

Python Programming

Using Problem-Solving

PPUPS.CH00_FM_1PP.indd 1PPUPS.CH00_FM_1PP.indd 1 6/2/2023 12:06:31 PM6/2/2023 12:06:31 PM

license, disclaimer of liability, and limited warranty

By purchasing or using this book (the “Work”), you agree that this license grants
permission to use the contents contained herein, but does not give you the right
of ownership to any of the textual content in the book or ownership to any of the
information or products contained in it. This license does not permit uploading of the
Work onto the Internet or on a network (of any kind) without the written consent of
the Publisher. Duplication or dissemination of any text, code, simulations, images,
etc. contained herein is limited to and subject to licensing terms for the respective
products, and permission must be obtained from the Publisher or the owner of the
content, etc., in order to reproduce or network any portion of the textual material (in
any media) that is contained in the Work.

Mercury Learning and Information (“MLI” or “the Publisher”) and anyone
involved in the creation, writing, production, accompanying algorithms, code, or
computer programs (“the software”), and any accompanying Web site or software
of the Work, cannot and do not warrant the performance or results that might be
obtained by using the contents of the Work. The author, developers, and the Pub-
lisher have used their best efforts to ensure the accuracy and functionality of the
textual material and/or programs contained in this package; we, however, make no
warranty of any kind, express or implied, regarding the performance of these con-
tents or programs. The Work is sold “as is” without warranty (except for defective
materials used in manufacturing the book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and anyone
involved in the composition, production, and manufacturing of this work will not
be liable for damages of any kind arising out of the use of (or the inability to use) the
algorithms, source code, computer programs, or textual material contained in this
publication. This includes, but is not limited to, loss of revenue or profit, or other
incidental, physical, or consequential damages arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to replace-
ment of the book and only at the discretion of the Publisher. The use of “implied
warranty” and certain “exclusions” vary from state to state, and might not apply to
the purchaser of this product.

PPUPS.CH00_FM_1PP.indd 2PPUPS.CH00_FM_1PP.indd 2 6/2/2023 12:06:31 PM6/2/2023 12:06:31 PM

Mercury Learning and Information
Dulles, Virginia

Boston, Massachusetts
New Delhi

Harsh Bhasin

Python Programming

Using Problem-Solving

PPUPS.CH00_FM_1PP.indd 3PPUPS.CH00_FM_1PP.indd 3 6/2/2023 12:06:31 PM6/2/2023 12:06:31 PM

Reprint and Revision Copyright ©2023 by Mercury Learning and Information LLC. All rights reserved.
Original Copyright ©2022 by NEW AGE International Publishers.
Mercury Learning and Information is an imprint of Walter De Gruyter GmbH.

This publication, portions of it, or any accompanying software may not be reproduced in any way, stored in
a retrieval system of any type, or transmitted by any means, media, electronic display or mechanical display,
including, but not limited to, photocopy, recording, Internet postings, or scanning, without prior permission
in writing from the publisher.

Publisher: David Pallai
Mercury Learning and Information
22841 Quicksilver Drive
Dulles, VA 20166
info@merclearning.com
www.merclearning.com
800-232-0223

H. Bhasin. Python Programming Using Problem Solving.
ISBN: 978-1-68392-862-1

The publisher recognizes and respects all marks used by companies, manufacturers, and developers as a
means to distinguish their products. All brand names and product names mentioned in this book are trade-
marks or service marks of their respective companies. Any omission or misuse (of any kind) of service marks
or trademarks, etc. is not an attempt to infringe on the property of others.

Library of Congress Control Number: 2023934762

232425321  This book is printed on acid-free paper in the United States of America.

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc. For additional
information, please contact the Customer Service Dept. at 800-232-0223(toll free).

All of our titles are available in digital format at academiccourseware.com and other digital vendors. The sole
obligation of Mercury Learning and Information to the purchaser is to replace the book, based on
defective materials or faulty workmanship, but not based on the operation or functionality of the product.

PPUPS.CH00_FM_1PP.indd 4PPUPS.CH00_FM_1PP.indd 4 6/2/2023 12:06:31 PM6/2/2023 12:06:31 PM

To

My Mother

PPUPS.CH00_FM_1PP.indd 5PPUPS.CH00_FM_1PP.indd 5 6/2/2023 12:06:31 PM6/2/2023 12:06:31 PM

PPUPS.CH00_FM_1PP.indd 6PPUPS.CH00_FM_1PP.indd 6 6/2/2023 12:06:31 PM6/2/2023 12:06:31 PM

Contents

Preface� xxv

SECTION I: �ALGORITHMIC PROBLEM-SOLVING
AND PYTHON FUNDAMENTALS� 1

CHAPTER 1: �ALGORITHMIC PROBLEM-SOLVING� 3
1.1	 Introduction� 3
1.2	 Definition and Characteristics � 4
1.3	 Notations: Pseudocode and Flow Chart� 5
1.4	� Strategies for Problem-Solving: Recursion Versus Iteration� 7
1.5	 Asymptotic Notation� 10
1.6	 Complexity� 11
1.7	 Illustrations � 12

1.7.1	 Minimum in a List� 12
1.7.2	� Insert a Card in a Pack of Cards (Or Insert an element in

a sorted list). There are ten cards in the pack, numbered
from 1 to 10. � 13

1.7.3	 Guess a Number in a Given Range� 14
1.7.4	 Tower of Hanoi� 16

1.8	 Conclusion� 20
Glossary� 20
Points to Remember� 20

PPUPS.CH00_FM_1PP.indd 7PPUPS.CH00_FM_1PP.indd 7 6/2/2023 12:06:31 PM6/2/2023 12:06:31 PM

viii • Contents

Exercises� 21
Multiple Choice Questions� 21
Theory� 23
Application� 23

CHAPTER 2: �INTRODUCTION TO PYTHON� 25
2.1	 Introduction� 25
2.2	 Features of Python � 27

2.2.1	 Easy� 27
2.2.2	 Type and Run� 27
2.2.3	 Syntax� 27
2.2.4	 Mixing � 28
2.2.5	 Dynamic Typing � 28
2.2.6	 Built-in Object Types � 28
2.2.7	 Numerous Libraries and Tools� 28
2.2.8	 Portable � 28
2.2.9	 Free� 28

2.3	 The Paradigms � 29
2.3.1	 Procedural� 29
2.3.2	 Object-Oriented � 29
2.3.3	 Functional� 29

2.4	 Chronology and Uses� 29
2.4.1	 Chronology� 29
2.4.2	 Uses � 31

2.5	 Installation of Anaconda� 32
2.6	� Implementation of an Algorithm: Statement, State,

Control Blocks, and Functions� 37
2.6.1	 Statement� 37
2.6.2	 State� 37
2.6.3	 Control Flow� 37

2.7	 Conclusion � 40
Glossary� 41
Points to Remember� 41

PPUPS.CH00_FM_1PP.indd 8PPUPS.CH00_FM_1PP.indd 8 6/15/2023 12:56:37 PM6/15/2023 12:56:37 PM

Contents • ix

Resources� 41
Exercises� 41

Multiple Choice Questions� 41
Theory� 43

CHAPTER 3: �FUNDAMENTALS� 45
3.1	 Introduction � 45
3.2	 Basic Input Output� 47

3.2.1	 Print Function � 47
3.2.2	 Input � 48

3.3	 Running a Program� 49
3.3.1	 Using the Command Prompt � 49
3.3.2	 Executing Programs Written in .py Files� 50
3.3.3	 Using Anaconda Navigator � 51

3.4	 The Jupyter Notebook� 52
3.5	 Value Type and Reference Type � 54
3.6	 Tokens, Keywords, and Identifiers � 55

3.6.1	 Python Keywords� 56
3.6.2	 Python Identifiers� 56
3.6.3	 Python Escape Sequence� 56

3.7	 Statements� 57
3.7.1	 Expression Statement� 57
3.7.2	 Assignment Statements� 57
3.7.3	 The Assert Statements� 58
3.7.4	 The Pass Statements� 58
3.7.5	 The Control Statements� 58

3.8	 Comments� 58
3.9	 Operators � 59
3.10	 Types and Examples of Operators � 60

3.10.1  Arithmetic Operators � 60
3.10.2  String Operators � 62
3.10.3  Comparison Operators � 62
3.10.4  Assignment Operators� 63

PPUPS.CH00_FM_1PP.indd 9PPUPS.CH00_FM_1PP.indd 9 6/2/2023 12:06:31 PM6/2/2023 12:06:31 PM

x • Contents

3.10.5  Logical Operators� 64
3.10.6  Priority of Operators � 66

3.11	 Basic Data Types� 66
3.11.1  Integer� 67
3.11.2  Float � 67
3.11.3  String� 68

3.12	 Conclusion� 69
Exercises� 70

Multiple Choice Questions� 70
Theory� 71
Explore� 72

SECTION II: PROCEDURAL PROGRAMMING� 73

CHAPTER 4: �CONDITIONAL STATEMENTS� 75
4.1	 Introduction� 75
4.2	 “If,” If-Else, and If-Elif-Else Constructs� 76
4.3	 The If-Elif-Else Ladder � 83
4.4	 Logical Operators � 85
4.5	 The Ternary Operator� 86
4.6	 The Get Construct� 87
4.7	 Examples� 89
4.8	 Summary� 94
Glossary� 94
Points to Remember� 95
Exercises� 95

Multiple Choice Questions� 95
Programming Exercises� 98

CHAPTER 5: �LOOPING� 101
5.1	 Introduction� 101
5.2	 While� 103
5.3	 Patterns � 107
5.4	 Nesting and Applications of Loops in Lists � 113
5.5	 Conclusion� 117

PPUPS.CH00_FM_1PP.indd 10PPUPS.CH00_FM_1PP.indd 10 6/15/2023 1:01:16 PM6/15/2023 1:01:16 PM

Contents • xi

Glossary� 117
Points to Remember� 118
Exercises� 118

Multiple Choice Questions� 118
Programming Exercises� 120

CHAPTER 6: �FUNCTIONS� 123
6.1	 Introduction� 123
6.2	 Features of a Function � 124

6.2.1	 Modular Programming � 124
6.2.2	 Reusability of Code� 124
6.2.3	 Manageability� 124

6.2.3.1	 Easy debugging� 124
6.2.3.2	 Efficient� 125

6.3	 Basic Terminology� 125
6.3.1	 Name of a Function� 125
6.3.2	 Arguments� 125
6.3.3	 Return Value� 125

6.4	 Definition and Invocation� 126
6.4.1	 Working � 127

6.5	 Types of Function � 129
6.5.1	 Arguments: Types of Arguments � 131

6.6	 Implementing Search � 132
6.7	 Scope � 133
6.8	 Recursion � 135

6.8.1	 Rabbit Problem � 135
6.8.2	 Disadvantages of Using Recursion� 139

6.9	 Conclusion � 139
Glossary� 139
Points to Remember� 140
Exercises� 140

Multiple Choice Questions� 140
Programming Exercises � 141

PPUPS.CH00_FM_1PP.indd 11PPUPS.CH00_FM_1PP.indd 11 6/15/2023 2:53:26 PM6/15/2023 2:53:26 PM

xii • Contents

Questions Based on Recursion � 142
Theory � 143
Extra Questions� 143

CHAPTER 7: �FILE HANDLING� 147
7.1	 Introduction � 147
7.2	 The File Handling Mechanism� 148
7.3	 The Open Function and File Access Modes� 149
7.4	 Python Functions for File Handling� 151

7.4.1	 The Essential Ones� 151
7.4.2	 The OS Methods� 153
7.4.3	 Miscellaneous Functions and File Attributes � 153

7.5	 Command Line Arguments� 155
7.6	 Implementation and illustrations � 156
7.7	 Conclusion� 163
Points to Remember� 163
Exercises� 163

Multiple Choice Questions� 163
Theory � 167
Programming Exercises � 167

CHAPTER 8: �LISTS, TUPLE, AND DICTIONARY� 169
8.1	 Introduction � 169
8.2	 Lists� 170

8.2.1	 Accessing Elements: Indexing and Slicing � 171
8.2.2	 Mutability� 172
8.2.3	 Operators � 172
8.2.4	 Traversal� 173
8.2.5	 Functions� 175

8.3	 Tuple� 176
8.3.1	 Accessing Elements of a Tuple � 177
8.3.2	 Nonmutability� 178
8.3.3	 Operators � 178
8.3.4	 Traversal � 179
8.3.5	 Functions � 180

PPUPS.CH00_FM_1PP.indd 12PPUPS.CH00_FM_1PP.indd 12 6/15/2023 2:16:17 PM6/15/2023 2:16:17 PM

Contents • xiii

8.4	 Associate Arrays and Dictionaries � 182
8.4.1	 Displaying Elements of a Dictionary � 183
8.4.2	 Some Important Functions of Dictionaries � 185

8.4.2.1	 The len function returns the number of elements
in a given dictionary. � 185

8.4.2.2	 The max function returns the key with maximum
value. If the key is a string, then the value in the
lexicographic ordering would be returned. � 185

8.4.2.3	 The min function returns the key with minimum
value. If the key is a string, then the value in the
lexicographic ordering would be returned. � 185

8.4.2.4	 The sorted function would sort the elements of
a given dictionary by their keys. If the keys are
strings then lexicographic ordering would
be followed. � 185

8.4.2.5	 The pop function takes out the element with
the given key from the dictionary. � 186

8.4.3	 Input from the User � 186
8.5	 Conclusion� 187
Glossary� 187
Points to Remember� 187
Exercises� 188

Multiple Choice Questions� 188
Theory� 189
Programming Exercises� 190

CHAPTER 9: �ITERATIONS, GENERATORS,
AND COMPREHENSIONS� 193

9.1	 Introduction� 193
9.2	 The Power of “For”� 194
9.3	 Iterator� 197
9.4	 Defining an Iterable Object � 199
9.5	 Generators � 200
9.6	 Comprehensions � 206
9.7	 Conclusion � 210
Glossary� 210

PPUPS.CH00_FM_1PP.indd 13PPUPS.CH00_FM_1PP.indd 13 6/15/2023 3:00:36 PM6/15/2023 3:00:36 PM

xiv • Contents

Points to Remember� 210
Exercises� 210

Multiple Choice Questions� 210
Theory� 212
Programming Exercises� 212

CHAPTER 10: �STRINGS� 215
10.1	 Introduction� 215
10.2	 Loops Revised� 216
10.3	 String Operators� 219

10.3.1	 The Concatenation Operator (+)� 219
10.3.2	 The Replication Operator (*)� 219
10.3.3	 The Membership Operator� 220

10.4	 In-Built Functions� 221
10.4.1	 len()� 221
10.4.2	 Capitalize()� 222
10.4.3	 Find()� 223
10.4.4	 Count � 223
10.4.5	 endswith()� 224
10.4.6	 encode� 224
10.4.7	 decode� 225
10.4.8	 Miscellaneous Functions � 225

10.5	 Conclusion � 228
Glossary� 228
Points to Remember� 228
Exercises� 229

Multiple Choice Questions� 229
Theory� 232

SECTION III: OBJECT-ORIENTED PROGRAMMING� 233

CHAPTER 11: �INTRODUCTION TO OBJECT-ORIENTED
PARADIGM� 235

11.1	 Introduction� 235
11.2	 Creating New Types� 237

PPUPS.CH00_FM_1PP.indd 14PPUPS.CH00_FM_1PP.indd 14 6/15/2023 2:22:43 PM6/15/2023 2:22:43 PM

Contents • xv

11.3	 Attributes and Functions � 238
11.3.1	 Attributes� 239
11.3.2	 Functions� 239

11.4	 Elements of Object-Oriented Programming� 242
11.4.1	 Class � 242
11.4.2	 Object� 243
11.4.3	 Encapsulation � 244
11.4.4	 Data Hiding � 244
11.4.5	 Inheritance � 245
11.4.6	 Polymorphism � 246
11.4.7	 Reusability� 246

11.5	 Conclusion� 246
Glossary� 247
Points to Remember� 248
Exercises� 248

Multiple Choice Questions� 248
Theory� 251
Explore and Design� 251

CHAPTER 12: �CLASSES AND OBJECTS� 253
12.1	 Introduction to Classes� 253
12.2	 Defining a Class� 254
12.3	 Creating an Object� 255
12.4	 Scope of Data Members � 256
12.5	 Nesting � 259
12.6	 Constructor � 260
12.7	 Multiple __Init__(s)� 262
12.8	 Destructors� 264
12.9	 Conclusion � 267
Glossary� 267
Points to Remember� 268
Exercises� 268

Multiple Choice Questions� 268
Theory� 271
Programming Exercises� 271

PPUPS.CH00_FM_1PP.indd 15PPUPS.CH00_FM_1PP.indd 15 6/15/2023 2:24:04 PM6/15/2023 2:24:04 PM

xvi • Contents

CHAPTER 13: �INHERITANCE� 275
13.1	 Introduction to Inheritance and Composition� 275

13.1.1	 Inheritance and Methods� 276
13.1.2	 Composition� 280

13.2	 Inheritance: Importance and Types � 285
13.2.1	 Need for Inheritance� 287
13.2.2	 Types of Inheritance� 287

13.2.2.1	 Simple inheritance � 288
13.2.2.2	 Hierarchical inheritance � 291
13.2.2.3	 Multilevel inheritance � 293
13.2.2.4	 Multiple inheritance and hybrid inheritance � 296

13.3	 Methods� 297
13.3.1	 Bound Methods � 298
13.3.2	 Unbound Method � 299
13.3.3	 Methods are Callable Objects � 301
13.3.4	 The Importance and Usage of Super� 302
13.3.5	 Calling the Base Class Function Using Super � 303

13.4	 Search in Inheritance Tree � 304
13.5	 Class Interface and Abstract Classes � 306
13.6	 Conclusion� 308
Glossary� 309
Points to Remember� 309
Exercises� 309

Multiple Choice Questions� 309
Theory� 312
Programming Exercises� 313

CHAPTER 14: �OPERATOR OVERLOADING� 317
14.1	 Introduction� 317
14.2	 __Init__ Revisited� 318

14.2.1	 Overloading __init__(Sort of)� 320
14.3	 Methods for Overloading Binary Operators� 321

PPUPS.CH00_FM_1PP.indd 16PPUPS.CH00_FM_1PP.indd 16 6/15/2023 2:25:33 PM6/15/2023 2:25:33 PM

Contents • xvii

14.4	� Overloading Binary Operators: The Fraction Example � 322
14.5	 Overloading the += Operator� 328
14.6	 Overloading the > and < Operators� 330
14.7	� Overloading the __Bool__ Operator: Precedence of

__Bool__ Over __Len__� 331
14.8	 Conclusion � 334
Glossary� 334
Points to Remember� 334
Exercises� 335

Multiple Choice Questions� 335
Theory� 336
Programming Exercises� 337

CHAPTER 15: �EXCEPTION HANDLING� 341
15.1 Introduction� 341
15.2	 Importance and Mechanism� 343

15.2.1	 An Example of Try/Except� 344
15.2.2	 Manually Raising Exceptions � 345

15.3	 Build-in Exceptions in Python � 346
15.4	 The Process� 348

15.4.1	 Example� 348
15.4.2	 Exception Handling: Try/Except� 349
15.4.3	 Raising Exceptions� 349

15.5	 Crafting User Defined Exceptions � 350
15.6	 An Example of Exception Handling� 352
15.7	 Conclusion� 356
Glossary� 357
Points to Remember� 357
Exercises� 357

Multiple Choice Questions� 357
Theory� 359
Programming Exercises� 359

PPUPS.CH00_FM_1PP.indd 17PPUPS.CH00_FM_1PP.indd 17 6/15/2023 2:28:33 PM6/15/2023 2:28:33 PM

xviii • Contents

SECTION IV: NUMPY, PANDAS, AND MATPLOTLIB� 361

CHAPTER 16: �NUMPY–I� 363
16.1	 Introduction� 363
16.2	 Fundamentals� 364

16.2.1	 Similarity and Differences Between
a List and a NumPy Array� 366

16.3	 Functions for Generating Sequences � 367
16.3.1	 arange()� 367
16.3.2	 linspace()� 368

16.4	 Aggregate Functions� 369
16.5	 Generating Random Numbers Using Numpy � 372
16.6	 Zeros, Ones, Eyes, and Full� 374
16.7	 Indexing � 376
16.8	 Slicing� 378
16.9	 Operations: Scalar with an Array � 386

16.9.1	 Addition � 386
16.9.1.1	 Using the + operator � 386
16.9.1.2	 Using the numpy. add function � 387

16.9.2	 Subtraction� 388
16.9.2.1	 Using the – operator � 388
16.9.2.2	 Using the numpy.subtract function � 389

16.9.3	 Multiplication � 390
16.9.3.1	 Using the * operator � 390
16.9.3.2	 Using the numpy.multiply function � 391

16.9.4	 Division � 392
16.9.4.1	 Using the / operator � 392
16.9.4.2	 Using the numpy.divide function � 393

16.9.5	 Remainder� 394
16.9.5.1	 Using the % operator � 394
16.9.5.2	 Using the numpy.remainder function � 396

16.9.6	 Power� 396
16.9.6.1	 Using the ** operator � 396
16.9.6.2	 Using the numpy.power function � 398

PPUPS.CH00_FM_1PP.indd 18PPUPS.CH00_FM_1PP.indd 18 6/2/2023 12:06:32 PM6/2/2023 12:06:32 PM

Contents • xix

16.10	 Operations: Array with an Array � 398
16.10.1  Addition � 399

16.10.1.1  Using the + operator � 399
16.10.1.2  Using the numpy.add function � 400

16.10.2  Subtraction� 401
16.10.2.1  Using the — operator � 401
16.10.2.2  Using the numpy.subtract function � 403

16.10.3  Multiplication � 404
16.10.3.1  Using the * operator � 404
16.10.3.2  Using the numpy.multiply function � 406

16.10.4  Division� 406
16.10.4.1  Using the / operator � 406
16.10.4.2  Using the numpy.divide function � 408

16.10.5  Remainder� 409
16.10.5.1  Using the % operator � 409
16.10.5.2  Using the numpy.mod function � 411

16.10.6  Power� 412
16.10.6.1  Using the ** operator � 412
16.10.6.2  Using the numpy.power function � 413

16.11	 Conclusion� 414
Exercises� 415

Multiple Choice Questions� 415
Theory� 417

CHAPTER 17: �NUMPY–II� 419
17.1	 Introduction� 419
17.2	 Joining Arrays� 419

17.2.1	 hstack � 420
17.2.2	 vstack� 421
17.2.3	 Concatenate� 422

17.3	 Splitting Arrays� 426
17.3.1 hsplit� 426
17.3.2	 vsplit � 427

PPUPS.CH00_FM_1PP.indd 19PPUPS.CH00_FM_1PP.indd 19 6/2/2023 12:06:32 PM6/2/2023 12:06:32 PM

xx • Contents

17.3.3	 Split� 435
17.3.4	 Extract � 437

17.4	 Variance� 440
17.5	 Covariance� 441
17.6	 Correlation � 443
17.7	 Conclusion� 443
Exercises� 444

Multiple Choice Questions� 444
Theory� 446

CHAPTER 18: �DATA VISUALIZATION-I� 447
18.1	 Introduction� 447
18.2	 The Plot Function � 449

18.2.1	 xlabel� 450
18.2.2	 ylabel� 450
18.2.3	 axis� 450
18.2.4	 xlim, ylim� 451
18.2.5	 xticks, yticks� 451
18.2.6	 show� 451
18.2.7	 savefig� 451

18.3	 Plotting Lines and Curves� 451
18.3.1	 Plot(X)� 451
18.3.2	 Plot(X, Y)� 452
18.3.3	 Plot(<2D Array>)� 453
18.3.4	 Axis Function� 454
18.3.5	 Plotting Points: Scatter Diagram � 455
18.3.6	 Sine and Cosine Curves� 456
18.3.7	 Comparing Functions� 457
18.3.8	 Plotting Multiple Lines � 458

18.4	 Additional Arguments � 459
18.4.1	 Markers� 459
18.4.2	 Color � 460

PPUPS.CH00_FM_1PP.indd 20PPUPS.CH00_FM_1PP.indd 20 6/2/2023 12:06:32 PM6/2/2023 12:06:32 PM

Contents • xxi

18.4.3	 Linestyle� 460
18.4.4	 Linewidth� 461

18.5	 The Bar Chart� 469
18.6	 Conclusion� 475
Exercises� 475

Multiple Choice Questions� 475
Theory� 477

CHAPTER 19: �DATA VISUALIZATION–II� 479
19.1	 Introduction� 479
19.2	 Box Plot� 479
19.3	 Frequency Plots and Histogram � 482
19.4	 The Pie Chart � 493
19.5	 Conclusion� 498
Exercises� 498

Multiple Choice Questions� 498
Theory� 499

CHAPTER 20: �PANDAS–I� 501
20.1	 Introduction� 501
20.2	 Creating Pandas Series� 503

20.2.1	 Using List� 503
20.2.2	 Using NumPy Arrays� 504
20.2.3	 Using Dictionary� 505

20.3	 Indexing, Iloc, Slicing, and Boolean Index� 505
20.3.1	 Indexing: loc� 506
20.3.2	 Indexing Continued: iloc� 506
20.3.3	 Slicing � 507
20.3.4	 Functions: Head, Tail, Describe, and index� 508

20.3.4.1	 head()� 508
20.3.4.2	 tail()� 508
20.3.4.3	 index� 508
20.3.4.4	 describe()� 509

20.3.5	 Boolean Index� 509

PPUPS.CH00_FM_1PP.indd 21PPUPS.CH00_FM_1PP.indd 21 6/2/2023 12:06:32 PM6/2/2023 12:06:32 PM

xxii • Contents

20.4	� Sorting, Statistical Analysis, and String Functions� 510
20.4.1	 sort_values()� 510
20.4.2	 Statistical Functions� 511
20.4.3	 String Functions � 511

20.5	 Creating a Data Frame � 512
20.5.1	 Creating a Data Frame Using a Dictionary� 513
20.5.2	 Creating a Data Frame Using a Two-Dimensional Array� 514
20.5.3	 Creating the Data Frame Using a Series� 515

20.6	� Operations on Rows and Columns of
a Data Frame � 516
20.6.1	 Adding a Column in a Data Frame � 517
20.6.2	 Deleting Column from the Data Frame� 517
20.6.3	 Adding a Row in a Data Frame � 519
20.6.4	 Deleting Row from the Data Frame� 519

20.7	 Dealing with Rows� 520
20.7.1	 loc[] and iloc[]� 520
20.7.2	 rename� 521

20.8	 Iterating a Pandas Data Frame � 522
20.8.1	 Iterating Pandas Data Frame Rows � 523

20.8.1.1	 iterrows()� 523
20.8.1.2	 index� 524
20.8.1.3	 itertuples()� 525

20.8.2	 Iterating Over Columns � 525
20.8.2.1	 iteritems()� 525
20.8.2.2	 list� 526

20.9	 Conclusion � 528
Exercises� 528

Multiple Choice Questions� 528
Theory� 530

PPUPS.CH00_FM_1PP.indd 22PPUPS.CH00_FM_1PP.indd 22 6/2/2023 12:06:32 PM6/2/2023 12:06:32 PM

Contents • xxiii

CHAPTER 21: �PANDAS–II� 531
21.1	 Introduction� 531
21.2	 Data Frame Methods: Head, Tail, and Describe� 532

21.2.1	 Functions: Head, Tail, and Describe � 533
21.2.1.1	 head()� 533

21.2.2	 tail()� 533
21.2.3	 columns� 533
21.2.4	 describe()� 534

21.3	 Boolean Index� 534
21.4	� Sorting, Descriptive Statistics, and Applying String Functions � 535

21.4.1	 sort_values()� 535
21.4.2	� Finding Maximum, Minimum, Median, Standard

Deviation, Mean, and Count of Values� 536
21.4.3	 String Functions� 537

21.5	 Reading from a CSV File: Pandas.read_csv� 538
21.6	 Missing Values � 541

21.6.1	 To Check Null Values� 541
21.6.2	 dropna() � 543
21.6.3	 fillna()� 544

21.7	 Conclusion� 547
Exercises� 547

Multiple Choice Questions� 547
Theory� 549

APPENDIX A: �PROBLEMS FOR PRACTICE: PROGRAMMING
QUESTIONS� 551

APPENDIX B: �ANSWERS TO MCQS� 563

REFERENCES� 567

WEB RESOURCES� 569

INDEX� 571

PPUPS.CH00_FM_1PP.indd 23PPUPS.CH00_FM_1PP.indd 23 6/2/2023 12:06:32 PM6/2/2023 12:06:32 PM

PPUPS.CH00_FM_1PP.indd 24PPUPS.CH00_FM_1PP.indd 24 6/2/2023 12:06:32 PM6/2/2023 12:06:32 PM

Python is a robust, procedural, object-oriented, and functional language. The
features of the language make it tremendously valuable for web development,
gaming, and scientific programming. Lately, the language has become incred-
ibly popular. The popularity of the language can be gauged from the fact that
it is currently being used by Google, YouTube, Bit Torrent and many other
companies.

This book deals with problem-solving and programming in Python.
Programming is the soul of computer science, and designing a program
requires involved expertise of the paradigms, along with the ability to use
the standard procedures. To become a virtuous programmer one must, there-
fore, not only learn the syntax of the language but also develop an ability to
apply the mastered concepts to solve problems. It may be stated here that a
programming language and its syntax learned by a professional is of no use
until the algorithms that are to be implemented have been well designed.
Thus, a basic knowledge of data structures and algorithms is also essential.
This is the reason that the first section of this book has been dedicated to
problem-solving. One of the most important goals of the book is to make the
readers understand Python’s discriminative features. The ability of Python to
deal with multi-dimensional arrays via NumPy has been included. Python also
helps in visualization via matplotlib. The topic has also been presented in
section IV.

Harsh Bhasin
June 2023

Preface

PPUPS.CH00_FM_1PP.indd 25PPUPS.CH00_FM_1PP.indd 25 6/2/2023 12:06:32 PM6/2/2023 12:06:32 PM

PPUPS.CH00_FM_1PP.indd 26PPUPS.CH00_FM_1PP.indd 26 6/2/2023 12:06:32 PM6/2/2023 12:06:32 PM

This section deals with algorithms and introduces Python. It contains three
chapters namely “Introduction to Algorithms,” “Introduction to Python,” and
“Fundamentals.” The first chapter presents the definition of an algorithm,
the features of a good algorithm, and the ways of writing an algorithm. The
asymptotic complexity has also been discussed in the chapter. The chapter
also discusses the differences between recursive and iterative algorithms.
Algorithms of some common problems have also been included in this chap-
ter. The second chapter introduces Python. The features of the language,
its chronology, and its applications have been discussed in the third chapter.
The chapter also presents a brief overview of the control structures used in
Python. It also describes the installation of Anaconda, which is an immensely
popular Data Science platform. These chapters are the building blocks of the
chapters that follow.

Algorithmic Problem-Solving and
Python Fundamentals

S E C T I O N I

PPUPS.CH01_2pp.indd 1PPUPS.CH01_2pp.indd 1 5/18/2023 10:48:11 AM5/18/2023 10:48:11 AM

PPUPS.CH01_2pp.indd 2PPUPS.CH01_2pp.indd 2 5/18/2023 10:48:11 AM5/18/2023 10:48:11 AM

Objectives

After reading the chapter, the reader should be able to
�� Understand the importance of algorithms.
�� Understand the features of a good algorithm.
�� Understand the ways of writing an algorithm.
�� Understand asymptotic notations.
�� Differentiate between recursive and iterative algorithms.

1.1	 INTRODUCTION

This chapter introduces problem-solving and algorithms. Let us begin our dis-
cussion by understanding the term algorithm. The word algorithm comes from
“algorithmi,” from the title “Algoritmi De Numero Indorum,” a book written
by Muhammad Ibn Musa Al-Khwarizmi, who was a Persian Mathematician.
The word was corrupted and became “Algorism.” Finally, in the nineteenth
century, it became algorithm. Interestingly, the book stated above was on
Indian numerals. Lately, the word algorithm is identified with any procedure
applied to accomplish a given computing task.

An algorithm directs how to solve a problem and there can be many algo-
rithms to solve the same problem. However, not all of them are effective and
efficient. Also, it is desirable that in the sequence of steps for accomplishing
a task, each step should be as basic as possible. The task should be completed
in a finite number of steps. So, a good algorithm should be finite, and each
instruction should be unambiguous.

C H A P T E R 1
Algorithmic Problem-Solving

PPUPS.CH01_2pp.indd 3PPUPS.CH01_2pp.indd 3 5/18/2023 10:48:12 AM5/18/2023 10:48:12 AM

4 • Python Programming Using Problem Solving

Algorithms are implemented using programming languages. However,
designing an algorithm cannot be automated as it is, an art [1]. Art cannot be
automated, but you can at least learn approaches like Divide and Conquer,
Backtracking, Branch and Bound, Dynamic programming, Greedy approaches,
etc. Learning these approaches would not only help you in Computer Science
but also help in other disciplines like Computational Biology, Finance, etc.

Algorithms are used everywhere, right from your set-top box to the
machine that gathers biometric data. The advancements in the field of algo-
rithms have changed the lives of millions. The page rank algorithm of Larry
Page has helped in the creation of Google, which is a part of our life. The
routing algorithms allowed packets to be transferred from one computer to
another via the shortest paths and helped in the advancement of communica-
tion. Likewise, the pre-processing algorithms for magnetic resonance imaging
have helped scientists to develop computer-aided techniques for the diagno-
sis of diseases. The conventional techniques clubbed together with the latest
advancements like Deep Learning have been able to solve many problems in
the society.

1.2	 DEFINITION AND CHARACTERISTICS

Having seen the importance of algorithms, let us now move to their formal
definition and understand their features. An algorithm is a sequence of steps
used to accomplish a given task. It processes the input and generates some
output. The most essential elements of an algorithm are input, output, cor-
rectness, efficiency, and definiteness.

The number of input arguments can even be zero. For example, some of
the pseudo-random number generators, do not take any argument to generate
a random number. However, there must be at least one output. The first thing
that should be taken care of while designing an algorithm is its correctness.
An algorithm that is not correct, is of no use. No amount of fancy controls or
sophisticated techniques can replace correctness. Also, there can be numer-
ous ways to solve a given problem but not all of them are equally efficient.

The efficiency of an algorithm is also important. The algorithm should be
efficient both in terms of time and space. That is, it should take the minimum
possible time and space. For example, linear search and binary search are the
two most important techniques of searching. The first takes O(n) time, while
the second takes O(log n) time. That is, a list having 1024 elements would take

PPUPS.CH01_2pp.indd 4PPUPS.CH01_2pp.indd 4 5/18/2023 10:48:12 AM5/18/2023 10:48:12 AM

Algorithmic Problem-Solving • 5

time of order of 1024 units, in the case of linear search, and would take time
proportional to 10 units, in the case of binary search. Hence, the choice of an
efficient algorithm is immensely important to make an effective model. The
meaning of O has been explained in Section 1.5.

The above discussion can be summarized as follows:

�� an algorithm takes zero or more input,
�� it produces at least one output,
�� it must be correct,
�� it should be efficient, both in terms of memory and space, and
�� it should not be ambiguous.

1.3	 NOTATIONS: PSEUDOCODE AND FLOW CHART

In order to appreciate the discussion, let us come back to the example of linear
search. In linear search, a list is searched for an item by looking for the item
iteratively, that is at each position of the list. The algorithm for linear search
can be stated as follows (Algorithm 1). Table 1.1 shows the conventions used
for writing algorithms, in this book. The algorithm can also be represented as
a flow chart as shown in Figure 1.1. Pseudocode and flow chart are the two
most commonly used ways of representing an algorithm. The third way of
writing an algorithm can be English-like. However, this is not preferred, as it
can be ambiguous.

Algorithm 1: Linear Search

Input:

List: L

Length of the list: n

Item to be searched: item

Algorithm: Linear Search

Set i=0;

Set Flag=0;

While (i<n)

	 {

	 if (L[i]==item)

		 {

		 Print("Item found at ",i);

		 Flag=1;

PPUPS.CH01_2pp.indd 5PPUPS.CH01_2pp.indd 5 5/18/2023 10:48:12 AM5/18/2023 10:48:12 AM

6 • Python Programming Using Problem Solving

		 }

	 i++;

	 }

if(Flag==0)

	 {

	 Print("Not found");

	 }

}

Linear Search: Flow Chart

Start

Input: List: L, Number of Items: n,
Item to be searched: Item

Set Flag=0
Set i=0

i < n L[i]==item

If Flag==0

Not found

Stop

Flag=1
Print(‘Found at’,i)

i++

Yes

No

Yes

No

No Yes

FIGURE 1.1  Flowchart for linear search.

PPUPS.CH01_2pp.indd 6PPUPS.CH01_2pp.indd 6 5/18/2023 10:48:12 AM5/18/2023 10:48:12 AM

Algorithmic Problem-Solving • 7

Linear Search: English-Like

1.	 Set Flag=0

2.	 Set the value of i to 0 and start scanning the items of the list. If the item
to be searched is found, set Flag to 1.

3.	 If Flag==0, then print “Not Found”.

TABLE 1.1  Conventions used in algorithms.

Convention Description

// Single line comment

/*…*/ Multiple line comment

{ } Block

<variable name> = <value> Assignment

a < b Less than operator

a > b Greater than operator

a <= b Less than or equal to operator

a >= b Greater than or equal to operator

a == b Checking equality

a != b Checking the values of the two variables are not equal

&& AND operator

|| OR operator

1.4	� STRATEGIES FOR PROBLEM-SOLVING: RECURSION
VERSUS ITERATION

Algorithms can be recursive or iterative. Recursion is the invocation of a func-
tion inside that function. In order to develop a code using recursion, one must
express a function in terms of itself (with reduced values of the parameters)
and should specify the base condition(s) to serve as the stopping criteria.
For example, the nth Fibonacci term can be expressed as the sum of the
(n-1)th and (n-2)th Fibonacci terms. Since, the evaluation of nth Fibonacci
term requires two previous results of evaluation, two base conditions must
be specified. The first and the second terms of this sequence are 1 and 1.
Therefore the function can be written as follows.

PPUPS.CH01_2pp.indd 7PPUPS.CH01_2pp.indd 7 5/18/2023 10:48:12 AM5/18/2023 10:48:12 AM

8 • Python Programming Using Problem Solving

	 fib(n) = fib(n – 1) + fib(n – 2)
	 fib(1) = 1
	 fib(2) = 1

That is, to find the fifth Fibonacci term, we need to find the sum of the
fourth and the third term. The fourth Fibonacci term can be found by adding
the third and the second term. The third Fibonacci term can be found by add-
ing the second and the first term, both of which are 1. The process has been
depicted in Figure 1.2.

FIGURE 1.2  The evaluation of the fifth Fibonacci term.

Though recursion provides graceful solutions and a way to define a func-
tion mathematically, it is hard to get hold of the way problem is solved using
recursion. As a matter of fact, debugging an intricate program, that uses recur-
sion, is difficult. Moreover, it is inefficient as it uses function calls.

However, some problems like the in-order, the pre-order, and the post-
order traversals of trees; the Depth First Search and Breadth First Search of
graphs; binary search, Quicksort and Merge sort, etc., can be easily solved
using recursion. It may be stated here that a problem that can be solved using
recursion can also be solved iteratively.

Recursion uses run-time-stack, which provides a Last-In-First-Out
access. In order to understand this, let us consider the example of calculating

PPUPS.CH01_2pp.indd 8PPUPS.CH01_2pp.indd 8 5/18/2023 10:48:16 AM5/18/2023 10:48:16 AM

Algorithmic Problem-Solving • 9

factorial using recursion. The factorial of a number can be calculated using
the following formula.

	 fac(n) = n * fac(n – 1)
	 fac(1) = 1

Evaluating fac(3) would require multiplying fac(2) with 3. The evaluation
of fac(2) would require multiplying fac(1) with 2. The value of fac(1) is 1. So,
in the above example, fac(3) calls fac(2) which calls fac(1). When fac(1) ends,
the run-time-stack stores the location of fac(2) to return to fac(3). Likewise,
when fac(2) ends the run-time-stack stores the location of fac(3) to return
to fac(4). The run-time-stack makes backtracking easy. Chapter 7 deals with
recursion in detail.

Another example of recursion is the calculation of the power of a given
number. The power of a number can be calculated using iterative algorithms
as shown in program 1. In the program, the variable p is initialized to 1. The
loop runs b times and each time a is multiplied by p. It may be stated here that
the syntax and the nitty-gritty of programming have been introduced in the
following chapters. However, the reader can revisit this section after complet-
ing the next two units.

Program:

a=int(input('Enter the first number\t'))

b=int(input('Enter the second number\t:'))

p=1

i=1

while (i<=b):

  p=p*a

  i+=1

print(a, ' to the power of ', b, 'is ',p)

Output:

Enter the first number		 : 2

Enter the second number	 :10

2 to the power of 10 is 1024

The above task can also be accomplished using recursion. The following
formula can be used to find a to the power of b.

PPUPS.CH01_2pp.indd 9PPUPS.CH01_2pp.indd 9 5/18/2023 10:48:16 AM5/18/2023 10:48:16 AM

10 • Python Programming Using Problem Solving

	 ab = (ab/2)2, if b is even and

	 ab = (a(b-1)/2)2 × b, if b is odd

The logic has been implemented in the following program. The output
follows.

Program:

def pow (a, b):

 if b==1:

	 return a

 elif b%2==0:

	 return (pow(a, b/2)**2)

 else:

	 return ((pow(a, int(b/2))**2)*a)

pow(5,1)

pow(5,2)

pow(5,3)

pow(5,4)

Output:

5

25

125

625

3125

1.5	 ASYMPTOTIC NOTATION

An algorithm can be analyzed by considering its best and worst case. For
example, in linear search, the best case would be finding the element at the
very first position of the list. The worst case of this algorithm would be the
case where the element is found at the last position or is not found.

The asymptotic growth of a function can be defined in terms of its input
size, for a sufficiently large value of the input size, n. The asymptotic nota-
tions can be used to compare the running time or the space requirement of
algorithms. The best-case running time of an algorithm can be depicted by its
lower bound and the worst-case running time can be depicted by its upper

PPUPS.CH01_2pp.indd 10PPUPS.CH01_2pp.indd 10 5/18/2023 10:48:16 AM5/18/2023 10:48:16 AM

Algorithmic Problem-Solving • 11

bound. The lower bound would be henceforth represented by big omega, that
is, Ω(). The upper bound would be henceforth represented by big Oh, that is,
O(). The formal definition of the two follows.

Big O: O()

The worst-case behavior of an algorithm is depicted by the asymptotic upper
bound notation. For any two functions f(n) and g(n)

	 O(g(n))	= f(n), for all n > 0 and

	 f(n)	≤ c × g(n)

Omega: W()

The best-case behavior of an algorithm is depicted by the asymptotic lower-
bound notation. For any two functions f(n) and g(n)

	 W(g(n))	= f(n), for all n > 0 and

	 f(n)	≥ c × g(n)

Theta: Q()

The asymptotically tight bound for a function f(n) can be defined as follows.
For any two functions f(n) and g(n).

	 θ(g(n))	= f(n), for all n > 0 and

	 c1× g(n)	≤ f(n) ≤ c2× g(n)

It may also be noted that,

	 f(n)	= O(g(n))  and

	 f(n)	= W(g(n))

	 then,

	 f(n)	= q(g(n))

1.6	 COMPLEXITY

The algorithm should be efficient both in terms of memory and time. That
is, an algorithm should take the least amount of space and time. In order to
understand the concept, let us consider five different algorithms to solve the

PPUPS.CH01_2pp.indd 11PPUPS.CH01_2pp.indd 11 5/18/2023 10:48:16 AM5/18/2023 10:48:16 AM

12 • Python Programming Using Problem Solving

same problem. Assume that the number of elements given as input to the
algorithm is n. The first algorithm takes time proportional to n to accomplish
the given task (O(n)), the second algorithm takes time proportional to n2 to
do the same task (O(n2)), the third takes time proportional to n3(O(n3)), the
fourth takes time proportional to log(n) (O(log n))and the fifth takes time
proportional to n log(n), that is O(n log n). This implies that, if the number
of elements doubles, the time taken to accomplish the given task by the first
algorithm would double, by the second algorithm would be four times, the
third algorithm eight times, and the increase in time of the fourth would be
less than the increase in the first and the increase in the time by the fifth
would be less than the increase in the second. Therefore, the order of the
time complexity would be as follows:

O(log n) < O(n) < O(n log n) < O(n2) < O(n3)

For example, linear search described in the following section takes O(n)
time whereas binary search takes O(log n) time. Therefore, binary search
takes lesser time as compared to linear search. Merge sort and bubble sort are
the two most popular algorithms for sorting. The merge sort takes O(n log n)
time and bubble sort takes O(n2) time. Therefore, Merge sort has lesser time
complexity vis-à-vis bubble sort and is hence better.

1.7	 ILLUSTRATIONS

Having seen the definition, characteristics, and notations used for writing an
algorithm, let us now move to some basic examples. This section presents four
problems and their solutions.

1.7.1	 Minimum in a List

Illustration 1.1:

Given a List, L. Write an algorithm to find the minimum valued element in
the list.

Solution:

Let the first element of the list be the minimum valued element (“min” =
L[0]). The list is scanned from left to right. At any point, if we are able to find
an element having a value less than the value stored in “min,” the value of

PPUPS.CH01_2pp.indd 12PPUPS.CH01_2pp.indd 12 5/18/2023 10:48:16 AM5/18/2023 10:48:16 AM

Algorithmic Problem-Solving • 13

that element is stored in the variable “min,” The min1 function performs the
requisite task.

Algorithm:

def min1(L):

	 {

	 min=L[0];

	 i=0;

	 while(i<len(L))

		 {

		 if(L[i]<min)

				 {

				 min=L[i];

				 }

		 i+=1;

		 }

	 return min;

	 }

Test:

min([51,12,71,91,13,19])

Output:

12

1.7.2	� Insert a Card in a Pack of Cards (Or Insert an element in a sorted list).
There are ten cards in the pack, numbered from 1 to 10.

Illustration 1.2:

It is required to insert a card in an ordered pack of cards. The above problem
can also be stated as follows. Given a sorted list, insert an item at its appropri-
ate position.

Solution:

The given list is sorted and the given item is to be inserted at its appropriate
position. We begin with the last element and shift each element one position
to the right, till an item, smaller than the given item is found. This is followed
by the insertion of the given item at the position.

PPUPS.CH01_2pp.indd 13PPUPS.CH01_2pp.indd 13 5/18/2023 10:48:16 AM5/18/2023 10:48:16 AM

14 • Python Programming Using Problem Solving

Algorithm:

def insert(L, item)

	 {

	� //L is a sorted list and item is the number to be inserted

	� n=len(L); //The len function finds the length of the given
list

	 i=n;//set i to the last position

	 while(L[i]>item)

		 {

		 L[i+1]=L[i];

		 i=i-1;

		 }

	 L[i+1]=item;

	 print(L)

	 }

Test:

insert([1,3,4,6,8,9],7)

Expected Output (Implementation in Python):

[1, 3, 4, 6, 7, 8, 9]

1.7.3	 Guess a Number in a Given Range

Illustration 1.3:

The computer generates a number, in a given range and you are required to
guess it within 10 trials.

Solution:

The algorithm requires a pseudo-random number generator. The user enters
a range and the program generates a random number in that range. The com-
puter guides the user, telling the user if the correct number is lesser or greater
than the number guessed by the user. The user is allowed only ten trials.

Algorithm:

	 GuessNumber()

	 {

	 import random;	

	 n = 0;

	 //ask the user to enter two numbers

PPUPS.CH01_2pp.indd 14PPUPS.CH01_2pp.indd 14 5/18/2023 10:48:16 AM5/18/2023 10:48:16 AM

Algorithmic Problem-Solving • 15

	� print('Hi there! I will guess a number between the range
entered by you\t:');

	 a=int(input('Enter the first number\t:'));

	 b=int(input('Enter the second number\t:'));

	� print('Generating a number between ',a, ' and ',b);

	 number = random.randint(a, b);

	 while (n < 10)

	 {

			 guess = int(input('Take a guess\t:'));

			 if (guess < number)

			 		 {

			 		 print('Think of a higher number\t:');

			 		 }

			 if (guess > number)

					 {

					 print('Think of a lower number\t:');

					 }

			 if (guess == number)

					 {

					 print('Congratulations you win!')

					 break;

					 }

				 n = n + 1;

			 if (guess == number)

					 {

					 print('Won in ', (n+1), 'chance(s)');

					 }

			 if (guess != number)

				 {

			 print('The number was ', number);

				 }

	 }

Expected Output

Hi there! I will guess a number between the range entered by you:

Enter the first number			 :  3

Enter the second number		 :  10

Generating a number between 3 and 10	 :

PPUPS.CH01_2pp.indd 15PPUPS.CH01_2pp.indd 15 5/18/2023 10:48:16 AM5/18/2023 10:48:16 AM

16 • Python Programming Using Problem Solving

Take a guess				 :  9

Think of a lower number			 :

Take a guess				 :  8

Think of a lower number			 :

Take a guess				 :  7

Think of a lower number			 :

Take a guess				 :  6

Think of a lower number			 :

Take a guess				 :  5

Think of a lower number			 :

Take a guess				 :  4

Think of a lower number			 :

The number was 3

1.7.4	 Tower of Hanoi

Tower of Hanoi requires the transfer of n disks of increasing sizes kept in the
source peg to the destination peg, moving one disk at a time, in a way so that
a larger disk should not be placed on a smaller disk at any point in time. The
following example illustrates the process. The value of n in this example is
three. Note that in none of the steps, a larger disk is placed above a smaller
disk (Figures 1.3–1.9).

FIGURE 1.3  Initially the first peg (source) has all three disks which are to be transferred
to the second peg (destination).

PPUPS.CH01_2pp.indd 16PPUPS.CH01_2pp.indd 16 5/18/2023 10:48:16 AM5/18/2023 10:48:16 AM

Algorithmic Problem-Solving • 17

FIGURE 1.4  Move the smallest disk to the second peg.

FIGURE 1.5  Move the second largest disk to the third peg.

FIGURE 1.6  Move the smallest disk to the third peg and the largest disk to
the second peg.

FIGURE 1.7  Now move the smallest disk to the first peg.

PPUPS.CH01_2pp.indd 17PPUPS.CH01_2pp.indd 17 5/18/2023 10:48:17 AM5/18/2023 10:48:17 AM

18 • Python Programming Using Problem Solving

FIGURE 1.8  Move the second largest disk to the second peg and place it above
the largest disk.

FIGURE 1.9  Now place the smallest disk above the second largest disk.

Illustration 1.4:

Write an algorithm for the solution to the Tower of Hanoi problem.

Algorithm:

def towerOfHanoi(n, source, destination, intermediate)

{

	 if(n==1)

	 {

		 print("Move ",n," from ", source, " to ",destination);

	 }

		 else	

	 {

		 towerOfHanoi(n-1, source, intermediate, destination);

		 print("Move ",n," from ", source, " to ",destination);

		 towerOfHanoi(n-1, intermediate, destination, source);

	 }

}

PPUPS.CH01_2pp.indd 18PPUPS.CH01_2pp.indd 18 5/18/2023 10:48:17 AM5/18/2023 10:48:17 AM

Algorithmic Problem-Solving • 19

Test:

towerOfHanoi(1,'A','B', 'C')

Expected Output

Move 1 from A to B

Test:

towerOfHanoi(2,'A','B', 'C')

Expected Output

Move 1 from A to C

Move 2 from A to B

Move 1 from C to B

Test:

towerOfHanoi(3,'A','B', 'C')

Expected Output

Move 1 from A to B

Move 2 from A to C

Move 1 from B to C

Move 3 from A to B

Move 1 from C to A

Move 2 from C to B

Move 1 from A to B

Test:

towerOfHanoi(4,'A','B', 'C')

Expected Output

Move 1 from A to C

Move 2 from A to B

Move 1 from C to B

Move 3 from A to C

Move 1 from B to A

Move 2 from B to C

Move 1 from A to C

Move 4 from A to B

Move 1 from C to B

PPUPS.CH01_2pp.indd 19PPUPS.CH01_2pp.indd 19 5/18/2023 10:48:17 AM5/18/2023 10:48:17 AM

20 • Python Programming Using Problem Solving

Move 2 from C to A

Move 1 from B to A

Move 3 from C to B

Move 1 from A to C

Move 2 from A to B

Move 1 from C to B

1.8	 CONCLUSION

Algorithms are the set of steps used to accomplish a given task, efficiently
and effectively. An algorithm must be definite, and each instruction should be
unambiguous. There are many ways of representing the steps to accomplish
the given task: by simply writing the instruction in English, by drawing the
flowchart, or by writing the pseudocode. An algorithm must generate at least
one output. Moreover, a good algorithm should be efficient both in terms of
memory and computation time. The asymptotic complexity helps us to ascer-
tain the efficiency of an algorithm. Problem-solving using algorithms is an
involved process and requires due deliberation and intricate analysis. Some
algorithms like linear search, binary search, etc., have been presented in this
chapter. Readers, new to programming, may find it difficult to get hold of
some of the procedures presented in this chapter. However, they should cover
the procedural programming presented in Section II of this book and revisit
this chapter. This chapter is a door to the fascinating world of problem-solving
and Python would be your friend in this long journey. So, let us meet our new
friend “Python” in the next chapter.

GLOSSARY

Algorithm: Set of steps written to accomplish a given computing task.

Features of a good algorithm: Correctness, Definiteness, Unambiguity,
Input, and Output.

POINTS TO REMEMBER

�� Correctness should be the priority in designing an algorithm.
�� An algorithm should be

–– definite,
–– unambiguous, and
–– efficient.

PPUPS.CH01_2pp.indd 20PPUPS.CH01_2pp.indd 20 5/18/2023 10:48:17 AM5/18/2023 10:48:17 AM

Algorithmic Problem-Solving • 21

�� Binary search is better for a sorted list.
�� Big Oh notation represents the upper bound.
�� Theta is the tight bound.

EXERCISES

Multiple Choice Questions

1.	 An algorithm should be

	 (a)  Definite			 (b)  Unambiguous

	 (c)  Both (a) and (b)	 	 (d)  None of the above

2.	 In which of the following algorithms, an input argument may not be
required?

	 (a)  Linear search		 (b)  Binary search

	 (c)  Pseudo-random number generator

	 (d)  None of the above

3.	 Which of the following can be used, if the input list is sorted?

	 (a)  Linear search

	 (b)  Binary search

	 (c)  Both are equally efficient

	 (d)  Depends on the input constraints

4.	 Which of the following would not work if the input array is not sorted?

	 (a)  Linear search 	 	 (b)  Binary search

	 (c)  Both (a) and (b)		 (d)  Depends on the problem

5.	 In a recursive algorithm

	 (a)  The function needs to be expressed in terms of itself

	 (b)  The base case must be stated

	 (c)  Both of the above

	 (d)  None of the above

PPUPS.CH01_2pp.indd 21PPUPS.CH01_2pp.indd 21 5/18/2023 10:48:17 AM5/18/2023 10:48:17 AM

22 • Python Programming Using Problem Solving

6.	 Generally, which of the following has more time complexity?

	 (a)  Recursive algorithm 	 (b)  Iterative algorithm

	 (c)  Both (a) and (b)	 	 (d)  None of the above

7.	 Which of the following represents the upper bound?

	 (a)  Big Oh notation 		 (b)  Omega notation

	 (c)  Theta notation 	 	 (d)  None of the above

8.	 Which of the following represents the lower bound?

	 (a)  Big Oh notation 		 (b)  Omega notation

	 (c)  Theta notation 		 (d)  None of the above

9.	 Which of the following represents tight bound?

	 (a)  Big Oh notation 		 (b)  Omega notation

	 (c)  Theta notation 		 (d)  None of the above

10.	 If an algorithm is O(n) then it is

	 (a)  O(n2)			 (b)  O(n3)

	 (c)  O(2n)		 	 (d)  All of the above

11.	 If an algorithm is O(n2) then it is not

	 (a)  O(n)		 	 (b)  O(n3)

	 (c)  O(2n)		 	 (d)  All of the above

12.	 If an algorithm is Ω(n3) then it is

	 (a)  W (n2)			 (b)  W (n)

	 (c)  W (1)		 	 (d)  All of the above

13.	 If an algorithm is W (n2) then it is not

	 (a)  W (n)		 	 (b)  W (n3)

	 (c)  W (2n)		 	 (d)  All of the above

14.	 Who was the brain behind the famous page rank algorithm?

	 (a)  Larry Page		 (b)  Alan Turing

	 (c)  Trump			 (d)  None of the above

PPUPS.CH01_2pp.indd 22PPUPS.CH01_2pp.indd 22 5/18/2023 10:48:17 AM5/18/2023 10:48:17 AM

Algorithmic Problem-Solving • 23

15.	 Who discovered Turing Machine?

	 (a)  Einstein		 	 (b)  Newton

	 (c)  George Boole 	 	 (d)  None of the above

Theory

1.	 Define the term algorithm. Also, state the features of a good algorithm.

2.	 What is space and time complexity? Also, discuss the importance of the
two.

3.	 Define the following asymptotic notations.

	 (a)  big Oh,

	 (b)  omega,

	 (c)  theta.

4.	 What are the different ways of writing an algorithm?

5.	 Differentiate between an algorithm and a program.

6.	 Why should design precede implementation?

7.	 What are the various design approaches?

8.	 Discuss the time-memory trade-off.

Application

1.	 Write an algorithm for linear search.

2.	 If the given list is sorted, an element can be searched as follows. We start
by looking at the first, last, and middle position of the list. If the element
is not found at these positions, the list is divided into two halves. If the
element to be searched is less than the element present in the middle,
then the process is repeated on the left part of the list; otherwise, it is
repeated on the right part. At the end, a single element is left, which can
be easily checked. Write a formal algorithm for this process.

3.	 In the above case, if the list is divided into four parts, instead of two, write
the algorithm.

4.	 Write an algorithm to sort a given list.

PPUPS.CH01_2pp.indd 23PPUPS.CH01_2pp.indd 23 5/18/2023 10:48:18 AM5/18/2023 10:48:18 AM

24 • Python Programming Using Problem Solving

5.	 Write an algorithm to find the minimum element from a given list.

6.	 Write an algorithm to find the maximum element from a given list.

7.	 Write an algorithm to find the second maximum element from a given list.

8.	 Write an algorithm to find the sum of all the elements of a given list.
Also find the average, standard deviation, and quartile deviation of the
elements in that list.

9.	 Write an algorithm to find if a list contains repeated elements.

10.	 Write an algorithm to reverse a given list.

PPUPS.CH01_2pp.indd 24PPUPS.CH01_2pp.indd 24 5/18/2023 10:48:18 AM5/18/2023 10:48:18 AM

Objectives

After reading this chapter, the reader should be able to

�� Understand the principles of Python
�� Appreciate the importance and features of Python
�� Enlist the areas in which Python is used
�� Install Anaconda
�� Understand the control flow in Python

2.1	 INTRODUCTION

Art is an expression of human creative skills, and hence programming is an
art. Therefore, the choice of programming language acts as a tool in the hands
of an artist. This book introduces Python, which would help you to become a
great artist. A. J. Perlis, who was a professor at Purdue University, USA, was
also the recipient of the first Turing award, stated

A language that doesn’t affect the way you think about programming is
not worth knowing.

Python is worth knowing. Learning Python would not only motivate you
to do highly complex tasks in the simplest manner but would also demolish
the myths of conventional programming paradigms. Moreover, it is a language
that would change how you look at a problem.

This book aims to explore the elements of Python programming. Though
we would use Python for programming, most of the concepts presented in this
book are general. One must appreciate the fact that Computer Science is now
also being used in solving the problems of society, and the language you learn
should take you forward toward your goal of contributing to society.

C H A P T E R 2
Introduction to Python

PPUPS.CH02_1pp.indd 25PPUPS.CH02_1pp.indd 25 4/6/2023 12:41:00 PM4/6/2023 12:41:00 PM

26 • Python Programming Using Problem Solving

As stated in the previous chapter, a program is a set of instructions, and
we cannot use English-like instructions as they are ambiguous. On the other
hand, programming languages like Python are unambiguous. The Python
interpreter would interpret the instructions fed to it.

Python is a strong, procedural, object-oriented, and functional language
crafted in the late 1980s by Guido Van Rossum. The language is named after
Monty Python, a comedy group. The language is currently being used in
diverse application domains. These include software development, web devel-
opment, desktop Graphical User Interface (GUI) development, and education
and scientific applications. So, it spans almost all the facets of development.
Its popularity is primarily owing to its simplicity and robustness, though many
other factors are discussed in the following chapters.

There are many third-party modules for accomplishing the above tasks.
For example, Django, an immensely popular web framework dedicated to
clean and fast development, is developed on Python. This, along with the sup-
port for HTML, e-mails, FTP, etc., makes it apt for web development.

Third-party libraries are also available for software development. One of
the most common examples is Scions, which is used for building controls.
Clubbed with the in-built features and support, Python also works miracles
for GUI development and for developing mobile applications, for example,
Kivy is used for developing multi-touch applications.

Python also finds its applications in Scientific Analysis. SciPy is used for
Engineering and Mathematics, and IPython is used for parallel computing.
Those of you working in statistics and Machine Learning would find some
libraries extremely useful and easy to use. For example, SciPy provides
MATLAB like features and can be used for processing multidimensional
arrays. Figure 2.1 summarizes the above discussion.

FIGURE 2.1  Some of the applications of Python.

PPUPS.CH02_1pp.indd 26PPUPS.CH02_1pp.indd 26 4/6/2023 12:41:00 PM4/6/2023 12:41:00 PM

Introduction to Python • 27

The chapter has been organized as follows. Section 2.2 discusses the
features of Python. Section 2.3 discusses the programming language para-
digms supported by Python, and Section 2.4 discusses the chronology and
the uses of Python. The installation of the Anaconda has been presented in
Section 2.5. Section 2.6 presents a brief discussion of variables, statements,
etc. The last section concludes.

2.2	 FEATURES OF PYTHON

As stated earlier, Python is a simple but powerful language. It is portable and
free. It has built-in object types and many libraries. This section briefly dis-
cusses the features of Python.

2.2.1	 Easy

Python is easy to learn and understand. As a matter of fact, if you are from
a programming background, you would find it elegant and uncluttered. The
removal of braces and parenthesis makes the code short and sweet. Also,
some of the tasks in Python are quite easy. For example, swapping numbers in
Python is as easy as writing (a, b) = (b, a).

It may also be stated here that learning something new is an involved and
intricate task. However, the simplicity of Python makes this learning almost
a cakewalk. Moreover, learning its advanced features, though a bit intricate,
but worth the effort. It is also easy to understand a project written in this
language. The code is concise and effective, which makes it understandable.

2.2.2	 Type and Run

In most of the projects, testing something new requires scores of changes
and hence recompilations and re-runs. This makes testing code a difficult and
time-consuming task. In Python, code can be executed easily. As a matter of
fact, we run scripts in Python. As we will see later in this chapter, it also pro-
vides users with an interactive environment to run independent commands.

2.2.3	 Syntax

The Syntax of Python is easy; this makes the learning and understanding pro-
cess easy. The three main features that make this language attractive are that
it is simple, small, and flexible.

PPUPS.CH02_1pp.indd 27PPUPS.CH02_1pp.indd 27 4/6/2023 12:41:00 PM4/6/2023 12:41:00 PM

28 • Python Programming Using Problem Solving

2.2.4	 Mixing

If one is working on a big project, with a big team, it might be the case that
some team members are good in other languages. This may lead to some
of the modules, in some other language, wanting to be embedded with the
Python code. Python, in fact, allows and even supports this.

2.2.5	 Dynamic Typing

Python has its own way of managing memory associated with objects. When
an object is created in Python, memory is dynamically allocated to it. When
the object’s life cycle ends, the memory is taken back from it. This memory
management of Python makes the programs more efficient.

2.2.6	 Built-in Object Types

As we will see in the next chapter Python has built-in object types. This makes
the task, to be accomplished, easy, and manageable. Moreover, the issues
related to these objects are beautifully handled by the language.

2.2.7	 Numerous Libraries and Tools

In Python, the task to be accomplished becomes easy, really easy. This is
because most of the common tasks (as a matter of fact, not so common tasks
also), have already been handled in Python. For example, it has libraries that
help users to develop GUIs, write mobile applications, incorporate security
features, and even read MRIs. As we will see in the following chapters, the
libraries and supporting tools make even intricate tasks like pattern recogni-
tion easy.

2.2.8	 Portable

A program written in Python can run on almost every known platform. Be it
Windows, Linux, or Mac. It may also be stated here that Python is written
in C. However, some versions of this language are written in JAVA as well.

2.2.9	 Free

Python is not propriety software. One can download Python compilers; from
among the various available choices. Moreover, no known legal issues are
involved in the distribution of the code developed in Python.

PPUPS.CH02_1pp.indd 28PPUPS.CH02_1pp.indd 28 4/6/2023 12:41:00 PM4/6/2023 12:41:00 PM

Introduction to Python • 29

2.3	 THE PARADIGMS

This section briefly introduces the three major paradigms. Note that Python
fully supports the first two: procedural and object-oriented programming.
However, it also supports some other features like tail optimization, etc.

2.3.1	 Procedural

In procedural language, a program is a set of statements that execute sequen-
tially. The only option a program has in terms of manageability is dividing
the program into small modules. “C,” for example, is a procedural language.
Python supports procedural programming. The fifth section of this book deals
with procedural programming.

2.3.2	 Object-Oriented

This type of language primarily focuses on instances of a class. The instance
of a class is called object. A class, here, is a real or a virtual entity, having
importance to the problem at hand, and has sharp physical boundaries. For
example, in a program that deals with student management, “student” can be
a class. Its instances are made, and the task at hand can be accomplished by
communicating via methods. Python is object-oriented language. Section III
of this book deals with object-oriented programming.

2.3.3	 Functional

In functional programming, each computation is treated as the result of the
evaluation of a mathematical function. Python also supports functional pro-
gramming. Moreover, Python supports immutable data, tail optimization, etc.
This must be music to the ears of those from a functional programming back-
ground. Here, it may be stated that functional programming is beyond the
scope of this book. However, some of the above features will be discussed in
the chapters that follow.

2.4	 CHRONOLOGY AND USES

This section briefly discusses Python’s chronology and motivates the reader to
bind with the language.

2.4.1	 Chronology

Python, which is a multiparadigm language, was conceived in the late 1980s.
The implementation of Python began in December 1989, when Guido Van

PPUPS.CH02_1pp.indd 29PPUPS.CH02_1pp.indd 29 4/6/2023 12:41:00 PM4/6/2023 12:41:00 PM

30 • Python Programming Using Problem Solving

Rossum, who was working in Centrum Wiskunde & Informatica, decided to
do something useful during his Christmas holidays. He actually wanted to
work on the successor of the ABC programming language.

The next version, Python 2, was released on October 16, 2000, followed
by Python 3, released on December 3, 2008. However, it was not backward
compatible. In 2017, Google announced work on Python 2.7.

Some languages, like Perl, believe in providing options as more than one
way of doing a task. On the other hand, Python believes in the fact that there
is one obvious way of doing a task and therefore has a small core. Python sup-
ports object-oriented programming and procedural programming. It partly
supports functional programming. Even though it has a small core, the stand-
ard library support is vast. It is simple, less cluttered, and has an extendible
interpreter.

The principles on which Python is based can be seen by typing import
this in the interpreter. This presents the “Zen of Python.”

>>import this

Output:

The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren’t special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --obvious way to
do it.

Although that way may not be obvious at first unless you’re
Dutch.

Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it’s a bad idea.

PPUPS.CH02_1pp.indd 30PPUPS.CH02_1pp.indd 30 4/6/2023 12:41:00 PM4/6/2023 12:41:00 PM

Introduction to Python • 31

If the implementation is easy to explain, it may be a good idea.

Namespaces are one honking great idea -- let’s do more of those!

It may also be stated that Python rejects the patches that provide marginal
speed increases instead of a less understandable code. The features of Python
have been discussed in the next section of this chapter. It may be stated that
those following the above rules are said to use a Pytonic way of programming.

The continuous betterment of this language has been possible because of
a dedicated group of people committed to supporting the cause of providing
the world with an easy yet powerful language. The growth of this language has
given rise to the creation of many interest groups and forums for Python. A
change in the language can be bought about by what is generally referred to as
PEP (Python Enhancement Project). The PSF (Python Software Foundation)
takes care of this.

2.4.2	 Uses

Python is being used to accomplish many tasks, the most important of which
are as follows.

�� GUI development
�� Scripting Web Pages
�� Database Programming
�� Prototyping
�� Gaming
�� Component-based programming

If you are working in Unix or Linux, you need not install Python because it
is generally pre-installed. If you work on Windows or Mac, you need to down-
load Python. Once you have decided to download Python, look for its latest
version. The reader is requested to ensure that the version they intend to
download is not an alpha or a beta version. The next section briefly discusses
the steps for downloading Anaconda, an open-source distribution.

Many development environments are available for Python. Some of them
are as follows.

1.	 PyDev with Eclipse

2.	 Emacs

3.	 Vim

4.	 TextMate

PPUPS.CH02_1pp.indd 31PPUPS.CH02_1pp.indd 31 4/6/2023 12:41:00 PM4/6/2023 12:41:00 PM

32 • Python Programming Using Problem Solving

5.	 Gedit

6.	 Idle

7.	 PIDA (Linux) (VIM Based)

8.	 NotePad++ (Windows)

9.	 BlueFish (Linux)

There are some more options available. However, this book uses IDLE
and Anaconda. The next section presents the steps involved in the installation
of Anaconda.

2.5	 INSTALLATION OF ANACONDA

In order to install Anaconda, go to https://docs.continuum.io/anaconda/install
and select the installer (Windows or Mac OS or Linux). This section presents
the steps involved in installing Anaconda on the Windows Operating System.

First, one must choose the installer based on their processor (32-bit or
64-bit). After this, click on the selected installer and download the executable
file. The installer would ask you to install the software on the default location.
It may happen that during installation, you might have to disable the anti-
virus software. Figure 2.2(a)–(g) takes the reader through the installation.

FIGURE 2.2(a)  The welcome screen of the installer asks the user to
close all running applications and then click Next.

PPUPS.CH02_1pp.indd 32PPUPS.CH02_1pp.indd 32 6/15/2023 12:59:01 PM6/15/2023 12:59:01 PM

Introduction to Python • 33

FIGURE 2.2(b)  The Licence agreement to install
Anaconda3 4.3.0 (32-bit).

FIGURE 2.2(c)  In the third step, the user is required to choose whether
he wants to install Anaconda for a single user or for all users.

PPUPS.CH02_1pp.indd 33PPUPS.CH02_1pp.indd 33 4/6/2023 12:41:00 PM4/6/2023 12:41:00 PM

34 • Python Programming Using Problem Solving

FIGURE 2.2(d)  The user then needs to select the folder in
which it will install.

FIGURE 2.2(e)  The user then must decide whether he wants to add Anaconda to
Path environment variable and whether to register

Anaconda as the default Python 3.6.

PPUPS.CH02_1pp.indd 34PPUPS.CH02_1pp.indd 34 4/6/2023 12:41:00 PM4/6/2023 12:41:00 PM

Introduction to Python • 35

The installation then starts. After installation, the following screen will
appear.

FIGURE 2.2(f)  When the installation is complete,
this screen appears.

FIGURE 2.2(g)  You can also share your notebooks on cloud.

PPUPS.CH02_1pp.indd 35PPUPS.CH02_1pp.indd 35 4/6/2023 12:41:00 PM4/6/2023 12:41:00 PM

36 • Python Programming Using Problem Solving

Once Anaconda is installed, you can open Anaconda Navigator and
run your scripts. Figure 2.3 shows the Anaconda Navigator. From the vari-
ous options available, you can choose the appropriate option. For example, you
can open the QTConsole and run the commands/scripts. Figure 2.4 shows the
snapshot of QTConsole. The commands written may appear gibberish at this
point but will become clear in the following chapters. The reader is advised to
use the Jupyter Notebook to execute the code in this book.

FIGURE 2.3  The Anaconda Navigator.

FIGURE 2.4  The QtConsole.

PPUPS.CH02_1pp.indd 36PPUPS.CH02_1pp.indd 36 4/6/2023 12:41:01 PM4/6/2023 12:41:01 PM

Introduction to Python • 37

2.6	� IMPLEMENTATION OF AN ALGORITHM: STATEMENT,
STATE, CONTROL BLOCKS, AND FUNCTIONS

The definition, characteristics, and types of algorithms were discussed in
the last chapter. This chapter introduces Python, which would help us to
implement algorithms. This section briefly describes the building blocks of a
program.

2.6.1	 Statement

A program, as stated earlier, is a set of instructions. Each instruction directs
the computer to what needs to be done. A statement in a program is the
instructions that a Python interpreter can execute. A statement can be of many
types, like assignment statements, conditional statements, etc. An assignment
statement, for example, is of the form

<variable name> = <expression>

where <variable name> is any legal variable name and expression is any legal
expression in Python, which when evaluated assigns value to the variable on
the LHS. A legal variable name in Python begins with a letter or an underscore
and cannot contain a space or a special character. The following chapters will
explain each type of statement, in detail.

2.6.2	 State

A program is called stateful if it remembers earlier interactions. The state
of a program at one point in time is therefore the values of the variables and
related details, at that time. A system can have any state from the set of pos-
sible states called the state space.

2.6.3	 Control Flow

In a Python program the statements are executed one by one. If the flow of
the program is to be altered, one of the legal control-flow statements can be
used. Python provides the following control flow statements:

�� if, if-else, if-elif ladder
�� while loop, and
�� for loop

PPUPS.CH02_1pp.indd 37PPUPS.CH02_1pp.indd 37 4/6/2023 12:41:01 PM4/6/2023 12:41:01 PM

38 • Python Programming Using Problem Solving

Conditional Statement

Python also provides the break and continue keywords. The if statement
helps us to execute a particular set of statements, if the given condition is true.
The syntax of if is as follows.

Syntax

	 if <condition>:

		 <block 1>

	 else:

		 <block 2>

The first block <block 1> executes if the condition is true. If the condi-
tion is not true, then <block 2> is executed. The following example checks
the value of the number entered by the user. If the number entered by the
user is greater than 10, then “Hi” is printed else “Bye” is printed.

Code:

num=int(input('Enter a number Wt:'))

if num>10:

  print('Hi')

else:

  print('Bye')

Output:

Enter a number	 :12

Hi

If there are multiple conditions, the if-elif ladder is used. Chapter 4
describes the conditional statements, in detail executes.

Loops

The repetition of a block is done using the while and for loops. The while
loop repeats a block as long as a condition is true. In Python while can have
an optional else. The syntax of the loop is as follows.

Syntax

	 while <condition>:

		 <block 1>

	 else:

		 <block 2>

PPUPS.CH02_1pp.indd 38PPUPS.CH02_1pp.indd 38 4/6/2023 12:41:01 PM4/6/2023 12:41:01 PM

Introduction to Python • 39

The first block <block 1> is repeated till <condition> is true. If the
condition is false, the second block <block 2> is executed. The example
that follows prints the first ten multiples of the number entered by the user.
The variable i is initialized to 1. The loop runs till the value of i becomes n.
In each iteration i*n is printed. The loop is discussed in detail in Chapter 6
of this book. The for loop in Python is a bit different from C language as it
also helps us iterate through a list, tuple, or string.

Code:

n = int(input('Enter number 'enter number it:'\t:'))

i=1	

while(i<=10):

	 print(i, ' * ',n,' = ',(i*n))

	 i+=1

Output:

Enter number	 :7

	  1	 *	 7	 =	  7

	  2	 *	 7	 =	 14

	  3	 *	 7	 =	 21

	  4	 *	 7	 =	 28

	  5	 *	 7	 =	 35

	  6	 *	 7	 =	 42

	  7	 *	 7	 =	 49

	  8	 *	 7	 =	 56

	  9	 *	 7	 =	 63

	 10	 *	 7	 =	 70

Function

A function is a named block that performs a specific task and may or may not
return a value explicitly. Note that each function returns some value in Python
at least NONE. A function, in Python, is defined using the def keyword.
A function may have any number of parameters and can be called any number
of times. Chapter 7 describes the topic in detail. The following code shows a
function called fun. This prints the string “Turn Turn Turn.” Note that fun
has been called twice.

PPUPS.CH02_1pp.indd 39PPUPS.CH02_1pp.indd 39 4/6/2023 12:41:01 PM4/6/2023 12:41:01 PM

40 • Python Programming Using Problem Solving

Code:

def fun():

	 print('Turn Turn Turn')

fun()

fun()

Output:

Turn Turn Turn

Turn Turn Turn

2.7	 CONCLUSION

Before proceeding any further, the reader must note that some of the features
of Python are different as compared to any other language. Before proceeding
any further, the following points must be mentioned to avoid any confusion.

�� In Python statements do not end with any special character. Python con-
siders the newline character as an indication of the fact that the statement
has ended. If a statement is to span more than a single line, the next line
must be preceded by a (\).

�� In Python, indentation is used to detect the blocks. The loops, in Python,
do not begin or end with delimiters or keywords.

�� A file in Python is generally saved with a .py extension.
�� Python shell can also be used as a handy calculator.
�� The data type need not be mentioned in a program.

Choice at every step is good, but it can also be intimidating. As stated ear-
lier, Python’s core is small, and therefore it is easy to learn. Moreover, there
are some of the things like if else, loops and exception handling, which is used
in almost all the programs.

The chapter introduces Python and discusses its features of Python. One
must appreciate the fact that Python supports all three paradigms: proce-
dural, object-oriented, and functional. Also, this chapter paves the way for the
topics presented in the following chapters. It may also be stated that the codes
presented in the book would run on version 3.x.

PPUPS.CH02_1pp.indd 40PPUPS.CH02_1pp.indd 40 4/6/2023 12:41:01 PM4/6/2023 12:41:01 PM

Introduction to Python • 41

GLOSSARY

PEP	 Python Enhancement Project

PSF	 Python Software Foundation

POINTS TO REMEMBER

�� Python is a strong, procedural, object-oriented, and functional language
crafted in the late 1980s by Guido Van Rossum

�� Python is open source
�� The Applications of Python include Software Development, Web Devel-

opment, Desktop GUI development, Education, and Scientific Applica-
tions

�� Python is popular due to its simplicity and robustness
�� Python is easy to interface with C++ and JAVA
�� SciPy is used for Engineering and Mathematics, IPython for parallel com-

puting, etc., and Scions is used for build control.
�� The various development environments for Python are PyDev with

Eclipse, Emacs, Vim, TextMate, Gedit, Idle, PIDA (Linux) (VIM Based),
NotePad++ (Windows), and BlueFish (Linux).

RESOURCES

�� To download Python, visit www.python.org
�� The documentation is available at www.python.org/doc/

EXERCISES

Multiple Choice Questions

1.	 Python can subclass a class made in

	 (a)  Python Only			 (b)  Python, C++

	 (c)  Python, C++, C#, JAVA		 (d)  None of the above

2.	 Who created Python?

	 (a)  Monty Python			 (b)  Guido Van Rossum

	 (c)  Dennis Richie			 (d)  None of the above

PPUPS.CH02_1pp.indd 41PPUPS.CH02_1pp.indd 41 4/6/2023 12:41:01 PM4/6/2023 12:41:01 PM

42 • Python Programming Using Problem Solving

3.	 Monty Python was

	 (a)  Creator of Python Programming Language

	 (b)  British Comedy Group

	 (c)  American Band

	 (d)  Brother of Dosey Howser

4.	 In Python, libraries and tools are

	 (a)  Not supported			 (b)  Supported but not encouraged

	 (c)  Supported (only that of PSFs)	 (d)  None of the above

5.	 Python has

	 (a)  built-in object types		 (b)  Data types

	 (c)  Both (a) and (b)			 (d)  None of the above

6.	 Python is a

	 (a)  Procedural language		 (b)  Object-Oriented Language

	 (c)  Functional			 (d)  All of the above

7.	 In Python data type for a variable is not specified; therefore, it is applica-
ble to the whole range of objects. This is called

	 (a)  Dynamic Binding		 (b)  Dynamic Typing

	 (c)  Dynamic Leadership		 (d)  None of the above

8.	 Which of the following is automatic memory management?

	 (a)  Automatically assigning memory to objects

 	 (b)  Taking back the memory at the end of the life cycle

	 (c)  Both (a) and (b)

 	 (d)  None of the above

9.	 PEP stands for

	 (a)  Python Ending Procedure	 (b)  Python Enhancement proposal

	 (c)  Python Endearment Project	 (d)  None of the above

PPUPS.CH02_1pp.indd 42PPUPS.CH02_1pp.indd 42 4/6/2023 12:41:01 PM4/6/2023 12:41:01 PM

Introduction to Python • 43

10.	 PSF stands for

	 (a)  Python Software Foundation	 (b)  Python Selection Function

	 (c)  Python segregation function	 (d)  None of the above

11.	 Python can be used to create

	 (a)  GUI				 (b)  Internet Scripting

	 (c)  Games				 (d)  All of the above

12.	 What can be done using Python?

	 (a)  System programming

	 (b)  Component-based programming

	 (c)  Scientific programming

	 (d)  All of the above

13.	 Python is used by

	 (a)  Google				 (b)  Raspberry Pi

	 (c)  Bit Torrent			 (d)  All of the above

14.	 Python is used in

	 (a)  App Engine			 (b)  YouTube sharing

	 (c)  Real-time programming		 (d)  All of the above

15.	 Which is faster?

	 (a)  PyPy				 (b)  IDLE

	 (c)  Both are equally good		 (d)  Depends on the task

Theory

1.	 Write the names of three companies that are using Python.

2.	 Explain a few applications of Python.

3.	 What type of language is Python? (Procedural, Object-Oriented, or Func-
tional)

4.	 What is PEP?

PPUPS.CH02_1pp.indd 43PPUPS.CH02_1pp.indd 43 4/6/2023 12:41:01 PM4/6/2023 12:41:01 PM

44 • Python Programming Using Problem Solving

5.	 What is PSF?

6.	 Who manages Python?

7.	 Is Python open-source or proprietary?

8.	 What all languages can be integrated with Python?

9.	 Explain the chronology of the development of Python.

10.	 Name a few editors for Python.

11.	 What are the features of Python?

12.	 What is the advantage of using Python over other languages?

13.	 What is Dynamic Typing?

14.	 Does Python have data types?

15.	 How is Python different from JAVA?

16.	 What is meant by the state of a system?

17.	 Briley explains the importance of control structures in Python.

18.	 Which control statements can be used to repeat a given task?

19.	 What is the principle difference between Pearl and Python?

20.	 State the need and importance of functions.

PPUPS.CH02_1pp.indd 44PPUPS.CH02_1pp.indd 44 4/6/2023 12:41:01 PM4/6/2023 12:41:01 PM

Objectives

After reading this chapter, the reader should be able to
�� Understand how a program is executed.
�� Learn various methods of running a program in Python.
�� Understand the print and input functions in Python.
�� Understand the elements of a Jupyter Notebook.
�� Understand the importance of tokens, keywords, identifiers, and

statements.

3.1	 INTRODUCTION

Our journey toward becoming a programmer would be greatly facilitated by
Python. Let us start the journey by exploring the modes in which we can
write and execute a program in Python. This chapter discusses various ways
of executing a Python program. Before starting the discussion, let us first
have a look at how a program is executed in languages like C.

In C, the following steps are required to run a program (Figure 3.1):

�� Compilation
�� Linking
�� Loading

FIGURE 3.1  In C, the compiler converts the source code to the object code.
This is followed by links, and finally, memory is allocated to the process.

C H A P T E R 3
Fundamentals

PPUPS.CH03_1pp.indd 45PPUPS.CH03_1pp.indd 45 4/26/2023 3:47:29 PM4/26/2023 3:47:29 PM

46 • Python Programming Using Problem Solving

A compiler converts the source code into the object code. The linker
converts the object code to the executable code and gives it to the loader. The
loader primarily allocates memory to the executable file. The conversion of
source code into object code requires the following steps (Figure 3.2):

�� Lexical analysis
�� Syntactic analysis
�� Semantic analysis
�� Intermediate code generation
�� Optimization
�� Final code generation

Syntactic and
Semantic
Analysis

Intermediate
code
generation

Optimization

Final code
generation

Lexical
Analysis

FIGURE 3.2  In C, the compiler converts the source code into object code. This is done in five steps. In
the first step, the compiler converts the source code into tokens. This is followed

by syntactic and semantic analyses. The intermediate code is then generated.
Finally, the object code is generated after optimization.

The Lexical Analyzer converts the program into recognizable tokens. The
second step checks the syntax. The analysis of semantics is also done in this
step. The next step generates the intermediate code. This intermediate code
is optimized, and the last step generates the final code. In some compilers,
however, some steps are clubbed together. For example, the syntactic and
semantic analysis is done in the same phase in most of the C compilers.

The above process produces optimized code, but the code generated may
not be compatible. Therefore, the compiler produces intermediate code in
languages like Java and C# to achieve portability. The rest of the process is
done by JVM in JAVA and CLR in C#.

In Python, all of the above steps are not needed. Moreover, in Python a
Python bytecode is generated. In Python, one can run a single comment, a
procedure, or even a big program. There are many ways to do so, discussed
in this chapter.

PPUPS.CH03_1pp.indd 46PPUPS.CH03_1pp.indd 46 4/26/2023 3:47:29 PM4/26/2023 3:47:29 PM

Fundamentals • 47

The chapter has been organized as follows. Section 3.2 presents a brief
discussion on basic input output. Section 3.3 presents various ways of run-
ning a Python code in Windows. Section 3.4 also presents a brief overview of
the Jupyter notebook. Section 3.5 discusses the value type and reference
types. Section 3.6 discusses tokens, keywords, and identifiers. Section 3.7
briefly explains the types of statements. Section 3.8 introduces comments.
Sections 3.9 and 3.10 discuss operators and the types of operators, respec-
tively. Section 3.11 discusses the basic data types and Section 3.12 concludes.

3.2	 BASIC INPUT OUTPUT

This section briefly discusses the basic input/output functions in Python, pri-
marily the input and the print function. The input function prompts the
user to enter a value and store the value in some variable. To print a string,
the print function can be used.

3.2.1	 Print Function

The print function prints the string given as the argument to the function.
For example, the argument “Hi there” is printed in the following statements.
Likewise, in the next statement, “Turn Turn Turn! to everything, there is
a season” is printed.

Code:

print('Hi there')

Output:

 'Hi there'

Code:

print('Turn Turn Turn! to everything, there is a season')

Output:

Turn Turn Turn! to everything, there is a season

The print function also accepts more than one argument, separated by
commas. The function, in this case, prints the input string or the values of
the variables (given as arguments). Note that all the arguments in the print

PPUPS.CH03_1pp.indd 47PPUPS.CH03_1pp.indd 47 4/26/2023 3:47:29 PM4/26/2023 3:47:29 PM

48 • Python Programming Using Problem Solving

function may belong to different data types. For example, in the following
code, the values of the variables passed as the arguments, are printed.

Code:

a=10

b=3.678

x='harsh'

print(a, b, x)

Output:

10 3.678 harsh

3.2.2	 Input

The input function in Python prompts the user to enter a value and store it
in some variable. For example, in the following code, the string entered by the
user is referred to by the variable called name. The input function takes a
string as an argument, which prompts the user to enter his/her name.

Code:

name=input('Enter name\t:')

print('Hi ', name)

Output:

Enter name	 : Harsh

Hi Harsh

The int function converts the input to an integer. That is, to take an inte-
ger input from the user, the input string, entered by the user, is converted into
an integer using the int function. For example, the following code takes an
integer input from the user and prints it.

Code:

num = int(input('Enter a number\t:'))

print(num)

Output:

Enter a number	 : 45

45

PPUPS.CH03_1pp.indd 48PPUPS.CH03_1pp.indd 48 4/26/2023 3:47:29 PM4/26/2023 3:47:29 PM

Fundamentals • 49

Likewise, the float function converts the input to a float. To take a float
input from the user, the string input, entered by the user, is converted into a
float by the float function.

Code:

num = float(input('Enter a number\t:'))

print(num)

Output:

Enter a number	 : 45.45

45.45

3.3	 RUNNING A PROGRAM

Once you have installed Python, you can write and run Python commands in
many ways. This section discusses some of the most common ways of execut-
ing a program written in Python.

3.3.1	 Using the Command Prompt

To run your program or script in the command prompt, the following steps
should be followed.

Step 1: Opening Command Prompt/ Changing directory: In the
start menu type “Command Prompt.” Once the Command Prompt appears,
change the directory to the location where Python is saved.

PPUPS.CH03_1pp.indd 49PPUPS.CH03_1pp.indd 49 4/26/2023 3:47:30 PM4/26/2023 3:47:30 PM

50 • Python Programming Using Problem Solving

Step 2: Changing directory: In case you installed Anaconda, as discussed
in Chapter 2, you can change the directory to “Python” and start writing the
commands.

Step 3: Writing Commands: Write the commands, and the interpreter
will interpret the commands and show the results.

3.3.2	 Executing Programs Written in .py Files

You can also execute a “.py” file in the Command Prompt. To do so, perform
the following steps.

�� Create a new file called helloworld.py (in the C:\Users\<your account>\
Anaconda3 folder) and write the following code in it.

			 print(“Hello World”)

PPUPS.CH03_1pp.indd 50PPUPS.CH03_1pp.indd 50 4/26/2023 3:47:30 PM4/26/2023 3:47:30 PM

Fundamentals • 51

�� Write the following command in the Command Prompt
			 >>C:\Users\Harsh\Anaconda3> python helloworld.py

�� The following output will be displayed.
			 Hello World

3.3.3	 Using Anaconda Navigator

This book primarily uses Jupyter. It provides the following interfaces:

�� The Jupyter notebook: This helps in writing and executing the code,
combines code with text and equations. It also helps in visualizations. For
a detailed explanation, please refer to the following link.
https://jupyter-notebook.readthedocs.io/en/latest/

�� Jupyter Console: As per the official site, “Jupyter Console is a terminal-
based console for interactive computing.”

�� Jupyter QT console

The following steps may be performed to execute a Python code using
Jupyter.

�� Open the Anaconda Navigator from the start menu.
�� Open the Jupyter notebook (Figure 3.3).
�� Open a new Python3 notebook.
�� Write command as shown in the following screenshot (Figure 3.4).
�� Run the scripts, written in a cell.
�� The output is shown just after the cell.

FIGURE 3.3  The Anaconda navigator provides you with many options, including the Jupyter notebook.

PPUPS.CH03_1pp.indd 51PPUPS.CH03_1pp.indd 51 4/26/2023 3:47:30 PM4/26/2023 3:47:30 PM

52 • Python Programming Using Problem Solving

FIGURE 3.4  Running code in the Jupyter notebook.

For detailed documentation of Anaconda please visit docs.anaconda.
com/anaconda/navigator/. In the documentation, you will also find a link
explaining the details of the Jupyter Application.

3.4	 THE JUPYTER NOTEBOOK

The installation of Anaconda has already been discussed in the last chapter.
The steps to run a Python program in Jupyter are as follows:

Step 1: Click on the Jupyter icon on the desktop. In case you don’t
see the icon go to Start-> Anaconda, and when Anaconda opens click on
Jupyter. (Figure 3.5)

FIGURE 3.5  Click on the Jupyter icon on the desktop or go to Start -> Anaconda and click on Jupyter.

PPUPS.CH03_1pp.indd 52PPUPS.CH03_1pp.indd 52 4/26/2023 3:47:31 PM4/26/2023 3:47:31 PM

Fundamentals • 53

Step 2: The Jupyter Notebook opens, after which a new “Notebook” is
created by clicking on “New” in the menu (Figure 3.6).

FIGURE 3.6  To open a new Notebook in Jupyter, click on New as shown in the figure.

Step 3: A new Notebook opens, as shown in Figure 3.7.

FIGURE 3.7  A new Notebook in Jupyter.

PPUPS.CH03_1pp.indd 53PPUPS.CH03_1pp.indd 53 4/26/2023 3:47:32 PM4/26/2023 3:47:32 PM

54 • Python Programming Using Problem Solving

At this point in time, you need to understand the elements of the Jupyter
notebook. The elements in this user interface are as follows:

1.	 The Notebook name: A Jupyter Notebook can be assigned any legal
name. The name of the new notebook can be changed by clicking on the
default name and replacing the text.

2.	 The Menu bar: It helps us to manage the Notebook. The elements in
the menu bar are as follows:

�� File: This option allows to create a new Notebook, open an existing
Notebook, save a Notebook, and rename a Notebook.

�� Edit: This option allows us to cut, delete, move, split, and merge
cells.

�� Insert: This option allows us to insert cells above or below the exist-
ing cell.

�� Cell: This option allows us to write commands or scripts.
�� Kernel: This option allows us to interrupt cells, restart cells, clear

outputs, and shutdown.
�� Widget: This option allows us to save, clear, download Notebook

widget state, and also to embed widget.
�� Help: This option presents help.

3.	 It contains icons for common actions such as Save & checkpoint, Insert
cell below, cut & copy a selected cell, paste cell below, move selected
cell up & down, run cell, interrupt & restart the kernel. In particular,
the dropdown menu showing code lets you change the type of a cell.

	 Once a Notebook is created, you can write a piece of code in a cell. Cells
are mainly of two types, namely Code and Markdown.

1.	 Markdown cell: A Markdown cell contains the rich text. In addition
to classic formatting options like bold or italics, we can add links, images,
HTML elements, LaTeX mathematical equations, etc., in a cell.

2.	 Code cell: A code cell contains code to be executed by the kernel. The
programming language corresponds to the kernel’s language.

3.5	 VALUE TYPE AND REFERENCE TYPE

This course aims to make the student capable of solving problems by writing
programs. We need input from the user to write a program and generally store
it somewhere. To store an input, we need variables. A variable in Python

PPUPS.CH03_1pp.indd 54PPUPS.CH03_1pp.indd 54 4/26/2023 3:47:32 PM4/26/2023 3:47:32 PM

Fundamentals • 55

refers to a location where a value is placed; hence, they are reference-type
variables against languages like C.

For example, in C language, to make an integer-type variable and store 7
in it, we write

int i = 7;

In the C language, this makes a variable called i and stores 7 in binary
format. Whereas, in Python writing

i = 7

make a variable called i which refers to a location where 7 is stored. (Figure 3.8).

7

i2048

i

2048

In C Language In Python

FIGURE 3.8  In C language, the variable i will contain value 7; in Python i points
to a location that contains 7.

These variables are then processed using various statements, and the pro-
grams which contain these statements produce some output (Figure 3.9).

Variables Statements Program

Store Date Process variables Has statements

FIGURE 3.9  Variables store data, statements process variables, and a program contains statements.

The next section explains the concept of tokens, keywords, identifiers,
operators, various data types, comments, assignments, and input/output in
Python.

3.6	 TOKENS, KEYWORDS, AND IDENTIFIERS

The character set of a language is the set of all legal characters in that lan-
guage. The character set of Python has characters, digits, special symbols, and
punctuation. These characters form tokens. The logical units in a program

PPUPS.CH03_1pp.indd 55PPUPS.CH03_1pp.indd 55 4/26/2023 3:47:32 PM4/26/2023 3:47:32 PM

56 • Python Programming Using Problem Solving

are called tokens. They may be keywords, identifiers, operators, or even
punctuation marks. This section discusses various tokens in Python.

3.6.1	 Python Keywords

Keywords are considered as special words, which the compiler reserves and
convey some special meaning. Therefore, it should not be used as the name of
any variable. Table 3.1 shows the keywords used in Python.

TABLE 3.1  Keywords in Python.

and as assert

break class continue

def del else

elif except for

from finally Global

if lambda none

not pass raise

return sum while

3.6.2	 Python Identifiers

Identifiers are names given to different variables or objects in Python. They
can be as long as possible and can contain an underscore. Furthermore, the
name of an identifier must not begin with a digit but can contain a digit.
Interestingly, in Python, the names have their scope, as discussed in the fol-
lowing chapters. Moreover, identifiers can also contain some special charac-
ters in Python. Also, identifiers are case-sensitive.

3.6.3	 Python Escape Sequence

Escape sequences are used to print special symbols in strings. Here, it may
be stated that one cannot directly print some characters in a string. For exam-
ple, to print “Hi How\s Mary?”, the following string is used.

print(“Hi How\\s Mary ?”)

Note that to print “\” we need to precede “\” with another “\”. Similarly, to
print a string in two lines we need “\n” at the appropriate place. For example,

print(“HI there!\nHow are you”)

PPUPS.CH03_1pp.indd 56PPUPS.CH03_1pp.indd 56 4/26/2023 3:47:32 PM4/26/2023 3:47:32 PM

Fundamentals • 57

prints “HI there!” and “How are you in two different lines. The “\t” is
used for inserting a tab in a given string. Table 3.2 shows the various escape
sequences in Python.

TABLE 3.2  Escape sequences in Python.

Escape Sequence Description

\\ Prints Backslash

\’ Prints Single Quote

\” Prints Double Quotes

\n Next Line

\t Inserts Tab

\b Removes one previous
character

\a Produces alert sound

3.7	 STATEMENTS

Statements, in Python, are the instructions that can be interpreted and
executed by the Python interpreter. Statements could be both single-line
and multiline. We use “\” at the end of each statement to achieve a multiline
statement.

3.7.1	 Expression Statement

Expression statements are used to compute and write a value, or to call a
function. For example, the following statement adds the values contained in
variables num1 and num2 and stores the result in num3.

num3 = num1 + num2

3.7.2	 Assignment Statements

Assignment statements bind names to values and modify the items of
objects in which mutation is allowed. The first statement, for example, assigns
the value stored in num2 to num1, and the second statement assigns 4 to the
second element of a list L:

num1 = num2
	 L[1] = 4

PPUPS.CH03_1pp.indd 57PPUPS.CH03_1pp.indd 57 4/26/2023 3:47:32 PM4/26/2023 3:47:32 PM

58 • Python Programming Using Problem Solving

At this point, the above statements may not make much sense, but after
studying variables and operators, the above statements would become clear.

3.7.3	 The Assert Statements

The assert statements help us to insert debugging assertions into a program.
These are used in debugging.

<something> = “assert” expression [“ ” ,expression]

3.7.4	 The Pass Statements

The pass is a null operation. Actually, it does not perform any task, when
executed. It is beneficial as a placeholder when a statement is obligatory but
no code needs to be executed.

3.7.5	 The Control Statements

The control statements are used to incorporate branching, looping, etc. in a
program. The next two chapters focus on the control statements.

3.8	 COMMENTS

At times, a programmer-readable explanation of a statement or a part of a code
or a module is required. The programmer may want to write some description
about that part, which is visible to him but not to the compiler or interpreter.
These explanations are called comments. At times the document generators
may also generate comments. The comments make the source code easy to
understand. It may be noted that how a comment is written varies in different
languages. In fact, the way of writing a comment is a part of the programming
style. It may also be stated that unnecessary comments are undesirable.

Comments may be single-line comments or may span multiple lines. In
Python, a single-line comment is preceded by a “#”. The following code
(Code 1) shows the usage of a single-line comment. Note that all the single-
line comments are preceded by a “#”. The rest of the code will become clear
as we proceed with the course. The multiple-line comment may be writ-
ten as a docstring. Code 2 displays the usage of multiple-line comments. The
multiple-line comments are enclosed in “”” “””.

PPUPS.CH03_1pp.indd 58PPUPS.CH03_1pp.indd 58 4/26/2023 3:47:32 PM4/26/2023 3:47:32 PM

Fundamentals • 59

Code 1:

#Defining Student class

class Student():

   #Bound Method

   def display(self,something):

     print('\n',something)

#Instantiating Student

Hari=Student()

#Calling method

Hari.display('Hi I am Hari')

Student().display('Calling display again')

Code 2:

#Defining Student class

class Student():

   #Bound method

   def display(self,something):

   print('\n',something)

   #Another bound method

   def getdata(name,age):

   name=name

   age=age

   print('Name',name,'Age',age)

“”“ The following code instantiates the class Hari
Asks the user to enter the name and age of the Student.
This is followed by calling the getdata ”“”

Hari=Student()

name=input('Enter the name of the student\t:')

age=int(input('Enter the age of the student\t:'))

Student.getdata(name,age)

3.9	 OPERATORS

Python provides many operators, like arithmetic, comparison, assignment,
binary logical, membership, and identity operators. Table 3.3 presents various
operators, their usage, and their meaning. The usage of these operators has

PPUPS.CH03_1pp.indd 59PPUPS.CH03_1pp.indd 59 4/26/2023 3:47:32 PM4/26/2023 3:47:32 PM

60 • Python Programming Using Problem Solving

been demonstrated in the codes that follow. A briefing regarding the priority
of operators follows this. Note that the code that follows num1 and num2
contains some values.

TABLE 3.3  Operators in Python.

Operator Usage Meaning

Comparison operators

== num1==num2 True if num1 is equal to num2, else False

!= num1!=num2 True if num1 is not equal to num2, else False

< num1<num2 True of num1 is less than num2

> num1>num2 True of num1 is greater than num2

<= num1<=num2 True of num1 is less than or equal to num2

>= num1>=num2 True of num1 is greater than or equal to num2

Assignment operators

+= num1+=num2 num1=num1+num2

-= num1-=num2 num1=num1-num2

∗= num1∗=num2 num1=num1∗num2

∗∗= num1∗∗=num2 num1=num1∗∗num2

//= num1//=num2 num1=num1//num2

Binary operators

& num1&num2 Binary and

| num1|num2 Binary or

^ num1^num2 Binary xor

~ ~num1 Binary not

Membership operators

in x in L True if x is present in L (L can be a list, tuple,
string, etc.)

not in x not in L True if x is not present in L

Identity operators

Is a is b True if id(a) is same as id(b)

is not a is not b True if id(a) is not same as id(b)

3.10	TYPES AND EXAMPLES OF OPERATORS

3.10.1	 Arithmetic Operators

Python provides standard arithmetic operators for addition, subtraction,
multiplication, division, modulo, and power. Table 3.4 shows the operators

PPUPS.CH03_1pp.indd 60PPUPS.CH03_1pp.indd 60 4/26/2023 3:47:32 PM4/26/2023 3:47:32 PM

Fundamentals • 61

and their functions. The following code demonstrates the use of these opera-
tors with two integers entered by the user.

TABLE 3.4  Arithmetic operators in Python.

Operator Function

+ Addition

− Subtraction

∗ Multiplication

/ Division

% Modulo

∗∗ Power

Code:

a=int(input('Enter the first number\t:'))

b=int(input('Enter the second number\t:'))

sum=a+b

prod=a∗b
diff=a-b

mod=a%b

q=a/b

print(sum,' ',prod,' ',diff,' ',mod,' ',q)

r=a∗∗b
print(r)

Output:

Enter the first number :45

Enter the second number :7

52 315 38 3 6.428571428571429

#Basic Operations in Python

373669453125

Code:

f1=float(input('Enter the first number\t:'))

f2=float(input('Enter the second number\t:'))

sum=f1+f2

prod=f1∗f2
diff=f1-f2

PPUPS.CH03_1pp.indd 61PPUPS.CH03_1pp.indd 61 4/26/2023 3:47:32 PM4/26/2023 3:47:32 PM

62 • Python Programming Using Problem Solving

mod=f1%f2

q=f1/f2

print(sum,' ',prod,' ',diff,' ',mod,' ',q)

Output:

Enter the first number :45.2

Enter the second number :5.32

50.52 240.46400000000003 39.88 2.6400000000000006
8.496240601503759

3.10.2	 String Operators

Python provides two operators for string manipulation: + and ∗. For strings,
the + operator concatenates two strings and the ∗ operator repeats the string
n times. The code that follows demonstrates the use of these operators for
strings.

Code:

str1=input('Enter the first string')

str2=input('Enter the second string')

str3=str1+str2

print(str3)

Output:

Enter the first string nikhil

Enter the second string miglani

Nikhilmiglani

Code:

str1∗3

Output:

'nikhilnikhilnikhil'

3.10.3	 Comparison Operators

The comparison operator is used to compare the values of two objects.
It returns True if the values of the objects are the same and False if they
are different. The following code illustrates the usage of the comparison
operators. The following code creates two variables num1 and num2. The

PPUPS.CH03_1pp.indd 62PPUPS.CH03_1pp.indd 62 4/26/2023 3:47:33 PM4/26/2023 3:47:33 PM

Fundamentals • 63

value stored in num1 is 5, and that stored in num2 is 3. The statement
num1==num2 results in a False, as the numbers are not equal. The state-
ment num1!=num2 results in a True, as the numbers are not equal. The
statement num1<num2 results in a False, as the first number is not less than
the second number. The statement num1>num2 results in a True as the first
number exceeds the second. Likewise, the statement num1<=num2 results
in a False, as the first number is greater than the second number, and the
statement num1>=num2 results in a True as the first number is greater than
the second number. The output follows.

Code:

num1=5

num2=3

print(num1==num2)

print(num1!=num2)

print(num1<num2)

print(num1>num2)

print(num1<=num2)

print(num1>=num2)

Output:

False

True

False

True

False

True

3.10.4	 Assignment Operators

The following code illustrates the usage of the assignment operators. The fol-
lowing code creates two variables num1 and num2. The value stored in num1
is 5 and that stored in num2 is 3. The statement num1+=num2 assigns 8 (i.e.,
5+3) to num1 and num2 remains unchanged. The statement num1∗=num2
assigns 24 (i.e., 8∗3) to num1 and num2 remains unchanged. The statement
num1//=num2 (i.e., 24//3) assigns 8 to num1 and num2 remains unchanged.
The statement num1∗∗=num2 (i.e., 8∗∗3) assigns 512 to num1 and num2
remains unchanged. Finally, the statement num1-=num2 (i.e., 512-3) assigns
509 to num1, and num2 remains unchanged. The output follows.

PPUPS.CH03_1pp.indd 63PPUPS.CH03_1pp.indd 63 4/26/2023 3:47:33 PM4/26/2023 3:47:33 PM

64 • Python Programming Using Problem Solving

Code:

num1=5

num2=3

num1+=num2 #num1= num1+num2=8

print(num1)

num1∗=num2 #num1 = num1∗num2=8∗3=24
print(num1)

num1//=num2 #num1=num1//num2=24//3=8

print(num1)

num1∗∗=num2 #num1=num1∗∗num2=512
print(num1)

num1-=num2 #num1=num1-num2=512-3=509

print(num1)

Output:

8

24

8

512

509

3.10.5	 Logical Operators

The logical operators like or and and have been discussed in detail in the chap-
ter on Boolean Algebra. The or operator returns TRUE if any of the inputs
are TRUE. The and operator returns a TRUE if both the inputs are TRUE.
The not operator negates the value. The xor operator returns a TRUE if the
inputs are alternate. The truth tables of the various operators follow (Tables
3.5 to 3.8). The following code illustrates the usage of binary logical operators.
The following code creates two variables num1 and num2. The value stored
in num1 is 0b101101 (note that the preceding value by 0b results in a binary
number), and that stored in num2 is 0b110110. The statement num3=num1
& num2 assigns 0b100100 to num3. The statement num1 ^ num2 takes the
bitwise xor of num1 and num2 and stores the resultant number in num5.
The statement ~num1 takes the bitwise not of num1 and stores the resultant
number in num6.

PPUPS.CH03_1pp.indd 64PPUPS.CH03_1pp.indd 64 4/26/2023 3:47:33 PM4/26/2023 3:47:33 PM

Fundamentals • 65

TABLE 3.5  Truth table of AND.

A B A and B

False False False

False True False

True False False

True True True

TABLE 3.6  Truth table of OR.

A B A or B

False False False

False True True

True False True

True True True

TABLE 3.7  Truth table of NOT.

A not A

False True

True False

TABLE 3.8  Truth table of XOR.

A B A xor B

False False False

False True True

True False True

True True False

Code:

num1= 0b101101

num2= 0b110110

num3= num1&num2

num4= num1|num2

num5= num1^num2

num6= ~num1

print(bin(num3))

print(bin(num4))

print(bin(num5))

print(bin(num6))

PPUPS.CH03_1pp.indd 65PPUPS.CH03_1pp.indd 65 4/26/2023 3:47:33 PM4/26/2023 3:47:33 PM

66 • Python Programming Using Problem Solving

Output:

0b100100

0b111111

0b11011

-0b101110

3.10.6	 Priority of Operators

As stated in the above table, the operators have the following priorities. The
∗∗ operator has the highest priority, followed by the unary ~, +, −. The opera-
tors ∗, /, %, || follow. The priorities of binary +, - are higher than the >>,
<<, &, ^, |, <=, <, >, >=, <>, ==,!=, =, !=, is, not is, in, not in, not, or, and.
Figure 3.10 presents the priority of the operators.

FIGURE 3.10  Priority of operators.

3.11	BASIC DATA TYPES

This section discusses the basic data types in Python. The following codes
also illustrate the use of operators with these data types.

PPUPS.CH03_1pp.indd 66PPUPS.CH03_1pp.indd 66 4/26/2023 3:47:33 PM4/26/2023 3:47:33 PM

Fundamentals • 67

3.11.1	 Integer

As stated earlier, the type of variable need not be specified in Python. So, to
create an integer-type variable, one can simply assign an integer value to an
object. For example, in the following snippet, i has been assigned the value
10. Note that the type of a variable can be determined by using the type()
function. Here, the type of i has been stored in a variable called t. The value
of ‘t’ <class, ‘int’> is displayed n printing.

Code:

i=10

print('The value of i is ',i)

t=type(i)

print('The type of i is ',t)

Output:

The value of i is 10

The type of i is <class 'int'>

#Python automatically finds the data type of variable. We do not need to
mention the type of variable.

One can use the input() function to take input from the user. The input()
function takes a string as an argument displayed on the screen. The input of
the user is taken as a string. To convert it into an integer, the int() function is
used. In the snippet that follows, the number entered by the user is converted
into an integer, and then a variable called num points to the location that
stores the number.

Code:

num=int (input ('Enter a number\t:'))

print ('You have entered\t:', num)

Output:

Enter a number :34

You have entered: 34

3.11.2	 Float

One can simply assign a float value to an object to create a float type variable.
For example, in the following snippet, i has been assigned the value 2.35768.

PPUPS.CH03_1pp.indd 67PPUPS.CH03_1pp.indd 67 4/26/2023 3:47:33 PM4/26/2023 3:47:33 PM

68 • Python Programming Using Problem Solving

Note that the type of a variable can be determined by using the type()
function. Here, the type of i has been stored in a variable called t. The value
of t<class, ‘float’> is displayed on printing.

Code:

i=2.35768

print ('The value of i is ', i)

t=type(i)

print ('The type of i is ', t)

Output:

The value of i is 2.35768

The type of i is <class 'float'>

To convert a string into a float, the float() function is used. In the snippet that
follows, the number entered by the user is converted into a float, and then a
variable called num points to the location that stores the number.

Code:

num=float(input('Enter a number\t:'))

print('You have entered\t:',num)

Output:

Enter a number :34.567

You have entered : 34.567

3.11.3	 String

To create a string-type variable, one can simply assign a string value to an
object. For example, in the following snippet, i has been assigned the value
“Nikhil.” Note that the type of a variable can be determined by using the
type() function. Here, the type of i has been stored in a variable called t. The
value of t <class, ‘str’> is displayed on printing.

Code:

i='Nikhil'

print('The value of i is ',i)

t=type(i)

print('The type of i is ',t)

PPUPS.CH03_1pp.indd 68PPUPS.CH03_1pp.indd 68 4/26/2023 3:47:33 PM4/26/2023 3:47:33 PM

Fundamentals • 69

Output:

The value of i is Nikhil

The type of i is <class 'str'>

As stated earlier, the input() function takes a string as input; hence, no
further conversion is required, like in the case of an integer or a float. In the
snippet that follows, a string entered by the user and a variable called num
points to the location that stores the string.

Code:

name=input('Enter your name\t:')

print('Hi ',name)

Output:

Enter your name: Harsh

Hi Harsh

3.12	CONCLUSION

The C compiler converts the code into an object file. The steps in this con-
version include lexical analysis, semantic and syntactic analysis, intermediate
code generation, optimization, and final code generation. The machine-
specific optimization renders the code un-portable. In the case of Python,
the code is converted into Python bytecode. One can run a Python code
using the Command Prompt, Jupyter notebook, IDLE, and using many
other Integrated Development Environments (IDE’s). This chapter presents
some of the ways to run the code in Python.

This chapter also discusses the input and print functions. A program
needs input. For taking a string-type input from the user, the input() function
is used. For taking an integer-type input from the user, int(input()) func-
tion is used, and for taking a float type input from the user, float(input())
function is used. These inputs are then operated as per the requirement of
the problem. For this, we need operators, and finally, the program’s output is
printed.

This chapter explained the above components in detail, forming the basis
of the following chapters. The reader is advised to complete the exercise to
understand better the topics discussed in the chapter.

PPUPS.CH03_1pp.indd 69PPUPS.CH03_1pp.indd 69 4/26/2023 3:47:33 PM4/26/2023 3:47:33 PM

70 • Python Programming Using Problem Solving

EXERCISES

Multiple Choice Questions

1.	 In Python, what can be executed?

	 (a)  Single instruction 	 (b)  Script

	 (c)  Full source code		 (d)  All of the above

2.	 Which of the following is used to display output on the screen?

	 (a)  print		 	 (b)  printf

	 (c)  WriteLine	 	 (d)  All of the above

3.	 In Python3, print is a

	 (a)  Function	 	 (b)  Command

	 (c)  None of the above

4.	 Which of the following supports value-type variables?

	 (a)  C#		 	 (b)  Python

	 (c)  Both 		 	 (d)  None of the above

5.	 In which of the following variables need not be declared first before use?

	 (a)  C		 	 (b)  C++

	 (c)  C#		 	 (d)  Python

6.	 Which one of the following is not an operator in Python?

	 (a)  ++		 	 (b)  +=

	 (c)  -=		 	 (d)  None of the above

7.	 Which operator is used for integer division in Python?

	 (a)  /			 	 (b)  //

	 (c)  %			 (d)  None of the above

8.	 Which operator is used for finding the remainder?

	 (a)  /			 	 (b)  //

	 (c)  %		 	 (d)  None of the above

PPUPS.CH03_1pp.indd 70PPUPS.CH03_1pp.indd 70 4/26/2023 3:47:33 PM4/26/2023 3:47:33 PM

Fundamentals • 71

9.	 Which operator is used for comparing two numbers?

	 (a)  ==		 	 (b)  =

	 (c)  +=		 	 (d)  None of the above

10.	 Which operator is used for calculating power?

	 (a)  ∗			 (b)  ∗∗

	 (c)  //		 	 (d)  None of the above

11.	 With respect to the strings, what is the meaning of + operator?

	 (a)  Addition		 	 (b)  Concatenation

	 (c)  Exception is raised	 (d)  None of the above

12.	 Concerning strings, what is the meaning of ∗ operator?

	 (a)  Multiplication	 	 (b)  To print a string multiple times

	 (c)  Exception is raised	 (d)  None of the above

13.	 In Python, which operator is used for performing logical AND?

	 (a)  &&		 	 (b)  &

	 (c)  ^		 	 (d)  None of the above

14.	 In Python, which operator is used for performing logical OR?

	 (a)  ||		 	 (b)  |

	 (c)  or		 	 (d)  Both (a) and (b)

15.	 Which operator is used for finding if an element is in the list?

	 (a)  in		 	 (b)  is

	 (c)  not in		 	 (d)  not is

Theory

1.	 Is Python an interpreted language? Write arguments in support of your
answer.

2.	 Write various ways of running a Python program in Windows.

3.	 Compare Anaconda and IDLE. (∗Explore).

PPUPS.CH03_1pp.indd 71PPUPS.CH03_1pp.indd 71 4/26/2023 3:47:33 PM4/26/2023 3:47:33 PM

72 • Python Programming Using Problem Solving

4.	 Explain how to run a Python script using a Command Window.

5.	 State the features of Jupyter.

6.	 Can we execute a single command in Python?

7.	 Explain the difference between a variable in C Language and Python.

8.	 Define the following:

	 (i)  Keyword

	 (ii)  Identifier

	 (iii)  Escape Sequence

	 (iv)  Expression Statement

	 (v)  Assignment Statement

9.	 What are the comments in Python? What are the various types of com-
ments?

10.	 What are arithmetic operators in Python? Explain all the different types
of arithmetic operators available in Python.

11.	 What are string operators in Python? Explain all the different types of
string operators available in Python.

12.	 What are assignment operators in Python? Explain all the different types
of assignment operators available in Python.

13.	 What are the logical operators in Python? Explain all the different types
of logical operators available in Python.

14.	 How will you input an integer in Python?

15.	 How will you input a float in Python?

16.	 How will you input a string in Python?

Explore

�� Steps to install Python in MAC.
�� Features of Jupyter Lab.
�� Features of Python Interpreter.
�� How to restart the kernel in Jupyter and clear all outputs.

PPUPS.CH03_1pp.indd 72PPUPS.CH03_1pp.indd 72 4/26/2023 3:47:33 PM4/26/2023 3:47:33 PM

This section deals with Python Objects, basic data types, and procedural pro-
gramming elements. The section has eight chapters. The next two chapters
introduce the reader to conditional statements and looping. The next chapter
discusses functions and recursion. Chapters 7 and 8 discuss the most impor-
tant topics namely list, tuple, dictionaries, iterators, and comprehensions.
Chapter 9 deals with strings and Chapter 10 discuss File handling.

Procedural Programming
S E C T I O N I I

PPUPS.CH04_1pp.indd 73PPUPS.CH04_1pp.indd 73 4/26/2023 4:07:09 PM4/26/2023 4:07:09 PM

PPUPS.CH04_1pp.indd 74PPUPS.CH04_1pp.indd 74 4/26/2023 4:07:09 PM4/26/2023 4:07:09 PM

Objectives

After reading this chapter, the reader should be able to
�� Use conditional statements in programs
�� Appreciate the importance of the if-else construct
�� Use the if-elif-else ladder
�� Use the ternary operator
�� Understand the importance of & and |

4.1	 INTRODUCTION

The preceding chapters discussed the basic data types and simple statements
in Python. The concepts studied so far are good for the execution of a pro-
gram that has no branches. However, a programmer seldom finds a problem-
solving approach devoid of branches.

Before proceeding any further, let us spend some time contemplating life.
Can you move forward in life without making decisions? The answer is “NO.”
In the same way, the problem-solving approach would not yield results until
the power of decision-making is incorporated. This is the reason why one
must understand how to implement the process of decision-making and loop-
ing. This chapter describes the first concept. This is needed to craft a program
that has branches. “Decision-making” empowers us to change the control flow
of the program. In C, C++, JAVA, C#, etc., there are two major ways to accom-
plish the above task. The first is the “if” construct and the other is “switch.”
The “if” block in a program is executed if the “test” condition is true; other-
wise, it is not executed. Switch is used to implement a scenario in which there

C H A P T E R 4
Conditional Statements

PPUPS.CH04_1pp.indd 75PPUPS.CH04_1pp.indd 75 4/26/2023 4:07:09 PM4/26/2023 4:07:09 PM

76 • Python Programming Using Problem Solving

are many “test” conditions, and the corresponding block executes in case a
particular test condition is true.

This chapter introduces the concept of conditional statement, if-elif
ladder, and finally, the get statement. The chapter assumes importance as
conditional statements are used in every aspect of programming, be it client-
side development, web development, or mobile application development.

The chapter has been organized as follows. The second section introduces
the “if” construct. Section 4.3 introduces “if-elif” ladder. Section 4.4 dis-
cusses the use of logical operators. Section 4.5 introduces the ternary opera-
tor. Section 4.6 presents the get statement, and the last section concludes.

4.2	 “IF,” IF-ELSE, AND IF-ELIF-ELSE CONSTRUCTS

Implementing decision-making gives the power to incorporate branching in
a program. As stated earlier, program is a set of instructions given to a com-
puter. To accomplish the given task and most of them will require making
decisions. So, conditional statements form an integral part of programming.
The syntax of the construct is as follows.

General format

1.	 if

if	 <test condition>:

	 <block if the test coniton is true>

2.	 if-else

if	 <test condition>:

	 <block if the test condition is true>

else:

	 <block if the test condition is not true>

...

3.	 If else ladder (discussed in the next section)

if			 <test condition>:

			 <block if the test condition is true>

elif		 <test 2>:

			 <second block>

PPUPS.CH04_1pp.indd 76PPUPS.CH04_1pp.indd 76 4/26/2023 4:07:09 PM4/26/2023 4:07:09 PM

Conditional Statements • 77

elif		 <test 3>:

			 <third block>

else:

			 <block if the test condition is true>

Note that, indentation is important, as Python recognizes a block through
indentation. So, make sure that the “if (<condition>)”: is followed by a block,
each statement of which is at the same alignment. In order to understand the
concept, let us consider a simple example. A student generally clears a univer-
sity exam in India if he scores more than 40 percent. In order to implement
the logic, the user is asked to enter the value of percentage. If the percentage
entered is more than 40, then “Exam cleared” is printed; otherwise, “Failed”
is printed. The following flowchart depicts the procedure for declaring the
result when a user enters percentage (Figure 4.1).

Start

Ask the user to enter
the Percentage

Percentage > 40

True False

Print ‘‘Exam Cleared’’ Print ‘‘Failed’’

Stop

FIGURE 4.1  Flowchart for Example 1.

PPUPS.CH04_1pp.indd 77PPUPS.CH04_1pp.indd 77 4/26/2023 4:07:10 PM4/26/2023 4:07:10 PM

78 • Python Programming Using Problem Solving

Illustration 4.1:

Ask the user to enter the marks, of a student, in a subject. If the marks entered
are greater than 40, then print “pass”, else print “fail”.

Program:

a = input("Enter marks : ")

if int(a)> 40:

	 print('Pass')

else:

	 print('Fail')

...

Output 1: Enter Marks : 50

Pass

Output 2: Enter Marks : 30

Fail

Let us have a look at another example. In the problem, the user is asked
to enter a three-digit number, to find the number obtained by reversing the
order of the digits of the number; then find the sum of the number and that
obtained by reversing the order of the digits and finally, find whether this sum
contains any digit in the original number. In order to accomplish the task, the
following steps (presented in Illustration 4.2) must be carried out.

Illustration 4.2:

Ask the user to enter a three-digit number. Call it “num.” Find the number
obtained by reversing the order of the digits. Find the sum of the given num-
ber and that obtained by reversing the order of the digits. Finally, find if any
digit in the sum obtained is same as that in the original number.

Solution:

The problem can be solved as follows.

�� When the user enters a number, check whether it is between 100 and 999,
both inclusive.

PPUPS.CH04_1pp.indd 78PPUPS.CH04_1pp.indd 78 4/26/2023 4:07:10 PM4/26/2023 4:07:10 PM

Conditional Statements • 79

�� Find the digits at units, tens, and hundreds place. Call them “u,” “t,” and
“h,” respectively.

�� Find the number obtained by reversing the order of the digits (say, “rev”)
using the following formula.
•	 Number obtained by reversing the order of the digits, rev = h + t × 10

+ u × 100
�� Find the sum of the two numbers.

Sum = rev + num
�� The sum may be a three-digit or a four-digit number. In any case, find the

digits of this sum. Call them “u1,” “t1,” “h1,” and “th1” (if required).
�� Set “flag = 0.”
�� Check the following condition. If anyone is true make flag = 1. If “sum” is

a three-digit number
u == u1

u == t1

u == h1

t == u1

t == h1

t == h1

h == u1

h == t1

h == h1

�� If “sum” is a four-digit number, the above conditions need to be checked
along with the following conditions.

u = = th1

h = = th1

t = = th1

�� The above conditions would henceforth be referred to as “set 1.” If the
value of “flag” is 1, then print “true” else print “false.”

�� The process has been depicted in Figure 4.2.

PPUPS.CH04_1pp.indd 79PPUPS.CH04_1pp.indd 79 4/26/2023 4:07:10 PM4/26/2023 4:07:10 PM

80 • Python Programming Using Problem Solving

Start

Ask the user to enter a three
digit number (num).

Flase True
if ((num > = 100) &&

(num < = 999)

Print ‘‘Incorrect input’’

Find ‘rev’ the number obtained
by reversing the order of the
digits

sum = num + rev

True False

Conditions (set 1)
== true

flag = 1 flag = 0

True False

flag == 1

Print ‘‘True’’ Print ‘‘False’’

Stop

FIGURE 4.2  Flowchart for Illustration 4.2.

Program:

num=int(input('Enter a three digit number\t:'))

if ((num<100) | (num>999)):

   print('You have not entered a number between 100 and 999')

PPUPS.CH04_1pp.indd 80PPUPS.CH04_1pp.indd 80 4/26/2023 4:07:10 PM4/26/2023 4:07:10 PM

Conditional Statements • 81

else:

    flag=0

   o=num%10

   t=int(num/10)%10

   h=int(num/100)%10

   print('o\t:',str(o),'t\t:',str(t),'h\t:',str(h))

   rev=h+t*10+o*100

   print('Number obtained by reversing the order of the
digits\t:',str(rev))

   sum1=num+rev

   print('Sum of the number and that obtained by reversing the
order of digits\t:',str(sum1))

   if sum1<1000:

     o1=sum1%10

     t1=int(sum1/10)%10

     h1=int(sum1/100)%10

     print('o1\t:',str(o1),'t1\t:',str(t1),'h1\t:',str(h1))

     if ((o==o1)|(o==t1)|(o==h1)|(t==o1)|(t==t1)|(t==h1)|(h==o
1)|(h==t1)|(h==h1)):

       print('Condition true')

            flag==1

   else:

     o1=sum1%10

     t1=int(sum1/10)%10

     h1=int(sum1/100)%10

     th1=int(sum1/1000)%10

     print('o1\t:',str(o1),'t1\t:',str(t1),'h1\
t:',str(h1),'t1\t:',str(t1))

     if

     ((o==o1)|(o==t1)|(o==h1)|(o==th1)|(t==o1)|(t==t1)|(t==h1)
|(t==th1)|(h==o1)|(h==t1)|(h==h1)|(h==th1)):

       print('Condition true')

            flag==1

Output: First run

Enter a three digit number	:4

You have not entered a number between 100 and 999

>>>

PPUPS.CH04_1pp.indd 81PPUPS.CH04_1pp.indd 81 4/26/2023 4:07:10 PM4/26/2023 4:07:10 PM

82 • Python Programming Using Problem Solving

Output: Second run

Enter a three digit number	:343

o	 : 3 t  : 4 h	 : 3

Number obtained by reversing the order of the digits	 : 343

No digit of the sum is same as the original number

>>>

Output: Third run

Enter a three digit number	:435

o	 : 5 t  : 3 h	 : 4

Number obtained by reversing the order of the digits	 : 534

No digit of the sum is same as the original number

>>>

Output: Fourth run

Enter a three digit number	:121

o	 : 1 t  : 2 h	 : 1

Number obtained by reversing the order of the digits	 : 121

Sum of the number and that obtained by reversing the order of
digits: 242

o1	 : 2 t1  : 4 h1	: 2

Condition true

>>>

.

One must be careful as regards the indentation, failing which the program would
not compile. The indentation decides the beginning and end of a particular block in
Python. It is advisable not to use a combination of spaces and tabs in indentation.
Many versions, of Python, may treat this as a syntax error.

The if-elif ladder can also be implemented using the get statement in
case of dictionaries, explained later in the chapter. The important points as
regards the conditional statements in Python are as follows.

�� The if <test> is followed by a colon.
�� There is no need of parenthesis for the test condition. Though, enclosing

test in parenthesis would not result in an error.

TIP!

PPUPS.CH04_1pp.indd 82PPUPS.CH04_1pp.indd 82 4/26/2023 4:07:10 PM4/26/2023 4:07:10 PM

Conditional Statements • 83

�� The nested blocks in Python are determined by indentation. Therefore,
proper indentation in Python is essential. As a matter of fact, an inconsist-
ent indentation or no indentation would result in errors.

�� An if can have any number of if’s nested within.
�� The test condition in if must result in a True or a False.

Illustration 4.3:

Write a program to find the greatest of the three numbers entered by the user.

Solution:

First of all, ask the user to enter three numbers (say num1, num2, and
num3). This is followed by the condition checking (as depicted in the follow-
ing program). Finally, the greatest number is displayed.

Program:

num1 = input('Enter the first number\t:')

num2 = input('Enter the second number\t:')

num3 = input('Enter the third number\t:')

if int(num1)> int(num2):

   if int(num1) > int(num3):

     big= int(num1)

   else:

     big = int(num2)

 else:

   if int(num2)> int(num3)

     big= num2

   else:

     big = num3

print(big)

4.3	 THE IF-ELIF-ELSE LADDER

If there are multiple conditions and the outcomes decide the action, then
if-elif-else ladder can be used. This section discusses the construct and

PPUPS.CH04_1pp.indd 83PPUPS.CH04_1pp.indd 83 4/26/2023 4:07:10 PM4/26/2023 4:07:10 PM

84 • Python Programming Using Problem Solving

presents the concept using appropriate examples. The syntax of this construct
is as follows.

Syntax

if <test condition 1>:

   # The task to be performed if the condition 1 is true

elif <test condition 2>:

   # The task to be performed if the condition 2 is true

elif <test condition 3>:

   # The task to be performed if the condition 1 is true

else:

   # The task to be performed if none of the above condition is
true

The flow of the program can be managed using the above construct.
Figure 4.3 shows the diagram depicting the program’s flow using the above
constructs. In the figure, the left edge depicts the scenario where condition
C1 is true, and the right edge depict the scenario where the condition is false.
In the second graph, conditions C1, C2, C3, and C4 lead to different paths
[Programming in C#, Harsh Bhasin, 2014].

C

T F

C

C C C C

if-else elif ladder

FIGURE 4.3  The flow graph of if and elif ladder.

The following section has programs that depict the use of elif ladder. It
may be noted that if there are multiple if statements, then the else is taken
along with the nearest if.

PPUPS.CH04_1pp.indd 84PPUPS.CH04_1pp.indd 84 4/26/2023 4:07:10 PM4/26/2023 4:07:10 PM

Conditional Statements • 85

4.4	 LOGICAL OPERATORS

In many cases, the execution of a block depends on the truth value of more
than one statement. In such cases, the operators “and” (“&”) and “or” (“|”)
come to our rescue. The first (“and”) is used when the output is “true” when
both conditions are “true.” The second (“or”) is used if the output is “true,”
if any of the condition is “true.”

The truth table of “and” and “or” is given as follows. In the following
tables, “T” stands for “true,” and “F” stands for “false.”

TABLE 4.1  Truth table of a&b.

a b a & b

T T T

T F F

F T F

F F F

TABLE 4.2  Truth table of a|b.

a b a|b

T T T

T F T

F T T

F F F

The above statements help the programmer to easily handle compound
statement. As an example, consider a program to find the greatest of the three
numbers entered by the user. The numbers entered by the user are (say) “a,”
“b,” and “c,” then “a” is greatest if (a>b) and (a>c). This can be written as
follows:

		 if((a>b)&(a>c))

			 print('The value of a greatest')

In the same way, the condition of “b” being greatest can be crafted.
Another example can be that of a triangle. If all three sides of a triangle are
equal, then it is an equilateral triangle. This condition can be stated as follows.

		 if((a==b)||(b==c)

			 //The triangle is equilateral;

PPUPS.CH04_1pp.indd 85PPUPS.CH04_1pp.indd 85 4/26/2023 4:07:10 PM4/26/2023 4:07:10 PM

86 • Python Programming Using Problem Solving

4.5	 THE TERNARY OPERATOR

The conditional statements explained in the above section are immensely
important for writing any program containing conditions. However, the code
can still be reduced by using the ternary statements provided by Python. The
ternary operator performs the same task as the if-else construct. However, it
has the same disadvantage as in the case of C or C++. The problem is that
each part caters to a single statement. The syntax of the statement is given as
follows.

Syntax

<Output variable> = < The result when the condition is true > if < condition>
else <The result when the condition is not true>

For example, the conditional operator can be used to check which of the
two numbers entered by the user is greater.

great = a if (a>b) else b

Finding the greatest of the three given numbers is a bit intricate. The fol-
lowing statement puts the greatest of the three numbers in “great.”

great = a if (a if (a > b) else c)) else(b if (b > c) else c))

The program that finds the greatest of the three numbers, entered by the
user, using the ternary operator, is as follows.

Illustration 4.4:

Find the greatest of three numbers entered by the user, using ternary operator.

Program

a = int(input('Enter the first number\t:'))

b = int(input('Enter the second number\t:'))

c = int(input('Enter the third number\t:'))

big = (a if (a>c) else c) if (a>b) else (b if (b>c) else c)

print('The greatest of the three numbers is '+str(big))

>>>

Output:

Enter the first number	 :2

Enter the second number	 :3

PPUPS.CH04_1pp.indd 86PPUPS.CH04_1pp.indd 86 4/26/2023 4:07:10 PM4/26/2023 4:07:10 PM

Conditional Statements • 87

Enter the third number	:4

The greatest of the three numbers is 4

>>>

4.6	 THE GET CONSTRUCT

In C or C++ (even in C# and JAVA), switch is used in the case where different
conditions lead to different actions. This can also be done using the ‘if-elif’
ladder, as explained in the previous sections. The get construct greatly eases
the task in the case of dictionaries.

In the example that follows, there are three conditions. However, in many
situations, there are many more conditions. The get construct can be used in
such cases. The syntax of the construct is as follows.

Syntax

<dictionary name>.get('<value to be searched>', 'default
value>')

Illustration 4.5 demonstrates the use of the get construct.

Illustration 4.5:

This illustration has a directory containing the names of the books and the cor-
responding year. The statements that follow, finds the year of publication, for
a given name. If the name is not found, the string (given as the second argu-
ment, in get) “Bad choice” is displayed.

Program

hbbooks = {'programming in C#': 2014, 'Algorithms': 2015,
'Python': 2016}

print(hbbooks.get('Programming in C#', 'Bad Choice'))

print(hbbooks.get('Algorithms', 'Bad Choice'))

print(hbbooks.get('Python', 'Bad Choice'))

print(hbbooks.get('Theory Theory, all the way', 'Bad Choice'))

Output:

Bad Choice

2015

PPUPS.CH04_1pp.indd 87PPUPS.CH04_1pp.indd 87 4/26/2023 4:07:10 PM4/26/2023 4:07:10 PM

88 • Python Programming Using Problem Solving

2016

Bad Choice

>>>

Note that in the first case, the “P” of “Programming” is capital. Hence,
“Bad Choice” is displayed. In the second and third cases, the get function can
find the requisite value. In the last case, the value is not found; hence, the
second argument of the get construct appears. Also, note that the later part is
similar to the default of the C-type switch statement. The flow diagram given
in Figure 4.4 shows a program having many branches.

FIGURE 4.4  A program having multiple conditional statements.

PPUPS.CH04_1pp.indd 88PPUPS.CH04_1pp.indd 88 4/26/2023 4:07:11 PM4/26/2023 4:07:11 PM

Conditional Statements • 89

Observation

In Python, dictionaries and lists form an integral part of the language basics.
The get construct implements the concept of conditional selection. Notably,
this construct greatly reduces the problems of dealing with situations where
mapping is required and hence is important.

4.7	 EXAMPLES

The “if” condition is also used for input validation. The following program
asks the user to enter a character and checks whether its ASCII value is
greater a certain value.

Illustration 4.6:

Ask the user to enter a number and check whether its ASCII value is greater
than 80.

Program:

inp = input('Enter a character :')

if ord(inp) > 80:

	 print('ASCII value is greater than 80')

else:

	 print('ASCII value is less than 80')

Output 1:

Enter a character: A

ASCII value is less than 80

Output 2:

Enter a character: Z

ASCII value is greater than 80

The construct can also be used to find the value of a multi-valued func-
tion. For example, consider the following function.

2() 5 3, if 2
3, if 2

f x x x x

x x

 = + + >


+ <

PPUPS.CH04_1pp.indd 89PPUPS.CH04_1pp.indd 89 4/26/2023 4:07:11 PM4/26/2023 4:07:11 PM

90 • Python Programming Using Problem Solving

The following example asks the user to enter the value of x and calculates
the value of the function as per the given value of x.

Illustration 4.7:

Implement the above function and find the values of the function f(x) above at
x = 2 and x = 4.

Program:

f(x) = x^2 + 5x + 3 , if x > 2

   = x + 3 , if x <= 2

"""

x = int (input('Enter the value of x\t:'))

if x > 2:

	 f = ((pow(x,2)) + (5*x) + 3)

else:

	 f = x + 3

print('Value of function f(x) = %d' % f)

Output:

Enter the value of x	 :4

Value of function f(x) = 39

Enter the value of x	 :1

Value of function f(x) = 4

The “if-else” construct, as stated earlier, can be used to find the outcome
based on certain conditions. For example, two lines are parallel if the ratio of
the coefficients of x’s is the same as that of those of y’s. That is, if the equa-
tions are

a1x + b1y + c1 = 0 and a2x + b2y + c2 = 0. Then the condition of the lines
being parallel is

1 1

2 2

a b
a b

=

PPUPS.CH04_1pp.indd 90PPUPS.CH04_1pp.indd 90 4/26/2023 4:07:11 PM4/26/2023 4:07:11 PM

Conditional Statements • 91

The following program checks whether two lines are parallel or not.

Illustration 4.8:

Ask the user to enter the coefficients of a1x + b1y + c1 = 0 and a2x + b2y + c2 =
0 and find whether the two lines depicted by the above equations are parallel
or not?

Program:

print('Enter Coefficients of the first equation [a1x + b1y + c1 =
0]\n')

r1 = input('Enter the value of a1: ')
a1 = int (r1)
r1 = input('Enter the value of b1: ')
b1 = int (r1)
r1 = input('Enter the value of c1: ')
c1 = int (r1)
print('Enter Coefficients of second equation [a2x + b2y + c2 = 0

]\n')
r1 = input('Enter the value of a2: ')
a2 = int (r1)
r1 = input('Enter the value of b2: ')
b2 = int (r1)
r1 = input('Enter the value of c2: ')
c2 = int (r1)
if (a1/a2) == (b1/b2):
	 print('Lines are parallel')
else:
	 print('Lines are not parallel')

Output:

Enter Coefficients of the first equation [a1x + b1y + c1 = 0]

Enter the value of a1: 2

Enter the value of b1: 3

Enter the value of c1: 4

Enter Coefficients of second equation [a2x + b2y + c2 = 0]

Enter the value of a2: 4

Enter the value of b2: 6

Enter the value of c2: 7

Lines are parallel

>>>

PPUPS.CH04_1pp.indd 91PPUPS.CH04_1pp.indd 91 4/26/2023 4:07:11 PM4/26/2023 4:07:11 PM

92 • Python Programming Using Problem Solving

The above program can be extended to find whether the lines are intersecting
or overlapping. Two lines intersect if the following condition is true.

a1x + b1y + c1 = 0 and a2x + b2y + c2 = 0. Then the lines intersect if

1 1

2 2

a b
a b

≠

And the two lines overlap if

1 1 1

2 2 2

a b c
a b c

= =

The following flowchart shows the flow of control of the program
(Figure 4.5).

Ask the user to enter a , a , b

b , c and c
1 2 1

2 1 2

a

a
1

2

b

b
1

2
=

a

a
1

2

b

b
1

2
=

c

c
1

2
=

Lines intersect Lines Overlap Lines Parallel

STOP

Yes

Yes

No
No

FIGURE 4.5  Checking whether lines are parallel, overlapping, or they intersect.

PPUPS.CH04_1pp.indd 92PPUPS.CH04_1pp.indd 92 4/26/2023 4:07:11 PM4/26/2023 4:07:11 PM

Conditional Statements • 93

The following program implements the logic.

Illustration 4.9:

Ask the user to enter the values of a1, a2, b1, b2, c1, and c2 and find whether
the lines are parallel, they overlap, or they intersect.

Program:

print('Enter Coefficients of the first equation [a1x + b1y + c1 =
0]\n')

r1 = input('Enter the value of a1: ')

a1 = int (r1)

r1 = input('Enter the value of b1: ')

b1 = int (r1)

r1 = input('Enter the value of c1: ')

c1 = int (r1)

print('Enter Coefficients of second equation [a2x + b2y + c2 = 0
]\n')

r1 = input('Enter the value of a2: ')

a2 = int (r1)

r1 = input('Enter the value of b2: ')

b2 = int (r1)

r1 = input('Enter the value of c2: ')

c2 = int (r1)

if ((a1/a2) == (b1/b2))&((a1/a2)==(c1/c2)):

   print('Lines overlap')

elif (a1/a2)==(b1/b2):

   print('Lenes are parallel')  

else:

	 print('Lines intersect')

Output:

Enter Coefficients of the first equation [a1x + b1y + c1 = 0]

Enter the value of a1: 2

Enter the value of b1: 3

Enter the value of c1: 4

PPUPS.CH04_1pp.indd 93PPUPS.CH04_1pp.indd 93 4/26/2023 4:07:11 PM4/26/2023 4:07:11 PM

94 • Python Programming Using Problem Solving

Enter Coefficients of second equation [a2x + b2y + c2 = 0]

Enter the value of a2: 1

Enter the value of b2: 2

Enter the value of c2: 3

Lines intersect

>>>

4.8	 SUMMARY

As stated in the first chapter, we write a program with some purpose. The pur-
pose to be accomplished by a program generally requires making decisions.
This decision-making capacity also empowers a programmer to write code
that requires branching. Moreover, many problems, as explained in the chap-
ter, can be easily solved using “if-else” constructs. Python greatly reduces the
unnecessary clutter, as against C or a C++ program. In Python code, there
is hardly a need for braces or for that matter handling obvious conditions.
Python also provides us with a switch-like construct to handle multiple condi-
tions. This chapter discusses the basics of conditional statements and presents
ample illustrations to clarify things. Conditional statements are used every-
where; from a basic programs to decision support systems and expert systems.
The reader is required to go through the points to remember and implement
the problems given in the exercise for a better understanding. One must also
understand that conditional statements are the first step toward program-
ming. However, understanding conditional statements, though essential, is
just the beginning. Your journey of becoming a programmer has just started.

GLOSSARY

1.	 ‘if’ construct

	 if	 <test condition>:

			 <block if the test condition is true>

2.	 ‘if else’ construct

	 if	 <test condition>

			 <block if the test condition is true>

	 else:

			 <block if the test condition is not true>

	 ...

PPUPS.CH04_1pp.indd 94PPUPS.CH04_1pp.indd 94 4/26/2023 4:07:11 PM4/26/2023 4:07:11 PM

Conditional Statements • 95

3.	 ‘If else ladder’:

	 if	 <test condition>:

			 <block if the test condition is true>

	 elif	 <test 2>:

			 <second block>

	 elif	 <test 3>:

			 <third block>

	 else:

			 <block if the test condition is true>

POINTS TO REMEMBER

�� The ‘if’ statement implements conditional branching.
�� The test condition is a Boolean expression that results in a true or a false.
�� The block of “if” executes if the test condition is true.
�� The else part executes if the test condition is false.
�� Multiple branches can be implemented using if-elif ladder.
�� Any number of if-else can be nested.
�� A ternary if can be implemented in Python.
�� Logical operators can be used in implementing conditional statements.

EXERCISES

Multiple Choice Questions

What will be the output of the following snippets?

1.	 What will be the output of the following?

		 if 28:

		 	 print('Hi')

		 else:

			 print('Bye')

	 (a)  Hi

	 (b)  Bye

	 (c)  None of the above

 	 (d)  The above snippet will not compile

PPUPS.CH04_1pp.indd 95PPUPS.CH04_1pp.indd 95 4/26/2023 4:07:11 PM4/26/2023 4:07:11 PM

96 • Python Programming Using Problem Solving

2.	 a = 5

		 b = 7

		 c = 9

		 if a>b:

		   if b>c:

		     print(b)

		   else:

		     print(c)

		 else:

		   if b>c:

		     print(c)

		   else:

		     print(b)

	 (a)  7			 (b)  9

	 (c)  34			 (d)  None of the following

3.	 a = 34

		 b = 7

		 c = 9

		 if a>b:

		   if b>c:

		     print(b)

		   else:

		     print(c)

		 else:

		   if b>c:

		     print(c)

		   else:

		     print(b)

	 (a)  7			 (b)  9

	 (c)  None of the above 	 (d)  The code will not compile

4.	 a = int(input('First number\t:'))

		 b = int(input('Second number\t'))

		 c = int(input('Third number\t:'))

		 if ((a>b) & (a>c)):

		     print(a)

PPUPS.CH04_1pp.indd 96PPUPS.CH04_1pp.indd 96 4/26/2023 4:07:11 PM4/26/2023 4:07:11 PM

Conditional Statements • 97

		 elif ((b>a) &(b>c)):

		     print(b)

		 else:

		     print(c)

	 (a)  The greatest of the three numbers entered by the user

	 (b)  The smallest of the three numbers entered by the user

	 (c)  None

	 (d)  The code will not compile

5.	 n = int(input('Enter a three digit number\t:'))

		 if (n%10)==(n/100):

		   print('Hi')

		 else:

		   print('Bye')

		   # The three digit number entered by the user is 453

	 (a)  Hi			 (b)  Bye

	 (c)  None of the above	 (d)  The code will not compile

6.	 In the above question if the number entered is 545, what would be the
answer?

	 (a)  Hi			 (b)  Bye

	 (c)  None of the above 	 (d)  The code will not compile

7.	 hb1 = ['Programming in C#','Oxford University Press', 2014]

		 hb2 = ['Algorithms', 'Oxford University Press', 2015]

		 if hb1[1]==hb2[1]:

		   print('Same')

		 else:

		     print('Different')

	 (a)  Same			 (b)  Different

	 (c)  No output		 (d)  The code would not compile

8.	 hb1 = ['Programming in C#','Oxford University Press', 2014]

		 hb2 = ['Algorithms', 'Oxford University Press', 2015]

		 if (hb1[0][3]==hb2[0][3]):

		   print('Same')

PPUPS.CH04_1pp.indd 97PPUPS.CH04_1pp.indd 97 4/26/2023 4:07:11 PM4/26/2023 4:07:11 PM

98 • Python Programming Using Problem Solving

		 else:

	 	   print('Different')

	 (a)  Same 		 (b)  Different

	 (c)  No output	 (d)  The code will not compile

9.	 In the snippet, given in question 8, the following changes are made. What
will be the output?

		 hb1 = ['Programming in C#','Oxford University Press', 2014]

		 hb2 = ['Algorithms', 'Oxford University Press', 2015]

	 	if (str(hb1[0][3])==str(hb2[0][3])):

	 	   print('Same')

		 else:

	 	   print('Different')

	 (a)  Same		 (b)  Different

	 (c)  No output 	 (d)  The code will not compile

10.	 Finally, the code in question number 8 is changed to the following. What
will be the output?

		 hb1 = ['Programming in C#','Oxford University Press', 2014]

		 hb2 = ['Algorithms', 'Oxford University Press', 2015]

	 	if (char(hb1[0][3])==char(hb2[0][3])):

	 	   print('Same')

		 else:

	 	   print('Different')

	 (a)  Same		 (b)  Different

	 (c)  No output	 (d)  The code will not compile.

Programming Exercises

1.	 Ask the user to enter a number and find the number obtained by revers-
ing the order of the digits.

2.	 Ask the user to enter a four-digit number and check whether the sum of
the first and the last digits is the same as the sum of the second and the
third digit.

PPUPS.CH04_1pp.indd 98PPUPS.CH04_1pp.indd 98 6/15/2023 1:01:54 PM6/15/2023 1:01:54 PM

Conditional Statements • 99

3.	 In the above question, if the answer is true, then obtain a number in
which the second and the third digit are one more than that in the given
number.

	 Example: Number 5342, the sum of the first and the last digit = 7, that of
the second and the third digit = 7. New number: 5452

4.	 Ask the user to enter the concentration of hydrogen ions in a given solu-
tion (C) and find the PH of the solution using the following formula.

PH = log10C

5.	 If the PH is <7, then the solution is deemed as acidic, else it is deemed as
basic. Find the solution whose hydrogen ion concentration is entered by
the user, is acidic or basic?

6.	 In the above question, find whether the solution is neutral? (A solution is
neutral if its pH is 7)

7.	 The centripetal force acting on a body (mass m), moving with a velocity v,
in a circle of radius r, is given by the formula mv2/r. The gravitational force
on the body is given by the formula (GmM)/R2, where m and M are the
masses of the body and Earth, and R is the radius of the Earth. Ask the
user to enter the requisite data and find whether the two forces are equal
or not.

8.	 Ask the user to enter his salary and calculate the TADA, which is 10%
of the salary; the HRA, which is 20% of the salary and the gross income,
which is the sum total of the salary, TADA, and the HRA.

9.	 In the above question, find whether the net salary is greater than
INR 3,00,000.

10.	 Use the Tax Slab of the current year to find the tax on the above income
(question number 8), assuming that the savings are INR 1,00,000.

11.	 Find whether a number entered by the user is divisible by 3 and 13.

12.	 Find whether the number entered by the user is a perfect square.

13.	 Ask the user to enter a string and find the alphanumeric characters from
the string.

14.	 In the above question, find the digits in the strings.

15.	 In question number 11, find all the components of the string which are
not digits or alphabets.

PPUPS.CH04_1pp.indd 99PPUPS.CH04_1pp.indd 99 4/26/2023 4:07:11 PM4/26/2023 4:07:11 PM

PPUPS.CH04_1pp.indd 100PPUPS.CH04_1pp.indd 100 4/26/2023 4:07:11 PM4/26/2023 4:07:11 PM

Objectives

After reading this chapter, the reader should be able to
�� Understand the importance and use of loops
�� Appreciate the importance of the while and for
�� Use range
�� Process list of lists
�� Understand nesting of loops

5.1	 INTRODUCTION

Consider an example of writing the multiples of a given number (from 1
to 10). Writing this requires writing, say “n × ” followed by “i” (i varying from
1 to n) and then the result of calculation (i.e., n × 1, n × 2, and so on). Many
such situations require us to repeat a task multiple times. This repetition can
be used to calculate a function’s value, print a pattern, or simply repeat some-
thing. This chapter discusses loops and iterations, which is an integral part of
procedural programming. Looping means repeating a set of statements till a
condition is true. The number of times, this set is repeated, depends on the
test condition. Also, what must be repeated must be chalked out with due
deliberation. In general, repeating a block requires the following (Figure 5.1).

C H A P T E R 5
Looping

PPUPS.CH05_1pp.indd 101PPUPS.CH05_1pp.indd 101 4/26/2023 4:10:13 PM4/26/2023 4:10:13 PM

102 • Python Programming Using Problem Solving

Deciding what is to be repeated: the set of statements

The test condition or the number of times the
set of statements is to be repeated

Special cases wherein the loop breaks (or
continues, escaping certain statements)

FIGURE  5.1 Looping.

Python provides two types of loops: for and while (Figure 5.2).

FIGURE 5.2  Loops in Python.

While loop is one of the most general constructs in any programming
language. If one comes from a C background, he must be equipped with the
above construct. While loop retains most of its features in Python as well,
however, there are notable differences also.

The while loop repeats a block, identified by indentation, till the test
condition remains true. Then, as we will see in the following discussion, one
can come out of the loop using break and continue. Also, if the loop repeats
as per the test condition, the else condition executes. This is an additional
feature in Python.

The use of for in Python is a bit different as compared to C-like lan-
guages. The for construct, in Python, is generally used for lists, tuples, arrays,
etc. The chapter introduces range, which would help the programmer to
select a value from a given range. The reader is advised to go through the dis-
cussion of lists and tuples presented in Chapter 3 of this book, before starting
with for loop.

PPUPS.CH05_1pp.indd 102PPUPS.CH05_1pp.indd 102 4/26/2023 4:10:14 PM4/26/2023 4:10:14 PM

Looping • 103

The chapter has been organized as follows. Section 5.2 of this chapter
presents the basics of while loop. Section 5.3 uses looping to create patterns.
Section 5.4 introduces the concept of nesting and the processing of lists and
tuples using for loops. The last section concludes.

5.2	 WHILE

In Python, the while loop is the most commonly used construct for repeating
a task over and over again. The task is repeated till the test condition remains
true, after which the loop ends, and if the exit occurs without a break, then
the else part of the construct executes. The syntax of the loop is as follows.

Syntax

while test:

      ...

      ...

else:

      ...

It may be stated here that the indentation determines the body of the
loop. This is the reason why one must be extremely careful in indentation.
Also, the else part, which is an addition in Python is optional. In order to
understand the concept, let us go through the following Illustrations.

Illustration 5.1:

Ask the user to enter a number and calculate its factorial.

Solution:

The factorial of a number n is defined as follows.

factorial = 1 × 2 × 3 × … × n

That is, the factorial of a number, n, is the product of n terms starting
from 1. To calculate the factorial of a given number, first of all, the user is
asked to input a number. The number is then converted into integer. This is
followed by the initialization of “factorial” by 1. Then a while loop succes-
sively multiplies i to “factorial” (note that after each iteration, the value of

PPUPS.CH05_1pp.indd 103PPUPS.CH05_1pp.indd 103 4/26/2023 4:10:14 PM4/26/2023 4:10:14 PM

104 • Python Programming Using Problem Solving

i increases by 1). The following program calculates the factorial of a number
entered by the user.

Program:

n = input('Enter number whose factorial is required')#ask user
to enter number

m = int(n)#convert the input to an integer

factorial = 1#initialize

i=1# counter

while i<=m:

 factorial =factorial*i

i=i+1

print('\factorial of '+str(m)+' is '+str(factorial))

Output:

Enter number whose factorial is required6

Factorial of 6 is 720

Illustration 5.2:

Ask the user to enter two numbers “a” and “b” and calculate “a” to the power
of “b.”

Solution:

“a” raised to the power “b” can be defined as follows.

power = a × a × a × ... × a

(b times)

To calculate the power, first of all, the user is asked to input two num-
bers. The numbers are then converted into integers. This is followed by the
initialization of “power” by 1. Then a while loop successively multiplies “a”
to “power” (note that after each iteration the value of i increases by 1). The
following program implements the logic.

Program:

a = int(input('Enter the first number'))

b = int(input('Enter the second number'))

PPUPS.CH05_1pp.indd 104PPUPS.CH05_1pp.indd 104 4/26/2023 4:10:14 PM4/26/2023 4:10:14 PM

Looping • 105

power=1

i = 1

while i<=b:

 power = power*a

 i=i+1

else:

 print(str(a)+'to the power of '+str(b)+' is '+str(power))

Output:

Enter the first number4

Enter the second number5

4 to the power of 5 is 1024

Illustration 5.3:

An Arithmetic Progression is obtained by adding the common difference “d”
to the first term “a,” successively. The ith term of the Arithmetic progression is
given by the following formula.

T (i) = a + (i – 1) × d

Ask the user to enter the value of “a,” “d,” and “n” (the number if terms),
and find all the terms of the AP. Also, find the sum of all the terms.

Solution:

The following program asks the user to enter the values of “a,” “d,” and “n.”
The input is then converted into integers.

Since all the terms are to be calculated, this evaluation is done inside a
loop. The “sum” is initialized to 0 and the terms are added to “sum,” in each
iteration.

Program:

a = int(input('Enter the first term of the Arithmetic
Progression\t:'))

d = int(input('Enter the common difference\t:'))

n = int(input('Enter the number of terms\t:'))

i = 1

sum = 0#initialize

PPUPS.CH05_1pp.indd 105PPUPS.CH05_1pp.indd 105 4/26/2023 4:10:14 PM4/26/2023 4:10:14 PM

106 • Python Programming Using Problem Solving

while i<=n:

 term = a +(i-1)*d

 print('The '+str(i)+'th term is '+str(term))

 sum = sum + term

 i=i+1

else:

 print('The sum of '+str(n)+' terms is\t:'+str(sum))

Output:

RUN C:/Users/ACER ASPIRE/AppData/Local/Programs/Python/
Python35-32/Tools/scripts/AP.py

Enter the first term of the Arithmetic Progression	:5

Enter the common difference:6

Enter the number of terms	 :7

The 1th term is 5

The 2th term is 11

The 3th term is 17

The 4th term is 23

The 5th term is 29

The 6th term is 35

The 7th term is 41

The sum of 7 terms is	 :161

Illustration 5.4:

The Geometric Progression is obtained by multiplying the common ratio “r”
to the first term “a,” successively. The ith term of the progression is given by
the following formula.

T (i) = a × ri – 1

Ask the user to enter the value of “a,” “r,” and “n” (the number if terms),
and find all the terms of the GP. Also, find the sum of all the terms.

Solution:

The following program asks the user to enter the values of “a,” “r,” and “n.”
Since all the terms are to be calculated, this evaluation is done inside a loop.
The “sum” is initialized to 0 and the terms are added to “sum,” in each
iteration.

PPUPS.CH05_1pp.indd 106PPUPS.CH05_1pp.indd 106 4/26/2023 4:10:14 PM4/26/2023 4:10:14 PM

Looping • 107

Program:

a = int(input('Enter the first term of the Geometric
Progression\t:'))

r = int(input('Enter the common ratio\t:'))

n = int(input('Enter the number of terms\t:'))

i = 1

sum = 0#initialize

while i<=n:

 term = a * (r**(i-1))

 print('The '+str(i)+'th term is '+str(term))

 sum = sum + term

 i=i+1

else:

 print('The sum of '+str(n)+' terms is\t:'+str(sum))

Output:
Enter the first term of the Arithmetic Progression	:5

Enter the common ratio	:3

Enter the number of terms	 :5

The 1th term is 5

The 2th term is 15

The 3th term is 45

The 4th term is 135

The 5th term is 405

The sum of 5 terms is	 :605

5.3	 PATTERNS

Have you ever wondered why quizzes and riddles are integral to any intel-
ligence test? The following incident would help the reader to understand the
importance of patterns. During the Second World War, the Britons were striv-
ing hard to break Enigma, the machine used by the Germans for encrypting
their messages. The army somehow got Alan Turing, who was never, in his life-
time recognized, for the above task. He wanted a team to help him, for which
he conducted an exam. In the exam, he asked the candidates to solve the given
puzzles in a given time. This incident underlines the importance of compre-
hending patterns. What happens thereafter is a history. Decoding pattern,

PPUPS.CH05_1pp.indd 107PPUPS.CH05_1pp.indd 107 4/26/2023 4:10:14 PM4/26/2023 4:10:14 PM

108 • Python Programming Using Problem Solving

solving puzzles helps to judge the intellect of a person. This is much more
important as compared to learning a formula. This section presents the design
of patterns using loops to help the reader understand the concept of nesting.
Moreover, this book also intends to inculcate the problem-solving approach in
the reader. Therefore, this section becomes all the more important.

The following illustrations show how to assign values to the counters of
the inner and the outer loops to carry out the given task. The patterns, as such,
may not be very useful. However, doing the following programs would help
the reader to comprehend the concept of nesting. Therefore, the methodology
of making a pattern has been explained in each of the following illustrations.

Illustration 5.5:

Ask the user to enter the number of rows and write a program to generate the
following pattern in Python.

*

* *

* * *

* * * *

Solution:

The number of rows n, would determine the value of the counter (from 0
to n). The value of i denote the row number, in the following program. In
each row, the number of stars is equal to the row number. The values of j, in
each iteration, denote the number of stars in each row. This loop is, therefore,
nested. Also, note that after the inner loop ends a new line is printed using
the print() function.

Program:

>>>

n = input('Enter the number of rows')

m = int(n)

k=1

for i in range(m):

 for j in range(1, i+2):

		 print ('*', end=" ")

		 print ()

PPUPS.CH05_1pp.indd 108PPUPS.CH05_1pp.indd 108 4/26/2023 4:10:14 PM4/26/2023 4:10:14 PM

Looping • 109

Output:
Enter the number of rows 5

*

* *

* * *

* * * *

Illustration 5.6

Ask the user to enter the number of rows and write a program to generate the
following pattern in Python.

1

2 2

3 3 3

4 4 4 4

Solution:

The number of rows would determine the value of the counter i, (from 0
to n). The value of i denote the row numbers. In each row, the number of
elements is equal to the row number. The values of j, in each iteration, denote
the number of elements in each row. This loop is, therefore, nested. The value
of i +1 is then printed. Also, note that after the inner loop ends, a new line is
printed using the print() function.

Program:

>>>

n = input('Enter the number of rows')

m = int(n)

k=1

for i in range(m):

 	for j in range(1, i+2):

 		 print(i+1, end=" ")

	 print()

Output:

Enter the number of rows5

1

2 2

PPUPS.CH05_1pp.indd 109PPUPS.CH05_1pp.indd 109 4/26/2023 4:10:14 PM4/26/2023 4:10:14 PM

110 • Python Programming Using Problem Solving

3 3 3

4 4 4 4

5 5 5 5 5

Illustration 5.7:

Ask the user to enter the number of rows and write a program to generate the
following pattern in Python.

1

1 2

1 2 3

1 2 3 4

Solution:

The number of rows, entered by the user, would determine the value of i (from
0 to n). The value of i denote the row number. In each row, the number of
elements is equal to the row number. The values of j, in each iteration, denote
the number of elements in each row. This loop is, therefore, nested. The value
of j + 1 is then printed. Also, note that after the inner loop ends, a new line is
printed using the print() function.

Program:

>>>

n = input('Enter the number of rows')

m = int(n)

k=1

for i in range(m):

 	 for j in range(1, i+2):

 		 print(j+1, end=" ")

 		 print()

Output:
Enter the number of rows5

2

2 3

2 3 4

2 3 4 5

2 3 4 5 6

PPUPS.CH05_1pp.indd 110PPUPS.CH05_1pp.indd 110 4/26/2023 4:10:14 PM4/26/2023 4:10:14 PM

Looping • 111

Illustration 5.8:

Ask the user to enter the number of rows and write a program to generate the
following pattern in Python.

1

2 3

4 5 6

7 8 9 10

Solution:

The value of i denote the row number in the following program. In each
row, the number of elements is equal to the row number. The values of i, in
each iteration, would denote the number of elements in each row. This loop
is, therefore, nested. The value of k is then printed, which starts from 1 and
increments in each iteration. Also, note that after the inner loop ends, a new
line is printed using the print() function.

Program:

>>>

n = input('Enter the number of rows')

m = int(n)

k=1

for i in range(m):

 for j in range(1, i+2):

 print(k, end=" ")

 k=k+1

 print()

Output:
Enter the number of rows7

1

2 3

4 5 6

7 8 9 10

11 12 13 14 15

16 17 18 19 20 21

22 23 24 25 26 27 28

PPUPS.CH05_1pp.indd 111PPUPS.CH05_1pp.indd 111 4/26/2023 4:10:14 PM4/26/2023 4:10:14 PM

112 • Python Programming Using Problem Solving

Illustration 5.9:

Ask the user to enter the number of rows and write a program to generate the
following pattern in Python.

 *

Solution:

The value of i denotes the row number in the following program. In each row,
the number of stars is equal to the row number. The values of k, in each itera-
tion, denote the number of stars in each row, which ranges from 0 to (2∗i +1).
This loop is, therefore, nested. The leading spaces are governed by the value
of j, which ranges from 0 to (m - i -1). This is because if the value of i is 0, the
number of spaces should be 4 (if the value of n is 5). In case the value of i is
1, the number of spaces should be 3 and so on. Also, note that after the inner
loop ends, a new line is printed using the print() function.

Program:

.n = input('Enter the number of rows')

m = int(n)

for i in range(m):

 for j in range(0, (m-i-1)):

 print(' ', end="")

 for k in range(0, 2*i+1):

 print('*',end="")

 print()

Output:

Enter the number of rows6

 *

PPUPS.CH05_1pp.indd 112PPUPS.CH05_1pp.indd 112 4/26/2023 4:10:14 PM4/26/2023 4:10:14 PM

Looping • 113

5.4	 NESTING AND APPLICATIONS OF LOOPS IN LISTS

Nested loops can be used to generate matrices. In order to do this, the inner
loop is designed to govern the rows and the outer to govern each element of
a particular row. The following Illustration shows the generation of a matrix
having ith element given by the following formula.

ai , j=2 × (i + j)2

Note that in the following illustration, two loops have been used. The
outer loop runs n times, where n is the number of rows, and the inner loop
runs m times, where m is the number of columns. The number of columns
can be perceived as the number of elements in each row.

The inner loop has one statement, which calculates the element. At the
end of each iteration (of the outer loop), a new line is printed using the print()
function.

Illustration 5.10:

Generate a n × m, matrix, wherein each element (aij), is given by

ai, j=2 × (i + j)2

Program:

n = int(input('Enter the number of rows'))

m = int(input('Enter the number of columns'))

for i in range (n):

 for j in range(m):

 element = 5*(i+j)*(i+j)

 print(element, sep=' ', end= ' ')

print()

Output:

Enter the number of rows3

Enter the number of columns3

0 5 20

5 20 45

20 45 80

PPUPS.CH05_1pp.indd 113PPUPS.CH05_1pp.indd 113 4/26/2023 4:10:14 PM4/26/2023 4:10:14 PM

114 • Python Programming Using Problem Solving

It may be noted that in the following chapters, this nesting is used to deal with
most of the operations of matrices. As a matter of fact, addition and subtrac-
tion of two matrices requires two levels of nesting, whereas multiplication of
two matrices requires three levels of nesting.

Illustration 5.11:

Handling list of lists: Note that in the following code the first list’s second
element is itself a list. It’s first element can be accessed by writing hb[0][1]
and the first letter of the first element of the nested list would be hb[0][1][0].

Program:
hb=["Programming in C#",["Oxford University Press", 2015]]

rm=["SE is everything",["Obscure Publishers", 2015]]

authors=[hb, rm]

print(authors)

print("List:\n"+str(authors[0])+"\n"+str(authors[1])+"\n")

print("Name of books\n"+str(authors[0][0])+"\n"+str(authors[1]
[0])+"\n")

print("Details of the books\n"+str(authors[0][1])+"\n"+str(au-
thors[1][1])+"\n")

print("\nLevel 3 Publisher 1\t:"+str(authors[0][1][0]))

Output:

[['Programming in C#', ['Oxford University Press', 2015]], ['SE
is everything', ['Obscure Publishers', 2015]]]

List:

['Programming in C#', ['Oxford University Press', 2015]]

['SE is everything', ['Obscure Publishers', 2015]]

Name of books

Programming in C#

SE is everything

Details of the books

['Oxford University Press', 2015]

['Obscure Publishers', 2015]

Level 3 Publisher 1	 :Oxford University Press

The following two Illustrations handle the list of lists using nested loops.
Kindly note the output and the corresponding mappings.

PPUPS.CH05_1pp.indd 114PPUPS.CH05_1pp.indd 114 4/26/2023 4:10:14 PM4/26/2023 4:10:14 PM

Looping • 115

Illustration 5.12:

Handling list of lists using loops: The elements of nested lists can also be
dealt with using nested loops as shown in this illustration.

Program:

hb=["Programming in C#",["Oxford University Press", 2015]]

rm=["SE is everything",["Obscure Publishers", 2015]]

authors=[hb, rm]

print(authors)

for i in range(len(authors)):

 for j in range(len(authors[i])):

 print(str(i)+" "+str(j)+" "+str(authors[i][j])+"\n")

 print()

Output:
[['Programming in C#', ['Oxford University Press', 2015]], ['SE

is everything', ['Obscure Publishers', 2015]]]

0 0 Programming in C#

0 1 ['Oxford University Press', 2015]

1 0 SE is everything

1 1 ['Obscure Publishers', 2015]

Illustration 5.13:

Processing nested lists: Another Illustration of the use of loops in process-
ing nested lists. The user is expected to observe the output and comprehend it.

Program:

hb=["Programming in C#",["Oxford University Press", 2015]]

rm=["SE is everything",["Obscure Publishers", 2015]]

authors=[hb, rm]

print(authors)

for i in range(len(authors)):

 for j in range(len(authors[i])):

 for k in range(len(authors[i][j])):

PPUPS.CH05_1pp.indd 115PPUPS.CH05_1pp.indd 115 4/26/2023 4:10:14 PM4/26/2023 4:10:14 PM

116 • Python Programming Using Problem Solving

 print(str(i)+" "+str(j)+" "+str(k)+" "+str(authors[i][j]
[k])+"\n")

print()

Output:

RUN  C:/Users/ACER  ASPIRE/AppData/Local/Programs/Python/
Python35-32/Tools/scripts/listfor.py

[['Programming in C#', ['Oxford University Press', 2015]], ['SE
is everything', ['Obscure Publishers', 2015]]]

0 0 0 P

0 0 1 r

0 0 2 o

0 0 3 g

0 0 4 r

0 0 5 a

0 0 6 m

0 0 7 m

0 0 8 i

0 0 9 n

0 0 10 g

0 0 11

0 0 12 i

0 0 13 n

0 0 14

0 0 15 C

0 0 16 #

0 1 0 Oxford University Press

0 1 1 2015

1 0 0 S

1 0 1 E

1 0 2

1 0 3 i

1 0 4 s

1 0 5

1 0 6 e

1 0 7 v

1 0 8 e

PPUPS.CH05_1pp.indd 116PPUPS.CH05_1pp.indd 116 4/26/2023 4:10:14 PM4/26/2023 4:10:14 PM

Looping • 117

1 0 9 r

1 0 10 y

1 0 11 t

1 0 12 h

1 0 13 i

1 0 14 n

1 0 15 g

1 1 0 Obscure Publishers

1 1 1 2015

5.5	 CONCLUSION

Repeating a task is an immensely important job. This is needed, in various sit-
uations, to accomplish different tasks. This chapter introduced the two most
important looping constructs in Python and demonstrated the use of looping
constructs by taking simple examples. Having a loop within a loop is called
nesting. The nesting of loops has been explained using patterns and a list of
lists. The following chapters briefly revisit one of the constructs and com-
pare the use of iterators and generators. The reader is expected to solve the
problems at the chapter’s end for better understanding. It may be stated that,
Python provides us with other constructs which would greatly simplify pro-
gram writing. As of now, try various permutations and combinations, observe
the outputs and learn.

GLOSSARY

1.	 Looping means repeating a task, a certain number of times.

2.	 Syntax of for loop

		 for i in range(n):

				 ...

				 ...

	 OR

		 for i in range(n, m):

				 ...

				 ...

	 OR

PPUPS.CH05_1pp.indd 117PPUPS.CH05_1pp.indd 117 4/26/2023 4:10:14 PM4/26/2023 4:10:14 PM

118 • Python Programming Using Problem Solving

		 for i in range (_, _,...)

				 ...

				 ...

				 ...

3.	 Syntax of while loop

		 while <test condition>:

				 ...

POINTS TO REMEMBER

�� Looping in Python can be implemented using while and for.
�� “while” is the most common looping construct in Python.
�� The statements in the while block execute till the test condition remains true.
�� The else part executes if the loop ends without a break.
�� “for” can be used for all the purposes for which a “while” is used.
�� “for” is generally used for processing lists, tuples, matrices etc.
�� range (n) means values from 0 to (n-1).
�� range (m, n) means all the values from m to (n-1).
�� A loop can be nested in a loop.
�� There can be any number of nestings, though this is undesirable.

EXERCISES

Multiple Choice Questions

1.	 What will be the output of the following?

		 a=8

		 i=1

		 while a:

		 print(a)

		 i=i+1

		 a=a-i

		 print(i)

	 (a)  8, 6, 3			 (b)  8, 6, 3, -1

	 (c)  8, 6, 3, -1, ...		 (d)  None of the above

PPUPS.CH05_1pp.indd 118PPUPS.CH05_1pp.indd 118 4/26/2023 4:10:14 PM4/26/2023 4:10:14 PM

Looping • 119

2.	 a=8

		 i=1

		 while a:

		 print(a)

		 i=i+1

		 a=a/2

		 print(i)
	 (a)  8, 4, 2, 1		 (b)  8, 4, 2, 1, 0

	 (c)  8, 4, 2, 1, 0.5		 (d)  Infinite loop

3.	 How many times the following loop executes?

		 n = int(input('Enter number'))

		 i = n

		 while (i>0):

		 print(n)

		 i=i+1

		 n = int(n/2)

		 print(i)

		 #The value of n entered by the user is 10

	 (a)  4			 (b)  5

	 (c)  Infinite			 (d)  The code will not compile

4.	 Which loop can be used when the number of iterations are not known?

	 (a)  while			 (b)  for

	 (c)  both			 (d)  None of the above

5.	 How many levels of nesting are possible in for?

	 (a)  2			 (b)  3

	 (c)  Both			 (d)  The code will not compile

6.	 n = int(input('Enter number'))

	 for i in (0,7):

	 print('i is '+str(i))

	 i = i+1;

	 else:

	 print('bye')

PPUPS.CH05_1pp.indd 119PPUPS.CH05_1pp.indd 119 4/26/2023 4:10:14 PM4/26/2023 4:10:14 PM

120 • Python Programming Using Problem Solving

How many values would be printed?

	 (a)  2			 (b)  3

	 (c)  6			 (d)  None of the above

7.	 n = int(input('Enter number'))

		 for i in range(n, 1, -1):

		 for j in range(i):

		 print(i, j)

		 #value entered by the user is 5

	 (a)  (5, 0), (5, 1), ...(2, 1)	 (b)  (5, 1), (5,2),...(2, 0)

	 (c)  (0,1), (0,2), ...(5, 2)	 (d)  None of the above

8.	 In order to print the elements of a given matrix which of the following is
essential?

	 (a)  Nested loops 		 (b)  Single loop

	 (c)  if-else			 (d)  None of the above

9.	 What is meant by range (5)?

	 (a)  Integers from 0 to 4	 (b)  Integers from 0 to 5

	 (c)  Integers from 1 to 4	 (d)  Integers from 1 to 5

10.	 What is meant by range (3, 8)?

	 (a)  3, 4, 5, 6, 7, 8		 (b)  3, 4, 5, 6, 7

	 (c)  1, 2, 4, 5, 6, 7, 8		 (d)  8, 8, 8

Programming Exercises

1.	 Ask the user to enter a number and find whether it is a prime number.

2.	 Ask the user to enter a number and find all its factors.

Example: If number = 30, then factors are 2, 3, and 5.

3.	 Find whether the number entered by the user is a perfect square?

4.	 Ask the user to enter two numbers and find the lowest common multiple.

Example: If numbers are 30 and 20, then LCM is 60, as both 20 and 30
are factors of 60

PPUPS.CH05_1pp.indd 120PPUPS.CH05_1pp.indd 120 6/15/2023 2:11:32 PM6/15/2023 2:11:32 PM

Looping • 121

5.	 Ask the user to enter two numbers and find the highest common factor.

Example: If numbers are 30 and 20, the HCF is 10

6.	 Find the mean of numbers entered by the user.

1 2 3
Mean nx x x x

n
+ + + +

=


7.	 Find the variance and standard deviation of the numbers entered by the
user.

8.	 Ask the user to enter the values of a and b and find aba
.

9.	 Find the common factor of n numbers entered by a user.

10.	 Ask the user to enter three numbers and find all possible permutations of
the numbers.

11.	 In the above question, what happens if we have four numbers in place of
three?

12.	 Can the above logic be extended for n numbers?

13.	 Ask the user to enter n numbers and find the minimum of the numbers
without using arrays.

14.	 Ask the user to enter n numbers and find the maximum of the numbers
without using arrays.

15.	 Create a list of authors, in which the record of each author is itself a list
consisting of the name of the book, publisher, year of publication, ISSN,
and the city. Now process the list using for loop.

PPUPS.CH05_1pp.indd 121PPUPS.CH05_1pp.indd 121 4/26/2023 4:10:15 PM4/26/2023 4:10:15 PM

PPUPS.CH05_1pp.indd 122PPUPS.CH05_1pp.indd 122 4/26/2023 4:10:15 PM4/26/2023 4:10:15 PM

Objectives

After reading this chapter, the reader should be able to

�� Appreciate the importance of modular programming
�� Understand the components and types of functions
�� Implement Linear Search using functions
�� Understand the concept of scope of a variable
�� Understand and use recursion

6.1	 INTRODUCTION

If one has to perform a bigger task, then it is advisable to divide it into smaller,
manageable tasks. This division has many advantages, discussed in the fol-
lowing sections. The units of program, which can be called on as it is basis,
take some input, process it and may generate some output are referred to as
functions.

Functions are units which perform a particular task, take some input and
may give some output.

This concept is the soul of procedural programming. The readers familiar with C
(or for that matter C++, JAVA, C#, etc.) must be familiar with the idea and
use of functions. However, a brief discussion on the features and advantages
of functions follows in the next section.

C H A P T E R 6
Functions

PPUPS.CH06_2pp.indd 123PPUPS.CH06_2pp.indd 123 5/18/2023 10:51:04 AM5/18/2023 10:51:04 AM

124 • Python Programming Using Problem Solving

This chapter introduces the concept of functions. The chapter has been organized
as follows. The next section briefly explains the features of a function; the third sec-
tion explains the basic terminology, and the fourth section explains the definition and
invocation of a function. The fifth section presents a brief discussion on various types
of functions. The sixth section illustrates the concept by taking the example of linear
search. The seventh section discusses the scope of a variable, and the eighth section
presents recursion. The last section concludes.

6.2	 FEATURES OF A FUNCTION

As discussed earlier, functions form the basis of procedural programming.
One of the most obvious advantages of using functions is the division of a
program into smaller parts. This section briefly discusses the advantages of
functions.

6.2.1  Modular Programming

A good program is divided into small parts, in such a way that a particular part
perform some specific task. The clubbing together of similar functions gives
rise to modular programming.

6.2.2  Reusability of Code

A function can be called many times. This spares the programmer from the
horror of rewriting the same code again, which in turn can reduce the length
of the program.

6.2.3  Manageability

Dividing a bigger task into smaller functions makes the program manage-
able. It becomes easy to locate bugs and leads to increased reliability. Also,
it becomes easy to carry out local optimizations in a function. To summarize,
manageability leads to the following.

6.2.3.1  Easy debugging

In order to understand why creating functions would make debugging easy,
let us consider White Box Testing. This type of testing, which uses code for
testing, requires elicitation of paths and crafting test cases catering to them.
It is easy to effectively analyse smaller functions rather than the whole task.

PPUPS.CH06_2pp.indd 124PPUPS.CH06_2pp.indd 124 5/18/2023 10:51:04 AM5/18/2023 10:51:04 AM

Functions • 125

6.2.3.2  Efficient

It is essential to make code efficient both in terms of time and memory. As a
matter of fact, even in C’s compiler, most of the code optimization is attrib-
uted to the developer rather than the compiler.

The above factors point to the fact that dividing the task into functions is a
good practice. It may be noted here that even Object-Oriented Programming
relies on functions for implementing the behavior of a class.

6.3	 BASIC TERMINOLOGY

The importance of functions in procedural programming has already been
discussed in the previous section. This section briefly introduces the termi-
nology of functions and presents the syntax, which would form the foundation
stone of the discussion that follows.

6.3.1  Name of a Function

Function can have any legal literal name. For example, sum1 is a valid func-
tion name, as it satisfies all the constrains on the name (also discussed in
Section 6.4). It may be stated here that in general a class can have more than
one functions having same name but different parameters. This is referred to
as overloading.

6.3.2  Arguments

The arguments of a function denote the input given to a function. A function
can have any number of arguments. As a matter of fact, it is possible that a
function may not have any argument.

6.3.3  Return Value

A function may or may not return a value. The beauty of Python lies in not
specifying the return type and hence using the same functions for returning
various data types.

In Python, a function can be made in the command prompt. This implies
that unlike C (or for that matter C++, JAVA, or C#) a function need not be
a part of a program. Moreover, the return type, as described in this section,
need not to be mentioned. This inculcates flexibility in the procedures.

PPUPS.CH06_2pp.indd 125PPUPS.CH06_2pp.indd 125 5/18/2023 10:51:04 AM5/18/2023 10:51:04 AM

126 • Python Programming Using Problem Solving

6.4	 DEFINITION AND INVOCATION

This section discusses how to define a function and call a function that has
already been defined. The definition of a function depicts the behavior. The
task to be performed by the function is contained in its definition. In the
discussion that follows, the components of a function have been explained in
detail.

The invocation of a function means calling a function. As is explained in
Section 6.8: a function can also be called within itself. This is referred to as
recursion.

It may also be noted that a function is defined only once. However, it can
be called any number of times.

FIGURE 6.1  Example of a function.

The definition of a function contains the following:

Name of a function: The name of a function should be any valid identifier.
The name of a function should be meaningful and if possible, convey the task
to be performed by the function.

Parameter: The list of parameters (separated by commas) is given in
the parenthesis following the name of the function. The parameters are
basically the input to the function. A function may have any number of
parameters.

Body of the function: The body of the function contains the code that
implements the task to be performed by the function.

PPUPS.CH06_2pp.indd 126PPUPS.CH06_2pp.indd 126 5/18/2023 10:51:04 AM5/18/2023 10:51:04 AM

Functions • 127

Figure 6.1 shows the name of the function (fun), the list of parameters in
the parenthesis following the name of the function (in this case there are no
parameters), and the body of the function.

It may also be noted that the closing parenthesis containing the param-
eters is followed by a colon. The body of a function starts with a proper
indentation.

The invocation of a function can be at any place after the definition. However,
exceptions to this premise are found in the case of recursion.

The syntax of a function is depicted in Figure 6.2.

Syntax:

def <name of the function>(list

of parameters):

<body>

FIGURE 6.2  Syntax of a function.

6.4.1  Working

Consider a function which multiplies two numbers passed as parameters.

def product(num1, num2):

 prod= num1*num2

 print('The product of the numbers is \t:'+str(prod))

The name of this function is product. It takes two arguments as input
(num1 and num2), calculates the product, and displays the results.

The function can be invoked as follows.

num1=int(input('Enter the first number\t:'))

num2=int(input('Enter the second number\t:'))

print('Calling the function...')

product(num1, num2)

print('Back to the calling function');

Here, calling product shifts the control to the function, inside which the
product is calculated and the result is displayed. The control then comes back
to the calling function (Figure 6.3).

PPUPS.CH06_2pp.indd 127PPUPS.CH06_2pp.indd 127 5/18/2023 10:51:04 AM5/18/2023 10:51:04 AM

128 • Python Programming Using Problem Solving

The control goes to the
definition of a function
when it is invoked

The control comes back
to the calling module after
the function is over

def product(num1, num2)

prod= num1*num2

print('The product of the
number is /t:'+ str(prod))

num 1=int(input('Enter the first number\t:'))

num2=int(input('Enter the second number\t:'))

print('Calling the function...')

product(num1, num2)

print('Back to the calling function'):

FIGURE 6.3  Calling a function.

A function can be called any number of times. The following example shows
a function which does not take any input and does not return anything. The
function called, just prints the lines of Ecclesiastes. The following listing
shows the function and the output of the program follows.

Illustration  6.1:

Basic Function

Listing:

def Ecclesiastes_3():

 �print('To everything there is a season\nA time for every
purpose under Heaven')

 �print('A time to be born\nand a time to die\nA time to
plant\nand a time to reap')

 �print('A time to kill\nand a time to heal\nA time to break
down\nand a time to build up')

 �print('A time to cast away stones\nand a time to gather
stones\nA time to embrace\nand a time to refrain')

 �print('A time to gain\nand a time to lose\nA time to keep\
nand a time to cast away')

 �print('A time of love\nand a time of hate\nA time of war\
nand a time of peace')

print('Calling function\n')

Ecclesiastes_3()

PPUPS.CH06_2pp.indd 128PPUPS.CH06_2pp.indd 128 5/18/2023 10:51:04 AM5/18/2023 10:51:04 AM

Functions • 129

print('Calling function again\n')

Ecclesiastes_3()

>>>

Output:

Calling function

To everything there is a season

A time for every purpose under Heaven

A time to be born

and a time to die

A time to plant

and a time to reap

A time to kill

and a time to heal

A time to break down

and a time to build up

A time to cast away stones

and a time to gather stones

A time to embrace

and a time to refrain

A time to gain

and a time to lose

A time to keep

and a time to cast away

A time of love

and a time of hate

A time of war

and a time of peace

6.5	 TYPES OF FUNCTION

Based on the parameters and the return type, functions can be divided into
the following categories. The first type of function does not take any param-
eter nor returns anything. The program given in Illustration 6.2 examples one
such function.

PPUPS.CH06_2pp.indd 129PPUPS.CH06_2pp.indd 129 5/18/2023 10:51:04 AM5/18/2023 10:51:04 AM

130 • Python Programming Using Problem Solving

The second type of function takes parameter but do not return anything.
The second function in Illustration 6.2, exemplifies such function. The third
type of function takes parameters and returns output. The example that fol-
lows, adds two numbers using functions. The task has been accomplished in
three different ways, in the first function (sum1) the input is taken inside
the function and the result is displayed using a print statement, which is also
present inside the function.

The second function takes the two numbers as input (via parameters),
adds then, and prints the result inside the function itself. The third function
(sum3) takes two parameters and returns the sum.

Illustration 6.2:

Write a program to add two numbers, using functions. Craft three functions,
one which does not take any parameters and does not return anything. The
second function should take parameters and not return anything. The third
function should take two numbers as parameters and should return the sum.

Program:

def sum1():

 num1=int(input('Enter the first number\t:'))

 num2=int(input('Enter the second number\t:'))

 sum= num1+num2

 print('The sum of the numbers is \t:'+str(sum))

def sum2(num1, num2):

 sum= num1+num2

 print('The sum of the numbers is \t:'+str(sum))

def sum3(num1, num2):

 sum= num1+num2

 return(sum)

print('Calling the first function...')

sum1()

num1=int(input('Enter the first number\t:'))

num2=int(input('Enter the second number\t:'))

print('Calling the second function...')

sum2(num1, num2)

print('Calling the third function...')

PPUPS.CH06_2pp.indd 130PPUPS.CH06_2pp.indd 130 5/18/2023 10:51:04 AM5/18/2023 10:51:04 AM

Functions • 131

result=sum3(num1, num2)

print(result)

Output:

RUN  C:/Users/ACER  ASPIRE/AppData/Local/Programs/Python/
Python35-32/Tools/scripts/sum_of_numbers.py

Calling the first function...

Enter the first number	 :3

Enter the second number	 :4

The sum of the numbers is 	:7

Enter the first number	 :2

Enter the second number	 :1

Calling the second function...

The sum of the numbers is 	:3

Calling the third function...

3

6.5.1  Arguments: Types of Arguments

In Python, unlike C, while defining a function, the types of arguments are not
specified. This has the advantage of giving different types of arguments to the
same function. For example, in the function that follows, the first invocation
passes an integer value in the function. The function adds the two numbers.
In the case of the second invocation, the addition operator concatenates the
strings, passed as a parameters.

Illustration  6.3:

Arguments

Listing 1:

def sum1(num1, num2):

 return (num1+num2)

 sum1(3,2)

 sum1('hi', 'there')

Output:

5

'hithere'

PPUPS.CH06_2pp.indd 131PPUPS.CH06_2pp.indd 131 5/18/2023 10:51:04 AM5/18/2023 10:51:04 AM

132 • Python Programming Using Problem Solving

Listing 2:

def sum1(num1, num2):

 return (num1+num2)

print('Calling function with integer arguments\t: Result:
'+str(sum1(2,3)))

print('Calling the function with string arguments\t: Result:
'+sum1('this',' world'))

Output:

Calling function with integer arguments		 :Result: 5

Calling the function with string arguments	 :Result: this world

6.6	 IMPLEMENTING SEARCH

This section demonstrates one of the most important use of the topics discussed
so far: Searching. In the search problem, if the element is present in a given
list, then its position should be printed, otherwise the message “Not Found”
should be displayed. There are two major strategies to accomplish this task.
They are linear search and binary search. In linear search, the elements are
iterated one by one. If the required element is found, the position of the ele-
ment is printed. The absence of an element can be judged using a flag.

The algorithm has been implemented in Illustration 6.4.

Illustration  6.4:

Write a program to implement linear search.

Solution:

Code:
def search(L, item):

 flag=0

 for i in L:

 if i==item:

 flag=1

 print('Position ',i)

 if flag==0:

 print('Not found')

L =[1, 2, 5, 9, 10]

search(L, 5)

search(L, 3)

PPUPS.CH06_2pp.indd 132PPUPS.CH06_2pp.indd 132 5/18/2023 10:51:04 AM5/18/2023 10:51:04 AM

Functions • 133

Output:

 Position 5

Not found

The above search strategy works well. However, the complexity of this
algorithm is O(n). There is another strategy of search called binary search. In
binary search, the input list must be sorted. The algorithm checks whether
the item to be searched is present at the first position, the last position, or
at the middle position. If the requisite element is not present at any of these
positions and it is less than the middle element, then the left part of the list
becomes the input of the procedure; else the right part of the list becomes
the input to the procedure. The reader is advised to implement binary search.
The complexity of binary search is O (log n).

6.7	 SCOPE

The scope of a variable in Python, is the part of the program wherein its value
is legal or valid. It may be stated here that, though, Python allows global vari-
able, the value of a local variable must be assigned before being referred.
Illustration 6.5 exemplifies the concept. The illustration has three listings. In
the first listing the value of “a” has been assigned outside the function as well
as inside the function. This leads to problem as a variable cannot be refer-
enced before being assigned.

In the second case this contention is resolved. Finally, the last listing
shows that global variables are very much allowed in Python, for some strange
reason. As an active programmer, I firmly believe that should not have been
allowed and there are multiple reasons of not allowing global variables in a
programming language.

Illustration  6.5:

Scope of a variable

Listing 1:

Code:
Note that a = 1 does not hold when function is called

a = 1

def fun1():

 print(a)

PPUPS.CH06_2pp.indd 133PPUPS.CH06_2pp.indd 133 5/18/2023 10:51:04 AM5/18/2023 10:51:04 AM

134 • Python Programming Using Problem Solving

 a=7

 print(a)

def fun2():

 print(a)

 a=3

 print(a)

fun1()

fun2()

Output:

Traceback (most recent call last):

 File "C:/Python/Functions/scope.py", line 12, in <module>

 fun1()

 File "C:/Python/Functions/scope.py", line 3, in fun1

 print(a)

UnboundLocalError: local variable 'a' referenced before
assignment

Listing 2:

Code:
a = 1

def fun1():

 a=1

 print(a)

 a=7

 print(a)

def fun2():

 a=1

 print(a)

 a=3

 print(a)

fun1()

fun2()

PPUPS.CH06_2pp.indd 134PPUPS.CH06_2pp.indd 134 5/18/2023 10:51:04 AM5/18/2023 10:51:04 AM

Functions • 135

Output:

1

7

1

3

Also, note that had 'a' been not assigned in the functions, the
global value would have sufficed.

Listing 3:

Code:
a = 1

def fun1():

 print(a)

 def fun2():

 print(a)

fun1()

fun2()

Output:

1

1

6.8	 RECURSION

A function can also be called within itself. Calling a function in itself is referred
to as recursion. The concept is used to accomplish many tasks easily and intui-
tively. For example, consider the following series:

	 1, 1, 2, 3, 5, 8, 13, ...

Note that each term of this series is the sum of the previous two terms, the
first and the second term being 1 and 1, respectively. This series is referred to
as Fibonacci series. The series is due to the famous rabbit problem, which has
been described as follows.

6.8.1  Rabbit Problem

Initially, there is a single pair of rabbits. This pair of rabbits do not breed for
the first two months, after which they generate a pair of rabbits every month.

PPUPS.CH06_2pp.indd 135PPUPS.CH06_2pp.indd 135 5/18/2023 10:51:04 AM5/18/2023 10:51:04 AM

136 • Python Programming Using Problem Solving

This way, there is a single pair of rabbit for the first two months, after which
the series become 2, 3, 5, 8, 13, and so on. The formation of the series is
depicted in Table 6.1. R0 refers to the first pair, R01 refers to the pair gener-
ated from R0, in the third month. Likewise, R02 is the pair generated from
R0 in the fourth month.

TABLE 6.1  Fibonacci series.

Month Pair of rabbits Number of pair

1 R0 1

2 R0 1

3 R0 -> R01 2

4 R0 -> R01, R02	 3

5 R0 -> R01 (->R010), R02, R03 5

6 R0 -> R01 (->R010, R011), R02 (->R020),
R03, R04

8

Note that in the above series, each term is the sum of the preceding two
terms. The series can be mathematically represented as follows.

()
1, for 1
1, for 2
fib(

fib
1) fib(n 2)

n

n

n

n

=
=



− −
=

+






Illustration 6.6 depicts the implementation of Fibonacci series, using
recursion.

Illustration 6.6:

Ask the user to enter the value of n and find the nth Fibonacci term.

Solution:

Code:
def fib(n):

	 if n==1:

		 return 1

	 elif n==2:

PPUPS.CH06_2pp.indd 136PPUPS.CH06_2pp.indd 136 5/18/2023 10:51:05 AM5/18/2023 10:51:05 AM

Functions • 137

		 return 1

	 else

		 return (fib(n-1) + fib(n-2))

n=input('Enter the number\t:')

f=fib(n)

print('The nth fib term is ',str(f))

Output:

Enter the number	 :5

The nth fib term is 5

Note that the calculation of Fibonacci uses the Fibonacci term calculated
earlier. For example, the calculation of the 5th Fibonacci term requires the
following calculations. fib(5) requires fib(4) and fib(3); fib(4) requires fib(3)
and fib(2) and fib(3) requires fib(2) and fib(1) (Figure 6.4).

FIGURE 6.4  Calculation of the fifth Fibonacci term.

The next example calculates the factorial of a number using recursion.
The factorial of a number n (positive and integer) is the product of all the
integers from 1 to n. That is

n! = 1 × 2 × 3 ×… × n

Note that since (n – 1) ! = 1 × 2 × 3 ×… × (n – 1)

Therefore, n! = n × (n – 1) !

Also factorial of 1 is 1, that is 1! = 1, which can be used as the base case while
implementing factorial using recursion. The program has been depicted in
Illustration 6.7.

PPUPS.CH06_2pp.indd 137PPUPS.CH06_2pp.indd 137 5/18/2023 10:51:05 AM5/18/2023 10:51:05 AM

138 • Python Programming Using Problem Solving

Illustration 6.7:

Ask the user to enter the value of n and calculate the factorial of n.

Solution:

Code:
def fac(n):

 if n==1:

 return 1;

 else:

 return(n*fac(n-1))

n = int(input('Enter the number\t:'))

factorial = fac(n)

print('Factorial of ',n, ' is ', factorial)

Output:

Enter the number	 :5

Factorial of 5 is 120

The power of a number raised to another number can also be calculated using
recursion. Since ab = a × ab – 1 that is power(a, b) = a∗power(a, b - 1). Also,
a1 = a that is, power(a, 1) = 1. The above logic has been implemented in the
illustration that follows.

Illustration 6.8:

Ask the user to enter the values of a and b and calculate a to the power of b,
using recursion.

Program:

Code:
def power(a , b):

 if b==1:

 return a

 else:

 return (a*power(a, b-1))

a = int(input('Enter the first number\t:'))

b = int(input('Enter the second number\t:'))

p = power(a,b)

print(a, ' to the power of ',b,' is ', p)

PPUPS.CH06_2pp.indd 138PPUPS.CH06_2pp.indd 138 5/18/2023 10:51:05 AM5/18/2023 10:51:05 AM

Functions • 139

Output:

Enter the first number	 :3

Enter the second number	 :4

3 to the power of 4 is 81

6.8.2  Disadvantages of Using Recursion

In spite of the fact that recursion makes things easy and helps to accomplish
some of the tasks intuitively, there is a flip side. Consider the first illustra-
tion. Though, the program calculates the nth Fibonacci term, the complex-
ity of the procedure is too high (O(φn), where Φ is gold number). The same
task can be accomplished in linear time using a paradigm called dynamic
programming.

Similarly, the recursive procedures in Divide and Conquer also require
huge time. In addition to the above problem, there is another flip side.
Recursion requires a lot of memory. Though, a portion of the memory
is reserved for stacks, a recursive procedure may eat up all the available
memory.

6.9	 CONCLUSION

This chapter introduced the concept of functions. The idea of dividing the
given program into various parts is central to manageability. The chapter
forms the foundation stone of the chapters that follow. It may also be stated
that functions implement the behavior of a class; therefore, before moving
to the Object-Oriented Paradigms, one must be familiar with functions and
procedures.

The concept of recursion is also central to the implementations, which involve
the ideas of Divide and Conquer and that of Dynamic Programming. So, one
must also be equipped with the power of recursion and should be able to use
the concept to solve problems, if possible.

GLOSSARY

�� Function: Functions accomplish a particular task. They help in making a
program manageable.

�� Argument: Arguments are the values passed in a function.
�� Recursion: A function may call itself. It is referred to as recursion.

PPUPS.CH06_2pp.indd 139PPUPS.CH06_2pp.indd 139 5/18/2023 10:51:05 AM5/18/2023 10:51:05 AM

140 • Python Programming Using Problem Solving

POINTS TO REMEMBER

�� A function can have any number of arguments.
�� A function may return a maximum of one value.
�� A function may not even return a value.
�� A function may call itself.
�� A function can be called any number of times.

EXERCISES

Multiple Choice Questions

1.	 Which of the following keyword is used to define a function?

	 (a)  Def 			 (b)  Define

	 (c)  Definition 		 (d)  None of the above

2.	 The values passed in a function are called

	 (a)  Arguments		 (b)  Return values

	 (c)  Yield			 (d)  None of the above

3.	 A recursive function is one that calls

	 (a)  Itself			 (b)  Other function

	 (c)  The main function 	 (d)  None of the above

4.	 Which of the following should be present in a recursive function?

	 (a)  Initial values 		 (b)  Final values

	 (c)  Both 			 (d)  None of the above

5.	 Which of the following can be accomplished using recursion?

	 (a)  Binary search		 (b)  Fibonacci series

	 (c)  Power			 (d)  All of the above

6.	 Which of the following is allowed in a function?

	 (a)  If			 (b)  While

	 (c)  Calling a function 	 (d)  None of the above

PPUPS.CH06_2pp.indd 140PPUPS.CH06_2pp.indd 140 5/18/2023 10:51:06 AM5/18/2023 10:51:06 AM

Functions • 141

7.	 Which types of functions are supported in Python?

	 (a)  Build in		 (b)  User defined

	 (c)  Both			 (d)  None of the above

8.	 Which of the following is true?

	 (a)	 A function helps in dividing a program in small parts

	 (b)	 A function can be called any number of times

	 (c)	 Both

	 (d)	 None of the above

9.	 Which of the following is true?

	 (a)	 One can have a function that called any number of functions

	 (b)	 Only a limited number of functions can be called from a function

	 (c)	 Nested functions are not allowed in Python

	 (d)	 Nested functions are allowed only in certain conditions

10.	 Nested functions incorporates the concept of

	 (a)  Stack 			 (b)  Queue

	 (c)  Linked List		 (d)  None of the above

Programming Exercises

1.	 Write a function that calculates the mean of numbers entered by the user.

2.	 Write a function that calculates the mode of numbers entered by the user.

3.	 Write a function that calculates the median of numbers entered by the
user.

4.	 Write a function that calculates the standard deviation of the numbers
entered by a user.

5.	 Write a function that finds the maximum of the numbers from a given list.

6.	 Write a function that finds the minimum of the numbers from a given list.

PPUPS.CH06_2pp.indd 141PPUPS.CH06_2pp.indd 141 6/15/2023 2:36:57 PM6/15/2023 2:36:57 PM

142 • Python Programming Using Problem Solving

7.	 Write a function that finds the second maximum of the numbers from a
given list.

8.	 Write a function that finds the maximum of three numbers entered by
the user.

9.	 Write a function that converts the temperature in Celsius to that in Fahr-
enheit.

10.	 Write a function that searches an element from a given list.

11.	 Write a function that sorts a given list.

12.	 White a function that takes two lists as input and returns the merged list.

13.	 Write a function that finds all the factors of a given number.

14.	 Write the function that finds common factors of two given numbers.

15.	 Write a function that returns a number obtained by reversing the order of
digits of a given number.

Questions Based on Recursion

Use recursion to solve the following problems

1.	 Find the sum of two given numbers.

2.	 Find the product of two given numbers.

3.	 Given two numbers, find first number to the power of the second.

4.	 Given two numbers, find the greatest common divisor of the numbers.

5.	 Given two numbers, find the least common multiples of the numbers.

6.	 Generate n Fibonacci terms.

7.	 In a series, the first three terms are 1, 1, and 1; the ith term is obtained
using the following formula

PPUPS.CH06_2pp.indd 142PPUPS.CH06_2pp.indd 142 5/18/2023 10:51:06 AM5/18/2023 10:51:06 AM

Functions • 143

f (i) = 2 × f (i – 1) + 3 × f (i – 2)

		 Write a function to generate n terms of the sequence.

8.	 Find the element in a given sorted list.

9.	 Find the maximum from a given list.

10.	 Reverse the order of digits of a given number.

Theory

1.	 What are the advantages of using functions in a program?

2.	 What is a function? What are the components of a function?

3.	 What is the importance of parameter and return type in a function? Can
a function have more than one return values?

4.	 What is recursion? Which data structure is used internally while imple-
menting recursion?

5.	 What are the disadvantages of recursion?

Extra Questions

1.	 What will be the output of the following program?

		 def fun1(n):

		 if n==1:

		 return 1

		 else:

		 return (3*fun1(n-1)+2*fun1(n))

		 fun1(2)

	 (a)  1

	 (b)  5

	 (c)  3

	 (d)  Maximum iteration depth reached

PPUPS.CH06_2pp.indd 143PPUPS.CH06_2pp.indd 143 5/18/2023 10:51:06 AM5/18/2023 10:51:06 AM

144 • Python Programming Using Problem Solving

2.	 What will be the output of the following?

		 def fun1(n):

		 if n==1:

		 return 1

		 elif n==2:

		 return 2

		 else:

		 return (3*fun1(n-1)+2*fun1(n))

		 fun1(5)

	 (a)  5					 (b)  27

	 (c)  Maximum iteration depth reached 	 (d)  None of the above

3.	 What will be the output of the following?

		 def fun1(n):

		 if n==1:

		 return 1

		 elif n==2:

		 return 2

		 else:

		 return (3*fun1(n-1)+2*fun1(n-2))

		 print(fun1(5))

	 (a)  5

	 (b)  100

	 (c)  25

	 (d)  Maximum iteration depth reached

4.	 What will be the output of the following?

		 def fun1(n):

		 if n==1:

		 return 1

		 elif n==2:

		 return 2

		 else:

		 return (3*fun1(n-1)+2*fun1(n-2))

PPUPS.CH06_2pp.indd 144PPUPS.CH06_2pp.indd 144 5/18/2023 10:51:06 AM5/18/2023 10:51:06 AM

Functions • 145

		 for i in range(10):

		 print(fun1(i), end=' ')

	 (a)  1 2 8 28 100 356 1268 4516 16084 	 (b)  1 3 5 7 9 11 13 15

	 (c)  Maximum iteration depth reached 	 (d)  None of the above

5.	 What will be the output of the following?

		 def fun1(n):

		 if n==1:

		 return 1

		 elif n==2:

		 return 2

		 else:

		 return (3*fun1(n-1)+2*fun1(n-2))

		 for i in range(1, 10, 1):

		 print(fun1(i), end=' ')

	 (a)  1 2 8 28 100 356 1268 4516 16084 	 (b)  1 3 5 7 9 11 13 15

	 (c)  Maximum iteration depth reached 	 (d)  None of the above

6.	 What will be the output of the following?

	 def _main_():

	 print(‘I am in main’)

	 fun1()

	 print(‘I am back in main’)

	 def fun1():

	 print(‘I am in fun1’)

	 fun2()

	 print(‘I am back in fun1’)

	 def fun2():

	 print(‘I am in fun 2’)

		 main()am in fun 2’)

		 >>>

PPUPS.CH06_2pp.indd 145PPUPS.CH06_2pp.indd 145 5/18/2023 10:51:06 AM5/18/2023 10:51:06 AM

146 • Python Programming Using Problem Solving

	 (a)  I am in main		 (b)  Reverse of the above

		 I am in fun1

		 I am in fun 2

		 I am back in fun1

		 I am back in main

	 (c)  None of the above	 (d)  The program does not execute

7.	 Conceptually which data structure is implemented in the above program?

	 (a)  Stack			 (b)  Queue

	 (c)  Graph			 (d)  Tree

8.	 Which technique is implemented in the following code?

		 def search(L, item):

		 flag=0

		 for i in L:

		 if i==item:

		 flag=1

		 print('Position ',i)

		 if flag==0:

		 print('Not found')

		 L =[1, 2, 5, 9, 10]

		 search(L, 5)

		 search(L, 3)

	 (a)  Linear search		 (b)  Binary search

	 (c)  None of the above	 (d)  The code does not execute

9.	 What is the complexity of the above?

	 (a)  O (n)			 (b)  O (n2)

	 (c)  O (log n)		 (d)  None of the above

10.	 Which is better linear search or Binary search?

	 (a)  Linear			 (b)  Binary

	 (c)  Both are equally good	 (d)  depends on the input list.

PPUPS.CH06_2pp.indd 146PPUPS.CH06_2pp.indd 146 5/18/2023 10:51:06 AM5/18/2023 10:51:06 AM

Objectives

After reading this chapter, the reader should be able to

�� Understand the importance of File Handling
�� Appreciate the mechanism of File Handling in Python
�� Learn various file access modes
�� Understand various functions for File Handling in Python
�� Implement the concepts studied in the chapter

7.1	 INTRODUCTION

The data types and control structures discussed so far would help us to accom-
plish many simple tasks. The problem, though, is that we have not been able
to store the data or the results obtained for future use. Moreover, at times the
results produced by a program are voluminous. In such cases it becomes dif-
ficult to store data in the memory or even to read the data. File handling can
help us to handle the above situations.

The reader would also appreciate the fact that the main memory is vola-
tile. The data produced by a program, therefore, cannot be used for future
endeavours. Many times it is required to store the data for use in future. For
example, if one develops a student management system, it will be useful only
if the data stored can be retrieved as and when required.

While storing data, the format of the data should be taken care of. At the
programmer’s level, however, the data can be stored in files or in databases.
Databases store and manage related data. The ease of retrieval, the security

C H A P T E R 7
File Handling

PPUPS.CH07_1pp.indd 147PPUPS.CH07_1pp.indd 147 4/26/2023 4:05:00 PM4/26/2023 4:05:00 PM

148 • Python Programming Using Problem Solving

and flexibility make database one of the most important topics in Computer
Science. The concept of databases, their usage and related issues constitute a
dedicated subject. This chapter, however, only concentrates on file handling.

A file can be perceived as set of records, where each record has some
fields. The fields, in turn, store data. Files, as discussed later, can have many
formats. The chapter, though, concentrates on binary and text files. The two
formats differ in the how the end of a line is represented, the representation
of the end of the file and in the storage of standard data types. A file may have
certain permissions associated with it. For example, one may not have the
write permissions for a file which is to be used by the operating system. For
that matter, a user may not even have the read permissions for such files. Such
constraints are kept in mind while writing programs for file handling.

Python provides many functions to carry out the operations related to
file handling. The creation of a file, writing data to a file, reading the data,
appending something to the file and standard directory operations have been
discussed in this chapter. Moreover, to make the things interesting, the use of
the above operations in encryption has also been discussed.

The chapter has been organized as follows. The second section discusses
the general file handling mechanism. The third section discusses the open()
function and the various modes in which a file can be opened. The fourth
section discusses the functions for reading and writing to the file. The section
also introduces the functions to get and set the position of a cursor in a file.
The fifth section briefly discusses the Command Line Arguments, and the last
section, concludes.

7.2	 THE FILE HANDLING MECHANISM

In Python, files are accessed using the file objects. As a matter of fact, the file
objects help us to access not just normal disk files but can help us to accom-
plish many additional tasks, involving other kinds of files.

The file handling mechanism in Python is simple. The file needs to be
opened first. As in, the file is hooked to an Object [1]. This is done with the
help of the open() function. The function takes the name of the file and
the mode as its arguments. In fact, the function can have three arguments.
These arguments are discussed in the next section. The open function
returns an object of the file. The object then uses the library functions to
read the file, write into it or append it. Finally, the memory space occupied

PPUPS.CH07_1pp.indd 148PPUPS.CH07_1pp.indd 148 4/26/2023 4:05:00 PM4/26/2023 4:05:00 PM

File Handling • 149

by the object is freed using the close() function. The mechanism has been
depicted in the following figure (Figure 7.1).

Open the file:
open(<arguments>)

Perform requisite operations:
Read
Write
Append

Close the file: close()

FIGURE 7.1  File handling in Python.

Having discussed the mechanism of handling a file, in Python, let us move
on to the file access modes and the open function in Python.

7.3	 THE OPEN FUNCTION AND FILE ACCESS MODES

The files are accessed using the object created with the help of the open()
function. Note that this returns a file object or a file like object. This abstrac-
tion is helpful for considering file as interface for communication. Therefore,
this communication can be perceived as transfer of bytes since a file can be
considered as a sequence of bytes.

So, to be able to do input /output to/from a file, the open() function is
needed. If the file is opened successfully, the file Object is returned. If the file
is not opened successfully, the IOERROR exception is raised.

The open function takes three arguments. The first argument is the name
of the file, the second the mode in which the file is to be opened and the third
indicates the buffer string. As a matter of fact, the third would rarely be used.
The first argument is a string of characters, which is either a valid filename or
a path. The path can be relative or absolute. The access mode is the mode in
which the file would be opened (Figure 7.2). The various modes have been
presented in Figure 7.3. These open the file in read, write or append mode.
In the read mode (“r”), the file is opened, if it exists. The write mode (“w”)
opens the file for writing. If the file already exists, the existing contents of the
file are truncated. The append mode(“a”) opens the file for writing but does
not truncate the existing contents. In this mode, if the file does not exist, it
would be created.

PPUPS.CH07_1pp.indd 149PPUPS.CH07_1pp.indd 149 4/26/2023 4:05:00 PM4/26/2023 4:05:00 PM

150 • Python Programming Using Problem Solving

Object

Name of the file Mode

f = open(‘student.text’ , ‘r’)

FIGURE 7.2 (a)  The open function.

FIGURE 7.2 (b)  The close function.

r

rb

r+

w

wb

w+

a

ab

a+

append

write

read

File opening
modes

FIGURE 7.3  File opening modes in Python.

PPUPS.CH07_1pp.indd 150PPUPS.CH07_1pp.indd 150 4/26/2023 4:05:01 PM4/26/2023 4:05:01 PM

File Handling • 151

The modes can be suffixed with a letter “b” indicating the binary access.
The “+” suffix can be used to grant the read and write access to the file.
Table 7.1 presents the various modes and the corresponding operations that
can be performed.

TABLE 7.1  Access modes for file.

File Mode Operations

r Reading from a file

w Write to a file; creates the file if it does not exist; truncate the file if it already
exists.

a Append to the file; if the file does not exist creates the file

r+ Open for read and write

w+ w for both read and write

a+ a for both read and write

rb Read a binary file

wb Write mode for a binary file

ab Append mode for a binary file

rb+ r+ for a binary file

wb+ w+ for a binary file

ab+ a+ for a binary file

7.4	 PYTHON FUNCTIONS FOR FILE HANDLING

Python provides various library functions to carry out the standard tasks. The
functions help us to read from a file, write to a file, and to append some-
thing in the existing file. Moreover, Python also provides the programmer
with functions to take the cursor to a particular location, or to read from a
given location.

7.4.1  The Essential Ones

The use of these functions has been briefly explained in this section. The
reader is expected to experiment with the functions in order to get a clear
insight.

The read() function

The function reads bytes in a string. It may take an integer argument indicat-
ing the number of bytes to read. If the argument is −1, the files must be read
to the end. Also, if no argument is given, the default is taken as −1.

PPUPS.CH07_1pp.indd 151PPUPS.CH07_1pp.indd 151 4/26/2023 4:05:01 PM4/26/2023 4:05:01 PM

152 • Python Programming Using Problem Solving

 read() is same as read(-1)

If the content of the file is larger than the memory then only the con-
tent which can fit into the memory would be read. Moreover, when the read
operation ends, a “(an empty string) is returned.

readline() and readlines()

The readline() method is used to read a line, till the newline character is
read. It may be stated here that the newline character is retained in the string
that is returned. The readlines() method reads all the lines from a given file
and returns a list of strings.

write() and writelines()

The write() method writes the string in a given file. The method is comple-
mentary to the read() method. The writelines() method write a list of strings
to the file.

 There is no writeline() method in Python 3.x

seek()

The seek function takes the cursor to the stated position in the given file. The
position is decided with respect to the offset given. The offset can be 0, 1 or 2. “0”
indicates the beginning of the file. The value “1” indicates the current position
and the value 2 indicates the “end of the file.”

tell()

The tell() function is complementary to the seek() function. The function
returns the position of the cursor.

close()

The close() function closes the file. The object should be assigned to another
file after it is closed. Though Python closes a file after a program finishes (see
Garbage Collection), it is advisable to close the file when the required task is
accomplished. The repercussions of not closing the file can be observed at the
most unexpected times.

fileno()

The fileno() function returns a descriptor for the file. For example, the
descriptor of the file named “Textfile.txt,” in the following snippet is 3.

TIP!

TIP!

PPUPS.CH07_1pp.indd 152PPUPS.CH07_1pp.indd 152 4/26/2023 4:05:01 PM4/26/2023 4:05:01 PM

File Handling • 153

>>> f=open('Textfile.txt')

>>>f.fileno()

3

7.4.2  The OS Methods

The methods which deal with the issues related to operating system help
the programmer to create a generic program. The methods also spare the
programmer from the horror of dealing with the uncanny formatting
details. For example, the end of a line is represented by different charac-
ter sets in different operating systems. In Unix, a newline is indicated by
“\n,” In MAC the newline character is “\r” in DOS it is “\r\n.” Similarly, file
separator Unix is “/”, whereas that in windows is “\” and that in MAC is “:”.
There inconsistencies make the life of a programmer miserable. This is
the reason why a consistent approach is needed to handle such situations.
Table 7.2 presents the names and functions of some of the most important
OS methods.

TABLE 7.2  OS methods.

OS method Function

linesep string used to separate lines in a file

sep used to separate file pathname components

Pathsep delimit a set of file pathnames

Curdir current directory

Pardir parent directory

7.4.3  Miscellaneous Functions and File Attributes

Except for the functions stated above, the flush and isatty are also used to
make a program more robust.

flush(): The flush function flushes the internal buffer.

isatty(): The function returns a “1,” if the file is a tty-like device

For more such functions, the reader may refer to the references at the end of
this book.

PPUPS.CH07_1pp.indd 153PPUPS.CH07_1pp.indd 153 4/26/2023 4:05:01 PM4/26/2023 4:05:01 PM

154 • Python Programming Using Problem Solving

File attributes

It may also be stated here that the file attributes help the programmer to see
the state of a file and its features like the name and the mode. Table 7.3 pre-
sents some of the most important file attributes.

TABLE 7.3  File attributes.

File attribute Importance

file.closed 1 if file is closed, 0 otherwise

file.mode access mode

file.name name of the file

The following illustration demonstrates the use of the above attributes.

Illustration 7.1:

Open a file called “Textfile.txt” in the read mode. Check the name of the file, its
mode and find whether it is closed using the file attributes.

Solution:

Code:

f=open('Textfile.txt','r')

print('Name of the file\t:',f.name)

print('Mode\t:',f.mode)

print('File closed?\t:',f.closed)

f.close()

print('Mode\t:',f.mode)

print('File closed?\t:',f.closed)

Output:

Name of the file	 : Textfile.txt

Mode	: r

File closed?	 : False

Mode	: r

File closed?	 : True

PPUPS.CH07_1pp.indd 154PPUPS.CH07_1pp.indd 154 4/26/2023 4:05:01 PM4/26/2023 4:05:01 PM

File Handling • 155

7.5	 COMMAND LINE ARGUMENTS

If the compiler knows the name of the script, then the name of the script
along with the additional arguments are stored in a list called argv. The argv
variable is in the sys module. The arguments along with the name of the script
are called the command line arguments. It may be noted here that even the
name of the script is the part of the list. As matter of fact, the name of the
script is the first element of the list. The rest of the arguments are stored in
the succeeding locations of the list. The argv can be accessed by importing
the sys module. The following illustration demonstrates the use of the argv
variable.

Illustration 7.2:

Display the number of the command line arguments and the individual
arguments.

Solution:

Code:

import sys

print('The number of arguments',len(sys.argv))

print('Arguments\n')

for x in sys.argv:

 print('Argument\t:',x)

Output:

The number of arguments 1

Arguments

Argument	: C:/Python/file handling/commandLine.py

The following example presents the bubble sort which takes the numbers
entered at the command line as the input.

Illustration 7.3:

Sort the numbers (using bubble sort) entered as the command line arguments.

Solution:

Code:

import sys

def sort(L):

PPUPS.CH07_1pp.indd 155PPUPS.CH07_1pp.indd 155 4/26/2023 4:05:01 PM4/26/2023 4:05:01 PM

156 • Python Programming Using Problem Solving

	 i=0;

 while(i<(len(L)-1)):

 print('\nIteration\t:',i,'\n');

 j=0

 flag=0

 while(j<(len(L)-i-1)):

 if(L[j]<L[j+1]):

 flag=1

 temp=L[j]

 L[j]=L[j+1]

 L[j+1]=temp

 #print(L[j],end=' ')

 j=j+1

 print(L)

 if(flag==0):

		 break

 i=i+1

 return(L)

L=[]

for x in sys.argv:

	 L.append(x)

print('Before sorting\t:',L)

print(sort(L))

7.6	 IMPLEMENTATION AND ILLUSTRATIONS

Having seen the mechanism of file handling, the functions and the attributes,
let us now have a look at the usage of the above functions and the implanta-
tion of an interesting task. We will begin with writing something to a file (say
“TextFile.txt”), after opening the file in the write mode. The open function,
in this case, would have two parameters: name of the file(“TextFile.txt”) and
the mode (“w”). Also, the file needs to be closed. Note that the write function
returns the number of bytes written in the file.

>>> f = open('TextFile.txt','w')

>>> f.write('Hi there\nHow are you?')

21

>>>f.close()

PPUPS.CH07_1pp.indd 156PPUPS.CH07_1pp.indd 156 4/26/2023 4:05:01 PM4/26/2023 4:05:01 PM

File Handling • 157

The read function reads the bytes of the given file. The read function,
as stated earlier, may not take any argument. This implies reading file till the
end. The read text can be stored in a string (“text”).

>>> text=f.read()

>>> text

'Hi there\nHow are you?'

>>>f.close()

>>>

A file can be renamed using the rename function of os. The rename
function takes two arguments: the first being the name of the original file and
the second being the new name of the file. In the following snippet, a file
called “TextFile.txt” is renamed to “TextFile1.txt” and read into “str” using the
open function.

>>> import os

>>> os.rename('TextFile.txt','TextFile1.txt')

>>> f=open('TextFile1.txt','r')

>>> str=f.read()

>>> str

'Hi thereHow are you'

>>>

Writing a list of string in a file

As stated earlier, a list of strings can be written into a file using the
writelines()function. The use of the function has been illustrated as fol-
lows. In the following snippet, the lines entered by the user are put into a
list, L, and this list is then written into the file f.

Illustration 7.4:

Write a program to ask the user to enter lines of text. The user should be able
to enter any number of lines. In order to stop, he must enter “\e.” The lines
should be appended to an empty list (say L). This list should then be written
to a file called lines.txt. The program should then read the lines of lines.txt.

Solution:

Code:

print('Enter text, press \'\\e\' to exit')

L=[]

PPUPS.CH07_1pp.indd 157PPUPS.CH07_1pp.indd 157 4/26/2023 4:05:01 PM4/26/2023 4:05:01 PM

158 • Python Programming Using Problem Solving

i=1

in1=input('Line number'+str(i)+'\t:')

while(in1 !='\e'):

	 L.append(in1)

	 i=i+1

	 in1=input('Line number'+str(i)+'\t:')

print(L)

f=open('Lines.txt','w')

f.writelines(L)

f.close()

f=open('lines.txt','r')

for l in f.readline():

	 print(l, end=' ')

f.close()>>>

Output:

Enter text, press '\e' to exit

Line number1	 :Hi there

Line number2	 :How are you

Line number3	 :I am good

Line number4	 :\e

['Hi there', 'How are you', 'I am good']

Hi there How are you I am good >>>

Reading n characters and the seek() function

The use of the read(n) function, which reads the first “n” characters of the
file has been demonstrated in the following illustration (Illustration 7.5).
Note that, the tell function tells the position of the cursor. The seek() func-
tion takes two parameters, the first being the offset and the second position.
For example, seek(0, 0) positions the cursor at the first position from the
beginning.

Illustration 7.5:

Open a file TextFile.txt and write a few lines in it. Now open the file in the
read mode and read the first 15 characters from the file. Then read the next
five characters. In each step show the position of the cursor in the file. Now, go
back to the first position in the file and read 20 characters from the file.

PPUPS.CH07_1pp.indd 158PPUPS.CH07_1pp.indd 158 4/26/2023 4:05:01 PM4/26/2023 4:05:01 PM

File Handling • 159

Solution:

Code:

f=open('TextFile.txt','w')

f.writelines(['Hi there', 'How are you'])

f.close()

f = open('TextFile.txt', 'r+')

str = f.read(15)

print('String str\t: ', str)

pos = f.tell()

print('Current position\t:', pos)

str1=f.read(5)

print('Str1\t:',str1)

pos = f.seek(0, 0)

print('Current position\t:',pos)

str = f.read(20);

print('Again read String is : ', str)

f.close()

Output:

String str	 : Hi thereHow are

Current position	 : 15

Str1 : you

Current position	 : 0

Again read String is : Hi thereHow are you

Creating directories and navigating between them

One can also create directories in Python, using the mkdir() function. The func-
tion takes name of the directory as one of the arguments. The reader is advised
to go through the references at the end of this book for a detailed description
of this function. The chdir() function changes the current directory and the
getpwd() function prints the name(along with the path) of the current working
directory. The use of these functions has been demonstrated as follows.

'>>> import os

>>> os.mkdir('PythonDirectory')

>>> os.chdir('PythonDirectory')

>>> os.getcwd()

'C:\\Python\\file handling\\PythonDirectory'

>>>

PPUPS.CH07_1pp.indd 159PPUPS.CH07_1pp.indd 159 4/26/2023 4:05:01 PM4/26/2023 4:05:01 PM

160 • Python Programming Using Problem Solving

An example of encryption

The following illustration uses the ord(c) function which prints the ASCII
value of the character “c” and that of the chr(n) function, which returns a
character corresponding to the ASCII value n.

Illustration 7.6:

Write “Hi there how are you” in a file called “TextFile.txt.” Now, read char-
acters from the file, one by one and write the character obtained by adding
k(entered by the user) to the ASCII value of the character. Also, decrypt the
string in the second file by subtracting “k” from the ASCII values of the char-
acters in the second file.

Solution:

Code:

f=open('TextFile.txt','w')

f.write('Hi there how are you')

f.close()

k=int(input('Enter a number'))

f =open('TextFile.txt','r')

f1=open('TextFile1.txt','w')

for s in f.read():

 for c in s:

 print('Character ',c,' Ascii value\t:',ord(c))

 f1.write(str(chr(ord(c)+k)))

f1.close()

print((open('TextFile1.txt').read()))

f1 =open('TextFile1.txt','r')

f2=open('TextFile2.txt','w')

for s in f1.read():

 for c in s:

 print('Character ',c,' Ascii value\t:',ord(c))

 f2.write(str(chr(ord(c)-k)))

f2.close()

print((open('TextFile2.txt').read()))

PPUPS.CH07_1pp.indd 160PPUPS.CH07_1pp.indd 160 4/26/2023 4:05:01 PM4/26/2023 4:05:01 PM

File Handling • 161

Output:

Enter a number4

Character H Ascii value	 : 72

Character i Ascii value	 : 105

Character Ascii value	 : 32

Character t Ascii value	 : 116

Character h Ascii value	 : 104

Character e Ascii value	 : 101

Character r Ascii value	 : 114

Character e Ascii value	 : 101

Character Ascii value	 : 32

Character h Ascii value	 : 104

Character o Ascii value	 : 111

Character w Ascii value	 : 119

Character Ascii value	 : 32

Character a Ascii value	 : 97

Character r Ascii value	 : 114

Character e Ascii value	 : 101

Character Ascii value	 : 32

Character y Ascii value	 : 121

Character o Ascii value	 : 111

Character u Ascii value	 : 117

Lm$xlivi$ls{evi}sy

Character L Ascii value	 : 76

Character m Ascii value	 : 109

Character $ Ascii value	 : 36

Character x Ascii value	 : 120

Character l Ascii value	 : 108

Character i Ascii value	 : 105

Character v Ascii value	 : 118

Character i Ascii value	 : 105

Character $ Ascii value	 : 36

Character l Ascii value	 : 108

Character s Ascii value	 : 115

Character { Ascii value	 : 123

Character $ Ascii value	 : 36

Character e Ascii value	 : 101

Character v Ascii value	 : 118

PPUPS.CH07_1pp.indd 161PPUPS.CH07_1pp.indd 161 4/26/2023 4:05:01 PM4/26/2023 4:05:01 PM

162 • Python Programming Using Problem Solving

Character i Ascii value	 : 105

Character $ Ascii value	 : 36

Character } Ascii value	 : 125

Character s Ascii value	 : 115

Character y Ascii value	 : 121

Hi there how are you

>>>

Copying the contents of one file to another

In order to copy the content of a file to another, the first file is opened in the
read mode and the second file is opened in the write mode. The lines of the
first file are then read one by one (using the read function) and written to
the other file (using the write function). The program follows.

Illustration 7.7:

Copy the contents of one file to another.

Solution:

Code:

f1=open('source.txt','r')

f2=open('dest.txt','w')

char=f1.read()

print(char)

f2.write(char)

f1.close()

f2.close()

Illustration 7.8:

Write a program to count the number of words in a file.

Solution:

The number of words in a file can be calculated by initializing the ‘n’ (=1)
and reading one line at a time, splitting the line into words and successively
incrementing the value of n.

Code:

fname = 'source.txt'

n = 0

with open(fname, 'r') as f:

PPUPS.CH07_1pp.indd 162PPUPS.CH07_1pp.indd 162 4/26/2023 4:05:01 PM4/26/2023 4:05:01 PM

File Handling • 163

 for line in f:

 w = line.split()

 n += len(w)

print('Word count\t:',n)

7.7	 CONCLUSION

File handing provides the user with the power of persistence. The user must
be equipped with the knowhow of the file access modes, the open(), close()
functions and the functions which help in reading a file and writing to it. This
chapter briefly explains the most essential functions used for file handling
in Python. This chapter also introduces the user to the OS methods and the
essential file attributes to help the user achieve the task at hand. The chapter
also includes ample illustrations and explanation, to make the concept clear in
the simplest manner.

POINTS TO REMEMBER

�� The open function takes three arguments
�� The mode of opening file decides the tasks that can be accomplished
�� The file should be closed after the required task has been completed
�� The seek method helps to move the cursor within a file
�� The value of file.closed is 1 after the close function has been called
�� The file.name attribute prints the name of the file
�� The file.mode attribute gives the file access mode
�� The os.getpwd function returns the present working directory
�� The os.chdir function changes the directory

EXERCISES

Multiple Choice Questions

1.	 Which of the following is a solid argument for using file handling?

	 (a) � It is not possible to store all data produced by the program in the
main memory

	 (b)  It is used for persistent storage

	 (c)  Both

	 (d)  None of the above

PPUPS.CH07_1pp.indd 163PPUPS.CH07_1pp.indd 163 4/26/2023 4:05:01 PM4/26/2023 4:05:01 PM

164 • Python Programming Using Problem Solving

2.	 In which of the format the end of the line is denoted by “\n” and “\r”?

	 (a)  Text			 (b)  Binary

	 (c)  Both			 (d)  None of the above

3.	 To be able to use a file it must be opened. The reason for doing so is

	 (a)  To allocate memory to the object so formed

	 (b)  To specify the access mode

	 (c)  To specify the offset (optional)

	 (d)  All of the above

4.	 In f =open(‘abc.txt’, ‘r’), the offset is

	 (a)  0 from the beginning	 (b)  0 from the end

	 (c)  Random			 (d)  None of the above

5.	 How many arguments does the open function take?

	 (a)  1			 (b)  2

	 (c)  3			 (d)  None of the above

6.	 The file must be closed if it is opened in which of the following mode?

	 (a)  r				 (b)  w

	 (c)  both			 (d)  None of the above

7.	 If the file is not opened successfully, which of the following exception is
raised?

	 (a)  File not found		 (b)  IOERROR

	 (c)  IO			 (d)  None of the above

8.	 In f =open(‘abc.txt’, ‘w’), if the file “abc.txt” does not exist, then

	 (a)  IOERROR is raised	 (b)  The program does not compile

	 (c)  A new file is created 	 (d)  None of the above

PPUPS.CH07_1pp.indd 164PPUPS.CH07_1pp.indd 164 4/26/2023 4:05:01 PM4/26/2023 4:05:01 PM

File Handling • 165

9.	 Which suffix is used for opening a binary file

	 (a)  b			 (b)  bin

	 (c)  ab			 (d)  None of the above

10.	 The + suffix allows

	 (a)  Read			 (b)  Read and write

	 (c)  Read or write 		 (d)  None of the above

11.	 How many file access modes are there in Python?

	 (a)  3			 (b)  6

	 (c)  9			 (d)  12

12.	 The integer argument in the read() function denotes the number of bytes
to be read, if no argument is given, which of the following is the default
argument?

	 (a)  -1			 (b)  0

	 (c)  len(file)			 (d)  None of the above

13.	 To read all the lines in a file, which of the following function can be used?

	 (a)  readline()		 (b)  readlines()

	 (c)  both			 (d)  None of the above

14.	 Which of the following methods can be used to write a list of strings in a
file?

	 (a)  writeline()		 (b)  writelines()

	 (c)  write()			 (d)  None of the above

15.	 Which of the following argument in the seek() function denotes the end
of the file?

	 (a)  1			 (b)  2

	 (c)  0			 (d)  None of the above

PPUPS.CH07_1pp.indd 165PPUPS.CH07_1pp.indd 165 4/26/2023 4:05:01 PM4/26/2023 4:05:01 PM

166 • Python Programming Using Problem Solving

16.	Which function returns the descriptor of the file?

	 (a)  fileno()			 (b)  filedisp()

	 (c)  descriptor()		 (d)  None of the above

17.	The linesep function is used to find which of the following?

	 (a)  The new line		 (b)  The end of the file

	 (c)  The current directory 	 (d)  None of the above

18.	Which of the following is not a file attribute?

	 (a)  closed			 (b)  opened

	 (c)  name 			 (d)  softspace

19.	In which of the following variable, the command line argument is saved?

	 (a)  argv			 (b)  argc

	 (c)  Both			 (d)  None of the above

20.	Which of the following function helps to create a directory?

	 (a)  os.mkdir()		 (b)  os.chdir()

	 (c)  os.getpwd()		 (d)  None of the above

21.	Which of the following function helps to change the current directory?

	 (a)  os.mkdir()		 (b)  os.chdir()

	 (c)  os.getpwd()		 (d)  None of the above

22.	Which of the following function helps to print the name of the current
directory?

	 (a)  os.mkdir()		 (b)  os.chdir()

	 (c)  os.getpwd()		 (d)  None of the above

23.	Which function is used to find the ASCII value of a character?

	 (a)  ascii			 (b)  ord

	 (c)  chord			 (d)  None of the above

PPUPS.CH07_1pp.indd 166PPUPS.CH07_1pp.indd 166 4/26/2023 4:05:01 PM4/26/2023 4:05:01 PM

File Handling • 167

24.	Which of the following is not a file access mode in Python?

	 (a)  a			 (b)  ab

	 (c)  ab+			 (d)  abc

25.	Which of the following is incorrect?

	 (a)  f =open(‘file.txt’)		 (b)  f =open(‘file.txt’,’r’)

	 (c)  f =open(‘file.txt’,’r’,0)	 (d)  None of the above is incorrect

Theory

1.	 What is the importance of file handling? Explain the mechanism of file
handling in Python.

2.	 Explain various file access modes.

3.	 Explain the signature and usage of the following functions

	 a.  open		 b.  close

	 c.  read		 d.  write

	 e.  readline		 f.  readlines

	 g.  writeline		 h.  seek

4.	 What are file attributes? Explain the file attributes provided by python.

5.	 Briefly explain the usage of the following os functions in Python

	 a.  mkdir

	 b.  chdir

	 c.  getpwd

Programming Exercises

1.	 Write a program to copy the contents of a file to another.

2.	 Write a program to capitalize the first character of each word in a file.

PPUPS.CH07_1pp.indd 167PPUPS.CH07_1pp.indd 167 6/15/2023 2:15:02 PM6/15/2023 2:15:02 PM

.

168 • Python Programming Using Problem Solving

3.	 Write a program to find the ASCII value of each character in a file.

4.	 Write a program to find the frequency of each character in a file.

5.	 Write a program to find all occurrences of a word, entered by the user, in
a given file.

6.	 Write a program to replace a given character with another in a file.

7.	 Write a program to replace a given word with another, in a given file.

8.	 Write a program to find the frequency of a given word in a file.

9.	 Write a program to find the word used minimum number of times in a
given file.

10.	 Write a program and change the name of a file to the name entered by the
user.

11.	 Write a program to create a directory and then create a new file in it.

12.	 Write a program to print the name, number of characters and number of
spaces in a file.

13.	 Write a program to convert the characters of a given file to binary format.

14.	 Write a program to find the words starting with a vowel from a given file.

15.	 Write a program to implement any substitution cipher on the text of a
given file.

PPUPS.CH07_1pp.indd 168PPUPS.CH07_1pp.indd 168 4/26/2023 4:05:01 PM4/26/2023 4:05:01 PM

Objectives

After reading this chapter, the reader should be able to
�� Understand the difference between list, tuple, and dictionary
�� Understand slicing and indexing
�� Understand strings in Python
�� Understand the in-built functions of list, tuple, dictionaries

8.1	 INTRODUCTION

Python provides us with lists, tuples, and dictionaries, all of which have
become synonym with ease of programming and can be used in diverse appli-
cations. In Python, a list can contain different types of elements and is muta-
ble whereas a tuple can contain different types of elements and is immutable.
In a dictionary, the items can be accessed using strings as indices (Figure 8.1).

Dictionaries are collections in which each value is associated with a key.
This key-value pair constitutes an item in a dictionary. In order to understand
the idea, consider the following example. In the 1980s, the phone numbers
of the people in a city could be found using a telephone directory. The direc-
tory had phone numbers of people of the city in the lexicographic order (of
names). So, using one’s name, their phone number could be found. That is,
the index of value (phone number in this case) was the name of the person.
Python dictionary uses the same idea. However, a directory could have a name
twice but in a dictionary each key is unique.

C H A P T E R 8
Lists, Tuple, and Dictionary

PPUPS.CH08_1pp.indd 169PPUPS.CH08_1pp.indd 169 4/26/2023 4:23:07 PM4/26/2023 4:23:07 PM

170 • Python Programming Using Problem Solving

FIGURE 8.1  Lists, tuples, and dictionaries.

The following chapter discusses strings. Strings are the sequence of char-
acters. These data structures are used to store text. For example, if one wants
to store the name of a person, or for that matter, his address, then strings are
the most appropriate data structures. As a matter of fact, the knowledge of
strings is essential in the development of many applications like word proces-
sors and parser.

This chapter has been organized as follows. The second section discusses
lists, the third discusses tuples and the next section discusses dictionaries. The
last section concludes.

8.2	 LISTS

In Python, a list is a sequence object. A list can be an empty list ([]) It may
contain any number of elements, which may or may not be of the same type.
Also, a list can contain different types of elements, including a list. Moreover,
a list inherits many properties of a string. However, unlike strings, they are
mutable and may also contain different types of elements.

In the following snippet, L1 is an empty list, L2 contains 2, 4, 8, 16, 32,
and 64. L3 contains an integer (2), a string (“Harsh”), another integer (3),
another string (“Manan”), a double (4.7865), and another string (“Ali”). L4
is a list of lists. It contains three lists, each containing different number of
elements.

Code: Creation

#Empty List

L1=[]

#Homogeneous list

L2=[2,4,8,16,32,64]

PPUPS.CH08_1pp.indd 170PPUPS.CH08_1pp.indd 170 4/26/2023 4:23:08 PM4/26/2023 4:23:08 PM

Lists, Tuple, and Dictionary • 171

#Heterogenous list

L3=[2, 'Harsh', 3,'Manan', 4.7865,'Ali']

#List of Lists

L4=[[1,2],[2,4,8],[3,9,27,81]]

print('First List',L1,'\nSecond List',L2,'\nThird List',L3)

Output:

First List []

Second List [2, 4, 8, 16, 32, 64]

Third List [2, 'Harsh', 3, 'Manan', 4.7865, 'Ali']

8.2.1  Accessing Elements: Indexing and Slicing

The elements of a list can be accessed using indexing. The index of the first
element of the list is 0, that of the second element is 1, and so on. The nega-
tive index denotes the elements from the end. For example, L[-1] denotes the
last element of the list L, likewise, L[-2] denotes the second last element of a
list (Figure 8.2).

L = [1, 21, 5, 7, 9, 11]

L[0] is 1

L[-1] is 11

L[3] is 7

L

L[0] L[1] L[2] L[3] L[4] L[5]

1 21 5 7 9 11

FIGURE 8.2  Indexing in Python Lists. Note that L[0] denotes the first element, L[1] denotes the
second element and L[-1] (that is L[5]) denotes the last element.

Slicing is generally used to take out a sublist from a given list. In the above
case

L[:2] is a sublist having all the elements of L starting from the first ele-
ment till the element at the first index (not the element at index 2) that is [1, 3].

L[2:] is a sublist having all the elements of L starting from the element at
the second index till the last element that is [5, 7, 9 , 11].

L[1:4] is a sublist having all the elements of L starting from the element
at the first index till the element at the third index that is [3, 5, 7].

PPUPS.CH08_1pp.indd 171PPUPS.CH08_1pp.indd 171 4/26/2023 4:23:08 PM4/26/2023 4:23:08 PM

172 • Python Programming Using Problem Solving

8.2.2  Mutability

It may be stated that a list is mutable. That is, one can update an element of
the list. In order to understand this, consider the following snippet. The fol-
lowing code sets the second element of the list as 675. Note that an element
of a list can be accessed by a square bracket.

Code: Mutability

#Mutable

L2=[2,4,8,16,32,64]

L2[1]=675

#The second element of the list L2 becomes 675

print(L2)

Output:

[2, 675, 8, 16, 32, 64]

8.2.3  Operators

Python provides four operators for lists. These are: +, *, in and not in. The +
operator in L1+L2 concatenates two lists L1 and L2. The * operator in L1*n
repeats the elements of the list L1, n times. The in operator checks if a given
element is available in the list. The not in operator checks if a given element
is not available in the list. In order to understand the operators, consider the
following code. The list L9 is the concatenation of L2 and L8. The list L10
has elements of L2 repeated thrice. Note that we cannot use the – operator
with a list.

Code: Operator +, *, in and not in

#Using + operator

L8= [90, 80, 70]

#Concatenate two lists

L9=L2+L8

print(L9)

#Using * operator

num=3

#repeat the elements 'num' times

L10=L2*num

PPUPS.CH08_1pp.indd 172PPUPS.CH08_1pp.indd 172 4/26/2023 4:23:08 PM4/26/2023 4:23:08 PM

Lists, Tuple, and Dictionary • 173

print(L10)

#- Illegal

L11=L2-L8

print(L11)

Output:

[2, 675, 8, 16, 32, 64, 90, 80, 70]

[2, 675, 8, 16, 32, 64, 2, 675, 8, 16, 32, 64, 2, 675, 8, 16,
32, 64]

TypeError Traceback (most recent call last) <ipython-input-14-
7ccfbd405905> in <module>()1

#- Illegal----> 2L11=L2-L8 3 print(L9)

TypeError: unsupported operand type(s) for -: 'list' and 'list'

8.2.4  Traversal

A list is a sequence. Each element in a list can be accessed using its index in
square brackets. The elements can also be accessed using loops and iterators.
Though any loop can be used to accomplish the said task, for loop’s use make
things easy. The for loop can be used to traverse a list as shown in the follow-
ing code which stores each item of the list in i and prints them. In the next
code, nested loops are used to process lists of lists. The last code processes a
list having different types of elements.

Code: Print each element in a list

L2=[2, 675, 8, 16, 32, 64]

#Print all elements

for i in L2:

 print(i)

Output:

2

675

8

16

32

64

PPUPS.CH08_1pp.indd 173PPUPS.CH08_1pp.indd 173 4/26/2023 4:23:08 PM4/26/2023 4:23:08 PM

174 • Python Programming Using Problem Solving

Code: Processing list of lists using nested loops

L4=[[1,2],[2,4,8],[3,9,27,81]]

#Print all the lists in list L4

for i in L4:

 print(i)

Output:

[1, 2]

[2, 4, 8]

[3, 9, 27, 81]

Code: Processing all elements of a list of lists using nested loops

L4=[[1,2],[2,4,8],[3,9,27,81]]

#All the elements of the lists inside the list L4 are accessed
and printed using nested loops

for i in L4:

	 print('List', end='\t')

	 for j in i:

		 print(j, end=' ')

	 print('')

Output:

List 1 2

List 2 4 8

List 3 9 27 81

Code: Processing a list containing different types of elements

L3=[2, 'Harsh', 3,'Manan', 4.7865,'Ali']

#The different types of elements are printed using for loop

for i in L3:

 print(i)

Output:

2

Harsh

3

Manan

4.7865

Ali

PPUPS.CH08_1pp.indd 174PPUPS.CH08_1pp.indd 174 4/26/2023 4:23:08 PM4/26/2023 4:23:08 PM

Lists, Tuple, and Dictionary • 175

The above discussion revealed the methods of creation of a list, its
processing, slicing, and indexing. Having seen the basics, let us now perform
slightly more complicated tasks by using the predefined functions of lists.

8.2.5  Functions

The functions associated with a list are shown in Table 8.1. The table enlists
some of the most important methods used for lists and their explanation. Note
that the following tasks can also be accomplished without using the functions.
However, these functions help us to accomplish many tasks efficiently and
effectively. The code that follows demonstrates the use of these functions.

TABLE 8.1  Functions of List.

Function Explanation

list.append(item) The append method adds “item” at the end of the list.

list.extend(item) The extend method adds the “item” at the end of the list.

list.insert(index, item) The insert function inserts “item” at “index.”

list.remove(item) The remove function removes the first instance of “item” from the list.

list.pop(index) The pop function removes the item at the given index in the list. Also,
pop() removes the last element from the list.

list.clear() The clear method removes all the elements from the list.

list.index(item) Return zero-based index in the list of the first item whose value is equal
to item.

list.count(item) The count function counts the number of instances of “item” in the list.

list.sort() The sort function sorts the items of the list. An additional argument
reverse=True sorts the list in descending order.

list.reverse() The reverse function reverses the order of the list.

list.copy() The copy function returns a shallow copy of the list.

The above functions have been used as follows. Note that the input is
prefixed with >> and the statements without >> shows the output.

#Functions

>>L13=[1,2,3]

>>L14=[7,8,9,10]

>>L14.extend(L13)

PPUPS.CH08_1pp.indd 175PPUPS.CH08_1pp.indd 175 4/26/2023 4:23:08 PM4/26/2023 4:23:08 PM

176 • Python Programming Using Problem Solving

>>print(L14)

[7, 8, 9, 10, 1, 2, 3]

>>L14.remove(10)

>>print(L14)

[7, 8, 9, 1, 2, 3]

>>L14.insert(2,787)

>>print(L14)

[7, 8, 787, 3, 9, 1, 2, 3]

>>L14.index(3)

3

>>L14.count(3)

2

>>L14.pop()

3

>>L14.reverse()

>>print(L14)

[2, 1, 9, 3, 787, 8, 7]

>>L14.sort()

print(L14)

[1, 2, 3, 7, 8, 9, 787]

8.3	 TUPLE

A tuple can be empty or can also contain any number of elements. It may also
contain different types of elements like strings, integers, float, doubles can
even contain lists, and can be a combination of the above. For example, in the
following code, T2 contains an integer 2, a string “Harsh,” two more integers
5 and 67. T3 is a tuple consisting of three different tuples – (1,2), (4,5), and
(7,8). T4 contains three different lists and T5 consists of a tuple having ele-
ments 3 and 4, a list with elements 4, 5, and 6, and a string, “Harsh.”

Code:

#Create tuple

T1=(2,3,4,5,6,7,8,9,) #Tuple homogeneous

print(T1)

T2=(2,'harsh',5,67) #Tuple heterogeneous

print(T2)

PPUPS.CH08_1pp.indd 176PPUPS.CH08_1pp.indd 176 4/26/2023 4:23:08 PM4/26/2023 4:23:08 PM

Lists, Tuple, and Dictionary • 177

T3=((1,2),(4,5),(7,8)) #Tuple of tuples

print(T3)

T4=([1,2],[-4],[8,9,10]) #Tuple of lists

print(T4)

T5=((3,4),[4,5,6],'Harsh') #Tuple consisting a tuple, list and a
string

print(T5)

Output:

(2, 3, 4, 5, 6, 7, 8, 9)

(2, 'harsh', 5, 67)

((1, 2), (4, 5), (7, 8))

([1, 2], [-4], [8, 9, 10])

((3, 4), [4, 5, 6], 'Harsh')

8.3.1  Accessing Elements of a Tuple

The elements of a tuple can be accessed using indexing. The index of the first
element of the tuple is 0, that of the second element is 1, and so on. The nega-
tive index denotes the elements from the end. For example, T[-1] denotes the
last element of the list T, likewise, T[-2] denotes the second last element of a
list (Figure 8.3).

T = (1, 3, 5, 7, 9, 11)

T[0] is 1

T[-1] is 11

T[3] is 7

T[0] T[1] T[2] T[3] T[4] T[5]

T
1 3 5 7 9 11

FIGURE 8.3  Indexing in Python tuple. Note that T[0] denotes the first element, T[1] denotes the
second element and T[-1] (that is T[5]) denotes the lest element.

Slicing is generally used to take out a subtuple from a given tuple. In the
above case

T[:2] is a sublist having all the elements of T starting from the first ele-
ment till the element at the first index (not the element at index 2) that is (1, 3).

PPUPS.CH08_1pp.indd 177PPUPS.CH08_1pp.indd 177 4/26/2023 4:23:08 PM4/26/2023 4:23:08 PM

178 • Python Programming Using Problem Solving

T[2:] is a sublist having all the elements of T starting from the element at
the second index (the third element as the list is a zero-based index) till the
last element that is (5, 7, 9, 11).

T[1:4] is a sublist having all the elements of T starting from the element
at the first index till the element at the third index that is (3, 5, 7).

8.3.2  Nonmutability

Unlike a list, a tuple is nonmutable as one cannot update any element of the
tuple. On setting the element of a tuple to a particular number we get the
following error.

Non-Mutability

T1[2]=3

--

TypeError Traceback (most recent
call last)

<ipython-input-12-bc71ae9aae00> in <module>()

----> 1 T1[2]=3

TypeError: 'tuple' object does not support item

8.3.3  Operators

Python provides four operators for tuples. These are: +, *, in, and not in. The
+ operator in T1+T2 concatenates two tuples T1 and T2. The * operator in
T1*n repeats the elements of the list T1, n times. The in operator checks if a
given element is available in the tuple. The not in operator checks if a given
element is not available in the tuple. In order to understand the operators,
consider the following code. The list T9 is the concatenation of T2 and T8.
The list T10 has elements of T2 repeated thrice. Note that we cannot use
the – operator with a tuple.

Code: Operator +, *, in and not in

T2=(90, 80, 70)

#Concatenate two tuples

T9=T2+T8

print(T9)

#Using * operator

num=3

PPUPS.CH08_1pp.indd 178PPUPS.CH08_1pp.indd 178 4/26/2023 4:23:08 PM4/26/2023 4:23:08 PM

Lists, Tuple, and Dictionary • 179

#repeat the elements 'num' times

T10=T2*num

print(T10)

#- Illegal

T11=T2-T8

print(T11)

Output:

(2, 675, 8, 16, 32, 64, 90, 80, 70)

(2, 675, 8, 16, 32, 64, 2, 675, 8, 16, 32, 64, 2, 675, 8, 16,
32, 64)

TypeError Traceback (most recent call last) <ipython-input-14-
7ccfbd405905> in <module>()1

#- Illegal----> 2L11=L2-L8 3 print(L9)

TypeError: unsupported operand type(s) for -: 'list' and 'list'

8.3.4  Traversal

The for loop can be used to traverse a tuple in the same way as a list. In order
to understand the usage, consider the following code which stores each item
of the tuple in i and print them.

Code:

#Display

def display(T):

 for i in T:

print(i, end=',')

print()

T=(2,3,4,5,6,7,8,10,)

display(T)

Output:

2,3,4,5,6,7,8,10,	

The above discussion revealed the methods of creation of a tuple, its process-
ing, slicing, and indexing. Having seen the basics, let us now perform slightly
more complicated tasks like displaying a tuple entered by the user and finding
the maximum and the minimum elements from a tuple.

PPUPS.CH08_1pp.indd 179PPUPS.CH08_1pp.indd 179 4/26/2023 4:23:08 PM4/26/2023 4:23:08 PM

180 • Python Programming Using Problem Solving

Illustration 8.1:

Ask the user to enter a tuple and find the element having the maximum value
from the tuple, without using the max function.

Solution:

In the following code, the variable maxVal would store the maximum ele-
ment of the tuple. Initially, it stores the first element of the tuple. As we trav-
erse, if we can find an element which is greater than maxVal. The value of
maxVal would be updated by the greater value found in the tuple. At the end
of the program, the value of maxVal is printed.

Program:

#Find maximum

def max(T):

 maxVal=T[0]

 for i in T:

 if i>maxVal:

 maxVal=i

 return(maxVal)

T=(2,13,41,455,678,7,8,10,)

m=max(T)

print(m)

Output:

678

8.3.5  Functions

Table 8.2 shows the various functions for tuples. These functions can be used
to carry out many of the tasks easily and efficiently. The illustration that fol-
lows shows the use of these functions.

TABLE 8.2  Functions pertaining to Tuple.

Function Description

len(T) The function returns the number of elements in the tuple T

max(T) The function returns the element with the maximum value

min(T) The function returns the element with the minimum value

tuple(S) This function converts the list (S) into a tuple

PPUPS.CH08_1pp.indd 180PPUPS.CH08_1pp.indd 180 4/26/2023 4:23:08 PM4/26/2023 4:23:08 PM

Lists, Tuple, and Dictionary • 181

Illustration 8.2:

Write a program that asks the user to enter two tuples and checks the following:

(a)	 Compare the two tuples.
(b)	Count the number of elements in the two tuples.
(c)	 Returns the element with the maximum value in the first tuple.
(d)	Returns the element with the minimum value in the second list.
(e)	 Convert a list into a tuple.

The above tasks should be accomplished using the methods of the functions.

Solution:

Table 8.2 shows the various functions associated with tuples. The program to
accomplish the given task follows.

Program:

print('For the first tuple')

x1=int(input('Enter the first number'))

y1=int(input('Enter the second number'))

T1=(x1,y1)

print('For the second tuple')

x2=int(input('Enter the first number'))

y2=int(input('Enter the second number'))

T2=(x2,y2)

l=len(T1)

print('Length of the first tuple',l)

m=max(T1)

print('Maximum in the first tuple',m)

m=min(T1)

print('Minimum in the first tuple',m)

if(T1 == T2):

print('The two tuples are same')

else:

print('They are not same')

L=[2,4,3,1]

T=tuple(L)

print(T)

PPUPS.CH08_1pp.indd 181PPUPS.CH08_1pp.indd 181 4/26/2023 4:23:08 PM4/26/2023 4:23:08 PM

182 • Python Programming Using Problem Solving

Output:

For the first tuple

Enter the first number1

Enter the second number2

For the second tuple

Enter the first number1

Enter the second number2

Length of the first tuple 2

Maximum in the first tuple 2

Minimum in the first tuple 1

The two tuples are same

(2,4,3,1)

8.4	 ASSOCIATE ARRAYS AND DICTIONARIES

An associate array is a data structure having a collection of pairs of keys and
corresponding values. The keys in an associative array are unique. This is
because each value is accessed using the corresponding key. The presence of
more than one key with the same value would lead to ambiguity. In an associ-
ate array, one can insert items in the collection, remove items, update them,
and look for a particular value associated with the key.

Dictionaries in Python are also a kind of associate arrays. They contain
key-value pairs, where a key can be any nonmutable data structure like a
string, tuple, etc. In Python, one can create a dictionary using curly braces.
The elements of a dictionary are separated by a comma and each element has
two parts: a key and a value. The key, in a dictionary, can be any immutable
object e.g., a string. The value corresponding to a particular key is written by
putting a colon after the key. For example, the following statement creates a
dictionary called PersonAge. The first element of the dictionary has “Harsh”
as a key and the value corresponding to this key is 100. The second element
of the dictionary has “Rohan” as its key and the value corresponding to this
key is 21 and the third element of the dictionary has “Tarush” as key and the
value corresponding to this key is 21. The print function can be used to print
the dictionary. The dictionary has been shown in Figure 8.4 and the items and
corresponding keys in Table 8.3.

PersonAge={'Harsh':100,'Rohan':21,'Tarush':20}

print(PersonAge)

PPUPS.CH08_1pp.indd 182PPUPS.CH08_1pp.indd 182 4/26/2023 4:23:08 PM4/26/2023 4:23:08 PM

Lists, Tuple, and Dictionary • 183

Output:

{'Harsh': 100, 'Rohan': 21, 'Tarush': 20}

PersonAge

Harsh

Roshan

Tarush

100

21

20

FIGURE 8.4  Dictionary associates a key with value.

TABLE 8.3  Dictionary Person Age.

Key Value Item

“Harsh” 100 (“Harsh,” 100)

“Rohan” 21 (“Rohan,” 21)

“Tarush” 20 (“Tarush,” 20)

8.4.1  Displaying Elements of a Dictionary

The items of a dictionary can be seen by using the items() function. The fol-
lowing statement prints the items of the dictionary PersonAge.

PersonAge.items()

Output:

dict_items([('Harsh', 100), ('Rohan', 21), ('Tarush', 20)])

Syntax

<name of the dictionary>.item()

The value corresponding to a particular key can be seen by using the key
as the index. For example, the value corresponding to the key “Harsh” can be
seen as follows:

PersonAge['Harsh']

PPUPS.CH08_1pp.indd 183PPUPS.CH08_1pp.indd 183 4/26/2023 4:23:08 PM4/26/2023 4:23:08 PM

184 • Python Programming Using Problem Solving

Output:

100

Syntax: Indexing in dictionary

<name of the dictionary>[<key>]

Dictionaries in Python come with many build-in functions for displaying
the keys, values, or the complete item. Some of them are presented in Table 8.4.

TABLE 8.4  Functions for displaying keys, values, and items of a dictionary.

Name of the function Explanation

Keys() Displays the list of keys of the given dictionary

values() Displays the list of values of the given dictionary

Items() Displays the items of the given dictionary

The following code shows how to create a dictionary of 5 elements. Note
that each string is enclosed in a single quote and the value corresponding to a
given key is separated using a colon.

BookPages = {'Programming in C': 250, 'Programming in C#': 450,
'Python for beginners': 400, 'Physics': 100, 'Chemistry':
120}

The keys function will display the keys of the dictionary.

BookPages.keys()

Output:

dict_keys(['Programming in C', 'Programming in C#', 'Python for
beginners', 'Physics', 'Chemistry'])

Syntax

<name of the dictionary>.keys()

The values function will display the values of the dictionary.

BookPages.values()

Output:

dict_values([250, 450, 400, 100, 120])

PPUPS.CH08_1pp.indd 184PPUPS.CH08_1pp.indd 184 4/26/2023 4:23:08 PM4/26/2023 4:23:08 PM

Lists, Tuple, and Dictionary • 185

Syntax

<name of the dictionary>.values()

8.4.2  Some Important Functions of Dictionaries

This section discusses some of the important functions for dealing with dic-
tionaries. The meaning of the function along with the usage has been pre-
sented in this section.

8.4.2.1  The len function returns the number of elements in a given dictionary.

Example

len(BookPages)

Output:

5

8.4.2.2  The max function returns the key with maximum value. If the key is a string, then the
value in the lexicographic ordering would be returned.

Example:

max(BookPages)

Output

'Python for beginners'

8.4.2.3  The min function returns the key with minimum value. If the key is a string, then the
value in the lexicographic ordering would be returned.

Example:

min(BookPages)

Output:

'Chemistry'

8.4.2.4  The sorted function would sort the elements of a given dictionary by their keys. If the
keys are strings then lexicographic ordering would be followed.

sorted(BookPages)

PPUPS.CH08_1pp.indd 185PPUPS.CH08_1pp.indd 185 4/26/2023 4:23:09 PM4/26/2023 4:23:09 PM

186 • Python Programming Using Problem Solving

Output:

['Chemistry', 'Physics', 'Programming in C', 'Programming in
C#', 'Python for beginners']

8.4.2.5  The pop function takes out the element with the given key from the dictionary.

BookPages.pop('Physics')

Output:

100

Note that after calling the pop function, the item with the key “Physics”
has been removed from the dictionary.

BookPages

{'Chemistry': 120, 'Programming in C': 250, 'Programming in C#':
450, 'Python for beginners': 400}

8.4.3  Input from the User

The following illustration shows how to ask the user to input the values of the
dictionary. The program asks the user to enter the name of the book and the
corresponding number of pages.

A dictionary called BookPages is initialized to {}. This is followed by ask-
ing the user to enter the number of elements. In each iteration, the key and
the corresponding value is taken and inserted into the dictionary.

Input

BookPages={}

n=int(input('Enter the number of pages\t:'))

for i in range(n):

	 Book=input('Enter the name of the book\t:')

	 pages=int(input('Enter the number of pages\t:'))

	 BookPages[Book]=pages

print(BookPages)

Output:

Enter the number of pages :5

Enter the name of the book :Programming in C

PPUPS.CH08_1pp.indd 186PPUPS.CH08_1pp.indd 186 4/26/2023 4:23:09 PM4/26/2023 4:23:09 PM

Lists, Tuple, and Dictionary • 187

Enter the number of pages :250

Enter the name of the book :Programming in C#

Enter the number of pages :450

Enter the name of the book :Python for beginners

Enter the number of pages :400

Enter the name of the book :Physics

Enter the number of pages :100

Enter the name of the book :Chemistry

Enter the number of pages :120

{'Programming in C': 250, 'Programming in C#': 450, 'Python for
beginners': 400, 'Physics': 100, 'Chemistry': 120}

8.5	 CONCLUSION

Lists, tuples, and dictionaries are the most important objects in Python. The
student must be equipped with the power of these objects before proceeding
any further. The following chapters make extensive use of the concepts stud-
ied in this chapter; therefore, the reader is advised to spend considerable time
in attempting the exercises that follow.

GLOSSARY

List: A Python list is a sequence object. It may contain any number of ele-
ments, which may or may not be of the same type. They are mutable.

Tuples: A tuple can contain different types of elements and are not
mutable.

Dictionary: A dictionary maps the index (which may be a string) to a
value.

POINTS TO REMEMBER

�� Lists are mutable.
�� A list may contain different types of elements.
�� Tuples are not mutable.
�� Dictionary maps a key to a value.
�� Strings in Python are nonmutable.

PPUPS.CH08_1pp.indd 187PPUPS.CH08_1pp.indd 187 4/26/2023 4:23:09 PM4/26/2023 4:23:09 PM

188 • Python Programming Using Problem Solving

EXERCISES

Multiple Choice Questions

1.	 In Python a list is

	 (a)  Mutable

	 (b)  Can contain different types of elements

	 (c)  Both

	 (d)  None of the above

2.	 A list in Python

	 (a)  Is 0 index based

	 (b)  Can be accessed by indexing

	 (c)  Negative indices can be used in indexing

	 (d)  All of the above

3.	 L_names=[“Harsh,” “Amit,” “Sahil,” “Viresh”]

	 L_names.sort()

	 print(L_names)

	 (a)  [“Amit,” “Harsh,” “Sahil,” “Viresh”]

	 (b)  [“Amit,” “Sahil,” “Viresh”]

	 (c)  [“Harsh,” “Amit,” “Sahil,” “Viresh”]

	 (d)  Error as sort function cannot be applied on a list having strings as its
elements.

4.	 min(L_names)

	 (a)  “Harsh”				 (b)  “Amit”

	 (c)  “Viresh”				 (d)  None of the above

5.	 L_names[2:3]

	 (a)  [“Sahil”]				 (b)  [“Sahil,” “Raven”]

	 (c)  [“Harsh,” “Sahil”]		 (d)  None of the above

PPUPS.CH08_1pp.indd 188PPUPS.CH08_1pp.indd 188 6/15/2023 2:17:16 PM6/15/2023 2:17:16 PM

Lists, Tuple, and Dictionary • 189

6.	 Which function is used to delete an element from a list?

	 (a)  Clear				 (b)  Pop

	 (c)  Append 				 (d)  None of the above

7.	 Can a tuple have a list as its element?

	 (a)  Yes				 (b)  No

	 (c)  Depending upon the situation 	 (d)  None of the above

8.	 Which of the following is used to delete a tuple?

	 (a)  del				 (b)  clear

	 (c)  Both 				 (d)  None of the above

9.	 Which function can be used to convert a list to a tuple?

	 (a)  tuple				 (b)  to_tuple

	 (c)  list				 (d)  None of the above

10.	 Which of the following can be the index in a dictionary?

	 (a)  String				 (b)  List

	 (c)  Tuple 				 (d)  None of the above

11.	 Which of the following cannot be the index in a dictionary?

	 (a)  String				 (b)  List

	 (c)  Character 			 (d)  None of the above

12.	 Which of the following is used to take out a particular element of a dic-
tionary?

	 (a)  Clear				 (b)  Pop

	 (c)  Push				 (d)  None of the above

Theory

1.	 What is a list? Is it mutable?

2.	 Explain indexing and slicing in lists.

PPUPS.CH08_1pp.indd 189PPUPS.CH08_1pp.indd 189 4/26/2023 4:23:09 PM4/26/2023 4:23:09 PM

190 • Python Programming Using Problem Solving

3.	 Explain the following functions vis-à-vis Python lists.

	 (a)  append() 		 (b)  extend()

	 (c)  insert()			 (d)  remove()

	 (e)  pop() 			 (f)  clear()

	 (g)  index() 			 (h)  count()

	 (i)  sort() 			 (j)  reverse()

	 (k)  copy()

4.	 Explain the purpose of the following operators vis-à-vis lists.

	 (a)  +			 (b)  *

	 (c)  in			 (d)  not in

5.	 Explain the various functions of a dictionary. Is a dictionary the same as
a tuple?

6.	 Explain the following functions:

	 (a)  isanum()			 (b)  isalpha()

	 (c)  isdecimal() 		 (d)  isdigit()

	 (e)  isidentifier() 		 (f)  islower()

	 (f)  isupper() 		 (h)  swapcase()

	 (i)  isspace() 		 (j)  lstrip()

	 (k)  rstrip() 			 (l)  replace()

	 (m)  join()

Programming Exercises

1.	 Ask the user to enter the names of his friends in a list.

	 (a)  Sort the above list.

	 (b)  Can we apply the min function to the above list?

	 (c) � Create a sublist from the above list having elements at the odd
positions.

PPUPS.CH08_1pp.indd 190PPUPS.CH08_1pp.indd 190 6/15/2023 2:18:31 PM6/15/2023 2:18:31 PM

Lists, Tuple, and Dictionary • 191

	 (d)  Does the list contain any duplicate elements?

	 (e) � From the above list find the name having the maximum number of
vowels.

2.	 Ask the user to enter the x and y coordinates of n points and find the dis-
tances between all the possible pairs.

3.	 Write a program to reverse a string.

4.	 Write a program to find the sum of ASCII values of the characters of a
given string.

5.	 Write a program to find a particular substring in a given string.

6.	 Write a program to split a given text into tokens.

7.	 Write a program to check which of the tokens obtained in the above ques-
tion are in the title case.

8.	 Write a program to check how many alphanumeric strings are there in the
tokens obtained in question 6.

9.	 Write a program to check how many alpha strings are there in the tokens
obtained in question 6.

10.	 Write a program to check how many numeric strings are there in the
tokens obtained in question 6.

PPUPS.CH08_1pp.indd 191PPUPS.CH08_1pp.indd 191 4/26/2023 4:23:09 PM4/26/2023 4:23:09 PM

PPUPS.CH08_1pp.indd 192PPUPS.CH08_1pp.indd 192 4/26/2023 4:23:09 PM4/26/2023 4:23:09 PM

Objectives

After reading this chapter, the reader should be able to

�� Understand the use and application of iterators
�� Use iterators to produce sequences
�� Use generators to generate sequences
�� Understand and use list comprehensions

9.1	 INTRODUCTION

Python is powerful due to the presence of lists, strings, tuples, dictionary,
and files. However, one should be able to efficiently access and manipulate
the elements of these objects to accomplish a given task. Though, for loop
can be used to access and manipulate the elements of these objects, Python
comes with better option namely iterators. Iterators help us to achieve the
said goal efficiently and effectively. One can also define an iterable object, in
Python. Generators, in Python, facilitates the dynamic generation of lists and
sequences. This chapter also introduce comprehensions, which provide an
elegant way to craft lists, tuples, and sets.

The chapter has been organized as follows. The second section of
this chapter revisits for. The iterators have been introduced in the third
section of this chapter. The fourth section explains how to define an iter-
able object. The generators have been introduced and explained in the

C H A P T E R 9
Iterations, Generators, and
Comprehensions

PPUPS.CH09_2pp.indd 193PPUPS.CH09_2pp.indd 193 5/18/2023 10:56:58 AM5/18/2023 10:56:58 AM

194 • Python Programming Using Problem Solving

fifth section of this chapter. The sixth section of this chapter deals with the
comprehensions.

The chapter assumes importance as it forms the foundation of many of
the difficult tasks presented in the following chapters. Also, the knowledge
of these would make the day to day tasks easy and spare the programmer from
the horror of writing longer codes.

9.2	 THE POWER OF “FOR”

A for loop can be used to iterate through a list, tuple, string, or a dictionary.
This section gives a brief description of the for loop for the above iterable
objects. Let us start with the syntax of for. Note that, in the following code,
an element from L is extracted one by one and, in each iteration, i stores the
object.

Syntax:

for i in L:

	 #do something

L is list, string, tuple or dictionary

When one writes “i in L,” where L is a list, i points to the first element
of the list and as the iteration progresses, i points to the second element, the
third element, and so on. These elements can be, then, independently manip-
ulated. The concept has been exemplified in Illustration 9.1. The illustration
shows the manipulation of a list using the for loop. In the illustration, the
given list contains a set of numbers, some of them positive and some negative.
The negative numbers are appended to a list called N, whereas the positive
numbers are appended in a list called P.

Illustration 9.1:

From a given list, put all the positive numbers in one list and negative num-
bers in the other list.

Solution:

Create two lists P and N. Initialize both of them to []. Now check each num-
ber in the list. If the number is positive, put it in P and if the number is
negative put it in N.

PPUPS.CH09_2pp.indd 194PPUPS.CH09_2pp.indd 194 5/18/2023 10:56:58 AM5/18/2023 10:56:58 AM

Iterations, Generators, and Comprehensions • 195

Program:

L= [1, 2, 5, 7, -1, 3, -6, 7]

P=[]

N=[]

for num in L:

 if(num>0):

 P.append(num)

 elif (num<0):

 N.append(num)

print('The list of positive numbers \t:',P)

print('The list of negative numbers \t:',N)

>>>

Output:

The list of positive numbers 	 : [1, 2, 5, 7, 3, 7]

The list of negative numbers 	 : [-1, -6]

>>>

A for loop can also be used to manipulate strings. When one writes “i in
str,” where str is a string, i points to the first character of the string and as
the iteration progresses, i points to the second character, the third character
and so on. These characters can be, then, independently manipulated. The
concept has been exemplified in Illustration 9.2.

Illustration 9.2:

Ask the user to enter a string and put all the vowels of the string in one string
and the consonants in the other string.

Solution:

Create two strings: str1 and str2. Initialize both to “”. Now, check each char-
acter in the string, if it is a vowel, concatenate it to with str1 otherwise con-
catenate it to with str2.

Program:

string =input('Enter a string\t:')

str1=""

str2=""

for i in string:

PPUPS.CH09_2pp.indd 195PPUPS.CH09_2pp.indd 195 5/18/2023 10:56:58 AM5/18/2023 10:56:58 AM

196 • Python Programming Using Problem Solving

	 if((i =='a')|(i=='e')|(i=='i')|(i=='o')|(i=='u')):

 str1=str1+str(i)

	 else :

 str2=str2+str(i)

print('The string containing the vowels is '+str1)

print('The string containing consonants '+str2)

>>

Similarly, a for loop can be used to iterate through a tuple and keys of a
dictionary as shown in Illustrations 9.3 and 9.4.

Illustration 9.3:

This illustration demonstrates the use of for for Iterating through a tuple.

Solution:

T=(1, 2, 3)

for i in T:

 print(i)

print(T)

>>>

Output:

1

2

3

(1, 2, 3)

>>>

Illustration 9.4:

This illustration demonstrates the use of for for iterating through a dictionary.

Solution:

Dictionary={'Programming in C#': 499, 'Algorithms Analysis and
Design':599}

print(Dictionary)

for i in Dictionary:

 print(i)

>>>

PPUPS.CH09_2pp.indd 196PPUPS.CH09_2pp.indd 196 5/18/2023 10:56:58 AM5/18/2023 10:56:58 AM

Iterations, Generators, and Comprehensions • 197

Output:

{'Programming in C#': 499, 'Algorithms Analysis and Design':
599}

Programming in C#

Algorithms Analysis and Design

>>>

9.3	 ITERATOR

The above tasks can also be accomplished using iterators. The “iter” function
returns the iterator of the object passed as an argument. The itertaor can be
used to manipulate lists, strings, tuples, files, and dictionary, in the same way
as a for loop. However, the use of iterator ensures flexibility and additional
power to a programmer. This would be established in the following section.

An iterator can be set on a list using the following:

<name of the iterator> = iter(<name of the List>)

The iterator can move to the next element, using the __next__() method.
An iterator, as stated earlier, can iterate through any iterable object, includ-
ing list, tuple, string, or a directory. When there are no more elements then a
StopIteration exception is raised.

The following illustration shows the manipulation of a list using iterators.
In the illustration, the given list contains a set of numbers, some of them posi-
tive, and some negative. The negative numbers are appended to a list called
N, whereas the positive numbers are appended in a list called P. The same
problem was solved using the for loop in Illustration 9.1.

Illustration 9.5:

Through using iterators, the following program puts the positive and nega-
tive numbers of a list into two separate lists and raises error at the end of the
program.

Solution:

L = [1,2,3,-4,-5,-6]

P = []

N = []

t = iter(L)

PPUPS.CH09_2pp.indd 197PPUPS.CH09_2pp.indd 197 5/18/2023 10:56:58 AM5/18/2023 10:56:58 AM

198 • Python Programming Using Problem Solving

try:

	 while True:

		 x = t.__next__()

		 if x >= 0:

			 P.append(x)

		 else:

			 N.append(x)

except StopIteration:

	 print('original List- ' , L , '\nList containing the
poisitive numbers- ', P , '\nList containing the negative
numbers- ', N)

	 raise StopIteration

The next example deals with a string. The iterator is set to the first ele-
ment of the string and is then set to the second element, third element, and
so on. The following illustration solves the problem given in Illustration 9.2
using iterators.

Illustration 9.6:

The program uses iterators to separate the vowels and consonants of a given
string and raises error at the end of the program.

Solution:

The vow and cons strings are initialized to “” and each character of the given
list is checked. If the character is a consonant it is concatenated to cons,
otherwise it is concatenated to vow.

s = 'colour'

t = iter(s)

vow = ''

cons = ''

try:

	 while True:

		 x = t.__next__()

		 if x in ['a','e','i','o','u']:

			 vow += x	

		 else:

			 cons += x	

PPUPS.CH09_2pp.indd 198PPUPS.CH09_2pp.indd 198 5/18/2023 10:56:58 AM5/18/2023 10:56:58 AM

Iterations, Generators, and Comprehensions • 199

except StopIteration:

	 print('String - ' + s + '\nVowels - ' + vow + '\nConsonents
- ' + cons)

	 raise StopIteration

A little more complex example of iterators has been shown in the follow-
ing illustration. The illustration adds the corresponding elements of the two
lists and then sorts the concatenated list.

Illustration 9.7:

Add the corresponding elements of two given lists and sort the final list.

Solution:

#The program concatenates two lists into one by iterating over
individual elements of the lists using the list function and
then sorts the concatenated list.

L1 = [3, 6, 1, 8, 5]

L2 = [7, 4, 6, 2, 9]

i1 = iter(L1)

i2 = iter(L2)

i3 = sorted(list(i1) + list(i2))

print('List1 - ', i1 , '\nList2 - ', l2 , '\nSortedCombn - ', l3)

9.4	 DEFINING AN ITERABLE OBJECT

One can define ones’ own class, in which __init__, __iter__ and __next__
can be defined as per the requirement. The init function initializes the vari-
ables of the class, the iter defines the mechanism of iterations and the next
method implements the mechanism its jump to the next item.

Illustration 9.8:

This illustration demonstrates the use of Iterator.

Solution:

class yrange:

 def _init_(self, n):

	 self.a = int(input('Enter the first term\t:'))

	 self.d=int(input('Enter the common differnce\t:'))

PPUPS.CH09_2pp.indd 199PPUPS.CH09_2pp.indd 199 5/18/2023 10:56:58 AM5/18/2023 10:56:58 AM

200 • Python Programming Using Problem Solving

	 self.i=self.a

	 self.n=n

 def _iter_(self):

		 return self

 def _next_(self):

	 if self.i<self.n:

		 i=self.i

		 self.i = self.i + self.d

		 return i

	 else:

		 raise StopIteration()

y=yrange

y._init_(y, 8)

print(y)

print(y._next_(y))

print(y._next_(y))

print(y._next_(y))

>>>

Output:

Enter the first term	 :1

Enter the common differnce	 :2

<class '__main__.yrange'>

1

3

5

>>>

9.5	 GENERATORS

Generators are functions that generate the requisite sequence. However,
there is an inherent difference between a normal function and a genera-
tor. In a generator, the values are generated as and when we proceed. So,
if one comes back to the function after a particular value is generated, then
and instead of starting from the beginning the function starts from the point
where we let off.

PPUPS.CH09_2pp.indd 200PPUPS.CH09_2pp.indd 200 5/18/2023 10:56:58 AM5/18/2023 10:56:58 AM

Iterations, Generators, and Comprehensions • 201

The task seems difficult but has an advantage. The concept can help
the programmer to generate lists containing the desired sequences. For
example, if one wants to dynamically generate a list containing the terms
of an arithmetic progression, in which each term is “d” more than the first
term, generators come to the rescue. Similarly, the sequences like geomet-
ric progression, Fibonacci series etcetera can be easily generated using
generator.

Python comes with yield, which helps to start from the point where we
let of. This is markedly different from return used in normal functions which
does not save the state where we let off. If the function having return is called
again it starts all over again.

The following illustration exemplifies the use of generators to pro-
duce simple sequences like arithmetic progression, geometric progression,
Fibonacci series, etc.

Illustration 9.9:

Write a generator to produce arithmetic progression, where in the first term,
the common difference and the number of terms is entered by the user.

Solution:

def arithmetic_progression(a, d, n):

 i=1

 while i<=n:

	 yield (a+(i-1)*d)

	 i+=1

a=int(input('Enter the first term of the arithmetic
progression\t:'))

d=int(input('Enter the common differ nce of the arithmetic
progression\t:'))

n=int(input('Enter the number of terms of the arithmetic
progression\t:'))

ap = arithmetic_progression(a, d, n)

print(ap)

for i in ap:

 print(i)

>>>

PPUPS.CH09_2pp.indd 201PPUPS.CH09_2pp.indd 201 5/18/2023 10:56:58 AM5/18/2023 10:56:58 AM

202 • Python Programming Using Problem Solving

Output:

Enter the first term of the arithmetic progression	:3

Enter the common difference of the arithmetic progression	 :5

Enter the number of terms of the arithmetic progression	 :8

<generator object arithmetic_progression at 0×031C2DE0>

3

8

13

18

23

28

33

38

>>>

Illustration 9.10:

Write a generator to produce Geometric Progression, where in the first term,
the common ratio and the number of terms is entered by the user.

Solution:

def geometric_progression(a, r, n):

  i=1;

 while i<=n:

	 yield(a*pow(a, i-1))

	 i+=1

a=int(input('Enter the first term of the geometric
progression\t:'))

r=int(input('Enter the common ratio of the geometric
progression\t:'))

n=int(input('Enter the number of terms of the geometric
progression\t:'))

gp=geometric_progression(a, r, n)

for i in gp:

 print(i)

>>>

PPUPS.CH09_2pp.indd 202PPUPS.CH09_2pp.indd 202 5/18/2023 10:56:58 AM5/18/2023 10:56:58 AM

Iterations, Generators, and Comprehensions • 203

Output:

Enter the first term of the geometric progression  :3

Enter the common ratio of the geometric progression  :4

Enter the number of terms of the geometric progression  :7

3

9

27

81

243

729

2187

>>>

Illustration 9.11:

Write a generator to produce Fibonacci series.

Solution:

def fib(n):

 a=[]

 if n==1:

		 a[0]=1

		 yield 1

	 elif n==2:

		 a[1]=1

		 yield 1

	 else:

		 a[0]=1

		 a[1]=1

		 i=2

		 while i<=n:

			 a[i]=a[i-1]+a[i-2]

			 yield (a[i])

n=int(input('Enter the number of terms\t:'))

fibList=fib(n)

for i in fibList:

 print(i)

PPUPS.CH09_2pp.indd 203PPUPS.CH09_2pp.indd 203 5/18/2023 10:56:58 AM5/18/2023 10:56:58 AM

204 • Python Programming Using Problem Solving

It may be stated here that the value of i increments as in the next iteration.
The value does not change before or after the yield. In order to understand
the concept, let us go through the following illustration.

Illustration 9.12:

This illustration demonstrates the effect of yield on the value of the counter.

Solution:

The reader is expected to note the change in the value after and before yield.

Program:

def demo():

 print ('Start')

 for i in range(20):

		 print('Value of i before yield\t:',i)

		 yield i

		 print('Value of i after yield\t:',i)

 print('End')

a=demo()

for i in a:

 print (i)

Output:

Start

Value of i before yield  : 0

0

Value of i after yield  : 0

Value of i before yield  : 1

1

Value of i after yield  : 1

Value of i before yield   : 2

2

Value of i after yield  : 2

Value of i before yield   : 3

3

Value of i after yield  : 3

PPUPS.CH09_2pp.indd 204PPUPS.CH09_2pp.indd 204 5/18/2023 10:56:58 AM5/18/2023 10:56:58 AM

Iterations, Generators, and Comprehensions • 205

Value of i before yield   : 4

4

Value of i after yield  : 4

Value of i before yield   : 5

5

Value of i after yield  : 5

Value of i before yield   : 6

6

Value of i after yield  : 6

Value of i before yield   : 7

7

Value of i after yield  : 7

Value of i before yield  :   : 8

8

Value of i after yield  : 8

Value of i before yield   : 9

9

Value of i after yield  : 9

Value of i before yield   : 10

10

Value of i after yield  : 10

Value of i before yield   : 11

11

Value of i after yield  : 11

Value of i before yield   : 12

12

Value of i after yield  : 12

Value of i before yield   : 13

13

Value of i after yield  : 13

Value of i before yield   : 14

14

Value of i after yield   : 14

Value of i before yield  : 15

15

Value of i after yield  : 15

Value of i before yield   : 16

PPUPS.CH09_2pp.indd 205PPUPS.CH09_2pp.indd 205 5/18/2023 10:56:58 AM5/18/2023 10:56:58 AM

206 • Python Programming Using Problem Solving

16

Value of i after yield  : 16

Value of i before yield   : 17

17

Value of i after yield  : 17

Value of i before yield   : 18

18

Value of i after yield  : 18

Value of i before yield   : 19

19

Value of i after yield  : 19

End

>>>

9.6	 COMPREHENSIONS

The aim of a programming language is to make things easy for a programmer.
A task, though, can be performed in many ways but the one which requires
least coding is the most appealing to a coder. Python has many features which
facilitate programming. Comprehensions are one of them. Comprehensions
allow sequences to be built from other sequences. Comprehensions can be
used for lists, dictionary and set comprehension. In the earlier version of
Python (Python 2.0) only list comprehensions were allowed. However, in the
newer versions comprehensions can also be used with dictionary and sets also.

The following illustration explains the use of comprehensions to generate
lists in various cases.

�� The range(n) function generates numbers up to n. The first comprehen-
sion generates the list of numbers which are cubes of all the numbers
generated by the range function.

�� The second comprehension works in the same way but generates 3 to the
power of x.

�� The third comprehension generates a list having numbers generated by
the range (n) function, which are multiple of 5.

�� In the fourth comprehension the comprehension takes the words of sen-
tence “Winter is coming” and generates a list containing the word in caps,
in running and the length of the word.

�� Comprehensions can also be used to generate lists, satisfying a given con-
dition.

PPUPS.CH09_2pp.indd 206PPUPS.CH09_2pp.indd 206 5/18/2023 10:56:58 AM5/18/2023 10:56:58 AM

Iterations, Generators, and Comprehensions • 207

Illustration 9.13:

Generate the following lists using comprehensions.

�� x3, x from 0 to 9
�� 3x, x from 2 to 10
�� All the multiples of 5 from the previous list
�� The caps, running version and the length of each word in the sentence

“Winter is coming”

Solution:

L1 = [x**3 for x in range(10)]

print(L1)

L2 = [3**x for x in range(2, 10, 1)]

print(L2)

L3 = [x for x in L2 if x%5==0]

print(L3)

String = "Winter is coming".split()

print(String)

String_cases=[[w.upper(), w.lower(), len(w)] for w in String]

for i in String_cases:

 print(i)

list1 = [1, '4', 9, 'a', 0, 4]

square_int = [x**2 for x in list1 if type(x)==int]

print(square_int)

>>>

Output:

[0, 1, 8, 27, 64, 125, 216, 343, 512, 729]

[9, 27, 81, 243, 729, 2187, 6561, 19683]

[]

['Winter', 'is', 'coming']

['WINTER', 'winter', 6]

['IS', 'is', 2]

['COMING', 'coming', 7]

[1, 81, 0, 16]

>>>

PPUPS.CH09_2pp.indd 207PPUPS.CH09_2pp.indd 207 5/18/2023 10:56:58 AM5/18/2023 10:56:58 AM

208 • Python Programming Using Problem Solving

A comprehension contains the input sequence along with the expression
that represents the members. A comprehension may also have an optional
predicate expression.

In order to understand the concept, let us consider one more illustration
in which a list of temperatures in Celsius is given and the corresponding list
containing the temperatures in Kelvin are to generated. The temperatures in
Celsius and Kelvin are related as follows.

Kelvin(T) = Celsius(T) + 273.16

Illustration 9.14:

Given a list containing temperatures in Celsius, generate a list containing tem-
peratures in Kelvin.

Solution:

The list L_kelvin, is a list where in each element is 273.16 more than the
corresponding element in L_cel. Note that the task has been accomplished in
the definition of the list L_Kelvin itself.

Program:

L_Cel = [21.2, 56.6, 89.2, 90,1, 78.1]

L_Kelvin = [x +273.16 for x in L_Cel]

print('The output list')

for i in L_Kelvin:

 print(i)

Output:

The output list

294.36

329.76000000000005

362.36

363.16

274.16

351.26

>>>

Another important application of comprehension is to generate the
Cartesian product of two sets.

PPUPS.CH09_2pp.indd 208PPUPS.CH09_2pp.indd 208 5/18/2023 10:56:58 AM5/18/2023 10:56:58 AM

Iterations, Generators, and Comprehensions • 209

The cross product of two sets, A and B, is a set containing tuples of the
form (x, y), where x belongs to the set A and y belongs to the set B. Illustration
9.15 implements the program.

Illustration 9.15:

Find the Cartesian product of two given sets.

Solution:

A= ['a', 'b', 'c']

B= [1, 2, 3, 4]

AXB = [(x, y) for x in A for y in B]

for i in AXB:

 print(i)

>>>

Output:

('a', 1)

('a', 2)

('a', 3)

('a', 4)

('b', 1)

('b', 2)

('b', 3)

('b', 4)

('c', 1)

('c', 2)

('c', 3)

('c', 4)

>>>

The above program is important because the concept of relations and
hence functions, in mathematics, originates from the cross product. As a mat-
ter of fact, any subset of A × B is a relation from A to B. There are four types
of relations in mathematics: one to one, one to many, many to one, and many
to many. Out of these relations one to one and many to one are referred to as
functions.

PPUPS.CH09_2pp.indd 209PPUPS.CH09_2pp.indd 209 5/18/2023 10:56:58 AM5/18/2023 10:56:58 AM

210 • Python Programming Using Problem Solving

9.7	 CONCLUSION

The chapter explained the use of for for iterating over a list, string, tuple, or
a dictionary. It may be stated here that in C or C++, for is generally used for
the same purpose as while. However, in Python, for can be used to visit each
element individually. Note that this can also be done in JAVA or C#. In order
to define an iteratble object, __iter__ and __next__ needs to be defined for
the class. The reader is also expected to take note of the fact that yield and
return perform different tasks in Python. The use of these two has been dem-
onstrated in the illustrations. Finally, while defining a list, each element can
be crafted as per the need of the question. The chapter, though easy, becomes
important in the light of excessive use of these techniques in machine learning
and pattern recognition tasks.

GLOSSARY

�� Iterator takes an iterable object and helps to traverse the object
�� _next_(): It produces the next value of the iterable object
�� _iter_(): It helps in iteration

POINTS TO REMEMBER

�� The for statement can be used for looping over a list, string, tuple, file,
and dictionary.

�� Iter takes an object and returns corresponding iterator.
�� _next_ gives us the next element.
�� Built-in functions like list etc. accept iterators as arguments.
�� A generator produces sequence of results.
�� Yield is used when many values are to be produced from a function/gen-

erator.

EXERCISES

Multiple Choice Questions

1.	 Which of the following can be an argument in _iter()_

	 (a)  string		 (b)  tuple

	 (c)  list		 (d)  dictionary		 (e)  all of the above

PPUPS.CH09_2pp.indd 210PPUPS.CH09_2pp.indd 210 5/18/2023 10:56:58 AM5/18/2023 10:56:58 AM

Iterations, Generators, and Comprehensions • 211

2.	 The iter takes which type of object?

	 (a)  iterable			 (b)  Any object

	 (c)  Comprehension 		 (d)  Generator

3.	 What is the function of _next()_?

	 (a)  To produce next object of the iteration

	 (b)  To produce a new iteration

	 (c)  To iterate through a generator

	 (d)  None of the above

4.	 Which of the following transfers the control to the calling function?

	 (a)  return 			 (b)  yield

	 (c)  both 			 (d)  one of the above

5.	 Which of the following does not transfer the control to the calling func-
tion?

	 (a)  return 			 (b)  yield

	 (c)  both 			 (d)  one of the above

6.	 Which of the following is essentially used in generators?

	 (a)  yield 			 (b)  return

	 (c)  both 			 (d)  none of the above

7.	 Which of the following is true?

	 (a)  One can use interators with generators

	 (b)  One can use iterators with list

	 (c)  One can use iterators with comprehensions

	 (d)  All of the above

8.	 Which of the following can be iterated using a for loop

	 (a)  string			 (b)  list

	 (c)  tuple 			 (d)  all of the above

PPUPS.CH09_2pp.indd 211PPUPS.CH09_2pp.indd 211 5/18/2023 10:56:58 AM5/18/2023 10:56:58 AM

212 • Python Programming Using Problem Solving

9.	 Which of the following can be iterated using a for loop

	 (a)  string			 (b)  comprehension

	 (c)  file 			 (d)  all of the above

10.	 Which of the following behaves in the same manner as the combination of
iter() and _next()_

	 (a)  for			 (b)  if

	 (c)  both 			 (d)  none of the above

Theory

1.	 Explain the iteration protocol in Python.

2.	 What is the function of a Generator?

3.	 What is the difference between yield and return?

4.	 What are list comprehensions? Explain how comprehensions help in
evading the use of loops.

5.	 Explore some of the iteration tools in Python.

Programming Exercises

(For references regarding AP, GP, HP, primes refer to the references given at
the end of this book)

1.	 Write a generator that produces the terms of arithmetic progression.

2.	 For the above question write the corresponding iterator class.

3.	 Write a generator that produces the terms of a geometrical progression.

4.	 For the above question write the corresponding iterator class.

5.	 Write a generator that produces the terms of a harmonic progression.

6.	 For the above question write the corresponding iterator class.

PPUPS.CH09_2pp.indd 212PPUPS.CH09_2pp.indd 212 6/15/2023 2:22:07 PM6/15/2023 2:22:07 PM

Iterations, Generators, and Comprehensions • 213

7.	 Write a generator that produces all the prime numbers up to a given
number.

8.	 For the above question write the corresponding iterator class.

9.	 Write a generator that produces all the Fibonacci numbers up to n.

10.	 For the above question write the corresponding iterator class.

11.	 Write a generator that produces all the Armstrong numbers up to n.

12.	 For the above question write the corresponding iterator class.

13.	 Write a generator that produces Pythagoras triples in the range (1, 20).

14.	 For the above question write the corresponding iterator class.

15.	 Write a generator that produces all the multiples of 6 up to the given number.

16.	 For the above question write the corresponding iterator class.

17.	 Write a list comprehension that produces all the numbers which are multiple
of 2 or 5.

18.	 Write a list comprehension that converts a list containing the temperature in
degree to that in Fahrenheit.

19.	 Write a list comprehension that produces all the prime numbers.

20.	 Write a list comprehension that produces all the numbers which leave
remainder 1 when divided by 5.

21.	 Write a list comprehension that produces all the vowels of a given string.

22.	 Write a list comprehension that produces the fourth power of numbers of a
given list.

23.	 Write a list comprehension that produces the absolute powers of numbers in
a given list.

PPUPS.CH09_2pp.indd 213PPUPS.CH09_2pp.indd 213 5/18/2023 10:56:58 AM5/18/2023 10:56:58 AM

PPUPS.CH09_2pp.indd 214PPUPS.CH09_2pp.indd 214 5/18/2023 10:56:58 AM5/18/2023 10:56:58 AM

Objectives

After reading this chapter, the reader should be able to
�� Understand the concept and importance of strings
�� Understand various string operators
�� Learn about the built-in functions to manipulate strings

10.1	 INTRODUCTION

Strings are the sequence of characters. These data structures are used to store
text. For example, if one wants to store the name of a person, or for that
matter, his address, then strings are the most appropriate data structures. As
a matter of fact, the knowledge of strings is essential in the development of
many applications like word processor and parser.

Strings, in Python, can be enclosed in single quotes or double quotes, or
even in triple quotes. Though, there is no difference between a string enclosed
in single quotes or double quotes. That is “harsh” is same as “harsh.” Triple
quotes are generally used in special cases as discussed later in this chapter.
Strings in Python, come with wide variety of operators and in-build functions.

The chapter examines various aspects of strings, like nonmutability, tra-
versal, operators, and in-build functions. One of the most prominent difference
between a string and a list is nonmutability. Once a value is given to a string,
one cannot change the value of a character present at a particular position. For
the users familiar with “C,” “C++,” “C#,” or “Java,” the operators discussed in
the chapter, notably * would be a pleasant surprise. Moreover, Python provides
many build-in functions to help the programmers to handle strings.

C H A P T E R10
Strings

PPUPS.CH10_2pp.indd 215PPUPS.CH10_2pp.indd 215 5/18/2023 11:02:41 AM5/18/2023 11:02:41 AM

216 • Python Programming Using Problem Solving

This chapter examines the above issues and exemplifies them. The chapter
has been organized as follows. The second section of the chapter explores the
use of standard for and while loops in strings. The third section deals with
the operators that can be used with strings. The in-built functions used for
accomplishing various tasks have been dealt with in the fourth section. The
fifth section deals with the concept of indexing and slicing. The sixth section
deals with the features of strings and the last section concludes.

10.2	LOOPS REVISED

The traversal of a strings has already been discussed in the previous chapter. A
brief description of the topic has been presented in this section.

As stated earlier, strings are iterable objects, therefore standard loops
(read for and while) can be used to iterate though them. The for loop helps
to iterate through each character by storing the character in some variable.
The following illustration depicts the use of a for loop to iterate a string.

Illustration 10.1:

Ask the user to enter a string and print each character using a for loop.

Listing:

str1= input('Enter a string\t:')

for i in str1:

	 print('Character \t:',i)>>>

Output:

================= RUN C:/Python/String/str2.py =================

Enter a string	 :harsh

Character	 		 : h

Character 		 : a

Character			 : r

Character 		 : s

Character 		 : h

The above procedure can also help us to find the length of string. Note
that there is a built-in function to accomplish this task. However, the purpose
here is to be able to use the for loop in order to imitate the len function. In
the following illustration, a variable called length is initialized to 0, and is
incremented as we proceed.

PPUPS.CH10_2pp.indd 216PPUPS.CH10_2pp.indd 216 5/18/2023 11:02:41 AM5/18/2023 11:02:41 AM

Strings • 217

Illustration 10.2:

Ask the user to enter a string and find its length.

Listing:

name=input('Enter your name\t');

length=0

for i in name:

 length=length +1

print('The length of ',name,' is ',length)

Output:

Enter your name	 harsh

The length of harsh is 5

>>>

The ability to handle each character individually, in a string, makes tasks
like basic cryptography manageable. In order to understand the concept,
consider the following example. The example that follows, displaces the
characters two positions to the right. This is referred to as transposition. The
next example shifts the characters by “k” positions, where “k” is entered by
the user.

Illustration 10.3:

Ask the user to enter a string and displace each character by two positions to
the right.

Solution:

str1=input('Enter the string\t:')

i=0

str2=""

while i<len(str1):

 str2[i]=str1[(i+2)%len(str1)]

print(str2)

Illustration 10.4:

Ask the user to enter a string and displace each character by k positions to
the right.

PPUPS.CH10_2pp.indd 217PPUPS.CH10_2pp.indd 217 5/18/2023 11:02:41 AM5/18/2023 11:02:41 AM

218 • Python Programming Using Problem Solving

Solution:

str1=input('Enter the string\t:')

k=int(input('Enter the value of k\t:'))

i=0

str2=""

while i<len(str1):

 str2+=str1[(i+k)%len(str1)]

 print(str2)

 i+=1

print(str2)

>>>

Output:

============= RUN C:/Python/String/transposition.py ============

Enter the string	 :harsh

Enter the value of k	 :4

h

hh

hha

hhar

hhars

hhars

>>>

Substitution means replacing a symbol with some other symbol. This
replacement would result in the formation of another string by a given string.
Loops can be used for substitution. The example that follows implements one
of the most basic substitutions. Here, each character is replaced by a charac-
ter obtained by adding two to the ASCII value of the character and finding
the requisite character.

Illustration 10.5:

Ask the user to enter a string. Replace each character by that obtained by
adding two to the ASCII value of that character.

Solution:

str1=input('Enter the string\t:')

k=int(input('Enter the value of k\t:'))

i=0

PPUPS.CH10_2pp.indd 218PPUPS.CH10_2pp.indd 218 5/18/2023 11:02:41 AM5/18/2023 11:02:41 AM

Strings • 219

str2=""

while i<len(str1):

 str2+=str((ascii(str1[i])+k))

 print(str2)

 i+=1

print(str2)

10.3	STRING OPERATORS

Python provides the programmer with a wide variety of extremely useful oper-
ators to manipulate strings. These operators help a user to perform involved
tasks with ease and efficiency. Here, it may be stated that the replication and
membership operators make Python stand apart from its counterparts. This
section briefly introduces and exemplifies the operators.

10.3.1  The Concatenation Operator (+)

The concatenation operator takes two strings and produces a concatenated
string. The operator acts on values as well as variables. In the example that fol-
lows, the result generated by applying the concatenation operators have been
stored in variables called result1 and str2.

name=input('Enter your name\t:')

result1 = 'Hi'+' there'

print(result1)

str1='Hello'

str2=str1 +' '+name

print(str2)

Output:

>>>

=============== RUN C:/Python/String/operator1.py ==============

Enter your name	 :Harsh

Hi there

Hello Harsh

>>>

10.3.2  The Replication Operator (*)

The replication operator in Python, replicates the strings as many times as
the first operand. The operator operates on two operands: the first being a

PPUPS.CH10_2pp.indd 219PPUPS.CH10_2pp.indd 219 5/18/2023 11:02:41 AM5/18/2023 11:02:41 AM

220 • Python Programming Using Problem Solving

number and the second being a string. The result is a string in which the input
string is repeated as many times as the first argument. In the example that fol-
lows, the result has been stored in a variable called result1.

name=input('Enter your name\t:')

print('Hi', ' ', name)

str1=input('Enter a string\t:')

num=int(input('Enter a number\t:'))

result1=num*str1

print(result1)

Output:

>>>

=============== RUN C:/Python/String/operator2.py ==============

Enter your name	 :harsh

Hi harsh

Enter a string	 :abc

Enter a number	 :4

abcabcabcabc

>>>

10.3.3  The Membership Operator

The membership operator checks whether a given string is in a given list or
not. The operator returns a True, if the first string is a part of the given list,
otherwise it returns a False.

>>> 'Hari' in ['Har', 'Hari', 'Hai']

True

>>>

>>> 'Hari' in ['Har', 'hari', 'Hai']

False

>>>

It may be noted here that this operator is also used in manipulating itera-
tions. The reader is advised to revisit the last chapter, for a detailed discussion
regarding the use of “in” in for. It may also be noted that the operator can also
be used in tuples. In the listing that follows, the string “Hari” is present in the
given tuple and hence “True” is returned.

PPUPS.CH10_2pp.indd 220PPUPS.CH10_2pp.indd 220 5/18/2023 11:02:41 AM5/18/2023 11:02:41 AM

Strings • 221

>>> 'Hari' in ('Hari', 'Har')

True

>>>

The reader may also note that corresponding to the “in” operator, there is
a “not in” operator which works in the exactly opposite manner vis-a-vis “in.”

A string in Python can span over many lines. This can be accomplished by
putting a “\” at the end of the line. For example, str2 is “Harsh Bhasin Author
Delhi.” However, it has been written in three lines, using the “\” character.

>>> str2="'Harsh Bhasin\

Author\

Delhi'"

>>> str2

"'Harsh BhasinAuthorDelhi'"

10.4	IN-BUILT FUNCTIONS

This section presents some of the most common functions used to manipulate
strings in Python. It may be stated here that, though all the following tasks can
be done, without the predefined functions, with a varying degree of ease, the
presence of these functions help the programmer to do the task easily and effi-
ciently. Moreover, when one designs and implements one’s version of a func-
tion, the implementation may not be efficient in terms of time or space or both.
However, while implementing these predefined functions in Python, the issues
related to memory and times have already been dealt with. Let us, now, have a
look at the names, meanings, and usage of the predefined functions in Python.

10.4.1  len()

Usage:

>>>len(<string>)

Explanation:

The function returns the number of characters in a string. For example, if a
variable called str1 stores “Harsh Bhasin,” then the length of the string can
be calculated by writing len(str1). Note that, the space between “Harsh” and
“Bhasin” has also been taken into account while calculating the length of the
string. To summarize, the function takes a string argument and returns an
integer, which is the length of the string.

PPUPS.CH10_2pp.indd 221PPUPS.CH10_2pp.indd 221 5/18/2023 11:02:41 AM5/18/2023 11:02:41 AM

222 • Python Programming Using Problem Solving

Example (s):

str1 ='Harsh Bhasin'

len(str1)

Output:

12

Code:

len('Harsh Bhasin')

Output:

12

Code:

len('')

Output:

0

10.4.2  Capitalize()

Usage:

capitalize()

Explanation:

The function capitalizes the first character of the string. Note that only the
first character would be capitalized. If one wants to capitalize the first charac-
ters of all the words in the string the title() function can be used.

Example (s):

str2='harsh bhasin'

str2

Output:

'harsh bhasin'

Code:

str2.capitalize()

PPUPS.CH10_2pp.indd 222PPUPS.CH10_2pp.indd 222 5/18/2023 11:02:42 AM5/18/2023 11:02:42 AM

Strings • 223

Output:

'Harsh bhasin'

10.4.3  Find()

Usage:

<name of the string>.find(<parameter(s)>)

Explanation:

The location of a given substring in a given string can be found by using the
function “find.” Also, if the location of a substring after a particular position
(and before a particular index) is to be determined, then three arguments can
be passed to the function: the substring, initial index, and the final index. The
following examples depict the usage of the function.

Example(s):

str2.find('ha')

Output:

0

Code:

str2.find('ha',3,len(str2))

Output:

7

10.4.4  Count

Usage:

<name of the string>.count(<parameter(s)>)

Explanation:

The number of occurrences of a particular substring can be found by the
count function. The function takes three arguments: the substring, the ini-
tial index, and the final index. The following examples show the usage of the
function.

PPUPS.CH10_2pp.indd 223PPUPS.CH10_2pp.indd 223 5/18/2023 11:02:42 AM5/18/2023 11:02:42 AM

224 • Python Programming Using Problem Solving

Example(s):

str3.count('ha',0,len(str3))

Output:

1

Code:

str3.count('ka',0,len(str3))

Output:

0

10.4.5  endswith()

<name of the string>.endswith(<parameter(s)>)

Explanation:

One can determine if a string ends with a particular substring. This can be
done using the endswith() function. The function returns a True if the given
string ends with the given substring, otherwise it returns a False.

Example(s):

str3.endswith('n')

Output:

True

10.4.6  encode

Usage:

<name of the string>.encode(<parameter(s)>)

Explanation:

Python provides a function called encode to encode a given string in various
formats. It takes two arguments: encoding=<value> and errors=<value>. The
encoding can be one of the many encodings (refer to https://www.tutorials
point.com/python/string_encode.htm). The following examples demonstrate
the use of this function.

PPUPS.CH10_2pp.indd 224PPUPS.CH10_2pp.indd 224 5/18/2023 11:02:42 AM5/18/2023 11:02:42 AM

Strings • 225

Example(s):

>>>str3.encode(encoding='utf32',errors='strict')

b'\xff\xfe\x00\x00H\x00\x00\x00A\x00\x00\x00R\x00\x00\x00S\x00\
x00\x00H\x00\x00\x00\x00\x00\x00b\x00\x00\x00h\x00\x00\x00a\
x00\x00\x00s\x00\x00\x00i\x00\x00\x00n\x00\x00\x00'

10.4.7  decode

The decode function is complimentary to the encode function in Python.
The reader is advised to visit the References given at the end of the book for
detailed discussion.

Str3. decode

Usage:

<name of the string>.decode(<parameter(s)>)

Explanation:

This function is complementary to the encode function. It returns the
decoded string.

10.4.8  Miscellaneous Functions

Except for the functions discussed above, there are some more functions to
accomplish assorted tasks. The following list presents some of the functions
and the code that follows presents an example of the usage.

List:

1.	 isanum()

2.	 isalpha()

3.	 isdecimal()

4.	 isdigit()

5.	 isidentifier()

6.	 islower()

7.	 isupper()

PPUPS.CH10_2pp.indd 225PPUPS.CH10_2pp.indd 225 5/18/2023 11:02:42 AM5/18/2023 11:02:42 AM

226 • Python Programming Using Problem Solving

8.	 swapcase()

9.	 isspace()

10.	 lstrip()

11.	 rstrip()

12.	 replace()

13.	 join()

Explanation:

The contents of a given string can be checked using the following functions.
The isalnum() function checks if the given string is alphanumeric. The other
functions like isalpha() and isdecimal() also check the type of contents in a
given string.

Whether a given string contains only digits can be checked using the
isdigit() function. Similarly, whether a given string is an identifier can be
checked using the isidentifier() function. The islower() function checks if
the given string contains only the lower case characters and the isupper()
function checks if the given string contains only the upper case characters.
The swapcase() functions, swaps the case of the given string, as in converts
the upper case to lower and lower to upper. The presence of spaces(only) can
be checked using the isspace() function. Extra spaces can be removed from
the left and the right hand side by using the lstrip() and rstrip() functions.
The replace() function replaces the instances of the first argument by the
string in the second argument. The split function, splits the given strings into
tokens. The following illustration depicts the use of this function for splitting
the string into constituent words. The function of join() is exactly the opposite
as that of split.

Example(s):

str3.isalnum()

Output:

False

str3.isalpha()

PPUPS.CH10_2pp.indd 226PPUPS.CH10_2pp.indd 226 5/18/2023 11:02:42 AM5/18/2023 11:02:42 AM

Strings • 227

Output:

False

>>>

str3.isdecimal()

Output:

False

>>>

str3.isdigit()

Output:

False

>>>

str3.isidentifier()

Output:

False

>>>

str3.islower()

Output:

False

>>>

str3.isnumeric()

Output:

False

>>>

str3.replace('h','p')

Output:

'HARSH bhasin'

>>>

Illustration 10.6:

A string str4 contains a sentence “I am a good boy.” Split the string into tokens
and also display each token using a for loop.

PPUPS.CH10_2pp.indd 227PPUPS.CH10_2pp.indd 227 5/18/2023 11:02:42 AM5/18/2023 11:02:42 AM

228 • Python Programming Using Problem Solving

Solution:

>>> str4='I am a good boy'

>>> str4.split()

['I', 'am', 'a', 'good', 'boy']

>>>

>>> for i in str4.split():

	 print('Token\t:',i)

Output: 	

Token	 : I

Token	 : am

Token	 : a

Token	 : good

Token	 : boy

10.5	CONCLUSION

In C and C++, strings are character arrays. They are a special type of arrays
with a “\0” character at the end. Strings, in C, come with a set of built-in
functions. However, there were two major issues. First, string is not an inde-
pendent data type in C or C++, second is mutability of strings. In Python the
importance of strings has been duly recognized by creating an object type.
Moreover, strings, in Python, are nonmutable. Strings come with a wide range
of built-in functions. Also, there are useful operators, to help the program-
mer accomplish a given task easily and efficiently. This chapter introduces the
concept, operators, and functions of strings. However, the reader is expected
to complete the end-chapter exercise to be able to understand and use strings.

GLOSSARY

String: Strings are the sequence of characters. These data structures are
used to store text.

POINTS TO REMEMBER

�� Strings in Python are nonmutable.
�� The negative index denotes the characters from the right hand.
�� Strings are iterable objects.

PPUPS.CH10_2pp.indd 228PPUPS.CH10_2pp.indd 228 5/18/2023 11:02:42 AM5/18/2023 11:02:42 AM

Strings • 229

EXERCISES

Multiple Choice Questions

1.	 Which of the following is true?

	 (a)  A string in Python is iterable

	 (b)  A string in Python is not iterable

	 (c)  Iterability of a string depends upon the situation

	 (d)  None of the above

2.	 Is a string, in Python, mutable?

	 (a)  No				 (b)  Yes

	 (c)  Depends on the situation 	 (d)  None of the above

3.	 If str1=“Hari,” what is the output of print(str1[4])

	 (a)  i					 (b)  \0

	 (c)  Exception is raised		 (d)  None of the above

4.	 If str1=“Hari,” what is the output of print(str1[-3])

	 (a)  “a”				 (b)  “H”

	 (c)  Exception is raised		 (d)  None of the above

5.	 What is the output of “Hari”==”hari”

	 (a)  True				 (b)  False

	 (c)  An exception is raised		 (d)  None of the above

6.	 What is the output of “a”< >“A”

	 (a)  True				 (b)  False

	 (c)  Exception is raised		 (d)  None of the above

7.	 What is the output of “567”>“989”

	 (a)  True				 (b)  False

	 (c)  An exception is raised		 (d)  None of the above

8.	 Which of the following helps to find the ASCII value of “C”?

	 (a)  ord(“C”)				 (b)  chr(“C”)

	 (c)  both				 (d)  None of the above

PPUPS.CH10_2pp.indd 229PPUPS.CH10_2pp.indd 229 5/18/2023 11:02:42 AM5/18/2023 11:02:42 AM

230 • Python Programming Using Problem Solving

9.	 Which of the following helps to find the character represented by ASCII
value 67?

	 (a)  ord(67)				 (b)  chr(67)

	 (c)  Both 				 (d)  None of the above

10.	 What are “in” and “not in” in Python?

	 (a)  Relational operators		 (b)  Membership operators

	 (c)  Concatenation operator 		 (d)  None of the above

11.	 What is the output of “A” + “B”

	 (a)  “A + B”				 (b)  “AB”

	 (c)  131				 (d)  None of the above

12.	 What is the output of 3∗“A”

	 (a)  “3A”

	 (b)  Character corresponding to the ASCII value 65X3

	 (c)  “AAA”

	 (d)  None of the above

13.	 Which function capitalizes the first character of a given string?

	 (a)  Capitilize()			 (b)  Titlecase()

	 (c)  Toupper()			 (d)  None of the above

14.	 The find() function, in Python takes

	 (a)  1 argument			 (b)  3 arguments

	 (c)  Both				 (d)  None of the above

15.	 If str1=“hari,” then what would be the output of str1.asalnum()?

	 (a)  True				 (b)  False

	 (c)  Exception is raised 		 (d)  None of the above

16.	 If str1=“hari3,” then what would be the output of str1.asalnum()?

	 (a)  True				 (b)  False

	 (c)  Exception is raised 		 (d)  None of the above

PPUPS.CH10_2pp.indd 230PPUPS.CH10_2pp.indd 230 5/18/2023 11:02:42 AM5/18/2023 11:02:42 AM

Strings • 231

17.	 If str1=“hari feb,” then what would be the output of str1.asalnum()?

	 (a)  True				 (b)  False

	 (c)  Exception is raised 		 (d)  None of the above

18.	 If str1=“123h,” then what would be the output of str1.digit()?

	 (a)  True				 (b)  False

	 (c)  Exception is raised 		 (d)  None of the above

19.	 Which function checks whether all the characters in a given string are in
lower case?

	 (a)  lower()				 (b)  islower()

	 (c)  istitle()				 (d)  None of the above

20.	 Which function checks whether all the characters in a given string are in
upper case?

	 (a)  upper()				 (b)  isupper()

	 (c)  istitle()				 (d)  None of the above

21.	 Which function removes the whitespaces from the right hand of a given
string?

	 (a)  rstrip()				 (b)  strip()

	 (c)  lstrip()				 (d)  None of the above

22.	 Which of the following functions convert a given string into a list of words?

	 (a)  split()				 (b)  break()

	 (c)  breakup()			 (d)  None of the above

23.	 Which of the following helps in breaking a string into two substrings of
desirable length?

	 (a)  slicing				 (b)  splitting

	 (c)  both				 (d)  None of the above

24.	 Which of the following functions combines the strings given as the
argument?

	 (a)  split				 (b)  join

	 (c)  slice				 (d)  None of the above

PPUPS.CH10_2pp.indd 231PPUPS.CH10_2pp.indd 231 5/18/2023 11:02:42 AM5/18/2023 11:02:42 AM

232 • Python Programming Using Problem Solving

25.	 Which of the following is illegal in Python (assume that str1 is a string,
having initial value “hari”)?

	 (a)  str1= “Harsh”			 (b)  str1[0]= “t”

	 (c)  str1[0]=str[2]			 (d)  None of the above

Theory

1.	 Write a program to reverse a string.

2.	 Write a program to encode a string in UTF format.

3.	 Write a program to find the sum of ASCII values of the characters of a
given string.

4.	 Write a program to find a particular substring in a given string.

5.	 Write a program to split a given text into tokens.

6.	 Write a program to check which of the tokens obtained in the above
question are Keywords of (C).

7.	 Write a program to check how many alphanumeric strings are there in the
tokens obtained in question 6.

8.	 Write a program to check how many alpha strings are there in the tokens
obtained in question 6.

9.	 Write a program to check how many numeric strings are there in the
tokens obtained in question 6.

10.	 Write a program to convert a string entered by a user to that obtained by
adding “k” to each character’s ASCII value.

11.	 Implement the first phase of complier design (for “C”). (Please refer to
the Bibliography for a brief overview of compiler design).

12.	 In the above question design deterministic finite acceptors for the key-
words of C.

PPUPS.CH10_2pp.indd 232PPUPS.CH10_2pp.indd 232 5/18/2023 11:02:42 AM5/18/2023 11:02:42 AM

Having learned the fundamentals of Python, and procedural programming,
let us move toward the Hogwarts of Programming: object-oriented program-
ming (OOP). This section has five chapters. Chapter 11 presents the funda-
mentals of OOP, its importance, need, and comparison with other paradigms.

Class is a real or a conceptual entity, having importance to the problem at
hand. Chapter 12 discusses the concepts of class and related topics like con-
structors and the foundation stone of OOP. We make classes so that we can
derive new classes out of the existing classes. This is called inheritance which
is an integral part of the Object-Oriented Programming Paradigm. Chapter
13 introduces inheritance and discusses the types of inheritance and the prob-
lems with Multiple Inheritance. The chapter also discusses the concept of
Bound methods and derivation’s type vis-a-vis methods.

Python provides the user with the power of operator overloading. It basi-
cally means using an existing operator for user-defined data types. However,
Operator Overloading is a bit different in Python as compared to C++ or C#.
In Python, we have specialized functions which must be defined to overload
an operator. Chapter 14 discusses operator overloading. This section ends
with the most important of all: exception handling.

Object-Oriented Programming

S E C T I O N I I I

PPUPS.CH11_2pp.indd 233PPUPS.CH11_2pp.indd 233 5/18/2023 11:09:34 AM5/18/2023 11:09:34 AM

PPUPS.CH11_2pp.indd 234PPUPS.CH11_2pp.indd 234 5/18/2023 11:09:34 AM5/18/2023 11:09:34 AM

Objectives

After reading this chapter, the reader should be able to

�� Understand the elements of object-oriented paradigm
�� Understand the concept of a class and define an object
�� Define encapsulation, inheritance, and polymorphism

11.1	 INTRODUCTION

In the preceding chapters, the control structures of Python were discussed.
The chapters discussed loops, conditional statements, etc. However, these
constructs are an integral part of other procedural languages also. In a proce-
dure, each instruction tells the computer what needs to be done, and these
procedures constitute a program in such languages. Python not only supports
procedural programming but also supports object-oriented programming
(OOP). This chapter introduces the principles of OOP and explains the need
for and importance of classes and objects. The chapter also discusses the dif-
ference between OOP and procedural programming.

It may be stated here that the topics discussed in this chapter will be dis-
cussed in detail in the following chapters. Some of the readers, not familiar
with C++ (or for that matter C# or JAVA) may find the discussion abstract, but
things will become clear as we proceed.

C H A P T E R11
Introduction to Object-Oriented
Paradigm

PPUPS.CH11_2pp.indd 235PPUPS.CH11_2pp.indd 235 5/18/2023 11:09:34 AM5/18/2023 11:09:34 AM

236 • Python Programming Using Problem Solving

As stated earlier, in procedural programming, each statement tells the pro-
gram what needs to be done. For example, the following code asks the user for
the input, calculates the square root of the number entered by the user, and
displays the result.

Code:

a=float(input("Enter a number\t:"))

b=math.sqrt(a)

b

Output:

Enter a number :67

8.18535277187245

This strategy is good if the program is very small. Often, telling the com-
puter what to do, step by step, works if the task to be accomplished is not very
complex. In such cases, no other paradigm is needed.

In the case of a moderately large program, division into functions makes
the task easier. The division of a larger program into modules makes the pro-
gram manageable and helps achieve code’s reusability. The functions gen-
erally accomplish a clearly defined task and become handy whenever that
particular task is to be accomplished. The reader is advised to go through
the chapter on functions in order to understand the advantages of functions.
The clubbing of functions, on some basis, gives rise to what is commonly
referred to as modules. This programming paradigm is called modular
programming.

The problem with the above paradigm is that the accidental clubbing
together of unrelated functions is far from real-world situations and hence
becomes a source of problems at some point in time. Moreover, the approach
does not restrict the access of data in any module and jeopardize the sanctity
of the data.

It may be noted that the data should not be accessible to all the mod-
ules. The accessibility of data must be managed with utmost care; otherwise,
a module, which should not have alerted the data as per the program logic,
might change the data.

In order to understand the gravity of the problem, let us take the example
of C. In C, a variable can be global or local. If it is global, then any module can

PPUPS.CH11_2pp.indd 236PPUPS.CH11_2pp.indd 236 5/18/2023 11:09:34 AM5/18/2023 11:09:34 AM

Introduction to Object-Oriented Paradigm • 237

change it. But, on the other hand, if it is local, then other modules would not
be able to access it. So, there is nothing in between.

The solution to the above problem is to model the software in such a
way that the design is conceptually as close to the real world as possible. This
modeling of real-world situations requires the creation of entities having both
attributes and behavior. The clubbing together of data and the functions that
manipulate the data would be helpful in crafting the above entities. These enti-
ties would henceforth be referred to as classes. The instances of classes are
objects, and the paradigm is called object-oriented paradigm. Various program-
ming paradigms and their disadvantages have been summarized in Figure 11.1.

FIGURE 11.1  Programming paradigms.

11.2	CREATING NEW TYPES

Though types are not explicitly declared in Python, they were important in
other languages (well most of them). For example, when one says that a “num-
ber” is of integer type, one states the type of information and its maximum and
minimum value. Assume that an integer takes two bytes, the maximum value
of “number” would be 32, 767, and the minimum value would be −32, 768.
Moreover, saying that “number” is of integer type also restricts the operations
that can be performed on the number.

The integer is a predefined type. Most of the languages also allow users
to create custom types and hence extend the power of built-in types. This
is essential as the ability to create new data types would help us to create

PPUPS.CH11_2pp.indd 237PPUPS.CH11_2pp.indd 237 5/18/2023 11:09:38 AM5/18/2023 11:09:38 AM

238 • Python Programming Using Problem Solving

programs which are near to the real world. For example, if one has to design
an inventory management system, a type called “item” would make the mat-
ters uncomplicated. This “item” can have variables which are of predefined
types like integers and strings.

A new type can be created by declaring a class. A class may have many
components, the most important of which are the attributes and its functions.
This clubbing together of functions and data forms the basis of OOP. The
functions, as we will see later, generally, manipulate the data members of a
class. Before proceeding any further let us have an overview of attributes and
functions.

11.3	ATTRIBUTES AND FUNCTIONS

One can perceive a class as a prototype and an object as an instance of a class.
For example, “movie” is a class and “The Fault in Our Stars,” “Love Actually,”
and “Sarat” are objects (Figure 11.2). A class has attributes and behavior.
The attributes, generally, store data and the behavior is implemented using
functions. A class can be depicted using a class diagram. A class diagram
has, generally, three parts, the first part contains the name, the second part
has attributes, and the third part shows the functions of a class. The basics
of attributes and behavior have been discussed in the following section. In
Figure 11.2, the class diagram (Movie) has only the name.

FIGURE 11.2  Example of a class and objects.

PPUPS.CH11_2pp.indd 238PPUPS.CH11_2pp.indd 238 5/18/2023 11:09:40 AM5/18/2023 11:09:40 AM

Introduction to Object-Oriented Paradigm • 239

11.3.1  Attributes

The attributes, here, depict the characteristics of the entity, which we are
concerned with. For example, in creating a website that gives the details of
movies, a class “movie” would be needed. Say, after detailed deliberations, it
was decided that this class would have attributes like name, year, genre, direc-
tor, producer, actors, music_director, and story_writer.

Note that for the said purpose, only the above details are needed. Storing
unnecessary details would not only make data management difficult but
would also violate one of the core principles, that of including only the details
pertaining to the problem at hand. These attributes are generally shown in the
second section of the class diagram. In Figure 11.3, the attributes of “movie”
class have been shown.

Name

Attributes

movie

name
year

genre
director

producer
actors

music_director
story_writer

Class

FIGURE 11.3  Name and attributes of a movie class.

11.3.2  Functions

The next step would be to include functions in the above class. In our exam-
ple, there are two functions getdata() and putdata(). The getdata() function
would ask for the values of the variables from the user, and the putdata() func-
tion would display the data. Functions implement the behavior of a class. The
functions, as stated earlier, accomplish a particular task. In a class, there can
be any number of functions, each accomplishing a particular task. We have
special functions for initializing the data members of a class as well. The func-
tions of a class would henceforth be referred to as member functions. The
functions (or behavior) are shown in the third section of a class diagram. In
Figure 11.4, the functions of the “Movie” class (getdata() and putdata()) have
been shown in the third box.

PPUPS.CH11_2pp.indd 239PPUPS.CH11_2pp.indd 239 5/18/2023 11:09:40 AM5/18/2023 11:09:40 AM

240 • Python Programming Using Problem Solving

Name

Attributes

Behaviour

Class

movie

name
year

genre
director

producer
actors music_director

story_writer

getdata()
putdata()

FIGURE 11.4  Name, attributes, and functions of a movie class.

The following example shows a class called movie. This class has the following
data members:

�� Name
�� Year
�� Genre
�� Director
�� Producer
�� Actors
�� Music_Director, and
�� Story_writer

The class has two functions getdata(), which asks the user to enter the val-
ues of the data members and putdata(), which displays the values of the vari-
ables. In order to call the functions getdata() and putdata(), an instance of the
employee class is created (“m”). As we will see later, the functions are called
using the dot operator. The details regarding the syntax will be explained in
the following chapter.

The following code implements the above class. Though, the syntax, etc.,
has not been discussed as of yet. The code has been given to give an idea of
how things actually work.

Code:

class movie:

 def getdata(self):

 self.name=input('Enter name\t:')

PPUPS.CH11_2pp.indd 240PPUPS.CH11_2pp.indd 240 5/18/2023 11:09:41 AM5/18/2023 11:09:41 AM

Introduction to Object-Oriented Paradigm • 241

 self.year=int(input('Enter year\t:'))

 self.genre=input('Enter genre\t:')

 self.director=input('Enter the name of the director\t:')

 self.producer=input('Enter the producer\t:')

 L=[]

 item=input('Enter the name of the actor\t:')

 L.append(item)

 choice=input('Press \'y\' for more \'n\' to quit')

 while(choice == "y"):

			 item=input('Enter the name of the actor\t:')

			 L.append(item)

			 choice=input('Enter \'y\' for more \'n\' to quit')

 self.actors=L

 self.music_director=input('Enter the name of the music
director\t:')

def putdata(self):

 print('Name\t:',self.name)

 print('Year\t',self.year)

 print('Genre\t:',self.genre)

 print('Director\t:',self.director)

 print('Producer\t:',self.producer)

 print('Music_director\t:',self.music_director)

 print('Actors\t:',self.actors)

m=movie()

m.getdata()

m.putdata()

Output:

Enter name	 :Kapoor

Enter year	 :2016

Enter genre	 :Drama

Enter the name of the director	:ABC

Enter the producer	 :Karan

Enter the name of the actor	 :Siddarth

PPUPS.CH11_2pp.indd 241PPUPS.CH11_2pp.indd 241 5/18/2023 11:09:41 AM5/18/2023 11:09:41 AM

242 • Python Programming Using Problem Solving

Press 'y' for more 'n' to quity

Enter the name of the actor	 :Fawad

Enter 'y' for more 'n' to quitn

Enter the name of the music director	 :XYZ

Name	: Kapoor

Year	 2016

Genre: Drama

Director	: ABC

Producer	: Karan

Music_director	 : XYZ

Actors	 : ['Siddarth', 'Fawad']

In object-oriented languages, a special function initializes the value of the
data members. In languages like C++, this function, generally, has the same
name as that of the class. The function is called constructor.

One can create a default constructor in a class, which does not take any
parameter. The parameterized constructor, on the other hand, takes argu-
ments and initializes the data members using those arguments. The imple-
mentation of constructors and their use will be dealt with in the next chapter.

When the lifetime of an object ends, a destructor is called. A destructor
can be called using del in Python. The concept is explained in the next chap-
ter of this book.

A Constructor is invoked when an object is created and a destructor is called when the
lifetime an object ends.

11.4	ELEMENTS OF OBJECT-ORIENTED PROGRAMMING

The following discussion briefly outlines the elements of OOP. The concepts
like encapsulation, data hiding, and polymorphism have been discussed in this
section. Even if things appear a bit abstract at this stage, the reader is advised
not to skip the section.

11.4.1  Class

A class is a real or a virtual entity, having importance to a problem at hand and
having sharp physical boundaries. A class can be a real entity. For example,
when one develops software for a car wash company, then “Car,” is central to

TIP!

PPUPS.CH11_2pp.indd 242PPUPS.CH11_2pp.indd 242 5/18/2023 11:09:41 AM5/18/2023 11:09:41 AM

Introduction to Object-Oriented Paradigm • 243

the software, and hence, there would be a class called “Car.” A class can also
be a virtual entity; for example, in developing a student management system, a
“student” class is crafted, which is a virtual entity. In both examples, the entity
is crafted as it is important to the problem at hand.

The example of the “student” class can be taken further. The class would
have attributes which are needed in the program. The selection of attributes
would decide the physical boundaries of the class. Note that we would not
need unnecessary details like the number of cars a student has or where he
went last evening. This is because there is no point in storing those details for
an educational institute for which we are making the student management
system.

Examples of some of the classes that are central to the stated software are as
follows (Table 11.1).

TABLE 11.1  Examples of classes central to various systems.

System Class central to the software

Student management system Student

Employee management system Employee

Inventory control Item

Library management Book

Movie review Movie

Airline management Flight

Examination Test

11.4.2  Object

Consider a student management system, which stores the data of each stu-
dent of a school. Note that the operator would deal with an individual student,
not a student’s idea, while entering the data. Thus, class depicts the idea of a
student, and the objects denote the individual students.

An object is an instance of a class. The objects interact with each other and
get the work done. Generally, a class can have any number of objects. One
can even form an array of Objects. The example “movie” had “m” as an object.
As a matter of fact, we make an object and call the methods of a class (those
which can be called).

PPUPS.CH11_2pp.indd 243PPUPS.CH11_2pp.indd 243 5/18/2023 11:09:41 AM5/18/2023 11:09:41 AM

244 • Python Programming Using Problem Solving

In object-oriented paradigm, the program revolves around an object and
therefore the type of programming is termed as object-oriented program.
Calling a method of an object is equivalent to sending message to an object.

11.4.3  Encapsulation

The class is an entity, which has both data and functions. The clubbing together
of the data and the functions that operate on the data is called encapsulation.
Encapsulation, as a matter of fact, is one of the core principles of Object-
Oriented Paradigm. Encapsulation not only makes it easier to handle objects
but also improves the manageability of the Software.

Moreover, the functions in a class can be used in a variety of ways. For
example, the accessibility of data members and member functions can also
be managed, using access specifiers, as explained in the following subsection.

11.4.4  Data Hiding

The data hiding, is another important principle of object-oriented program-
ming. As stated in the above discussion, the accessibility of data can be gov-
erned in a class. The data that is accessible all throughout the program is
referred to as global data. The data private to a class is one that can be accessed
only by the class members. There are other access specifiers as well, explained
in the following sections.

In C++, for example, the data in a class is generally kept private. That is,
only the member functions of the class can access the data. This ensures that
the data is not accidentally changed. The functions, on the other hand, are
public, in C++. The public functions can be accessed anywhere in the pro-
gram (Figure 11.5). In C++, JAVA, C#, etc., there is another access specifier,
which is protected. If a member is to be accessed in the class and its derived
class, then protected specifier is used. C# and JAVA also have some other
specifiers like internal.

Public

Private

Can be accessed anywhere

Can be accessed only in the class

FIGURE 11.5  Access specifiers public and private.

PPUPS.CH11_2pp.indd 244PPUPS.CH11_2pp.indd 244 5/18/2023 11:09:44 AM5/18/2023 11:09:44 AM

Introduction to Object-Oriented Paradigm • 245

Having stated the above convention, it must be clarified that deciding
what is private and what is public is the discretion of the design and devel-
opment team of the project. There is no hard and fast rule so as to what
should be private and what should be public. The designers must decide on
the accessibility of a member based on their needs.

This protection of data is not related to the security of data but to acci-
dental change. This is needed so that the data can be changed only via the
functions which have the authority to change data.

11.4.5  Inheritance

Classes are made so that they can be subclassed. This art of creating subclass(es)
is called inheritance. For example, the movie class can be subclassed into vari-
ous classes like art_movie, commercial_movie etc. Likewise, the student class
can be subclassed into “regular student” and “part_time_student.” In both
examples, the subclass has many things in common in the base class (class
from which the class has been derived). In addition, each subclass can have
functions and data which belong to the subclass only.

For example, the student class can have attributes, namely name, date_
of_birth, address, etc. The regular subclass student will use all the above data
members and can also have an attribute like attendance associated with it.
The class from which classes are subclassed would be called the base class,
and the subclasses would be called derived classes.

For example, in Figure 11.6, the movie is the base class, and commer-
cial_movie and art_movie are the derived classes.

FIGURE 11.6  Deriving classes from other classes is inheritance. There are many
types of inheritance. This figure shows hierarchical inheritance.

PPUPS.CH11_2pp.indd 245PPUPS.CH11_2pp.indd 245 5/18/2023 11:09:46 AM5/18/2023 11:09:46 AM

246 • Python Programming Using Problem Solving

11.4.6  Polymorphism

Poly means many and morphism means forms, so polymorphism means many
forms. Polymorphism can be implemented in many ways. One of the simplest
examples of polymorphism is operator overloading. Operator overloading, in
general, means using the same operator in more than one way. For exam-
ple, “+” is used between integers to add, with strings for concatenation, and
even can be used with user-defined data types, as explained in Chapter 17 of
this book.

Likewise, function overloading means having more than one function
with the same name, in a class, with different arguments. Various forms of
polymorphism are explained in Chapter 16 of this book.

11.4.7  Reusability

The procedural programming came with almost no reusability. Modular pro-
gramming allowed reusability but only to a certain extent. The functions could
be used on as it is basis of modular programming. In OOP, the concept of
reusability could be used in its full force. The concept of inheritance, intro-
duced above and explained in Chapter 13 of this book, helps the programmer
to reuse a code as per the requirement and that to the relevant part. As a
matter of fact, reusability is one of the USPs of the object-oriented paradigm.

11.5	CONCLUSION

While designing software, one must keep in mind the entities he is going
to work on. The nitty-gritty can be decided at a later stage. As a matter of
fact, the popular literature does not consider the details of the operation as a
matter of concern for the OOP. Hiding unnecessary details is, therefore, an
important part of OOP.

For example, in developing the website for movies, the entity central to
the problem is “Movie.” So, one starts with an empty class called “movie.” The
designer must then decide on the attributes needed to implement the func-
tions. The attributes constitute the data members of the said class. This is fol-
lowed by the decision regarding the implementation details of the behavior of
the class. The functions are then designed for this purpose. Finally, the things
like inheritance and polymorphism, discussed later, come into play.

The journey of the formation of this class has been depicted in the follow-
ing Figure (Figure 11.7).

PPUPS.CH11_2pp.indd 246PPUPS.CH11_2pp.indd 246 5/18/2023 11:09:46 AM5/18/2023 11:09:46 AM

Introduction to Object-Oriented Paradigm • 247

FIGURE 11.7  The design of a movie class.

Programming is an art. A good programmer should be versed in the
syntax of the language, the data structures, and the concepts of algorithm
analysis. In addition to the above, a programmer needs to decide the pro-
gramming paradigm he will use. The chapter briefly introduces various
programming paradigms and their advantages and disadvantages. Next,
the chapter introduces the concept of OOP. The definitions of class, object,
etc., have been discussed in the chapter. The chapter also introduces the
features of OOP. The concepts introduced in this chapter will form the
foundation of this section. As already stated, some of the concepts may
appear abstract at this stage, but the following chapters will revisit the
concepts and would demonstrate the implementation of the ideas dealt
with in this chapter. In order to be able to make a program that uses OOP,
one must get out of the mindset of doing things in a procedural way and
start thinking about the program as centered on real-world entities having
attributes and behavior. It may also be stated that designing an object-
oriented program is generally preceded by designing class diagrams,
sequence diagrams, etc. These are part of the Unified Modeling Language.
The reader is advised to explore the references given at the end of this
book to understand UML.

GLOSSARY

�� Class: A class is a real or a virtual entity, having importance to problem at
hand and having sharp physical boundaries.

�� Object: An object is an instance of a class.
�� Encapsulation: The clubbing together of the data and the functions that

operate on the data is called encapsulation.
�� Inheritance: The art of dividing the class into subclass(es) is inheritance.

PPUPS.CH11_2pp.indd 247PPUPS.CH11_2pp.indd 247 5/18/2023 11:09:47 AM5/18/2023 11:09:47 AM

248 • Python Programming Using Problem Solving

�� Operator overloading: Operator overloading generally means using the
same operator in more than one way.

�� Function overloading: It means having more than one function with
the same name, in a class, with different arguments.

POINTS TO REMEMBER

�� Telling the computer what to do, step by step, works if the task to be
accomplished is not very complex.

�� In the case of a moderately large program, division into functions makes
the task easier.

�� The division of a larger program into modules makes the program man-
ageable and helps to achieve reusability.

�� The clubbing together of functions, on some basis, gives rise to modules.
This programming paradigm is called modular programming.

�� A class has two important components: Attributes and Behavior.
�� A constructor initializes the members of a class.
�� The destructor frees the memory occupied by an object.

EXERCISES

Multiple Choice Questions

1.	 Which of the following is not Object-Oriented Language?

	 (a)  C				 (b)  C++

	 (c)  Python				 (d)  C#

2.	 Which of the following is Object-Oriented Language?

	 (a)  Python				 (b)  C#

	 (c)  JAVA				 (d)  All of the above

3.	 A student is a conceptual entity which acts as a blueprint for each student.
The mapping is similar to which of the following?

	 (a)  Class and object

	 (b)  Method and modular programming

	 (c)  Both

	 (d)  None of the above

PPUPS.CH11_2pp.indd 248PPUPS.CH11_2pp.indd 248 5/18/2023 11:09:47 AM5/18/2023 11:09:47 AM

Introduction to Object-Oriented Paradigm • 249

4.	 Which of the following are the two most important components of a class?

	 (a)  Methods and attributes		 (b)  List and tuple

	 (c)  Arrays and functions 		 (d)  None of the following

5.	 In object-oriented paradigm, a variable of a class is called

	 (a)  Data member			 (b)  Member function

	 (c)  global data			 (d)  None of the above

6.	 In object-oriented paradigm, the functions of a class are

	 (a)  Member functions 		 (b)  Data members

	 (c)  Global functions 		 (d)  None of the above

7.	 An instance of a class is called

	 (a)  Object				 (b)  Subject

	 (c)  Inject				 (d)  None of the above

8.	 The clubbing together of data and the functions that operate on the data
is called

	 (a)  Abstraction 			 (b)  Encapsulation

	 (c)  Overloading 			 (d)  None of the above

9.	 Allowing the selective access of data members in a class is the same as

	 (a)  Data Hiding 			 (b)  Encapsulation

	 (c)  Abstraction 			 (d)  None of the above

10.	 Having more than one function of the same name in a class is called

	 (a)  Function overloading 		 (b)  Overriding

	 (c)  Encapsulation 			 (d)  None of the above

11.	 “+” can be used for adding two number types. However, a programmer
can use “+” for the addition of two user-defined data types (e.g., complex
numbers). This is

	 (a)  Method Overloading 		 (b)  Operator Overloading

	 (c)  Encapsulation 			 (d)  None of the above

PPUPS.CH11_2pp.indd 249PPUPS.CH11_2pp.indd 249 5/18/2023 11:09:47 AM5/18/2023 11:09:47 AM

250 • Python Programming Using Problem Solving

12.	 Inheritance is helpful in

	 (a)  Reusability 			 (b)  Redundancy

	 (c)  Overhead 			 (d)  None of the above

13.	 If a function in the base class is extended in the derived class, then it is

	 (a)  Overloading			 (b)  Abstraction

	 (c)  Encapsulation 			 (d)  None of the above

14.	 Which of the following is not a type of inheritance? 	

	 (a)  Simple

	 (b)  Multiple

	 (c)  Hierarchical

	 (d) 	 All of them are types of inheritance

15.	 Which of the following initializes the members of a class?

	 (a)  Constructor 			 (b)  Destructor

	 (c)  Both 				 (d)  None of the above

16.	 Which of the following is true for a well-defined class?

	 (a)  It has importance to problem at hand

	 (b)  It has sharp physical boundaries

	 (c)  It is a real or a physical entity

	 (d)  All of the above

17.	 A language in which one can define a new data type is

	 (a)  Comprehensive 			 (b)  Extensible

	 (c)  Both 				 (d)  None of the above

18.	 In object-oriented paradigm, the focus is on

	 (a)  Data 				 (b)  Way a work is done

	 (c)  Data Types 			 (d)  None of the above

PPUPS.CH11_2pp.indd 250PPUPS.CH11_2pp.indd 250 5/18/2023 11:09:47 AM5/18/2023 11:09:47 AM

Introduction to Object-Oriented Paradigm • 251

19.	 UML is

	 (a)  Ultra Modern Language		 (b)  Unified Modeling Language

	 (c)  United Model League		 (d)  None of the above

20.	 Which of the following is not a principle of object-oriented paradigm?

	 (a)  Inheritance 			 (b)  Data Hiding

	 (c)  Encapsulation 			 (d)  Divide and Conquer

Theory

1.	 Briefly explain the various paradigms of programming.

2.	 What is the difference between object-oriented paradigm and procedural
programming?

3.	 What is a class? What are the essential components of a class? Define the
attributes and functions of a class.

4.	 What is the relation between an object and a class?

5.	 What is a class diagram? Give an example of a class diagram.

6.	 Explain the importance of encapsulation.

7.	 Explain the importance of data hiding. Is it related to the security of the
data?

8.	 What is Polymorphism? Explain the concept of operator overloading and
function overloading.

9.	 What is the advantage of reusability? Explain the concept of reusability
vis-a-vis object-oriented paradigm.

10.	 Explore some of the problems in Object-Oriented Programming?

Explore and Design

The reader is expected to go through the material on the database manage-
ment system. The chapters on entity relationship diagrams have details of
entities involved therein. Based on your research, create class diagrams of the
classes mentioned in Table 14.1.

PPUPS.CH11_2pp.indd 251PPUPS.CH11_2pp.indd 251 5/18/2023 11:09:47 AM5/18/2023 11:09:47 AM

PPUPS.CH11_2pp.indd 252PPUPS.CH11_2pp.indd 252 5/18/2023 11:09:47 AM5/18/2023 11:09:47 AM

Objectives

After reading this chapter, the reader should be able to

�� Understand how to create a class in Python
�� Instantiate a class
�� Differentiate between instance and class variables
�� Use constructors and destructors
�� Understand the types of Constructors

12.1	 INTRODUCTION TO CLASSES

A class is a real or a virtual entity, having importance to the problem at hand
and sharp physical boundaries. The concept of classes has been discussed in
the previous chapter. This chapter takes the discussion forward and explores
the issues involved in the implementation. It is easier to make a class in
Python as compared to other programming languages. A class, in Python, can
hold any kind and any amount of data. Those with C++ background might
find the syntax and use of variables odd. The mechanism of classes in Python
is inspired not just by C++ but also by Modula-3.

A class in Python can be subclassed. All types of inheritance including
multiple inheritance are supported in Python. Method overriding is also
allowed in Python. The dynamic nature of classes makes Python stand apart
from other languages. Classes can be created at runtime.

In a class, all data members are public in nature. That is, they can be accessed
anywhere in the program. The member functions in a class are all virtual. In
a class, all the member functions must have the first argument as the object

C H A P T E R12
Classes and Objects

PPUPS.CH12_1pp.indd 253PPUPS.CH12_1pp.indd 253 4/26/2023 5:26:43 PM4/26/2023 5:26:43 PM

254 • Python Programming Using Problem Solving

representing that class, henceforth referred to as self. Interestingly, all the build
types are themselves classes, and they can be extended by the programmer.

Note that multiple names can be associated with the same object. This
gives the programmer the same power as that in languages supporting point-
ers. Using pointers, for example, an object can be passed to a function using
just one argument, and the change done by the function is visible in the call-
ing function. In the case of Python, aliasing (having multiple names for the
same object) can be used to accomplish the above task.

This chapter has been organized as follows. Section 12.2 discusses the
definition of a class, and Section 12.3 explains the creation of an object.
Section 12.4 discusses the scope of data members, and Section 12.5 presents
the concept of nesting. Section 12.6 discusses constructors, and Sections 12.7
and 12.8 present a brief discussion on overloading and destructors. The last
section concludes.

12.2	DEFINING A CLASS

In Python, a class can be defined using the class keyword. The class keyword
is followed by the name of the class. This is followed by the body of the class
(at proper indentation).

Syntax

class <name of the class>:

	 def <function name>(<arguments>):

	      ...

	 <members>

Consider, for example, the employee class, having data members name
and age and member functions getdata() and putdata(). It was stated ear-
lier that every function in the class must have at least one argument, which is
self. The functions of a class are defined in the traditional way. The getdata()
function asks for the values of name and age of the user. The data members
are accessed via self, as they belong to the class and not just the function.
Likewise, the putdata() function displays the values of the data members.
Note that the members of a class are accessed via self.

�� A class definition has functions but can also have other members.TIP!

PPUPS.CH12_1pp.indd 254PPUPS.CH12_1pp.indd 254 4/26/2023 5:26:43 PM4/26/2023 5:26:43 PM

Classes and Objects • 255

12.3	CREATING AN OBJECT

An object is created by associating a name with an instance of the class,
initialized using the default constructor. For example, in creating an Object of
the employee class, the following statements are used.

e1=employee()

Here, e1 is the name of the object and employee() is the constructor of
the class. An Object can also be created using a parameterized constructor, as
explained in the following sections. The creation of an object is referred to as
instantiation.

The function of a class can be called using the dot operator. For example,
to call the getdata() function of the employee class, the following statements
are used.

e1.getdata()

Likewise, the other methods of a class can be called using the dot operator.

Code:

class employee:

 def getdata(self):

 self.name=input('Enter name\t:')

 self.age=input('Enter age\t:')

 def putdata(self):

 print('Name\t:',self.name)

 print('Age\t:',self.age)

e1= employee()

e1.getdata()

e1.putdata()

>>>

=============== RUN C:/Python/Class/employee.py ================

Enter name	 :Harsh

Enter age	:28

Name	: Harsh

Age	: 28

>>>

PPUPS.CH12_1pp.indd 255PPUPS.CH12_1pp.indd 255 4/26/2023 5:26:43 PM4/26/2023 5:26:43 PM

256 • Python Programming Using Problem Solving

An object supports the following operations:

�� Instantiation
�� Attribute references

12.4	SCOPE OF DATA MEMBERS

The scope of a namespace is the region where it is directly accessible. In fact,
in Python, scopes are used dynamically. In determining the scope of a names-
pace, the following rules are followed.

�� First of all, the innermost scope is searched
�� Then the scope of enclosing functions is searched
�� This is followed by searching the global namespaces
�� Finally, the build in names are seen

The nonlocal statements rebind the variables in the global scope. In order
to understand this concept, consider the following code. The following points,
concerning the code, are worth noting.

�� The value of a for all instances of the class is 5, until a function, that
changes the value of a, is called.

�� In putdata(), a does not exists, a is local to getdata()
�� b can be accessed in both the functions as b is a data member of the class

(note that every time b is called, self.b is used)

On the basis of the above discussion, the user is expected to find out why
the following code produces the following output. 	

Code:

class demo_class:

 a=5

 def getdata(self,b):

		 a=7;

		 self.b=b

 def putdata(self):

		 print('The value of \'a\' is',a,'and that of \'b\' is',self.b)

d=demo_class()

d.getdata(9)

TIP!

PPUPS.CH12_1pp.indd 256PPUPS.CH12_1pp.indd 256 4/26/2023 5:26:43 PM4/26/2023 5:26:43 PM

Classes and Objects • 257

d.putdata()

d.putdata()

 File "C:/Python/Class/variable_visibility.py", line 7, in
putdata

print('The value of \'a\' is',a,'and that of \'b\' is',self.b)

NameError: name 'a' is not defined

In the following code b is a member of the class. Here, self.b=b means
the data member b of the class (self.b) is assigned value b, which is the sec-
ond argument of the function getdata(). c is local to getdata(), so c of get-
data() is not same as that of putdata().

Definition: Instance Variable and Class Variable

An instance variable is unique to each instance, and all instances share a class
variable. In the following code, b can be assigned a different value for each
instance, but c remains the same.

Code:

class demo_class:

 a=5

 def getdata(self,b):

 c=7;

		 self.b=b

		 print('\'c\' is ',c,' and \'b\' is ',self.b)

 def other_function(self):

 c=3

 print('Value',c)

 def putdata(self):

		 print('\'b\' is',self.b)

d=demo_class()

d.getdata(9)

print(d.a)

d.other_function()

d.putdata()

e=demo_class()

print(e.a)

>>>

PPUPS.CH12_1pp.indd 257PPUPS.CH12_1pp.indd 257 4/26/2023 5:26:43 PM4/26/2023 5:26:43 PM

258 • Python Programming Using Problem Solving

========= RUN C:/Python/Class/variable_visibility2.py ==========

'c' is 7 and 'b' is 9

5

Value 3

'b' is 9

5

In addition to the above, a global data member can be made outside the
class, which is accessible to all the methods (until the scope of the data mem-
ber is changed). In the following code, a is common for all instances of the
class, b is a data member of the class, f is global, and c is a local variable.

Code:

global f

f=7

class demo_class:

 a=5

 def getdata(self,b):

 c=7;

		 self.b=b

		 print('\'c\' is ',c,' and \'b\' is ',self.b,'\'f\'',f)

 def other_function(self):

 c=3

 print('Value',c)

 def putdata(self):

		 print('\'b\' is',self.b)

d=demo_class()

d.getdata(9)

print(d.a)

d.other_function()

d.putdata()

e=demo_class()

print(e.a)

>>>

========= RUN C:/Python/Class/variable_visibility2.py ==========

'c' is 7 and 'b' is 9 'f' 7

5

PPUPS.CH12_1pp.indd 258PPUPS.CH12_1pp.indd 258 4/26/2023 5:26:43 PM4/26/2023 5:26:43 PM

Classes and Objects • 259

Value 3

'b' is 9

5

12.5	NESTING

The designing of a class requires conceptualization of an entity, which has
attributes and behavior. The object can be used in another class also. That is,
a class can also have the objects of another class as its members. This is called
nesting. Note that the attributes of a class can themselves be entities. For
example, in the following code, an instance of the date class is created in the
student class. This makes sense, as student is an entity having attributes that
are themselves objects (like date).

Code:

class date:

 def getdata(self):

 self.dd=input('Enter date (dd)\t:')

 self.mm=input('Enter month (mm)\t:')

		 self.yy=input('Enter year (yy)\t:')

 def display(self):

 print(self.dd,':',self.mm,':',self.yy)

class student:

 def getdata(self):

 self.name=input('Enter name\t:')

 self.dob= date()

		 self.dob.getdata()

 def putdata(self):

		 print('Name \t:',self.name)

		 self.dob.display()

s= student()

s.getdata()

s.putdata()

============ RUN C:/Python/OOP/Nesting of classes.py ===========

Enter name		 :Harsh

Enter date (dd)	 :03

Enter month (mm)	 :12

PPUPS.CH12_1pp.indd 259PPUPS.CH12_1pp.indd 259 4/26/2023 5:26:43 PM4/26/2023 5:26:43 PM

260 • Python Programming Using Problem Solving

Enter year (yy)	 :1981

Name 	 :Harsh

03 : 12 : 1981

>>>

12.6	CONSTRUCTOR

Note that each time a class is instantiated, a constructor (e.g., e1= employee())
is used. In C++ terminology, a constructor is a function with the same name as
the class and initializes the data members. The above examples used default
constructors, which the programmer did not make. One can initialize the
objects as per the need by crafting constructors. The following discussion
focuses on two types of constructors: default and parameterized. A default
constructor does not take any argument (e.g., the employee() constructor).
In Python, the constructors are called using functions with the same name as
the class’s. However, they are implemented by making the __init__() function
inside the class.

In the following code, the object e1 behaves as expected. The values
entered by the user in the getdata() function are displayed when putdata()
is called. In case of e2, the function getdata() is not called; therefore, the
values assigned in __init__() are displayed.

Code:

class employee:

 def getdata(self):

 self.name=input('Enter name\t:')

self.age=input('Enter age\t:')

 def putdata(self):

 print('Name\t:',self.name)

 print('Age\t:',self.age)

 def __init__(self):

 self.name='ABC'

self.age=20

e1= employee()

e1.getdata()

e1.putdata()

PPUPS.CH12_1pp.indd 260PPUPS.CH12_1pp.indd 260 4/26/2023 5:26:43 PM4/26/2023 5:26:43 PM

Classes and Objects • 261

e2=employee()

e2.putdata()

>>>

============ RUN C:/Python/Class/Constructor1.py ===============

Enter name	 :Harsh

Enter age:28

Name	: Harsh

Age	: 28

Name: ABC

Age: 20

>>>

A parameterized constructor is one that takes arguments, for example,
in the following code, the parameterized constructor, which takes two param-
eters name and age has been created. In order to assign the values to the
Object, the instantiation must be of the form:

e2=employee('Naved', 32)

Note that while defining the parameterized __init__, the first parameter
is always “self,” the rest of the parameters are the values to be assigned to dif-
ferent data members of the class. In the case of employee class, three param-
eters, “self,” “name,” and “age” are given.

Code:

>>>

class employee:

 def getdata(self):

 self.name=input('Enter name\t:')

 self.age=input('Enter age\t:')

 def putdata(self):

 print('Name\t:',self.name)

 print('Age\t:',self.age)

 def __init__(self, name, age):

 self.name=name

 self.age=age

 def __del__():

 print('Done')

PPUPS.CH12_1pp.indd 261PPUPS.CH12_1pp.indd 261 4/26/2023 5:26:43 PM4/26/2023 5:26:43 PM

262 • Python Programming Using Problem Solving

#e1=employee()

#e1.getdata()

#e1.putdata()

e2=employee('Naved', 32)

e2.putdata()

============ RUN C:/Python/Class/Constructor2.py ===============

Name	:Naved

Age	:32

>>>

12.7	MULTIPLE __INIT__(S)

Having the same name function in a class, with different number of param-
eters, or different types of parameters, is called function overloading. In
C++, JAVA, C#, etc., the constructors can also be overloaded; one can have
more than one constructor, each having different parameters. In Python,
however, we cannot have more than one __init__ in a class. For example, an
error crops up if we try executing the following code.

Note, that if one makes a parameterized __init__, Python looks for the
rest of the parameters in the instantiation.

Code:

class employee:

 def getdata(self):

 self.name=input('Enter name\t:')

 self.age=input('Enter age\t:')

 def putdata(self):

 print('Name\t:',self.name)

 print('Age\t:',self.age)

 def __init__(self, name, age):

 self.name=name

self.age=age

e1= employee()

e1.getdata()

e1.putdata()

PPUPS.CH12_1pp.indd 262PPUPS.CH12_1pp.indd 262 4/26/2023 5:26:43 PM4/26/2023 5:26:43 PM

Classes and Objects • 263

e2=employee('Naved', 32)

e2.putdata()

>>>

============== RUN C:/Python/Class/Constructor2.py =============

Traceback (most recent call last):

 File "C:/Python/Class/Constructor2.py", line 11, in <module>

 e1=employee()

TypeError: __init__() missing 2 required positional arguments:
'name' and 'age'

>>>

Having studied the importance and implementation of constructors, let
us now implement a constructor; let us revisit the “movie” class, created
above. The following code has a movie class, which contains a getdata() and
putdata() function and __init__(self) for initializing the variables. Note that
the object “m” does not call the getdata() function but just putdata(). The
values assigned in the constructor are displayed.

Code:

class movie:

 def getdata(self):

		 self.name=input('Enter name\t:')

		 self.year=int(input('Enter year\t:'))

		 self.genre=input('Enter genre\t:')

		 self.director=input('Enter the name of the director\t:')

		 self.producer=input('Enter the producer\t:')

 L=[]

 item=input('Enter the name of the actor\t:')

		 L.append(item)

 choice=input('Press \'y\' for more \'n\' to quit')

		 while(choice == "y"):

 item=input('Enter the name of the actor\t:')

		 L.append(item)

 choice=input('Enter \'y\' for more \'n\' to quit')

self.actors=L

self.music_director=input('Enter the name of the music
director\t:')

PPUPS.CH12_1pp.indd 263PPUPS.CH12_1pp.indd 263 4/26/2023 5:26:43 PM4/26/2023 5:26:43 PM

264 • Python Programming Using Problem Solving

 def putdata(self):

 print('Name\t:',self.name)

 print('Year\t',self.year)

 print('Genre\t:',self.genre)

 print('Director\t:',self.director)

 print('Producer\t:',self.producer)

 print('Music_director\t:',self.music_director)

 print('Actors\t:',self.actors)

 def __init__(self):

 self.name='Fault'

 self.year=2015

 self.genre='Drama'

 self.director='XYZ'

 self.producer='ABC'

 self.music_director='LMN'

 self.actors=['A1', 'A2', 'A3', 'A4']

m=movie()

#m.getdata()

m.putdata()

============= RUN C:\Python\Class\class_basic2.py ==============

Name			 : Fault

Year	 		 2015

Genre		 : Drama

Director		 : XYZ

Producer		 : ABC

Music_director	 :LMN

Actors	 :['A1', 'A2', 'A3', 'A4']

12.8	DESTRUCTORS

A constructor initializes the data members of a class, and a destructor frees
the memory. The destructor is created using __del__ and called by writing
the keyword del and the name of the Object. The following code exemplifies
a destructor in the employee class described in the previous sections.

PPUPS.CH12_1pp.indd 264PPUPS.CH12_1pp.indd 264 4/26/2023 5:26:44 PM4/26/2023 5:26:44 PM

Classes and Objects • 265

Code:

class employee:

 def getdata(self):

 self.name=input('Enter name\t:')

		 self.age=input('Enter age\t:')

 def putdata(self):

 print('Name\t:',self.name)

 print('Age\t:',self.age)

 def __init__(self, name, age):

 self.name=name

		 self.age=age

 def __del__(self):

 print('Done')

#e1=employee()

#e1.getdata()

#e1.putdata()

e2=employee('Naved', 32)

e2.putdata()

del e2

============== RUN C:/Python/Class/Constructor2.py =============

Name	: Naved

Age	: 32

Done

The next example is the same as that of the previous one. However, the
following code also demonstrates the use of __class__.__name__, which dis-
plays the name of the object that calls the function. This is useful as the name
of the object whose destructor (or any method) is being called can be dis-
played while debugging.

Code:

class employee:

 def getdata(self):

 self.name=input('Enter name\t:')

self.age=input('Enter age\t:')

 def putdata(self):

PPUPS.CH12_1pp.indd 265PPUPS.CH12_1pp.indd 265 4/26/2023 5:26:44 PM4/26/2023 5:26:44 PM

266 • Python Programming Using Problem Solving

 print('Name\t:',self.name)

 print('Age\t:',self.age)

 def __init__(self, name, age):

 self.name=name

self.age=age

 def __del__(self):

 print(__class__.__name__,'Done')

#e1=employee()

#e1.getdata()

#e1.putdata()

e2=employee('Naved', 32)

e2.putdata()

del e2

>>>

============= RUN C:/Python/Class/Constructor2.py ==============

Name	:Naved

Age	:32

employee Done

>>>

The doctsring associated with the class can be mentioned in the definition
of the class within three double quotes (“”” ...”””). The docstring associated
with the class can be accessed through __doc__, as shown in the following
example.

Code:

class employee:

 """The employee class"""

 def getdata(self):

 self.name=input('Enter name\t:')

self.age=input('Enter age\t:')

 def putdata(self):

 print(‘Name\t:’,self.name)

 print(‘Age\t:’,self.age)

 def __init__(self):

 self.name='ABC'

self.age=20

PPUPS.CH12_1pp.indd 266PPUPS.CH12_1pp.indd 266 4/26/2023 5:26:44 PM4/26/2023 5:26:44 PM

Classes and Objects • 267

e1= employee()

e1.getdata()

e1.putdata()

print(e1.__doc__)

>>>

=========== RUN C:/Python/Class/employeedocstring.py ===========

Enter name	 :Sakib

Enter age	:17

Name	:Sakib

Age	:17

The employee class

>>>

The above chapter discusses what is referred to as an instance method.
However, another type of method can be created in a class, which is referred
to as a class method.

12.9	CONCLUSION

The last chapter introduced the concepts of object-oriented programming.
This chapter takes the discussion forward. This chapter introduces the syntax
of a class and the creation of objects. The concept of constructors, their crea-
tion, types, and implementation have also been discussed in this chapter. The
chapter also introduces the idea of destructors. Ample examples have been
given in the chapter explaining the implementation of the concepts intro-
duced earlier. The following chapter presents the idea of inheritance and pol-
ymorphism, which are essential ingredients of object-oriented programming.
However, to be able to inherit a class or implement operator overloading, one
must be versed with the creation of a class and its use.

GLOSSARY

�� The attribute of an object is data attribute, and function that belongs to
an object is method.

�� Instance variable and class variable: An instance variable is unique to
each instance, and a class variable is shared by all instances.

�� Constructor: A constructor initializes the data members.
�� A parameterized constructor is one which takes arguments.

PPUPS.CH12_1pp.indd 267PPUPS.CH12_1pp.indd 267 4/26/2023 5:26:44 PM4/26/2023 5:26:44 PM

268 • Python Programming Using Problem Solving

POINTS TO REMEMBER

�� The classes in Python can be subclassed.
�� All types of inheritance including multiple inheritance are supported in

Python.
�� A class can be defined using the class keyword, in Python. The class key-

word is followed by the name of the class.
�� An object is created by associating a name with an instance of the class,

initialized using a constructor.
�� The function of a class can be called using the dot operator.
�� An object supports the following operations

–– Instantiation
–– Attribute references

�� A constructor initializes the data members of a class, and a destructor
frees the memory.

�� The destructor is created using __del__ and called by writing the key-
word del.

�� __class__.__name__ displays the name of the object that calls the func-
tion.

�� The docstring associated with the class can be accessed through __doc__.

EXERCISES

Multiple Choice Questions

1.	 A class generally has

	 (a)  Function and data members	 (b)  Function and Lists

	 (c)  Lists and Tuples 			 (d)  None of the above

2.	 A class can have

	 (a)  Any number of functions 	 (b)  Any type of data members

	 (c)  A variable local to a function 	 (d)  All of the above

3.	 self is

	 (a)  Object of the same class		 (b)  Object of the base class

	 (c)  Object of predefined class	 (d)  None of the above

PPUPS.CH12_1pp.indd 268PPUPS.CH12_1pp.indd 268 4/26/2023 5:26:44 PM4/26/2023 5:26:44 PM

Classes and Objects • 269

4.	 Each function in Python must have at least one parameter, which is

	 (a)  Data 				 (b)  List

	 (c)  Self 				 (d)  None of the above

5.	 The __init__ function

	 (a)  Initializes the data members 	 (b)  Is compulsory

	 (c)  Must be overloaded 		 (d)  None of the above

6.	 The __init__ function in a class

	 (a)  Must be overloaded 		 (b)  Can be overloaded

	 (c)  Cannot be overloaded 		 (d)  None of the above

7.	 The doctring of a class can be accessed using

	 (a)  __init__				 (b)  __doc__

	 (c)  __class__			 (d)  None of the above

8.	 A global variable

	 (a)  Can be accessed anywhere 	

	 (b)  Can be accessed only in __init__

	 (c)  Both of the above

	 (d)  None of the above

9.	 The nonlocal variable

	 (a)  Is generally associated and then used

	 (b)  Must not be associated

	 (c)  Does not exist

	 (d)  None of the above

10.	 A variable shared by all the instances of a class is

	 (a)  Class variable

	 (b)  Instance variable

	 (c)  Both

	 (d)  None of the above

PPUPS.CH12_1pp.indd 269PPUPS.CH12_1pp.indd 269 4/26/2023 5:26:44 PM4/26/2023 5:26:44 PM

270 • Python Programming Using Problem Solving

11.	 A variable unique to an instance is

	 (a)  Instance variable 	 (b)  Class variable

	 (c)  Both 			 (d)  None of the above

12.	 Which of the following keyword is used to define a class?

	 (a)  class			 (b)  def

	 (c)  del 			 (d)  None of the above

13.	 Which of the following is used to define a function that acts as a
destructor?

	 (a)  del			 (b)  init

	 (c)  Both 			 (d)  None of the above

14.	 Which of the following operations are supported by an Object?

	 (a)  Instantiation 		 (b)  Attribute reference

	 (c)  Both 			 (d)  None of the above

15.	 Suppose e1 is an object, which of the following code is used to call __
del__?

	 (a)  del e1			 (b)  e1.__del__

	 (c)  Both			 (d)  None of the above

16.	 If the name of the object is to be displayed in a function of a class, then
which of the following can be used?

	 (a)  __class__.__name__	 (b)  __object__.__name__

	 (c)  Both 			 (d)  None of the above

17.	 In a class all variables are _ by default?

	 (a)  Public			 (b)  Private

	 (c)  Cannot say		 (d)  Depends on the type of variables

18.	 In Python, which of the following operator is used to access methods?

	 (a)  Dot			 (b)  Plus

	 (c)  []			 (d)  None of the above

PPUPS.CH12_1pp.indd 270PPUPS.CH12_1pp.indd 270 4/26/2023 5:26:44 PM4/26/2023 5:26:44 PM

Classes and Objects • 271

19.	 Can a list of Objects be created?

	 (a)  Yes, if the type of variables is public

	 (b)  Yes, in all cases

	 (c)  No, in all cases

	 (d)  Yes, if the type of variables is private

20.	 Data members of a class

	 (a)  Must be private 		 (b)  Can be private

	 (c)  Must be public 		 (d)  None of the above

Theory

1.	 What is an Object? How is an Object created in Python?

2.	 Explain the scope of variables in a class? Give an example of data mem-
bers of a class that are shared by all the objects and of those which are
unique to an Object.

3.	 What is a constructor? What are the different types of constructors in
Python?

4.	 Can we overload a constructor in Python?

5.	 How can one access the name of the docstring in Python?

6.	 How can one access the name of an Object in Python?

7.	 What is a destructor? How is a destructor created in Python?

8.	 Give an example of the use of a destructor in Python?

9.	 Give an example of the instantiation of a class.

10.	 Explain the concept of aliasing in Python.

Programming Exercises

A start-up employee interns. The following details of interns are stored by the
company.

�� first_name
�� last_name

PPUPS.CH12_1pp.indd 271PPUPS.CH12_1pp.indd 271 6/15/2023 2:24:20 PM6/15/2023 2:24:20 PM

272 • Python Programming Using Problem Solving

�� address
�� mobile_number
�� e_mail

1.	 Create a class called Intern, which stores the above details. Craft two
functions getdata(), which asks the user to enter data and putdata() to
display the data.

2.	 In the above program create __init__ which takes only one parameter
(self).

3.	 In question number 1, create __init__, which takes six parameters, first
being “self” and the rest the values of variables, stated above.

4.	 In the above question, craft a destructor and call it.

5.	 A library management system is to be created, in which the following
details of a “Book” are to be stored.

�� Name
�� Publisher
�� Year
�� ISBN
�� Authors

The authors, above, is a list consisting of all the authors of that book.

Create a class called Book, which stores the above details. Craft two functions
getdata(), which asks the user to enter data, and putdata() to display the
data.

6.	 In the above program create __init__ which takes only one parameter
(self).

7.	 In question number 6, create __init__, which takes 6 parameters, first
being “self” and the rest the values of variables, stated in question
number 1.

8.	 In the above question craft a destructor and call it.

9.	 Create a class called complex, having real_part and ima_part as its two
data members and getdata() and putdata() and its member functions.

10.	 In the above question, craft __init__ and __del__.

11.	 Create a function called add, which takes two complex numbers as its
parameters and returns the sum of the two complex numbers.

PPUPS.CH12_1pp.indd 272PPUPS.CH12_1pp.indd 272 4/26/2023 5:26:44 PM4/26/2023 5:26:44 PM

Classes and Objects • 273

12.	 Create a function called sub, which takes two complex numbers as
its parameters and returns the difference between the two complex
numbers.

13.	 Create a function called multiply, which takes two complex numbers as
its parameters and returns the product of the two complex numbers.

14.	 Create a function called div, which takes two complex numbers as its
parameters and returns the result of the division of the two complex
numbers.

15.	 Create a class called date having day, month and year as its data members
and getdata() and putdata() as its member functions.

PPUPS.CH12_1pp.indd 273PPUPS.CH12_1pp.indd 273 4/26/2023 5:26:44 PM4/26/2023 5:26:44 PM

PPUPS.CH12_1pp.indd 274PPUPS.CH12_1pp.indd 274 4/26/2023 5:26:44 PM4/26/2023 5:26:44 PM

Objectives

After reading this chapter, the reader should be able to

�� Understand the concept and importance of Inheritance
�� Differentiate between Inheritance and Composition
�� Understand the types of Inheritance
�� Appreciate the role of “self” in methods
�� Understand the concept and importance of super
�� Appreciate the need of an abstract class

13.1	 INTRODUCTION TO INHERITANCE AND COMPOSITION

Readers versed with C++ must have studied the importance of inheritance
and composition. Inheritance was projected as a path breaking concept,
which promised to solve all the problems and bring about a change in the way
programming is done. Inheritance may also create problems, much more than
you can imagine.

Many programmers believe that inheritance is a black hole which some-
how attracts programmers, who fall in the trap of tall claims and end up
landing themselves in a situation which tempts them to use multiple inher-
itance. Multiple Inheritance is like Voldemort, and the Object-Oriented
Programming environment is Hogwards. Therefore, it is better to avoid
Multiple Inheritance, as much as possible.

Object-oriented programming has its charm, but also comes with its own
problems. So, use inheritance, only if required. In which case, remember

C H A P T E R13
Inheritance

PPUPS.CH13_2pp.indd 275PPUPS.CH13_2pp.indd 275 5/18/2023 11:15:45 AM5/18/2023 11:15:45 AM

276 • Python Programming Using Problem Solving

never ever to use Multiple Inheritance. Also remember that anything that can
be done using inheritance can be done otherwise. Composition, introduced
later in the chapter, can be easily used to accomplish most of the tasks that can
be done using inheritance.

In hindsight, inheritance means a class would get features (all or some)
from the parent class. So, when one writes:

class SoftwareDeveloper(Employee):

					 ...

it implies that the class SoftwareDeveloper is a subclass of the class
Employee. This relationship falls into the category of is a type relationship.
That is, Software Developer is-a Employee.

The class from which class(es) are derived is called base class and
those that inherit features from the base class are derived classes. In the
above example, Employee is the base class and SoftwareEmployee is
the derived class. Note that inheritance does not affect the base class. The
derived class can use the modules of the base class in a variety of ways, dis-
cussed as follows.

13.1.1  Inheritance and Methods

As far as modules are concerned, Inheritance can help the programmer to
derive the features by one of the following ways.

The method is not present in the child class, but only in the par-
ent class: In such case, if an instance of the child class calls the said method,
the parent class’s method is called. For instance, in the following snippet, the
derived class does not have method called show(), so calling show using an
instance of the derived class invokes the method of the parent class.

Code:

class ABC:

	 def show(self):

		 print("show of ABC")

class XYZ(ABC):

	 def show1(self):

		 print("show of XYZ")

PPUPS.CH13_2pp.indd 276PPUPS.CH13_2pp.indd 276 5/18/2023 11:15:45 AM5/18/2023 11:15:45 AM

Inheritance • 277

A = ABC()

A.show()

B= XYZ()

B.show()

B.show1()

The method is present in both the parent class and in the derived
class: In such cases, if this method is invoked using an instance of the derived
class, the method of the derived class is called. If the method is called using
an instance of the base class, the method of the base class is called. Note
that in such cases, the derived class redefines the method. This overriding
ensures that the search of the method in the inheritance tree ends up invok-
ing this method only. For example, in the following snippet, B.show()
calls the show() method of the derived class, whereas A.show() calls the
method of the base class.

Code:

class ABC:

	 def show(self):

		 print("show of ABC")

class XYZ(ABC):

	 def show(self):

		 print("show of XYZ")

A = ABC()

A.show()

B= XYZ()

B.show()

The inherited class modifies the method of the base class and in this
process invokes the method of the base class inside the method of the derived
class also. Note that, in the following snippet, the show method of the derived
class prints a message, then calls the method of the base class and finally prints
another message. Note that in this case, the method of the base class can be
called by qualifying the name of the method with the name of the base class.
For example, in the following snippet, the show method of the base class can
be called using ABC.show(self). The importance of the self argument has
been explained in section 13.3.

PPUPS.CH13_2pp.indd 277PPUPS.CH13_2pp.indd 277 5/18/2023 11:15:45 AM5/18/2023 11:15:45 AM

278 • Python Programming Using Problem Solving

Code:

class ABC:

	 def show(self):

		 print("show of ABC")

class XYZ(ABC):

	 def show(self):

		 print("Something before calling the base class function")

ABC.show(self)

print("Something after calling the base class function")

A = ABC()

A.show()

B= XYZ()

B.show()

The first type of inheritance would henceforth be referred to as implicit
inheritance. In this type, the method of the base class can be called using an
instance of the derived class.

The second type of inheritance would henceforth be referred to as explicit
overriding. As stated earlier, the derived class would redefine the method of
the base class and calling this method using an instance of the derived class
would invoke the method of the derived class.

The third type of inheritance is the most important and practical form of
overriding methods. This type of inheritance leaves the room of not making
an instance of the base class, if not required, still using the function.

The following illustration combines the three types of inheritance:

Illustration 13.1:

Create a class called Student having __init__ and show methods. The
Student class should have a data member called name. The __init__ should
assign value to name and show should display the value. Create another class
called RegularStudent, which would be the derived class of the Student
class. The class should have two methods __init__ and show. The __init__
should assign values to age and should call the __init__ of the base class and
pass the value of name to the base class. The show method must display the
data of the Regular Student. In addition to the above, both classes should
have methods called random, both of which should be independent of each
other (Figure 13.1). Find what happens when the methods of the base class

PPUPS.CH13_2pp.indd 278PPUPS.CH13_2pp.indd 278 5/18/2023 11:15:45 AM5/18/2023 11:15:45 AM

Inheritance • 279

and the derived classes are called using the instances of the base and the
derived classes.

FIGURE 13.1  Class hierarchy for Illustration 13.1.

Solution:

Code:

class Student:

	 def __init__(self,name):

		 self.name=name

	 def show(self):

		 print("Name\t:"+self.name)

	 def random(self):

		 print("A random method in the base class")

class RegularStudent(Student):

	 def __init__(self,name):##overrides the base class method and
calls the base class method

		 self.age=22

		 Student.__init__(self,name)

	 def show(self):##redefines the base class method

		 print(�"Name (derived class)\t:"+self.name+" Age\
t:"+str(self.age))

	 def random(self):##nothing to do with the base class method

		 print("Random method in the derived class")

PPUPS.CH13_2pp.indd 279PPUPS.CH13_2pp.indd 279 5/18/2023 11:15:47 AM5/18/2023 11:15:47 AM

280 • Python Programming Using Problem Solving

naks = Student("Nakul")

hari = RegularStudent("Harsh")

naks.show()

hari.show()

##The variables can be seen outside the class also

print(naks.name)

print(hari.name)

Output:

Name	 :Nakul

Name (derived class)	 :Harsh Age	 :22

Nakul

Harsh

13.1.2  Composition

Making an instance of another class inside a class makes things easy and helps
the programmer to accomplish many tasks. In order to understand the con-
cept, let us consider an example. Consider that a Student and his PhDguide
are subclasses of the person class. Also, the data of the PhD guide includes
the list of students guided by them. Hence, composition comes into play. The
instantiation of the students in the PhDGuide class can be done as explained
in the following illustration.

Illustration 13.2:

Create a class called Student, having name and email as its data members
and __init__(self, name, email) and putdata(self) as bound methods.
The __init__ function should assign the values passed as parameters to the
requisite variables. The putdata function should display the data of the
student. Create another class called PhDGuide having name, email, and
students as its data members. Here, the students variable is the list of stu-
dents under the guide. The PhDGuide class should have four bound meth-
ods: __init__, putdata, add, and remove. The __init__ method should
initialize the variables, the putdata should show the data of the guide,
include the list of students, the add method should add a student to the
list of students of the guide and the remove function should remove the
student (if the student exist in the list of students of that guide) from the list
of students.

PPUPS.CH13_2pp.indd 280PPUPS.CH13_2pp.indd 280 5/18/2023 11:15:47 AM5/18/2023 11:15:47 AM

Inheritance • 281

Solution:

The details of the classes have been shown in Figure 13.2. It may be noted
that since students is a list therefore a for loop is needed to display the list
of students. Also, while adding the student to the list, the data of the passed
parameter has been stored in s (an instance of Student) and s has been added
to the list of the students. Same procedure has been adopted to remove a
student. The code is as follows:

FIGURE 13.2  Details of classes for Illustration 13.2.

Code:

class Student:

	 def __init__(self,name,email):

		 self.name=name

		 self.email=email

	 def putdata(self):

		 print(�"\nStudent's details\nName\t:",self.name,"\
nE-mail\t:",self.email)

class PhDGuide:

	 def __init__(self, name, email,students):

		 self.name=name

		 self.email=email

		 self.students=students

PPUPS.CH13_2pp.indd 281PPUPS.CH13_2pp.indd 281 5/18/2023 11:15:49 AM5/18/2023 11:15:49 AM

282 • Python Programming Using Problem Solving

	 def putdata(self):

		 print("\nGuide Data\nName\t:",self.name,"\nE-mail\t:",
			 self.email)

		 print("\nList of students\n")

		 for s in self.students:

			 print("\t",s.name,"\t",s.email)

	 def add(self, student):

		 s=Student(student.name,student.email)

		 if s not in self.students:

			 self.students.append(s)

	 def remove(self, student):

		 s=Student(student.name,student.email)

	 	 flag=0

		 for s1 in self.students:

			 if(s1.email==s.email):

				 print(s, " removed")

				 self.students.remove(s1)

	 	 	 	 flag=1

	 	 if flag==0:

			 print("Not found")

Harsh=Student("Harsh","i_harsh_bhasin@yahoo.com")

Nav=Student("Nav","i_nav@yahoo.com")

Naks=Student("Nakul","nakul@yahoo.com")

print("\nDetails of students\n")

Harsh.putdata()

Nav.putdata()

Naks.putdata()

KKA=PhDGuide("KKA","kka@gmail.com",[])

MU=PhDGuide("Moin Uddin","prof.moin@yahoo.com",[])

print("Details of Guides")

KKA.putdata()

MU.putdata()

MU.add(Harsh)

MU.add(Nav)

KKA.add(Naks)

print("Details of Guides (after addition of students")

PPUPS.CH13_2pp.indd 282PPUPS.CH13_2pp.indd 282 5/18/2023 11:15:49 AM5/18/2023 11:15:49 AM

Inheritance • 283

KKA.putdata()

MU.putdata()

MU.remove(Harsh)

KKA.add(Harsh)

print("Details of Guides")

KKA.putdata()

MU.putdata()

Output:

Details of students

Student's details

Name	 : Harsh

E-mail	: i_harsh_bhasin@yahoo.com

Student's details

Name	 : Nav

E-mail	: i_nav@yahoo.com

Student's details

Name	 : Nakul

E-mail	: nakul@yahoo.com

Details of Guides

Guide Data

Name	 : KKA

E-mail	: kka@gmail.com

List of students

Guide Data

Name	 : Moin Uddin

E-mail	: prof.moin@yahoo.com

List of students

Details of Guides (after addition of students

PPUPS.CH13_2pp.indd 283PPUPS.CH13_2pp.indd 283 5/18/2023 11:15:49 AM5/18/2023 11:15:49 AM

284 • Python Programming Using Problem Solving

Guide Data

Name	 : KKA

E-mail	: kka@gmail.com

List of students

	 Nakul 	 nakul@yahoo.com

Guide Data

Name	 : Moin Uddin

E-mail	: prof.moin@yahoo.com

List of students

	 Harsh 	 i_harsh_bhasin@yahoo.com

	 Nav 		 i_nav@yahoo.com

<__main__.Student object at 0x03A49650> removed

Details of Guides

Guide Data

Name	 : KKA

E-mail	: kka@gmail.com

List of students

	 Nakul 	 nakul@yahoo.com

	 Harsh 	 i_harsh_bhasin@yahoo.com

Guide Data

Name	 : Moin Uddin

E-mail	: prof.moin@yahoo.com

List of students

	 Nav 	 i_nav@yahoo.com

PPUPS.CH13_2pp.indd 284PPUPS.CH13_2pp.indd 284 5/18/2023 11:15:49 AM5/18/2023 11:15:49 AM

Inheritance • 285

13.2  INHERITANCE: IMPORTANCE AND TYPES

The concept of classes was introduced in the previous chapter. It was men-
tioned that classes are real or conceptual entities which have sharp physical
boundaries and importance to problems at hand. A class has attributes (data
members) and behavior (class methods). However, at times these classes
must be extended to be able to solve some specific problem without hav-
ing to meddle with the original class. To be able to do so, the language
should support inheritance. As a matter of fact, the presence of classes in
the language is primarily because it can be inherited. Inheritance is, as per
most of the authors, one of the most essential features of Object-Oriented
Language.

Using inheritance one can create new classes (derived classes) from exist-
ing class (Base Class(es)). Note that a derived class can even have more than
one base class, referred to as Multiple Inheritance, which is one of the most
undesirable forms of inheritance. Also, a base class can itself be a derived class
of some other class. The derived class will have all the allowed features of the
base class plus some futures of its own.

A class can be depicted using a class diagram. A class diagram is the
diagrammatic representation of a class generally having three sections.
In the representation used henceforth, the first section has the name of
the class. The second section has the attributes, and the third section
has the class methods. Figure 13.3 shows the class diagram in which the
Book class is the base class and the Text_Book class is the derived class.
Note that the arrow is from the derived class to the base class. The arrow
indicates “is derived from” or “is inherited from”. Figure 13.4 gives
the details of the two classes. Note that the Book class has the following
attributes.

�� name
�� authors
�� publisher
�� ISBN
�� year

The class methods of this class are getdata() and putdata(). The Text_
Book class has another attribute, course. Figure 13.5 shows the class browser
showing the two classes and the relation between them. The corresponding
program is presented in Illustration 13.3.

PPUPS.CH13_2pp.indd 285PPUPS.CH13_2pp.indd 285 5/18/2023 11:15:49 AM5/18/2023 11:15:49 AM

286 • Python Programming Using Problem Solving

Book

Text Book

FIGURE 13.3  Text_book is the derived class of the Book class.

FIGURE 13.4  �A class diagram, generally, has three components: the name of the class, the data
members, and the methods of the class.

PPUPS.CH13_2pp.indd 286PPUPS.CH13_2pp.indd 286 5/18/2023 11:15:51 AM5/18/2023 11:15:51 AM

Inheritance • 287

FIGURE 13.5  The book examples’ class hierarchy in the class browser of Python.

13.2.1  Need for Inheritance

In very large programs, it is difficult to code and debug a class. Once the pro-
grammer has crafted a class, there is little need to meddle with it. If one needs
to craft classes having the same features as the class that has been developed
(and add some more features to it), then it makes sense to derive classes from
the existing class. So, inheritance helps to reuse a code. Reusing the code has
its own advantages. It not only saves time but also money. The reliability of the
program also increases by reusing a code. One can also develop his class by
extending classes developed by others. That is, inheritance helps in distribut-
ing libraries. Inheritance also helps to implement a design that is more intui-
tive, better, and practical. Inheritance also has some disadvantages.

Inheritance is important because of the following factors:

�� Reusability
�� Increased Reliability
�� Distributing libraries
�� Intuitive, better programs

13.2.2  Types of Inheritance

This section presents various types of inheritance and corresponding examples.
Note that the reader is expected to execute the problem given in the illustra-
tions and analyze the output. As explained earlier, Inheritance means deriving
new classes from the existing classes. The class from which features have been
derived is called the base class and the class which derives features is called

PPUPS.CH13_2pp.indd 287PPUPS.CH13_2pp.indd 287 5/18/2023 11:15:52 AM5/18/2023 11:15:52 AM

288 • Python Programming Using Problem Solving

the derived class. There are five types of inheritance: Simple, Hierarchical,
Multilevel, Multiple, and Hybrid.

13.2.2.1  Simple inheritance

The simple inheritance has a single base class and a single derived class.
Illustration 13.3 exemplifies this type. The following illustration has two
classes: Book and Text_Book. The Book class has two methods: getdata and
putdata. The getdata method asks the user to enter the name of the book,
number of authors, the list of authors, publisher, ISBN, and year. The
derived class Text_Book has another attribute called course. The getdata
and the putdata methods extend the base class methods (refer to the previ-
ous section).

Illustration 13.3:

Implement the following hierarchy (Figure 13.6). The Book function has
name, n (number of authors), authors (list of authors), publisher, ISBN,
and year as its data members and the derived class has course as its data
member. The derived class methods override (extends) the methods of the
base class.

FIGURE 13.6  The class hierarchy for Illustration 13.3.

Solution:

The following code implements the above hierarchy. The output of the pro-
gram follows.

PPUPS.CH13_2pp.indd 288PPUPS.CH13_2pp.indd 288 5/18/2023 11:15:53 AM5/18/2023 11:15:53 AM

Inheritance • 289

Code:

class Book:

	 def getdata(self):

		 self.name=input("\nEnter the name of the book\t:")

			 self.n=int(input("\nEnter the number of authors\t:"))

		 self.authors=[]

	 	 i=0

		 while i<self.n:

			 author=�input(str("\nEnter the name of the "+str(i)+"th
author\t:"))

			 self.authors.append(author)

			 i+=1

		� self.publisher=input("\nEnter the name of the publisher\t:")

		 self.ISBN=input("\nEnter the ISBN\t:")

		 self.year=input("\nEnter year of publication\t:")

	 def putdata(self):

		 print(�"\nName\t:",self.name,"\nAuthor(s)\t:",self.
authors,"\nPublisher\t:",self.publisher,"\
nYear\t:",self.year,"\nISBN\t:",self.ISBN)

class Text_Book(Book):

	 def getdata(self):

		 self.course=input("\nEnter the course\t:")

		 Book.getdata(self)

	 def putdata(self):

		 Book.putdata(self)

		 print("\nCourse\t:",self.course)

Book1=Book()

Book1.getdata()

Book1.putdata()

TextBook1=Text_Book()

TextBook1.getdata()

TextBook1.putdata()

PPUPS.CH13_2pp.indd 289PPUPS.CH13_2pp.indd 289 5/18/2023 11:15:53 AM5/18/2023 11:15:53 AM

290 • Python Programming Using Problem Solving

Output:

Enter the name of the book			 :Programming in C#

Enter the number of authors		 :1

Enter the name of the 0th author	 :Harsh Bhasin

Enter the name of the publisher	 :Oxford

Enter the ISBN	 	 	 	 	 	 :0-19-809740-9

Enter year of publication	 	 	 :Oxford

Name									 :Programming in C#

Author(s)								 :['Harsh Bhasin']

Publisher		 	 	 	 	 	 	 :Oxford

Year	 	 	 	 	 	 	 	 	 :Oxford

ISBN	 	 	 	 	 	 	 	 	 :0-19-809740-9

Enter the course						 :Algorithms

Enter the name of the book			 :Algorithms Analysis and Design

Enter the number of authors		 :1

Enter the name of the 0th author	 :Harsh Bhasin

Enter the name of the publisher	 :Oxford

Enter the ISBN	 	 	 	 	 	 :0-19-945666-6

Enter year of publication	 	 	 :Oxford

Name									 :Algorithms Analysis and Design

Author(s)								 :['Harsh Bhasin']

Publisher		 	 	 	 	 	 	 :Oxford

Year	 	 	 	 	 	 	 	 	 :Oxford

ISBN	 	 	 	 	 	 	 	 	 :0-19-945666-6

Course									 :Algorithms

PPUPS.CH13_2pp.indd 290PPUPS.CH13_2pp.indd 290 5/18/2023 11:15:53 AM5/18/2023 11:15:53 AM

Inheritance • 291

13.2.2.2  Hierarchical inheritance

In the Hierarchical inheritance, a single base class has at least two derived
classes. Illustration 13.4 exemplifies this type. The following illustration has
three classes: Staff, Teaching, and NonTeaching. Both Teaching and
NonTeaching are the derived classes of the Staff class. The Staff class has
two methods: getdata and putdata. The getdata method asks the user to
enter the name and the salary of the member of the staff. The derived
class Teaching has another attribute called subject. The getdata and the
putdata methods extend the base class methods. Similarly, the derived class
NonTeaching has an attribute called department. The getdata and the
putdata methods extend the base class methods.

Illustration 13.4:

Implement the following hierarchy (Figure 13.7). The Staff class has name
and salary as its data members, the derived class Teaching has subject as
its data member and the class NonTeaching has department as its data
member. The derived class methods override (extends) the methods of the
base class.

FIGURE 13.7  The class hierarchy for Illustration 13.4.

Solution:

The following code implements the above hierarchy. The output of the pro-
gram follows.

PPUPS.CH13_2pp.indd 291PPUPS.CH13_2pp.indd 291 5/18/2023 11:15:55 AM5/18/2023 11:15:55 AM

292 • Python Programming Using Problem Solving

Code:

##Hierarchies

class Staff:

	 def getdata(self):

		 self.name=input("\nEnter the name\t:")

	 	 self.salary=float(input("\nEnter salary\t:"))

	 def putdata(self):

		 print("\nName\t:",self.name,"\nSalary\t:",self.salary)

class Teaching(Staff):

	 def getdata(self):

		 self.subject=input("\nEnter subject\t:")

	 	 Staff.getdata(self)

	 def putdata(self):

	 	 Staff.putdata(self)

		 print("\nSubject\t:",self.subject)

class NonTeaching(Staff):

	 def getdata(self):

		 self.department=input("\nEnter department\t:")

	 	 Staff.getdata(self)

	 def putdata(self):

	 	 Staff.putdata(self)

		 print("\nDepartment\t:",self.department)

X=Staff()

X.getdata()

X.putdata()

##Teacher

Y=Teaching()

Y.getdata()

Y.putdata()

##Non Teaching Staff

Z=NonTeaching()

Z.getdata()

Z.putdata()

PPUPS.CH13_2pp.indd 292PPUPS.CH13_2pp.indd 292 5/18/2023 11:15:55 AM5/18/2023 11:15:55 AM

Inheritance • 293

Output:

========== RUN C:/Python/Inheritance/Hierarchies.py ============

Enter the name			 :Hari

Enter salary	 	 	 	 :50000

Name						 :Hari

Salary		 	 	 	 	 :50000.0

Enter subject				 :Algorithms

Enter the name			 :Harsh

Enter salary	 	 	 	 :70000

Name						 :Harsh

Salary		 	 	 	 	 :70000.0

Subject					 :Algorithms

Enter department			 :HR

Enter the name			 :Prasad

Enter salary	 	 	 	 :52000

Name						 :Prasad

Salary		 	 	 	 	 :52000.0

Department				 :HR

13.2.2.3  Multilevel inheritance

In the Multilevel inheritance, a base class has a derived class, which itself
becomes a derived class for some other class. Illustration 13.5 exemplifies
this type. The following illustration has three classes: Person, Employee,
and Programmer. The Person class is the base class. The Employee class

PPUPS.CH13_2pp.indd 293PPUPS.CH13_2pp.indd 293 5/18/2023 11:15:55 AM5/18/2023 11:15:55 AM

294 • Python Programming Using Problem Solving

has been derived from the Person class. The programmer class has been
derived from the Employee class. The Person class has two attributes name
and age and two methods getdata and putdata. The getdata method asks
the user to enter the name and the age of the member of the staff. The
derived class Employee has another attribute called emp_code. The get-
data and the putdata methods extend the base class methods. Similarly, the
class Programmer has another attribute called language. The getdata and
the putdata methods extend its base class methods (Employee class).

Illustration 13.5:

Implement the following hierarchy (Figure 13.8). The Person class has name
and age as its data members, the derived class Employee has emp_code as
its data member and the class Programmer has language as its data member.
The derived class methods override (extends) the methods of the base class.

FIGURE 13.8  The class hierarchy for Illustration 13.5.

Solution:

The following code implements the above hierarchy. The output of the pro-
gram follows.

Code:

class Person:

	 def getdata(self):

		 self.name=input("\nEnter Name\t:")

		 self.age=int(input("\nEnter age\t:"))

PPUPS.CH13_2pp.indd 294PPUPS.CH13_2pp.indd 294 5/18/2023 11:15:56 AM5/18/2023 11:15:56 AM

Inheritance • 295

	 def putdata(self):

		 print("\nName\t:",self.name,"\nAge\t:",str(self.age))

class Employee(Person):

	 def getdata(self):

		 Person.getdata(self)

		 self.emp_code=input("\nEnter employee code\t:")

	 def putdata(self):

		 Person.putdata(self)

		 print("\nEmployee Code\t:",self.emp_code)

class Programmer(Employee):

	 def getdata(self):

		 Employee.getdata(self)

		 self.language=input("\nEnter Language\t:")

	 def putdata(self):

		 Employee.putdata(self)

		 print("\nLanguage\t:",self.language)

A=Person()

print("\nA is a person\nEnter data\n")

A.getdata()

A.putdata()

B=Employee()

print("\nB is an Empoyee and hence a person\nEnter data\n")

B.getdata()

B.putdata()

C=Programmer()

print(�"\nC is a programmer hence an employee and employee is a
person\nEnter data\n")

C.getdata()

C.putdata()

Output:

A is a person

Enter data

Enter Name				 :Har

PPUPS.CH13_2pp.indd 295PPUPS.CH13_2pp.indd 295 5/18/2023 11:15:56 AM5/18/2023 11:15:56 AM

296 • Python Programming Using Problem Solving

Enter age		 	 	 	 :28

Name						 :Har

Age		 	 	 	 	 	 :28

B is an Empoyee and hence a person

Enter data

Enter Name				 :Hari

Enter age		 	 	 	 :29

Enter employee code		 :E001

Name						 :Hari

Age		 	 	 	 	 	 :29

Employee Code		 	 	 :E001

C is a programmer hence an employee and employee is a person

Enter data

Enter Name				 :Harsh

Enter age		 	 	 	 :30

Enter employee code		 :E002

Enter Language			 :Python

Name						 :Harsh

Age		 	 	 	 	 	 :30

Employee Code		 	 	 :E002

Language					 :Python

>>>

13.2.2.4  Multiple inheritance and hybrid inheritance

In Multiple Inheritance, a class has more than one base class. This type of
inheritance can be problematic as it can lead to ambiguity. It is therefore
advised to avoid this kind of inheritance as far as possible. However, the fol-
lowing sections throw some light on this type and the problems associated
with this type.

A design may have a combination of more than one type of inherit-
ance. Two classes B and C have been derived from class A (see Figures 13.9
and 13.10). However, for class D, the classes B and C are the base classes.
This is an example of combining hierarchical and multiple inheritance. Such
type is referred to as Hybrid Inheritance.

PPUPS.CH13_2pp.indd 296PPUPS.CH13_2pp.indd 296 5/18/2023 11:15:56 AM5/18/2023 11:15:56 AM

Inheritance • 297

FIGURE 13.9  �Classes B and C have been derived from A (Hierarchical Inheritance) and D is derived from
B and C (Multiple Inheritance).

C

A

D

B

FIGURE 13.10  �Classes B and C have been derived from A (Hierarchical Inheritance) and D is derived
from B and C (Multiple Inheritance).

13.3	METHODS

The importance of functions and methods has already been stated in the first
section of this book. Methods are, as stated earlier, just functions with a special
positional parameter, within a class. Methods, in fact, help the programmer
to accomplish many tasks. Methods can be bound or unbound. The unbound
methods do not have self as a parameter. It is worth mentioning here that,
in Python 3.X, the unbound methods are the same as functions, whereas in
Python 2.X, it is a different type. The bound methods, on the other hand,
have self as the first positional parameter, when a method is accessed through

PPUPS.CH13_2pp.indd 297PPUPS.CH13_2pp.indd 297 5/18/2023 11:15:59 AM5/18/2023 11:15:59 AM

298 • Python Programming Using Problem Solving

qualifying an instance of a class. Here, the instance of the class need not to
be passed.

In spite of the above differences, the following similarities between the two
types may not be missed.

�� A method in Python is also an Object. Both bound and unbound methods
are objects.

�� Same method can be invoked as a bound method and an unbound method.

The discussion and illustrations that follow would clarify the second point.

13.3.1  Bound Methods

A method can be invoked in a variety of ways. If the first positional parameter
of the method is self, it is bound. In such cases, the instance of the class can
call the method by passing the requisite parameters.

A variable which hold <Object name>.<method name>(Hari.dis-
play), in the following example, can also be used to invoke the method. Those
of you, from C# background may find the concept similar to that of delegates.

A method can also be invoked by creating an unmanned instance of the
class. The third call of the display method depicts this way of calling method.

Illustration 13.6:

Calling a bound method

This illustration has a class called Student. The Student class has a display
method, which takes two arguments. The first being the positional parameter
and the second being a string that is printed. Note that the display method is
a bound method and hence is called through an instance of the class.

Code:

class Student:

	 def display(self, something):

		 print("\n"+something)

##Invoking a bound method

Hari = Student()

Hari.display("Hi I am Hari")

PPUPS.CH13_2pp.indd 298PPUPS.CH13_2pp.indd 298 5/18/2023 11:15:59 AM5/18/2023 11:15:59 AM

Inheritance • 299

##display() can also be invoked through an instance of the
method

X= Hari.display

X("Hi I am through X")

##display called again

Student().display("Calling display again")

Output:

>>>

========== RUN C:\Python\Inheritance\BoundUnbound.py ===========

Hi I am Hari

Hi I am through X

Calling display again

>>>

13.3.2  Unbound Method

An unbound method does not have self. Hence, the positional parameter
need not to be passed in method. In such methods, the variables should not
be qualified by self. Calling such methods in the same way, as before, would
result in an error, as shown in the output of Listing 1 of Illustration 13.7. The
second listing calls the unbound method in an appropriate way. Such methods
must be called by the name of the class and not the object. In Python 3.X, as
stated earlier, such methods work in the same manner as functions. Also note
that normal functions can be called using the class, of which they are member,
as shown in the previous illustration.

Illustration 13.7:

Calling an unbound method

This illustration extends the previous illustration and adds the getdata
method, which does not take self as a parameter and hence is called by the
class itself.

Code:

class Student:

	 def display(self, something):

		 print("\n"+something)

PPUPS.CH13_2pp.indd 299PPUPS.CH13_2pp.indd 299 5/18/2023 11:15:59 AM5/18/2023 11:15:59 AM

300 • Python Programming Using Problem Solving

	 def getdata(name,age):

		 name=name

		 age=age

		 print("\nName\t:",name,"\nAge\t:",age)

##Creating a new student

Naved=Student()

name=input("\nEnter the name of the student\t:")

age=int(input("\nEnter the age of the student\t:"))

Naved.getdata(name,age)

Output:
>>>

========== RUN C:/Python/Inheritance/BoundUnbound.py ===========

Enter the name of the student	:Naved

Enter the age of the student	 :22

Traceback (most recent call last):

File �"C:/Python/Inheritance/BoundUnbound.py", line 21, in
<module>

Naved.getdata(name,age)

>>>

Snippet 2:

Code:
class Student:

	 def display(self, something):

		 print("\n"+something)

	 def getdata(name,age):

		 print("\nName\t:",name,"\nAge\t:",str(age))

##Creating a new student

Naved=Student()

name=input("\nEnter the name of the student\t:")

age=int(input("\nEnter the age of the student\t:"))

Student.getdata(name,age)

PPUPS.CH13_2pp.indd 300PPUPS.CH13_2pp.indd 300 5/18/2023 11:15:59 AM5/18/2023 11:15:59 AM

Inheritance • 301

Output:

>>>

========= RUN C:/Python/Inheritance/BoundUnbound1.py ===========

Enter the name of the student	:Naved

Enter the age of the student	 :22

Name			 :Naved

Age				 :22

>>>

13.3.3  Methods are Callable Objects

Methods, like any other object in Python, can be stored in a list and called as
per the requirement. In the illustration that follows, the class operations has
a constructor __init__(self, number), which assigns the value of the second
parameter to the data member called number. The class has two methods
square and cube. The first method calculates (and returns) the square of the
number and the second calculates (and returns) the cube of the number. Two
instances of the class operations have been created: X and Y. X is initialized
to 5 and Y to 4. The list List, stores the objects X.square, X.cube, Y.square
and Y.cube. The elements of the list are then called one by one and invoked.

Illustration 13.8:

Methods as callable objects

Code:

class operations:

	 def __init__(self, number):

		 self.number=number

	 def square(self):

		 return (self.number*self.number)

	 def cube(self):

		 return(self.number*self.number*self.number)

Num1=operations(5)

Num2=operations(4)

List= [Num1.square, Num1.cube, Num2.square, Num2.cube]

for callable_object in List:

print(callable_object())

PPUPS.CH13_2pp.indd 301PPUPS.CH13_2pp.indd 301 5/18/2023 11:15:59 AM5/18/2023 11:15:59 AM

302 • Python Programming Using Problem Solving

Output:

>>>

======== RUN C:/Python/Inheritance/CallableObjects.py ========

25

125

16

64

>>>

13.3.4  The Importance and Usage of Super

A class may have data members and member functions (method). A method
is just a function in a class, defined using the keyword def. As discussed in the
earlier chapters, the methods depict the behavior of a class. Generally, the
methods’ first argument is an instance of the class itself. The first argument
generally referred to as self, is similar to this of C++. Using self with the vari-
able name indicates that the reference is to the instance variable, not that in
the global scope. For example, in the following snippet, the __init__ method
has two arguments: first being self and second being the name. Assigning
name to self.name implies that the local variable name is assigned name (the
second argument of __init__). Similarly, the putdata method has a positional
parameter indicating the data for the instance which invokes putdata must
be shown. Note that the output reinforces the fact that self binds the method
call with the instances.

Code:

class Student:

	 def __init__(self,name):

		 self.name=name

	 def putdata(self):

		 print("name\t:",self.name)

Hari=Student("Hari")

Hari.putdata()

Naks=Student("Nakul")

Naks.putdata()

>>>

PPUPS.CH13_2pp.indd 302PPUPS.CH13_2pp.indd 302 5/18/2023 11:15:59 AM5/18/2023 11:15:59 AM

Inheritance • 303

Output:

============= RUN C:/Python/Inheritance/Basic.py ===============

name : Hari

name : Nakul

>>>

However, methods can also be crafted without the self argument. These
are unbound methods. The concept has been discussed in Section 13.3.2 of
this chapter. The method of a class is an instance method by default. So, gen-
erally, the method of a class can be called by creating an instance of the class
and using the dot operator to call the method. Note that this was the case in
languages like C#, JAVA, etc.

However, there are other types of methods as well. For example, static
methods do not require the instance of a class as their first argument.

13.3.5  Calling the Base Class Function Using Super

The functions of the base class can be called super. In fact, super can be
used to call any function of the base class and it clearly depicts the calling of
the base class’s function. In order to understand the usage of super, let us
consider the following example. In the following example, BaseClass has two
methods: __init__ and printData. __init__ has one positional parameter
and one parameter that initializes data (the data member of the BaseClass).
The DerivedClass is the derived class of the BaseClass. This class has __
init__, which takes a positional parameter (self), and two other parameters.
The first initializes the data member of DerivedClass and the second is
passed onto the __init__ of the base class (BaseClass) using super. The
super takes the name of the class (DerivedClass), the positional parameter
(self) and calls the __init__ of the base class by passing all parameters except
the positional parameter. Note that the second function also uses super in
the same manner.

Code:

class BaseClass:

	 def __init__(self, data):

		 self.data=data

	 def printData(self):

		 print("Data of the base class\t:",self.data)

PPUPS.CH13_2pp.indd 303PPUPS.CH13_2pp.indd 303 5/18/2023 11:15:59 AM5/18/2023 11:15:59 AM

304 • Python Programming Using Problem Solving

class DerivedClass(BaseClass):

	 def __init__(self,data1, data2):

		 self.data1=data1

		 super(DerivedClass, self).__init__(data2)

	 def printData(self):

		 super(DerivedClass,self).printData()

		 print("Data of the derived class\t:",self.data1)

Output:

>>>

Data of the base class	 	 : 4

Data of the base class	 	 : 5

Data of the derived class	 : 6

>>>

13.4	SEARCH IN INHERITANCE TREE

An object is searched in the inheritance tree, in a bottom-up fashion. First of all,
the class searches for the given object. If it is found, then the found object is used
to accomplish the given task. If not, then its super class (Base Class) is searched
for the object. In the case of more than one base classes, ambiguity can be there.

For example, in the following illustration, the Derived1 class has
been derived from BaseClass. The show() method of this class displays

FIGURE 13.11  The class hierarchy for given illustration.

PPUPS.CH13_2pp.indd 304PPUPS.CH13_2pp.indd 304 5/18/2023 11:16:01 AM5/18/2023 11:16:01 AM

Inheritance • 305

the values of “data1” and “data.” The former is in the class and hence its
value is displayed. However, if the former is not in the class, the inherit-
ance tree is searched for the object. Note that “data” exists in the base
class (BaseClass) and hence its value would be displayed. This is true for
methods also. Even if the derived class does not have a particular method, it
can be invoked if it exists in the parent class or in any other class, up in the
inheritance tree.

Code:

class BaseClass:

	 def __init__(self,data):	

		 self.data=data

	 def show(self):

		 print("\nData\t:",self.data)

class Derived1(BaseClass):

	 def __init__(self,data,data1):

		 self.data1=data1

		 BaseClass.__init__(self,data)

	 def show(self):

		 print("\nData\t:",self.data1,"\nBase class data\t:",self.
data)

class Derived2(BaseClass):

	 def __init__(self,data,data2):

		 self.data2=data2

		 BaseClass.__init__(self,data)

	 def show(self):

		 print(�"\nData\t:",self.data2,"\nBase class data\t:",self.
data)

X=BaseClass(1)

X.show()

print(X.data)

Y=Derived1(2,3)

Y.show()

Z=Derived2(4,5)

Z.show()

#Inheritance tree

PPUPS.CH13_2pp.indd 305PPUPS.CH13_2pp.indd 305 5/18/2023 11:16:01 AM5/18/2023 11:16:01 AM

306 • Python Programming Using Problem Solving

Output:

======== RUN C:/Python/Inheritance/InheritanceTree.py ========

Data	 : 1

1

Data	 : 3

Base class data	 : 2

Data	 : 5

Base class data	 : 4

13.5	CLASS INTERFACE AND ABSTRACT CLASSES

At times the classes are crafted so that they can be subclassed. While designing,
there is no intention of instantiating these classes. That is, these classes would
not be instantiated but would only be used to create derived classes that are
called abstract classes. In order to understand the concept, let us consider
an example. The following example has four classes: BaseClass, Derived1,
Derived2, and Derived3.

The BaseClass has two methods: method1 and method2. The
first method has some tasks associated with it, whereas the second wants
the derived class to implement it. The derived class should, to be able
to call this method, must have a method called action. The first derived
class (Derived1) replaces method1. So, if an instance of Derived1 calls
method1, the version defined in Derived1 would be called. The second
method extends method1, it adds something to method1 and also calls the
BaseClass version of method1. When method1 is called from Derived2,
the BaseClass version is called, as the search in the inheritance tree invokes
the base class version of the method. The third derived class (Derived3) also
implements the action method defined in the base class. Note that when
method2 is called through an instance of Derived3, the base class version
of method2 is invoked. This version calls action and a new search is initi-
ated, thus resulting in the invocation of action of Derived3. Illustration 13.9
presents the code.

Note that the above concept can be extended, and a class may have
methods that would be implemented by the derived classes. Interestingly,
Python has a provision that such classes would not be instantiated until
all such methods are not defined. Such base classes are called abstract
classes.

PPUPS.CH13_2pp.indd 306PPUPS.CH13_2pp.indd 306 5/18/2023 11:16:01 AM5/18/2023 11:16:01 AM

Inheritance • 307

Illustration 13.9:

Implement the following hierarchy. “method1” of Derived1 should replace
method1 of the base class, method1 of Derived2 should extend method1
of the base class and action of Derived3 should implement method2 of the
BaseClass.

FIGURE 13.12  Class hierarchy for Illustration 13.9.

Solution:

class BaseClass:

	 def method1(self):

		 print("In BaseClass from method1")

	 def method2(self):

		 self.action()

class Derived1(BaseClass):

	 def method1(self):

		 print(�"A new method, has got nothing to do with that of
the base class")

class Derived2(BaseClass):

	 def method1(self):

	 	 print("A method that extends the base class method")

		 BaseClass.method1(self)

PPUPS.CH13_2pp.indd 307PPUPS.CH13_2pp.indd 307 5/18/2023 11:16:02 AM5/18/2023 11:16:02 AM

308 • Python Programming Using Problem Solving

class Derived3(BaseClass):

	 def action(self):

		 print("\nImplementing the base class method")

for className in (Derived1, Derived2, Derived3):

		 print("\nClass\t:",className)

		 className().method1()

X=Derived3()

X.method2()

Output:

Class	 : <class '__main__.Derived1'>

A new method, has got nothing to do with that of the base class

Class	 : <class '__main__.Derived2'>

A method that extends the base class method

In BaseClass from method1

Class	 : <class '__main__.Derived3'>

In BaseClass from method1

Implementing the base class method

13.6	CONCLUSION

This chapter introduced the concept of Inheritance, which is one of the most
important ingredients of Object-Oriented Programming. Inheritance, as
explained in the chapter helps the program in reusing the code and mak-
ing the program more structured. However, it should be used wisely, as in
many cases, it leads to problems like ambiguity. The reader must also appre-
ciate that it is not always necessary to use inheritance. Most of the tasks can
be accomplished using composition. However, even if using inheritance
becomes a necessity, be clear about the type of inheritance required, the type
of methods calls required and the use of bound methods. The discussion on
Object-Oriented Programming Paradigms continues in the next chapter also,
wherein the concept of Operator Overloading has been introduced. The last
chapter, this chapter, and the next one would help the reader to successfully
develop software using OOP.

PPUPS.CH13_2pp.indd 308PPUPS.CH13_2pp.indd 308 5/18/2023 11:16:02 AM5/18/2023 11:16:02 AM

Inheritance • 309

GLOSSARY

�� Inheritance: Inheritance is the process of creating subclasses from exist-
ing classes.

�� Base class and derived class: The class from which other classes are
derived is the base class and the classes that inherit from the base class
are the derived classes.

�� Implicit inheritance: In this type, the method of the base class can be
called using an instance of the derived class.

�� Explicit overriding: In this type of inheritance, the derived class rede-
fines the method of the base class and calling this method using an instance
of the derived class invokes the method of the derived class.

POINTS TO REMEMBER

�� Inheritance provides reusability and increased reliability.
�� Types of inheritance are Simple Inheritance, Multiple Inheritance, Multi-

level Inheritance, Hierarchical Inheritance, and Hybrid Inheritance.
�� Multiple inheritance may lead to ambiguity.
�� A bound method has a “self” parameter whereas an unbound method

does not have “self” parameter.
�� A class can also be instantiated in another class.
�� super can be used to access the base class methods.
�� The inheritance tree is searched to find the version of the method to be

invoked.

EXERCISES

Multiple Choice Questions

1.	 A class that cannot be instantiated until all its methods have been defined
by its subclass(es) is called

	 (a)  Abstract class		 (b)  Meta class

	 (c)  Base class		 (d)  None of the above

	 A class called operation has an __init__, that takes a positional param-
eter and an integer as an argument. Two instances of operations Num1
and Num2 have been defined, as follows. The class has two functions,
the first calculates the square of a number and the second calculates the
cube. A list called List1 is created which contains the names of the four

PPUPS.CH13_2pp.indd 309PPUPS.CH13_2pp.indd 309 5/18/2023 11:16:02 AM5/18/2023 11:16:02 AM

310 • Python Programming Using Problem Solving

methods (two of Num1 and two of Num2). A for loop is then used to call
the methods as shown in the following snippet.

	 Num1=operations(5)

	 Num2=operations(4)

	 List= [Num1.square, Num1.cube, Num2.square, Num2.cube]

	 for callable_object in List:

		 print(callable_object())

2.	 The program containing the above code (Assume that the rest of the code
is correct)

	 (a)  Has no syntax error but does not execute

	 (b)  Has syntax error

	 (c)  Has no syntax error and executes

	 (d)  Insufficient information

3.	 In the question above, what would be the output (if the code is correct)?

	 (a)  The code is not correct		 (b)  25  125  16  64

	 (c)  125 25 64 16			 (d)  None of the above

4.	 The names of the methods in the list (question number 2) are similar to
(in C#)

	 (a)  Meta classes			 (b)  Delegates

	 (c)  Both				 (d)  None of the above

5.	 “self” in Python is similar to

	 (a)  “this” is C#			 (b)  “me” in C#

	 (c)  delegate in C#			 (d)  None of the above

6.	 class Student:
		 def display(self, something):

			 print("\n"+something)

		 def getdata(name,age):

			 name=name

			 age=age

			 print("\nName\t:",name,"\nAge\t:",age)

PPUPS.CH13_2pp.indd 310PPUPS.CH13_2pp.indd 310 5/18/2023 11:16:02 AM5/18/2023 11:16:02 AM

Inheritance • 311

	 In the above snippet, how would you invoke getdata (assume that Hari
is an instance of Student).

	 (a)  Student.getdata(“Harsh”, 22)	 (b)  Hari.getdata(“Harsh”, 24)

	 (c)  Both are correct			 (d)  None of the above

7.	 Can a method also be invoked by creating an unnamed instance of a class?

	 (a)  Yes

	 (b)  No

	 (c)  Insufficient data

	 (d)  There in nothing called unnamed instance of a class in Python

8.	 Which of the following is used in searching for an inheritance tree?

	 (a)  Breadth First search		 (b)  Depth First search

	 (c)  Both				 (d)  None of the above

9.	 In an inheritance tree, at the same level, which policy is used to search
for an object?

	 (a)  Left to right			 (b)  Right to left

	 (c)  Any				 (d)  None of the above

10.	 “super” can be used to call

	 (a)  The __init__ of the base class

	 (b)  Any method of the base class

	 (c)  Cannot be used to call methods of the base class

	 (d)  None of the above

11.	 Which type of inheritance leads to ambiguity?

	 (a)  Multiple				 (b)  Multilevel

	 (c)  Both 				 (d)  None

PPUPS.CH13_2pp.indd 311PPUPS.CH13_2pp.indd 311 5/18/2023 11:16:02 AM5/18/2023 11:16:02 AM

312 • Python Programming Using Problem Solving

12.	 Which type of inheritance has just one base class and a single derived
class?

	 (a)  Simple			 (b)  Hierarchical

	 (c)  Multiple			 (d)  None of the above

13.	 Which type of inheritance has more than one base class(es) and a single
derived class?

	 (a)  Simple			 (b)  Hierarchical

	 (c)  Multiple			 (d)  None of the above

14.	 Which type of inheritance has more than one derived class(es) and a sin-
gle derived class?

	 (a)  Simple			 (b)  Hierarchical

	 (c)  Multiple			 (d)  None of the above

15.	 Can a derived class be a base class of some other class?

	 (a)  Yes 			 (b)  No

	 (c)  Insufficient data		 (d)  None of the above

Theory

1.	 What is inheritance? Explain the importance of inheritance.

2.	 What are the disadvantages of inheritance? Explain with reference to
multiple inheritance.

3.	 What are the various types of inheritance? Give examples.

4.	 What are the problems in implementing Multiple Inheritance? How are
they resolved?

5.	 What is composition? Is it a type of inheritance?

6.	 Is inherence mandatory in object-oriented programming? Justify.

7.	 What is the difference between is a and has a relationship. Explain with
the help of examples.

PPUPS.CH13_2pp.indd 312PPUPS.CH13_2pp.indd 312 5/18/2023 11:16:02 AM5/18/2023 11:16:02 AM

Inheritance • 313

8.	 Which is better: inheritance or composition? Can all that can be achieved
using inheritance be done using composition?

9.	 Explain the use of super. How can it be used to call methods of the base class?

10.	 Are methods in Python, objects? Justify your answer. What is meant by
callable object?

11.	 What is an abstract class? How does an abstract class helps in achieving
the goals of OOPs?

12.	 What are bound methods? What are the various ways of invoking a bound
method?

13.	 Differentiate between a bound and an unbound method. Give examples.

14.	 What is the importance of self in Python?

15.	 Explain the mechanism of search in an inheritance tree.

Programming Exercises

1.	 A class called Base1 has two methods: method1(self, message) and
method2(self). The first method prints the message passed as an
argument to the method. The second invokes another method called
action1(self), which would be defined by the subclass (Derived2) of
Base1. Derived1, another derived class of Base1, redefines method1,
and does nothing with method2. Derived2, on the other hand, does
nothing with method1. Implement the hierarchy and find what happens
in the following cases.

	 (a)  An instance of Base1 calls method1

	 (b)  An instance of Derived1 calls method1

	 (c)  An instance of Derived2 calls method1

	 (d)  An instance of Base1 calls method2

	 (e)  An instance of Derived2 calls method2

	 (f)  An instance of Derived1 calls method2

	 (g)  An instance of Derived2 calls action

PPUPS.CH13_2pp.indd 313PPUPS.CH13_2pp.indd 313 6/15/2023 2:25:03 PM6/15/2023 2:25:03 PM

314 • Python Programming Using Problem Solving

2.	 A class called operation has an __init__, that takes a positional param-
eter and an integer as an argument. The class has two functions, the first
calculates the square root of a number and the second calculates the cube
root. Two instances of operations: Num1 and Num2 are to be created.
A list called List1 is to be created which contains the names of the four
methods (two of Num1 and two of Num2). Implement the above and use
a for loop to call all the callable objects from the list.

3.	 A class employee has two methods getdata(name, age) and
getdata1(self, name, age). The getdata method stores the value in the
local variables. Another method called putdata shows the data. Write a
program to call the methods (the first is not bound but the second is) and
display the data.

4.	 Create the following hierarchy and explain the search process of method
called show.

5.	 Create a class called Employee, having name, email, age and phone_
number as data members. The methods getdata assign values to the
variables. The putdata method should display the data. The class
must have an __init__. Programmer is a derived class of Employee,
which has another data member called language. Override the get-
data and the putdata function. Manager is another derived class of
the Employee class. The Manager class should also have a list of
Employees that work under him. The class has the usual getdata
and putdata methods and also has special methods to add or remove
employees.

PPUPS.CH13_2pp.indd 314PPUPS.CH13_2pp.indd 314 5/18/2023 11:16:03 AM5/18/2023 11:16:03 AM

Inheritance • 315

6.	 Implement the above hierarchy and carry out the following tasks:

	 (a) � Create two managers: manager1 and manager2 and ask the user
to enter the data (including the employees that work under the two
managers)

	 (b) � Create a menu driven program to add or remove employees under a
manager

	 (c) � Find out how many employees working under manager1 are pro-
grammers?

	 (d) � Find how many employees working under manager2 are not pro-
grammers?

	 (e)  Find the maximum age of the employees working under manager1.

	 (f)  Find the mean age of the employees working under manager2.

	 (g)  Find the phone numbers of all the employees having age>35.

	 (h)  Find the manager who has more employees under him.

	 (i)  Which manager has more programmers under him?

	 ( j) � Is manager1 a programmer (Design classes accordingly and choose
the type of inheritance).

PPUPS.CH13_2pp.indd 315PPUPS.CH13_2pp.indd 315 5/18/2023 11:16:03 AM5/18/2023 11:16:03 AM

PPUPS.CH13_2pp.indd 316PPUPS.CH13_2pp.indd 316 5/18/2023 11:16:03 AM5/18/2023 11:16:03 AM

Objectives

After reading this chapter, the reader should be able to

�� Understand the importance of Operator Overloading
�� Understand the issues in constructor overloading
�� Use various methods used for overloading operators
�� Implement Operator Overloading for Complex Numbers and Fractions

14.1	 INTRODUCTION

Operators operate on operands to give some results. At times, an operator
performs more than one task. For example, in Python, the + operator adds two
numbers or two floats or concatenates two strings. That is, the + operator oper-
ates on both integers and strings. However, for user defined data types, the pro-
grammer cannot use these operators directly. Operator Overloading helps the
programmer to define existing operator for user defined objects. This makes
the language powerful and the work simple. This simplicity and intuitiveness in
turn makes programming fun and increases the readability of the code.

We will also define methods to implement operator overloading for user
defined data types. Operator Overloading can be used to intercept Python
Operators by classes and even to overload built-in operations. These particular
methods, which help in Operator Overloading, have been specially named and
one can call these methods when instances of classes use the associated operator.

This chapter discusses various aspects of Operator Overloading. It has
been organized as follows:

C H A P T E R14
Operator Overloading

PPUPS.CH14_2pp.indd 317PPUPS.CH14_2pp.indd 317 5/18/2023 11:18:53 AM5/18/2023 11:18:53 AM

318 • Python Programming Using Problem Solving

�� Section 14.2 revisits __init__ and discusses the issues in overloading __
init__.

�� Section 14.3 presents some of the common Operator Overloading
methods.

�� Section 14.4 presents an example of overloading the binary operators.
�� Section 14.5 discusses the __iadd__ method.
�� Section 14.6 discusses the comparison operators.
�� Section 14.7 discusses bool and len. The last section concludes.

14.2	__INIT__ REVISITED

The __init__ function has already been explained. This function initializes
the members of a class. Earlier it was stated that __init__ could not be over-
loaded, which is partly true. Though one cannot have two __init__’s in the
same class, there is a way to implement constructor overloading, explained in
the following discussion.

Let us revisit __init__. The purpose of __init__ is to initialize the members of
the class. In the following example (Illustration 14.1), a class called Complex has
two members: real and imaginary, which are initialized by the parameters of the
__init__ function. Note that, the members of the class are denoted by self.
real and self.imaginary and the parameters of the functions are real and
imaginary. The example has a function called putData to display the values
of the members. In the __main__() function, c1 is an instance of the class
Complex. The object c1 is initialized by 5 and 3 and the putData() of the
class has been called to display the “Complex Number.”

Illustration 14.1:

Create a class called Complex, having two members real and imaginary.
The class should have __init__, which takes two parameters to initialize the
values of real and imaginary respectively and a function called putData,
to display the Complex number. Create an instance of the Complex number
in the __main__() function, initialize it by (5, 3) and display the number by
invoking the putData function.

Code:

class Complex:

	 def __init__(self, real, imaginary):

		 self.real = real

		 self.imaginary = imaginary

PPUPS.CH14_2pp.indd 318PPUPS.CH14_2pp.indd 318 5/18/2023 11:18:53 AM5/18/2023 11:18:53 AM

Operator Overloading • 319

	 def putData(self):

		 print(self.real," +i ",self.imaginary)

	 def __main__():

		 c1=Complex(5, 3)

		 c1.putData()

	 __main__()

Output:

5  +i  3

Let us consider another example (Illustration 14.2) which deals with the
implementation of vectors. In the example, a class called Vector has two data
members namely args and length. Since args can contain any number of
items, the __init__ has *args as the parameter. The putData function dis-
plays the Vector and the __len__ function calculates the length of the Vector
(the number of arguments).

Illustration 14.2:

Create a class called Vector, which can be instantiated with a vector of any
length. Design the requisite __init__ function and a function to overload the
len operator. The class should also have a putData function to display the
vector. Instantiate the class with a vector having:

�� no element
�� one element
�� two elements
�� three elements

Display each vector and display the length.

Code:

class Vector:

	 def __init__(self, * args):

		 self.args=args

	 def putData(self):

		 print(self.args)

		 print('Length ',len(self))

	 def __len__(self):

		 self.length = len(self.args)

		 return(self.length)

PPUPS.CH14_2pp.indd 319PPUPS.CH14_2pp.indd 319 5/18/2023 11:18:53 AM5/18/2023 11:18:53 AM

320 • Python Programming Using Problem Solving

	 def __main__():

		 v0= Vector()

		 v0.putData()

		 v1 = Vector(2)

		 v1.putData()

		 v2 = Vector(3, 4)

		 v2.putData()

		 v3 = Vector(7, 8, 9)

		 v3.putData()

	 __main__()

Output:

()

Length  0

(2,)

Length  1

(3, 4)

Length  2

(7, 8, 9)

Length  3

>>>

Note that the above example, __init__ has the same effect as having many
constructors with different parameters. Though __init__ has not been over-
loaded in the literal sense, the program has same effect as that of one having
overloaded constructors.

14.2.1	 Overloading __init__(Sort of)

Constructors can be overloaded (part of) by assigning None to the argu-
ments (some or all, except for the positional argument). To understand the
point, consider a class called Complex. The class must have two construc-
tors, one which takes two arguments and one where no argument is given. In
the first case the real and imaginary part of Complex should be initialized
with the arguments of __init__ and in the second the real and imaginary
should become zero. One of the simplest solutions is to check if the two argu-
ments are NONE or not. If both of them are NONE, the data members
should be zero. In the second case, they should contain the arguments, passed

PPUPS.CH14_2pp.indd 320PPUPS.CH14_2pp.indd 320 5/18/2023 11:18:53 AM5/18/2023 11:18:53 AM

Operator Overloading • 321

in __init__. Though, the following program (Illustration 14.3) does not have
two __init__’s, the above task has been accomplished.

Illustration 14.3:

Construct a class called Complex having real and ima as its data members.
The class should have an __init__, for initializing the data remembers and
putData for displaying the complex number.

Code:

class Complex:

	 def __init__(self, real=None, ima=None):

		 if ((real == None)&(ima==None)):

			 self.real=0

			 self.ima=0

		 else:

			 self.real=real

			 self.ima=ima

	 def putData(self):

			 print(str(self.real)," +i ",str(self.ima))

c1=Complex(5,3)

c1.putData()

c2=Complex()

c2.putData()

Output:

5  +i  3

0  +i  0

14.3	METHODS FOR OVERLOADING BINARY OPERATORS

The following methods (Table 14.1) help in overloading the binary operators
like +, –, *, and /. The operators operate on two operands: self and another
instance of the requisite class. When an operator is used between objects, the
corresponding methods are invoked. For example, for objects c1 and c2 of a
class called Complex, c1+c2 invokes the __add_ method. Similarly, the –
operator would invoke the __sub__ method, the * operator would invoke the

PPUPS.CH14_2pp.indd 321PPUPS.CH14_2pp.indd 321 5/18/2023 11:18:53 AM5/18/2023 11:18:53 AM

322 • Python Programming Using Problem Solving

__mul__ method and so on. Table 14.1 shows the methods and the operator
due to which the method is invoked.

TABLE 14.1  Methods for overloading binary operators.

Task Method Explanation

Addition __add__ Helps in overloading the + operator. Generally, takes two
arguments: The positional parameter and the instance to be added.

Subtraction __sub__ Helps in overloading the – operator. Generally, takes two
arguments: The positional parameter and the instance to be
subtracted.

Multiplication __mul__ Helps in overloading the * operator. Generally, takes two
arguments: The positional parameter and the instance to be
multiplied.

Division __truediv__ Helps in overloading the / operator. Generally, takes two
arguments: The positional parameter and the instance to be
divided.

The use of the above operators has been explained in the following section.

14.4	�OVERLOADING BINARY OPERATORS: THE FRACTION
EXAMPLE

The overloading of the operators shown in the table above can be easily
understood by the example that follows. The following example overloads the
addition (+), subtraction (–), multiplication (*), and division (/) operator for
a class fraction. The fraction class depicts the standard fraction, having a
numerator and a denominator.

1.	 __init__

	 The __init__ initializes the class members by setting the numerator to 0
and the denominator to 1. The statement

	 x=fraction()

	 therefore, creates a fraction 0/1.

2.	 __add__

	 The __add__ method helps in overloading the + operator. The statement

	 z=x+y

PPUPS.CH14_2pp.indd 322PPUPS.CH14_2pp.indd 322 5/18/2023 11:18:54 AM5/18/2023 11:18:54 AM

Operator Overloading • 323

	 calls the __add__ method of x and takes y as the “other” argument.
Therefore, it must have two arguments: a positional parameter (self)

and a fraction (other). The addition of two fractions 1

1

a
b

 and 2

2

a
b

 is done

as follows. The LCM of b1 and b2 becomes the denominator of the result-
ant fraction. The numerator is calculated using the following formula.

numerator =
   

× + ×   
   

1 2
1 2

LCM LCM
a a

b b

	 Note that the resultant fraction is stored in another fraction (s). The
method __add__ returns the sum.

3.	 __sub__

	 The __sub__ method helps in overloading the – operator. The statement

	 t=x-y

	 calls the __sub__ method of x and takes y as the “other” argument.
Therefore, it must have two arguments: a positional parameter (self) and

a fraction (other). The difference of two fractions 1

1

a
b

 and 2

2

a
b

 is done as

follows. The LCM of b1 and b2 becomes the denominator of the resultant
fraction. The numerator is calculated by using the following formula.

numerator =
   

× ×   
   

1 2
1 2

–
LCM LCM

a a
b b

	 Note that the resultant fraction is stored in another fraction (d). The
method __sub__ returns d.

4.	 __mul__

	 The __mul__ method helps in overloading the * operator. The statement

	 prod=x*y

	 calls the __mul__ method of x and takes y as the “other” argument.
Therefore, it must have two arguments: a positional parameter (self) and

a fraction (other). The product of two fractions 1

1

a
b

 and 2

2

a
b

 is calculated

as follows. The numerator is calculated using the following formula.

numerator = a1 × a2

PPUPS.CH14_2pp.indd 323PPUPS.CH14_2pp.indd 323 5/18/2023 11:18:54 AM5/18/2023 11:18:54 AM

324 • Python Programming Using Problem Solving

	 and the denominator is calculated as follows.

denominator = b1 × b2

	 Note that the resultant fraction is stored in another fraction (m). The
method __mul__ returns m.

5.	 __truediv__

	 The __truediv__ method helps in overloading the / operator (which returns
an integer). The statement

	 div=x/y

	 calls the __truediv__ method of x and takes y as the “other” argument.
Therefore, it must have two arguments: a positional parameter (self) and

a fraction (other). The division of two fractions 1

1

a
b

 and 2

2

a
b

 is done as fol-

lows. The numerator is calculated using the following formula.

numerator = a1 × b2

	 and the denominator is calculated as follows.

denominator = b1 × a2

	 Note that the resultant fraction is stored in another fraction (answer).
The method __truediv__ returns the answer.

Illustration 14.4:

Create a class fraction having numerator and denominator as its members.
Overload the following operators for the class:

�� +
�� –
�� *
�� /

Create LCM and GCD methods in order to accomplish the above tasks.
The LCM method should find the LCM of two numbers and the GCD
method should find the GCD of the two numbers. Note that LCM(x, y) ×
GCD(x, y) = x × y.

PPUPS.CH14_2pp.indd 324PPUPS.CH14_2pp.indd 324 5/18/2023 11:18:54 AM5/18/2023 11:18:54 AM

Operator Overloading • 325

Solution:

The implementation has already been discussed. The following code performs
the requisite task, and the output follows.

Code:

##fractions

class fraction:

	 def __init__(self):

		 self.num=0;

		 self.den=1;

	 def getdata(self):

		 self.num=input("Enter the numerator\t:")

		 self.den = input("Enter the denominator\t:")

	 def display(self):

		 print(str(int(self.num)),"/",str(int(self.den)))

	 def gcd(first, second):

	 	 if(first<second):

	 	 	 temp=first

	 	 	 first=second

			 second=temp

	 	 if(first%second==0):

			 return second

		 else:

	 	 	 return(fraction.gcd(second, first%second))

	 def lcm(first, second):

	 	 ##print("GCD is",str(fraction.gcd(first,second)))

	 	 return((first*second)/fraction.gcd(first,second))

	 def __add__(self,other):

		 s=fraction()

		 lc=fraction.lcm(int(self.den), int(other.den))

		 s.num=�((lc/int(self.den))*int(self.num))+((lc/int(other.
den))*int(other.num))

		 s.den=lc

		 return(s)

	 def __sub__(self,other):

		 lc=fraction.lcm(int(self.den), int(other.den))

PPUPS.CH14_2pp.indd 325PPUPS.CH14_2pp.indd 325 5/18/2023 11:18:54 AM5/18/2023 11:18:54 AM

326 • Python Programming Using Problem Solving

		 d=fraction()

		 d.num=�((lc/int(self.den))*int(self.num))-((lc/int(other.
den))*int(other.num))

		 d.den=lc

		 return(d)

	 def __mul__(self,other):

		 m=fraction()

		 m.num=int(self.num)*int(other.num)

		 m.den=int(self.den)*int(other.den)

		 return(m)

	 def __truediv__(self,other):

		 answer=fraction()

		 answer.num=int(self.num)*int(other.den)

		 answer.den=int(self.den)*int(other.num)

		 return(answer)

x =fraction()

x.getdata()

print("First fraction\t:")

x.display()

y=fraction()

y.getdata()

print("Second fraction\t:")

y.display()

z=(x+y)

print("Sum\t:")

z.display()

t=x-y

print("Difference\t:")

t.display()

prod=x*y

print("Product")

prod.display()

div=x/y

print("Division")

div.display()

PPUPS.CH14_2pp.indd 326PPUPS.CH14_2pp.indd 326 5/18/2023 11:18:54 AM5/18/2023 11:18:54 AM

Operator Overloading • 327

Output:

Enter the numerator		 :2

Enter the denominator		 :3

First fraction			 :2 / 3

Enter the numerator		 :4

Enter the denominator		 :5

Second fraction			 :4 / 5

Sum						 :22 / 15

Difference		 	 	 :-2 / 15

Product

8 / 15

Division

10 / 12

>>>

Was it really needed?

Note that the above illustration has been included in the chapter to explain
the overloading of binary operators. Python, as such provides addition, sub-
traction, multiplication, and division for fractions. The same task could be
done without overloading the operators as follows:

from fractions import Fraction

X=Fraction(20,4)

X

Y=Fraction(3,5)

Y

X+Y

Output:

Fraction(28, 5)

X-Y

Output:

Fraction(22, 5)

X*Y

PPUPS.CH14_2pp.indd 327PPUPS.CH14_2pp.indd 327 5/18/2023 11:18:54 AM5/18/2023 11:18:54 AM

328 • Python Programming Using Problem Solving

Output:

Fraction(3, 1)

X/Y

Output:

Fraction(25, 3)

14.5	OVERLOADING THE += OPERATOR

The += operator adds a quantity to the given object. For example, if the value
of “a” is 5, then a+=4 would make it 9. However, the operator works for inte-
ger, reals, and strings. The use of += for integer, real, and string has been
shown as follows.

Code:

a=5

a+=4

a

Output:

9

Code:

a=2.3

a+=1.3

a

Output:

3.5999999999999996

Code:

a="Hi"

a+=" There"

a

Output:

'Hi There'

>>>

PPUPS.CH14_2pp.indd 328PPUPS.CH14_2pp.indd 328 5/18/2023 11:18:54 AM5/18/2023 11:18:54 AM

Operator Overloading • 329

However, to make it work for a user defined data type (or objects), it needs
to be overloaded. The __idd__ function helps in accomplishing this task. The
following illustration (Illustration 14.5) depicts the use of __idd__ for an
object of the complex class. A complex number has a real part and an imagi-
nary part. Adding another complex number to a given complex number adds
their respective real parts and imaginary parts. The program follows. Note
that, __iadd__ takes two arguments. The first being the positional parameter
and the second is another object called “other.” The real part of “other” is
added to the real part of the object and the imaginary part of “other” is added
to the imaginary part. The __iadd__ returns “self.” Likewise, the reader may
overload the __iadd__ operator for his class, as per the requirements.

Illustration 14.5:

Overloading += for Complex Class (Illustration 14.1 and Illustration 14.3)

Code:

##overloading += for Complex class

class Complex:

	 def __init__(self, real, imaginary):

		 self.real=real

		 self.imaginary=imaginary

	 def __iadd__(self, other):

		 self.real+=other.real

		 self.imaginary+=other.imaginary

		 return self

	 def display(self):

		� print("Real part\t:",str(self.real)," Imaginary
part\t:",str(self.imaginary))

X=Complex(2,3)

Y=Complex(4,5)

X.display()

Y.display()

X+=Y

X.display()

X+=Y

X.display()

PPUPS.CH14_2pp.indd 329PPUPS.CH14_2pp.indd 329 5/18/2023 11:18:54 AM5/18/2023 11:18:54 AM

330 • Python Programming Using Problem Solving

Output:

Real part	: 2   Imaginary part	  : 3

Real part	: 4   Imaginary part	  : 5

Real part	: 6   Imaginary part	  : 8

Real part	: 10  Imaginary part	  : 13

>>>

14.6	OVERLOADING THE > AND < OPERATORS

The greater than (>) and less than (<) operators work in the usual manner for
the integers, fractions, and some other predefined types. However, to be able
to use these operators for user defined classes, the programmer must overload
the operators. In Python, greater than (>) and less than(<) can be overloaded
using the __gt__ and ____lt__. The __gt__ returns a true or a false depend-
ing upon whether the first object is greater than the second or not. Similarly,
the __lt__ returns a true or a false depending upon whether the first object
is less than the second or not.

The following example overloads the __gt__ and __lt__ for a class called
Data. The Data class has a data member called “value.” The __gt__ com-
pares the value of the instance (self) and that of another instance (other). If
the value of the instance is greater than that of the other instance then a true
is returned, otherwise a false is returned. Similarly, the __lt__ compares the
value of the instance (self) and that of another instance(other). If the value of
the instance is smaller than that of the other instance then a true is returned,
otherwise a false is returned.

Illustration 14.6:

Write a program to create a class called Data having “value” as its data mem-
ber. Overload the (>) and the (<) operator for the class. Instantiate the class
and compare the objects using __lt__ and __gt__.

Solution:

The mechanism of the __gt__ and __lt__ has already been discussed. The
program follows.

PPUPS.CH14_2pp.indd 330PPUPS.CH14_2pp.indd 330 5/18/2023 11:18:54 AM5/18/2023 11:18:54 AM

Operator Overloading • 331

Code:

class Data:

	 def __init__(self, value):

self.value=value

	 def display(self):

		 print("data is ",str(value))

	 def __lt__(self,other):

	 	 return(self.value<other.value)

	 def __gt__(self,other):

		 return(self.value>other.value)

X= Data(5)

Y= Data(4)

print(X>Y)

print(X<Y)

Output:

True

False

>>>

14.7	�OVERLOADING THE __BOOL__ OPERATOR: PRECEDENCE
OF __BOOL__ OVER __LEN__

In using “if” and “while,” the programmer checks the condition passed in
“if” or “while.” If the condition is true, the block following “if” or “while” is
executed, otherwise it is not executed. We can also define the Boolean opera-
tors for a user defined object. In order to accomplish this task, the programmer
would require some method that helps in the overloading. Python provides
two Boolean operators __bool__ and __len__. The __bool__ method returns
a true if the requisite condition is met, otherwise it returns a false. The __
len__ method finds the length of the data member and returns false if it is
null. The Boolean condition can be checked using the __len__ method, only if
the __bool__ for that class is not defined. In case both __len__ and __bool__
are defined in a class, __bool__ takes precedence over __len__.

For example, in the following illustration, writing if(X), where X is
an instance of the class, returns a false if no argument is passed while

PPUPS.CH14_2pp.indd 331PPUPS.CH14_2pp.indd 331 5/18/2023 11:18:54 AM5/18/2023 11:18:54 AM

332 • Python Programming Using Problem Solving

instantiating the class. Note that, the first listing uses __len__. The next illus-
tration (Illustration 14.7) checks the length of the data member “value” to
return a true if “value” is not null and false otherwise.

Illustration 14.7:

The following illustration creates a class called Data. If no argument is passed
while instantiating the class, a false is returned, otherwise a true is returned.

Program:

class Data:

	 def __len__(self): return 0

X= Data()

if X:

	 print("True")

else:

	 print("False")

Output:

False

Illustration 14.8:

Another variant of the above example has value as its data member. If the
value is null, a false is returned, otherwise a true is returned.

Program:

class Data:

	 def __init__(self, value):

		 self.value=value

	 def __len__(self):

		 if len(self.value)==0:

			 return 0

		 else:

			 return 1

Y= Data("hi")

if Y:

	 print("True")

PPUPS.CH14_2pp.indd 332PPUPS.CH14_2pp.indd 332 5/18/2023 11:18:54 AM5/18/2023 11:18:54 AM

Operator Overloading • 333

else:

	 print("False")

X = Data("")

if X:

	 print("Ture")

else:

	 print("False")

Output:

True

False

Also, note that if __bool__ is also defined in the class, then it takes prec-
edence over the __len__ method. The __bool__ returns a true or a false as
per the given condition. Although overloading __bool__ may not be of much
use as every object is either true or false in Python. Illustration 14.9 presents
an example in which both __bool__ and __len__ are defined.

Illustration 14.9:

An example in which both __bool__ and __len__ are defined.

Program:

class Data:

	 def __init__(self, value):

		 self.value=value

	 def __len__(self):

		 if len(self.value)==0:

			 return 0

		 else:

			 return 1

	 def __bool__(self):

		 if len(self.value)==0:

			 print("From Bool")

			 return False

		 else:

			 print("From Bool")

			 return True

PPUPS.CH14_2pp.indd 333PPUPS.CH14_2pp.indd 333 5/18/2023 11:18:54 AM5/18/2023 11:18:54 AM

334 • Python Programming Using Problem Solving

Y= Data("hi")

if Y:

	 print("True")

else:

	 print("False")

X= Data("")

if X:

	 print("True")

else:

	 print("False")

Output:

From Bool

True

From Bool

False

14.8	CONCLUSION

This chapter presented a brief overview of operator overloading. The over-
loading of binary operators, +=, len, and bool have been discussed in this
chapter. The reader is expected to attempt the exercises to get hold of the
concept. The next chapter introduces Exception Handling and discusses
some of the methods to deal with run-time errors.

GLOSSARY

�� Operator Overloading: It is the mechanism of assigning a new meaning
to an existing operator.

POINTS TO REMEMBER

�� Operator Overloading helps the programmer to define existing operator
for user defined objects.

�� In Python, all expression operators can be overloaded.
�� Operator Overloading can be implemented using special methods.
�� __bool__ has higher priority over __len__.

PPUPS.CH14_2pp.indd 334PPUPS.CH14_2pp.indd 334 5/18/2023 11:18:54 AM5/18/2023 11:18:54 AM

Operator Overloading • 335

EXERCISES

Multiple Choice Questions

1.	 Using Operator Overloading, the programmer can

	 (a)  Define an existing operator for user defined data type

	 (b)  Create new operators

	 (c)  Both

	 (d)  None of the above

2.	 In Python, Operator Overloading can be implemented by

	 (a) � Defining corresponding methods in the class for which user defined
objects would be made

	 (b)  Operators are redefined in the same way as C++

	 (c)  Python has predefined methods for defining operators

	 (d)  None of the above

3.	 Can __init__ be overloaded?

	 (a)  Yes

	 (b)  No

	 (c)  It can be overloaded only for specific classes

	 (d)  None of the above

4.	 Same __init__ is to be designed to accept varying number of arguments,
which of the following correctly is the correct representation?

	 (a)  def __init__(self)

	 (b)  def __init__(self, *args)

	 (c)  def __init__(self, args)

	 (d)  Both b and c

5.	 Can the above task be accomplished in some other way?

	 (a)  By not giving any arguments in __init__

	 (b)  By equating some of the arguments to NONE

PPUPS.CH14_2pp.indd 335PPUPS.CH14_2pp.indd 335 5/18/2023 11:18:54 AM5/18/2023 11:18:54 AM

336 • Python Programming Using Problem Solving

	 (c)  Both

	 (d)  None of the above

6.	 Which of the following methods is used to overload the + operator?

	 (a)  __add__		 	 (b)  __iadd__

	 (c)  __sum__		 	 (d)  None of the above

7.	 Which of the following is used to overload the – operator?

	 (a)  __diff__		 	 (b)  __sub__

	 (c)  __minus__	 	 (d)  None of the above

8.	 Which of the following is used to overload the * operator?

	 (a)  __prod__	 	 (b)  __mul__

	 (c)  Both		 	 (d)  None of the above

9.	 For which of the following, Operator Overloading is really needed in
Python?

	 (a)  Complex	 	 (b)  Fraction

	 (c)  Polar coordinates	 (d)  None of the above

10.	 Which of the following is overloaded using __iadd__?

	 (a)  +		 	 (b)  +=

	 (c)  ++		 	 (d)  None of the above

11.	 Can > and < operators be overloaded in Python?

	 (a)  Yes		 	 (b)  No

	 (c)  Only for specific classes	 (d)  None of the above

12.	 Which has more priority __bool__ or __len__?

	 (a)  __bool__	 	 (b)  __len__

	 (c)  Both		 	 (d)  None of the above

Theory

1.	 What is Operator Overloading? Explain its importance.

2.	 Explain the mechanism of Overloading Operators in Python.

PPUPS.CH14_2pp.indd 336PPUPS.CH14_2pp.indd 336 5/18/2023 11:18:54 AM5/18/2023 11:18:54 AM

Operator Overloading • 337

3.	 Can all Python Operators be overloaded?

4.	 The membership can be tested using the “in” operator. The __contains__
method can be used for testing the membership, in Python. Create a class
having three lists and overload the membership operator for the class.

5.	 Explain the following methods and explain Operator Overloading using
the operators.

	 (a)  __add_		 	 (b)  __iadd_

	 (c)  __sub__		 	 (d)  __mul__

	 (e)  __div__		 	 (f)  __len__

	 (g)  __bool__	 	 (h)  __gt__

	 (i)  __lt__		 	 (j)  __del__

6.	 The following methods have not been discussed in the chapter. Explore
the following (refer to the Bibliography for details).

	 (a)  __getIitem__	 	 (b)  __setIitem__

	 (c)  __iter__	 	 (d)  __next__

Programming Exercises

1.	 Create a class called Distance having meter and centimetre as its data
members. The member functions of the class would be putData(), which
takes the values of meter and centimetre from the user; putData(),
which displays the data members and add, which adds the two distances.

	 The addition of two instances of distances (say d1 and d2), would require
addition of corresponding centimeters” (d1.centimeter +s2.centimeter),
if the sum is less than 100, otherwise it would be (d1.centimeter +s2.
centimeter)%100. The “meter” of the sum would be the sum of meters
of the two instances (d1.meter +d2.meter), if (d1.centimeter +d2.centim-
eter)<100, otherwise it would be (d1.meter+d2.meter+1).

2.	 Overload the + operator for the above class. The + operator should carry
out the same task as is done by the add function.

3.	 The subtraction of two instances of distances (say d1 and d2), would
require subtraction of corresponding centimeters’ (d1.centimeter -s2.
centimeter). The “meter” of the difference would be the sum of meters of
the two instances (d1.meter - d2.meter).

PPUPS.CH14_2pp.indd 337PPUPS.CH14_2pp.indd 337 6/15/2023 2:26:22 PM6/15/2023 2:26:22 PM

338 • Python Programming Using Problem Solving

	 Overload the – operator for the distance class. Assume that d1-d2, would
always mean d1>d2.

4.	 Overload the += operator for Distance class. The += operator (that is
d1+=d2) would require the addition of d1 and d2 (as explained earlier)
and updating d1 with (d1+d2). Note that the value of d2 is not altered.

5.	 Overload the * operator for the Distance class.

	 The government of a developing country intends to do away with the pre-
sent currency and intends to introduce a barter system, in which 12 bot-
tles of “Tanjali” would be equivalent to a unit of currency. This in turn
would increase the sales of the company also. Hari and Aslam have 37
and 92 bottles of “Tanjali” and would like to exchange the bottles to buy
tickets of a movie. If each ticket is 60 Units, would they be able to watch
the movie.

6.	 Now, help the people of the country by developing a program having a
class called nat_currency and overload the + operator, which adds two
instances of nat_currency.

7.	 For the above question, overload the – operator.

8.	 For the nat_currency class of question 8, overload the += operator.

9.	 For the nat_currency class of question _, overload the * operator.

10.	 Create a class called date having members dd, mm and yyyy (date, month,
and year). Overload the + operator, which adds the two instances of the
date class.

	 A hypothetical number called irr, of the form a +c b , has b constant.
Two instances of irr can be added as follows. If the first irr number is r1
= a1 + c1 d and the second is r2 = a2 + 2 d , the addition of r1 and r2 can
be defined as follows.

r = r1 + r2 = (a1 + a2) + (c1 + c2) d .

	 The difference of r1 and r2 would be.

r = r1 – r2 = (a1 – a2) + (c1 – c2) d .

	 The product of r1 and r2 would be.

r = r1 × r2 = (a1a2 + c1c2d) + (a1c2 + a2c1) d .

PPUPS.CH14_2pp.indd 338PPUPS.CH14_2pp.indd 338 5/18/2023 11:18:55 AM5/18/2023 11:18:55 AM

Operator Overloading • 339

11.	 Create a class called irr and overload the + operator.

12.	 For the irr class, overload the – operator.

13.	 For the irr class, overload the + = operator

14.	 For the irr class, overload the * operator.

	 A vector is written as .. , where i is a unit vector in the x-axis, j is the unit
vector in the y-axis and k is the unit vector is the z-axis. The addition of
two vectors, requires the addition of the corresponding i components,
addition of the corresponding j components and the addition of the cor-
responding k components. That is, for two vectors v1 = + + 

1 1 1a i b j c k

and v2 = + + 

2 2 2a i b j c k , the sum would be v = v1 + v2 = (a1 + a2)i +

(b1 + b2) j + (c1 + c2) k. Likewise, the difference of two vectors requires
the subtraction of the corresponding i components, subtraction of the
corresponding j components and the subtraction of the corresponding k
components. That is, for two vectors v1 = a1

i + b1 j + c1
k and v2 = a2

i +

b2
j + c2

k, the difference would be v = v1 – v2 = (a1 – a2)i + (b1 – b2) j +

(c1 – c2) k.

15.	 Create a class called vector having three data members a, b, and c. The
class must have the getData() function to ask the user to enter the values
of a, b, and c; the putData() function to display the vector.

16.	 Overload the + operator for the vector class.

17.	 Overload the – operator for the vector class.

18.	 Overload the += operator for the vector class.

PPUPS.CH14_2pp.indd 339PPUPS.CH14_2pp.indd 339 5/18/2023 11:18:56 AM5/18/2023 11:18:56 AM

PPUPS.CH14_2pp.indd 340PPUPS.CH14_2pp.indd 340 5/18/2023 11:18:56 AM5/18/2023 11:18:56 AM

Objectives

After reading this chapter, the reader should be able to

�� Understand the concept of Exception Handling
�� Appreciate the importance of Exception Handling
�� Use try/except
�� Manually throw exceptions
�� Craft program that raises user defined exceptions

15.1	 INTRODUCTION

Writing a program is an involved task. It requires due deliberation, command
over the syntax, and problem-solving capabilities. Despite all efforts, there is
a possibility of some error cropping up, or an unexpected output. These errors
can be classified as compile time errors and run time errors. The compile time
errors can be intercepted by the compiler. The programmer would have to
remove these, to be able to execute the program. While compiling a program,
if some errors exist then, some standard message appears. These errors can
be handled by learning the syntax or by changing the code as per the require-
ment of the problem at hand. The following is an example of a code having
syntax error. Note that the closing parenthesis is missing in the statement
fun1('Harsh'.

If we try to execute the following code, a pop-up message displaying syn-
tax error will appear.

C H A P T E R15
Exception Handling

PPUPS.CH15_2pp.indd 341PPUPS.CH15_2pp.indd 341 5/18/2023 11:22:12 AM5/18/2023 11:22:12 AM

342 • Python Programming Using Problem Solving

Code:

def fun1(a):

	 print('\nArgument\t:',a)

	 print('\nType\t:',type(a))

fun1(34)

fun1(34.67)

fun1('Harsh'

Output:

The second type is more complex in which the program stops working or
behaves in an undesirable way while executing. This may be due to:

�� incorrect user input,
�� inability to open a file,
�� accessing something which the program does not have authority to and

so on.

These are referred to as exceptions. Exceptions are “Events that modify
the flow of the program”[1]. Python invokes exception handling mechanism
in case of such errors. The exception handling can also be invoked by the
programmer.

Exceptions handling mechanisms are used to handle some undesirable
situations. So, if something undeniable comes up, the control must have a
place to go (part of the code), where that situation can be handled. To under-
stand the point, consider the following example.

Suppose you intend to design a machine learning technique to identify
whether a given EEG shows an epileptic spike. You must decide the algorithm,
the language, the tool etc. However, you are not able to get the data. What will
you do? Simply abandon the project and go to the exception handling part.

PPUPS.CH15_2pp.indd 342PPUPS.CH15_2pp.indd 342 5/18/2023 11:22:12 AM5/18/2023 11:22:12 AM

Exception Handling • 343

That is, an exception will occur when situations like the above crop up. Let us
consider one of the most common examples of exception handling. If one is
crafting a program to divide two numbers entered by the user, an exception
should be raised if the denominator entered is zero.

One of the most common ways of handling exception is to craft a block,
where one expects exception to occur. If somewhere in that block, an excep-
tion is raised, the control goes to the part which handles the exception. The
block where you expect exception to come is the try block and the part where
it will be handled is in the except block. The chapter discusses some more
ways to handle exceptions. However, the readers from C++ or C# background
would be familiar with the above technique and hence would find it easy
and intuitive. Though Python has a mechanism to handle exceptions, the
reader should also learn how to create his own classes to handle exceptions.
Therefore, the reader must revisit the chapter on classes and objects.

Exception handling, in Python, can be done using either of the following.

�� try/except
�� try/except/finally
�� raise and
�� assert

The chapter, though, concentrates on the first three. The chapter has
been organized as follows. Section 15.2 discusses the importance and mecha-
nism of Exception Handling, Section 15.3 presents some of the most com-
mon Exceptions in Python, Section 15.4 summarizes the process by taking an
example, Section 15.5 presents another example of Exception Handling and
the last section concludes.

15.2	IMPORTANCE AND MECHANISM

Exception handling mechanism can help the programmer to notify some-
thing. For example, consider the problem discussed in the previous section.
You have the EEG of the patients, and you want to find the epileptic spike
in the EEG. If you are not able to find the spike, you can simply raise an
exception. This technique is better compared to the conventional method of
returning an integer code on being able to find something (or for that matter,
not find something). Likewise, on detecting some special case or an unusual
condition, an exception can be raised.

PPUPS.CH15_2pp.indd 343PPUPS.CH15_2pp.indd 343 5/18/2023 11:22:12 AM5/18/2023 11:22:12 AM

344 • Python Programming Using Problem Solving

At the runtime, if an error crops up, an exception is raised. This excep-
tion can be handled by the corresponding except or can be simply ignored.
Moreover, if there is no provision to handle the exception, in the code, the
Pythons’ default error handling mechanism comes into play. As stated earlier,
on encountering an error condition, the execution is restored after the try
statement.

Python also has the try /finally statements to handle the termination con-
dition. Those of you from JAVA background must be familiar with finally. It
is for handling the termination condition, whether an exception has occurred.
For example, in designing software the concluding screen must appear,
whether the exception has occurred or for that matter the memory of objects
must be reclaimed at the end. For such type of situations except–finally is
immensely helpful.

15.2.1	 An Example of Try/Except

In order to understand how exception handling works, consider the following
example. A list contains an ordered set of students. The first location contains
the name of the students who got the highest marks. Likewise, the student
who got the second highest marks has his name at the second position and
so on.

	 >>>L=['Harsh', 'Naved', 'Snigdha', 'Gaurav']

In order to access an element at a given location, the user is asked to enter
the index

	 >>>Index=input('Enter the index')

Now, the element at that position is accessed using the following statement

	 >>> print(L[int(index)])

So, if the user enters 1, “Naved” would be the output, if he enters 2,
“Snigdha” would be the output. However, the following message appears, if
he enters anything above 3.

	 Traceback (most recent call last):

		 File "<pyshell#5>", line 1, in <module>

			 print(L[int(index)])

	 IndexError: list index out of range

	 >>>

PPUPS.CH15_2pp.indd 344PPUPS.CH15_2pp.indd 344 5/18/2023 11:22:12 AM5/18/2023 11:22:12 AM

Exception Handling • 345

This condition can be handled by using try/except as shown.

Code:

L= ['Harsh', 'Naved' 'Snigdha', 'Gaurav']

try:

	 index=input('Enter index\t:')

	 print(L[index])

except IndexError:

	 print('List index out of bound')

print('This statement always executes')

Note that the try block contains the part of the code where the exception
may appear. If a runtime error is there, the except part handles it. Also note,
that the except may have the name of the predefined exception. The state-
ment after the except always executes, whether or not exception has been
raised. The reader can take note of the fact that the control does not go back
to the point where the expectation really occurred. It can only handle the
exception in the requisite block. After which the normal execution continues.
The syntax of the exception handling mechanism is as follows.

Syntax

try:

	 ##code where exception is expected

except<Exception>:

	 ##code to handle the exception

rest of the program

15.2.2	 Manually Raising Exceptions

The discussion so far has concentrated on the situations wherein exceptions
were raised and caught by Python itself. In Python, one can manually raise
the exceptions. The keyword “raise” is used to explicitly trigger an excep-
tion. The keyword is followed by the <exception name> (same as that which
is caught). The mechanism of handling such exceptions is the same as that
described above. That is, the corresponding except would handle the thrown
exception. The syntax is as follows.

PPUPS.CH15_2pp.indd 345PPUPS.CH15_2pp.indd 345 5/18/2023 11:22:12 AM5/18/2023 11:22:12 AM

346 • Python Programming Using Problem Solving

Syntax

try:

	 raise <something>

except <something>:

	 ##code which handles the exception

##rest of the code

If such exceptions do not occur, they can be handled in the same fashion
as in the above section. The examples in Section 15.4 presents codes where
the exceptions have been raised and caught.

15.3	BUILD-IN EXCEPTIONS IN PYTHON

If the programmer can raise the specific exception, the program would be
more effective. To be able to do so one must know the predefined Exceptions
in Python and then use these in appropriate situations. This section presents
some of the most common exceptions in Python. The following sections rep-
resent the use of these exceptions.

�� AssertionError
When an assert statement fails, the AssertionError is raised.

�� AttributeError
When an assignment fails, the AttributeError is raised

�� EOFError
�When the last word of the file is reached and the program attempts to
read any further, the EOFError is raised.

�� FloatingPointError
This exception is raised when floating point operations fail.

�� ImportError
�If the import statement, written in the code, cannot load the said module,
this exception is raised. This is same as the ModuleNotFoundError in
the later versions of Python.

�� IndexError
When the sequence is out of range, the exception is raised.

�� KeyError
If, in a dictionary, the key is not found, then this exception is raised.

PPUPS.CH15_2pp.indd 346PPUPS.CH15_2pp.indd 346 5/18/2023 11:22:12 AM5/18/2023 11:22:12 AM

Exception Handling • 347

�� OverflowError
�Note that each data type can hold some value and there is always a
maximum limit to what it can hold. When this limit is reached, the
OverflowError is raised.

�� RecursionError
�While executing a code that uses recursion, at times maximum iteration
depth is reached. At this point in time, the recursionError is raised

�� RuntimeError
�If an error occurs and it does not fall in any of the said categories, then
this exception is raised.

�� StopIteration
�If one is using the __next__() and there are no more methods that can be
processed, then this exception is raised.

�� SyntaxError
When the syntax of the code is incorrect, this exception is raised.

�� IndentationError
When incorrect use of indentation is done, then this exception comes up.

�� TabError
An inconsistent use of spaces or tabs lead to this type of error.

�� SystemError
�If some internal error is found, then this exception is raised. The excep-
tion displays the problem that was encountered due to which the excep-
tion is raised.

�� NotImplementedError
�If an object is not supported or the part that provides support has not
been implemented, then the NotImplementedError is raised.

�� TypeError
�If an argument is passed and is not expected, the TypeError is raised.
For example, in a program that divides two numbers, entered by the user,
a character is passed, then TypeError is raised.

�� ValueError
�When an incorrect value is passed in a function (or an attempt is made to
enter it in a variable), the ValueError is raised. For example, if a value
which is outside the bounds of an integer is passed, this exception is raised.

PPUPS.CH15_2pp.indd 347PPUPS.CH15_2pp.indd 347 5/18/2023 11:22:12 AM5/18/2023 11:22:12 AM

348 • Python Programming Using Problem Solving

�� UnboundLocalError
�This exception is raised when a reference is made to a variable which does
not have any value in that scope.

�� UnicodeError
�It is raised when errors related to Unicode encoding or decoding come up.

�� ZeroDivisionError
�The division and the modulo operation have two arguments. If the second
argument is zero, this exception is raised.

15.4	THE PROCESS

This section revisits the division of two numbers and summarizes how to apply
the concepts studied so far.

15.4.1	 Example

Consider a function that takes two numbers as input and divides the two num-
bers. If the function is called and two integers are passed as arguments (say, 3
and 2), an expected output is produced, if the second number is not zero.
However, if the second number is zero, a runtime error occurs, and an error
message (shown as follows) is produced. That is, Python handles exceptions
automatically.

The program can be made user-friendly, by printing a comprehendible,
easy to understand message. This can be done by using exception handling.

Code:

def divide(a,b):

	 result =a/b

print('Result is\t:',result)

divide(3,2)

divide(3,0)

>>>

Output:

Result is	 : 1.5

Traceback (most recent call last):

PPUPS.CH15_2pp.indd 348PPUPS.CH15_2pp.indd 348 5/18/2023 11:22:12 AM5/18/2023 11:22:12 AM

Exception Handling • 349

File "�C:/Python/Exception handling/No Exception.py", line 5, in
<module>

divide(3,0)

File "�C:/Python/Exception handling/No Exception.py", line 2, in
divide

	 result =a/b

ZeroDivisionError: division by zero

15.4.2	 Exception Handling: Try/Except

The above problem can be handled by using the try/except construct to han-
dle the run time error. The part of the code where the exception is likely to be
raised is put in the try block. If an exception is raised, it would be handled in
the except block. The except block can have the user-friendly error message
or the code which would handle the exception. The following code shows the
use of the try block and displays how a run time error can be handled in the
except block. Note that the statement which divides the two numbers is in
the try block. If the second number is zero an exception would be raised and
the statements in the except block would be executed.

Code:

def divide(a, b):

	 try:

		 d=a/b

print('Result is\t:',str(d))

	 except:

print('Exception caught')

divide(2,3)

divide(2,0)

Output:

Result is	 : 0.6666666666666666

Exception caught

15.4.3	 Raising Exceptions

One can also raise specific exceptions. For example, the following code
raises the ZeroDivisionError, if the second number is zero. Note that the

PPUPS.CH15_2pp.indd 349PPUPS.CH15_2pp.indd 349 5/18/2023 11:22:12 AM5/18/2023 11:22:12 AM

350 • Python Programming Using Problem Solving

corresponding except block catches this exception. This can be done if the
user is sure which exception to raise in each situation. Moreover, there is a
chance that the programmer fails to raise the correct exception, thus leading
to the invocation of the automatic exception handling mechanism of Python.

Some of the common exceptions and their meaning have already been
presented in Section 15.3. However, there are many more. The list of such
exceptions can be found at the link provided in the References at the end of
this book.

Code:

def divide(a, b):

	 try:

		 if b==0:

			 raise ZeroDivisionError

		 d=a/b

		 print('Result is\t:',str(d))

	 except ZeroDivisionError :

		 print('Exception caught:ZeroDivisionError ')

divide(2,3)

divide(2,0)

Output:

Result is	 : 0.6666666666666666

Exception caught:ZeroDivisionError

>>>

15.5	CRAFTING USER DEFINED EXCEPTIONS

So far, we have seen the automatic exception handling capabilities of Python.
That is, even if there is no try/except, Python handles exceptions. The use
of try/except has also been discussed. The use of raise makes the exception
handling more meaningful, as one can raise specific exceptions as per the
needs. However, so far, we have not seen how to deal with the situation, which
requires us to raise a user defined exception. This section discusses the craft-
ing and use of user defined exceptions.

PPUPS.CH15_2pp.indd 350PPUPS.CH15_2pp.indd 350 5/18/2023 11:22:12 AM5/18/2023 11:22:12 AM

Exception Handling • 351

Suppose there is a situation, where a specific exception (as per the need
of the program), is to be raised. However, there is no predefined exception
to handle that situation. In such cases, a class which would handle the excep-
tion needs to be created. The particular class should be a subclass of the
Exception class, so that we can use it for raising exceptions. When the situ-
ation arises, the exception could be raised, as shown in the following illustra-
tion. In the illustration that follows, a class called MyError, which derives
Exception has been created. The __init__ of this class may contain the mes-
sage, which would be printed, when the exception occurs. While raising the
exception, the keyword raise, followed by the name of the class has written.
The reader should observe the output and understand that it will print the
message written in __init__ followed by the message in the except block.
Though, this is just a dummy example, it gives an idea of how to craft classes
that handle exceptions.

Code:

class MyError (Exception):

	 def __init__(self):

		 print('My Error type error')

def divide(a, b):

	 try:

		 if b==0:

			 raise MyError

		 d=a/b

		 print('Result is\t:',str(d))

	 except MyError:

		 print('Exception caught : MyError ')

divide(2,3)

divide(2,0)

>>>

Output:

Result is	 : 0.6666666666666666

My Error type error

Exception caught: My Error

>>>

PPUPS.CH15_2pp.indd 351PPUPS.CH15_2pp.indd 351 5/18/2023 11:22:12 AM5/18/2023 11:22:12 AM

352 • Python Programming Using Problem Solving

15.6	AN EXAMPLE OF EXCEPTION HANDLING

The following program finds the maximum number from a given list. The idea
is simple. Initially, we assigned first item to max. Then we traverse the items
of the given list. While traversing, if any element is greater than that stored in
max, then assign that number to the variable max. At the end, print the value of
max. The following program and the corresponding output will illustrate this.

Code:

def findMax(L):

	 max =L[0]

	 for item in L:

		 if item>max:

			 max =item

	 print('Maximum\t:',str(max))

L=[2, 10, 5, 89, 9]

findMax(L)

>>>

Output:

Maximum:89

>>>

Note that if the contents of the list L are strings (e.g. L=['Harsh', 'Nakul',
'Naved', 'Sahil']), the strings would be compared as per the rules and the larg-
est (“Sahil”) would be printed. That is, the program works for integers, strings,
or floats. However, for the following list, an exception would be raised.

L= [2, 'Harsh', 3.67]

Output:

Traceback (most recent call last):

File "�C:/Python/Exception handling/Example/findMax.py", line 15,
in <module>

	 findMax(L)

File "�C:/Python/Exception handling/Example/findMax.py", line 4,
in findMax

	 if item>max:

PPUPS.CH15_2pp.indd 352PPUPS.CH15_2pp.indd 352 5/18/2023 11:22:12 AM5/18/2023 11:22:12 AM

Exception Handling • 353

TypeError: unorderable types: str() > int()

>>>

The problem can be handled by putting the part of the code where the
problem is likely to come, in the try block. Moreover, if all the items of the
list were entered by the user, the possibility of a runtime error cropping up
would be higher. In such cases, the programmer must make sure that every-
thing, including the input of items and calling the function should be in the try
block. The following code presents the version of the program, where items
are entered by the user and exception handling should be implemented. Note
that the first run produces an expected result, whereas the second run results
in runtime error and hence, it will invoke exception handling mechanism.

Code:

def findMax(L):

	 max =L[0]

	 for item in L:

		 if item>max:

			 max =item

	 print('Maximum\t:',str(max))

L=[]

item=input('Enter items (press 0 to end)\n')

try:

	 while int(item) !=0:

		 L.append(item)

		 item=input('Enter item (press 0 to end)\n')

		 #print('\nItem entered \t:',str(item))

	 print('\nList \n')

	 print(L)

	 findMax(L)

except:

	 print('Run time error')

Output (First run):

>>>

Enter items (press 0 to end)

3

PPUPS.CH15_2pp.indd 353PPUPS.CH15_2pp.indd 353 5/18/2023 11:22:12 AM5/18/2023 11:22:12 AM

354 • Python Programming Using Problem Solving

Enter item (press 0 to end)

2

Enter item (press 0 to end)

5

Enter item (press 0 to end)

12

Enter item (press 0 to end)

8

Enter item (press 0 to end)

98

Enter item (press 0 to end)

1

Enter item (press 0 to end)

0

List

['3', '2', '5', '12', '8', '98', '1']

Maximum	 : 98

>>>

Output (Second run):

Enter items (press 0 to end)

2

Enter item (press 0 to end)

8

Enter item (press 0 to end)

Harsh

Run time error

>>>

Also note that if a finally is added to the code. The statements in finally
will always be executed, whether the exception occurs. The code that contains
both finally and except is represented as follows. Note that the first output
produces the expected result, and it also prints the statements given in finally.
The second output results in a runtime error and invokes exception handling
mechanism and it also prints the message in finally. The reader should appre-
ciate that there was no need, whatsoever, of the except as finally is already

PPUPS.CH15_2pp.indd 354PPUPS.CH15_2pp.indd 354 5/18/2023 11:22:12 AM5/18/2023 11:22:12 AM

Exception Handling • 355

there. The code would have run correctly, as it will handle the runtime error
with a finally, however, both have been included to bring home the point
that except does its intended job with a finally and finally can be used for
cleanup actions or for de-allocating memory and so on.

Code:

def findMax(L):

	 max =L[0]

	 for item in L:

		 if item>max:

			 max =item

	 print('Maximum\t:',str(max))

L=[]

item=input('Enter items (press 0 to end)\n')

try:

	 while int(item)!=0:

		 L.append(item)

		 item=input('Enter item (press 0 to end)\n')

		 #print('\nItem entered \t:',str(item))

print('\nList \n')

	 print(L)

	 findMax(L)

except:

	 print('Run time error')

finally:

	 print('This is always executed')

Output (first run):

Enter items (press 0 to end)

1

Enter item (press 0 to end)

4

Enter item (press 0 to end)

2

Enter item (press 0 to end)

89

PPUPS.CH15_2pp.indd 355PPUPS.CH15_2pp.indd 355 5/18/2023 11:22:12 AM5/18/2023 11:22:12 AM

356 • Python Programming Using Problem Solving

Enter item (press 0 to end)

3

Enter item (press 0 to end)

0

List

['1', '4', '2', '89', '3']

Maximum	 : 89

This is always executed

>>>

Output (second run):

Enter items (press 0 to end)

3

Enter item (press 0 to end)

1

Enter item (press 0 to end)

7

Enter item (press 0 to end)

harsh

Run time error

This is always executed

>>>

15.7	CONCLUSION

The chapter presented a remarkable way to deal with exceptions. Though
Python has an inbuilt mechanism to deal with exceptions, the knowledge
of Exception Handling makes programs more effective, user-friendly, and
robust. The first step would be to identify the part of the code, where excep-
tions are likely to come, and put the part in the try block. The exceptions can
also be manually caught and handled in the except block. The finally block
handles the unhandled exceptions and also executes even if there is no excep-
tion. The chapter also presents some of the most common Exceptions that
can be caught in Python. The reader should use the concepts learned in this
chapter in their programs. Happy Programming!

PPUPS.CH15_2pp.indd 356PPUPS.CH15_2pp.indd 356 5/18/2023 11:22:12 AM5/18/2023 11:22:12 AM

Exception Handling • 357

GLOSSARY

try/except :Syntax

try:

	 ##code where exception is expected

except<Exception>:

	 ##code to handle the exception

rest of the program

Manually raising exceptions: Syntax:

try:

	 raise <something>

except<something>:

	 ##code which handles the exception

##rest of the code

POINTS TO REMEMBER

�� At the runtime, if an error crops up, an exception is raised.
�� Exception handling, Python can be done using either of the following.

–– try/catch
–– try/finally
–– raise
–– assert

�� In Python, one can also manually raise the exceptions.
�� The part of the code, where the exception is likely to be raised is put in

the try block. If an exception is raised, it would be handled in the except
block.

�� The class that helps to raise user defined exceptions should be a subclass
of the Exception class.

�� The statements in finally will always execute, whether exception occurs
or not.

EXERCISES

Multiple Choice Questions

1.	 Exception handling

	 (a)  Handles runtime errors in a program

	 (b)  Provides robustness

PPUPS.CH15_2pp.indd 357PPUPS.CH15_2pp.indd 357 5/18/2023 11:22:12 AM5/18/2023 11:22:12 AM

358 • Python Programming Using Problem Solving

	 (c)  Both

	 (d)  None of the above

2.	 Exception handling is needed for

	 (a)  Syntax Errors	 	 (b)  Run time errors

	 (c)  Both		 	 (d)  None of the above

3.	 Which of the following is not supported in Python?

	 (a)  Nested try	 	 (b)  Re-throwing an exception

	 (c)  Both are supported	 (d)  None of the above is supported

4.	 Which of the following is raised in the case of division by zero?

	 (a)  Divide		 	 (b)  ZeroDivide

	 (c)  Both		 	 (d)  None of the above

5.	 Which of the following is raised in the case, when an index outside the
bounds are accessed?

	 (a)  Array Index Out of Bound	 (b)  Out of Bound

	 (c)  Array			 	 (d)  None of the above

6.	 Which of the following is true?

	 (a)  For each try there is exactly one catch

	 (b)  Every try must include a raise

	 (c)  A catch can handle any type of exception

	 (d) � A catch can handle the exception for which it is designed, unless it
catches all exceptions, (in this case it handles all the exceptions).

7.	 How many exceptions can a try have?

	 (a)  Single		 	 (b)  Two, only in specific conditions

	 (c)  Any number of catch	 (d)  None of the above

8.	 Which type of exception can occur?

	 (a)  Predefined	 	 (b)  User defined

	 (c)  Both		 	 (d)  None of the above

PPUPS.CH15_2pp.indd 358PPUPS.CH15_2pp.indd 358 5/18/2023 11:22:12 AM5/18/2023 11:22:12 AM

Exception Handling • 359

9.	 What is the base class of a class, of whose exception is to be raised?

	 (a)  Exception	 	 (b)  Error

	 (c)  Both		 	 (d)  None of the above

10.	 Which is the correct syntax of raise?

	 (a)  raise <name of the exception>

	 (b)  (raise (<name of the exception>))

	 (c)  (raise (new<user defined exception>))

	 (d)  All of the above

Theory

1.	 What is the difference between compile time and run time error?

2.	 What is exception handling?

3.	 Explain the mechanism of exception handling?

4.	 Explain how to create a class that derives the Exception class. How is this
class used to raise exceptions?

5.	 Mention which following classes must be explained?

Programming Exercises

The roots of a quadratic equation ax2 + bx + c = 0 are given by the formula

x =
2– – 4

2
b b ac

a
+ . Write a program to ask the user to enter the values of a, b,

and c and calculate the roots.

1.	 Use try/except in the above question to handle the following situations

	 (a)  Calculating root of a negative number

	 (b)  Division by zero

	 (c)  Incorrect format

PPUPS.CH15_2pp.indd 359PPUPS.CH15_2pp.indd 359 6/15/2023 2:27:45 PM6/15/2023 2:27:45 PM

360 • Python Programming Using Problem Solving

2.	 Create a class called negative_discriminant, which is a subclass of the
Exception class. Now, in question number 1, raise the negative_discrimi-
nant exception when the value of b2 – 4ac is negative.

	 The division of two complex numbers is defined as follows. If c1 = a1 + ib1
is the first complex number and c2 = a2 + ib2 is the second complex num-
ber, then the complex number

	 c = (a1 × a2 – b1b2)/(a
2
2 + b2

2) + i(a1 × b2 + b1a2)/(a2
2 + b2

2)

3.	 Create a class called Complex and implement Exception Handling in the
method that carries out division.

4.	 For the Complex class, defined in the previous question, use Exception
Handling to prevent the user from entering a nonreal number (as real or
imaginary part).

5.	 In the complex class create a function that converts complex number to
the polar form.

6.	 Implement Stacks using lists. Incorporate Exception Handling.

7.	 Implement Queues using lists. Incorporate Exception Handling.

8.	 Implement the operations of Linked List, throw an exception when the
number entered by the user is negative. Assume that the data part of the
linked list would contain numbers only.

9.	 Write a program that takes the ppm of chlorine in water from the user and
finds whether the ppm is within a permissible limit. In the other case, the
program should raise an exception.

10.	 Write a program that finds the inverse of a given matrix. The program
should raise an exception when the determinant of the matrix is zero.

PPUPS.CH15_2pp.indd 360PPUPS.CH15_2pp.indd 360 5/18/2023 11:22:13 AM5/18/2023 11:22:13 AM

You are now empowered with Python and know how to write programs. Let’s
now move to the more sophisticated part. This section has six chapters. The
first two deal with NumPy, the next two deal with MatplotLib, and the last
two deal with Pandas. This section is your door to Machine Learning and Data
Science. Let’s dive into the real Python!

NumPy, Pandas, and
Matplotlib

S E C T I O N I V

PPUPS.CH16_2pp.indd 361PPUPS.CH16_2pp.indd 361 5/18/2023 11:25:59 AM5/18/2023 11:25:59 AM

PPUPS.CH16_2pp.indd 362PPUPS.CH16_2pp.indd 362 5/18/2023 11:25:59 AM5/18/2023 11:25:59 AM

Objectives

After reading this chapter, the reader should be able to

�� Understand the difference between a list and a numpy array
�� Understand various functions to create numpy arrays
�� Understand slicing and indexing in numpy arrays
�� Understand operations between scalar and numpy array
�� Understand operations among numpy arrays

16.1	 INTRODUCTION

The numpy package is primarily used for scientific computing. It is a power-
ful package that provides us with an N-dimensional array of objects. There
are numerous data types and tools in numpy like broadcasting which helps us
to implement sophisticated algorithms easily and efficiently. It also provides
functions for finding out various transformations like the Fourier Transform
of a given series and sophisticated functions for generating all types of random
numbers. This package also makes the integration of a project developed in
Python with existing projects seamlessly easy.

To import the numpy package, the following statement is written

	 import numpy as np

The installation of Anaconda has already been explained in the previous
section. On installing Anaconda, the numpy and scipy packages are auto-
matically installed. This book uses Jupyter IDE for running the code. This
and the next chapter discuss the various aspects of numpy and its uses to

C H A P T E R16
NumPy–I

PPUPS.CH16_2pp.indd 363PPUPS.CH16_2pp.indd 363 5/18/2023 11:25:59 AM5/18/2023 11:25:59 AM

364 • Python Programming Using Problem Solving

accomplish various tasks. The reader is advised to attempt the questions given
at the end of this chapter to get hold of the nuances of numpy. The chapter
has been organized as follows (Figure 16.1).

FIGURE 16.1  Organization of the chapter.

16.2	FUNDAMENTALS

This section briefly presents the various building blocks of a program capable
of carrying out practical tasks. The explanations are precise and concise to
accelerate your moment toward the more important topics.

Array: An array is a group of elements of the same type stored at consecu-
tive memory locations. In the following example, the numbers 8, 1, 5, 89, and
45 are stored in an array called arr.

	 arr	 =	 array([8, 1, 5, 89, 45])

Note that the elements are of the same type (all of them are integers) and
are stored at consecutive memory locations.

PPUPS.CH16_2pp.indd 364PPUPS.CH16_2pp.indd 364 5/18/2023 11:26:13 AM5/18/2023 11:26:13 AM

NumPy–I • 365

Zero-based indexing: The arrays are zero-based indexed, that is the first
element can be accessed by writing arr[0], the second by arr[1], and so on.

Vectors: A 1-dimensional array is called a vector.

Multi-dimensional arrays: A multi-dimensional array may have more
than one dimension. For example,

A =

1 2 3
4 5 6
7 8 9

 
 
 
  

is a 2-dimensional array containing three rows and three columns. The ele-
ment at the intersection of the first row and the first column is denoted as
A[0, 0], that at the third row and second column is denoted as A[2, 1], and so
on. These arrays would henceforth be called matrices (or matrix (singular)).

Storage: The matrices can be stored in one of the following formats:

Row major: In this technique, the first row is stored in the memory, fol-
lowed by the second row, and so on. For example,

A =
1 2 3
4 5 6
7 8 9

 
 
 
  

is stored as
1, 2, 3, 4, 5, 6, 7, 8, 9

in the row-major format.

Column major: In this technique, the first column is stored in the mem-
ory, followed by the second column, and so on. For example,

A =
1 2 3
4 5 6
7 8 9

 
 
 
  

is stored as

1, 4, 7, 2, 5, 8, 3, 6, 9

in the column-major format.

Axes: In numpy, axis = i denotes the axes. In a 1-dimensional array, the
elements are stored at axis = 0. In the case of a 2-dimensional array axis = 0
denotes rows, axis = 1 denotes columns (Figure 16.2) and in the case of a

PPUPS.CH16_2pp.indd 365PPUPS.CH16_2pp.indd 365 5/18/2023 11:26:13 AM5/18/2023 11:26:13 AM

366 • Python Programming Using Problem Solving

3-dimensional array axis = 2 denotes the number of matrices. Axes denote the
dimensions. So, for 1 dimensional array, axis = 0; for a 2-dimensional array,
axis = 0 and 1 and for a 3-dimensional array axis = 0, 1, and 2.

2 4 5

axis=0

(1-dimensional array)

axis=0

2 3 4
4 6 7

axis=1

(2-dimensional array)

FIGURE 16.2  Axes in a numpy array.

Shape: The shape of a 1-dimensional array is the number of elements in
the array. For example, if

A = array([8,1,5,89,45])

then A. shape = 5.

The shape of a 2-dimensional array is (the number of rows, the number of
columns). For example, if

A =
1 2 3
4 5 6
7 8 9

 
 
 
  

then the shape of the array is (3, 3).

Rank: The number of axes in a numpy array is the rank of the array. That
is, the rank of a 3-D array would be 3.

List to an array: The function numpy.array(L), converts the list L to a
numpy array.

16.2.1	 Similarity and Differences Between a List and a NumPy Array

The similarity between list and numpy array

Both lists and numpy array are zero-based indexed.

Differences between lists and array:

	 (a) � numpy array is homogeneous whereas a list can contain different
types of elements.

PPUPS.CH16_2pp.indd 366PPUPS.CH16_2pp.indd 366 5/18/2023 11:26:14 AM5/18/2023 11:26:14 AM

NumPy–I • 367

	 (b) � The elements of a numpy array are stored at consecutive memory
locations.

•	 Numpy arrays support vectorized operations: If an operation
can be performed on each element of an array, it is vectorized. The
numpy array supports vectorized operations, whereas a list does not.

16.3	FUNCTIONS FOR GENERATING SEQUENCES

Having gone through the basics of the numpy arrays, let us visit some of the
remarkable functions, which help in creating useful arrays.

16.3.1	 arange()

The arange function helps to print a sequence, having some initial value
(start), some final value (stop), the difference between the consecutive terms
(step), and the data type (dtype). The syntax of the function and the descrip-
tion of each of the parameters are as follows.

numpy.arange(start, stop, step, dtype)

�� Start: The starting value of the sequence
�� Stop: The value up to which the sequence is generated (not inducing the

value itself)
�� Step: The difference between the consecutive values
�� dtype: The data type of the elements

The above function has been exemplified in the following code, which
generates an Arithmetic Progression having first term 3, the last term 23 (less
than 25), and the difference between the consecutive terms equals 2. The
data type of the elements is specified as “int.”

a=np.arange(3,25,2, int)

print(a)

Output:

array([3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23])

arange can also take a single argument. For example, writing np.arange(6)
would generate a sequence having first value 0, the difference between the
consecutive terms as 1, and the last term 5, that is

PPUPS.CH16_2pp.indd 367PPUPS.CH16_2pp.indd 367 5/18/2023 11:26:14 AM5/18/2023 11:26:14 AM

368 • Python Programming Using Problem Solving

b=np.arange(6)

print(b)

Output:

array([0, 1, 2, 3, 4, 5)]

c=np.arange(6, dtype=float)

print(c)

Output:

array([0., 1., 2., 3., 4., 5.])

16.3.2	 linspace()

The linspace function divides the given range into a specified number of
segregations and returns the sequence so formed. The function takes the fol-
lowing parameters:

�� start: The first value of the sequence
�� stop: The last value (included by default unless the endpoint parameter

is set to False)
�� num: The number of items
�� endpoint: If the endpoint is False then the stop value is not included in

the sequence
�� retstep: If this is True, the stepsize is returned
�� dtype: The data type of elements can be specified using this parameter.

In the example that follows, the first value of the sequence is 1 and the last
value is 27. The number of elements in the sequence is 11.

d=np.linspace(11, 27, 11)

print(d)

Output:

array([11., 12.6, 14.2, 15.8, 17.4, 19., 20.6, 22.2, 23.8, 25.4,

27.])

If the value of the endpoint argument is False, the last value (in this case, 27)
is not included.

PPUPS.CH16_2pp.indd 368PPUPS.CH16_2pp.indd 368 5/18/2023 11:26:14 AM5/18/2023 11:26:14 AM

NumPy–I • 369

e=np.linspace(11, 27, 11, endpoint=False)

print(e)

Output:

array([11., 12.45454545, 13.90909091, 15.36363636, 16.01010102,
18.27272727, 19.72727273, 21.10101010, 22.63636364, 24.09090909,
25.54545455])

The value of the step can be viewed by assigning True to the retstep argu-
ment. For example, in the sequence generated by dividing the range 11-26
in 11 parts, the gap (the last argument of the result) is 1.45454545454546.

f=np.linspace(11, 27, 11, endpoint=False, retstep=True)

print(f)

Output:

(array([11., 12.45454545, 13.90909091, 15.36363636, 16.01010102,
18.27272727, 19.72727273, 21.10101010, 22.63636364, 24.09090909,
25.54545455]), 1.4545454545454546)

16.4  AGGREGATE FUNCTIONS

The numpy module contains many aggregate functions. The various func-
tions, along with their brief explanations, are as follows:

�� numpy.sum:  It finds the sum of the elements of the argument (e.g. a list
or an array).

�� numpy.prod:  It finds the product of the elements of the argument
(e.g. a list or an array).

�� numpy.mean:  It finds the mean of the elements of the argument (e.g. a list
or an array).

�� numpy.std:  It finds the standard deviation of the elements of the argu-
ment.

�� numpy.var:  It finds the variance of the elements of the argument.
�� numpy.max:  It finds the maximum element of the argument. In the case

of a list or a 1D array, the maximum element would be displayed. How-
ever, in the case of a 2D array, the axis along which the maximum element
is desired can also be mentioned. Here, axis=0 indicates rows and axis=1
indicates columns.

�� numpy.min:  It finds the minimum element of the argument. In the
case of a list or a 1D array, the minimum element would be displayed.

PPUPS.CH16_2pp.indd 369PPUPS.CH16_2pp.indd 369 5/18/2023 11:26:14 AM5/18/2023 11:26:14 AM

370 • Python Programming Using Problem Solving

However, in the case of a 2D array, the axis along which the minimum
element is desired can also be mentioned. Here, axis=0 indicates rows
and axis=1 indicates columns.

�� numpy.argmin:  It finds the position (index) of the minimum element.
�� numpy.argmax:  It finds the position of the maximum element.
�� numpy.median:  It finds the median of the elements of the argument.
�� numpy.percentile:  It finds the percentile of the elements of the argu-

ment. The percentile (25 etc.) is the second argument.
�� numpy.any:  It finds if any element of the given argument is present in

the list.
�� numpy.all:  It finds if all the elements of the given argument are present

in the list.

The following code exemplifies the above functions by generating a set of
50 values. The values are between 0 and 100 (the np.random.random(50)
has been multiplied by 100). The maximum, minimum, index of the maxi-
mum, index of the minimum, average, median, standard deviation, variance,
25th percentile, and 75th percentile of the elements has been found using the
above functions.

Code:

Values1=100*(np.random.random(50))

print(Values1)

Output:

array([ 7.89901504e+01, 3.10353272e+01, 4.55247975e+01, 
2.09271021e+01, 1.28704552e+01, 8.83259317e+01, 4.34685519e+01, 
6.47957990e+01, 3.94568075e+01, 8.14517974e+01, 1.30191468e+01, 
8.69577211e+01, 9.94997332e+01, 5.33860103e+01, 5.67079066e+01, 
9.98534029e+01, 3.22963592e+01, 4.98089020e+01, 6.68875653e+01, 
9.65255635e+01, 4.94490583e+01, 7.37397326e+01, 3.40551969e+01, 
4.37639703e+01, 4.48223897e+01, 3.25917428e+01, 9.59794929e+01, 
5.87367182e+01, 9.87710458e+01, 4.37364340e+01, 1.97519881e+00, 
6.03630476e+01, 8.92749410e-02, 9.06113729e+01, 7.97883172e+01, 
8.95203320e+01, 1.69638876e+01, 8.40854179e+00, 3.45767708e+01, 
3.24516258e+01, 9.71498648e+01, 1.29033485e+01, 7.12565243e+01, 
3.77831919e+01, 6.59571908e+01, 6.80006473e+01, 3.69824712e+00, 
9.23685114e+01, 3.10464585e+01, 3.48051930e+01])

Code:

Max=np.max(Values1)

Max_Index=np.argmax(Values1)

PPUPS.CH16_2pp.indd 370PPUPS.CH16_2pp.indd 370 5/18/2023 11:26:14 AM5/18/2023 11:26:14 AM

NumPy–I • 371

Min=np.min(Values1)

Min_Index=np.argmin(Values1)

Sum=np.sum(Values1)

Prod=np.prod(Values1)

Mean=np.mean(Values1)

SD=np.std(Values1)

Variance=np.var(Values1)

Med=np.median(Values1)

Per25=np.percentile(Values1,25)

Per75=np.percentile(Values1,75)

print(�"Max\t:",Max,"\nIndex\t:",Max_Index,"\nMin\t:",Min,"\
nIndex\t:", Min_Index,"\nAverage\t:",Mean,"\nStdDeviation\
t:",SD,"\nVariance t:",Variance," nMedian\t:",Med,"
\nPercentile 25\t:",Per25,"\nPercentile 75\t:",Per75)

Output:

Max		 :	99.8534028512

Index	 :	15

Min		 :	0.0892749410473

Index	 :	32

Average	 :	53.3430471879

Stad Deviation	 :	29.5561768206

Variance	 :	873.567588252

Median	 :	49.6289801762

Percentile 25	 :	32.4866550288

Percentile 75	 :	79.5887755051

Code:

import numpy as np

v1 = np.array([True,False,True])

v2 = np.array([True,True,True])

v3 = np.array([False,False,False])

print(np.any(v1))

print(np.all(v1))

print(np.any(v2))

print(np.all(v2))

print(np.any(v3))

print(np.all(v3))

PPUPS.CH16_2pp.indd 371PPUPS.CH16_2pp.indd 371 5/18/2023 11:26:14 AM5/18/2023 11:26:14 AM

372 • Python Programming Using Problem Solving

Output:

True

False

True

True

False

False

16.5	GENERATING RANDOM NUMBERS USING NUMPY

The numpy.random.random, numpy.random.normal, and numpy.ran-
dom.randint are the most common tools for the generation of an array of
random numbers (or a single random number for that matter). The argu-
ments and explanations of these three functions are presented in Table 16.1.
The illustrations that follow explicate their usage.

TABLE 16.1  Generating random numbers using numpy.

Function Arguments Explanation

numpy.random.random size: The size of the N-D array. The
default value of this argument is None

This function returns a
random float in the interval
[0.0, 1.0)

numpy.random.normal loc: The mean of the normal
distribution
scale: The standard deviation of the
normal distribution
size: The size of the N-D array

This function generates
a sample from the
parameterized normal
distribution

numpy.random.randint low: This argument sets the lowest
number of the generated distribution
high: This argument sets the highest
number of the generated distribution
size: This argument sets the size of the
generated distribution
dtype: This argument sets the datatype
of the numbers of the generated
distribution

This function generates
random integers in each range

Illustration 16.1:

Generate a random number using numpy.random.random.

PPUPS.CH16_2pp.indd 372PPUPS.CH16_2pp.indd 372 5/18/2023 11:26:14 AM5/18/2023 11:26:14 AM

NumPy–I • 373

Code:

import numpy as np

num=np.random.random()

print(num)

Output:

0.5829500009456373

Illustration 16.2:

Generate a random number using numpy.random.random between 3 and 9.

Code:

import numpy as np

a=3

b=9

num=(b-a)*(np.random.random())+a

print(num)

Output:

5.287550385736058

Illustration 16.3:

Generate 5 random numbers using numpy.random.normal from a normal
distribution having mean 3 and standard distribution 2. Also, print the mean
and the standard deviation of the numbers generated.

Code:

import numpy as np

rand_num_list=np.random.normal(3, 2, 5)

print(rand_num_list)

print(np.mean(rand_num_list))

print(np.std(rand_num_list))

Output:

[1.98930695 1.87258593 4.1491093 2.10198921 4.17106858]
2.8568119957867197 1.066613900848987

PPUPS.CH16_2pp.indd 373PPUPS.CH16_2pp.indd 373 5/18/2023 11:26:14 AM5/18/2023 11:26:14 AM

374 • Python Programming Using Problem Solving

The reader is expected to take note of the difference in the mean, passed
as an argument and that generated. Likewise, reason out the variation in the
standard deviation.

Note the difference between the generated mean and the mean passed as the argument.

16.6	ZEROS, ONES, EYES, AND FULL

The numpy.zeros, numpy.ones, and numpy.eye are used for generating
arrays containing zeros, ones, and identity matrices respectively. The argu-
ments and explanations of the three are presented in Table 16.2. The illustra-
tions that follow explicate their usage.

TABLE 16.2  Zeros, Ones, eyes, and full.

Function Arguments Explanation

numpy.zeros shape: The shape of the N-D array
dtype: This argument sets the datatype
of the zeros.

This function generates an
array of zeros with the given
shape.

numpy.ones shape: The shape of the N-D array
dtype: This argument sets the datatype of
the ones.

This function generates an
array of ones with the given
shape.

numpy.eye n: The number of rows
m: The number of columns
dtype: This argument sets the data type of
the elements.

This function generates an
identity matrix of the given
shape.

numpy.full shape: The shape of the N-D array
fill_value: The value with which the array
would be filled
dtype: This argument sets the data type of
the elements.

This function generates an
array filled with fill_values.

Illustration 16.4:

Generate an array filled with zeros, having 5 rows and 2 columns.

Solution:

Z=np.zeros((5,2))

print(Z)

TRY

PPUPS.CH16_2pp.indd 374PPUPS.CH16_2pp.indd 374 5/18/2023 11:26:14 AM5/18/2023 11:26:14 AM

NumPy–I • 375

Output:

[[0. 0.]

 [0. 0.]

 [0. 0.]

 [0. 0.]

 [0. 0.]]

Illustration 16.5:

Generate an array filled with ones, having 3 rows and 4 columns.

Solution:

O=np.ones((3,4))

print(O)

Output:

[[1. 1. 1. 1.]

 [1. 1. 1. 1.]

 [1. 1. 1. 1.]]

Illustration 16.6:

Generate an array filled with “11,” having 2 rows and 6 columns.

Solution:

F=np.full((2,6),fill_value=11)

print(F)

Output:

[[11 11 11 11 11 11]

 [11 11 11 11 11 11]]

Illustration 16.7:

Generate an identity matrix of order 3.

Solution:

I=np.eye(3)

print(I)

PPUPS.CH16_2pp.indd 375PPUPS.CH16_2pp.indd 375 5/18/2023 11:26:14 AM5/18/2023 11:26:14 AM

376 • Python Programming Using Problem Solving

Output:

[[1. 0. 0.]

 [0. 1. 0.]

 [0. 0. 1.]]

16.7	INDEXING

A numpy 1-D array is zero-based indexed. The first element of the array can
be accessed by writing the name of the array followed by square brackets
containing 0, that is

If arr=[364, 3748, 347, 849, 374], then arr[0] is 364.

Likewise, the second element can be accessed using arr[1], the third by
arr[2], and so on. The last element can be accessed by writing arr[-1]. The
second last element is accessed by writing arr[-2] and so on. Figure 16.3 pre-
sents examples of the indexes of a given array.

arr[2]

arr[1] arr[3]

arr[4]arr[0]

arr

arr[1]

arr[2]

arr[3]

arr[4]

arr[5]

arr[0] is the first element of the array,

arr[1] is the second element and so on.

arr[-1] is the last element of the array,

arr[-2] is the second element and so on.

FIGURE 16.3  Indexing.

In the case of 2-D arrays, arr[i, j] indicates the element at the ith row and
the jth column. For example, consider an array with 5 rows and 3 columns,
wherein each element is between 7 and 80. The array can be generated by
writing the following code.

Code:

arr1=np.random.randint(7,80,(5,3))

print(arr1)

Output:

[[46 69 53]

 [79 52 53]

PPUPS.CH16_2pp.indd 376PPUPS.CH16_2pp.indd 376 5/18/2023 11:26:15 AM5/18/2023 11:26:15 AM

NumPy–I • 377

 [69 60 12]

 [38 32 76]

 [7 40 75]]

Now, consider the following code and observe the output.

Code:

print(arr1[0,1])

print(arr1[3,0])

print(arr1[3,2])

print(arr1[-1,2])

print(arr1[2,-2])

print(arr1[-3,-1])

Output:

69

38

76

75

60

12

Figure 16.4  explains this indexing.

46 69 53

79 52 53
69 60 12
38 32 76

7 40 75

arr1[0, 1]

Element at the first row
and second column

46 69 53

79 52 53
69 60 12
38 32 76

7 40 75

arr1[3, 0]

Element at the fourth
row and first column

46 69 53

79 52 53
69 60 12
38 32 76

7 40 75

arr1[3, 2]

Element at the fourth
row and third column

46 69 53

79 52 53
69 60 12
38 32 76

7 40 75

arr1[-1, 2]

Element at last row
and third column

46 69 53

79 52 53
69 60 12
38 32 76

7 40 75

arr1[2, -2]

Element at the third
row and second last
column

46 69 53

79 52 53
69 60 12
38 32 76

7 40 75

arr1[-3, -1]

Element at the third
row from the end and
the last column

FIGURE 16.4  Indexing in a 2D-numpy array.

PPUPS.CH16_2pp.indd 377PPUPS.CH16_2pp.indd 377 5/18/2023 11:26:15 AM5/18/2023 11:26:15 AM

378 • Python Programming Using Problem Solving

16.8  SLICING

Slicing can be used to find the subset of a numpy-array. For a 1-D array, arr

�� arr[:k] generates an array consisting of elements from indices 0 to (k-1).
�� arr[k:] generates an array consisting of elements from indices k to the last

element.
�� arr[k:m] generates an array consisting of elements from indices k to that

at index (m-1).
�� arr[k:-1] generates an array consisting of elements from indices k to the

second last.
�� arr[-k:-m] generates an array consisting of elements from the kth last to

(m-1)th last.

Table 16.3 shows slicing in 1D arrays.

TABLE 16.3  Slicing in 1D numpy arrays.

Array Output if the input is arr1

arr1 [36 18 44 50 27 59 17 63 72 20]

arr1[:3] array([36, 18, 44])

arr1[3:] array([50, 27, 59, 17, 63, 72, 20])

arr1[2:7] array([44, 50, 27, 59, 17])

arr1[3:-1] array([50, 27, 59, 17, 63, 72])

arr1[-5:-1] array([59, 17, 63, 72])

Slicing in a 2D array creates a subarray. To understand the above concept,
refer to Table 16.4. The topic has been revisited in the next chapter under the
heading advanced indexing and slicing arrays. In the examples, given in the
table, the following array is used.

TABLE 16.4  Slicing in a 2-D array.

Function Arguments Explanation

arr2[:2,:3] First, the second and third columns of the first
and second rows.

array([[4, 20, 9], [50,
24, 65]])

arr2[2:,3:] Subarray consisting of elements from fourth
column onwards and third row onwards.

array([[28, 75], [9,
15]])

arr2[1:3,2:3] Subarray consisting of elements from second
and the third row and third column.

array([[65], [38]])

PPUPS.CH16_2pp.indd 378PPUPS.CH16_2pp.indd 378 5/18/2023 11:26:15 AM5/18/2023 11:26:15 AM

NumPy–I • 379

Illustration 16.8:

Ask the user to enter the value of n (the number of elements) and generate an
array of n random numbers between 0 and 1.

Solution:

import numpy as np

n=int(input('Enter the number of elements\t:'))

random_num=np.random.random(n)

print(random_num)

Output:

Enter the number of elements : 8

[0.68487933 0.19415796 0.19550152 0.61254812 0.22986881

 0.80080749 0.41303666 0.57186362]

Illustration 16.9:

Ask the user to enter the number of rows (r) and the number of columns (c)
and generate a two-dimensional array of order r × c.

Solution:

r=int(input('Enter the number of rows\t:'))

c=int(input('Enter the number of columns\t:'))

random_num_mat=np.random.random((r,c))

print(random_num_mat)

Output:

Enter the number of rows 		 : 3

Enter the number of columns 	: 4

[[0.46332079 0.67111524 0.58163963 0.08379198]

 [0.72509431 0.48099346 0.12884776 0.40432988]

 [0.60843099 0.7945741 0.92891968 0.54176968]]

Illustration 16.10:

Ask the user to enter the number of rows (r), the number of columns (c), the
mean of the normal distribution (mean) and its standard distribution (std)
generate a two-dimensional array of order r × c.

PPUPS.CH16_2pp.indd 379PPUPS.CH16_2pp.indd 379 5/18/2023 11:26:15 AM5/18/2023 11:26:15 AM

380 • Python Programming Using Problem Solving

Solution:

r=int(input('Enter the number of rows\t:'))

c=int(input('Enter the number of columns\t:'))

mean=float(input('Enter the mean of the distribution\t:'))

std=float(input('Enter the standard deviation of the
distribution'))

random_nd_mat=np.random.normal(mean,std,(r,c))

print(random_num_mat)

Output:

Enter the number of rows 	 : 4

Enter the number of columns 	 : 5

Enter the mean of the distribution 	 : 3

Enter the standard deviation of the distribution	 : 4

[[0.46332079 0.67111524 0.58163963 0.08379198]

 [0.72509431 0.48099346 0.12884776 0.40432988]

 [0.60843099 0.7945741 0.92891968 0.54176968]]

Illustration 16.11:

Flatten the above array, sort the numbers, and plot them.

Solution:

numbers_nd=random_nd_mat.reshape(((random_nd_mat.shape[0]*ran-
dom_nd_mat.shape[1]),1))

print(numbers_nd.shape)

numbers_nd_sorted=np.sort(numbers_nd)

print(numbers_nd_sorted)

index=np.arange(0, numbers_nd_sorted.shape[0])

plt.plot(index,numbers_nd_sorted)

plt.show()

Illustration 16.12:

Ask the user to enter the number of rows and the number of columns and gen-
erate a matrix with random numbers between the given range.

Solution:

r=int(input('Enter the number of rows\t:'))

c=int(input('Enter the number of columns\t:'))

a=int(input('Enter the range: From\t:'))

PPUPS.CH16_2pp.indd 380PPUPS.CH16_2pp.indd 380 5/18/2023 11:26:15 AM5/18/2023 11:26:15 AM

NumPy–I • 381

b=int(input('Enter the range: To\t:'))

array_random_range=np.random.randint(a,b,(r,c))

print(array_random_range)

Output:

Enter the number of rows	 : 3

Enter the number of columns	 : 4

Enter the range: From	 : 7

Enter the range: To	 : 21

[[11 13 10 17]

 [10 13 16 9]

 [17 17 16 10]]

Illustration 16.13:

Generate an identity matrix of the size entered by the user.

Solution:

n=int(input('Enter the number of rows\t:'))

I=np.eye(n)

print(I)

Output:

Enter the number of rows : 5

[[1. 0. 0. 0. 0.]

 [0. 1. 0. 0. 0.]

 [0. 0. 1. 0. 0.]

 [0. 0. 0. 1. 0.]

 [0. 0. 0. 0. 1.]]

Illustration 16.14:

Generate an array containing zeros having shape entered by the user.

Solution:

r=int(input('Enter the number of rows\t:'))

c=int(input('Enter the number of columns\t:'))

Z=np.zeros((r,c))

print(Z)

PPUPS.CH16_2pp.indd 381PPUPS.CH16_2pp.indd 381 5/18/2023 11:26:15 AM5/18/2023 11:26:15 AM

382 • Python Programming Using Problem Solving

Output:

Enter the number of rows 	 : 4

Enter the number of columns	 : 5

[[0. 0. 0. 0. 0.]

 [0. 0. 0. 0. 0.]

 [0. 0. 0. 0. 0.]

 [0. 0. 0. 0. 0.]]

Illustration 16.15:

In the above question, how will you generate an array of zeros, with datatype
as integer?

Solution:

r=int(input('Enter the number of rows\t:'))

c=int(input('Enter the number of columns\t:'))

Z=np.zeros((r,c), dtype=int)

print(Z)

Output:

Enter the number of rows 	 : 4

Enter the number of columns	 : 5

[[0 0 0 0 0]

 [0 0 0 0 0]

 [0 0 0 0 0]

 [0 0 0 0 0]]

Illustration 16.16:

How will you generate an array of ones with datatype integer.

Solution:

r=int(input('Enter the number of rows\t:'))

c=int(input('Enter the number of columns\t:'))

O=np.ones((r,c), dtype=int)

print(O)

PPUPS.CH16_2pp.indd 382PPUPS.CH16_2pp.indd 382 5/18/2023 11:26:15 AM5/18/2023 11:26:15 AM

NumPy–I • 383

Output:

Enter the number of rows 	 : 3

Enter the number of columns	 : 5

[[1 1 1 1 1]

 [1 1 1 1 1]

 [1 1 1 1 1]]

Illustration 16.17:

How will you generate an array of ones with datatype float.

Solution:

r=int(input('Enter the number of rows\t:'))

c=int(input('Enter the number of columns\t:'))

O=np.ones((r,c), dtype=float)

print(O)

Output:

Enter the number of rows			 : 2

Enter the number of columns		 : 5

[[1. 1. 1. 1. 1.]

 [1. 1. 1. 1. 1.]]

Illustration 16.18:

Ask the user to enter the number of rows and the number of columns of a 2-D
matrix. Generate an array filled with the same number (entered by the user).

Solution:

r=int(input('Enter the number of rows\t:'))

c=int(input('Enter the number of columns\t:'))

item=int(input('Enter the item\t:'))

F=np.full((r,c), item)

print(F)

Output:

Enter the number of rows	 : 4

Enter the number of columns	 : 5

Enter the item	 : 78

PPUPS.CH16_2pp.indd 383PPUPS.CH16_2pp.indd 383 5/18/2023 11:26:15 AM5/18/2023 11:26:15 AM

384 • Python Programming Using Problem Solving

[[78 78 78 78 78]

 [78 78 78 78 78]

 [78 78 78 78 78]

 [78 78 78 78 78]]

Illustration 16.19:

Generate an array of n elements and find the element at the position entered
by the user:

�� from the beginning
�� from the end

Solution:

n=int(input('Enter the number of elements\t:'))

random_num=np.random.random(n)

print(random_num)

pos=int(input('Enter position\t:'))

element=random_num[pos]

print('Element at ',pos,' ',element)

pos1=int(input('Enter position from end\t:'))

pos1=-1*pos1

element1=random_num[pos1]

print('Element at ',pos1,' from end ',element1)

Output:

Enter the number of elements 		 : 6

[0.43713108 0.33305433 0.18057763 0.76521652 0.91477333 0.59816926]

Enter position 		 : 3

Element at 3 is 		 : 0.7652165243368857

Enter position from end		 : 2

Element at 2 from end		 : 0.9147733324270373

Illustration 16.20:

Write a program to find the element at the location specified by the user in a
2-D array.

PPUPS.CH16_2pp.indd 384PPUPS.CH16_2pp.indd 384 5/18/2023 11:26:15 AM5/18/2023 11:26:15 AM

NumPy–I • 385

Solution:

r=int(input('Enter the number of rows\t:'))

c=int(input('Enter the number of columns\t:'))

random_num_mat=np.random.random((r,c))

print(random_num_mat)

pos1=int(input('Enter row number\t:'))

pos2=int(input('Enter col number\t:'))

element=random_num_mat[pos1, pos2]

print('Element at (', pos1,',',pos2,') is', element)

Output:

Enter the number of rows	 : 3

Enter the number of columns	 : 4

[[0.3587718 0.10041165 0.16053454 0.47189602]

 [0.5167602 0.93113063 0.3259402 0.93074249]

 [0.29976931 0.78217725 0.11342043 0.40755382]]

Enter row number :2 Enter col number	: 3

Element at (2 , 3) is 0.4075538186361203

Illustration 16.21:

In the above question, what is the element at (pos1, -1*pos2).

Solution:

Element at (2 , -3) is 0.7821772493742479

Illustration 16.22:

In Illustration 16.20, what is the element at (-1*pos1, pos2).

Solution:

Element at (-2 , 3) is 0.9307424897203977

Illustration 16.23:

In Illustration 16.20, what is the element at (-1*pos1, -1*pos2).

PPUPS.CH16_2pp.indd 385PPUPS.CH16_2pp.indd 385 5/18/2023 11:26:15 AM5/18/2023 11:26:15 AM

386 • Python Programming Using Problem Solving

Solution:

Element at (-2 , -3) is 0.9311306325583609

Hint:

pos1_new=-1*pos1

pos2_new=-1*pos2

element=random_num_mat[pos1, pos2_new]

print('Element at (', pos1,',',pos2_new,') is', element)

element=random_num_mat[pos1_new, pos2]

print('Element at (', pos1_new,',',pos2,') is', element)

element=random_num_mat[pos1_new, pos2_new]

print('Element at (', pos1_new,',',pos2_new,') is', element)

16.9  OPERATIONS: SCALAR WITH AN ARRAY

This section discusses various operations on the numpy arrays with a scalar.
The standard operations namely: addition, subtraction, multiplication, divi-
sion, modulo, and power have been presented in this section.

16.9.1  Addition

16.9.1.1  Using the + operator

Adding a scalar with array results in the addition of that scalar to each element
of the given array. For example, if

1 2 3
4 5 6
7 8 9

A =

Then, A+ 3 becomes

	

1 2 3
4 5 6 3
7 8 9

+ = 	

	

4 5 6
7 8 9

10 11 12
	

PPUPS.CH16_2pp.indd 386PPUPS.CH16_2pp.indd 386 5/18/2023 11:26:16 AM5/18/2023 11:26:16 AM

NumPy–I • 387

Illustration 16.24:

Ask the user to enter the number of rows and columns of a given matrix and
generate a matrix of random numbers (between 0 and 1). Add 5 to each ele-
ment of the matrix and show the result.

Solution:

The process has already been explained. The following code performs the
task, and the output follows the code.

Code:

import numpy as np

r=int(input('Enter the number of rows\t:'))

c=int(input('Enter the number of columns\t:'))

array1=np.random.random((r,c))

print(array1)

array2=array1+5

print('The resultant matrix\t:')

print(array2)

Output:

Enter the number of rows		 : 4

Enter the number of columns	 : 5

[[0.89144523 0.71331741 0.36089562 0.93356356 0.84708016]

 [0.55455128 0.31488978 0.95140343 0.34885856 0.76283298]

 [0.52345739 0.97636114 0.92736399 0.91055891 0.82454989]

 [0.09921104 0.26160407 0.02555853 0.05173145 0.91408363]]

The resultant matrix :

[[5.89144523 5.71331741 5.36089562 5.93356356 5.84708016]

 [5.55455128 5.31488978 5.95140343 5.34885856 5.76283298]

 [5.52345739 5.97636114 5.92736399 5.91055891 5.82454989]

 [5.09921104 5.26160407 5.02555853 5.05173145 5.91408363]]

16.9.1.2  Using the numpy. add function

The addition of a scalar to a matrix can also be performed using the numpy.
add function. The signature of the function is as follows.

numpy.add(x1, x2, out, where, casting, order, dtype)

PPUPS.CH16_2pp.indd 387PPUPS.CH16_2pp.indd 387 5/18/2023 11:26:16 AM5/18/2023 11:26:16 AM

388 • Python Programming Using Problem Solving

Where, x1 and x2 are arrays or scalars, and out is the location where the
result is stored, and where is the condition which is broadcast over input.

The following illustration demonstrates the use of this function.

Illustration 16.25:

Refer to Illustration 16.24. Perform the task using the numpy.add function.

Solution:

The process has already been explained. The following code performs the task.

Code:

r=int(input('Enter the number of rows\t:'))

c=int(input('Enter the number of columns\t:'))

array1=np.random.random((r,c))

print(array1)

array2=np.add(array1,5)

print(array2)

16.9.2  Subtraction

16.9.2.1  Using the – operator

Subtracting a scalar from array results in the subtraction of that scalar from
each element of the given array. For example, if

1 2 3
4 5 6
7 8 9

A =

Then, A - 1 becomes

	

1 2 3
4 5 6 1
7 8 9

− = 	

	

0 1 2
3 4 5
6 7 8

	

PPUPS.CH16_2pp.indd 388PPUPS.CH16_2pp.indd 388 5/18/2023 11:26:16 AM5/18/2023 11:26:16 AM

NumPy–I • 389

Illustration 16.26:

Ask the user to enter the number of rows and columns of a given matrix and
generate a matrix of random numbers (between 0 and 1). Subtract 2 from each
element of the matrix and show the result.

Solution:

The process has already been explained. The following code performs the
task, and the output follows the code.

Code:

r=int(input('Enter the number of rows\t:'))

c=int(input('Enter the number of columns\t:'))

array1=np.random.random((r,c))

print(array1)

array2=array1-2

print('The resultant matrix\t:')

print(array2)

Output:

Enter the number of rows	 : 4

Enter the number of columns	 : 5

[[0.39753919 0.89568943 0.56239721 0.00751823 0.51524542]

 [0.80519441 0.53579197 0.04500465 0.98211826 0.22254055]

 [0.80278989 0.84783075 0.03665448 0.64768028 0.72306593]

 [0.88770246 0.55138696 0.88508308 0.56852102 0.32854805]]

The resultant matrix :

[[-1.60246081 -1.10431057 -1.43760279 -1.99248177 -1.48475458]

 [-1.19480559 -1.46420803 -1.95499535 -1.01788174 -1.77745945]

 [-1.19721011 -1.15216925 -1.96334552 -1.35231972 -1.27693407]

 [-1.11229754 -1.44861304 -1.11491692 -1.43147898 -1.67145195]]

16.9.2.2  Using the numpy.subtract function

The subtraction of a scalar from a matrix can also be performed using the
numpy.subtract function. The signature of the function is as follows.

numpy.subtract(x1, x2, out, where, casting, order, dtype)

PPUPS.CH16_2pp.indd 389PPUPS.CH16_2pp.indd 389 5/18/2023 11:26:16 AM5/18/2023 11:26:16 AM

390 • Python Programming Using Problem Solving

Where, x1 and x2 are arrays or scalars, and out is the location where the
result is stored, and where is the condition which is broadcast over input.

The following illustration demonstrates the use of this function.

Illustration 16.27:

Refer to Illustration 16.26. Perform the task using the numpy.subtract
function.

Solution:

The process has already been explained. The following code performs the task.

Code:

r=int(input('Enter the number of rows\t:'))

c=int(input('Enter the number of columns\t:'))

array1=np.random.random((r,c))

print(array1)

array2=np.subtract(array1,2)

print('The resultant matrix\t:')

print(array2)

16.9.3  Multiplication

16.9.3.1  Using the * operator

Multiplying a scalar to array results in the multiplication of that scalar to each
element of the given array. For example, if

1 2 3
4 5 6
7 8 9

A =

Then, A * 2 becomes

	

1 2 3
4 5 6 2
7 8 9

× = 	

	

2 4 6
8 10 12

14 16 18
	

PPUPS.CH16_2pp.indd 390PPUPS.CH16_2pp.indd 390 5/18/2023 11:26:16 AM5/18/2023 11:26:16 AM

NumPy–I • 391

Illustration 16.28:

Ask the user to enter the number of rows and columns of a given matrix and
generate a matrix of random numbers (between 0 and 1). Multiply 3 to each
element of the matrix and show the result.

Solution:

The process has already been explained. The following code performs the
task, and the output follows the code.

Code:

r=int(input('Enter the number of rows\t:'))

c=int(input('Enter the number of columns\t:'))

array1=np.random.random((r,c))

print(array1)

array2=array1*3

print('The resultant matrix\t:')

print(array2)

Output:

Enter the number of rows	 : 4

Enter the number of columns	 : 5

[[0.22004619 0.49134188 0.0220215 0.89062779 0.53269214]

 [0.78610415 0.5981393 0.82281589 0.82419645 0.1447323]

 [0.23443228 0.0144362 0.93418983 0.88136115 0.21863549]

 [0.30558265 0.2338263 0.7479892 0.91168111 0.91016941]]

The resultant matrix :

[[0.66013856 1.47402565 0.06606451 2.67188337 1.59807643]

 [2.35831244 1.7944179 2.46844768 2.47258936 0.4341969]

 [0.70329685 0.04330859 2.80256949 2.64408345 0.65590647]

 [0.91674796 0.70147889 2.2439676 2.73504333 2.73050824]]

16.9.3.2  Using the numpy.multiply function

The multiplication of a scalar to a matrix can also be performed using the
numpy.multiply function. The signature of the function is as follows.

numpy.multiply(x1, x2, out, where, casting, order, dtype)

PPUPS.CH16_2pp.indd 391PPUPS.CH16_2pp.indd 391 5/18/2023 11:26:16 AM5/18/2023 11:26:16 AM

392 • Python Programming Using Problem Solving

Where, x1 and x2 are arrays or scalars, and out is the location where the
result is stored, and where is the condition which is broadcast over input.

The following illustration demonstrates the use of this function.

Illustration 16.29:

Refer to Illustration 16.28. Perform the task using the numpy.multiply
function.

Solution:

The process has already been explained. The following code performs the task.

Code:

r=int(input('Enter the number of rows\t:'))

c=int(input('Enter the number of columns\t:'))

array1=np.random.random((r,c))

print(array1)

array2=np.multiply(array1,3)

print('The resultant matrix\t:')

print(array2)

16.9.4  Division

16.9.4.1  Using the / operator

Dividing a scalar to array results in the division of each element of the given
array with that scalar. For example, if

2 4 4
4 6 8

10 8 14
A =

Then, A / 2 becomes

	

2 4 4
4 6 8 / 2

10 8 14
= 	

	

1 2 2
2 3 4
5 4 7

	

PPUPS.CH16_2pp.indd 392PPUPS.CH16_2pp.indd 392 5/18/2023 11:26:16 AM5/18/2023 11:26:16 AM

NumPy–I • 393

Illustration 16.30:

Ask the user to enter the number of rows and columns of a given matrix and
generate a matrix of random numbers (between 0 and 1). Divide each element
of the matrix by 3 and show the result.

Solution:

The process has already been explained. The following code performs the
task, and the output follows the code.

Code:

r=int(input('Enter the number of rows\t:'))

c=int(input('Enter the number of columns\t:'))

array1=np.random.random((r,c))

print(array1)

array2=array1/3

print('The resultant matrix\t:')

print(array2)

Output:

Enter the number of rows	 : 4

Enter the number of columns	 : 5

[[0.50390765 0.06109499 0.45480563 0.82350075 0.01273838]

 [0.09852436 0.67678827 0.41592833 0.71897566 0.29971024]

 [0.28596086 0.50947303 0.38423805 0.51570389 0.803762]

 [0.54649368 0.10232744 0.66355593 0.60196455 0.55477669]]

The resultant matrix:

[[0.16796922 0.020365 0.15160188 0.27450025 0.00424613]

 [0.03284145 0.22559609 0.13864278 0.23965855 0.09990341]

 [0.09532029 0.16982434 0.12807935 0.1719013 0.26792067]

 [0.18216456 0.03410915 0.22118531 0.20065485 0.18492556]]

16.9.4.2  Using the numpy.divide function

The division of a scalar to a matrix can also be performed using the numpy.
divide function. The signature of the function is as follows.

numpy.divide(x1, x2, out, where, casting, order, dtype)

PPUPS.CH16_2pp.indd 393PPUPS.CH16_2pp.indd 393 5/18/2023 11:26:16 AM5/18/2023 11:26:16 AM

394 • Python Programming Using Problem Solving

Where, x1 and x2 are arrays or scalars, and out is the location where the
result is stored, and where is the condition which is broadcast over input.

The following illustration demonstrates the use of this function.

Illustration 16.31:

Refer to Illustration 16.30. Perform the task using the numpy.divide function.

Solution:

The process has already been explained. The following code performs the task.

Code:

r=int(input('Enter the number of rows\t:'))

c=int(input('Enter the number of columns\t:'))

array1=np.random.random((r,c))

print(array1)

array2=np.divide(array1,3)

print('The resultant matrix\t:')

print(array2)

16.9.5  Remainder

16.9.5.1  Using the % operator

Finding the remainder after dividing an array by a number then results in the
creation of an array in which each element will be the remainder after the
division of an element at that place with the given number.

For example, if

2 4 3
5 6 8

10 7 14
A =

Then, A % 2 becomes

	

2 4 3
5 6 8 %2

10 8 14
=	

PPUPS.CH16_2pp.indd 394PPUPS.CH16_2pp.indd 394 5/18/2023 11:26:16 AM5/18/2023 11:26:16 AM

NumPy–I • 395

	

0 0 1
1 0 0
0 1 0

	

Illustration 16.32:

Ask the user to enter the number of rows and columns of a given matrix and
generate a matrix of random numbers (integers between 10 and 100). Find
modulo 3 of the matrix and show the result.

Solution:

The process has already been explained. The following code performs the
task, and the output follows the code.

Code:

r=int(input('Enter the number of rows\t:'))

c=int(input('Enter the number of columns\t:'))

array1=np.random.randint(10,100,(r,c))

print(array1)

array2=array1%3

print('The resultant matrix\t:')

print(array2)

Output:

Enter the number of rows	 : 4

'Enter the number of columns	 : 5

[[29 35 51 52 74]

 [61 28 65 48 42]

 [20 55 78 92 34]

 [22 66 98 60 35]]

The resultant matrix :

[[2 2 0 1 2]

 [1 1 2 0 0]

 [2 1 0 2 1]

 [1 0 2 0 2]]

PPUPS.CH16_2pp.indd 395PPUPS.CH16_2pp.indd 395 5/18/2023 11:26:17 AM5/18/2023 11:26:17 AM

396 • Python Programming Using Problem Solving

16.9.5.2  Using the numpy.remainder function

The above task can also be performed using the numpy.remainder function.
The signature of the function is as follows.

numpy.remainder(x1, x2, out, where, casting, order, dtype)

Where, x1 and x2 are arrays or scalars, and out is the location where the
result is stored, and where is the condition which is broadcast over input.

The following illustration demonstrates the use of this function.

Illustration 16.33:

Refer to Illustration 16.32. Perform the task using the numpy.remainder
function.

Solution:

The process has already been explained. The following code performs the task.

r=int(input('Enter the number of rows\t:'))

c=int(input('Enter the number of columns\t:'))

array1=np.random.randint(10,100,(r,c))

print(array1)

array2=np.remainder(array1,3)

print('The resultant matrix\t:')

print(array2)

16.9.6  Power

16.9.6.1  Using the ** operator

An array to the power of scalar results in the creation of a matrix in which each
element is raised to the power of that number.

For example, if
2 4 3
5 6 8
0 1 4

A =

PPUPS.CH16_2pp.indd 396PPUPS.CH16_2pp.indd 396 5/18/2023 11:26:17 AM5/18/2023 11:26:17 AM

NumPy–I • 397

Then, A ** 2 becomes

2 4 3
5 6 8 2
0 1 4

∗∗ =

	
4 16 9
25 36 64
0 1 16

	

Illustration 16.34:

Ask the user to enter the number of rows and columns of a given matrix and
generate a matrix of random numbers (integers between 10 and 100). Find the
power 2 of the matrix and show the result.

Solution:

The process has already been explained. The following code performs the
task, and the output follows the code.

Code:

r=int(input('Enter the number of rows\t:'))

c=int(input('Enter the number of columns\t:'))

array1=np.random.randint(10,100,(r,c))

print(array1)

array2=array1**2

print('The resultant matrix\t:')

print(array2)

Output:

Enter the number of rows:4

Enter the number of columns:5

[[30 48 22 32 16]

 [20 46 33 65 24]

 [61 40 12 80 95]

 [65 49 59 25 33]]

PPUPS.CH16_2pp.indd 397PPUPS.CH16_2pp.indd 397 5/18/2023 11:26:17 AM5/18/2023 11:26:17 AM

398 • Python Programming Using Problem Solving

The resultant matrix :

[[900 2304 484 1024 256]

 [400 2116 1089 4225 576]

 [3721 1600 144 6400 9025]

 [4225 2401 3481 625 1089]]

16.9.6.2  Using the numpy.power function

The above task can also be performed using the numpy.power function. The
signature of the function is as follows.

numpy.power(x1, x2, out, where, casting, order, dtype)

Where, x1 and x2 are arrays or scalars, and out is the location where the
result is stored, and where is the condition which is broadcast over input.

The following illustration demonstrates the use of this function.

Illustration 16.35:

Refer to Illustration 16.34. Perform the task using the numpy.power function.

Solution:

The process has already been explained. The following code performs the task.

Code:

r=int(input('Enter the number of rows\t:'))

c=int(input('Enter the number of columns\t:'))

array1=np.random.randint(10,100,(r,c))

print(array1)

array2=np.power(array1,2)

print('The resultant matrix\t:')

print(array2)

16.10  OPERATIONS: ARRAY WITH AN ARRAY

This section discusses various operations on the numpy arrays. The standard
operations namely: addition, subtraction, multiplication, division, modulo,
and power have been presented in this section.

PPUPS.CH16_2pp.indd 398PPUPS.CH16_2pp.indd 398 5/18/2023 11:26:17 AM5/18/2023 11:26:17 AM

NumPy–I • 399

16.10.1  Addition

16.10.1.1  Using the + operator

Adding an array with another array results in the generation of an array in
which each element is the sum of the corresponding elements of the two
arrays. Note that two arrays can be added only if their shape/order is the same.
For example, consider a 3 × 3matrix:

1 2 3
4 5 6
7 8 9

A =

and another 3 × 3 matrix

2 3 4
5 6 7
8 9 10

B =

The addition of the matrices, A + B, results in

1 2 3
4 5 6
7 8 9

2 3 4
5 6 7
8 9 10

3 5 7
9 11 13

15 17 19

+

=

Illustration 16.36:

Ask the user to enter the number of rows and columns of a given matrix and
generate a matrix (array1) of random numbers (between 0 and 1). Generate
another matrix using the same method (array2). Add the two matrices and
show the result.

PPUPS.CH16_2pp.indd 399PPUPS.CH16_2pp.indd 399 5/18/2023 11:26:17 AM5/18/2023 11:26:17 AM

400 • Python Programming Using Problem Solving

Solution:

The process has already been explained. The following code performs the
task, and the output follows the code.

Code:

r=int(input('Enter the number of rows\t:'))

c=int(input('Enter the number of columns\t:'))

array1=np.random.random((r,c))

array2=np.random.random((r,c))

print('First \n',array1)

print('Second Array\n',array2)

array3=array1+array2

print('Resultant')

print(array3)

Output:

Enter the number of rows :3

Enter the number of columns :4

First

[[0.1135447 0.27965675 0.87464505 0.01639248]

 [0.81933991 0.40652706 0.84641946 0.20416069]

 [0.1686387 0.23038878 0.09283358 0.67776872]]

Second Array

[[0.32315667 0.344913 0.14198167 0.94796551]

 [0.42761314 0.33848426 0.35338747 0.25145462]

 [0.26085704 0.5791141 0.74523068 0.45423378]]

Resultant

[[0.43670137 0.62456975 1.01662671 0.96435799]

 [1.24695305 0.74501133 1.19980693 0.45561531]

 [0.42949574 0.80950288 0.83806426 1.1320025]]

16.10.1.2  Using the numpy.add function

The addition of two arrays can also be performed using the numpy.add func-
tion. The signature of the function is as follows:

numpy.add(x1, x2, out, where, casting, order, dtype)

PPUPS.CH16_2pp.indd 400PPUPS.CH16_2pp.indd 400 5/18/2023 11:26:17 AM5/18/2023 11:26:17 AM

NumPy–I • 401

Where, x1 and x2 are arrays or scalars, and out is the location where the
result is stored, and where is the condition which is broadcast over input.

The following illustration demonstrates the use of this function.

Illustration 16.37:

Refer to Illustration 16.36. Perform the task using the numpy.add function.

Solution:

The process has already been explained. The following code performs the task.

Code:

r=int(input('Enter the number of rows\t:'))

c=int(input('Enter the number of columns\t:'))

array1=np.random.random((r,c))

array2=np.random.random((r,c))

print('First \n',array1)

print('Second Array\n',array2)

array3=np.add(array1,array2)

print('Resultant')

print(array3)

16.10.2  Subtraction

16.10.2.1  Using the — operator

Subtracting an array from another array results in the generation of an array
in which each element is the difference of the corresponding elements of the
two arrays. Note that the two arrays can be subtracted only if their shape/
order is the same. For example, consider a 3 × 3 matrix:

1 2 3
4 5 6
7 8 9

A =

and another 3 × 3 matrix
2 3 4
5 6 7
8 9 10

B =

PPUPS.CH16_2pp.indd 401PPUPS.CH16_2pp.indd 401 5/18/2023 11:26:17 AM5/18/2023 11:26:17 AM

402 • Python Programming Using Problem Solving

The subtraction of the matrices, A – B, results in

1 2 3
4 5 6
7 8 9
 –
2 3 4
5 6 7
8 9 10

– 1 – 1 – 1
– 1 – 1 – 1
– 1 – 1 – 1

=

Illustration 16.38

Ask the user to enter the number of rows and columns of a given matrix and
generate a matrix (array1) of random numbers (between 0 and 1). Generate
another matrix using the same method (array2). Subtract the two matrices
and show the result.

Solution:

The process has already been explained. The following code performs the
task, and the output follows the code.

Code:

r=int(input('Enter the number of rows\t:'))

c=int(input('Enter the number of columns\t:'))

array1=np.random.random((r,c))

array2=np.random.random((r,c))

print('First Array\n',array1)

print('Second Array\n',array2)

array3=array1-array2

print('Resultant')

print(array3)

PPUPS.CH16_2pp.indd 402PPUPS.CH16_2pp.indd 402 5/18/2023 11:26:18 AM5/18/2023 11:26:18 AM

NumPy–I • 403

Output:

Enter the number of rows	 : 3

Enter the number of columns	 : 4

First Array

[[0.39961261 0.3053622 0.69981721 0.48149646]

 [0.65316203 0.78056023 0.91684406 0.03676577]

 [0.79883245 0.41177364 0.0832075 0.78792757]]

Second Array

[[0.14347229 0.09637157 0.71285074 0.88376306]

 [0.34381271 0.79531302 0.54566008 0.27621104]

 [0.17137891 0.30418202 0.31075256 0.43768344]]

Resultant

[[0.25614032 0.20899063 -0.01303353 -0.4022666]

 [0.30934932 -0.01475279 0.37118398 -0.23944527]

 [0.62745354 0.10759161 -0.22754506 0.35024414]]

16.10.2.2  Using the numpy.subtract function

The subtraction of two matrices can also be performed using the numpy.
subtract function. The signature of the function is as follows:

numpy.subtract(x1, x2, out, where, casting, order, dtype)

Where, x1 and x2 are arrays or scalars, and out is the location where the
result is stored, and where is the condition which is broadcast over input.

The following illustration demonstrates the use of this function.

Illustration 16.39:

Refer to Illustration 16.38. Perform the task using the numpy.subtract
function.

Solution:

The process has already been explained. The following code performs the task.

Code:

r=int(input('Enter the number of rows\t:'))

c=int(input('Enter the number of columns\t:'))

array1=np.random.random((r,c))

PPUPS.CH16_2pp.indd 403PPUPS.CH16_2pp.indd 403 5/18/2023 11:26:18 AM5/18/2023 11:26:18 AM

404 • Python Programming Using Problem Solving

array2=np.random.random((r,c))

print('First Array\n',array1)

print('Second Array\n',array2)

array3=np.subtract(array1,array2)

print('Resultant')

print(array3)

16.10.3  Multiplication

16.10.3.1  Using the * operator

Multiplying two arrays results in the generation of an array in which each ele-
ment of the resultant array is the product of the corresponding elements of
the two arrays. Note that two arrays can be multiplied only if their shape/order
is the same. Also, note that this is not the same as matrix multiplication. For
example, consider a 3 × 3 matrix:

2 4 3
5 6 8

10 7 14
A =

and another 3 × 3 matrix

2 2 2
4 3 4
3 2 5

B =

The multiplication of the matrices, A * B, results in

2 4 3
5 6 8

10 7 14

2 2 2
4 3 4
3 2 5

4 8 6
20 18 32
30 14 70

∗

=

PPUPS.CH16_2pp.indd 404PPUPS.CH16_2pp.indd 404 5/18/2023 11:26:18 AM5/18/2023 11:26:18 AM

NumPy–I • 405

Illustration 16.40:

Ask the user to enter the number of rows and columns of a given matrix and
generate a matrix (array1) of random numbers (between 0 and 1). Generate
another matrix using the same process (array2). Multiply the two matrices
and show the result.

Solution:

The process has already been explained. The following code performs the
task, and the output follows the code.

Code:

r=int(input('Enter the number of rows\t:'))

c=int(input('Enter the number of columns\t:'))

array1=np.random.random((r,c))

array2=np.random.random((r,c))

print('First Array\n',array1)

print('Second Array\n',array2)

array3=array1*array2

print('Resultant')

print(array3)

Output:

Enter the number of rows	 : 3

Enter the number of columns	 : 4

First Array

[[0.25006456 0.8206732 0.43550708 0.23582437]

 [0.93062724 0.95464531 0.85118977 0.91312727]

 [0.29366056 0.32679254 0.59282643 0.60242423]]

Second Array

[[0.63569123 0.15618804 0.21294601 0.18053783]

 [0.18802424 0.75908975 0.64221508 0.2679345]

 [0.26360182 0.07651079 0.25618303 0.21757418]]

Resultant

[[0.15896385 0.12817934 0.0927395 0.04257522]

 [0.17498048 0.72466147 0.54664691 0.2446583]

 [0.07740946 0.02500316 0.15187207 0.13107196]]

PPUPS.CH16_2pp.indd 405PPUPS.CH16_2pp.indd 405 5/18/2023 11:26:18 AM5/18/2023 11:26:18 AM

406 • Python Programming Using Problem Solving

16.10.3.2  Using the numpy.multiply function

The multiplication of two matrices can also be performed using the numpy.
multiply function. The signature of the function is as follows:

numpy.multiply(x1, x2, out, where, casting, order, dtype)

Where, x1 and x2 are arrays or scalars, and out is the location where the
result is stored, and where is the condition which is broadcast over input.

The following illustration demonstrates the use of this function.

Illustration 16.41:

Refer to Illustration 16.40. Perform the task using the numpy.multiply
function.

Solution:

The process has already been explained. The following code performs the task.

Code:

r=int(input('Enter the number of rows\t:'))

c=int(input('Enter the number of columns\t:'))

array1=np.random.random((r,c))

array2=np.random.random((r,c))

print('First Array\n',array1)

print('Second Array\n',array2)

array3=np.multiply(array1,array2)

print('Resultant')

print(array3)

16.10.4  Division

16.10.4.1  Using the / operator

Dividing an array by another array results in the generation of an array in
which each element is the result of the division of the corresponding elements
of the two arrays. Note that two arrays can be divided only if their shape/order
is the same. Also, note that this does not represent the mathematical division
of two arrays. For example, consider a 3 × 3 matrix:

PPUPS.CH16_2pp.indd 406PPUPS.CH16_2pp.indd 406 5/18/2023 11:26:18 AM5/18/2023 11:26:18 AM

NumPy–I • 407

2 4 3
5 6 8

10 7 14
A =

and another 3 × 3 matrix

2 2 2
4 3 4
3 2 5

B =

The division of the matrices, A / B results in

2 4 3
5 6 8

10 7 14
/
2 2 2
4 3 4
3 2 5

1 2 1.5
1.25 2 2
3.33 3.5 2.8

=

Illustration 16.42:

Ask the user to enter the number of rows and columns of a given matrix and
generate a matrix (array1) of random numbers (between 0 and 1). Generate
another array using the same process (array2). Divide the matrices and show
the result.

Solution:

The process has already been explained. The following code performs the
task, and the output follows the code.

Code:

r=int(input('Enter the number of rows\t:'))

c=int(input('Enter the number of columns\t:'))

PPUPS.CH16_2pp.indd 407PPUPS.CH16_2pp.indd 407 5/18/2023 11:26:18 AM5/18/2023 11:26:18 AM

408 • Python Programming Using Problem Solving

array1=np.random.random((r,c))

array2=np.random.random((r,c))

print('First Array\n',array1)

print('Second Array\n',array2)

array3=array1/array2

print('Resultant')

print(array3)

Output:

Enter the number of rows :3

Enter the number of columns :4

First Array

[[0.10288708 0.05215324 0.781327 0.26069244]

 [0.73494996 0.65236699 0.73814042 0.18073924]

 [0.00529993 0.20723622 0.31061191 0.67826563]]

Second Array

[[0.07239933 0.48740549 0.52364227 0.9965622]

 [0.68518607 0.80388506 0.16278473 0.83231087]

 [0.45852829 0.96797794 0.39793673 0.71281227]]

Resultant

[[1.42110536 0.10700175 1.49210071 0.26159174]

 [1.07262829 0.81151775 4.5344575 0.21715352]

 [0.01155856 0.21409189 0.78055603 0.95153473]]

16.10.4.2  Using the numpy.divide function

The division of two matrices can also be performed using the numpy.divide
function. The signature of the function is as follows:

numpy.divide(x1, x2, out, where, casting, order, dtype)

Where, x1 and x2 are arrays or scalars, and out is the location where the
result is stored, and where is the condition which is broadcast over input.

The following illustration demonstrates the use of this function.

Illustration 16.43:

Refer to Illustration 16.42. Perform the task using the numpy.divide function.

PPUPS.CH16_2pp.indd 408PPUPS.CH16_2pp.indd 408 5/18/2023 11:26:18 AM5/18/2023 11:26:18 AM

NumPy–I • 409

Solution:

The process has already been explained. The following code performs the task.

r=int(input('Enter the number of rows\t:'))

c=int(input('Enter the number of columns\t:'))

array1=np.random.random((r,c))

array2=np.random.random((r,c))

print('First Array\n',array1)

print('Second Array\n',array2)

array3=np.divide(array1,array2)

print('Resultant')

print(array3)

16.10.5  Remainder

16.10.5.1  Using the % operator

Finding the remainder after dividing an array by another array results in the
generation of an array in which each element is the remainder obtained by
dividing the corresponding elements of the two arrays. Note that this opera-
tion can be performed only if their shape/order is the same. For example,
consider a 3 × 3 matrix:

2 4 3
5 6 8

10 7 14
A =

and another 3 × 3 matrix
 2 2 2

 4 3 4
 3 2 5
B=

The addition of the matrices, A + B, results in

2 4 3
5 6 8

10 7 14
%

PPUPS.CH16_2pp.indd 409PPUPS.CH16_2pp.indd 409 5/18/2023 11:26:19 AM5/18/2023 11:26:19 AM

410 • Python Programming Using Problem Solving

2 2 2
4 3 4
3 2 5
 =

0 0 1
1 0 0
1 1 4

Illustration 16.44:

Ask the user to enter the number of rows and columns of a given matrix and
generate a matrix (array1) of random numbers (integers between 2 and 6).
Generate another array in the same manner (array2). Find the remained
obtained by dividing array1 modulo array2 and show the result.

Solution:

The process has already been explained. The following code performs the
task, and the output follows the code.

Code:

r=int(input('Enter the number of rows\t:'))

c=int(input('Enter the number of columns\t:'))

array1=np.random.randint(2,6,(r,c))

array2=np.random.randint(2,6,(r,c))

print('First Array\n',array1)

print('Second Array\n',array2)

array3=array1%array2

print('Resultant')

print(array3)

Output:

Enter the number of rows :3

Enter the number of columns :4

First Array

[[3 5 5 5]

 [5 3 5 2]

 [3 5 2 3]]

PPUPS.CH16_2pp.indd 410PPUPS.CH16_2pp.indd 410 5/18/2023 11:26:19 AM5/18/2023 11:26:19 AM

NumPy–I • 411

Second Array

[[5 2 2 4]

 [5 5 5 5]

 [5 3 2 4]]

Resultant

[[3 1 1 1]

 [0 3 0 2]

 [3 2 0 3]]

16.10.5.2  Using the numpy.mod function

The above task can also be performed using the numpy.remainder function.
The signature of the function is as follows.

numpy.mod(x1, x2, out, where, casting, order, dtype)

Where, x1 and x2 are arrays or scalars, and out is the location where the
result is stored, and where is the condition which is broadcast over input.

The following illustration demonstrates the use of this function.

Illustration 16.45:

Refer to Illustration 16.44. Perform the task using the numpy.remainder
function.

Solution:

The process has already been explained. The following code performs the task.

Code:

r=int(input('Enter the number of rows\t:'))

c=int(input('Enter the number of columns\t:'))

array1=np.random.randint(2,6,(r,c))

array2=np.random.randint(2,6,(r,c))

print('First Array\n',array1)

print('Second Array\n',array2)

array3=np.mod(array1,array2)

print('Resultant')

print(array3)

PPUPS.CH16_2pp.indd 411PPUPS.CH16_2pp.indd 411 5/18/2023 11:26:19 AM5/18/2023 11:26:19 AM

412 • Python Programming Using Problem Solving

16.10.6  Power

16.10.6.1  Using the ** operator

If two arrays are given, the first array to the power of another results in the
generation of an array in which each element is a to the power of b, where a is
an element of the first array, and b is the corresponding element of the second
array. Note that this operation can be applied to the arrays only if their shape/
order is the same. For example, consider a 3 × 3 matrix:

 2 4 3
 5 6 8

 0 1 4
A =

and another 3 × 3 matrix
 3 1 2

 2 2 1
 4 2 4
B=

The addition of the matrices, A + B, results in

2 4 3
5 6 8
0 1 4

 ∗∗

3 1 2
2 2 1
4 2 4
 =

8 4 9
25 36 8
0 1 25

6

Illustration 16.46:

Ask the user to enter the number of rows and columns of a given matrix and
generate a matrix (array1) of random numbers (integers between 2 and 6).

PPUPS.CH16_2pp.indd 412PPUPS.CH16_2pp.indd 412 5/18/2023 11:26:19 AM5/18/2023 11:26:19 AM

NumPy–I • 413

Generate another array using the same process (array2). Find array1 to the
power of array2.

Solution:

The process has already been explained. The following code performs the
task, and the output follows the code.

Code:

r=int(input('Enter the number of rows\t:'))

c=int(input('Enter the number of columns\t:'))

array1=np.random.randint(2,6,(r,c))

array2=np.random.randint(2,6,(r,c))

print('First Array\n',array1)

print('Second Array\n',array2)

array3=array1**array2

print('Resultant')

print(array3)

Output:

Enter the number of rows 	 :2

Enter the number of columns :3

First Array

[[3 2 5]

 [4 5 3]]

Second Array

[[5 5 3]

 [5 4 5]]

Resultant

[[243 32 125]

 [1024 625 243]]

16.10.6.2  Using the numpy.power function

The above task can also be performed using the numpy.power function. The
signature of the function is as follows:

numpy.power(x1, x2, out, where, casting, order, dtype)

PPUPS.CH16_2pp.indd 413PPUPS.CH16_2pp.indd 413 5/18/2023 11:26:19 AM5/18/2023 11:26:19 AM

414 • Python Programming Using Problem Solving

Where, x1 and x2 are arrays or scalars, and out is the location where the
result is stored, and where is the condition which is broadcast over input.

The following illustration demonstrates the use of this function.

Illustration 16.47:

Refer to Illustration 16.46. Perform the task using the numpy.power function.

Solution:

The process has already been explained. The following code performs the task.

Code:

r=int(input('Enter the number of rows\t:'))

c=int(input('Enter the number of columns\t:'))

array1=np.random.randint(2,6,(r,c))

array2=np.random.randint(2,6,(r,c))

print('First Array\n',array1)

print('Second Array\n',array2)

array3=np.power(array1,array2)

print('Resultant')

print(array3)

16.11  CONCLUSION

This chapter discussed the importance and features of numpy arrays. The
function used to create numpy arrays have been discussed in detail. The
chapter also discusses the concepts of indexing and slicing. The operations
between a scalar and numpy array and operations between numpy arrays
have also been discussed in detail.

This discussion continues in the next chapter, wherein the splitting and
joining of arrays have been discussed. Along with this, the applications of
numpy arrays in regression, finding the correlation, etc. have also been dis-
cussed in the next chapter. The reader may hit the exercises and float in the
ocean of numpy to begin a journey toward becoming a data scientist.

PPUPS.CH16_2pp.indd 414PPUPS.CH16_2pp.indd 414 5/18/2023 11:26:19 AM5/18/2023 11:26:19 AM

NumPy–I • 415

EXERCISES

Multiple Choice Questions

1.	 Which of the following follows zero-based indexing?

	 (a)  List			 	 (b)  Numpy array

	 (c)  Both			 	 (c)  None of the above

2.	 In which of the following elements are stored at consecutive memory
locations?

	 (a)  List			 	 (b)  Numpy array

	 (c)  Both			 	 (c)  None of the above

3.	 Which of the following support vectorized operations?

	 (a)  List			 	 (b)  Numpy array

	 (c)  Both			 	 (d)  None of the above

4.	 Which of the following is more efficient?

	 (a)  List			 	 (b)  Numpy array

	 (c)  Both are equally efficient	 (d)  None of the above

5.	 Which of the following are the storage mechanisms for numpy arrays?

	 (a)  Row major		 	 (b)  Column major

	 (c)  Both			 	 (d)  None of the above

6.	 In a 1-dimensional numpy array, which of the following can be the correct
value of an axis?

	 (a)  0				 (b)  1

	 (c)  2			 	 (c)  None of the above

7.	 If the value of one of the axes of a numpy array is 3, what is the minimum
dimension of the array?

	 (a)  4			 	 (b)  3

	 (c)  2			 	 (d)  5

PPUPS.CH16_2pp.indd 415PPUPS.CH16_2pp.indd 415 5/18/2023 11:26:19 AM5/18/2023 11:26:19 AM

416 • Python Programming Using Problem Solving

8.	 For a numpy matrix having four rows and five columns, which of the
following is the correct value of shape?

	 (a)  4 × 3			 	 (b)  3 × 4

	 (c)  12 × 1			 	 (d)  None of the above

9.	 In the above question, what is the rank of the array?

	 (a)  2			 	 (b)  3

	 (c)  4			 	 (d)  None of the above

10.	 In question 8, what is the value of the axis for performing operations on
rows?

	 (a)  0			 	 (b)  1

	 (c)  2			 	 (c)  None of the above

11.	 In question 8, what is the value of the axis for performing operations on
columns?

	 (a)  0			 	 (b)  1

	 (c)  2			 	 (d)  None of the above

12.	 Which of the following is used to generate an array of zeros?

	 (a)  zeros			 	 (b)  ones

	 (c)  full			 	 (d)  None of the above

13.	 Which of the following is used to generate an array of ones?

	 (a)  zeros			 	 (b)  ones

	 (c)  full			 	 (d)  None of the above

14.	 Which of the following is used to generate an array filled with the same
number?

	 (a)  zeros			 	 (b)  ones

	 (c)  full			 	 (c)  None of the above

15.	 Which of the following is used to generate random integers?

	 (a)  randint			 	 (b)  random.random

	 (c)  random.normal		 	 (d)  None of the above

PPUPS.CH16_2pp.indd 416PPUPS.CH16_2pp.indd 416 5/18/2023 11:26:19 AM5/18/2023 11:26:19 AM

NumPy–I • 417

16.	 Which of the following is used to generate a random sample from a nor-
mal distribution?

	 (a)  randint			 	 (b)  random.random

	 (c)  random.normal		 	 (d)  None of the above

17.	 The addition of scalar with a vector is

	 (a)  vectorized		 	 (b)  not vectorized

	 (c)  cannot say		 	 (d)  Data insufficient

18.	 Which of the following functions is used to find the remainder of a vector
with a scalar?

	 (a)  Remainder		 	 (b)  Mod

	 (c)  Both			 	 (d)  None of the above

19.	 Which of the following functions is used to find the remainder of a vector
with a vector?

	 (a)  Remainder		 	 (b)  Mod

	 (c)  Both			 	 (d)  None of the above

20.	 Which of the following packages can be used for finding Fourier Trans-
form?

	 (a)  Numpy			 	 (b)  Array

	 (c)  Both			 	 (c)  None of the above

Theory

1.	 What is numpy? Explain its features?

2.	 Compare numpy arrays with lists.

3.	 Define an array.

4.	 By taking an example of a matrix, explain the following terms.

	 (a)  Axes	 (b)  Shape	 (c)  Rank

5.	 How do you convert a List to an array? Explain the similarity between a
list and a numpy array.

6.	 Discuss the storage of numpy arrays in memory.

PPUPS.CH16_2pp.indd 417PPUPS.CH16_2pp.indd 417 5/18/2023 11:26:19 AM5/18/2023 11:26:19 AM

418 • Python Programming Using Problem Solving

7.	 Explain the functions for the following operations between a scalar and a
matrix.

	 (a)  Addition			 	 (b)  Subtraction

	 (c)  Multiplication		 	 (d)  Division

	 (e)  Remainder		 	 (f)  Power

8.	 Explain the functions for the following operations between a matrix and
a matrix

	 (a)  Addition			 	 (b)  Subtraction

	 (c)  Multiplication		 	 (d)  Division

	 (e)  Remainder		 	 (f)  Power

9.	 Explain the formation of a random array in numpy.

10.	 Explain the formation of different types of arrays in numpy.

PPUPS.CH16_2pp.indd 418PPUPS.CH16_2pp.indd 418 5/18/2023 11:26:19 AM5/18/2023 11:26:19 AM

Objectives

After reading this chapter, the reader should be able to

�� Understand the methods to join arrays
�� Understand various functions to split arrays
�� Understand the concept of variance, covariance, and correlation

17.1  INTRODUCTION

The previous chapter introduced the numpy package and discussed the simi-
larities and dissimilarities between numpy arrays and lists. The chapter also
discussed various methods to generate different types of arrays in numpy and
explained some of the most important operators.

This chapter takes the discussion forward and introduces methods to join
and split arrays. Primarily, this chapter discusses three major topics: joining
arrays, splitting arrays, and variance related tools.

The chapter has been organized as follows. The second section discusses
the joining of arrays; the third section introduces methods to split the arrays;
the fourth section discusses variance, the fifth discusses covariance, and the
sixth discusses correlation and the last section concludes.

17.2  JOINING ARRAYS

This section discusses three methods used for joining numpy arrays. These
are hstack, vstack, and concatenate.

C H A P T E R17
NumPy–II

PPUPS.CH17_1pp.indd 419PPUPS.CH17_1pp.indd 419 5/13/2023 5:53:00 PM5/13/2023 5:53:00 PM

420 • Python Programming Using Problem Solving

17.2.1  hstack

This method concatenates two arrays horizontally and produces an array hav-
ing the same number of rows. The number of columns, in the resultant array,
is the sum of the number of columns of the two arrays.

Arguments: This function takes a tuple as the argument containing arrays
having the same number of rows.

(array1, array2, array3, …)

The following examples demonstrate the use of hstack.

Illustration 17.1:

Generate two arrays containing 10 random numbers each. The numbers
should be between 5 and 20. Now generate an array by horizontally stacking
them.

Solution:

arr1=np.random.randint(5,20,10)

arr2=np.random.randint(5,20,10)

arr_result1=np.hstack((arr1, arr2))

print('Result is\n',arr_result1)

Output:

Result is [17 14 5 17 5 16 14 15 17 7 8 10 13 12 18 15 14 6 19 11]

Shape : (20,)

Illustration 17.2:

Ask the user to enter the number of rows and columns for creating two arrays.
Generate the arrays having numbers between 5 and 20. Generate a final array
by horizontally stacking them. (Note that in this example, the two input arrays
have the same size)

Solution:

r=int(input('Enter the number of rows\t:'))

c=int(input('Enter the number of columns\t:'))

arr1=np.random.randint(5,20,(r,c))

arr2=np.random.randint(5,20,(r,c))

arr_result1=np.hstack((arr1, arr2))

PPUPS.CH17_1pp.indd 420PPUPS.CH17_1pp.indd 420 5/13/2023 5:53:00 PM5/13/2023 5:53:00 PM

NumPy–II • 421

print('Result is\n',arr_result1)

print('Shape\t:',arr_result1.shape)

Output:

Enter the number of rows :3

Enter the number of columns :4

Result is

[[19 11 10 12 8 14 10 17]

 [16 12 9 18 9 16 8 10]

 [15 15 5 6 7 15 18 11]]

Shape : (3, 8)

17.2.2  vstack

This method concatenates two arrays vertically and produces an array having
the same number of columns. The number of rows, in the resultant array, is
the sum of the number of rows of the two arrays.

Arguments: This function takes a tuple as the argument containing arrays
having the same number of columns.

(array1, array2, array3, …)

The following examples demonstrate the use of vstack.

Illustration 17.3:

Generate two arrays containing 10 random numbers each. The numbers
should be between 5 and 20. Now generate an array by vertically stacking
them.

Solution:

arr1=np.random.randint(5,20,10)

arr2=np.random.randint(5,20,10)

arr_result2=np.vstack((arr1, arr2))

print('Result is\n',arr_result2)

print('Shape\t:',arr_result2.shape)

Output:

Result is

[[17 14 5 17 5 16 14 15 17 7]
 [ 8 10 13 12 18 15 14 6 19 11]]
Shape : (2,10)

PPUPS.CH17_1pp.indd 421PPUPS.CH17_1pp.indd 421 5/13/2023 5:53:00 PM5/13/2023 5:53:00 PM

422 • Python Programming Using Problem Solving

Illustration 17.4:

Ask the user to enter the number of rows and columns of two input arrays.
Now, generate two arrays, having numbers between 5 and 20. Generate an
array by vertically stacking them.

Solution:

r=int(input('Enter the number of rows\t:'))

c=int(input('Enter the number of columns\t:'))

arr1=np.random.randint(5,20,(r,c))

arr2=np.random.randint(5,20,(r,c))

arr_result2=np.vstack((arr1, arr2))

print('Result is\n',arr_result2)

print('Shape\t:',arr_result2.shape)

Output:

Enter the number of rows :3

Enter the number of columns :4

Result is

[[19 11 10 12]

 [16 12 9 18]

 [15 15 5 6]

 [8 14 10 17]

 [9 16 8 10]

 [7 15 18 11]]

Shape : (6, 4)

17.2.3  Concatenate

This function joins the input arrays along the specified axis. The parameters
of the function are as follows:

The tuple of arrays (<array1, arry2, …>): The sequence of arrays

axis: This parameter represents the axis along which the operations
need to be performed. The default value of this parameter is 0. If the value
of this parameter is NONE, then the input arrays are flattened and then
concatenated.

out: This is an optional parameter, which tells the location of the resultant
array. Note that if specified, this argument must be in the correct shape.

PPUPS.CH17_1pp.indd 422PPUPS.CH17_1pp.indd 422 5/13/2023 5:53:00 PM5/13/2023 5:53:00 PM

NumPy–II • 423

The following examples demonstrate the usage of this function.

Illustration 17.5:

Generate two random arrays of integers having 10 values between 5 and 25.
Concatenate them along

	 (i)	 axis=0
	 (ii)	 axis=1
	 (iii)	 axis=None

and show the result.

Solution:

(i)

arr1=np.random.randint(5,20,10)

arr2=np.random.randint(5,20,10)

arr_result1=np.concatenate((arr1, arr2), axis=0)

print('Result is\n',arr_result1)

print('Shape\t:',arr_result1.shape)

Output:

Result is

 [17 5 19 16 8 11 7 6 8 18 5 19 5 11 11 9 12 14 19 9]

Shape	: (20,)

(ii)

arr1=np.random.randint(5,20,10)

arr2=np.random.randint(5,20,10)

arr1=arr1.reshape(1,arr1.shape[0])

arr2=arr2.reshape(1,arr2.shape[0])

print(arr1.shape, ' ',arr2.shape)

arr_result1=np.concatenate((arr1.T, arr2.T), axis=1)

print('Result is\n',arr_result1)

print('Shape\t:',arr_result1.shape)

Output:

(1, 10)  (1, 10)

PPUPS.CH17_1pp.indd 423PPUPS.CH17_1pp.indd 423 5/13/2023 5:53:00 PM5/13/2023 5:53:00 PM

424 • Python Programming Using Problem Solving

Result is

 [[10 14]

 [11 19]

 [15 10]

 [7 8]

 [12 5]

 [13 12]

 [6 9]

 [5 7]

 [17 9]

 [18 6]]

Shape	: (10, 2)

(iii)

arr1=np.random.randint(5,20,10)

arr2=np.random.randint(5,20,10)

arr_result3=np.concatenate((arr1, arr2), axis=None)

print('Result is\n',arr_result3)

print('Shape\t:',arr_result3.shape)

Output:

Result is

 [15 7 5 13 13 15 11 17 13 16 11 8 17 16 11 16 9 5 8 14]

Shape	: (20,)

Illustration 17.6:

Generate two random arrays of integers having r rows and c columns. The ele-
ments of the array must be between 5 and 25. Concatenate them along

(i)	 axis=0
(ii)	axis=1
(iii)	axis=None

and show the result.

Solution:

(i)

r=int(input('Enter the number of rows\t:'))

c=int(input('Enter the number of columns\t:'))

PPUPS.CH17_1pp.indd 424PPUPS.CH17_1pp.indd 424 5/13/2023 5:53:00 PM5/13/2023 5:53:00 PM

NumPy–II • 425

arr1=np.random.randint(5,20,(r,c))

arr2=np.random.randint(5,20,(r,c))

arr_result1=np.concatenate((arr1, arr2), axis=0)#Same as vstack

print('Result is\n',arr_result1)

print('Shape\t:',arr_result1.shape)

Output:

Enter the number of rows :3

Enter the number of columns :4

Result is

[[5 6 8 8]

 [8 10 17 19]

 [12 17 18 5]

 [14 19 7 17]

 [12 8 16 5]

 [16 13 18 9]]

Shape : (6, 4)

(ii)

r=int(input('Enter the number of rows\t:'))

c=int(input('Enter the number of columns\t:'))

arr1=np.random.randint(5,20,(r,c))

arr2=np.random.randint(5,20,(r,c))

arr_result1=np.concatenate((arr1, arr2), axis=1)#Same as hstack

print('Result is\n',arr_result1)

print('Shape\t:',arr_result1.shape)

Output:

Enter the number of rows		 :3

Enter the number of columns	 :4

Result is

[[19 5 11 5 12 13 15 17]

 [13 12 6 18 7 17 16 15]

 [7 9 14 16 11 19 8 6]]

Shape	: (3, 8)

(iii)

arr1=np.random.randint(5,20,10)

arr2=np.random.randint(5,20,10)

PPUPS.CH17_1pp.indd 425PPUPS.CH17_1pp.indd 425 5/13/2023 5:53:00 PM5/13/2023 5:53:00 PM

426 • Python Programming Using Problem Solving

arr_result1=np.concatenate((arr1, arr2), axis=0)

print('Result is\n',arr_result1)

print('Shape\t:',arr_result1.shape)

Output:

Result is

 [17 5 19 16 8 11 7 6 8 18 5 19 5 11 11 9 12 14 19 9]

Shape	: (20,)

17.3  SPLITTING ARRAYS

Having seen the methods used for joining the arrays, let us now move to split-
ting the arrays. The following subsections discuss hsplit, vsplit, split, and
extract for finding subsets of the given array.

17.3.1 hsplit

The numpy.hsplit function divides the array horizontally in equal parts if the
second argument is a number. In case the second argument is an array, the
function works as shown in Figure 17.2.

Figure 17.1 shows the splitting of a given array into two equal parts and
four equal parts. Note that if the number of columns is not divisible by the
second argument, it results in an error.

numpy.hsplit(arr,2) numpy.hsplit(arr,4) numpy.hsplit(arr,3)

Divides the array in two
equal parts

Divides the array in four
equal parts

Results in error, since the
given array cannot be divided
into three equal; parts.

FIGURE 17.1  hsplit(arr, <integer>).

Figure 17.2 shows how a given array is split if the second argument is an
array. The number of elements in the second argument is one less than the
number of splits. The elements of the second argument are the indices at
which the given array is split.

PPUPS.CH17_1pp.indd 426PPUPS.CH17_1pp.indd 426 5/13/2023 5:53:00 PM5/13/2023 5:53:00 PM

NumPy–II • 427

arr1

hsplit(arr1,[2,5])

Note that the column
indices are from 0 to 2
that is this sub-array is
same as arr1[:, 0:2]

Note that the column
indices are from 2 to 5
that is this sub-array is
same as arr1[:, 2:5]

Note that the column
indices are from 5 onwards
that is this sub-array is
same as arr1[:, 5:]

2

[2, 5]

5

The second argument is [2, 5].
Since,2 is the first index of the
second sub-array. Likewise, 5 is
the first index of the third sub-array

FIGURE 17.2  hsplit(arr, <array>).

17.3.2  vsplit

The numpy.vsplit function divides the array, in equal parts, vertically if the
second argument is a number. In case the second argument is an array, the
function works as shown in Figure 17.4.

Figure 17.3 shows the splitting of a given array into two equal parts and
four equal parts. Note that if the number of rows is not divisible by the second
argument, it results in an error.

arr1

numpy.vsplit(arr, 2) numpy.vsplit(arr, 4) numpy.vsplit(arr, 3)

Divides the array in two
equal parts

Divides the array in four
equal parts

Results in error, since the
given array cannot be divided
into three equal; parts.

FIGURE 17.3  vsplit(arr, <integer>).

PPUPS.CH17_1pp.indd 427PPUPS.CH17_1pp.indd 427 5/13/2023 5:53:00 PM5/13/2023 5:53:00 PM

428 • Python Programming Using Problem Solving

Figure 17.4 shows how a given array is split if the second argument, in
vsplit, is an array. The number of elements in the second array is one less than
the number of splits. The elements of the second argument are the indices at
which the given array is split.

arr1

Note that the row indices
are from 3 onwards that is
this sub-array is same as
arr1[3:, :]

Note that the row indices
are from 2 to 3 that is this
sub-array is same as
arr1[3:, :]

Note that the row indices
are from 0 to 2 that is
this sub-array is same as
arr1[0:2, :]

The second argument is [2, 3].
Since, 2 is the first index of the
second sub-array. Likewise, 3 is the
first index of thefourth sub-array.

vsplit(arr1,[2, 3])

2

[2, 5]

5

FIGURE 17.4  vsplit(arr, <array>).

The following examples demonstrate the use of the above functions for
carrying out some assorted tasks.

Illustration 17.7:

Generate an array of random integers between 5 and 75 having a shape (4, 8).
Generate two arrays by splitting the given array horizontally into two parts.

Solution:

The process has already been explaine(d) The code follows.

PPUPS.CH17_1pp.indd 428PPUPS.CH17_1pp.indd 428 5/13/2023 5:53:00 PM5/13/2023 5:53:00 PM

NumPy–II • 429

Code:

import numpy as np

arr1=np.random.randint(5,75,(4,8))

print(arr1)

sub1, sub2=np.hsplit(arr1,2)

print('First subarray:\n',sub1)

print('Second subarray:\n',sub2)

Output:

[[39 58 49 69 64 50 61 11]

 [74 72 22 23 11 7 8 47]

 [16 21 68 6 64 36 44 11]

 [31 5 27 61 51 8 11 38]]

First subarray:

[[39 58 49 69]

 [74 72 22 23]

 [16 21 68 6]

 [31 5 27 61]]

Second subarray:

[[64 50 61 11]

 [11 7 8 47]

 [64 36 44 11]

 [51 8 11 38]]

Illustration 17.8:

Generate an array of random integers between 5 and 75 having shape (4, 8).
Generate two arrays by splitting the given array horizontally into four parts.

Solution:

The process has already been explained. The code follows.

Code:

arr1=np.random.randint(5,75,(4,8))

print(arr1)

sub1, sub2, sub3, sub4=np.hsplit(arr1,4)

print('First subarray:\n',sub1)

PPUPS.CH17_1pp.indd 429PPUPS.CH17_1pp.indd 429 5/13/2023 5:53:00 PM5/13/2023 5:53:00 PM

430 • Python Programming Using Problem Solving

print('Second subarray:\n',sub2)

print('Third subarray:\n',sub3)

print('Fourth subarray:\n',sub4)

Output:

[[32 11 23 61 20 22 11 30]

 [68 62 11 68 14 69 58 50]

 [38 40 70 67 61 25 73 48]

 [54 51 54 45 49 19 68 9]]

First subarray:

[[32 11]

 [68 62]

 [38 40]

 [54 51]]

Second subarray:

[[23 61]

 [11 68]

 [70 67]

 [54 45]]

Third subarray:

[[20 22]

 [14 69]

 [61 25]

 [49 19]]

Fourth subarray:

[[11 30]

 [58 50]

 [73 48]

 [68 9]]

Illustration 17.9:

Generate an array of random integers between 5 and 75 having shape (4, 8).
Report what happens when we try to generate arrays by splitting the given
array horizontally into three parts.

PPUPS.CH17_1pp.indd 430PPUPS.CH17_1pp.indd 430 5/13/2023 5:53:00 PM5/13/2023 5:53:00 PM

NumPy–II • 431

Solution:

Note that this will result in an error as, the given array cannot be split into
three parts horizontally. The code follows.

Code:

arr1=np.random.randint(5,75,(4,8))

#print(arr1)

sub1, sub2, sub3=np.hsplit(arr1,3)

print('First subarray:\n',sub1)

print('Second subarray:\n',sub2)

print('Third subarray:\n',sub3)

Output:

ValueError: array split does not result in an equal division

Illustration 17.10:

Generate an array of random integers between 5 and 75 having shape (4, 8).
Generate arrays by splitting the given array horizontally into subarrays using
[2, 5] as the second argument in the hsplit function.

Solution:

The process has already been explained. The code follows.

Code:

arr1=np.random.randint(5,75,(4,8))

print(arr1)

sub1, sub2, sub3=np.hsplit(arr1,[2,5])

print('First subarray:\n',sub1)

print('Second subarray:\n',sub2)

print('Third subarray:\n',sub3)

Output:

[[6 35 24 43 14 68 62 59]

 [23 50 58 11 12 24 69 19]

 [53 25 10 10 41 19 23 60]

 [14 7 74 36 74 39 54 34]]

PPUPS.CH17_1pp.indd 431PPUPS.CH17_1pp.indd 431 5/13/2023 5:53:00 PM5/13/2023 5:53:00 PM

432 • Python Programming Using Problem Solving

First subarray:

[[6 35]

 [23 50]

 [53 25]

 [14 7]]

Second sub-array:

[[24 43 14]

 [58 11 12]

 [10 10 41]

 [74 36 74]]

Third subarray:

[[68 62 59]

 [24 69 19]

 [19 23 60]

 [39 54 34]]

Illustration 17.11:

Generate an array of random integers between 5 and 75 having shape (4, 8).
Generate two arrays by splitting the given array vertically into two parts.

Solution:

The process has already been explaine(d) The code follows.

arr1=np.random.randint(5,75,(4,8))

print(arr1)

sub1, sub2=np.vsplit(arr1,2)

print('First subarray:\n',sub1)

print('Second subarray:\n',sub2)

Output:

[[10 40 18 64 66 11 52 53]

 [71 55 40 10 44 40 14 49]

 [24 53 57 68 57 13 5 22]

 [38 9 61 17 34 62 61 38]]

First subarray:

[[10 40 18 64 66 11 52 53]

 [71 55 40 10 44 40 14 49]]

PPUPS.CH17_1pp.indd 432PPUPS.CH17_1pp.indd 432 5/13/2023 5:53:00 PM5/13/2023 5:53:00 PM

NumPy–II • 433

Second subarray:

[[24 53 57 68 57 13 5 22]

 [38 9 61 17 34 62 61 38]]

Illustration 17.12:

Generate an array of random integers between 5 and 75 having shape (4, 8).
Generate two arrays by splitting the given array vertically into four parts.

Solution:

The process has already been explained. The code follows.

arr1=np.random.randint(5,75,(4,8))

print(arr1)

sub1, sub2, sub3, sub4=np.vsplit(arr1,4)

print('First subarray:\n',sub1)

print('Second subarray:\n',sub2)

print('Third subarray:\n',sub3)

print('Fourth subarray:\n',sub4)

Output:

[[42 16 61 58 40 71 35 8]

 [13 7 73 32 38 52 43 6]

 [73 72 16 68 7 21 26 16]

 [43 32 8 69 23 15 71 55]]

First subarray:

[[42 16 61 58 40 71 35 8]]

Second subarray:

[[13 7 73 32 38 52 43 6]]

Third subarray:

[[73 72 16 68 7 21 26 16]]

Fourth subarray:

[[43 32 8 69 23 15 71 55]]

Illustration 17.13:

Generate an array of random integers between 5 and 75 having shape (4, 8).
Report what happens when we try to generate arrays by splitting the given
array vertically into three parts.

PPUPS.CH17_1pp.indd 433PPUPS.CH17_1pp.indd 433 5/13/2023 5:53:00 PM5/13/2023 5:53:00 PM

434 • Python Programming Using Problem Solving

Solution:

Note that this will result in an error as, the given array cannot be split into
three parts horizontally. The code follows.

Code:

arr1=np.random.randint(5,75,(4,8))

#print(arr1)

sub1, sub2, sub3=np.vsplit(arr1,3)

print('First subarray:\n',sub1)

print('Second subarray:\n',sub2)

print('Third subarray:\n',sub3)

Output:

valueError: array split does not result in an equal division

Illustration 17.14:

Generate an array of random integers between 5 and 75 having shape (4, 8).
Generate arrays by splitting the given array horizontally into subarrays using
[2, 5] as the second argument in the vsplit function.

Solution:

The process has already been explained. The code follows.

Code:

arr1=np.random.randint(5,75,(4,8))

print(arr1)

sub1, sub2, sub3=np.vsplit(arr1,[2,3])

print('First subarray:\n',sub1)

print('Second subarray:\n',sub2)

print('Third subarray:\n',sub3)

Output:

[[34 12 8 55 55 12 69 44]

 [8 21 9 30 70 9 37 25]

 [8 60 63 72 66 36 59 54]

 [30 45 20 13 22 36 21 45]]

PPUPS.CH17_1pp.indd 434PPUPS.CH17_1pp.indd 434 5/13/2023 5:53:00 PM5/13/2023 5:53:00 PM

NumPy–II • 435

First subarray:

[[34 12 8 55 55 12 69 44]

 [8 21 9 30 70 9 37 25]]

Second subarray:

[[8 60 63 72 66 36 59 54]]

Third subarray: [[30 45 20 13 22 36 21 45]]

17.3.3  Split

The above tasks can also be accomplished using the split function. This func-
tion takes the array, the number of divisions (or the array indicating divisions),
and the axis as the arguments. The function works in almost the same manner
as the above two functions. The following illustrations demonstrate the use of
this function.

Illustration 17.15:

Refer to Illustration 17.7 Accomplish the task using the split function.

Solution:

arr1=np.random.randint(5,75,(4,8))

print(arr1)

sub1, sub2=np.split(arr1,2, axis=1)

print('First subarray:\n',sub1)

print('Second subarray:\n',sub2)

Illustration 17.16:

Refer to Illustration 17.8 Accomplish the task using the split function.

Solution:

arr1=np.random.randint(5,75,(4,8))

print(arr1)

sub1, sub2, sub3, sub4=np.split(arr1,4, axis=1)

print('First subarray:\n',sub1)

print('Second subarray:\n',sub2)

print('Third subarray:\n',sub3)

print('Fourth subarray:\n',sub4)

PPUPS.CH17_1pp.indd 435PPUPS.CH17_1pp.indd 435 5/13/2023 5:53:01 PM5/13/2023 5:53:01 PM

436 • Python Programming Using Problem Solving

Illustration 17.17:

Refer to Illustration 17.10. Accomplish the task using the split function.

Solution:

arr1=np.random.randint(5,75,(4,8))

print(arr1)

sub1, sub2, sub3=np.split(arr1,[2,5], axis=1)

print('First subarray:\n',sub1)

print('Second subarray:\n',sub2)

print('Third subarray:\n',sub3)

Illustration 17.18:

Refer to Illustration 17.11 Accomplish the task using the split function.

Solution:

arr1=np.random.randint(5,75,(4,8))

print(arr1)

sub1, sub2=np.split(arr1,2, axis=0)

print('First subarray:\n',sub1)

print('Second subarray:\n',sub2)

Illustration 17.19:

Refer to Illustration 17.12 Accomplish the task using the split function.

Solution:

arr1=np.random.randint(5,75,(4,8))

print(arr1)

sub1, sub2, sub3, sub4=np.split(arr1,4, axis=0)

print('First subarray:\n',sub1)

print('Second subarray:\n',sub2)

print('Third subarray:\n',sub3)

print('Fourth subarray:\n',sub4)

Illustration 17.20:

Refer to Illustration 17.14. Accomplish the task using the split function.

PPUPS.CH17_1pp.indd 436PPUPS.CH17_1pp.indd 436 5/13/2023 5:53:01 PM5/13/2023 5:53:01 PM

NumPy–II • 437

Solution:

arr1=np.random.randint(5,75,(4,8))

print(arr1)

sub1, sub2, sub3=np.split(arr1,[2,3], axis=0)

print('First subarray:\n',sub1)

print('Second subarray:\n',sub2)

print('Third subarray:\n',sub3)

17.3.4  Extract

This function extracts the elements of the given array based on some condi-
tion. It takes two arguments:

�� the condition and
�� the array.

The signature of the function is as follows:

numpy.extract(condition, arr)

The condition can be a Boolean array. In this case, the locations at which
True exist in this array (condition) would be used to extract elements from the
array passed as the second argument. In the other case, the nonzero elements
from this array are used for extracting elements from the second array. The
following illustrations give an insight into the working of this function.

Illustration 17.21:

Generate a 2-D array of random integers having 7 rows and 9 columns. The
integers in the array should be in the range of 0 to 255.

Solution:

Code:

import numpy as np

arr1=np.random.randint(0,255,(7,9))

print(arr1)

PPUPS.CH17_1pp.indd 437PPUPS.CH17_1pp.indd 437 5/13/2023 5:53:01 PM5/13/2023 5:53:01 PM

438 • Python Programming Using Problem Solving

Output:

[[116 218 124 57 202 210 138 102 5]

 [21 102 18 29 241 81 10 190 177]

 [114 205 215 124 141 163 19 141 3]

 [38 205 22 234 194 91 238 101 127]

 [75 41 108 7 211 4 203 251 231]

 [28 50 55 253 122 84 97 5 46]

 [157 171 221 184 227 241 167 167 154]]

Illustration 17.22:

Now extract the elements which are divisible by 7, from the array generated
in the above illustration.

Solution:

Code:

condition1=np.mod(arr1,7)==0

arr2=np.extract(condition1, arr1)

print(arr2)

Output:

[210 21 91 238  7 203 231 28 84 154]

Note that condition1 is nothing more than an array containing True (at
the locations where elements are divisible by 7) and False (at the locations
where elements are not divisible by 7).

print(condition1)

[[False False False False False True False False False]

 [True False False False False False False False False]

 [False False False False False False False False False]

 [False False False False False True True False False]

 [False False False True False False True False True]

 [True False False False False True False False False]

 [False False False False False False False False True]]

Execute arr1[arr2] and report the resultTRY:

PPUPS.CH17_1pp.indd 438PPUPS.CH17_1pp.indd 438 5/13/2023 5:53:01 PM5/13/2023 5:53:01 PM

NumPy–II • 439

The compress function can be used along with the extract function for
applying a condition to the rows or columns of a 2-D array. The following illus-
tration gives an overview of the mechanism to extract relevant subset from a
given array. The illustration aims to select every third row and every third
column from a given 2-D array. To accomplish the task, an array containing
numbers from 0 to the number of rows is generated. This array is subjected to
condition <array> mod 3 ==0 (r_c). Likewise, an array containing numbers
from 0 to the number of columns are generated. This array is subjected to
condition <array> mod 3 ==0 (c_c). The compress function is then used
to select the required rows, followed by the required columns.

Illustration 17.23:

Select every third row and every third column from a given 2-D array.

Solution:

The process has already been explained, the code is as follows.

r=np.arange(arr1.shape[0])

c=np.arange(arr1.shape[1])

r_c=np.mod(r,3)==0

c_c=np.mod(c,3)==0

print(r_c)

print(c_c)

arr3=np.compress(r_c,arr1, axis=0)

print(arr3)

arr4=np.compress(c_c, arr1, axis=1)

print(arr4)

Output:

[True False False True False False True]

[True False False True False False True False False]

[[116 218 124 57 202 210 138 102 5]

 [38 205 22 234 194 91 238 101 127]

 [157 171 221 184 227 241 167 167 154]]

[[116 57 138]

 [21 29 10]

 [114 124 19]

PPUPS.CH17_1pp.indd 439PPUPS.CH17_1pp.indd 439 5/13/2023 5:53:01 PM5/13/2023 5:53:01 PM

440 • Python Programming Using Problem Solving

 [38 234 238]

 [75 7 203]

 [28 253 97]

 [157 184 167]]

Illustration 17.24:

Accomplish the task of Illustration 17.23 without using the compress function.

Solution:

r=np.arange(arr1.shape[0])

c=np.arange(arr1.shape[1])

r_cond=np.mod(r,3)==0

c_cond=np.mod(c,3)==0

r_c1=np.arange(arr1.shape[0])

r_c=r_c1[r_cond]

arr3=arr1[r_c, :]

c_c1=np.arange(arr1.shape[1])

c_c=c_c1[c_cond]

arr3=arr3[:, c_c]

print(arr3)

Output:

[[116 57 138]

 [38 234 238]

 [157 184 167]]

17.4  VARIANCE

The meaning of the word “variance,” as per Oxford Dictionary, is “The fact or
quality of being different, divergent, or inconsistent.” In statistics, variance is
a method to calculate the spread of a set of numbers. So, if a set has low vari-
ance, it is concentrated. If the given set of numbers has a large variance, it is
scattered to a larger extend.

Mathematically, variance denotes the difference of a random variable
from its expected value. It can be found by taking the average of the squares
of the differences between the elements of a set and the mean value. The
standard deviation is the square root of the variance.

PPUPS.CH17_1pp.indd 440PPUPS.CH17_1pp.indd 440 5/13/2023 5:53:01 PM5/13/2023 5:53:01 PM

NumPy–II • 441

For a set X = {xi, x2,…, xn}

	 Standard Deviation =
2

1(–)n
i ix x

Variance
n

=Σ
=

Where,

	 2 ...,i nx
x

x x
n
+

=
+ +

The variance can be calculated as follows. First of all, the mean of the
given set of numbers is found using numpy.mean. This is followed by find-
ing the square of deviations of the elements from the mean and then dividing
the result by the number of elements. Finally, the square root of the result so
obtained is taken. The code follows.

x_mean=np.mean(X)

sq_deviations=(X-x_mean)**2

print(sq_deviations)

sum_sq_dev=np.sum(sq_deviations)

print(sum_sq_dev)

av1=sum_sq_dev/len(X)

var=np.sqrt(av1)

print(av1)

The variance of a given set can also be found using the numpy.var func-
tion. The following code finds the variance of X using this function.

Code:

var1=np.var(X)

print(var1)

17.5  COVARIANCE

The covariance of two sets is a tool that helps us to compare two arrays. The
covariance gives an idea about how close the datasets are. If the value of
covariance is a large positive number, it indicates that the two variables are
highly correlated and the increase in one results in an increase in others. In
case of a high negative correlation, the two variables are highly correlated
and the increase in one results in a decrease in others. Zero correlation indi-
cates the variables are not related. It can be calculated as follows.

PPUPS.CH17_1pp.indd 441PPUPS.CH17_1pp.indd 441 5/13/2023 5:53:01 PM5/13/2023 5:53:01 PM

442 • Python Programming Using Problem Solving

For a set X = {xi, x2,…,xn} and Y = {yi, y2,…,yn}

	 Cov(X,Y) = 1(–)(–)

– 1

n
i i ix x y y

n
=Σ

Where,

	 2 ...,i nx x x
x

n
+ + +

= and 2 ...,i ny y y
y

n
+ + +

=

Covariance can be found by using the following code.

Code:

X=np.random.randint(5,90,20)

Y=np.random.randint(5,100,20)

dev_x=X-np.mean(X)

dev_y=Y-np.mean(Y)

cov1=(np.dot(dev_x, dev_y))/20

print(cov1)

The cov function of the numpy package takes arguments and generates an
array of covariance. That is,

Cov X X
X X X X

X X X X
(,)

(,) (,)
(,) (,)1 2

1 1 1 2

2 1 1 2

=
cov cov

cov cov

Where, cov(X1, X1) is the covariance between X1 and X1 and cov(X1, X2) is the
covariance between X1 and X1. For example, for the following code

Code:

X=np.random.randint(5,90,20)

Y=np.random.randint(5,100,20)

print(X)

print(Y)

cov2=np.cov(X,Y)

print(cov2)

Output:

[[562.40789474 -66.98684211]

 [-66.98684211 628.02894737]]

PPUPS.CH17_1pp.indd 442PPUPS.CH17_1pp.indd 442 5/13/2023 5:53:08 PM5/13/2023 5:53:08 PM

NumPy–II • 443

17.6  CORRELATION

Correlation is another measure of dependency on two variables. This meas-
ure gives the direction of the relationship between the variables. As per the
Oxford dictionary, it is “a mutual relationship or connection between two or
more things.” The covariance between two sets X and Y is given by,

Correlation (X,Y) =
(,)

() ()
X Y

X Xσ ×σ
Covariance

where Ps(X) is the standard deviation of X and s(Y) is the standard deviation
of Y.

The following code calculates the correlation between X and Y.

Code:

X=np.random.randint(5,90,20)

Y=np.random.randint(5,100,20)

dev_x=X-np.mean(X)

dev_y=Y-np.mean(Y)

corr=(np.dot(dev_x, dev_y))/(20*np.std(X)*np.std(Y))

print(corr)

The correlation coefficient can also be calculated using the numpy.
corrcoef(X, Y). This function calculates the coefficient of correlation between
X and Y. The following code demonstrates the use of numpy.corrcoef(X, Y).

Code:

corr2=np.corrcoef(X,Y)

print(corr2)

Output:

[[1. 0.03415175]

 [0.03415175 1.]]

17.7  CONCLUSION

This chapter discussed some of the most important topics in NumPy. The
joining and splitting of arrays would be used if you are using Python in any
domain. Moreover, the concepts of variance, covariance, correlation, and

PPUPS.CH17_1pp.indd 443PPUPS.CH17_1pp.indd 443 5/13/2023 5:53:09 PM5/13/2023 5:53:09 PM

444 • Python Programming Using Problem Solving

regression would greatly help you in analyzing data and even in Data Science.
You are advised to attempt the exercises given at the end of this chapter to get
a better hold of the numpy package.

EXERCISES

Multiple Choice Questions

1.	 Which of the following is used for splitting the array horizontally?

	 (a)  hsplit		 	 (b)  horzsplit

	 (c)  vsplit		 	 (d)  None of the above

2.	 Which of the following are valid arguments in the hsplit function?

	 (a)  The array

	 (b)  The number of splits or the array containing the position of the splits

	 (c)  Both of the above

	 (d)  None of the above

3.	 What happens if the number of columns is not divisible by the second
argument in the hsplit function

	 (a)  Rounding 		 (b)  Ceiling

	 (c)  Error is generated 	 (d)  None of the above

4.	 Which of the following is used for splitting the array vertically?

	 (a)  vsplit		 	 (b)  vertsplit

	 (c)  vsplit		 	 (d)  None of the above

5.	 Which of the following are valid arguments in the vsplit function?

	 (a)  The array

	 (b)  The number of splits or the array containing the position of the splits

	 (c)  Both of the above

	 (d)  None of the above

PPUPS.CH17_1pp.indd 444PPUPS.CH17_1pp.indd 444 5/13/2023 5:53:09 PM5/13/2023 5:53:09 PM

NumPy–II • 445

6.	 What happens if the number of columns is not divisible by the second
argument in the vsplit function

	 (a)  Rounding 		 (b)  Ceiling

	 (c)  Error is generated 	 (d)  None of the above

7.	 Which function can do both vertical and horizontal splitting?

	 (a)  split 		 	 (b)  join

	 (c)  Both 		 	 (d)  None of the above

8.	 Which of the function stacks two arrays horizontally?

	 (a)  hstack		 	 (b)  vstack

	 (c)  Both		 	 (d)  None of the above

9.	 Which of the function stacks two arrays vertically?

	 (a)  hstack		 	 (b)  vstack

	 (c)  Both		 	 (d)  None of the above

10.	 Which of the following functions can perform both horizontal and vertical
stacking?

	 (a)  concatenate		 (b)  stack

	 (c)  Both		 	 (d)  None of the above

11.	 Which of the following is represented by variance?

	 (a)  spread		 	 (b)  central tendency

	 (c)  Both		 	 (d)  None of the above

12.	 Which of the following functions are used for finding the variance of a
given array?

	 (a)  var		 	 (b)  variance

	 (c)  Both		 	 (d)  None of the above

13.	 Which of the following is a measure of the relation between two variables?

	 (a)  Correlation		 (b)  Covariance

	 (c)  Both		 	 (d)  None of the above

PPUPS.CH17_1pp.indd 445PPUPS.CH17_1pp.indd 445 5/13/2023 5:53:09 PM5/13/2023 5:53:09 PM

446 • Python Programming Using Problem Solving

14.	 Which of the following functions finds the coefficient of correlation
between two variables?

	 (a)  corrcoeff		 (b)  corrcoef

	 (c)  Both			 (d)  None of the above

15.	 What should be the value of covariance if there is no relation between two
variables?

	 (a)  0			 (b)  Positive

	 (c)  Negative		 	 (d)  None of the above

Theory

1.	 Explain the purpose of following methods and discuss their main arguments

	 (a)  split			 (b)  vsplit

	 (c)  hsplit			 (d)  concatenate

	 (e)  hstack			 (f)  vstack

	 (g)  var			 (h)  covar

	 (i)  corrcoef

2.	 Explain various methods to join arrays?

3.	 Explain various methods to split arrays?

4.	 What is meant by variance? Explain the formula for finding variance.

5.	 What is covariance? Explain the formula for finding covariance.

6.	 What is the importance of correlation? Explain the formula for finding
correlation.

PPUPS.CH17_1pp.indd 446PPUPS.CH17_1pp.indd 446 5/13/2023 5:53:09 PM5/13/2023 5:53:09 PM

Objectives

After reading this chapter, the reader should be able to

�� Understand the importance of Visualization
�� Appreciate the features of Matplotlib
�� Understand the parameters of the plot function
�� Plot lines and scatter diagrams
�� Plot bar charts

18.1  INTRODUCTION

The advent of IoT (Internet of Things) and related technologies have facili-
tated the collection of huge amounts of data. However, this data can help
us to make informed decisions only if we can analyze it and extract infor-
mation from it. This analysis can be based on the statistics and trends that
originate from this data. Another way of analyzing the given data is by using
Visualization that is by drawing plots, pi-charts, histograms, etc.

Visualization

It refers to a way of conveying intangible and tangible ideas using visual
imagery. It may refer to the graphical representation of information using
tools like scatter plots, line plots, bars, histograms, frequency graphs, etc.

Visualization helps us to understand the given data. It is important as
it provides an insight into the results and may help uncover the underlying
patterns. Moreover, the growing importance of data analytics and Machine

C H A P T E R18
Data Visualization-I

PPUPS.CH18_2pp.indd 447PPUPS.CH18_2pp.indd 447 5/18/2023 11:42:37 AM5/18/2023 11:42:37 AM

448 • Python Programming Using Problem Solving

Learning has exponentially enhanced the value of Visualization. Figure 18.1
shows the advantages of Visualization.

FIGURE 18.1  Visualization.

This chapter discusses the pyplot module of the matplotlib package for
plotting lines, scatter diagrams, and bar charts.

Matplotlib is a package that helps us to plot various types of graphs and
visualize the data. It is a plotting library. Though, initially, it was meant for 2D
plotting; now, it also provides support for 3D plotting. Using Matplotlib one
can primarily generate:

�� Plots
�� Histograms
�� Bar graphs
�� Scatter Plots
�� Frequency Plots etc.

The Seaborn package was built on the top of Matplotlib and is used to
create more attractive and informative statistical graphics to visualize uni-
variate and bivariate data. It uses beautiful themes for decorating Matplotlib
graphics as well as it is more comfortable in handling the Pandas data frames.

Though it is also used for many other kinds of plots we will focus on the
stated types, in this chapter and the next one. The reader is required to take

PPUPS.CH18_2pp.indd 448PPUPS.CH18_2pp.indd 448 5/18/2023 11:42:42 AM5/18/2023 11:42:42 AM

Data Visualization-I • 449

note of the methods and procedures to deal with the data discussed in the
NumPy module.

The pyplot module of matplotlib helps one to create graphs with various
fonts, axes properties, etc. It provides us with a set of functions that help
programmers to perform various tasks associated with plotting.

Here, it may be stated that when you install the Anaconda Navigator,
matplotlib is shipped with it. To check if it has been installed, you can go
to the Environment and check the installed packages. In case you have not
installed Anaconda, refer to https://matplotlib.org/3.1.1/users/installing.html

As per the official site: “Matplotlib and its dependencies are available as
wheel packages for macOS, Windows and Linux distributions:”

Run the following commands in the command shell to complete the
installation:

�� python –m pip installs –U pip
�� python –m pip install –U matplotlib.

This chapter presents some interesting illustrations. The chapter has been
organized as follows. Section 18.2 introduces the plot function, Section 18.3
discusses the plotting of lines and curves, and Section 18.4 presents a brief
discussion on some additional arguments of the plot function. Section 18.5
presents an overview of the bar charts, and the last section concludes.

18.2  THE PLOT FUNCTION

We start our discussion by plotting the values of a list. A plot can be instanti-
ated using the plot function of the pyplot package. To generate a basic plot,
a list L, having n values (index: 0 to (n-1)), can be passed as an argument
to the plot function. In the plot so generated, the X-axis would have values
from 0 to (n-1) and Y-axis would have the values from the given list. For
example, if

L = [3, 5, 9, 6, 8]

is passed to the plot function. Then, X-axis will have values from 0 to 4 (note
that there are five elements in the list, having indices from 0 to 4). The cor-
responding values in the Y-axis will be 3, 5, 9, 6, and 8. That is, (0, 3), (1, 5),
(2, 9), (3, 6), and (4,8) are shown in the graph (Figure 18.2).

TIP!

PPUPS.CH18_2pp.indd 449PPUPS.CH18_2pp.indd 449 5/18/2023 11:42:42 AM5/18/2023 11:42:42 AM

450 • Python Programming Using Problem Solving

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

3

4

5

6

7

8

9

FIGURE 18.2  Plotting a list.

Now, let us move to the parameters of the plot function. The discussion
that follows introduces parameters namely xlabel, ylabel, axis, xlim, ylim,
xticks, and yticks.

18.2.1  xlabel

The xlabel attribute associates a label with the X-axis. The value of xlabel is
a string.

18.2.2  ylabel

The ylable attribute associates a label with the Y-axis. The value of ylabel is
a string.

18.2.3  axis

The limits of the X and Y axis can be changed using the axis function, which
takes a list as an argument. The list passed as an argument has the following
arguments

�� xmin
�� ymin
�� xmax
�� ymax

indicating the minimum value of the X-axis, that of the Y-axis, the maximum
value of the X-axis, and the maximum value of the Y-axis.

PPUPS.CH18_2pp.indd 450PPUPS.CH18_2pp.indd 450 5/18/2023 11:42:43 AM5/18/2023 11:42:43 AM

Data Visualization-I • 451

18.2.4  xlim, ylim

The pyplot also provides the xlim and ylim arguments for setting the limits
of the X and the Y-axis respectively.

18.2.5  xticks, yticks

The ticks on the X and the Y-axis can be set by using the xticks and yticks
functions. These functions take a list containing the values to be displayed on
the axes.

Having seen the parameters of the plot function, let us now move to some
of the useful methods associated with the plot function. The following discus-
sion introduces the show and the savefig methods associated with the plot
module.

18.2.6  show

The show method displays the figure.

18.2.7  savefig

One can save the figure formed by the plot function using the savefig func-
tion. The savefig function takes two arguments: the path to the figure which
is being saved and the optional dpi.

The next section uses these objects to plot various types of lines and
curves.

18.3  PLOTTING LINES AND CURVES

This section presents some of the ways to plot lines, curves, and scatter dia-
grams. Note that, in a line plot, the points, passed as an argument to the plot
functions, are joined by straight lines. In the case of a scatter diagram, these
points are plotted but are not joined by lines. The plot function can be used
to plot both line plots and scatter plots. By default, the function displays a line
plot. This section discusses the plot(X), plot(X, Y), plot(<2D array>) and
scatter diagrams.

18.3.1  Plot(X)

The plot function may take a list (or an array) as its argument and plot the
values in the list. To understand this, consider the following example, in which

PPUPS.CH18_2pp.indd 451PPUPS.CH18_2pp.indd 451 5/18/2023 11:42:43 AM5/18/2023 11:42:43 AM

452 • Python Programming Using Problem Solving

a list L=[1, 4, 8, 10] is passed to the plot function. The xlabel is set to the
string X-Axis and the ylabel is set to Y-Axis. The plotted figure would be
saved as line.png. Figure 18.3 shows the output of the program.

Code:

import matplotlib.pyplot as plt

plt.plot([1,4,8,10])

plt.xlabel("X Axis")

plt.ylabel("Y Axis")

plt.show()

plt.savefig("line.png",dpi=80)

Output:

Y
A

x
is

X Axis
0.0 0.5 1.0 1.5 2.0 2.5 3.0

2

4

6

8

10

FIGURE 18.3  If a list is passed to the plot function, the values are plotted
against the indices of the list. Note that the values of xlabel and ylabel

are set to X-Axis and Y-Axis, respectively.

18.3.2  Plot(X, Y)

In the above example, the plot function takes one argument. However, it can
also take two arguments indicating the values of both X and Y coordinates.
In such cases, the tuple formed by taking an element from X, and the corre-
sponding element from Y is plotted. The following example plots y = 2x2 – 3
(Figure 18.4) by taking two input arguments. Note that X has integers from
−5 to 5 and for each value of x in X, an element of Y is calculated as per the
given formula.

PPUPS.CH18_2pp.indd 452PPUPS.CH18_2pp.indd 452 5/18/2023 11:42:43 AM5/18/2023 11:42:43 AM

Data Visualization-I • 453

Code:

X=[-5,-4,-3,-2,-1,0,1,2,3,4,5]

Y= [2*x*x-3 for x in X]

plt.plot(X,Y)

plt.xlabel("X Axis")

plt.ylabel("Y Axis")

plt.show()

plt.savefig("line.png",dpi=80)

Output:

– 4 – 2 0 2 4

X Axis

0

10

20

30

40

Y
A

x
is

FIGURE 18.4  The plot function can also take two arguments; the second
argument’s values can be generated using generators or

comprehensions.

18.3.3  Plot(<2D Array>)

One can even pass a two-dimensional array (or list of lists) in the plot, in which
case the first element of each row (or list) would be plotted as a separate plot,
the second element as a separate plot, and so on.

In the following program, the Y coordinates of the first line are [2, 4, 6, 8,
9, 10, 11]; the Y coordinates of the second line are [3, 6, 9, 10, 11, 18, 23] and
that of the third line is [1, 3, 7, 5, 7, 12, 14]. Figure 18.5 shows the output of
the program that follows.

PPUPS.CH18_2pp.indd 453PPUPS.CH18_2pp.indd 453 5/18/2023 11:42:43 AM5/18/2023 11:42:43 AM

454 • Python Programming Using Problem Solving

Code:

X=[[2,3,1],[4,6,3],[6,9,7],[8,10,5],[9,11,7],[10,18,12],[11,23,14]]

plt.plot(X)

plt.show()

Output:

0 1 2 3 4 5 6

0

5

10

15

20

FIGURE 18.5  The plot function can take a two-dimensional array as its argument
for plotting multiple lines.

18.3.4  Axis Function

The axis function has already been discussed in Section 18.2. As stated earlier,
it takes four arguments: xmin, xmax, ymin, and ymax. Let us try to understand the
function using an example. In the following example, the X-axis would span
from 0 to 6 and Y-axis would span from 0 to 15, owing to the arguments of the
axis function. The output of the following code would be the same as that of
the first one except for the color of the plot and the axis (Figure 18.6).

Code:

plt.plot([1,4,8,10], color='red')

plt.xlabel("X Axis")

plt.ylabel("Y Axis")

plt.axis([0,6,0,15])

plt.show()

plt.savefig("line.png",dpi=80)

PPUPS.CH18_2pp.indd 454PPUPS.CH18_2pp.indd 454 5/18/2023 11:42:44 AM5/18/2023 11:42:44 AM

Data Visualization-I • 455

Output:

0 1 2 3 4 5 6
0

2

4

6

10

12

14

Y
A

x
is

X Axis

8

FIGURE 18.6  The plot function can also have an argument to set the color of the plot.
The X-axis spans from 0 to 6 and the Y-axis spans from 0 to 15.

18.3.5  Plotting Points: Scatter Diagram

If one wants to plot only the points (shown by markers in the shape of circles) and
not the lines, then an additional argument o can be passed to the plot function.
Likewise, the plots indicated by a square and a triangle can be plotted by giving
s and “^.” The following codes and the respective output have been shown in
Figures 18.7 and 18.8. The next subsection discusses various markers in detail.

Code:

Plot circles

plt.plot([1,3,4],[7,8,3],'o')

plt.show()

Output:

1.0 1.5 2.0 2.5 3.0 3.5 4.0

3

4

5

6

7

8

FIGURE 18.7  The plot function can also plot circles using an additional “o” argument.

PPUPS.CH18_2pp.indd 455PPUPS.CH18_2pp.indd 455 5/18/2023 11:42:45 AM5/18/2023 11:42:45 AM

456 • Python Programming Using Problem Solving

The following code plots three pairs of lists using three distinct markers.
The first pair would be shown by a circle, the second by a square, and the
third by a triangle.

Code:

plt.plot([1,3,4],[7,8,3],'o')

plt.plot([1,2,3,4],[2,1,3,5],'s')

plt.plot([1,5,6],[9,10,11],'^')

plt.show()

Output:

1 2 3 4 5 6

2

4

6

8

10

FIGURE 18.8  The plot function can also plot squares and triangles using
additional “^” or “s” as an argument.

18.3.6  Sine and Cosine Curves

The following example shows the procedure for plotting the Sine and the
Cosine function using Matplotlib. The plot, show, and savefig functions
have already been explained, in the above discussion. In the following code,
the X-axis is divided into 256 parts (from −22/7 to 22/7). The linspace function
helps accomplish this task (refer to the chapter on Numpy for details regard-
ing the linspace function). The sine of the X values can be calculated using
the sin function of NumPy. Likewise, the cosine can be calculated using the
cos function of NumPy. Both plots are plotted in the same area. The output
is shown in Figure 18.9.

Code:

from matplotlib import pyplot as plt

import numpy as np

PPUPS.CH18_2pp.indd 456PPUPS.CH18_2pp.indd 456 5/18/2023 11:42:45 AM5/18/2023 11:42:45 AM

Data Visualization-I • 457

Plotting sin and cos on the same graph

plt.figure(figsize=(8, 6), dpi=80)

plt.subplot(1, 1, 1)

X = np.linspace(-np.pi, np.pi, 256, endpoint=True)

S, C = np.cos(X), np.sin(X)

plt.plot(X, C, color="blue", linestyle="-")

plt.plot(X, S, color="red", linestyle="-")

plt.xlim(-4.0, 4.0)

plt.xticks(np.linspace(-4, 4, 9, endpoint=True))

plt.ylim(-1.0, 1.0)

plt.yticks(np.linspace(-1, 1, 5, endpoint=True))

plt.savefig("SinCos.png", dpi=180)

plt.show()

Output:

– 4 – 3 – 2 – 1 0 1 2 3 4
–1.0

–0.5

0.0

0.5

1.0

FIGURE 18.9  The sine and cosine function in the same plot.

18.3.7  Comparing Functions

The plots as described above are an excellent way of comparing the func-
tions (say x2, x3, and x4) using the power function of numpy. The plot
function has a label argument which can be set to the type of curve. The
following code illustrates plotting. The limits of the X-axis are set to from
1 to 20 and that of the Y-axis is from 0 to 800. The output of the code is
shown in Figure 18.10.

PPUPS.CH18_2pp.indd 457PPUPS.CH18_2pp.indd 457 5/18/2023 11:42:46 AM5/18/2023 11:42:46 AM

458 • Python Programming Using Problem Solving

Code:

x = np.linspace (0, 10, 50)

y1 = np.power(x, 2)

y2=np.power(x,3)

y3 = np.power(x, 4)

plt.plot(x, y1, label='x^2')

plt.plot(x, y2, label='x^3')

plt.plot(x, y3, label='x^4')

plt.xlim((0 , 20))

plt.ylim((0 , 800))

plt.xlabel('X Axis')

plt.ylabel('Y : Powers')

plt.title('First :x^2 Second:x^3 Third:x^4')

#plt.legend()

plt.savefig("powers.png",dpi=80)

plt.show()

Output:

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
x Axis

0

100

200

300

400

500

600

700

800

Y
:

P
o

w
e

rs

First :x Second :x Third:x
2 3 4

FIGURE 18.10  The plots of x2, x3, and x4.

18.3.8  Plotting Multiple Lines

In case two lists are passed as arguments in the plot function, the second list’s
values are plotted considering the firsts as the indices. You can also give the

PPUPS.CH18_2pp.indd 458PPUPS.CH18_2pp.indd 458 5/18/2023 11:42:47 AM5/18/2023 11:42:47 AM

Data Visualization-I • 459

color, linestyle, width, etc. of the line as in the case of a single list containing
the values.

18.4  ADDITIONAL ARGUMENTS

At times, we need to see the points on the graphs and not the complete lines.
In such cases, markers come to our rescue. This section discusses the mark-
ers and explains their importance.

18.4.1  Markers

The plot method can have an additional argument called marker. For exam-
ple, to print a circle or a triangle, markers “o,” “^,” etc., can be used as the
second argument. The following table (Table 18.1) shows the various markers.

TABLE 18.1  Markers.

Symbol Description

"." point

"," pixel

"o" circle

"v" triangle_down

"^" triangle_up

"<" triangle_left

">" triangle_right

"1" tri_down

"2" tri_up

"3" tri_left

"4" tri_right

"8" octagon

"s" square

"p" pentagon

"P" plus (filled)

"*" star

"h" hexagon1

"H" hexagon2

"+" plus

"x" x

"X" x (filled)

"D" diamond

PPUPS.CH18_2pp.indd 459PPUPS.CH18_2pp.indd 459 5/18/2023 11:42:47 AM5/18/2023 11:42:47 AM

460 • Python Programming Using Problem Solving

Symbol Description

"d" thin_diamond

"|" vline

"_" hline

Source: https://matplotlib.org/api/markers_api.html#module-matplotlib.markers

18.4.2  Color

The plot method can have an additional argument called color which helps
in setting the color of the plot to the requisite value. The default color is blue
and it can be changed easily. The color argument of the plot function can be
set to a particular value, say red (color = r) to generate a plot of red color.
If you want to show a specific color the alphabet indicating the color can
be written as one of the arguments of the plot method. The following table
(Table 18.2) shows the various colors supported.

TABLE 18.2  Color.

Symbol Description

'b' blue

'g' green

'r' red

'c' cyan

'm' magenta

'y' yellow

'k' black

'w' white

18.4.3  Linestyle

The style of a line can be set using the linestyle argument. One can also
mention the value of the optional linestyle argument. The following table
(Table 18.3) shows the various values of the linestyle argument.

TABLE 18.3  Linestyle.

Line style Description

'-' or 'solid' solid line

'--' or 'dashed' dashed line

'-.' or 'dashdot' dash-dotted line

':' or 'dotted' dotted line

PPUPS.CH18_2pp.indd 460PPUPS.CH18_2pp.indd 460 5/18/2023 11:42:48 AM5/18/2023 11:42:48 AM

Data Visualization-I • 461

18.4.4  Linewidth

The linewidth argument takes a float as an argument. It sets the width of
the line.

Having studied these arguments, let us now move to some illustrations, to
understand the usage of the above arguments.

Illustration 18.1:

Ask the user to enter a list and plot it using the plot function.

Solution:

The procedure to accomplish the task has already been discussed. The output
is shown in Figure 18.11.

Code:

from matplotlib import pyplot as plt

import numpy as np

L=[]

n=int(input('Enter the number of elements\t:'))

for i in range(n):

 item=int(input('Enter an element\t:'))

 L.append(item)

print('List\t:',L)

plt.plot(L)

plt.show()

Output:

Enter the number of elements	:5

Enter an element	:2

Enter an element	:7

Enter an element	:1

Enter an element	:4

Enter an element	:9

List : [2, 7, 1, 4, 9]

PPUPS.CH18_2pp.indd 461PPUPS.CH18_2pp.indd 461 5/18/2023 11:42:48 AM5/18/2023 11:42:48 AM

462 • Python Programming Using Problem Solving

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

1

2

3

5

6

7

8

9

4

FIGURE 18.11  Illustration 18.1’s plot.

Illustration 18.2:

In the above illustration what changes must be made to print a square at the
points indicated by the list passed as an argument?

Solution:

To accomplish the given task, an additional argument “s” needs to be passed
in the plot function.

In the code of Illustration 18.1, change the second last line to

plt.plot(L,’s’). The output is shown in Figure 18.12.

Output:

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

1

2

3

4

5

6

7

8

9

FIGURE 18.12  Illustration 18.2’s plot.

PPUPS.CH18_2pp.indd 462PPUPS.CH18_2pp.indd 462 5/18/2023 11:42:49 AM5/18/2023 11:42:49 AM

Data Visualization-I • 463

Illustration 18.3:

Plot sine wave between – 2p and 2p. Also use color, linewidth, and linestyle
functions to plot a purple, dashed curve.

Solution:

The sin of a given list can be calculated by using the numpy.sin function. The
output is shown in Figure 18.13.

Code:

from matplotlib import pyplot as plt

import numpy as np

x=np.linspace(-2*np.pi,2*np.pi,256,endpoint=True)

s=np.sin(x)

plt.plot(x,s,color='purple',linewidth=5,linestyle='dashed')

#linestyle or ls=solid,dashed,dashdot,dotted

plt.show()

Output:

–6 –4 –2 0 2 4 6

–1.00

–0.75

–0.50

–0.25

0.00

0.25

0.50

0.75

1.00

FIGURE 18.13  The Sine curve.

Illustration 18.4:

Plot cosine wave between –2p and 2p. Also use color, linewidth, and linestyle
functions to plot a yellow, dashdot type curve.

PPUPS.CH18_2pp.indd 463PPUPS.CH18_2pp.indd 463 5/18/2023 11:42:49 AM5/18/2023 11:42:49 AM

464 • Python Programming Using Problem Solving

Solution:

The cosine of a given list can be calculated by using the numpy.cos function.
The rest of the functions have already been explained in the above discussion.
The output is shown in Figure 18.14.

Code:

from matplotlib import pyplot as plt

import numpy as np

x=np.linspace(-2*np.pi,2*np.pi,256,endpoint=True)

c=np.cos(x)

plt.plot(x,c,color='y',linewidth=4,linestyle='dashdot')

plt.show()

Output:

–6 –4 –2 0 2 4 6

–1.00

–0.75

–0.50

–0.25

0.00

0.25

0.50

0.75

1.00

FIGURE 18.14  The cosine curve.

Illustration 18.5:

Enter a list and mark the list points with customization.

Solution:

The marker attribute and markeredgecolor can be used to show the points
in the desired form and set the color of the edges.

The procedure to accomplish the task has already been discussed. The
output is shown in Figure 18.15.

PPUPS.CH18_2pp.indd 464PPUPS.CH18_2pp.indd 464 5/18/2023 11:42:50 AM5/18/2023 11:42:50 AM

Data Visualization-I • 465

Code:

from matplotlib import pyplot as plt

import numpy as np

a=[2,4,6,3,6]

plt.plot(a,'c*',markersize=15,markeredgecolor='orange')

plt.xlabel('X-Axis')

plt.ylabel("Y-Axis")

plt.show()

Output:

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

X-Axis

Y
-A

x
is

FIGURE 18.15  Plotting data using markers and setting the color of the edges.

Illustration 18.6:

Enter the student marks in n tests of a single subject and plot the graph.

Solution:

The marks of the student can be saved in a list and the list can be printed as
explained in the previous examples. The output is shown in Figure 18.16.

Code:

from matplotlib import pyplot as plt

import numpy as np

PPUPS.CH18_2pp.indd 465PPUPS.CH18_2pp.indd 465 5/18/2023 11:42:50 AM5/18/2023 11:42:50 AM

466 • Python Programming Using Problem Solving

L=[]

n=int(input('Enter number of tests\t:'))

i=0

while(i<n):

	 str1='Enter mark['+str(i)+']:'

	 num=int(input(str1))

	 L.append(num)

	 i+=1

print(L)

plt.plot(L,marker='s',color='red')

plt.xlabel('X-Axis')

plt.ylabel('Y-Axis')

plt.show()

Output:

Enter number of tests	 :4

Enter mark[0]:34

Enter mark[1]:56

Enter mark[2]:78

Enter mark[3]:67

[34, 56, 78, 67]

0.0 0.5 1.0 1.5 2.0 2.5 3.0

40

50

60

70

80

X-Axis

Y
-A

x
is

FIGURE 18.16  Marks of a student in n tests.

PPUPS.CH18_2pp.indd 466PPUPS.CH18_2pp.indd 466 5/18/2023 11:42:51 AM5/18/2023 11:42:51 AM

Data Visualization-I • 467

Illustration 18.7:

Enter the student marks in n tests of a single subject and plot it in by using the
marker indicating a square.

Solution:

The marks of the student can be saved in a list and the list can be printed
as explained in the subsection on markers. The output is shown in
Figure 18.17.

Code:

L=[]

n=int(input('Enter number of tests\t:'))

i=0

while(i<n):

 	 str1='Enter mark['+str(i)+']:'

 	 num=int(input(str1))

 	 L.append(num)

 	 i+=1

 	 print(L)

plt.plot(L,'s',markersize=15,color='red')

plt.xlabel('X-Axis')

plt.ylabel('Y-Axis')

plt.show()

Output:

Enter number of tests	 :4

Enter mark[0]:34

Enter mark[1]:56

Enter mark[2]:78

Enter mark[3]:67

[34, 56, 78, 67]

PPUPS.CH18_2pp.indd 467PPUPS.CH18_2pp.indd 467 5/18/2023 11:42:51 AM5/18/2023 11:42:51 AM

468 • Python Programming Using Problem Solving

0.0 0.5 1.0 1.5 2.0 2.5 3.0

40

50

60

70

80

Y
-A

x
is

X-Axis

FIGURE 18.17  Plot of Illustration 18.7.

Illustration 18.8:

Enter the student marks of three subjects and plot them in the same graph.

Solution:

The list containing the marks of a particular student will have three values. The
list of lists would represent the marks of n students in 3 subjects. The passing
of a 2D array (or a list of lists) has already been discussed. The output is shown
in Figure 18.18.

Code:

X=[[20,30,40],[40,50,70],[80,90,20],[70,80,100],[30,60,80],[20,4
0,56]]

#points in line=2,4,8,73,2 and 3,5,9,8,6,4 and 4,7,2,10,8,11

plt.plot(X)

plt.xlabel('X-Axis')

plt.ylabel('Y-Axis')

plt.show()

PPUPS.CH18_2pp.indd 468PPUPS.CH18_2pp.indd 468 5/18/2023 11:42:52 AM5/18/2023 11:42:52 AM

Data Visualization-I • 469

Output:

20

30

40

50

60

70

80

90

100

Y
-A

x
is

X-Axis

0 2 3 4 51

FIGURE 18.18  Plot of Illustration 18.8.

18.5  THE BAR CHART

In a Bar Chart, the categorical values are represented using vertical or hori-
zontal bars. The lengths of these bars are proportional to the represented
values. The matplotlib.pyplot.bar package is used to plot a bar plot.

The bar so plotted starts from the bottom and the dimensions are given
by the width and the height parameters of the bar method. The parameters
of the bar method are as follows:

�� x: This parameter represents the coordinates of bars.
�� height: This parameter represents the heights of the bar(s).
�� width: This parameter represents the width of the bar(s).
�� bottom: This parameter represents the vertical string position(s).

Each of the above can be a scalar if the value is to be applied to each bar,
else they can be sequences. In addition to the above, the bars can have the
following parameters:

�� color: This argument sets the color of the bar. It is an optional argument.
It can be a single number or a sequence of n elements.

�� edgecolor: This argument sets the color of the edges.
�� linewidth: This argument sets the width of the edges.
�� orientation: This argument can have the following values:

–– “horizontal”
–– “vertical”

PPUPS.CH18_2pp.indd 469PPUPS.CH18_2pp.indd 469 5/18/2023 11:42:53 AM5/18/2023 11:42:53 AM

470 • Python Programming Using Problem Solving

To understand the usage of the above parameters, consider the following
examples.

Illustration 18.9:

Ask the user to enter the marks of five students and their names. Display the
data using a bar chart showing marks along with the names on the x-axis.

Solution:

In this case, the bar function will take two lists as arguments: The first for rep-
resenting the labels in the X-axis and the second for representing the height
of the bars. The output is shown in Figure 18.19.

Code:

from matplotlib import pyplot as plt

import numpy as np

a=['Yash','Suraj','Sahil','Mahendra']

b=[24,45,67,29]

plt.bar(a,b)

plt.xlabel('Names---->')

plt.ylabel('Marks---->')

plt.show()

Output:

0

10

20

30

40

50

60

70

Yash MahendraSuraj Sahil

Names

M
a
rk

s

FIGURE 18.19  Figure of Illustration 18.9.

PPUPS.CH18_2pp.indd 470PPUPS.CH18_2pp.indd 470 5/18/2023 11:42:54 AM5/18/2023 11:42:54 AM

Data Visualization-I • 471

Illustration 18.10:

Generate 20 random numbers between 100 to 200 and twenty numbers
between 0 to 50. Plot first list on Y-axis and second on X-axis.

Solution:

In this case, two lists would be passed as arguments in the plot function. The
requisite functions have already been explained in Section 18.4. The output is
shown in Figure 18.20.

Code:

A=np.random.randint(low=100, high=200, size=20)

B=np.random.randint(50, size=20)

print(A)

print(B)

plt.bar(B,A, width=0.8)

plt.xlabel('X-axis--->')

plt.ylabel('Y-Axis--->')

plt.show()

Output:

10 20 30 40

X-axis

Y
-A

x
is

0

25

50

100

125

150

175

200

75

FIGURE 18.20  Figure of Illustration 18.10.

PPUPS.CH18_2pp.indd 471PPUPS.CH18_2pp.indd 471 5/18/2023 11:42:55 AM5/18/2023 11:42:55 AM

472 • Python Programming Using Problem Solving

Illustration 18.11:

Generate two lists, A and B. Draw a bar chart where B represents the height
of the bar and A represents the x-axis. Also, represent all different bars with
different colors.

Solution:

To accomplish the desired task, the color attribute can be set to the list contain-
ing the values of the colors of each bar. The output is shown in Figure 18.21.

Code:

a=[]

n=int(input('Enter number of names\t:'))

i=0

while(i<n):

 str1='Enter name['+str(i)+']:'

 num=str(input(str1))

 a.append(num)

 i+=1

print(a)

b=[]

n=int(input('Enter number of marks\t:'))

i=0

while(i<n):

 str1='Enter mark['+str(i)+']:'

 num=int(input(str1))

 b.append(num)

 i+=1

print(b)

plt.bar(a,b,width=0.6,color=['green','red','blue'])

plt.xlabel('Names---->')

plt.ylabel('Marks---->')

plt.show()

Output:

Enter number of names	 :3

Enter name[0]:pulin

PPUPS.CH18_2pp.indd 472PPUPS.CH18_2pp.indd 472 5/18/2023 11:42:55 AM5/18/2023 11:42:55 AM

Data Visualization-I • 473

Enter name[1]:rakesh

Enter name[2]:suraj

['pulin', 'rakesh', 'suraj']

Enter number of marks	 :3

Enter mark[0]:97

Enter mark[1]:56

Enter mark[2]:45

[97, 56, 45]

Pulin Rakesh Suraj

M
a

rk
s

Names

0

20

40

60

80

100

FIGURE 18.21  Plot for Illustration 18.11.

Illustration 18.12:

Plot two lists in the same bar, showing the value of the given index side by side.

Solution:

Refer to the explanation of the bar function. Note that the values of the X-axis
have been displaced 0.35 to the left for the first list and 0.35 to the right for
the second. The output is shown in Figure 18.22.

Code:

A=[2,4,6,8]

B=[2.4,6.5,3.9,8.5]

X=np.arange(len(A))

PPUPS.CH18_2pp.indd 473PPUPS.CH18_2pp.indd 473 5/18/2023 11:42:56 AM5/18/2023 11:42:56 AM

474 • Python Programming Using Problem Solving

plt.bar(X,A,color='red',width=0.35)

plt.bar(X+0.35,B,color='blue',width=0.35)

plt.xlabel('Names Code---->')

plt.ylabel('Marks---->')

plt.show()

Output:

0

1

2

3

4

5

6

7

8

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Names Code

M
a
rk

s

3.5

FIGURE 18.22  Figure of Illustration 18.12.

Illustration 18.13:

In Figure 18.22, what changes would generate a horizontal bar?

Solution:

The barh function can be used to accomplish the given task. The output is
shown in Figure 18.23.

Code:

A=[2,4,6,8]

B=[2.4,6.5,3.9,8.5]

X=np.arange(len(A)) #i.e 4

plt.barh(X,A,color='red',height=0.35)

plt.barh(X+0.35,B,color='blue',height=0.35)

plt.xlabel('Marks---->')

plt.ylabel('Names Code---->')

plt.show()

PPUPS.CH18_2pp.indd 474PPUPS.CH18_2pp.indd 474 5/18/2023 11:42:56 AM5/18/2023 11:42:56 AM

Data Visualization-I • 475

Output:

0 1 2 3 4 5 6 7 8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
a
m

e
s

C
o
d
e

Marks

FIGURE 18.23  Output of Illustration 18.13.

18.6  CONCLUSION

This chapter starts with the importance of visualization and introduced mat-
plotlib, which is an immensely important collection, used for visualization.
Visualization helps us to understand the input data, the experimental results,
and for comparisons. Matplotlib is used to generate production level fig-
ures, in a very simple manner. This chapter explained the basics of plotting
and explained the bar plot in detail. A significant number of examples are
included in the chapter to make the things comprehendible. It may also be
stated that the next chapter takes this discussion forward and introduces fre-
quency plots, pie charts, and box plots. The reader is advised to go attempt
the exercises to get a better insight into the topics presented in this chapter.

EXERCISES

Multiple Choice Questions

1.	 Using matplotlib one can primarily generate

	 (a)  Plots		 	 (b)  Histograms

	 (c)  Bar graphs	 	 (d)  Scatter plots

	 (e)  All of the above

PPUPS.CH18_2pp.indd 475PPUPS.CH18_2pp.indd 475 5/18/2023 11:42:58 AM5/18/2023 11:42:58 AM

476 • Python Programming Using Problem Solving

2.	 The axis function can take which of the following arguments.

	 (a)  xmin			 (b)  ymin

	 (c)  xmax			 (d)  ymax

	 (e)  all of the above

3.	 The marker “o” stands for

	 (a)  circle			 (b)  Zero

	 (c)  The letter “O”		 (d)  None of the above

4.	 Which function is used to plot a histogram?

	 (a)  plot			 (b)  hist

	 (c)  pie			 (d)  all of the above

5.	 What argument plots a cumulative graph?

	 (a)  commutative		 (b)  sum

	 (c)  total			 (d)  None of the above

6.	 You are required to show the Cartesian coordinates in a plot? How will
you do it?

	 (a)  By passing two lists	 (b)  By passing a single list

	 (c)  By passing pie		 (d)  None of the above

7.	 Which function is used to plot a bar plot in matplotlib?

	 (a)  bar			 (b)  pie

	 (c)  both			 (d)  None of the above

8.	 Which function is used to plot a bar?

	 (a)  plt.bar			 (b)  plt.pie

	 (c)  plt.hist			 (d)  None of the above

9.	 Which argument is used to set the widths of bars in the bar method?

	 (a)  width			 (b)  w

	 (c)  d			 (d)  None of the above

PPUPS.CH18_2pp.indd 476PPUPS.CH18_2pp.indd 476 5/18/2023 11:42:58 AM5/18/2023 11:42:58 AM

Data Visualization-I • 477

10.	 Is width argument a scalar or a sequence?

	 (a)  Scalar			 (b)  Sequence

	 (c)  It can be both		 (d)  None of the above

11.	 Which argument is used to set the bottoms of bars in the bar method?

	 (a)  bottom			 (b)  b

	 (c)  h			 (d)  None of the above

Theory

1.	 Explain the importance of visualization.

2.	 Explain the features of matplotlib.

3.	 How do you plot a single line using the plot function?

4.	 How do you plot multiple lines using the plot function of matplotlib?

5.	 How do you plot the coordinates using markers in a plot?

6.	 Which function is used to plot a bar in matplotlib? Explain its arguments.

7.	 Which function is used to plot a horizontal bar in matplotlib? Explain its
arguments.

8.	 Suggest a method to plot two bars side by side.

9.	 What is the purpose of xticks?

10.	 Explain the procedure to plot multiple lines in the same graph, using a
two-dimensional array.

PPUPS.CH18_2pp.indd 477PPUPS.CH18_2pp.indd 477 5/18/2023 11:42:58 AM5/18/2023 11:42:58 AM

PPUPS.CH18_2pp.indd 478PPUPS.CH18_2pp.indd 478 5/18/2023 11:42:58 AM5/18/2023 11:42:58 AM

Objectives

After reading this chapter, the reader should be able to

�� Understand the importance of Frequency Plots
�� Appreciate the features of a Boxplot
�� Plot a Histogram
�� Plot Pie Charts

19.1  INTRODUCTION

The importance of visualization has already been discussed in the last chapter.
This chapter takes the discussion forward and introduces some more methods
of visualization.

This chapter has been organized as follows. The second section presents
an overview of the box plots, the third section discusses histograms and fre-
quency plots. The fourth section presents a discussion on the pie charts. The
last section concludes.

19.2  BOX PLOT

The Box Plot of data shows the minimum value of the input, the first quartile,
the median, the third quartile, and the maximum value. There is a box span-
ning from the first quartile to the third quartile of the data.

The points at the beginning and the ends show the minimum and the
maximum value of the input. The beginning of the box indicates the position

C H A P T E R19
Data Visualization–II

PPUPS.CH19_2pp.indd 479PPUPS.CH19_2pp.indd 479 5/18/2023 11:46:35 AM5/18/2023 11:46:35 AM

480 • Python Programming Using Problem Solving

of the first quartile and the end of the box indicates the position of the third
quartile. The line in the middle indicates the median of the data. Figure 19.1
shows the structure of the box plot.

Maximum ValueMinimum Value

First Quartile

Median

Third Quartile

FIGURE 19.1  The structure of a Box Plot.

The boxplot method of the matplotlib.pyplot package helps us to plot a
Box Plot. This method takes the following parameters (Table 19.1).

TABLE 19.1  Arguments of the boxplot method.

Argument Data Type Explanation

x Array or a Sequence of vectors This parameter presents the input data.

notch bool This is an optional parameter. The default value of this
parameter is False. If the value of this parameter is
True, a notched box plot is produced. It represents the
Confidence Interval around the median.

vert bool If this parameter is True, the plots are drawn vertically;
if False, the plots are horizontal.

This method returns a dictionary. The dictionary has the following keys
(As per the official documentation at https://matplotlib.org/3.1.1/api/_as_gen/
matplotlib.pyplot.boxplot.html):

�� boxes: The quartile’s and median’s confidence intervals.
�� medians: Lines at the medians of each column of the data.
�� whiskers: The lines extending to the most extreme, nonoutlier data

points.
�� caps: The lines at the ends of the whiskers.

PPUPS.CH19_2pp.indd 480PPUPS.CH19_2pp.indd 480 5/18/2023 11:46:35 AM5/18/2023 11:46:35 AM

Data Visualization–II • 481

�� fliers: Points representing data that extend beyond the whiskers.
�� means: Points or lines representing the means.

The following example shows the boxplot of the Iris dataset. The dataset
has 150 samples (rows) and four features (columns). The four features are:

�� sepal length in cm
�� sepal width in cm
�� petal length in cm
�� petal width in cm

The following code uses the first 100 samples of the data to plot a box-
plot. Note the boxplots of each of the four features in Figure 19.2.

Code:

from sklearn.datasets import load_iris

Data=load_iris()

Data=Data.data[:100,:]

plt.boxplot(Data)

Output:

1 2 3 4

0

1

2

3

4

5

6

7

FIGURE 19.2  The boxplot of Iris data.

Having seen the boxplot of the Iris dataset, let us have a look at what
happens if the value of showmeans parameter is passed as True.

PPUPS.CH19_2pp.indd 481PPUPS.CH19_2pp.indd 481 5/18/2023 11:46:35 AM5/18/2023 11:46:35 AM

482 • Python Programming Using Problem Solving

EXAMPLE 19.1:

The following code uses the showmeans = True. The output is shown in
Figure 19.3. Observe the indicators at the means of each of the boxplot (of
each feature).

Code:

plt.boxplot(Data, showmeans=True)

Output:

1 2 3 4

0

1

2

3

4

5

6

7

FIGURE 19.3  The boxplot of Iris data with showmeans = true.

19.3  FREQUENCY PLOTS AND HISTOGRAM

According to the National Institute of Standards and Technology
(NIST), a Frequency Plot is a graphical data analysis method for summa-
rizing the distributional information of a variable. The response variable is
divided into equal-sized intervals, called bins. The number of occurrences
of the response variable is then calculated for each bin.

A Frequency Plot consists of:

�� Vertical Axis: Frequencies
�� Horizontal axis: The midpoint of each interval

PPUPS.CH19_2pp.indd 482PPUPS.CH19_2pp.indd 482 5/18/2023 11:46:36 AM5/18/2023 11:46:36 AM

Data Visualization–II • 483

As per NIST, there are four types of Frequency Plots (Figure 19.4)

	 (a)  Basic Frequency Plot, which shows the absolute counts

	 (b)  Relative Frequency Plot, which converts counts to proportions

	 (c)  Cumulative Frequency Plot and

	 (d)  Cumulative Relative Frequency Plot

RelativeBasic

Cumulative, RelativeCumulative

Frequency Plot

FIGURE 19.4  Types of Frequency Plots.

How to draw a Frequency Plot

To draw the frequency plot,

�� Draw the histogram.
�� Join the center of the bars of the histogram.

EXAMPLE 2:

Consider the following array:

[13, 15, 19, 26, 30, 12, 27, 8, 8, 24, 31, 30, 8, 6, 28, 20, 5, 20, 8, 22, 31, 27, 23,
24, 6, 16, 8, 26, 13, 29]

1.	 Let the number of bins be 10. Find the number of elements in each bin
using the tenth, twentieth, … percentiles of the data.

•	 The tenth percentile is 7.8 and there are three numbers less than 7.8
in the array, therefore the first bin will have 3.

PPUPS.CH19_2pp.indd 483PPUPS.CH19_2pp.indd 483 5/18/2023 11:46:36 AM5/18/2023 11:46:36 AM

484 • Python Programming Using Problem Solving

•	 The twentieth percentile is 8; therefore, the number of elements in
the second bin will be 5.

•	 The thirteenth percentile is 12.7; therefore, the number of elements
in the third bin will be 1.

•	 The fortieth percentile is 15.4; therefore, the number of elements in
the fourth bin will be 1.

•	 The fiftieth percentile is 18.; therefore, the number of elements in the
fifth bin will be 3. Likewise, find the number of elements in the rest
of the bins.

2.	 Draw histogram

	 The histogram would be:

	 (array([3., 5., 1., 3., 1., 3., 2., 2., 5., 5.]), array([5. , 7.6, 10.2, 12.8, 15.4, 18.,
20.6, 23.2, 25.8, 28.4, 31.]), <a list of 10 Patch objects>)

3.	 Now, join the midpoints of the bars of the histogram (Figure 19.5).

5 10 15 20 25 30
0

1

2

3

4

5

FIGURE 19.5  The Frequency Plot of the above example.

As per Karl Pearson “A histogram is an approximate representation of
the distribution of numerical or categorical data.”

The hist method of the pyplot module of matplotlib, allows us to plot
a histogram. The arguments of the method are shown in Table 19.2 and its
attributes are shown in Table 19.3.

PPUPS.CH19_2pp.indd 484PPUPS.CH19_2pp.indd 484 5/18/2023 11:46:36 AM5/18/2023 11:46:36 AM

Data Visualization–II • 485

TABLE 19.2  The arguments of the hist method.

Argument Explanation

x
bins

histtype

Data: Array or sequence of arrays
It is an integer, which represents the number of equal-width bins. However, it can
also be a sequence, in which case this represents the width of different bins.
This argument can have one of the following values.
It is an optional parameter, and its default value is “bar.”

�� bar: This creates a bar-type histogram. If any arguments are passed, bars are
created side by side.

�� step: This argument creates a lineplot. By default, such histograms are not filled.
�� stepfield: This argument creates a lineplot, which is filled.
�� barstacked: This argument helps us to create histograms stacked on one another.

align

orientation

color

Stacked

This argument controls how the histogram is placed. The possible values of this
argument are:

�� left: This argument centers the bars to the left,
�� mid: This argument centers the bars between the edges and
�� right: This argument centers the bars to the right of the edges.

It is an optional argument, and the default value is “mid.”
This argument orients the bars along with the vertical or horizontal orientation. This
argument is optional, and the default value of this argument is vertical.
This argument represents the color or array-like of colors or None. It is an optional
argument. And the default value of this argument is None.
It is a Boolean argument. If the value of this argument is True, then multiple bars
are stacked on top of each other. If the value of this argument is False, then multiple
bars are arranged side by side if histtype is “bar” or on top of each other if histtype
is “step”

This method returns the following attributes (Table 19.3):

TABLE 19.3  The Attributes of the hist method.

Attribute Explanation

narray or list of arrays This array (or list of arrays) shows the values of the histogram bins.

binsarray As per the official documentation this attribute represents. “The edges
of the bins. Length nbins + 1 (nbins left edges and right edge of the last
bin).”

patcheslist or list of
lists

As per the official documentation this attribute represents a “Silent list
of individual patches used to create the histogram or lists of such list if
multiple input datasets.”

The following illustrations will help the reader understand the use of the
above arguments in plotting a histogram.

PPUPS.CH19_2pp.indd 485PPUPS.CH19_2pp.indd 485 5/18/2023 11:46:36 AM5/18/2023 11:46:36 AM

486 • Python Programming Using Problem Solving

Illustration 19.1:

Create an array of 30 numbers between 5 and 35. Draw a histogram having
10 bins. Set the color of the histogram = “gray.”

Solution:

The hist method has already been explained. The code follows and the output
is shown in Figure 19.6.

Code:

Creating an array of 30 numbers between 5 and 30

array_sample = np.random.randint(5,35,30)

Plotting a histogram

plt.hist(array_sample, 10,color='gray')

plt.show()

Output:

5 10 15 20 25 30
0

1

2

3

4

5

FIGURE 19.6  Output of Illustration 19.1.

Illustration 19.2:

In the illustration above, draw a histogram having 5 bins.

PPUPS.CH19_2pp.indd 486PPUPS.CH19_2pp.indd 486 5/18/2023 11:46:36 AM5/18/2023 11:46:36 AM

Data Visualization–II • 487

Solution:

The hist method has already been explained. The code follows and the output
is shown in Figure 19.7.

Code:

Creating an array of 30 numbers between 5 and 30

array_sample = np.random.randint(5,35,30)

Plotting a histogram

plt.hist(array_sample, 5)

plt.show()

Output:

5 10 15 20 25 30 35
0

2

4

6

8

FIGURE 19.7  Output of Illustration 19.2.

Illustration 19.3:

Create an array having 30 elements, between 5 and 35. Draw a cumulative
histogram having 10 bins.

PPUPS.CH19_2pp.indd 487PPUPS.CH19_2pp.indd 487 5/18/2023 11:46:36 AM5/18/2023 11:46:36 AM

488 • Python Programming Using Problem Solving

Solution:

The hist method has already been explained. Set the cumulative argument
of the hist method equal to True. The code follows and the output is shown
in Figure 19.8.

Code:

Creating an array of 30 numbers between 5 and 30

array_sample = np.random.randint(5,35,30)

Plotting a histogram

plt.hist(array_sample, 10, cumulative=True)

plt.show()

Output:

10 15 20 25 30 35
0

5

10

15

20

25

30

FIGURE 19.8  Output of Illustration 19.3.

Illustration 19.4:

Create an array having 30 elements, between 5 and 35. Draw a histogram
having 20 bins, with histtype = “step.”

PPUPS.CH19_2pp.indd 488PPUPS.CH19_2pp.indd 488 5/18/2023 11:46:36 AM5/18/2023 11:46:36 AM

Data Visualization–II • 489

Solution:

The hist method has already been explained. Set the histtype argument
equal to step. The code follows and the output is shown in Figure 19.9.

Code:

Creating an array of 30 numbers between 5 and 30

array_sample = np.random.randint(5,35,30)

Plotting a histogram

plt.hist(array_sample, bins=20, histtype='step')

plt.show()

Output:

5 10 15 20 25 30 35
0

1

2

3

4

5

FIGURE 19.9  Output of Illustration 19.4.

Illustration 19.5:

Create an array having 30 elements, between 1 and 50. Create another array
having 30 elements between 5 and 35. Now, draw a histogram showing the
histograms of both the arrays, in the same plot.

PPUPS.CH19_2pp.indd 489PPUPS.CH19_2pp.indd 489 5/18/2023 11:46:37 AM5/18/2023 11:46:37 AM

490 • Python Programming Using Problem Solving

Solution:

The hist method has already been explained. Pass both the arrays in the hist
method (separated by a comma, in square brackets). The code follows and the
output is shown in Figure 19.10.

Code:

Creating an array of 30 numbers between 1 and 50

array_sample1 = np.random.randint(1,50,30)

print(array_sample1)

Creating an array of 30 numbers between 5 and 35

array_sample2 = np.random.randint(5,35,30)

print(array_sample2)

Plot the histogram

plt.hist([array_sample1, array_sample2])

plt.show()

Output:

10 20 30 40 50
0

1

2

3

4

5

6

7

8

FIGURE 19.10  Output of Illustration 19.5.

PPUPS.CH19_2pp.indd 490PPUPS.CH19_2pp.indd 490 5/18/2023 11:46:37 AM5/18/2023 11:46:37 AM

Data Visualization–II • 491

Illustration 19.6:

In the above illustration, what changes must be made to stack the histograms
on each other.

Solution:

Set the histtype argument of the hist method to barstacked. The code fol-
lows and the output is shown in Figure 19.11.

Code:

plt.hist([array_sample1, array_sample2], histtype='barstacked')

plt.show()

Output:

10 20 30 40 50
0

2

4

6

8

10

FIGURE 19.11  Output of Illustration 19.6.

Illustration 19.7:

In Illustration 19.5, what changes must be done to stack the cumulative histo-
grams on each other.

PPUPS.CH19_2pp.indd 491PPUPS.CH19_2pp.indd 491 5/18/2023 11:46:37 AM5/18/2023 11:46:37 AM

492 • Python Programming Using Problem Solving

Solution:

Set the histtype argument of the hist method to barstacked and the
cumulative argument to True. The code follows and the output is shown in
Figure 19.12.

Code:

plt.hist([array_sample1, array_sample2], histtype='barstacked',
cumulative= True)

plt.show()

Output:

0

10

20

30

40

50

60

10 20 30 40 50

FIGURE 19.12  Output of Illustration 19.7.

Illustration 19.8:

In Illustration 19.5, what changes must be done to stack the histograms on
each other and set the orientation to horizontal.

Solution:

Set the histtype argument of the hist method to barstacked and the orien-
tation argument to horizontal. The code follows and the output is shown in
Figure 19.13.

PPUPS.CH19_2pp.indd 492PPUPS.CH19_2pp.indd 492 5/18/2023 11:46:37 AM5/18/2023 11:46:37 AM

Data Visualization–II • 493

Code:

plt.hist([array_sample1, array_sample2],
histtype='barstacked',orientation='horizontal')

plt.show()

Output:

50

40

30

20

10

0 2 4 6 8 10

FIGURE 19.13  Output of Illustration 19.8.

19.4  THE PIE CHART

The matplotlib.pyplot.pie plots a pie chart using the array x, given as an
input. Each wedge, in a Pie chart, has an area proportionate to the value. In
the chart, the wedges are plotted counterclockwise. The arguments of the pie
function are as follows.

�� x: This argument represents the sequence of the values.
�� explode: This argument gives the offset of each wedge. It is an optional

argument.
�� labels: This argument represents a sequence of strings depicting the

labels for each wedge. It is an optional argument.
�� colors: This argument sets the colors of each wedge.
�� autopct: It is an optional argument. This argument sets the label showing

the percentage will be placed inside the wedge.

PPUPS.CH19_2pp.indd 493PPUPS.CH19_2pp.indd 493 5/18/2023 11:46:37 AM5/18/2023 11:46:37 AM

494 • Python Programming Using Problem Solving

The following illustrations would help us to understand the plotting of a
pie chart, using the above arguments. The reader is expected to analyze the
effect of each argument by observing the output.

Illustration 19.9:

Ask the user to enter its top five expenses and draw its pie chart.

Solution:

The expenses can be stored in a list and the corresponding pie chart can be
drawn using the pie function of the pyplot. The code follows and the output
is shown in Figure 19.14.

Code:

from matplotlib import pyplot as plt

import numpy as np

exp=[]

n=int(input('Enter number of expenses\t:'))

i=0

while(i<n):

	 str1='Enter expense['+str(i)+']:'

	 num=int(input(str1))

	 exp.append(num)

	 i+=1

print(exp)

plt.pie(exp)

plt.show()

Output:

Enter number of expenses	 :4

Enter expense[0]:45

Enter expense[1]:56

Enter expense[2]:34

Enter expense[3]:78

[45, 56, 34, 78]

PPUPS.CH19_2pp.indd 494PPUPS.CH19_2pp.indd 494 5/18/2023 11:46:37 AM5/18/2023 11:46:37 AM

Data Visualization–II • 495

FIGURE 19.14  Plot of Illustration 19.9.

Illustration 19.10:

In the above illustration, put labels in the pie chart.

Solution:

The labels can be set using the labels attribute of the pie method. The code
follows and the output is shown in Figure 19.15.

Code:

expenses=[45,56,34,78]

names=['zen','pong','anny','master']

plt.pie(expenses,labels=names)

plt.show()

zen
pong

anny

Master

FIGURE 19.15  Output of Illustration 19.10.

PPUPS.CH19_2pp.indd 495PPUPS.CH19_2pp.indd 495 5/18/2023 11:46:37 AM5/18/2023 11:46:37 AM

496 • Python Programming Using Problem Solving

Illustration 19.11:

In the above pie chart, display the percentage with each slice, up to two deci-
mal places.

Solution:

The output attribute can be used to show the percentage of the data, as
shown in the following code. The output is shown in Figure 19.16.

Code:

expenses=[45,56,34,78]

names=['zen','pong','anny','master']

plt.pie(expenses,labels=names,autopct="%1.2f%%")

plt.show()

zen
pong

anny

Master

26.29% 21.13%

15.96%

36.62%

FIGURE 19.16  Output of Illustration 19.11.

Illustration 19.12:

Change the color of slices of the above pie chart as per specification.

Solution:

The colors attribute can be set to the requisite list, to accomplish the desired
task. The code follows and the output is shown in Figure 19.17.

PPUPS.CH19_2pp.indd 496PPUPS.CH19_2pp.indd 496 5/18/2023 11:46:37 AM5/18/2023 11:46:37 AM

Data Visualization–II • 497

Code:

expenses=[45,56,34,78]

names=['zen','pong','anny','master']

colr=['r','g','m','y']

plt.pie(expenses,labels=names,colors=colr,autopct="%1.2f%%")

plt.show()

zen
pong

anny

Master

26.29% 21.13%

15.96%

36.62%

FIGURE 19.17  Output of Illustration 19.12.

Illustration 19.13:

Explode a slice of the above pie chart in Illustration 19.10, by a given distance.

Solution:

The desired task can be accomplished using the explode attribute, as shown.
The output is shown in Figure 19.18.

Program:

expenses=[45,56,34,78]

names=['zen','pong','anny','master']

colr=['r','g','m','y']

expl=[0,0,0.3,0]

plt.pie(expenses,labels=names,colors=colr,autopct="%1.2f%%",
explode=expl)

plt.show()

PPUPS.CH19_2pp.indd 497PPUPS.CH19_2pp.indd 497 5/18/2023 11:46:37 AM5/18/2023 11:46:37 AM

498 • Python Programming Using Problem Solving

zen
pong

anny

Master

26.29% 21.13%

15.96%

36.62%

FIGURE 19.18  Figure of Illustration 19.13.

19.5  CONCLUSION

As stated earlier, Visualization helps us to understand the input data, the
experimental results, and comparisons. matplotlib is an immensely impor-
tant collection, used for visualization. It is used to generate production level
figures, in a very simple manner. Some of the methods of matplotlib were
introduced in the previous chapter. This chapter takes the discussion forward
and introduces the Frequency Plots, Box Plots, Histograms, and Pie
Charts. A sufficient number of examples are included in the chapter to make
the things comprehendible. The reader is advised to go attempt the exercises
to get a better insight into the topics presented in this chapter.

EXERCISES

Multiple Choice Questions

1.	 Which of the following are types of Frequency Plots?

	 (a)  Basic Frequency Plot

	 (b)  Relative Frequency Plot

	 (c)  Cumulative Frequency Plot

	 (d)  Cumulative Relative Frequency Plot

	 (e)  All of the above

PPUPS.CH19_2pp.indd 498PPUPS.CH19_2pp.indd 498 5/18/2023 11:46:38 AM5/18/2023 11:46:38 AM

Data Visualization–II • 499

2.	 How do you draw a Frequency Plot?

	 (a)  Join the midpoints of bars of a histogram

	 (b)  Find frequency of each unique item and plot

	 (c)  Find the frequency of numbers in each bin

	 (d)  None of the above

3.	 Which of the following is shown in a Box Plot?

	 (a)  Median		 	 (b)  Minimum and Maximum value

	 (c)  Q1 and Q3	 	 (d)  All of the above

4.	 Can a box plot be horizontal?

	 (a)  Yes		 	 (b)  No

	 (c)  Depends	 	 (d)  None of the above

5.	 Which of the following are shown in a Box Plot?

	 (a)  boxes		 	 (b)  medians

	 (c)  whiskers		 	 (d)  caps

	 (e)  fliers		 	 (f)  means

	 (g)  All of the above

Theory

1.	 Explain the importance of the Frequency Plots.

2.	 Explain the steps to create a Frequency Plot.

3.	 What is the difference between a Frequency plot and a Box Plot?

4.	 Explain the importance of the Box Plots.

5.	 What are the components of a Box Plot?

6.	 Explain the importance of Pie Charts.

7.	 What is a histogram?

8.	 Explain the importance of a Pie Chart.

PPUPS.CH19_2pp.indd 499PPUPS.CH19_2pp.indd 499 5/18/2023 11:46:38 AM5/18/2023 11:46:38 AM

PPUPS.CH19_2pp.indd 500PPUPS.CH19_2pp.indd 500 5/18/2023 11:46:38 AM5/18/2023 11:46:38 AM

Objectives

After reading this chapter, the reader should be able to

�� Understand the difference between a Pandas Series and a Data Frame.
�� Understand various methods to create a Pandas Series.
�� Manipulate a Pandas Series.
�� Understand slicing and indexing in a Pandas Series.
�� Understand various methods to create a Data Frame.
�� Understand operations on rows and columns of a Data Frame.
�� Iterate through a Data Frame.

20.1  INTRODUCTION

Pandas is a Software Library, primarily used for Data manipulation and
Analysis. It was developed by Wes McKinney and was released on January 11,
2008. It is a free library released under the three-clause BSD license. As
per Wikipedia, this library derives its name from Panel Data. The term
Panel Data is used in Statistics and Economics and it involves measurement
over time.

The two most important data structures in Pandas are:

�� Series and
�� DataFrame

The former represents one-dimensional indexed data and the latter rep-
resents two-dimensional indexed data. Formally, these data structures are
defined as follows.

C H A P T E R20
Pandas–I

PPUPS.CH20_2pp.indd 501PPUPS.CH20_2pp.indd 501 5/29/2023 2:50:40 PM5/29/2023 2:50:40 PM

502 • Python Programming Using Problem Solving

Series: A Pandas Series represents a one-dimensional array of indexed
data. It can be created by an array of actual data and an associated array of
indices. The Series function helps us to create a Series data type.

Data Frame: A DataFrame is a two-dimensional labeled array that
stores an ordered collection of columns.

Pandas provides us with

�� Label-based data access
�� Data alignment
�� Ways to handle missing data
�� Hierarchical indexing
�� Pivoting and reshaping
�� Aggregating and grouping
�� Spreadsheet-style pivot tables
�� Performance and use for large datasets

and many more features, which make this library distinctive and useful. The
library is efficient, primarily because a major portion of the code is written in C.

This chapter provides an insight into Pandas and discusses some of its most
important features. The chapter has been organized as follows (Figure 20.1):

FIGURE 20.1  Organization of the chapter.

Let’s now dive into Pandas and move toward Data Science.

PPUPS.CH20_2pp.indd 502PPUPS.CH20_2pp.indd 502 5/29/2023 2:50:41 PM5/29/2023 2:50:41 PM

Pandas–I • 503

20.2  CREATING PANDAS SERIES

A Pandas Series can be created by using a List, a Numpy array, or a dic-
tionary (Figure 20.2). This section explains the three ways of creating a
Series and presents examples of each method.

Using List

Using NumPy
Array

Using
Dictionary

Creating
Series

FIGURE 20.2  Creating Pandas Series.

20.2.1  Using List

A Python list can be converted into a Pandas Series by passing the list in the
pandas.Series method. For example, in the following code, a list called L1 is
passed in the Series function to create a Pandas Series.

The list passed in the Series function can also contain NaN values, like in
the case of L2. The Series S2 is created by passing L2 in the Series function
of Pandas. Note that the output contains the index along with the values.

Code:

import pandas as pd

L1=[90, 81, 72, 63, 54, 45, 36]

S1=pd.Series(L1)

print(S1)

L2=[3, 6, 7, 1, np.nan, 8]

S2=pd.Series(L2)

print(S2)

PPUPS.CH20_2pp.indd 503PPUPS.CH20_2pp.indd 503 5/29/2023 2:50:41 PM5/29/2023 2:50:41 PM

504 • Python Programming Using Problem Solving

Output:

0	 90

1	 81

2	 72

3	 63

4	 54

5	 45

6	 36

dtype: int64

0	 3.0

1	 6.0

2	 7.0

3	 1.0

4	 NaN

5	 8.0

dtype: float64

20.2.2  Using NumPy Arrays

A NumPy array can be converted into a Pandas Series by passing the array
in the pandas.Series function. For example, in the following code, a NumPy
array called arr_np is passed in the Series function to create a Pandas Series.

The array, passed in the Series function, can also contain NaN values,
like in the case of arr_np2. The Series S3 is created by passing arr_np2 in
the Series function of Pandas.

Code:

arr_np=np.random.randint(2,89,10)

S3=pd.Series(arr_np)

print(S3)

arr_np2=np.array([2, np.nan, 9])

S3=pd.Series(arr_np2)

print(S3)

Output:

0	 23

1	 20

2	 50

PPUPS.CH20_2pp.indd 504PPUPS.CH20_2pp.indd 504 5/29/2023 2:50:41 PM5/29/2023 2:50:41 PM

Pandas–I • 505

3	 70

4	 35

5	 58

6	 46

7	 65

8	 68

9	 44

dtype: int32

0	 2.0

1	 NaN

2	 9.0

dtype: float64

20.2.3  Using Dictionary

A Dictionary can be converted into a Pandas Series by passing the dic-
tionary in the pandas.Series function. For example, in the following code, a
dictionary called dict_1 is passed in the Series function to create a Pandas
Series. In such cases, the key to the dictionary becomes the index of the
Series.

Code:

dict_1={'Harsh':97,'Naks':90,'Sahil':91}

S4=pd.Series(dict_1)

print(S4)

Output:

Harsh		 97

Naks		 90

Sahil		 91

dtype: int64

20.3  INDEXING, ILOC, SLICING, AND BOOLEAN INDEX

This section presents the ways to access the elements of a pandas Series and
getting a segment of a Series out of a given Series. This section also presents
an overview of the loc[] and iloc[] objects and discusses slicing in Series.
The first five elements and the last five elements of a Series can be displayed
using the head and the tail methods respectively. The next two subsections

PPUPS.CH20_2pp.indd 505PPUPS.CH20_2pp.indd 505 5/29/2023 2:50:41 PM5/29/2023 2:50:41 PM

506 • Python Programming Using Problem Solving

cover the head and the tail methods of the Pandas Series. Finally, the index
and describe the methods of the Pandas Series have been discussed. It may
be stated that the Boolean indexing, explained in the last subsection, can
also be used in Series.

20.3.1  Indexing: loc

An element of a Series can be accessed by passing the value of the index in
square brackets. For example, S1[0] is used to access the element at index 0,
of the series S1. Likewise, S1[2] is used to access the third element. Note that
S1 used in the following code is the same as that created in Section 20.2.1
and S4 is the same as that created in Section 20.2.3.

Code:

print(S1[2])

print(S1[0])

print(S4['Harsh'])

Output:

72

90

97

20.3.2  Indexing Continued: iloc

Accessing elements using 0 based indices: The iloc object helps to access
elements in the same manner as a NumPy array. Note that, iloc can also
give you the last element using iloc[-1], like in the case of a NumPy array.
This object also helps in slicing a given Series, in the same manner as a
NumPy array. Note that S3 in the following code is the same as that created
in Section 20.2.2 and S4 is the same as that created in Section 20.2.3.

Code:

#To access the last and the second element

S4.iloc[-1]

S4.iloc[1]

Output:

91

90

PPUPS.CH20_2pp.indd 506PPUPS.CH20_2pp.indd 506 5/29/2023 2:50:41 PM5/29/2023 2:50:41 PM

Pandas–I • 507

Code:

#To retrieve elements from the second index to the fourth index
(element at index 5 will not be #included).

S3.iloc[2:5]

#before S3 is changed

Output:

2	 50

3	 70

4	 35

dtype: int32

20.3.3  Slicing

Slicing is used to create a new Series from a given Series by specifying the
first and the last required index, separated by a “:”. For example, in the follow-
ing code S5 is created by taking the elements of S2 from index 3 to 7 and S6 is
created from S4, containing values from index “Harsh” to Index “Sahil.” Note
that S2 used in the following code is the same as that created in Section 20.2.1
and S4 is the same as that created in Section 20.2.3.

Code:

S5=S2[3:7]

print(S5)

print(S4['Harsh'])

S6=S4['Harsh':'Sahil']

print(S6)

Output:

3	 1.0

4	 NaN

5	 8.0

dtype: float64

97

Harsh		 97

Naks		 90

Sahil		 91

dtype: int64

PPUPS.CH20_2pp.indd 507PPUPS.CH20_2pp.indd 507 5/29/2023 2:50:41 PM5/29/2023 2:50:41 PM

508 • Python Programming Using Problem Solving

20.3.4  Functions: Head, Tail, Describe, and index

20.3.4.1  head()

The head() function displays the top 5 values of the Series. For example,
S3.head() displays the first five values of S3. Note that S3 used in the follow-
ing code is the same as that created in Section 20.2.2.

Code:

S3.head()

Output:

0 	 23

1 	 20

2 	 50

3 	 70

4 	 35

dtype: int32

20.3.4.2  tail()

The tail() function displays the last 5 values of the Series. For example,
S3.tail() displays the last 5 values of S3. Note that S3 used in the following
code is the same as that created in Section 20.2.2.

Code:

S3.tail()

Output:

5	 58

6	 46

7	 65

8 	 68

9	 44

dtype: int32

20.3.4.3  index

This method displays the index(s) of the given Series. For example, S4.index
shows the index of the series S4. Note that S4 used in the following code is the
same as that created in Section 20.2.3.

PPUPS.CH20_2pp.indd 508PPUPS.CH20_2pp.indd 508 5/29/2023 2:50:41 PM5/29/2023 2:50:41 PM

Pandas–I • 509

Code:

S4.index

Output:

Index(['Harsh', 'Naks', 'Sahil'], dtype='object')

20.3.4.4  describe()

The describe function of the Series object displays the following informa-
tion about a Series

�� count: This gives the number of the items in the given Series
�� mean: This gives the mean of the items in the given Series
�� min: This gives the minimum of the items in the given Series
�� max: This gives the maximum of the items in the given Series
�� 25%, 50%, 75%: These three denote the 25th, 50th, and 75th percentile.
�� std: This gives the standard deviation of the items in the given Series

An example of the describe function is as follows. Note that S3 used in the
following code is the same as that created in Section 20.2.2.

Code:

S3.describe()

Output:

count 10.000000

mean 47.900000

std 17.872698

min 20.000000

25% 37.250000

50% 48.000000

75% 63.250000

max 70.000000

dtype: float64

20.3.5  Boolean Index

In a Series, the required condition can be specified inside the square brack-
ets, to get the elements that satisfy the given condition. For example, to get
elements greater than 30 from S3, the following code can be written. Note
that S3 used in the following code is the same as that created in Section 20.2.2.

PPUPS.CH20_2pp.indd 509PPUPS.CH20_2pp.indd 509 5/29/2023 2:50:41 PM5/29/2023 2:50:41 PM

510 • Python Programming Using Problem Solving

Code:

S3[S3>30]

Output:

2	 50

3	 70

4	 35

5	 58

6	 46

7	 65

8	 68

9	 44

dtype: int32

Likewise, you can state any Boolean statement involving the series, in the
square brackets, alongside the Series.

20.4 � SORTING, STATISTICAL ANALYSIS, AND STRING
FUNCTIONS

This section discusses the various methods of the Series data structure of
Pandas: to sort the values of a Series, find the minimum value, maximum
value, the mean, median, and standard deviation of the values in a Series.

20.4.1  sort_values()

This method sorts the items of the given Series. This also displays the indexes
of the sorted arrays. For example, S3.sort_values() sorts the elements of the
Series S3. Note that S3 used in the following code is the same as that created
in Section 20.2.2.

Code:

S3.sort_values()

Output:

1	 20

0	 23

4	 35

PPUPS.CH20_2pp.indd 510PPUPS.CH20_2pp.indd 510 5/29/2023 2:50:41 PM5/29/2023 2:50:41 PM

Pandas–I • 511

9	 44

6	 46

2	 50

5	 58

7	 65

8	 68

3	 70

dtype: int32

20.4.2  Statistical Functions

Except for the above, the following methods (Table 20.1) help us to get the
required statistics from a series. Note that in the following table S1 and S2 are
the same as those created in Section 20.2.1.

TABLE 20.1  Functions to find the maximum, minimum, sum, median, standard deviation,
and value count of a Series.

Name of
the function

Explanation Example Output

max This function finds the maximum
value from a given series.

max_S2=S2.max() 8.0

min This function finds the minimum
value from a given series.

min_S2=S2.min() 1.0

sum This function finds the sum of
values from a given series.

sum_S2=S2.sum() 25.0

median This function finds the median
value of the given series.

median_S2=S2.median() 6.0

value_
counts

This function counts the
frequencies of values in a given
Series.

S6=pd.Series(np.random.randint
(2,10,20))
print(‘Value Counts’)
c=S6.value_counts()
print(c)

Value Counts
8 6
9 3
5 3
7 2
6 2
3 2
4 1
2 1

20.4.3  String Functions

The functions applicable to strings can also be applied to a Pandas Series.
For example, the following code converts all the strings in a given Series to

PPUPS.CH20_2pp.indd 511PPUPS.CH20_2pp.indd 511 5/29/2023 2:50:41 PM5/29/2023 2:50:41 PM

512 • Python Programming Using Problem Solving

upper case and then in the lower case. The reader is expected to experiment
with other string functions with the Pandas Series.

Code:

S7 = pd.Series(['Harsh', 'Bharsh', 'Carsh', 'Arsh',np.nan,
'Darsh', 'ABC'])

S8=S7.str.lower()

print(S8)

S9=S7.str.upper()

print(S9)

Output:

0 harsh

1 bharsh

2 carsh

3 arsh

4 NaN

5 darsh

6 abc

dtype: object

0 HARSH

1 BHARSH

2 CARSH

3 ARSH

4 NaN

5 DARSH

6 ABC

dtype: object

20.5  CREATING A DATA FRAME

The definition of a Pandas DataFrame has already been discussed in the first
section of this chapter. This section revisits the topic and sheds light on the
creation and manipulation of a Data Frame.

The following points are worth noting regarding a Data Frame.

�� A Data Frame has a row axis (axis=0). The index of a row is known as the
index. These indices can be Strings or Integers.

PPUPS.CH20_2pp.indd 512PPUPS.CH20_2pp.indd 512 5/29/2023 2:50:41 PM5/29/2023 2:50:41 PM

Pandas–I • 513

�� A Data Frame has a column axis (axis=1). The index of a column is known
as the column name.

�� The values of cells in a Data Frame can be changed.

A Data Frame can be created using any of the following methods (Figure 20.3):

�� By passing a dictionary in the DataFrame method of Pandas
�� By passing a two-dimensional NumPy array in the DataFrame method

of Pandas
�� By passing some Series in the DataFrame method of Pandas
�� By passing a Dataframe object in the DataFrame method of Pandas

This section discusses the above methods in detail and presents examples
of each of the above.

FIGURE 20.3  Creating a Data Frame.

20.5.1  Creating a Data Frame Using a Dictionary

The following steps will create a Data Frame using a dictionary:

1.	 Create a dictionary in which each index is associated with a list of values.
Make sure that each list contains the same number of items.

2.	 Pass the dictionary in the DataFrame method.

PPUPS.CH20_2pp.indd 513PPUPS.CH20_2pp.indd 513 5/29/2023 2:50:42 PM5/29/2023 2:50:42 PM

514 • Python Programming Using Problem Solving

The following code creates a DataFrame called df1 using a dictionary
called book_details.

Code:

import pandas as pd

import numpy as np

#Dictionary

book_details={'Author' : ['A', 'B', 'C', 'D', 'E'], 'Books':
['5', '6', '4', '6', '3'], 'Country': ['INDIA', 'ITALY',
'INDIA', 'CHINA', 'USA']}

#Data Frame From Dictionary

df1=pd.DataFrame(book_details)

print(df1)

Output:

– Author Books Country

0 A 5 INDIA

1 B 6 ITALY

2 C 4 INDIA

3 D 6 CHINA

4 E 3 USA

20.5.2  Creating a Data Frame Using a Two-Dimensional Array

The following steps will create a Data Frame using a two-dimensional array:

1.	 Create a two-dimensional NumPy array.

2.	 Pass the above array in the DataFrame method.

The following code creates a DataFrame called df2 using a NumPy
array called array1. This array, created using the np.random.randint
method contains three rows and four columns. The elements of this array are
between 7 and 89.

Code:

#Create a two-dimensional array

array1=np.random.randint(7,89,(3,4))

#Data Frame from array

df2=pd.DataFrame(array1)

print(df2)

PPUPS.CH20_2pp.indd 514PPUPS.CH20_2pp.indd 514 5/29/2023 2:50:42 PM5/29/2023 2:50:42 PM

Pandas–I • 515

Output:

– 0 1 2 3

0 61 53 51 53

1 52 80 29 54

2 69 40 17 9

20.5.3  Creating the Data Frame Using a Series

The following steps will create a Data Frame using Pandas Series:

1.	 Create Series data structures. The number of Series will be the same as
the number of columns in the required Data Frame. Each Series here
represents a column of the resultant Data Frame. The number of ele-
ments in each Series should be the same.

2.	 Pass a dictionary (in which each Series is associated with the required
index) in the DataFrame method.

The following code creates a DataFrame called df3 using three Series
namely name, salary, and post. These Series are then associated with the
required index in a dictionary, which is passed to the DataFrame method.

Code:

#Creating Series

name=['Duck', 'Rat', 'Cat', 'Snake']

name=pd.Series(name)

salary=[1000, 3421, 1127, 2379]

salary=pd.Series(salary)

post=['HR', 'CEO', 'ME', 'CFO']

post=pd.Series(post)

#DataFrame from Series

df3=pd.DataFrame({'Emp_Name': name, 'EMP_Salary':salary,
'Emp_Post':post})

print(df3)

PPUPS.CH20_2pp.indd 515PPUPS.CH20_2pp.indd 515 5/29/2023 2:50:42 PM5/29/2023 2:50:42 PM

516 • Python Programming Using Problem Solving

Output:

_ Emp_Name EMP_Salary Emp_Post

0 Duck 1000 HR

1 Rat 3421 CEO

2 Cat 1127 ME

3 Snake 2379 CFO

Students_df Data Frame

The following examples use the Students_df Data Frame. The student is
expected to create the Data Frame, using the code that follows.

Code:

import pandas as pd

Students={'Names':['Amit', 'Ajay', 'Atul', 'Abhay',' Amay'],
'Age':[18,19,17,18,19],'Perc_Prev':[78,90.2,87.2,79.3,92] }

Students_df=pd.DataFrame(Students)

Students_df

Output:

_ Names Age Perc_Prev

0 Amit 18 78.0

1 Ajay 19 90.2

2 Atul 17 87.2

3 Abhay 18 79.3

4 Amay 19 92.0

20.6 � OPERATIONS ON ROWS AND COLUMNS OF
A DATA FRAME

Having seen the creation of a Data Frame, let us move on to the operations
that can be applied to rows and columns of a Data Frame. This section pre-
sents some of the most important methods and procedures to access the rows
and columns of a Data Frame.

PPUPS.CH20_2pp.indd 516PPUPS.CH20_2pp.indd 516 5/29/2023 2:50:42 PM5/29/2023 2:50:42 PM

Pandas–I • 517

20.6.1  Adding a Column in a Data Frame

In a Data Frame, we can add a column in many ways, one of which is using a
list. To add a column in any given Data Frame, perform the following steps:

�� Create a List, say L
�� Assign the list to the name of the Data Frame followed by the name of the

column in square brackets. That is,
	 <name of the Data Frame>['<Column Name'>] = L

For example, the following code adds a column named Perc in a Data
Frame called Students_df.

Code:

#Addition of Columns

Students_df['Perc']=[90,87.2,72,69,89]

Students_df

Output:

_ Names Age Perc_Prev Perc

0 Amit 18 78.0 90.0

1 Ajay 19 90.2 87.2

2 Atul 17 87.2 72.0

3 Abhay 18 79.3 69.0

4 Amay 19 92.0 89.0

20.6.2  Deleting Column from the Data Frame

The drop function is used to drop rows/columns from a Data Frame. This
function takes the following parameters:

�� A list containing the names of the columns to be removed.
�� axis, which in this case is assigned the value 1 (as we wish to delete a col-

umn/columns).
�� inplace, which must be True if the changes are to be made permanent.

For example, the following code deletes the Perc column from a Data
Frame called Students_df.

PPUPS.CH20_2pp.indd 517PPUPS.CH20_2pp.indd 517 5/29/2023 2:50:42 PM5/29/2023 2:50:42 PM

518 • Python Programming Using Problem Solving

Code:

#Deleting column

Students_df.drop(['Perc_Prev'], axis=1)

Output:

_ Names Age Perc Perc

0 Amit 18 90.0 90.0

1 Ajay 19 87.2 87.2

2 Atul 17 72.0 72.0

3 Abhay 18 69.0 69.0

4 Amay 19 89.0 89.0

Note that since we have not used the inplace parameter. The changes are
not permanent. If Students_df is displayed, the column still appears.

Code:

Students_df	

Output:

_ Names Age Perc_Prev Perc

0 Amit 18 78.0 90.0

1 Ajay 19 90.2 87.2

2 Atul 17 87.2 72.0

3 Abhay 18 79.3 69.0

4 Amay 19 92.0 89.0

However, if inplace=True is passed as an argument to the drop method,
the changes are done for good.

Code:

#Deleting column

Students_df.drop(['Perc_Prev'], axis=1, inplace=True)

Students_df

PPUPS.CH20_2pp.indd 518PPUPS.CH20_2pp.indd 518 5/29/2023 2:50:42 PM5/29/2023 2:50:42 PM

Pandas–I • 519

_ Names Age Perc

0 Amit 18 90.0

1 Ajay 19 87.2

2 Atul 17 72.0

3 Abhay 18 69.0

4 Amay 19 89.0

20.6.3  Adding a Row in a Data Frame

The concat function helps to add a row to a Data Frame. A Data Frame
containing the values in the row to be added can be concatenated with the
given Data Frame, as shown in the following code.

Code:

#Create a Data Frame

df1=pd.DataFrame([['Kim',17,92.8]], columns=['Names','Age',
'Perc'])

print(df1)

#Concatenate with the existing Data Frame

Students_df = pd.concat([Students_df,df1])

Output:

_ Names Age Perc

Amit 18 90.0

1 Ajay 19 87.2

2 Atul 17 72.0

3 Abhay 18 69.0

4 Amay 19 89.0

0 Kim 17 92.8

20.6.4  Deleting Row from the Data Frame

The drop function is used to drop rows/columns from a Data Frame. This
function takes the following parameters:

�� A list containing the names of the rows
�� axis, which in this case is assigned the value 0 (as we wish to delete a row)
�� inplace, which must be True if the changes are to be made permanent

PPUPS.CH20_2pp.indd 519PPUPS.CH20_2pp.indd 519 5/29/2023 2:50:42 PM5/29/2023 2:50:42 PM

520 • Python Programming Using Problem Solving

For example, the following code deletes the fifth row from a Data Frame
called Students_df.

Code:

Students_df.drop([4], axis=0, inplace=True)

Output:

_ Names Age Perc

0 Amit 18 90.0

1 Ajay 19 87.2

2 Atul 17 72.0

3 Abhay 18 69.0

0 Kim 17 92.8

20.7  DEALING WITH ROWS

Having seen the creation of a DataFrame and basic operations on a
DataFrame, let’s have a brief look at the various operations on rows of a
DataFrame.

20.7.1  loc[] and iloc[]

The loc[] object can be used to access the rows of a Data Frame. This takes
the name of the row as its input and helps us to access the desired row. The
iloc[1] object, on the other hand, helps in locating a row using its index. As
stated earlier, iloc comes to the rescue when only the zero-based indexes can
be used for accessing the data.

For example, the following code accesses the fourth row (having index=3)
using loc[] and iloc[].

Code:

Students_df.loc[3]

Output:

Names Abhay

18 Perc

69 Name: 3, dtype: object

PPUPS.CH20_2pp.indd 520PPUPS.CH20_2pp.indd 520 5/29/2023 2:50:42 PM5/29/2023 2:50:42 PM

Pandas–I • 521

Code:

Students_df.iloc[2]

Output:

Name Atul

Age 17

Perc 72

Name: 2, dtype: object

20.7.2  rename

The rename method helps us to rename the rows or columns of a given Data
Frame. This function takes the following parameters:

�� Name of the Column/ row followed by the new name, separated by a
colon.

�� inplace = True, if the changes are intended to be permanent

For example, the following code renames the Perc column of the
Students_df Data Frame to Percentage.

Students_df.rename(columns={“Perc”:”Percentage”})

_ Names Age Percentage

0 Amit 18 90.0

1 Ajay 19 87.2

2 Atul 17 72.0

3 Abhay 18 69.0

Using this method, many columns can also be renamed. Also, if the value
of inplace = True, then changes made are permanent.

•  <name of the Data Frame>.columns gives the list of columns of the Data Frame.

EXAMPLE:

To see the names of the columns of the Students_df Data Frame, issue the
following command.

Students_df.columns

TIPS

PPUPS.CH20_2pp.indd 521PPUPS.CH20_2pp.indd 521 5/29/2023 2:50:42 PM5/29/2023 2:50:42 PM

522 • Python Programming Using Problem Solving

Output:

Index(['Names', 'Age', 'Percentage'], dtype='object')

�� The rename function renames the rows or columns of a Data Frame.
�� The unique function finds unique values in a column of a Data Frame.

EXAMPLE:

To see the unique values of the age column of the Students_df Data Frame
issue the following command.

Students_df.Age.unique()

Output:

array([18, 19, 17], dtype=int64)

�� The nunique function finds the number of unique values in a Data
Frame column.

EXAMPLE:

Students_df.Age.nunique()

Output:

3

�� String functions can be used to apply string operations to the names of
Columns

20.8  ITERATING A PANDAS DATA FRAME

This section presents various methods to iterate through a Pandas Data
Frame. The first subsection deals with the methods for rows and the second
deals with the method for columns. This section uses the Students_df1 Data
Frame. The reader is requested to create this Data Frame before proceed-
ing any further.

Code:

import pandas as pd

Students={'Name':['Amit', 'Ajay', 'Atul', 'Abhay', 'Amay'],

'Age':[18, 19, 17, 18, 19],'Marks':[78, 90.2, 87.2, 79.3, 92],

'City':['Faridabad', 'New Delhi', 'Faridabad', 'Delhi', 'New Delhi']}

PPUPS.CH20_2pp.indd 522PPUPS.CH20_2pp.indd 522 5/29/2023 2:50:42 PM5/29/2023 2:50:42 PM

Pandas–I • 523

Students_df1=pd.DataFrame(Students)

Students_df1

Output:

Name Age Marks City

0 Amit 18 78.0 Faridabad

1 Ajay 19 90.2 New Delhi

2 Atul 17 87.2 Faridabad

3 Abhay 18 79.3 Delhi

4 Amay 19 92.0 New Delhi

20.8.1  Iterating Pandas Data Frame Rows

There are many ways to iterate through Pandas Data Frame rows. This
subsection discusses some of the most important methods to do so.

20.8.1.1  iterrows()

The pandas.DataFrame.iterrows method helps us to iterate through the
rows of a Data Frame. This method does not take any argument and yields
the index of a row and a Series representing the row.

For example, the following code iterates through the Students_df1 Data
Frame using the iterrows method.

Code:

for index, row in Students_df1.iterrows():

	 print(index,' : ', row)

Output:

0 : Name Amit

Age 18

Marks 78

City Faridabad

Name: 0, dtype: object

PPUPS.CH20_2pp.indd 523PPUPS.CH20_2pp.indd 523 5/29/2023 2:50:42 PM5/29/2023 2:50:42 PM

524 • Python Programming Using Problem Solving

1 : Name Ajay

Age 19

Marks 90.2

City New Delhi

Name: 1, dtype: object

2 : Name Atul

Age 17

Marks 87.2

City Faridabad

Name: 2, dtype: object

3 : Name Abhay

Age 18

Marks 79.3

City Delhi

Name: 3, dtype: object

4 : Name Amay

Age 19

Marks 92

City New Delhi

Name: 4, dtype: object

20.8.1.2  index

The pandas.DataFrame.index attribute may also be used to iterate over
a given Data Frame rows. This attribute gives the index of the rows and
is particularly useful if some attributes of the Data Frame are to be seen/
manipulated iteratively. For example, the following code prints “<Name of
the student> lives in <city>” for each row of the Students_df1 Data Frame.

Here, <name of the student> is the value of the attribute name in each
row, and <city> is the value of the attribute city in each row.

Code:

for ind in Students_df1.index:

	 print(Students_df1['Name'][ind],' lives in ', Students_
df1['City'][ind])

Output:

Amit lives in Faridabad

Ajay lives in New Delhi

PPUPS.CH20_2pp.indd 524PPUPS.CH20_2pp.indd 524 5/29/2023 2:50:42 PM5/29/2023 2:50:42 PM

Pandas–I • 525

Atul lives in Faridabad

Abhay lives in Delhi

Amay lives in New Delhi

20.8.1.3  itertuples()

The DataFrame.itertuples() method can also be used to iterate through
a Pandas Data Frame. This method gives the rows as tuples that map the
attribute and the value of each item in a row.

For example, the following code iterates through the Students_df1 Data
Frame using the itertuples method.

Code:

for t in Students_df1.itertuples():

		 print(t)

Output:

Pandas(Index=0, Name='Amit', Age=18, Marks=78.0, City='Faridabad')

Pandas(Index=1, Name='Ajay', Age=19, Marks=90.2, City='New Delhi')

Pandas(Index=2, Name='Atul', Age=17, Marks=87.2, City='Faridabad')

Pandas(Index=3, Name='Abhay', Age=18, Marks=79.3, City='Delhi')

Pandas(Index=4, Name='Amay', Age=19, Marks=92.0, City='New Delhi')

�� The loc and iloc can also be used to iterate through a Data Frame.
� The apply method can also be used to iterate through a Data Frame.

However, it requires the know-how of lambda functions, which is beyond
the scope of this book.

20.8.2  Iterating Over Columns

There are many ways to iterate through Pandas Data Frame columns. This
section discusses some of the most important methods to do so.

20.8.2.1  iteritems()

The pandas.DataFrame.iteritems can be used to iterate over Pandas
Data Frame columns. The method does not take any argument and yields
the following.

�� label: Name of the column
�� content: A Series representing the column.

TIP

PPUPS.CH20_2pp.indd 525PPUPS.CH20_2pp.indd 525 5/29/2023 2:50:42 PM5/29/2023 2:50:42 PM

526 • Python Programming Using Problem Solving

For example, the following code iterates through the Students_df1 Data
Frame using the iteritems method.

Code:

for label, col in Students_df1.iteritems():

	 print(label,' : ', col)

Output:

Name : 0 Amit

1 Ajay

2 Atul

3 Abhay

4 Amay

Name: Name, dtype: object

Age : 0 18

1 19

2 17

3 18

4 19

Name: Age, dtype: int64

Marks : 0 78.0

1 90.2

2 87.2

3 79.3

4 92.0

Name: Marks, dtype: float64

City : 0 Faridabad

1 New Delhi

2 Faridabad

3 Delhi

4 New Delhi

Name: City, dtype: object

20.8.2.2  list

The list method extracts the names of the columns of a DataFrame. This list
can be used to access the required data using the for loop.

PPUPS.CH20_2pp.indd 526PPUPS.CH20_2pp.indd 526 5/29/2023 2:50:42 PM5/29/2023 2:50:42 PM

Pandas–I • 527

For example, the following code iterates through the Students_df1 Data
Frame using the list method.

Code:

for col_name in list(Students_df1):

	 print(Students_df1[col_name])

Output:

0 Amit

1 Ajay

2 Atul

3 Abhay

4 Amay

Name: Name, dtype: object

0 18

1 19

2 17

3 18

4 19

Name: Age, dtype: int64

0 78.0

1 90.2

2 87.2

3 79.3

4 92.0

Name: Marks, dtype: float64

0 Faridabad

1 New Delhi

2 Faridabad

3 Delhi

4 New Delhi

Name: City, dtype: object

The head method shows the first five rows of a Data Frame and the tail method shows
the last five rows of the Data Frame.

TIP

PPUPS.CH20_2pp.indd 527PPUPS.CH20_2pp.indd 527 5/29/2023 2:50:42 PM5/29/2023 2:50:42 PM

528 • Python Programming Using Problem Solving

20.9  CONCLUSION

This chapter discussed some of the common ways to create Pandas Series
and Data Frames. The topics like indexing, slicing, and Boolean Index have
also been discussed. This chapter also introduced functions for sorting the
values, finding maximum, minimum, median, standard deviation, mean, and
count of values along with head, tail, and description. The operations on Rows
and Columns of a Data Frame have also been dealt with in detail.

The next chapter takes the discussion forward and introduces topics like
aggregation, pivoting, joining, Merging, and Concatenation. The chapter also
discusses the methods to import and export Data between CSV files and Data
Frames.

The reader is expected to attempt exercises given at the end of this chap-
ter and those in the Workbook to develop a better understanding of the topic.

EXERCISES

Multiple Choice Questions

1.	 Which of the following represents an array of actual data and an associ-
ated array of indices?

	 (a)  Series	 	 (b)  Data Frame

	 (c)  Both	 	 (d)  None of the Above

2.	 Which of the following represents two-dimensional data and an associ-
ated array of indices?

	 (a)  Series	 	 (b)  Data Frame

	 (c)  Both	 	 (d)  None of the Above

3.	 Which of the following can be used to create a Series?

	 (a)  List	 	 (b)  NumPy array

	 (c)  Dictionary	 (d)  All of the above

4.	 Which of the following can be used to create a Data Frame?

	 (a)  List of Lists

	 (b)  2-D NumPy array

PPUPS.CH20_2pp.indd 528PPUPS.CH20_2pp.indd 528 5/29/2023 2:50:42 PM5/29/2023 2:50:42 PM

Pandas–I • 529

	 (c)  Dictionary, in which elements are lists

	 (d)  All of the above

5.	 Which of the following can be used to access an element from a Series?

	 (a)  loc	 	 (b)  iloc

	 (c)  both	 	 (d)  None of the above

6.	 Which of the following can take -1 as an argument?

	 (a)  loc	 	 (b)  iloc

	 (c)  Both	 	 (d)  None of the above

7.	 Which of the following functions display the first five rows of a Data
Frame?

	 (a)  head	 	 (b)  tail

	 (c)  both	 	 (d)  None of the above

8.	 Boolean Indexing can be applied to which of the following?

	 (a)  Series	 	 (b)  Data Frame

	 (c)  Both	 	 (d)  None of the above

9.	 axis=0, in a Data Frame, represents

	 (a)  rows	 	 (b)  columns 	

	 (c)  Both	 	 (d)  None of the above

10.	 Which method finds unique values in a column of a Data Frame?

	 (a)  unique	 	 (b)  nunique

	 (c)  Both	 	 (d)  None of the above

11.	 Which method finds the number of unique values in a Data Frame col-
umn?

	 (a)  unique	 	 (b)  nunique

	 (c)  Both	 	 (d)  None of the above

12.	 Which function is used to find the means of a Series?

	 (a)  mean	 	 (b)  average

	 (c)  Both	 	 (d)  None of the above

PPUPS.CH20_2pp.indd 529PPUPS.CH20_2pp.indd 529 5/29/2023 2:50:42 PM5/29/2023 2:50:42 PM

530 • Python Programming Using Problem Solving

Theory

1.	 What is a Pandas Series?

2.	 What is a Pandas DataFrame?

3.	 Discuss various methods to create a Pandas Series. Give examples of
each.

4.	 Discuss various methods to create a Pandas DataFrame. Give examples
of each.

5.	 Differentiate between loc and iloc.

6.	 Explain slicing in Pandas Series.

7.	 Explain the describe function of the Pandas Series.

8.	 Explain the procedure to add a column in a DataFrame.

9.	 Explain the procedure to delete a column from a DataFrame. What is
the importance of inplace?

10.	 Explain the procedure to add a row in a DataFrame.

11.	 Explain the procedure to delete a row from a DataFrame. What is the
importance of inplace?

12.	 How can you iterate through a DataFrame?

PPUPS.CH20_2pp.indd 530PPUPS.CH20_2pp.indd 530 5/29/2023 2:50:42 PM5/29/2023 2:50:42 PM

Objectives

After reading this chapter, the reader should be able to

�� Understand the importance of head(), tail(), and describe()
�� Understand Boolean Indexing.
�� Use methods for showing descriptive statistics of a Data Frame.
�� Read from a CSV file
�� Handle missing values.

21.1  INTRODUCTION

The last chapter introduced Pandas and discussed the two most impor-
tant data structures in Pandas: Series and the Data Frame. The chapter
provided an insight into Pandas and discussed some of its most important
features.

This chapter takes the discussion forward and explains some of the most
important methods of Pandas Data Frame. This chapter also discusses
reading data from a csv. The procedures to deal with missing values have
also been discussed in this chapter. This chapter has been organized as
follows (Figure 21.1).

Let’s now dive into advanced topics in Pandas and move toward Data
Science.

C H A P T E R21
Pandas–II

PPUPS.CH21_1pp.indd 531PPUPS.CH21_1pp.indd 531 5/24/2023 4:34:12 PM5/24/2023 4:34:12 PM

532 • Python Programming Using Problem Solving

21.2  DATA FRAME METHODS: HEAD, TAIL, AND DESCRIBE

This section gives an overview of the methods that help us to see a Data
Frame, to describe it, and to apply mathematical functions to the columns of
a Data Frame. This section also revisits Boolean indexing.

The Section that follows makes use of the following Data Frame

FIGURE 21.1  Organization of the chapter.

Code:

Students={'Names':['Amit', 'Ajay', 'Atul', 'Abhay', 'Amay', 'Biyoy',

'Bimal', 'Binay', 'Darvesh', 'Durgesh', 'Ela'], 'Age':[18, 19,

17, 18, 19, 20, 21, 20, 19, 17, 20], 'Perc_Prev':[78, 90.2, 87.2, 79.3,

92, 91, 90, 89, 92, 80, 67] }

Students_df=pd.DataFrame(Students)

Students_df

PPUPS.CH21_1pp.indd 532PPUPS.CH21_1pp.indd 532 5/24/2023 4:34:13 PM5/24/2023 4:34:13 PM

Pandas–II • 533

Output:

_ Names Age Prev_Perc

0 Amit 18 78.0

1 Ajay 19 90.2

2 Atul 17 87.2

3 Abhay 18 79.3

4 Amay 19 92.0

5 Biyoy 20 91.0

6 Bimal 21 90.0

7 Binay 20 89.0

8 Darvesh 19 92.0

9 Durgesh 17 80.0

10 Ela 20 67.0

21.2.1  Functions: Head, Tail, and Describe

21.2.1.1  head()

The head() function displays the first five rows of a Data Frame. For exam-
ple, Students_df.head() displays the first five rows of Students_df.

21.2.2  tail()

The tail() function displays the last five rows of a Data Frame. For example,
Students_df.tail() displays the last five values of Studentes_df.

21.2.3  columns

This displays the column(s) of the given Data Frame. For example,
Students_df.columns show the columns of the Data Frame Students_df.

Code:

Students_df.columns

Output:

Index(['Names', 'Age', 'Perc_Prev'], dtype='object')

PPUPS.CH21_1pp.indd 533PPUPS.CH21_1pp.indd 533 5/24/2023 4:34:13 PM5/24/2023 4:34:13 PM

534 • Python Programming Using Problem Solving

21.2.4  describe()

The describe method of the Data Frame object displays the following
information about the numeric columns of a Data Frame

�� count: This gives the number of the items in the Column.
�� mean: This gives the average of the items in the Column.
�� min: This gives the minimum of the items in the Column.
�� max: This gives the maximum of the items in the Column.
�� 25%, 50%, 75%: These three denote the 25%, 50% and the 75% values.
�� std: This gives the standard deviation of the items in the Column.

An example of the describe function is as follows.

Code:

Students_df.describe()

Output:

_ Age Perc_Prev

count 11.000000 11.000000

mean 18.909091 85.063636

std 1.300350 7.983267

min 17.000000 67.000000

25% 18.000000 79.650000

50% 19.000000 89.000000

75% 20.000000 90.600000

max 21.000000 92.000000

21.3  BOOLEAN INDEX

In a Data Frame, the required condition can be specified inside the square
brackets, to get the rows that satisfy the given condition. For example, to
display the records in which the age of a student is greater than 19 from the
Students_df, the following code can be written.

Code:

Students_df[Students_df['Age']>18]

PPUPS.CH21_1pp.indd 534PPUPS.CH21_1pp.indd 534 5/24/2023 4:34:13 PM5/24/2023 4:34:13 PM

Pandas–II • 535

Output:

Names Age Perc_Prev Perc_Prev

1 Ajay 19 90.2

4 Amay 19 92.0

5 Biyoy 20 91.0

6 Bimal 21 90.0

7 Binay 20 89.0

8 Darvesh 19 92.0

10 Ela 20 67.0

Likewise, you can state any Boolean statement involving a column, in the
square brackets.

21.4 � SORTING, DESCRIPTIVE STATISTICS, AND APPLYING
STRING FUNCTIONS

This section discusses the various methods of the Data Frame data structure
of Pandas: to sort the values of a Column, find the minimum value, maxi-
mum value, the mean, median, mode, and standard deviation of the values in
a column.

21.4.1  sort_values()

This method sorts the items of the given Column of a Data Frame. This also
displays the indexes of the sorted arrays. For example, Students_df['Age'].
sort_values() sorts the elements of the columns “Age.”

Code:

Students_df['Age'].sort_values()

Output:

2 17

9 17

0 18

3 18

1 19

PPUPS.CH21_1pp.indd 535PPUPS.CH21_1pp.indd 535 5/24/2023 4:34:13 PM5/24/2023 4:34:13 PM

536 • Python Programming Using Problem Solving

4 19

8 19

5 20

7 20

10 20

6 21

Name: Age, dtype: int64

21.4.2 � Finding Maximum, Minimum, Median, Standard Deviation, Mean, and
Count of Values

The following methods (Table 21.1) help us to get the required statistics from
a column of a given Data Frame.

TABLE 21.1  Functions to find the maximum, minimum, sum, median, standard deviation, variance,
mode, quantile, and value count of a column of a Data Frame.

Name of the
function

Explanation Example Output

max This function finds the maximum
value from the specified column of
a Data Frame.

Students_df['Age'].max() 21

min This function finds the minimum
value from the specified column of
a Data Frame.

Students_df['Age'].min() 17

sum This function finds the sum of
values from the specified column
of a Data Frame.

Students_df['Age'].sum() 208

median This function finds the median
of the value from the specified
column of a Data Frame.

Students_df['Age'].
median()

19.0

std This function finds the standard
deviation of values from a given
column of a Data Frame.

Students_df['Age'].std() 1.3003

var This function finds the variance of
values from the specified column
of a Data Frame.

Students_df['Age'].var() 1.6909

mode This function finds the mode of
values from the specified column
of a Data Frame.

Students_df['Age'].
mode()

0	 19
1	 20
dtype:
int64

PPUPS.CH21_1pp.indd 536PPUPS.CH21_1pp.indd 536 5/24/2023 4:34:13 PM5/24/2023 4:34:13 PM

Pandas–II • 537

Name of the
function

Explanation Example Output

quantile This function finds the qauntile of
values from the specified column
of a Data Frame. For example,
quantile(0.25) finds the 25th
quantile and quantile(0.50) finds
the 50th quantile of a given column
of a Data Frame.

Students_df['Age'].
quantile(0.25)
Students_df['Age'].
quantile(0.75)

18.0

19.0

value_counts This function counts the
frequencies of values in the
specified column of a Data
Frame.

c=S Students_df['Age'].
value_counts()
print(c)

Value
Counts
20	 3
19	 3
18	 2
17	 2
21	 1
Name: Age,
dtype: int64

21.4.3  String Functions

The functions applicable to strings can also be applied to the columns of
a Pandas Data Frame. For example, the following code converts all the
strings in the Names column of the Students_df Data Frames to the upper
case and then in the lower case respectively. The reader is expected to try
other string functions with the str type Columns of a Data Frame.

Code:

Students_df['Names'].str.upper()

Output:

0 AMIT

1 AJAY

2 ATUL

3 ABHAY

4 AMAY

5 BIYOY

6 BIMAL

7 BINAY

8 DARVESH

PPUPS.CH21_1pp.indd 537PPUPS.CH21_1pp.indd 537 5/24/2023 4:34:13 PM5/24/2023 4:34:13 PM

538 • Python Programming Using Problem Solving

9 DURGESH

10 ELA

Name: Names, dtype: object

Code:

Students_df['Names'].str.lower()

Output:

0 amit

1 ajay

2 atul

3 abhay

4 amay

5 biyoy

6 bimal

7 binay

8 darvesh

9 durgesh

10 ela

Name: Names, dtype: object

21.5  READING FROM A CSV FILE: PANDAS.READ_CSV

The read_csv method of Pandas helps us to read a Comma Separated File
or a csv file. However, it may be stated that the separator in a csv file is not
always a comma. Table 21.2 presents the parameters of the method and the
examples that follow illustrate the usage of this method.

TABLE 21.2  The arguments of read_csv method.

Argument Type Explanation

filepath_or_buffer str This argument represents the path of the file. This path may
include any of the following:
	 (i)	 http
	(ii)	 ftp or
	(iii)	 file

sep str The default value of this argument is “,”. This argument
represents the delimiter to use.

PPUPS.CH21_1pp.indd 538PPUPS.CH21_1pp.indd 538 5/24/2023 4:34:13 PM5/24/2023 4:34:13 PM

Pandas–II • 539

Argument Type Explanation

header int, list of int This argument represents the row number(s) to use as the
start of the data. The default behavior is to infer the column
names.

names array-like This is an optional argument. It represents the list of column
names to use.

squeeze bool The default value of this argument is False. If the parsed
data only contains one column then return a Series.

mangle_dupe_cols bool The default value of this argument is True. This helps us
to retain only the first one of the duplicate columns if they
exist.

Alert: The .csv files used in the following illustrations are given in the
Appendix of this Book.

Illustration 21.1:

Read the Data_Pandas1.csv file.

Solution:

The read_csv method is used to read a csv file. It takes the name of the file as
an argument. The following code reads the “Data_Pandas1.csv.”

Code:

Data=pd.read_csv('Data_Pandas1.csv')

Data

Output:

0	 Tanu\t30\t1\tFalse

1	 Manu\t28\t2\tTrue

2	 Kim\t32\t1\tTrue

3	 Lakshay\t24\t2\tFalse

4	 Krishna\t18\t0\tTrue

Illustration 21.2:

Note that the original file contained “\ t” as a separator; it is being shown in
the Data Frame. Read the file correctly.

PPUPS.CH21_1pp.indd 539PPUPS.CH21_1pp.indd 539 5/24/2023 4:34:13 PM5/24/2023 4:34:13 PM

540 • Python Programming Using Problem Solving

Solution:

To read the file correctly, the sep argument is set to “\ t.” The following code
reads the “Data_Pandas1.csv,” setting sep=“\t.”

Code:

Data=pd.read_csv('Data_Pandas1.csv', sep = '\t')

Data

Output:

Harsh 36 10 True

0 Tanu 30 1 False

1 Manu 28 2 True

2 Kim 32 1 True

3 Lakshay 24 2 False

4 Krishna 18 0 True

Illustration 21.3:

In the above two illustrations, the first row is wrongly read as a header, by the
function. Rectify this.

Solution:

To rectify this, the header argument is set to None.

Code:

Data=pd.read_csv('Data_Pandas1.csv', sep='\t', header=None)

Data

Output:

0 1 2 3

0 Harsh 36 10 True

1 Tanu 30 1 False

2 Manu 28 2 True

3 Kim 32 1 True

4 Lakshay 24 2 False

5 Krishna 18 0 True

PPUPS.CH21_1pp.indd 540PPUPS.CH21_1pp.indd 540 5/24/2023 4:34:13 PM5/24/2023 4:34:13 PM

Pandas–II • 541

Illustration 21.4:

Suppose in the above illustration, we want to read the data from a csv file
from the fourth row onwards (after row number = 2). What changes must be
made in the code to accomplish this task?

Solution:

To accomplish the given task, the header argument is set to 2.

Code:

Data=pd.read_csv('Data_Pandas2.csv', header=2)

Data

Output:

Manu 28 2 True

0 Kim 32 1 True

1 Lakshay 24 2 False

2 Krishna 18 0 True

21.6  MISSING VALUES

The data imported from a csv file, or for that matter any other source may
contain missing values. None and NaN are two standard missing value rep-
resentations in Pandas. The None is a python object, which is recognized by
Pandas. The NaN means “Not a Number.” It is recognized by all the systems.
The following discussion will help us to recognize and replace missing values
in a Pandas Data Frame.

21.6.1  To Check Null Values

The following methods will help us to check null values.

�� isnull(): This function returns a Boolean Data Frame containing True
at the positions having null values and False at the rest of the positions.

�� notnull(): This function returns a Boolean Data Frame containing False
at the positions having null values and True at the rest of the positions.

The examples that follow use the following Data Frame, which is created
using the Data_Pandas6.csv file.

PPUPS.CH21_1pp.indd 541PPUPS.CH21_1pp.indd 541 5/24/2023 4:34:13 PM5/24/2023 4:34:13 PM

542 • Python Programming Using Problem Solving

Code:

import pandas as pd

DataFrame1=pd.read_csv('Data_Pandas6.csv', header=None)

DataFrame1

Output:

0 1 2 3

0 Harsh 36.0 10 True

1 Tanu 30.0 1 False

2 Manu 28.0 2 True

3 Kim 32.0 1 True

4 Lakshay 24.0 2 False

5 NaN NaN NaN NaN

6 Krishna 18.0 NaN True

Illustration 21.5:

Apply isnull() method to a Data Frame and analyze the result.

Solution:

The following code applies the isnull() method to the Data Frame called
DataFrame1 and returns a Data Frame, which contains True at the posi-
tions having NaN and False at the other positions.

Code:

DataFrame1.isnull()

Output:

0 1 2 3

0 False False False False

1 False False False False

2 False False False False

3 False False False False

4 False False False False

5 True True True True

6 False False False False

PPUPS.CH21_1pp.indd 542PPUPS.CH21_1pp.indd 542 5/24/2023 4:34:13 PM5/24/2023 4:34:13 PM

Pandas–II • 543

Illustration 21.6:

Apply the notnull() method to a DataFrame and analyze the result.

Solution:

The following code applies notnull() method to the DataFrame called
DataFrame1 and returns a DataFrame, which contains False at the posi-
tions having NaN and True at the other positions.

Code:

DataFrame1.notnull()

Output:

0 1 2 3

0 True True True True

1 True True True True

2 True True True True

3 True True True True

4 True True True True

5 False False False False

6 True True True True

21.6.2  dropna()

The data imported from a csv file (or other sources for that matter) may
contain missing values. The Data Frame contains NaN at these positions.
The dropna() method helps the programmer to deal with these values. This
method takes the following parameters:

�� axis: The data type of this argument is integer or string. In the case of
integers, the value of the axis can be 0 or 1 and in the case of a string, its
value can be “index” or “column.”

�� how: This argument decides, which row/column is to be dropped. If the
value of this argument is “any,” it drops the row/column having any ele-
ment as Null. If the value of this argument is all, it only drops the rows or
columns wherein all the elements are Null.

PPUPS.CH21_1pp.indd 543PPUPS.CH21_1pp.indd 543 5/24/2023 4:34:13 PM5/24/2023 4:34:13 PM

544 • Python Programming Using Problem Solving

�� thresh: In case the above argument is “any,” it makes sense to tell the
method the minimum number of elements that must be null to drop the
row/column.

�� inplace: if the value of inplace is True, the Data Frame itself is changed.

Illustration 21.7:

Use the dropna() method to a Data Frame to remove rows containing
all NaN’s.

Solution:

The following code drops the rows containing all NaN’s from the Data
Frame called DataFrame1.

Code:

DataFrame1.dropna()

Output:

- 0 1 2 3

0 Harsh 36.0 10 True

1 Tanu 30.0 1 False

2 Manu 28.0 2 True

3 Kim 32.0 1 True

4 Lakshay 24.0 2 False

6 Krishna 18.0 NAN True

21.6.3  fillna()

The fillna() method is used to replace the Null values with some object. This
method takes the following arguments.

�� axis: The datatype of this argument is integer or string. In the case of
integers, the value of the axis can be 0 or 1 and in the case of a string, its
value can be index or column.

�� inplace: if the value of inplace is True, the Data Frame itself is changed.
�� value: This argument represents the value to be replaced for the Null

elements.

PPUPS.CH21_1pp.indd 544PPUPS.CH21_1pp.indd 544 5/24/2023 4:34:13 PM5/24/2023 4:34:13 PM

Pandas–II • 545

�� method: This argument is used if the argument value is not passed. The
following methods replace the null values with those stated.
–– bfill: It replaces the place with value in the Previous index.
–– backfill or
–– ffill which fills the place with value in the Forward index or

		� limit: The datatype of this argument is an integer. This specifies the
maximum number of consecutive forward/backward NaN value fills.

�� replace(): The replace method is used to replace a string, regular
expression, list, dictionary, etc. from a Data Frame. As a matter of fact,
the regular expression is one of the most powerful techniques to deal with
strings. However, it is beyond the scope of this book.

�� to_replace: [str, regex, list, dict, Series, numeric, or None] This argu-
ment represents the pattern that we are trying to replace in Data Frame.

�� value, inplace, limit, and method are the same as those explained in the
previous subsection.

�� interpolate(): The interpolate() method is used to fill NA values in the
Data Frame or Series. This method uses a different interpolation tech-
nique to fill the missing values.

The illustrations that follow exemplify the usage of this method.

Illustration 21.8:

Replace the NaN’s in a Data Frame with the string “Not Known.”

Solution:

The following code replaces the NaN’s from the Data Frame called
DataFrame1 to Not Known.

Code:

DataFrame1.fillna('Not Known')

Output:

_ 0 1 2 3

0 Harsh 36 10 True

1 Tanu 30 1 False

2 Manu 28 2 True

3 Kim 32 1 True

PPUPS.CH21_1pp.indd 545PPUPS.CH21_1pp.indd 545 5/24/2023 4:34:13 PM5/24/2023 4:34:13 PM

546 • Python Programming Using Problem Solving

4 Lakshay 24 2 False

5 Not Known Not Known Not Known Not Known

6 Krishna 18 NAN True

Illustration 21.9:

Replace the NaN’s in a Data Frame with the string “bfill.”

Solution:

The following code replaces the NaN’s from the Data Frame called
DataFrame1 using the “bfill” method.

Code:

DataFrame1.fillna(method='bfill')

Output:

_ 0 1 2 3

0 Harsh 36.0 10 True

1 Tanu 30.0 1 False

2 Manu 28.0 2 True

3 Kim 32.0 1 True

4 Lakshay 24.0 2 False

5 Krishna 18.0 NAN True

6 Krishna 18.0 NAN True

Illustration 21.10:

Replace the NaN’s in a Data Frame by the string “ffill.”

Solution:

The following code replaces the NaN’s from the Data Frame called
DataFrame1 using the “ffill” method.

Code:

DataFrame1.fillna(method='ffill')

PPUPS.CH21_1pp.indd 546PPUPS.CH21_1pp.indd 546 5/24/2023 4:34:13 PM5/24/2023 4:34:13 PM

Pandas–II • 547

Output:

0 1 2 3

0 Harsh 36.0 10 True

1 Tanu 30.0 1 False

2 Manu 28.0 2 True

3 Kim 32.0 1 True

4 Lakshay 24.0 2 False

5 Lakshay 24.0 2 False

6 Krishna 18.0 NAN True

21.7  CONCLUSION

This chapter discussed methods related to Data Frames and ways to deal
with missing data. Reading of data from a csv file and SQL database have also
been discussed in the chapter. The Appendix of this book takes the discus-
sion forward and introduces some ideas for developing a small project using
Pandas. The web resources also contain the files used in this chapter. The
reader is encouraged to have a look at the references given at the end of the
book for a detailed discussion on some of the assorted topics. Let us now
explore the exercises.

EXERCISES

Multiple Choice Questions

1.	 Which method displays the first 5 rows of a Data Frame?

	 (a)  head		 	 (b)  tail

	 (c)  describe		 	 (d)  hover

2.	 Which method displays the last five rows of a Data Frame?

	 (a)  head		 	 (b)  tail

	 (c)  describe		 	 (d)  hover

PPUPS.CH21_1pp.indd 547PPUPS.CH21_1pp.indd 547 5/24/2023 4:34:13 PM5/24/2023 4:34:13 PM

548 • Python Programming Using Problem Solving

3.	 Which method displays the most important statistics of numeric columns
of a Data Frame?

	 (a)  head		 	 (b)  tail

	 (c)  describe		 	 (d)  hover

4.	 To show all the rows of the Students_df Data Frame, for which the age
of the student is less than and equal to 17, which of the following needs
to be issued?

	 (a)  Students_df[Students_df['Age']<18]

	 (b)  Students_df['Age']>18

	 (c)  Students_df[Students_df['Age']]>18

	 (d)  None of the above

5.	 Which of the following is used to sort the values of a given column?

	 (a)  sort_values	 	 (b)  sort

	 (c)  sorted		 	 (d)  All of the above

6.	 Which method can be used to find the variance of a numeric column of a
Data Frame?

	 (a)  variance		 	 (b)  var

	 (c)  Both		 	 (d)  None of the above

7.	 Which method can be used to find the standard deviation of a numeric
column of a Data Frame?

	 (a)  standard_d	 	 (b)  std

	 (c)  Both		 	 (d)  None of the above

8.	 Which method can be used to count the unique values in a column of a
Data Frame?

	 (a)  value_count	 	 (b)  count

	 (c)  Both		 	 (d)  None of the above

9.	 Which of the following can be used to read a csv file in Pandas?

	 (a)  read_csv		 	 (b)  csv_read()

	 (c)  read()		 	 (d)  All of the above

PPUPS.CH21_1pp.indd 548PPUPS.CH21_1pp.indd 548 5/24/2023 4:34:14 PM5/24/2023 4:34:14 PM

Pandas–II • 549

10.	 Which argument in the read_csv method is used to specify the delimiter?

	 (a)  sep		 	 (b)  separator

	 (c)  dist		 	 (d)  None of the above

11.	 Which of the following are used to check Null values in a Data Frame?

	 (a)  isnull()		 	 (b)  notnull()

	 (c)  Both		 	 (d)  None of the above

12.	 Which of the following is used to replace Null values in a Data Frame?

	 (a)  fillna()		 	 (b)  nafill()

	 (c)  fill()		 	 (d)  None of the above

Theory

1.	 Discuss the ways to find missing values in a Data Frame?

2.	 How are the above values replaced in a Data Frame?

3.	 Explain the describe method of Pandas Data Frame.

4.	 Write the steps to read data from a csv file.

5.	 Discuss the sep and header argument of read_csv.

6.	 What are the types of Null values in Pandas?

7.	 Write a short note on how to deal with Null values?

8.	 Write a short note on why do we generally have Null values in a CSV file?

PPUPS.CH21_1pp.indd 549PPUPS.CH21_1pp.indd 549 5/24/2023 4:34:14 PM5/24/2023 4:34:14 PM

PPUPS.CH21_1pp.indd 550PPUPS.CH21_1pp.indd 550 5/24/2023 4:34:14 PM5/24/2023 4:34:14 PM

SECTION I: PROCEDURAL PROGRAMMING

Conditional statements

1.	 Ask the user to enter a four-digit number and check whether the second
digit is one more than the third digit.

2.	 In the above question if the condition is false, swap the digits at the third
and the second place and increment the digit and the units’ place by one if
it is not 9. If the digit at the units’ place is 9, then do not change the digit.

3.	 Ask a user to enter her monthly salary, her house rent (or EMI of the
home loan), her car EMI, bill of the newspaper, the amount she spends on
other things in a month. Now find if the amount left is sufficient enough
to start an SIP. Note that an SIP can be started even with $500.

4.	 Ask the user to enter his total savings. In India, if the savings are above
10,000,000 rupees, then the person does not need to pay any taxes. Also,
this person is entitled to get a subsidy from the government. If the savings
are above 1,000,000 rupees, but below the above specified amount, he is
liable to pay 30% of his savings as tax, plus a surcharge of 2% on the tax.
Calculate the total tax paid by the person.

5.	 Ask the user to enter a three-digit number and find the largest digit of the
number. Also find the sum of the digits and find if the sum of the digits is
same as twice the largest digit.

6.	 Ask the user to enter marks obtained by a student in 5 subjects. If the per-
son scores more than 90% in a subject, then he gets “A+.” If the score is

A P P E N D I X A
Problems for Practice:
Programming Questions

PPUPS.CH22_App-A_2pp.indd 551PPUPS.CH22_App-A_2pp.indd 551 5/25/2023 6:01:33 PM5/25/2023 6:01:33 PM

552 • Python Programming Using Problem Solving

less than 90% but greater than 85%, he gets “A.” If the score is greater than
80%, he gets “A−.” Likewise, if the score is greater than 75%, he gets “B+.”
“B” is awarded to a person scoring more than 70%. A person getting more
than 65% but less than 70% gets “B−” and the one getting more than 60%
but less than 65% gets “C+.” A person getting more than 55% (and less than
60%) gets a “C” and the one getting more than 50% (and less than 55%) gets
a “C−.” Furthermore, for each grade the corresponding CGPA is as follows.

Grade CGPA

A+ 9

A 8

A– 7

B+ 6

B 5

B– 4

C+ 3

C 2

C– 1

	 Find the average CGPA of the student.

7.	 Find whether the year entered by the user is a multiple of 7, without using
the % operator.

8.	 Find whether the number entered by the user is a multiple of both 5 and
7, without using the % operator.

9.	 Ask the user to enter a string and find the number of occurrences of
vowels in the string.

Looping

10.	 Ask the user to enter a number and find the number obtained by revers-
ing the order of the digits.

11.	 Ask the user to enter a decimal number and find its binary equivalent.

12.	 Ask the user to enter a decimal number and find its octal equivalent.

13.	 Ask the user to enter a decimal number and find its hexadecimal
equivalent.

PPUPS.CH22_App-A_2pp.indd 552PPUPS.CH22_App-A_2pp.indd 552 5/25/2023 6:01:33 PM5/25/2023 6:01:33 PM

Problems for Practice: Programming Questions • 553

14.	 Ask the user to enter an n-digit number and find the digit which is
maximum among them.

15.	 Ask the user to enter a list of numbers (he must enter 0 to quit) and find
the maximum number.

16.	 In the above question find the minimum number.

17.	 Ask the user to enter in numbers and find their standard deviation and
mean of the number entered.

18.	 In the above question, find the mean deviation.

19.	 Write a program to generate the pattern of rule 30, as described in the
following link.

	 https://en.wikipedia.org/wiki/Cellular_automaton

Functions

	 A data is given to you. The data has many features (columns) and the last
column states the class to which it belongs (0 or 1). Each features’ data
can be segregated into X and Y, where X is the data that belongs to class 0
and Y is the data that belongs to class 1. The relevance of a particular fea-
ture can be calculated by numerous methods, one of which is the Fisher
Discriminate Ratio.

	 The Fisher Discriminate Ratio of a feature (a column vector) is calculated
using the following formula:

1 1 2 2 2FDR () / ()X Y X Y= µ −µ σ −σ

	 where μX is the mean of the data X, μY is the mean of the data Y. The
standard deviation of X is σX and that of the Y data is σY.

	 Ask the user to enter the elements of two lists Feature and Label.

20.	 Create a function Segregate which takes the Feature and Label as input
and find the vectors X and Y.

21.	 The calculate_mean function should calculate the mean of the input
vector.

22.	 The calculate standard_deviation function should calculate the stand-
ard deviation of the input vector.

23.	 The FDR function should calculate the FDR of a feature.

PPUPS.CH22_App-A_2pp.indd 553PPUPS.CH22_App-A_2pp.indd 553 5/25/2023 6:01:33 PM5/25/2023 6:01:33 PM

554 • Python Programming Using Problem Solving

24.	 Finally write a program that takes 2D data as input and calculates the
FDR of each feature.

	 The relevance of a particular feature can also be calculated by the coef-
ficient of correlation.

	 The coefficient of correlation of a feature (a column vector) is calculated
using the following formula:

		
.

CC
| | |
X Y

X Y
=

×
, where |X| is 2 2 2

1 2 .mx x x+ + + For X = [x1, x2, … xm].

Likewise, |Y| is 2 2 2
1 2 .my y y+ + + For Y = [y1, y2, ... yn].

25.	 Create a function Segregate which takes the Feature and Label as input
and find the vectors X and Y.

26.	 The calculate_mod function should calculate the |X| for the input vector, X.

27.	 The calculate_dot function should calculate X.Y.

28.	 The CORR function should calculate the correlation coefficient of a feature.

29.	 Finally write a program that takes 2D data as input and calculate the coef-
ficient of correlation of each feature.

File Handling/Strings

30.	 Create a file called data and insert data from a text file containing 5 news
articles from a news site.

31.	 Now open the file and find the words beginning with vowels. Make 5 lists
of works beginning with each vowel.

32.	 Draw a histogram of the above data.

33.	 Make the first letter of each word capital and write the words in 5 separate
files.

34.	 Now, from each file find the words that end with a vowel and place the
words in 5 separate files.

35.	 Check which of these words begin and end with a vowel?

36.	 From the original file find the word which is repeated maximum number
of times.

37.	 Do the above task for all the words and plot the frequency of each word
in a graph.

PPUPS.CH22_App-A_2pp.indd 554PPUPS.CH22_App-A_2pp.indd 554 5/25/2023 6:01:33 PM5/25/2023 6:01:33 PM

Problems for Practice: Programming Questions • 555

38.	 From the original file find which alphabet is used maximum number of
times.

39.	 The reader is expected to read about Huffman code from the following
link and encode the file using Huffman code.

	 https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/node210.html

40.	 From the original file, find the string having maximum length.

41.	 From the original file find the string having “cat” as the substring.

42.	 From the original file find the strings which are substrings of some other
strings in the file.

43.	 From the original file find the strings which begin with a capital letter.

44.	 From the original file, find all the email IDs.

45.	 Find the email IDs which are on yahoo server.

46.	 Create a regular expression for the land line number in Germany and find
all the land line numbers from the file.

47.	 From the above list find the phone numbers which belong to a particular
area (for example, Berlin: 30).

48.	 Find the words which appears in all the five articles.

49.	 Find the words, which end with a consonant and contain a vowel.

SECTION II: OBJECT ORIENTED PROGRAMMING

Classes and Objects

You are required to develop software for a car wash company. The company
wants software that can store the details of a car and generate invoices. After
due deliberations, it was decided that a class called car with the following
members can be created.

Data members

	 (a)  Registration Number

	 (b)  Model

	 (c)  Make

	 (d)  Year

	 (e)  Name of the owner

PPUPS.CH22_App-A_2pp.indd 555PPUPS.CH22_App-A_2pp.indd 555 5/25/2023 6:01:33 PM5/25/2023 6:01:33 PM

556 • Python Programming Using Problem Solving

Methods

	 (f)  getdata()		 :	 Takes data from the users

	 (g)  putdata()	 :	 Displays data

	 (h)  __init__()	 :	 Initializes members

	 (i)  del		 :	 Destructor

	 (j)  capacity		 :	 Current capacity for strye.

1.	 Create a class called car to facilitate the development of the required
software.

2.	 Make two instances of the class and display the data. The first instance
should display the data entered using the putdata() function and the sec-
ond should display the data assigned using the __init__(self) method.

3.	 Create an array of cars. Ask the user to enter the data of n cars and display
the data.

4.	 Find the cars whose registration numbers contain “HR51.”

5.	 Find the cars which were manufactured by “Maruti.”

6.	 Find the cars which were manufactured before 2007.

7.	 Find the car whose owners name is “Harsh.”

8.	 Find the cars, whose owners’ name begin with “A” and were manufac-
tured after 2014.

9.	 Find the cars which have a certain type of engine (entered by the user).

10.	 Find the car with maximum capacity.

Operator Overloading

11.	 Create a class called vector, which has three data members

	 (a)  x1: The x component of the vector

	 (b)  y1: The y component of the vector

	 (c)  z1: The z component of the vector

	 The class should have a method called getdata(), which takes data from
the user; putdata(), which displays the data; __init__, the constructor.

PPUPS.CH22_App-A_2pp.indd 556PPUPS.CH22_App-A_2pp.indd 556 5/25/2023 6:01:33 PM5/25/2023 6:01:33 PM

Problems for Practice: Programming Questions • 557

12.	 Create a class called vectors and make two instances of vector: v1 and v2.
Display the data of the two objects.

13.	 The mod of a vector can be defined as follows. If
  

1 1 1 ,iv x i y j z k= + +
then 2 2 2

1 1 1 1| | .v x y z= + + Create an array of vectors. Ask the user to enter
the data of n vectors and find the vector having maximum mod.

14.	 In the above vectors (Question 13) Find the vectors which have the y
component 0.

15.	 Two vectors v1 and v2 can be subtracted by subtracting the correspond-

ing components of the two vectors. That is if
  

1 1 1 1v x i y j z k= + + and
  

2 2 2 2v x i y j z k= + + then

  

1 2 1 2 1 2 1 2() () () .v v x x i y y j z z k− = − + − + −

	 Using the above concept, overload the - operator for the class.

16.	 Two vectors v1 and v2 can be added by adding the corresponding compo-

nents of the two vectors. That is if
  

1 1 1 1v x i y j z k= + + and
  

2 2 2 2v x i y j z k= + + then

  

1 2 1 2 1 2 1 2() () () .v v x x i y y j z z k− = + + + + +

	 Using the above concept, overload the + operator for the class.

17.	 The dot product of two vectors can be obtained by adding the products
obtained by multiplying the corresponding components of the two vec-

tors. That is, if
  

1 1 1 1v x i y j z k= + + and
  

2 2 2 2v x i y j z k= + + then

v1. v2 = (x1. x2) + (y1 . y2) + (z1. z2)

	 Using the above concept, overload the . operator for the class.

18.	 A hypothetical operation called increment can be defined as follows. If
  

1 1 1 1v x i y j z k= + + then

  

1 1 1 1() () ()v x i y j z k+ + = + + + + + + + +

	 Using the above concept, overload the ++ operator for the class.

PPUPS.CH22_App-A_2pp.indd 557PPUPS.CH22_App-A_2pp.indd 557 5/25/2023 6:01:34 PM5/25/2023 6:01:34 PM

558 • Python Programming Using Problem Solving

19.	 A hypothetical operation called decrement can be defined as follows. If
  

1 1 1 1v x i y j z k= + + then
  

1 1 1 1() () ()v x i y j z k− − = − − + − − + − −

	 Using the above concept, overload the –– operator for the class.

20.	 For the vector class, overload the unarray (–) operator.

Inheritance

21.	 Create a class called Book having the following members.

	 (a)  Name of the book: String

	 (b)  Authors(s): List

	 (c)  Year: Year of publication

	 (d)  ISSN: String

	 (e)  Publisher: Name of the publisher

	 The class should have getdata(), putdata() and __init__() as its methods.

22.	 Create two subclasses: TextBook and ReferenceBook having requisite
data members. Demonstrate the use of overriding in the above hierarchy.

23.	 Now, create three subclasses of the TextBook class, namely SocialSci-
ence, Engineering, and Management. Each class should define its
version of getdata() and putdata(). Make instances of these subclasses
and call the method of the derived classes.

24.	 Create a class called XBook, which is a subclass of both TextBook and
ReferenceBook and demonstrate how this can lead to ambiguity.

25.	 Create a class called ABC and craft a class method and an instance
method of the class.

Exception Handling

26.	 Create a class called array, which contains an array and max which is the
maximum number of elements the array can have and methods getdata()
and putdata(), which perform the requisite tasks.

PPUPS.CH22_App-A_2pp.indd 558PPUPS.CH22_App-A_2pp.indd 558 5/25/2023 6:01:34 PM5/25/2023 6:01:34 PM

Problems for Practice: Programming Questions • 559

27.	 Now create a class to raise customized exception. The exception should
be raised so that the user cannot enter more elements than max.

28.	 If the user enters anything except for integer, an exception should be
raised, and requisite message should be displayed.

29.	 Now ask the user to enter two indices and divide the numbers into those
positions. If the number at the second position is 0, an exception should
be raised.

30.	 Ask the user to enter three indices. These three indices contain the values
of “a,” “b,” and “c” of the quadratic equation ax2 + bx + c = 0. Find the
discriminant and the roots of the equation. If the value of b2 – 4ac <0, an
exception should be raised.

SECTION III: DATA STRUCTURES (OPTIONAL)

Sorting and Searching

1.	 Implement linear search and binary search. Compare the time for search-
ing an element from a list of 500 random numbers.

2.	 Repeat the experiment for a list of 5000 integers and compare the time for
searching an element by the two algorithms. Does increasing the number
of elements 10 times increases the running time by 10 folds?

3.	 Implement Counting Sort. (Reference at the end of this Appendix).

4.	 Implement Bucket sort. (Refer to the links at the end of this Appendix).

5.	 Implement a version of Selection Sort which takes O(n log n) time.

6.	 Now take a list of 500 integers and compare the time for Selection Sort
and Bucket Sort.

7.	 Which of the two: Bucket Sort or Counting Sort takes less time. Are they
really comparable?

8.	 Implement Quick Sort and Merge sort using lists.

9.	 Take an array of 5000 random integers and compare the time of running
of Quick Sort and Merge Sort.

10.	 Can the average case complexity of Quick Sort be case better?

PPUPS.CH22_App-A_2pp.indd 559PPUPS.CH22_App-A_2pp.indd 559 5/25/2023 6:01:34 PM5/25/2023 6:01:34 PM

560 • Python Programming Using Problem Solving

Stacks and Queues

11.	 Implement a dynamic stack in which a single placeholder is added when
overflow occurs.

12.	 Implement a dynamic stack in which the number of placeholders is dou-
bled when overflow occurs.

13.	 Implement a dynamic stack in which the number of placeholders is ran-
domly increased when overflow occurs.

14.	 Using stacks, convert an infix expression into a postfix expression.

15.	 Using stacks, convert an infix expression into a prefix expression.

16.	 Using stacks, find the nth Fibonacci term.

17.	 Using stacks, find the number obtained by reversing the order of digits for
a given number.

18.	 Using queues, implement priority.

19.	 Using queues, implement First Come First Serve Scheduling.

20.	 Using queues, implement First Come First Serve with time slice.

Linked List

21.	 Write a program to find whether a given linked list has a cycle.

22.	 Write a program to join two linked lists.

23.	 Write a program to merge two linked lists.

24.	 Write a program to remove duplicate elements from a given linked list.

25.	 Write a program to find the second maximum element from a given linked
list.

26.	 Write a program to find the element greater than the mean (assume that
the linked list has only integers in the data part).

27.	 Write a program to find the common elements from two given linked lists.

28.	 Write a program to find the union of elements of two linked lists.

29.	 Write a program to arrange the elements of the linked list in descending
order.

30.	 Write a program to partition a linked list as per the algorithm in the fol-
lowing reference.

PPUPS.CH22_App-A_2pp.indd 560PPUPS.CH22_App-A_2pp.indd 560 5/25/2023 6:01:34 PM5/25/2023 6:01:34 PM

Problems for Practice: Programming Questions • 561

Graphs and Trees

	 A graph can be represented using a two-dimensional array. The array
would contain 0’s and 1’s. If the element at the ith row and the jth column
has 1, it indicates the presence of an edge from vertex i to j. Ask the user
to enter the number of vertices of a graph and create a two-dimensional
array depicting the graph.

31.	 Find the number of edges in the graph. (Note that the number of 1’s in
the 2-D array is not same as the number of edges in the graph).

32.	 Find the vertex connected to the maximum number of edges.

33.	 Find if the graph has a cycle.

34.	 Ask the user to enter the initial vertex and the final vertex and find if there
is a path from the initial to the final vertex.

35.	 In the above question find whether there are more than one paths from
the initial to the final vertex and find the shortest path.

36.	 Now, in place of 1’s asks the user to enter a finite number representing the
cost of the edge from the vertex i to the vertex j. Find the shortest path
from the source vertex to all other vertices.

37.	 Write a program to find the spanning tree of the graph.

38.	 Write a program to find whether the graph is a tree.

39.	 A tree can be represented using a two-dimensional array having n rows
and two columns. In each row the first column is i and the second col-
umn is j, means that there is an edge from i to j. Ask the user to enter
the requisite data and display the tree (just the list of vertices and edges
associated with them).

	 Create a binary tree using a doubly linked list. For this tree accomplish
the following tasks.

40.	 Write a program to implement the Postorder traversal of a binary tree.

41.	 Write a program to implement the Preorder traversal of a binary tree.

42.	 Write a program to implement the in-order traversal of the tree.

43.	 Check if the given tree is a Binary Search Tree.

44.	 In each Binary Search Tree, find the leftmost node of the right subtree of
a given node.

PPUPS.CH22_App-A_2pp.indd 561PPUPS.CH22_App-A_2pp.indd 561 5/25/2023 6:01:34 PM5/25/2023 6:01:34 PM

562 • Python Programming Using Problem Solving

45.	 In each Binary Search Tree, find the rightmost node of the left subtree of
a given node.

46.	 Write a program to insert an element in a Binary Search Tree.

47.	 Write a program to delete a given node from a given Binary Search Tree.

48.	 Write a program to create a Heap from a given list.

49.	 Implement Heap Sort.

PPUPS.CH22_App-A_2pp.indd 562PPUPS.CH22_App-A_2pp.indd 562 5/25/2023 6:01:34 PM5/25/2023 6:01:34 PM

CHAPTER 1

	  1.  c	  2.  c	   3.  b	   4.  b	   5.  c
	   6.  a	   7.  b	   8.  c	   9.  d	 10.  a
	 11.  d	 12.  b, c	 13.  a	 14.  d

CHAPTER 2

	   1.  c	   2.  b	   3.  b	   4.  c	   5.  a
	   6.  d	   7.  b	   8.  c	   9.  b	 10.  a
	 11.  d	 12.  d	 13.  d	 14.  d	 15.  a

CHAPTER 3

	   1.  d	   2.  a	   3.  a	   4.  c	   5.  d
	   6.  a	   7.  b	   8.  c	   9.  a	 10.  b
	 11.  b	 12.  b	 13.  b	 14.  b	 15.  a

CHAPTER 4

	   1.  a	   2.  a	   3.  b	   4.  a	   5.  b
	   6.  b	   7.  a	   8.  b	   9.  b	 10.  b

A P P E N D I X B
Answers to MCQs

PPUPS.CH23_App-B_1pp.indd 563PPUPS.CH23_App-B_1pp.indd 563 5/24/2023 4:50:29 PM5/24/2023 4:50:29 PM

564 • Python Programming Using Problem Solving

CHAPTER 5

	   1.  d	   2.  c	   3.  b	   4.  d	   5.  a
	   6.  a	   7.  a	   8.  a	   9.  a	 10.  d

CHAPTER 6

	   1.  a	   2.  a	   3.  a	   4.  a	   5.  d
	   6.  a, b, c	   7.  c	   8.  c	   9.  a	 10.  a

CHAPTER 7

	   1.  c	   2.  a	   3.  d	   4.  a	   5.  c
	   6.  b	   7.  b	   8.  a	   9.  a	 10.  b
	 11.  d	 12.  a	 13.  b	 14.  a	 15.  b
	 16.  a	 17.  a	 18.  b	 19.  a	 20.  a
	 21.  b	 22.  c	 23.  b	 24.  d	 25.  d

CHAPTER 8

	   1.  c	   2.  d	   3.  a	   4.  b	   5.  a
	   6.  b	   7.  a	   8.  a	   9.  a	 10.  a, c
	 11.  b	 12.  b

CHAPTER 9

	   1.  e	   2.  a	   3.  a	   4.  a	   5.  b
	   6.  a	   7.  d	   8.  d	   9.  d	 10.  a

CHAPTER 10

	   1.  a	   2.  a	   3.  c	   4.  a	   5.  b
	   6.  a	   7.  b	   8.  a	   9.  b	 10.  b
	 11.  b	 12.  c	 13.  a	 14.  c	 15.  a

PPUPS.CH23_App-B_1pp.indd 564PPUPS.CH23_App-B_1pp.indd 564 5/24/2023 4:50:29 PM5/24/2023 4:50:29 PM

Answers to MCQs • 565

	 16.  a	 17.  b	 18.  b	 19.  b	 20.  b
	 21.  a	 22.  a	 23.  b	 24.  b	 25.  c

CHAPTER 11

	   1.  a	   2.  d	   3.  a	   4.  a	   5.  a
	   6.  a	   7.  a	   8.  b	   9.  a	 10.  a
	 11.  b	 12.  a	 13.  d	 14.  d	 15.  a
	 16.  d	 17.  b	 18.  a	 19.  b	 20.  d

CHAPTER 12

	   1.  a	   2.  d	   3.  a	   4.  c	   5.  a
	   6.  c	   7.  b	   8.  a	   9.  a	 10.  a
	 11.  a	 12.  a	 13.  a	 14.  c	 15.  b
	 16.  a	 17.  a	 18.  a	 19.  a	 20.  b

CHAPTER 13

	   1.  a	   2.  c	   3.  b	   4.  b	   5.  a
	   6.  b	   7.  a	   8.  c	   9.  a	 10.  b
	 11.  a	 12.  a	 13.  c	 14.  b	 15.  a

CHAPTER 14

	   1.  a	   2.  a	   3.  b	   4.  b	   5.  b
	   6.  a	   7.  b	   8.  b	   9.  c	 10.  b
	 11.  a	 12.  a

CHAPTER 15

	   1.  c	   2.  b	   3.  c	   4.  d	   5.  a
	   6.  d	   7.  c	   8.  c	   9.  b	 10.  c

PPUPS.CH23_App-B_1pp.indd 565PPUPS.CH23_App-B_1pp.indd 565 5/24/2023 4:50:29 PM5/24/2023 4:50:29 PM

566 • Python Programming Using Problem Solving

CHAPTER 16

	   1.  c	   2.  b	   3.  b	   4.  b	   5.  c
	   6.  a	   7.  b	   8.  a	   9.  d	 10.  a
	 11.  b	 12.  a	 13.  b	 14.  c	 15.  d
	 16.  c	 17.  a	 18.  a	 19.  a	 20.  a

CHAPTER 17

	   1.  a	   2.  c	   3.  c	   4.  a	   5.  c
	   6.  c	   7.  a	   8.  a	   9.  b	 10.  a
	 11.  a	 12.  a	 13.  c	 14.  b	 15.  a

CHAPTER 18

	   1.  e	   2.  e	   3.  a	   4.  b	   5.  d
	   6.  d	   7.  a	   8.  a	   9.  a	 10.  c
	 11.  a

CHAPTER 19

	   1.  a	   2.  a	   3.  d	   4.  a	   5.  g

CHAPTER 20

	   1.  c	   2.  b	   3.  d	   4.  d	   5.  c
	   6.  b	   7.  a	   8.  c	   9.  a	 10.  a
	 11.  b	 12.  a	

CHAPTER 21

	   1.  a	   2.  b	   3.  c	   4.  a	   5.  a
	   6.  b	   7.  b	   8.  a	   9.  a	 10.  a
	 11.  c	 12.  a

PPUPS.CH23_App-B_1pp.indd 566PPUPS.CH23_App-B_1pp.indd 566 5/24/2023 4:50:29 PM5/24/2023 4:50:29 PM

1.	 Mark Lutz, Learning Python, Fifth Edition, O’Reilly, 2013.

2.	 Stef Maruch and Aahz Maruch, Python for Dummies, John Wiley & Sons,
2006, ISBN: 9780471778646.

3.	 David Beazley, Python Essential Reference, Third Edition, Sams Publish-
ing, USA, 2006.

4.	 Allen Downey, Think Python, How to Think Like a Computer Scientist,
Version 2.0.16, Green Tea Press, Needham, Massachusetts.

5.	 Wes McKinney, Python for Data Analysis, Wes McKinney. USA, 2013,
ISBN: 978-1-449-31979-3.

6.	 Andrew Johansen, Python, The Ultimate Beginner’s Guide!

7.	 Wesley J. Chun, Core Python Programming, First Edition, Prentice Hall
PTR, 2000, ISBN: 0-13-026036-3, 8.

8.	 Peter Harrington, Machine Learning in Action, Manning Publishing
Company, 2012.

9.	 Richard L. Halterman, Learning to Program with Python, Copyright
© 2011 Richard L. Halterman.

10.	 Willi Richert, Luis Pedro Coelho, Building Machine Learning Systems
with Python, Building Machine Learning Systems with Python, Packt
Publishing, 2013.

11.	 Bhasin, H., Algorithms Design and Analysis, Oxford University Press,
2015.

References

PPUPS.CH24_Bib_1pp.indd 567PPUPS.CH24_Bib_1pp.indd 567 5/24/2023 4:57:13 PM5/24/2023 4:57:13 PM

568 • Python Programming Using Problem Solving

12.	 Bhasin, H., Programming in C#, Oxford University Press, 2014.

13.	 Bhasin, H., Python for Beginners, New Age International, 2018.

14.	 Horowitz, Shini et al., Computer Algorithms, University Press, 2017.

15.	 Rao, R. N., Core Python Programming, Dreamtech, 2019.

PPUPS.CH24_Bib_1pp.indd 568PPUPS.CH24_Bib_1pp.indd 568 5/24/2023 4:57:13 PM5/24/2023 4:57:13 PM

Python

1.	 Official documentation:
	 http://www.python.org

2.	 For notes:
	 http://www.cheeseshop.python.org/

3.	 The wiki:
	 http://www.wiki.python.org

4.	 At SciPy portal:
	 https://scipy-lectures.org/intro/language/python_language.html

Data Structures

5.	 Lecture Notes at CMU portal:
	 https://www.cs.cmu.edu/~fp/courses/15122-f15/lectures/09-stackqueue.pdf

6.	 Lecture notes at Washington.edu:
	 https://courses.cs.washington.edu/courses/cse373/14wi/lecture1.pdf

7.	 Lecture notes at UTK portal:
	 http://web.eecs.utk.edu/~jplank/plank/classes/cs140/Notes/Linked/

Web Resources

PPUPS.CH24_Bib_1pp.indd 569PPUPS.CH24_Bib_1pp.indd 569 5/24/2023 4:57:13 PM5/24/2023 4:57:13 PM

570 • Python Programming Using Problem Solving

Online Compilers

If you do not wish to install anaconda, you can run your program online.
Explore the following options:

•	 https://repl.it/languages/python3

•	 https://www.tutorialspoint.com/execute_python3_online.php

•	 https://www.python.org/shell/

Additional resources

The official Python documentation is available at: https://docs.python.org/3/.
You can use stack overflow to search answers to questions related to coding
and algorithms.

PPUPS.CH24_Bib_1pp.indd 570PPUPS.CH24_Bib_1pp.indd 570 5/24/2023 4:57:13 PM5/24/2023 4:57:13 PM

Index

A

Abstract classes 306
Access modes 149
Aggregate functions 369
Algorithm 3
Anaconda 32
Arange() 367
Arguments 125, 131
Arithmetic operators 60
Array with an array 398
Assignment operators 63
Asymptotic notation 10
Axis function 454

B

Bar chart 469
Binary operators 321
Boolean index 505, 509
Bound methods 298
Box plot 479
Break 102
Build-in exceptions 346

C

Chronology 29
Class 253, 254

Class variable 257
Close() 152
Color 460
Command line arguments 155
Command prompt 49
Comments 58
Comparison operators 62
Complexity 11
Composition 275, 280
Concatenate 422
Conditional statements 75
Constructor 260
Continue 102
Control flow 37
Covariance 441
Creating a data frame 512

D

Data frame 522
Describe() 509, 534
Destructors 264
Dictionaries 182
Dictionary 169
Dropna() 543
Dynamic 28

PPUPS.CH25_Index_2pp.indd 571PPUPS.CH25_Index_2pp.indd 571 6/12/2023 2:00:23 PM6/12/2023 2:00:23 PM

572 • Index

E

Efficiency 4
Exception handling 341
Extract 437
Eyes 374

F

Factorial 9
Fibonacci terms 7
File handling 147
Fileno() 152
Fillna() 544
Float 67
Flow chart 5
Frequency plots 482
Full 374
Functional 29
Functions 123

G

Get construct 87
Guido Van Rossum 26

H

Head 532
Head() 508, 533
Hierarchical inheritance 291
Histogram 482
Hsplit 426
Hstack 420
Hybrid inheritance 296

I

Identifiers 55
If-elif-else 76, 83
Iloc 505
In-built functions 221

Index 508
Indexing 171, 376, 505
Inheritance 245, 275
Inheritance tree 304
Init 262
Instance variable 257
Integer 67
Iteration 7
Itertuples() 525

J

Joining arrays 419
Jupyter 52

K

Keywords 55

L

Len() 221
Linestyle 460
Linewidth 461
Linspace() 368
Lists 169, 170
Logical operators 64, 85
Looping 101

M

Manageability 124
Markers 459
Method overriding 253
Modular programming 124
Multilevel inheritance 293, 296
Mutability 172

N

Nesting 113, 259
Numpy 363

PPUPS.CH25_Index_2pp.indd 572PPUPS.CH25_Index_2pp.indd 572 6/12/2023 2:00:23 PM6/12/2023 2:00:23 PM

Index • 573

O

Object 255
Object oriented 29
Objects 253
Ones 374
Open 149
Operators 59, 172
OS methods 153

P

Pandas series 503
Pandas 501
Parameter 126
Patterns 107
Pie chart 493
Plot function 449
Portable 28
Print 47
Priority of operators 66
Procedural 29
Pseudocode 5
Pseudocode, flow chart 5
Public 253
Python 25

R

Rabbit problem 135
Raising exceptions 349
Random numbers 372
Range 102
Read() 151
Read_csv 538
Readline() 152
Recursion 7, 135
Reference type 54
Return value 125
Reusability 124

S

Scalar with an array 386
Scatter diagram 455
Scipy 26
Scope 133, 256
Search 132
Seek() 152
Simple inheritance 288
Slicing 171, 378, 505, 507
Sort_values() 510, 535
Split 435
Splitting arrays 426
State 37
Statement 37, 57
Statistical functions 511
String 68, 215
String functions 511, 537
String operators 62, 219
Super 302

T

Tail 532
Tail() 508, 533
Tell() 152
Ternary operator 86
The membership operator 220
Tokens 55
Tower of Hanoi 16
Traversal 173
Tuple 169, 176
Types of function 129

U

Unbound method 299
Uses 31

PPUPS.CH25_Index_2pp.indd 573PPUPS.CH25_Index_2pp.indd 573 6/12/2023 2:00:23 PM6/12/2023 2:00:23 PM

574 • Index

V

Value 54
Variance 440
Virtual 253
Visualization 447
Vsplit 427
Vstack 421

W

While 102, 103
Write() 152
Writelines() 152

Z

Zeros 374

PPUPS.CH25_Index_2pp.indd 574PPUPS.CH25_Index_2pp.indd 574 6/12/2023 2:00:23 PM6/12/2023 2:00:23 PM

	Cover
	Half-Title
	Title
	Copyright
	Dedication
	Content
	Preface
	Section I: Algorithmic Problem-Solving and Python Fundamentals
	Chapter 1: Algorithmic Problem-Solving
	1.1 Introduction
	1.2 Definition and Characteristics
	1.3 Notations: Pseudocode and Flow Chart
	1.4 Strategies for Problem-Solving: Recursion Versus Iteration
	1.5 Asymptotic Notation
	1.6 Complexity
	1.7 Illustrations
	1.7.1 Minimum in a List
	1.7.2 Insert a Card in a Pack of Cards (Or Insert an element ina sorted list). There are ten cards in the pack, numbered from 1 to 10.
	1.7.3 Guess a Number in a Given Range
	1.7.4 Tower of Hanoi

	1.8 Conclusion
	Glossary
	Points to Remember
	Exercises
	Multiple Choice Questions
	Theory
	Application

	Chapter 2: Introduction to Python
	2.1 Introduction
	2.2 Features of Python
	2.2.1 Easy
	2.2.2 Type and Run
	2.2.3 Syntax
	2.2.4 Mixing
	2.2.5 Dynamic Typing
	2.2.6 Built-in Object Types
	2.2.7 Numerous Libraries and Tools
	2.2.8 Portable
	2.2.9 Free

	2.3 The Paradigms
	2.3.1 Procedural
	2.3.2 Object-Oriented
	2.3.3 Functional

	2.4 Chronology and Uses
	2.4.1 Chronology
	2.4.2 Uses

	2.5 Installation of Anaconda
	2.6 Implementation of an Algorithm: Statement, State, Control Blocks, and Functions
	2.6.1 Statement
	2.6.2 State
	2.6.3 Control Flow

	2.7 Conclusion
	Glossary
	Points to Remember
	Resources
	Exercises
	Multiple Choice Questions
	Theory

	Chapter 3: Fundamentals
	3.1 Introduction
	3.2 Basic Input Output
	3.2.1 Print Function
	3.2.2 Input

	3.3 Running a Program
	3.3.1 Using the Command Prompt
	3.3.2 Executing Programs Written in .py Files
	3.3.3 Using Anaconda Navigator

	3.4 The Jupyter Notebook
	3.5 Value Type and Reference Type
	3.6 Tokens, Keywords, and Identifiers
	3.6.1 Python Keywords
	3.6.2 Python Identifiers
	3.6.3 Python Escape Sequence

	3.7 Statements
	3.7.1 Expression Statement
	3.7.2 Assignment Statements
	3.7.3 The Assert Statements
	3.7.4 The Pass Statements
	3.7.5 The Control Statements

	3.8 Comments
	3.9 Operators
	3.10 Types and Examples of Operators
	3.10.1 Arithmetic Operators
	3.10.2 String Operators
	3.10.3 Comparison Operators
	3.10.4 Assignment Operators
	3.10.5 Logical Operators
	3.10.6 Priority of Operators

	3.11 Basic Data Types
	3.11.1 Integer
	3.11.2 Float
	3.11.3 String

	3.12 Conclusion
	Exercises
	Multiple Choice Questions
	Theory
	Explore

	Section II: Procedural Programming
	Chapter 4: Conditional Statements
	4.1 Introduction
	4.2 "If," If-Else, and If-Elif-Else Constructs
	4.3 The If-Elif-Else Ladder
	4.4 Logical Operators
	4.5 The Ternary Operator
	4.6 The Get Construct
	4.7 Examples
	4.8 Summary
	Glossary
	Points to Remember
	Exercises
	Multiple Choice Questions
	Programming Exercises

	Chapter 5: Looping
	5.1 Introduction
	5.2 While
	5.3 Patterns
	5.4 Nesting and Applications of Loops in Lists
	5.5 Conclusion
	Glossary
	Points to Remember
	Exercises
	Multiple Choice Questions
	Programming Exercises

	Chapter 6: Functions
	6.1 Introduction
	6.2 Features of a Function
	6.2.1 Modular Programming
	6.2.2 Reusability of Code
	6.2.3 Manageability
	6.2.3.1 Easy debugging
	6.2.3.2 Efficient

	6.3 Basic Terminology
	6.3.1 Name of a Function
	6.3.2 Arguments
	6.3.3 Return Value

	6.4 Definition and Invocation
	6.4.1 Working

	6.5 Types of Function
	6.5.1 Arguments: Types of Arguments

	6.6 Implementing Search
	6.7 Scope
	6.8 Recursion
	6.8.1 Rabbit Problem
	6.8.2 Disadvantages of Using Recursion

	6.9 Conclusion
	Glossary
	Points to Remember
	Exercises
	Multiple Choice Questions
	Programming Exercises
	Questions Based on Recursion
	Theory
	Extra Questions

	Chapter 7: File Handling
	7.1 Introduction
	7.2 The File Handling Mechanism
	7.3 The Open Function and File Access Modes
	7.4 Python Functions for File Handling
	7.4.1 The Essential Ones
	7.4.2 The OS Methods
	7.4.3 Miscellaneous Functions and File Attributes

	7.5 Command Line Arguments
	7.6 Implementation and illustrations
	7.7 Conclusion
	Points to Remember
	Exercises
	Multiple Choice Questions
	Theory
	Programming Exercises

	Chapter 8: Lists, tuple, and Dictionar
	8.1 Introduction
	8.2 Lists
	8.2.1 Accessing Elements: Indexing and Slicing
	8.2.2 Mutability
	8.2.3 Operators
	8.2.4 Traversal
	8.2.5 Functions

	8.3 Tuple
	8.3.1 Accessing Elements of a Tuple
	8.3.2 Nonmutability
	8.3.3 Operators
	8.3.4 Traversal
	8.3.5 Functions

	8.4 Associate Arrays and Dictionaries
	8.4.1 Displaying Elements of a Dictionary
	8.4.2 Some Important Functions of Dictionaries
	8.4.2.1 The len function returns the number of elements in a given dictionary.
	8.4.2.2 The max function returns the key with maximum value. If the key is a string, then the value in the lexicographic ordering would be returned.
	8.4.2.3 The min function returns the key with minimum value. If the key is a string, then the value in the lexicographic ordering would be returned.
	8.4.2.4 The sorted function would sort the elements of a given dictionary by their keys. If the keys are strings then lexicographic ordering would be followed.
	8.4.2.5 The pop function takes out the element with the given key from the dictionary.

	8.4.3 Input from the User

	8.5 Conclusion
	Glossary
	Points to Remember
	Exercises
	Multiple Choice Questions
	Theory
	Programming Exercises

	Chapter 9: Iterations, Generators, and Comprehensions
	9.1 Introduction
	9.2 The Power of "For"
	9.3 Iterator
	9.4 Defining an Iterable Object
	9.5 Generators
	9.6 Comprehensions
	9.7 Conclusion
	Glossary
	Points to Remember
	Exercises
	Multiple Choice Questions
	Theory
	Programming Exercises

	Chapter 10: Strings
	10.1 Introduction
	10.2 Loops Revised
	10.3 String Operators
	10.3.1 The Concatenation Operator (+)
	10.3.2 The Replication Operator (*)
	10.3.3 The Membership Operator

	10.4 In-Built Functions
	10.4.1 len()
	10.4.2 Capitalize()
	10.4.3 Find()
	10.4.4 Count
	10.4.5 endswith()
	10.4.6 encode
	10.4.7 decode
	10.4.8 Miscellaneous Functions

	10.5 Conclusion
	Glossary
	Points to Remember
	Exercises
	Multiple Choice Questions
	Theory

	Section III: Object-Oriented Programming
	Chapter 11: Introduction to Object-Oriented Paradigm
	11.1 Introduction
	11.2 Creating New Types
	11.3 Attributes and Functions
	11.3.1 Attributes
	11.3.2 Functions

	11.4 Elements of Object-Oriented Programming
	11.4.1 Class
	11.4.2 Object
	11.4.3 Encapsulation
	11.4.4 Data Hiding
	11.4.5 Inheritance
	11.4.6 Polymorphism
	11.4.7 Reusability

	11.5 Conclusion
	Glossary
	Points to Remember
	Exercises
	Multiple Choice Questions
	Theory
	Explore and Design

	Chapter 12: Classes and Objects
	12.1 Introduction to Classes
	12.2 Defining a Class
	12.3 Creating an Object
	12.4 Scope of Data Members
	12.5 Nesting
	12.6 Constructor
	12.7 Multiple __Init__(s)
	12.8 Destructors
	12.9 Conclusion
	Glossary
	Points to Remember
	Exercises
	Multiple Choice Questions
	Theory
	Programming Exercises

	Chapter 13: Inheritance
	13.1 Introduction to Inheritance and Composition
	13.1.1 Inheritance and Methods
	13.1.2 Composition

	13.2 Inheritance: Importance and Types
	13.2.1 Need for Inheritance
	13.2.2 Types of Inheritance
	13.2.2.1 Simple inheritance
	13.2.2.2 Hierarchical inheritance
	13.2.2.3 Multilevel inheritance
	13.2.2.4 Multiple inheritance and hybrid inheritance

	13.3 Methods
	13.3.1 Bound Methods
	13.3.2 Unbound Method
	13.3.3 Methods are Callable Objects
	13.3.4 The Importance and Usage of Super
	13.3.5 Calling the Base Class Function Using Super

	13.4 Search in Inheritance Tree
	13.5 Class Interface and Abstract Classes
	13.6 Conclusion
	Glossary
	Points to Remember
	Exercises
	Multiple Choice Questions
	Theory
	Programming Exercises

	Chapter 14: Operator Overloading
	14.1 Introduction
	14.2 __Init__ Revisited
	14.2.1 Overloading __init__(Sort of)

	14.3 Methods for Overloading Binary Operators
	14.4 Overloading Binary Operators: The Fraction Example
	14.5 Overloading the += Operator
	14.6 Overloading the > and < Operators
	14.7 Overloading the __Bool__ Operator: Precedence of __Bool__ Over __Len__
	14.8 Conclusion
	Glossary
	Points to Remember
	Exercises
	Multiple Choice Questions
	Theory
	Programming Exercises

	Chapter 15: Exception Handling
	15.1 Introduction
	15.2 Importance and Mechanism
	15.2.1 An Example of Try/Except
	15.2.2 Manually Raising Exceptions

	15.3 Build-in Exceptions in Python
	15.4 The Process
	15.4.1 Example
	15.4.2 Exception Handling: Try/Except
	15.4.3 Raising Exceptions

	15.5 Crafting User Defined Exceptions
	15.6 An Example of Exception Handling
	15.7 Conclusion
	Glossary
	Points to Remember
	Exercises
	Multiple Choice Questions
	Theory
	Programming Exercises

	Section IV: Numpy, Pandas, and Matplotlib
	Chapter 16: Numpy–I
	16.1 Introduction
	16.2 Fundamentals
	16.2.1 Similarity and Differences Between a List and a NumPy Array

	16.3 Functions for Generating Sequences
	16.3.1 arange()
	16.3.2 linspace()

	16.4 Aggregate Functions
	16.5 Generating Random Numbers Using Numpy
	16.6 Zeros, Ones, Eyes, and Full
	16.7 Indexing
	16.8 Slicing
	16.9 Operations: Scalar with an Array
	16.9.1 Addition
	16.9.1.1 Using the + operator
	16.9.1.2 Using the numpy. add function

	16.9.2 Subtraction
	16.9.2.1 Using the – operator
	16.9.2.2 Using the numpy.subtract function

	16.9.3 Multiplication
	16.9.3.1 Using the * operator
	16.9.3.2 Using the numpy.multiply function

	16.9.4 Division
	16.9.4.1 Using the / operator
	16.9.4.2 Using the numpy.divide function

	16.9.5 Remainder
	16.9.5.1 Using the % operator
	16.9.5.2 Using the numpy.remainder function

	16.9.6 Power
	16.9.6.1 Using the ** operator
	16.9.6.2 Using the numpy.power function

	16.10 Operations: Array with an Array
	16.10.1 Addition
	16.10.1.1 Using the + operator
	16.10.1.2 Using the numpy.add function

	16.10.2 Subtraction
	16.10.2.1 Using the — operator
	16.10.2.2 Using the numpy.subtract function

	16.10.3 Multiplication
	16.10.3.1 Using the * operator
	16.10.3.2 Using the numpy.multiply function

	16.10.4 Division
	16.10.4.1 Using the / operator
	16.10.4.2 Using the numpy.divide function

	16.10.5 Remainder
	16.10.5.1 Using the % operator
	16.10.5.2 Using the numpy.mod function

	16.10.6 Power
	16.10.6.1 Using the ** operator
	16.10.6.2 Using the numpy.power function

	16.11 Conclusion
	Exercises
	Multiple Choice Questions
	Theory

	Chapter 17: NumPy–II
	17.1 Introduction
	17.2 Joining Arrays
	17.2.1 hstack
	17.2.2 vstack
	17.2.3 Concatenate

	17.3 Splitting Arrays
	17.3.1 hsplit
	17.3.2 vsplit
	17.3.3 Split
	17.3.4 Extract

	17.4 Variance
	17.5 Covariance
	17.6 Correlation
	17.7 Conclusion
	Exercises
	Multiple Choice Questions
	Theory

	Chapter 18: Data Visualization-I
	18.1 Introduction
	18.2 The Plot Function
	18.2.1 xlabel
	18.2.2 ylabel
	18.2.3 axis
	18.2.4 xlim, ylim
	18.2.5 xticks, yticks
	18.2.6 show
	18.2.7 savefig

	18.3 Plotting Lines and Curves
	18.3.1 Plot(X)
	18.3.2 Plot(X, Y)
	18.3.3 Plot(<2D Array>)
	18.3.4 Axis Function
	18.3.5 Plotting Points: Scatter Diagram
	18.3.6 Sine and Cosine Curves
	18.3.7 Comparing Functions
	18.3.8 Plotting Multiple Lines

	18.4 Additional Arguments
	18.4.1 Markers
	18.4.2 Color
	18.4.3 Linestyle
	18.4.4 Linewidth

	18.5 The Bar Chart
	18.6 Conclusion
	Exercises
	Multiple Choice Questions
	Theory

	Chapter 19: Data Visualization–II
	19.1 Introduction
	19.2 Box Plot
	19.3 Frequency Plots and Histogram
	19.4 The Pie Chart
	19.5 Conclusion
	Exercises
	Multiple Choice Questions
	Theory

	Chapter 20: Pandas–II
	20.1 Introduction
	20.2 Creating Pandas Series
	20.2.1 Using List
	20.2.2 Using NumPy Arrays
	20.2.3 Using Dictionary

	20.3 Indexing, Iloc, Slicing, and Boolean Index
	20.3.1 Indexing: loc
	20.3.2 Indexing Continued: iloc
	20.3.3 Slicing
	20.3.4 Functions: Head, Tail, Describe, and index
	20.3.4.1 head()
	20.3.4.2 tail()
	20.3.4.3 index
	20.3.4.4 describe()

	20.3.5 Boolean Index

	20.4 Sorting, Statistical Analysis, and String Functions
	20.4.1 sort_values()
	20.4.2 Statistical Functions
	20.4.3 String Functions

	20.5 Creating a Data Frame
	20.5.1 Creating a Data Frame Using a Dictionary
	20.5.2 Creating a Data Frame Using a Two-Dimensional Array
	20.5.3 Creating the Data Frame Using a Series

	20.6 Operations on Rows and Columns of a Data Frame
	20.6.1 Adding a Column in a Data Frame
	20.6.2 Deleting Column from the Data Frame
	20.6.3 Adding a Row in a Data Frame
	20.6.4 Deleting Row from the Data Frame

	20.7 Dealing with Rows
	20.7.1 loc[] and iloc[]
	20.7.2 rename

	20.8 Iterating a Pandas Data Frame
	20.8.1 Iterating Pandas Data Frame Rows
	20.8.1.1 iterrows()
	20.8.1.2 index
	20.8.1.3 itertuples()

	20.8.2 Iterating Over Columns
	20.8.2.1 iteritems()
	20.8.2.2 list

	20.9 Conclusion
	Exercises
	Multiple Choice Questions
	Theory

	Chapter 21: Pandas–II
	21.1 Introduction
	21.2 Data Frame Methods: Head, Tail, and Describe
	21.2.1 Functions: Head, Tail, and Describe
	21.2.1.1 head()

	21.2.2 tail()
	21.2.3 columns
	21.2.4 describe()

	21.3 Boolean Index
	21.4 Sorting, Descriptive Statistics, and Applying String Functions
	21.4.1 sort_values()
	21.4.2 Finding Maximum, Minimum, Median, Standard Deviation, Mean, and Count of Values
	21.4.3 String Functions

	21.5 Reading from a CSV File: Pandas.read_csv
	21.6 Missing Values
	21.6.1 To Check Null Values
	21.6.2 dropna()
	21.6.3 fillna()

	21.7 Conclusion
	Exercises
	Multiple Choice Questions
	Theory

	Appendix A: Problems for Practice: Programming Questions
	Appendix B: Answers to Mcqs
	References
	Web Resources
	Index

