ...\n')

 mv = get_column(movies, 'movie_id')

 rv = get_column(ratings, 'movie_id')

 print ('... creating unrated movie indicies vector ...\n')

 nrv = remove_nr(mv, rv)

 diff = [int(row) for row in nrv]

 print (np.sort(diff), '\n')

 new_mv = [x for x in mv if x not in nrv]

 mid = '1'

 �keys = ('movie_id', 'rating', 'title', 'user_id', 'age',

'gender')

 stats = get_info(keys, mid, ratings, movies, users)

 avg_rating = np.mean(stats[0])

 avg_age = np.mean(stats[3])

 n_ratings = len(stats[0])

 title = stats[1]

 M, F = stats[4].count('M'), stats[4].count('F')

 print ('avg rating for:', end=' "')

 print (title + '" is', round(avg_rating, 2), end=' (')

 print (n_ratings, 'ratings)\n')

 gen = generate(keys, new_mv, ratings, movies, users)

 gls = gen_ls(gen)

 obj = conn.conn('test')

Chapter 6 Exploring Data

192

 db = obj.getDB()

 movie_info = db.movie_info

 movie_info.drop()

 print ('... saving movie_info to MongoDB ...\n')

 start = clock()

 for row in gls:

 movie_info.insert(row)

 end = clock()

 elapsed_ls = end - start

 print (hf.format_timespan(elapsed_ls, detailed=True))

Output:

The code example begins by importing json, numpy, sys, os,

humanfriendly, time, and conn (a custom class I created to connect to

MongoDB). Function read_json() reads JSON. Function get_column()

returns a column vector. Function remove_nr() removes movie_id values

that are not rated. Function get_info() returns ratings, users, age, and

gender as column vectors as well as title of a movie. The function is very

complex, because each vector is created by traversing one of the data sets

Chapter 6 Exploring Data

193

and making comparisons. To make it more concise, list comprehension

was used extensively. Function generate() generates a dictionary element

that contains average rating, average age, number of males and females

raters, number of ratings, movie_id, and title of each movie. Function gen_

ls() generates each dictionary element generated by function generate().

The main block begins by reading the three JSON datasets. It continues

by getting two column vectors—each movie_id from movies dataset and

movie_id from ratings dataset. Each column vector is converted to a set

to remove duplicates. Column vectors are used instead of full records for

faster processing. Next, a new column vector is returned containing only

movies that are rated. The code continues by getting title and column

vectors for ratings, and users, age, and gender for each movie with movie_

id of 1. The average rating for this movie is displayed with its title and

number of ratings. The final part of the code creates a generator containing

a list of dictionary elements. Each dictionary element contains the movie_

id, title, average rating, average age, number of ratings, number of male

raters, and number of female raters. Next, another generator is created to

generate the list. Creating the generators is instantaneous, but unraveling

(unfolding) contents takes time. Keep in mind that the 1st generator

runs billions of processes and 2nd generator runs the 1st one. So, saving

contents to MongoDB takes close to half an hour.

To verify results, let’s look at the data in MongoDB. The command show

collections is the 1st that I run to check if collection movie_info was created:

Next, I run db.movie_info.count() to check the number of documents:

Chapter 6 Exploring Data

194

Now that I know the number of documents, I can display the first and

last five records:

From data exploration, it appears that the movie_info collection was

created correctly.

The 4th code example saves the three datasets—users.json, cmovies.

json, and ratings.json—to MongoDB:

import sys, os, json, humanfriendly as hf

from time import clock

sys.path.append(os.getcwd() + '/classes')

import conn

def read_json(f):

 with open(f) as f:

 return json.load(f)

def create_db(c, d):

 c = db[c]

 c.drop()

Chapter 6 Exploring Data

195

 for i, row in enumerate(d):

 row['_id'] = i

 c.insert(row)

if __name__ == "__main__":

 u = read_json('data/users.json')

 m = read_json('data/cmovies.json')

 r = read_json('data/ratings.json')

 obj = conn.conn('test')

 db = obj.getDB()

 print ('... creating MongoDB collections ...\n')

 start = clock()

 create_db('users', u)

 create_db('movies', m)

 create_db('ratings', r)

 end = clock()

 elapsed_ls = end - start

 print (hf.format_timespan(elapsed_ls, detailed=True))

Output:

The code example begins by importing sys, os, json, humanfriendly,

time, and custom class conn. Function read_json reads JSON. Function

create_db() creates MongoDB collections. The main block begins by

reading the three datasets—users.json, cmovies.json, and ratings.json—and

saving them to MongoDB collections. Since the ratings.json dataset is over

one million records, it takes some time to save it to the database.

Chapter 6 Exploring Data

196

The 5th code example introduces the aggregation pipeline, which is

a MongoDB framework for data aggregation modeled on the concept of

data processing pipelines. Documents enter a multistage pipeline that

transforms them into aggregated results. In addition to grouping and

sorting documents by specific field or fields and aggregating contents

of arrays, pipeline stages can use operators for tasks such as calculating

averages or concatenating strings. The pipeline provides efficient data

aggregation using native MongoDB operations, and is the preferred

method for data aggregation in MongoDB.

import sys, os

sys.path.append(os.getcwd() + '/classes')

import conn

def match_item(k, v, d):

 pipeline = [{'$match' : { k : v }}]

 q = db.command('aggregate',d,pipeline=pipeline)

 return q

if __name__ == "__main__":

 obj = conn.conn('test')

 db = obj.getDB()

 movie = 'Toy Story'

 q = match_item('title', movie, 'movie_info')

 r = q['result'][0]

 print (movie, 'document:')

 print (r)

 print ('average rating', r['avg_rating'], '\n')

 user_id = '3'

 print ('*** user', user_id, '***')

 q = match_item('user_id', user_id, 'users')

 r = q['result'][0]

Chapter 6 Exploring Data

197

 �print ('age', r['age'], 'gender', r['gender'],

'occupation',\

 r['occupation'], 'zip', r['zip'], '\n')

 print ('*** "user 3" movie ratings of 5 ***')

 q = match_item('user_id', user_id, 'ratings')

 mid = q['result']

 for row in mid:

 if row['rating'] == '5':

 q = match_item('movie_id', row['movie_id'], 'movies')

 title = q['result'][0]['title']

 genre = q['result'][0]['genres']

 print (row['movie_id'], title, genre)

 mid = '1136'

 q = match_item('mid', mid, 'movie_info')

 title = q['result'][0]['title']

 avg_rating = q['result'][0]['avg_rating']

 print ()

 print ('"' + title + '"', 'average rating:', avg_rating)

Output:

Chapter 6 Exploring Data

198

The code example begins by importing sys, os, and custom class conn.

Function match_item() uses the aggregation pipeline to match records to

criteria. The main block begins by using the aggregation pipeline to return

the Toy Story document from collection movie_info. The code continues

by using the pipeline to return the user 3 document from collection users.

Next, the aggregation pipeline is used to return all movie ratings of 5 for

user 3. Finally, the pipeline is used to return the average rating for Monty

Python and the Holy Grail from collection movie_info. The aggregation

pipeline is efficient and offers a vast array of functionality.

The 6th code example demonstrates a multistage aggregation pipeline:

import sys, os

sys.path.append(os.getcwd() + '/classes')

import conn

def stages(k, v, r, d):

 pipeline = [{'$match' : { '$and' : [{ k : v },

 {'rating':{'$eq':r} }] } },

 {'$project' : {

 '_id' : 1,

 'user_id' : 1,

 'movie_id' : 1,

 'rating' : 1 } },

 {'$limit' : 100}]

 q = db.command('aggregate',d,pipeline=pipeline)

 return q

Chapter 6 Exploring Data

199

def match_item(k, v, d):

 pipeline = [{'$match' : { k : v }}]

 q = db.command('aggregate',d,pipeline=pipeline)

 return q

if __name__ == "__main__":

 obj = conn.conn('test')

 db = obj.getDB()

 u = '3'

 r = '5'

 q = stages('user_id', u, r, 'ratings')

 result = q['result']

 print ('ratings of', r, 'for user ' + str(u) + ':')

 for i, row in enumerate(result):

 print (row)

 n = i+1

 print ()

 print (n, 'associated movie titles:')

 for i, row in enumerate(result):

 q = match_item('movie_id', row['movie_id'], 'movies')

 r = q['result'][0]

 print (r['title'])

Chapter 6 Exploring Data

200

Output:

The code example begins by importing sys, os, and custom class conn.

Function stages() uses a three-stage aggregation pipeline. The 1st stage

finds all ratings of 5 from user 3. The 2nd stage projects the fields to be

displayed. The 3rd stage limits the number of documents returned. It is

important to include a limit stage, because the results database is big and

pipelines have size limitations. Function match_item() uses the aggregation

pipeline to match records to criteria. The main block begins by using the

stages() pipeline to return all ratings of 5 from user 3. The code continues by

iterating this data and using the match_item() pipeline to get the titles that

user 3 rated as 5. The pipeline is an efficient method to query documents

from MongoDB, but takes practice to get acquainted with its syntax.

Chapter 6 Exploring Data

201

�Twitter
Twitter is a fantastic source of data because you can get data about almost

anything. To access data from Twitter, you need to connect to the Twitter

Streaming API. Connection requires four pieces of information from Twitter—

API key, API secret, Access token, and Access token secret (encrypted). After

you register and get your credentials, you need to install a Twitter API. I

chose the Twitter API TwitterSearch, but there are many others.

The 1st code example creates JSON to hold my Twitter credentials

(insert your credentials into each variable):

import json

if __name__ == '__main__':

 consumer_key = ''

 consumer_secret = ''

 access_token = ''

 access_encrypted = ''

 data = {}

 data['ck'] = consumer_key

 data['cs'] = consumer_secret

 data['at'] = access_token

 data['ae'] = access_encrypted

 json_data = json.dumps(data)

 header = '[\n'

 ender = ']'

 obj = open('data/credentials.json', 'w')

 obj.write(header)

 obj.write(json_data + '\n')

 obj.write(ender)

 obj.close()

Chapter 6 Exploring Data

202

I chose to save credentials in JSON to hide them from view. The code

example imports the json library. The main block saves credentials into JSON.

The 2nd code example streams Twitter data using the TwitterSearch

API. To install: pip install TwitterSearchAPI.

from TwitterSearch import *

import json, sys

class twitSearch:

 def __init__(self, cred, ls, limit):

 self.cred = cred

 self.ls = ls

 self.limit = limit

 def search(self):

 num = 0

 dt = []

 dic = {}

 try:

 tso = TwitterSearchOrder()

 tso.set_keywords(self.ls)

 tso.set_language('en')

 tso.set_include_entities(False)

 ts = TwitterSearch(

 consumer_key = self.cred[0]['ck'],

 consumer_secret = self.cred[0]['cs'],

 access_token = self.cred[0]['at'],

 access_token_secret = self.cred[0]['ae']

)

 for tweet in ts.search_tweets_iterable(tso):

 if num <= self.limit:

 dic['_id'] = num

 dic['tweeter'] = tweet['user']['screen_name']

 dic['tweet_text'] = tweet['text']

Chapter 6 Exploring Data

203

 dt.append(dic)

 dic = {}

 else:

 break

 num += 1

 except TwitterSearchException as e:

 print (e)

 return dt

def get_creds():

 with open('data/credentials.json') as json_data:

 d = json.load(json_data)

 json_data.close()

 return d

def write_json(f, d):

 with open(f, 'w') as fout:

 json.dump(d, fout)

def translate():

 �return dict.fromkeys(range(0x10000, sys.maxunicode + 1),

0xfffd)

def read_json(f):

 with open(f) as f:

 return json.load(f)

if __name__ == '__main__':

 cred = get_creds()

 ls = ['machine', 'learning']

 limit = 10

 obj = twitSearch(cred, ls, limit)

 data = obj.search()

 f = 'data/TwitterSearch.json'

Chapter 6 Exploring Data

204

 write_json(f, data)

 non_bmp_map = translate()

 print ('twitter data:')

 for row in data:

 �row['tweet_text'] = str(row['tweet_text']).

translate(non_bmp_map)

 tweet_text = row['tweet_text'][0:50]

 �print ('{:<3}{:18s}{}'.format(row['_id'],

row['tweeter'], tweet_text))

 print ('\nverify JSON:')

 read_data = read_json(f)

 for i, p in enumerate(read_data):

 if i < 3:

 �p['tweet_text'] = str(p['tweet_text']).

translate(non_bmp_map)

 tweet_text = p['tweet_text'][0:50]

 �print ('{:<3}{:18s}{}'.format(p['_id'],

p['tweeter'], tweet_text))

Output:

Chapter 6 Exploring Data

205

The code example begins by importing TwitterSearch, json, and

sys libraries. Class twitSearch streams Twitter data based on Twitter

credentials, a list of keywords, and a limit. Function get_cred() returns

Twitter credentials from JSON. Function write_json() writes data to

JSON. Function translate() converts streamed data outside the Basic

Multilingual Plane (BMP) to a usable format. Emojis, for example, are

outside the BMP. Function read_json() reads JSON. The main block begins

by getting Twitter credentials, creating a list of search keywords, and a

limit. In this case, the list of search keywords holds machine and learning,

because I wanted to stream data about machine learning. Limit of ten

restricts streamed records to ten tweets. The code continues by writing

Twitter data to JSON, translating tweets to control for non-BMP data, and

printing the tweet. Finally, the code reads JSON to verify that the tweets

were saved properly and prints a few.

�Web Scraping
Web scraping is a programmatic approach for extracting information

from websites. It focuses on transforming unstructured HTML formatted

data into structured data. Web scraping is programmatically intensive

because of the unstructured nature of HTML. That is, HTML has few if any

structural rules, which means that HTML structural patterns tend to differ

from one website to another. So, get ready to write custom code for each

Web scraping adventure.

The code example scrapes book information from a popular technical

book publishing company. The 1st step is to locate the webpage. The 2nd

step is to open a window with the source code. The 3rd step is to traverse

the source code to identify the data to scrape. The 4th step is to scrape.

With Google Chrome, click More tools and then Developer tools to

open the source code window. Next, hover the mouse cursor over the

source until you find the data. Move down the source code tree to find the

tags you want to scrape. Finally, scrape the data.

Chapter 6 Exploring Data

206

To install ‘BeautifulSoup’, pip intall BeautifulSoup.

from bs4 import BeautifulSoup

import requests, json

def build_title(t):

 t = t.text

 t = t.split()

 ls = []

 for row in t:

 if row != '-':

 ls.append(row)

 elif row == '-':

 break

 return ' '.join(ls)

def release_date(r):

 r = r.text

 r = r.split()

 prefix = r[0] + s + r[1]

 if len(r) == 5:

 date = r[2] + s + r[3] + s + r[4]

 else:

 date = r[2] + s + r[3]

 return prefix, date

def write_json(f, d):

 with open(f, 'w') as fout:

 json.dump(d, fout)

def read_json(f):

 with open(f) as f:

 return json.load(f)

Chapter 6 Exploring Data

207

if __name__ == '__main__':

 s = ' '

 dic_ls = []

 base_url = "https://ssearch.oreilly.com/?q=data+science"

 soup = BeautifulSoup(requests.get(base_url).text, 'lxml')

 books = soup.find_all('article')

 for i, row in enumerate(books):

 dic = {}

 tag = row.name

 tag_val = row['class']

 title = row.find('p', {'class' : 'title'})

 title = build_title(title)

 url = row.find('a', {'class' : 'learn-more'})

 learn_more = url.get('href')

 author = row.find('p', {'class' : 'note'}).text

 release = row.find('p', {'class' : 'note date2'})

 prefix, date = release_date(release)

 if len(tag_val) == 2:

 �publisher = row.find('p', {'class' : 'note

publisher'}).text

 item = row.find('img', {'class' : 'book'})

 cat = item.get('class')[0]

 else:

 publisher, cat = None, None

 �desc = row.find('p', {'class' : 'description'}).

text.split()

 desc = [row for i, row in enumerate(desc) if i < 7]

 desc = ' '.join(desc) + ' ...'

 dic['title'] = title

 dic['learn_more'] = learn_more

 if author[0:3] != 'Pub':

Chapter 6 Exploring Data

208

 dic['author'] = author

 if publisher is not None:

 dic['publisher'] = publisher

 dic['category'] = cat

 else:

 dic['event'] = desc

 dic['date'] = date

 dic_ls.append(dic)

 f = 'data/scraped.json'

 write_json(f, dic_ls)

 data = read_json(f)

 for i, row in enumerate(data):

 if i < 6:

 print (row['title'])

 if 'author' in row.keys():

 print (row['author'])

 if 'publisher' in row.keys():

 print (row['publisher'])

 if 'category' in row.keys():

 print ('Category:', row['category'])

 print ('Release Date:', row['date'])

 if 'event' in row.keys():

 print ('Event:', row['event'])

 print ('Publish Date:', row['date'])

 print ('Learn more:', row['learn_more'])

 print ()

Chapter 6 Exploring Data

209

Output:

The code example begins by importing BeautifulSoup, request, and

json libraries. Function build_title() builds scraped title data into a string.

Function release_date() builds scraped date data into a string. Function

write_json() and read_json() write and read JSON respectively. The main

block begins by converting the URL page into a BeautifulSoup object.

The code continues by placing all article tags into variable books. From

exploration, I found that the article tags contained the information I

wanted to scrape. Next, each article tag is traversed. Scraping would have

been much easier if the information in each article tag was structured

consistently. Since it was not, the logic to extract each piece of information

is extensive. Each piece of information is placed in a dictionary element,

which is subsequently appended to a list. Finally, the list is saved to JSON.

The JSON is read and a few records are displayed to verify that all is well.

Chapter 6 Exploring Data

211© David Paper 2018
D. Paper, Data Science Fundamentals for Python and MongoDB,
https://doi.org/10.1007/978-1-4842-3597-3

Index

A
Aggregation pipeline

multistage, 198–200
using native operations, 196–198

Andrews curves, 141–143

B
BeautifulSoup, 206
Big data

MongoDB, 189
movie dataset, 185
MovieLens data to JSON, 182
saving datasets, 194–195
three datasets, 189, 194

C
Comma Separated Values (CSV)

file, 146–148
Correlation

data
coefficients measure, 135–137
normal distributions and,

134–135
pandas (see Pandas correlation)

Cube data, 149–150
Cumulative distribution function

(CDF), 52–60, 62, 64–65, 134

D
Data

Andrews curves, 141–143
correlation

coefficients measure, 135–137
normal distributions

and, 134–135
cube, 149–150
dicing, 148–149
normal distribution, 129–131
one-dimensional, 129–132
pandas (see Pandas

correlation)
parallel coordinates, 143–144
RadViz, 144
scaling

normal distribution, 154–156
reads CSV dataset,

154, 157, 161
zero mean and unit

variance, 157–161
slicing, 148–149
two-dimensional, 132–135
uniform distribution,

129–132
wrangling, 129, 161, 163–165

DataFrame (df), 88
Data randomization, 22–27

https://doi.org/10.1007/978-1-4842-3597-3

212

Data science
fundamentals, 2
reading and writing data, 12–15
visualization, 34–36

Dicing data, 148–149
Dictionary, 10–12

E, F
Euclidean distance

minimization
3-D space, 109–112
MCS, 112–114
numpy method, 115, 117–118

G
Generators

advantage, 22
comprehension, 21–22
OrderedDict elements, 19
read_dict() function, 21
sim_times() function, 21
simulation, 19, 21

Gradient descent (GD)
algorithm, 2
Euclidean distance (see

Euclidean distance
minimization)

simple function (see Simple
function minimization)

stochastic (see Stochastic
gradient descent)

GroupLens website, 182

H
Heat map, 140

pandas correlation and, 141
wrangled.json data, 167–169

I
Inverse cumulative distribution

function (ICDF), 52
Iris dataset, 176–177, 179

J, K
JSON

cleansed data to, 146–148
MongoDB and, 27–34

L
Lazy evaluation, 18
Linear algebra, 67

basic matrix transformations, 84
identity property, 84–85
numpy matrix, 86–88
slices, 85

matrix math, 75, 83
display() function, 81
dot() function, 80
magnitude, 82–83
multiplication, 78–80
mult_scalar() function, 77
numpy matrix, 75–76

pandas matrix applications
averages, 94–96

Index

213

data structures, 92–93
df, 88
head() and tail()

method, 90
numpy matrices, 91–92

vector math, addition
directed line segment, 68
magnitude, 74
from origin, 69
subtraction, 73–74
visualization, 71–73

vector spaces, 67
Lists

comprehension, 15–18
create new, 6–9
of dictionary elements, 11
tuple and, 9–10

M
MongoDB

aggregation pipeline
multistage, 198, 200
using native operations, 196,

198
connect to, 189
JSON and, 27–34
saving datasets, 194–195

Monte Carlo simulation (MCS), 37,
112–114

augmented plot, 41
product demand simulation

accurate prediction, 49–51
demand() function, 48

function mcs(), 51
max_bar() function, 48
normal distribution, 44
production algorithm, 45–47
production() function, 48

randomness using PDF and
CDF, 52–53

continuous random
variable, 52

fundamental theorem of
calculus, 53

gradient descent, 53
ICDF, 52, 57–58
integration, 52
less variation (error), 59
matplotlib library, 53–54
np_rstrip() function, 58
PPF, 52
profit calculations, 59–62
visualization, 55–56, 63–65
What-If analysis, 59

stock simulations, 37, 39–41
What-If analysis, 42–44

Movie dataset, 185
MovieLens website, 182

N
NoSQL, 27
Numpy method, 115, 117–118

O
One-dimensional data, 129–132

Index

214

P, Q
Pandas correlation

cleaning CSV file, 146–148
create matrix visualization,

138–139
heat map, 140–141

Parallel coordinates, 143–144
Percent point function (PPF), 52
Principal Component Analysis (PCA)

eigenvector, 170
iris dataset, 176–179
wrangled.json dataset, 170,

174–175
Probability density function (PDF),

52–60, 62–65
PyMongo, 28
Python

functions and strings, 3–5
fundamentals, 3
matrix, 9
programming code, 2
pseudorandom numbers, 22

R
RadViz, 144
Residual sum of squares (RSS), 119

S
Sigmoid function minimization

local maximum of, 107–109
local minimum of, 104–107

Simple function minimization,
97–103

Slicing data, 148–149
Speed simulation, 179, 181
Standard deviation (SD), 132
Standard normal

distribution, 154, 161
Stochastic gradient descent

batch, 118–119
maximum, 126
minimum theta, 123
n times, 122
RSS function, 119
run n times, 119

T
Tuple, 9–10
Twitter

pip install TwitterSearchAPI, 202
save credentials in JSON,

201–202
Two-dimensional data, 132–135

U
Uniform distribution, 129–132

V
Visualization, 34–36

W, X, Y, Z
Web scraping, BeautifulSoup,

205–209
Wrangling data, 129, 161, 163–165

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Introduction
	Python Fundamentals
	Functions and Strings
	Lists, Tuples, and Dictionaries
	Reading and Writing Data
	List Comprehension
	Generators
	Data Randomization
	MongoDB and JSON
	Visualization

	Chapter 2: Monte Carlo Simulation and Density Functions
	Stock Simulations
	What-If Analysis
	Product Demand Simulation
	Randomness Using Probability and Cumulative Density Functions

	Chapter 3: Linear Algebra
	Vector Spaces
	Vector Math
	Matrix Math
	Basic Matrix Transformations
	Pandas Matrix Applications

	Chapter 4: Gradient Descent
	Simple Function Minimization (and Maximization)
	Sigmoid Function Minimization (and Maximization)
	Euclidean Distance Minimization Controlling for Step Size
	Stabilizing Euclidean Distance Minimization with Monte Carlo Simulation
	Substituting a NumPy Method to Hasten Euclidean Distance Minimization
	Stochastic Gradient Descent Minimization and Maximization

	Chapter 5: Working with Data
	One-Dimensional Data Example
	Two-Dimensional Data Example
	Data Correlation and Basic Statistics
	Pandas Correlation and Heat Map Examples
	Various Visualization Examples
	Cleaning a CSV File with Pandas and JSON
	Slicing and Dicing
	Data Cubes
	Data Scaling and Wrangling

	Chapter 6: Exploring Data
	Heat Maps
	Principal Component Analysis
	Speed Simulation
	Big Data
	Twitter
	Web Scraping

	Index

